code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=_lowercase ) class _A ( _lowercase ): '''simple docstring''' _snake_case : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _snake_case : ClassVar[Features] = Features({"""audio""": Audio()} ) _snake_case : ClassVar[Features] = Features({"""transcription""": Value("""string""" )} ) _snake_case : str = "audio" _snake_case : str = "transcription" def _snake_case ( self : Tuple , lowerCamelCase : Optional[Any] ): '''simple docstring''' if self.audio_column not in features: raise ValueError(f"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , lowerCamelCase ): raise ValueError(f"""Column {self.audio_column} is not an Audio type.""" ) __lowercase = copy.deepcopy(self ) __lowercase = self.input_schema.copy() __lowercase = features[self.audio_column] __lowercase = input_schema return task_template @property def _snake_case ( self : Optional[int] ): '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
655
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case__ : str = logging.get_logger(__name__) snake_case__ : Optional[Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } snake_case__ : Optional[int] = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } snake_case__ : Optional[int] = {"""facebook/blenderbot-3B""": 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : int = VOCAB_FILES_NAMES _snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : str="replace" , lowerCamelCase : Optional[int]="<s>" , lowerCamelCase : str="</s>" , lowerCamelCase : Tuple="</s>" , lowerCamelCase : Union[str, Any]="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : List[str]="<pad>" , lowerCamelCase : Optional[Any]="<mask>" , lowerCamelCase : List[str]=False , **lowerCamelCase : Dict , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : int ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : Any , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : int ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Optional[Any] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : str , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Optional[Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : Optional[int] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , lowerCamelCase : Any , lowerCamelCase : int=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def _snake_case ( self : List[str] , lowerCamelCase : "Conversation" ): '''simple docstring''' __lowercase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = self.encode(lowerCamelCase ) if len(lowerCamelCase ) > self.model_max_length: __lowercase = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
655
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_lowercase ) class _A ( _lowercase ): '''simple docstring''' _snake_case : str = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) _snake_case : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) _snake_case : ClassVar[Features] = Features({"""labels""": ClassLabel} ) _snake_case : str = "text" _snake_case : str = "labels" def _snake_case ( self : str , lowerCamelCase : Any ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCamelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) __lowercase = copy.deepcopy(self ) __lowercase = self.label_schema.copy() __lowercase = features[self.label_column] __lowercase = label_schema return task_template @property def _snake_case ( self : List[str] ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
655
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
1
from __future__ import annotations from typing import Any class _A ( _lowercase ): '''simple docstring''' pass class _A : '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : Any ): '''simple docstring''' __lowercase = data __lowercase = None def __iter__( self : Optional[int] ): '''simple docstring''' __lowercase = self __lowercase = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase ) yield node.data __lowercase = node.next_node @property def _snake_case ( self : List[str] ): '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": snake_case__ : Any = Node(1) snake_case__ : Dict = Node(2) snake_case__ : Any = Node(3) snake_case__ : Any = Node(4) print(root_node.has_loop) # False snake_case__ : Optional[Any] = root_node.next_node print(root_node.has_loop) # True snake_case__ : List[Any] = Node(5) snake_case__ : Optional[int] = Node(6) snake_case__ : Union[str, Any] = Node(5) snake_case__ : List[str] = Node(6) print(root_node.has_loop) # False snake_case__ : List[str] = Node(1) print(root_node.has_loop) # False
655
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
1
import math import random def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value snake_case__ : Optional[Any] = 0.0_2 def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = float(2 * (random.randint(1 , 1_0_0 )) - 1 ) for _ in range(_SCREAMING_SNAKE_CASE ): # Forward propagation __lowercase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __lowercase = (expected / 1_0_0) - layer_a # Error delta __lowercase = layer_1_error * sigmoid_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_0_0 if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Union[str, Any] = int(input("""Expected value: """)) snake_case__ : Optional[int] = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
655
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1_0_2_4 , _SCREAMING_SNAKE_CASE=1_0_2_4 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ): __lowercase = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowercase = SeqaSeqDataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , type_path="train" , **_SCREAMING_SNAKE_CASE ) __lowercase = tok.pad_token_id def get_lens(_SCREAMING_SNAKE_CASE ): __lowercase = tqdm( DataLoader(_SCREAMING_SNAKE_CASE , batch_size=5_1_2 , num_workers=8 , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __lowercase = [] for batch in dl: __lowercase = batch["input_ids"].ne(_SCREAMING_SNAKE_CASE ).sum(1 ).tolist() __lowercase = batch["labels"].ne(_SCREAMING_SNAKE_CASE ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): max_lens.append(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: max_lens.extend(_SCREAMING_SNAKE_CASE ) return max_lens __lowercase = get_lens(_SCREAMING_SNAKE_CASE ) __lowercase = SeqaSeqDataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , type_path="val" , **_SCREAMING_SNAKE_CASE ) __lowercase = get_lens(_SCREAMING_SNAKE_CASE ) pickle_save(_SCREAMING_SNAKE_CASE , train_ds.len_file ) pickle_save(_SCREAMING_SNAKE_CASE , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
655
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser snake_case__ : Tuple = logging.getLogger(__name__) torch.set_grad_enabled(False) snake_case__ : int = """cuda""" if torch.cuda.is_available() else """cpu""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1_0_0 , _SCREAMING_SNAKE_CASE=" " ): __lowercase = text.split(_SCREAMING_SNAKE_CASE ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(_SCREAMING_SNAKE_CASE ): titles.append(title if title is not None else "" ) texts.append(_SCREAMING_SNAKE_CASE ) return {"title": titles, "text": texts} def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" )["input_ids"] __lowercase = ctx_encoder(input_ids.to(device=_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): ###################################### logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __lowercase = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __lowercase = dataset.map(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , num_proc=processing_args.num_proc ) # And compute the embeddings __lowercase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_SCREAMING_SNAKE_CASE ) __lowercase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __lowercase = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space __lowercase = dataset.map( partial(_SCREAMING_SNAKE_CASE , ctx_encoder=_SCREAMING_SNAKE_CASE , ctx_tokenizer=_SCREAMING_SNAKE_CASE ) , batched=_SCREAMING_SNAKE_CASE , batch_size=processing_args.batch_size , features=_SCREAMING_SNAKE_CASE , ) # And finally save your dataset __lowercase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(_SCREAMING_SNAKE_CASE ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __lowercase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=_SCREAMING_SNAKE_CASE ) # And save the index __lowercase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(_SCREAMING_SNAKE_CASE ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _A : '''simple docstring''' _snake_case : str = field( default=str(Path(_lowercase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) _snake_case : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) _snake_case : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) _snake_case : Optional[str] = field( default=str(Path(_lowercase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class _A : '''simple docstring''' _snake_case : Optional[int] = field( default=_lowercase , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) _snake_case : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class _A : '''simple docstring''' _snake_case : int = field( default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) _snake_case : int = field( default=128 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) snake_case__ : Any = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) snake_case__ , snake_case__ , snake_case__ : str = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: snake_case__ : List[Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
655
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC snake_case__ : Tuple = parse(importlib.metadata.version("""torch""")) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) __lowercase = STR_OPERATION_TO_FUNC[operation] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = parse(importlib.metadata.version(_SCREAMING_SNAKE_CASE ) ) return operation(_SCREAMING_SNAKE_CASE , parse(_SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return compare_versions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
655
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : int = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
700
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return abs(__A ) if a == 0 else greatest_common_divisor(b % a , __A ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowercase , __lowercase = y, x % y return abs(__A ) def snake_case_ ( ): try: __lowercase = input("Enter two integers separated by comma (,): " ).split("," ) __lowercase = int(nums[0] ) __lowercase = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(__A , __A )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__A , __A )}""" ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
701
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
0
import argparse import os import re import packaging.version snake_case__ : Optional[Any] = 'examples/' snake_case__ : int = { 'examples': (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), 'release = "VERSION"\n'), } snake_case__ : Optional[int] = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } snake_case__ : List[Any] = 'README.md' def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: __lowercase = f.read() __lowercase , __lowercase = REPLACE_PATTERNS[pattern] __lowercase = replace.replace("VERSION" , _SCREAMING_SNAKE_CASE ) __lowercase = re_pattern.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): for folder, directories, fnames in os.walk(_SCREAMING_SNAKE_CASE ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , pattern="examples" ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not patch: update_version_in_examples(_SCREAMING_SNAKE_CASE ) def snake_case_ ( ): __lowercase = "🤗 Transformers currently provides the following architectures" __lowercase = "1. Want to contribute a new model?" with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: __lowercase = f.readlines() # Find the start of the list. __lowercase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowercase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __lowercase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_SCREAMING_SNAKE_CASE ) def snake_case_ ( ): with open(REPLACE_FILES["init"] , "r" ) as f: __lowercase = f.read() __lowercase = REPLACE_PATTERNS["init"][0].search(_SCREAMING_SNAKE_CASE ).groups()[0] return packaging.version.parse(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE=False ): __lowercase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __lowercase = default_version.base_version elif patch: __lowercase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __lowercase = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __lowercase = input(F"""Which version are you releasing? [{default_version}]""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: __lowercase = default_version print(F"""Updating version to {version}.""" ) global_version_update(_SCREAMING_SNAKE_CASE , patch=_SCREAMING_SNAKE_CASE ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def snake_case_ ( ): __lowercase = get_version() __lowercase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __lowercase = current_version.base_version # Check with the user we got that right. __lowercase = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: __lowercase = dev_version print(F"""Updating version to {version}.""" ) global_version_update(_SCREAMING_SNAKE_CASE ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": snake_case__ : str = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") snake_case__ : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
702
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
0
from collections import defaultdict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = first_str.lower().strip() __lowercase = second_str.lower().strip() # Remove whitespace __lowercase = first_str.replace(" " , "" ) __lowercase = second_str.replace(" " , "" ) # Strings of different lengths are not anagrams if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): return False # Default values for count should be 0 __lowercase = defaultdict(_SCREAMING_SNAKE_CASE ) # For each character in input strings, # increment count in the corresponding for i in range(len(_SCREAMING_SNAKE_CASE ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() snake_case__ : int = input("""Enter the first string """).strip() snake_case__ : Optional[Any] = input("""Enter the second string """).strip() snake_case__ : List[Any] = check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
703
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _A : '''simple docstring''' def _snake_case ( self : int , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : Dict ): '''simple docstring''' return None class _A : '''simple docstring''' def _snake_case ( self : int , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] ): '''simple docstring''' return None class _A ( unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self : Optional[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCamelCase_ , "tf" , 12 , **UpperCamelCase_ ) @require_torch @slow def _snake_case ( self : Any ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(UpperCamelCase_ , "pt" , 12 , **UpperCamelCase_ ) @require_torch @slow def _snake_case ( self : Optional[Any] ): '''simple docstring''' from transformers import BertModel __lowercase = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(UpperCamelCase_ ) ) vocab_file.flush() __lowercase = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __lowercase = BertModel(BertConfig(vocab_size=len(UpperCamelCase_ ) ) ) model.save_pretrained(UpperCamelCase_ ) self._test_export(UpperCamelCase_ , "pt" , 12 , UpperCamelCase_ ) @require_tf @slow def _snake_case ( self : int ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowercase = self._test_export(UpperCamelCase_ , "tf" , 12 , **UpperCamelCase_ ) __lowercase = quantize(Path(UpperCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCamelCase_ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def _snake_case ( self : Dict ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowercase = self._test_export(UpperCamelCase_ , "pt" , 12 , **UpperCamelCase_ ) __lowercase = quantize(UpperCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(UpperCamelCase_ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def _snake_case ( self : Tuple , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Any=None , **lowerCamelCase : Optional[Any] ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: __lowercase = Path(UpperCamelCase_ ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) return path except Exception as e: self.fail(UpperCamelCase_ ) @require_torch @require_tokenizers @slow def _snake_case ( self : Any ): '''simple docstring''' from transformers import BertModel __lowercase = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) __lowercase = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(UpperCamelCase_ , UpperCamelCase_ , "pt" ) @require_tf @require_tokenizers @slow def _snake_case ( self : str ): '''simple docstring''' from transformers import TFBertModel __lowercase = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) __lowercase = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(UpperCamelCase_ , UpperCamelCase_ , "tf" ) def _snake_case ( self : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : str , lowerCamelCase : Any ): '''simple docstring''' __lowercase = FeatureExtractionPipeline(UpperCamelCase_ , UpperCamelCase_ ) __lowercase = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] __lowercase = infer_shapes(UpperCamelCase_ , UpperCamelCase_ ) # Assert all variables are present self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , UpperCamelCase_ ) self.assertSequenceEqual(variable_names[3:] , UpperCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = ['input_ids', 'attention_mask', 'token_type_ids'] __lowercase = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} __lowercase = ensure_valid_input(FuncContiguousArgs() , UpperCamelCase_ , UpperCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(UpperCamelCase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(UpperCamelCase_ ) , set(UpperCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(UpperCamelCase_ , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __lowercase = ensure_valid_input(FuncNonContiguousArgs() , UpperCamelCase_ , UpperCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(UpperCamelCase_ ) , 1 ) self.assertEqual(len(UpperCamelCase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
704
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _A ( unittest.TestCase ): '''simple docstring''' _snake_case : List[Any] = JukeboxTokenizer _snake_case : Optional[int] = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n """, } @require_torch def _snake_case ( self : Tuple ): '''simple docstring''' import torch __lowercase = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __lowercase = tokenizer(**self.metas )["input_ids"] # fmt: off __lowercase = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _snake_case ( self : Dict ): '''simple docstring''' import torch __lowercase = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __lowercase = tokenizer(**self.metas )["input_ids"] # fmt: off __lowercase = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
705
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( __lowerCamelCase ): '''simple docstring''' _snake_case : Optional[Any] = ["""image_processor""", """tokenizer"""] _snake_case : List[Any] = """AutoImageProcessor""" _snake_case : Tuple = """AutoTokenizer""" def __init__( self : str , lowerCamelCase : Tuple , lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) __lowercase = self.image_processor def __call__( self : List[Any] , lowerCamelCase : Tuple=None , lowerCamelCase : Any=None , lowerCamelCase : Optional[int]=None , **lowerCamelCase : Any ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: __lowercase = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if images is not None: __lowercase = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _snake_case ( self : Dict , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self : str , *lowerCamelCase : List[Any] , **lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _snake_case ( self : Any ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
706
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _A ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = TextToVideoSDPipeline _snake_case : str = TEXT_TO_IMAGE_PARAMS _snake_case : str = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _snake_case : Tuple = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) __lowercase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) __lowercase = CLIPTextModel(_lowercase ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowercase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _snake_case ( self : int , lowerCamelCase : List[str] , lowerCamelCase : int=0 ): '''simple docstring''' if str(_lowercase ).startswith("mps" ): __lowercase = torch.manual_seed(_lowercase ) else: __lowercase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __lowercase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _snake_case ( self : int ): '''simple docstring''' __lowercase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**_lowercase ) __lowercase = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) __lowercase = self.get_dummy_inputs(_lowercase ) __lowercase = 'np' __lowercase = sd_pipe(**_lowercase ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowercase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Any ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_lowercase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : List[str] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowercase , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _snake_case ( self : Any ): '''simple docstring''' pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def _snake_case ( self : Any ): '''simple docstring''' pass def _snake_case ( self : List[str] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) __lowercase = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to("cuda" ) __lowercase = 'Spiderman is surfing' __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(_lowercase , generator=_lowercase , num_inference_steps=25 , output_type="pt" ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) __lowercase = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) __lowercase = pipe.to("cuda" ) __lowercase = 'Spiderman is surfing' __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="pt" ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
707
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case__ : List[Any] = sys.version_info >= (3, 10) def snake_case_ ( _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): return field(default_factory=lambda: default , metadata=__A ) @dataclass class _A : '''simple docstring''' _snake_case : Union[str, Any] = 42 _snake_case : List[str] = 42 _snake_case : Tuple = 42 _snake_case : List[Any] = 42 @dataclass class _A : '''simple docstring''' _snake_case : List[str] = 42 _snake_case : List[Any] = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _A : '''simple docstring''' _snake_case : int = False _snake_case : List[Any] = True _snake_case : int = None class _A ( __A ): '''simple docstring''' _snake_case : Tuple = """titi""" _snake_case : Optional[Any] = """toto""" class _A ( __A ): '''simple docstring''' _snake_case : List[Any] = """titi""" _snake_case : Tuple = """toto""" _snake_case : Dict = 42 @dataclass class _A : '''simple docstring''' _snake_case : Any = """toto""" def _snake_case ( self : int ): '''simple docstring''' __lowercase = BasicEnum(self.foo ) @dataclass class _A : '''simple docstring''' _snake_case : Any = """toto""" def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = MixedTypeEnum(self.foo ) @dataclass class _A : '''simple docstring''' _snake_case : Any = None _snake_case : int = field(default=__A , metadata={"""help""": """help message"""} ) _snake_case : List[str] = None _snake_case : List[str] = list_field(default=[] ) _snake_case : str = list_field(default=[] ) @dataclass class _A : '''simple docstring''' _snake_case : List[Any] = list_field(default=[] ) _snake_case : List[Any] = list_field(default=[1, 2, 3] ) _snake_case : int = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) _snake_case : Any = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _A : '''simple docstring''' _snake_case : List[Any] = field() _snake_case : Optional[int] = field() _snake_case : Tuple = field() def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = BasicEnum(self.required_enum ) @dataclass class _A : '''simple docstring''' _snake_case : List[Any] = 42 _snake_case : int = field() _snake_case : List[str] = None _snake_case : Tuple = field(default="""toto""" , metadata={"""help""": """help message"""} ) _snake_case : int = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _A : '''simple docstring''' _snake_case : List[Any] = False _snake_case : List[Any] = True _snake_case : int = None @dataclass class _A : '''simple docstring''' _snake_case : str = None _snake_case : str = field(default=__A , metadata={"""help""": """help message"""} ) _snake_case : Any = None _snake_case : int = list_field(default=[] ) _snake_case : Optional[int] = list_field(default=[] ) class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] , lowerCamelCase : argparse.ArgumentParser , lowerCamelCase : argparse.ArgumentParser ): '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __lowercase = {k: v for k, v in vars(lowerCamelCase ).items() if k != '''container'''} __lowercase = {k: v for k, v in vars(lowerCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , lowerCamelCase ) and yy.get("choices" , lowerCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](lowerCamelCase ) , yy["type"](lowerCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowerCamelCase , required=lowerCamelCase ) expected.add_argument("--bar" , type=lowerCamelCase , required=lowerCamelCase ) expected.add_argument("--baz" , type=lowerCamelCase , required=lowerCamelCase ) expected.add_argument("--flag" , type=lowerCamelCase , default=lowerCamelCase , const=lowerCamelCase , nargs="?" ) self.argparsersEqual(lowerCamelCase , lowerCamelCase ) __lowercase = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] (__lowercase ) = parser.parse_args_into_dataclasses(lowerCamelCase , look_for_args_file=lowerCamelCase ) self.assertFalse(example.flag ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=lowerCamelCase ) expected.add_argument("--baz" , default="toto" , type=lowerCamelCase , help="help message" ) self.argparsersEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowerCamelCase , default=lowerCamelCase , const=lowerCamelCase , nargs="?" ) expected.add_argument("--baz" , type=lowerCamelCase , default=lowerCamelCase , const=lowerCamelCase , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=lowerCamelCase , dest="baz" ) expected.add_argument("--opt" , type=lowerCamelCase , default=lowerCamelCase ) __lowercase = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase ) for dataclass_type in dataclass_types: __lowercase = HfArgumentParser(lowerCamelCase ) self.argparsersEqual(lowerCamelCase , lowerCamelCase ) __lowercase = parser.parse_args([] ) self.assertEqual(lowerCamelCase , Namespace(foo=lowerCamelCase , baz=lowerCamelCase , opt=lowerCamelCase ) ) __lowercase = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(lowerCamelCase , Namespace(foo=lowerCamelCase , baz=lowerCamelCase , opt=lowerCamelCase ) ) __lowercase = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(lowerCamelCase , Namespace(foo=lowerCamelCase , baz=lowerCamelCase , opt=lowerCamelCase ) ) __lowercase = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(lowerCamelCase , Namespace(foo=lowerCamelCase , baz=lowerCamelCase , opt=lowerCamelCase ) ) __lowercase = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(lowerCamelCase , Namespace(foo=lowerCamelCase , baz=lowerCamelCase , opt=lowerCamelCase ) ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(lowerCamelCase , lowerCamelCase ) __lowercase = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) __lowercase = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __lowercase = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) __lowercase = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __lowercase = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) __lowercase = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def _snake_case ( self : Optional[int] ): '''simple docstring''' @dataclass class _A : '''simple docstring''' _snake_case : List[Any] = """toto""" __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(lowerCamelCase , lowerCamelCase ) __lowercase = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) __lowercase = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) __lowercase = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=lowerCamelCase ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=lowerCamelCase ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=lowerCamelCase ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=lowerCamelCase ) self.argparsersEqual(lowerCamelCase , lowerCamelCase ) __lowercase = parser.parse_args([] ) self.assertEqual( lowerCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) __lowercase = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(lowerCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = argparse.ArgumentParser() expected.add_argument("--foo" , default=lowerCamelCase , type=lowerCamelCase ) expected.add_argument("--bar" , default=lowerCamelCase , type=lowerCamelCase , help="help message" ) expected.add_argument("--baz" , default=lowerCamelCase , type=lowerCamelCase ) expected.add_argument("--ces" , nargs="+" , default=[] , type=lowerCamelCase ) expected.add_argument("--des" , nargs="+" , default=[] , type=lowerCamelCase ) __lowercase = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase ) for dataclass_type in dataclass_types: __lowercase = HfArgumentParser(lowerCamelCase ) self.argparsersEqual(lowerCamelCase , lowerCamelCase ) __lowercase = parser.parse_args([] ) self.assertEqual(lowerCamelCase , Namespace(foo=lowerCamelCase , bar=lowerCamelCase , baz=lowerCamelCase , ces=[] , des=[] ) ) __lowercase = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(lowerCamelCase , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=lowerCamelCase , required=lowerCamelCase ) expected.add_argument("--required_str" , type=lowerCamelCase , required=lowerCamelCase ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=lowerCamelCase , ) self.argparsersEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = argparse.ArgumentParser() expected.add_argument("--foo" , type=lowerCamelCase , required=lowerCamelCase ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=lowerCamelCase , ) expected.add_argument("--opt" , type=lowerCamelCase , default=lowerCamelCase ) expected.add_argument("--baz" , default="toto" , type=lowerCamelCase , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=lowerCamelCase ) self.argparsersEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } __lowercase = parser.parse_dict(lowerCamelCase )[0] __lowercase = BasicExample(**lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(lowerCamelCase , parser.parse_dict , lowerCamelCase , allow_extra_keys=lowerCamelCase ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(lowerCamelCase , "temp_json" ) os.mkdir(lowerCamelCase ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) __lowercase = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] __lowercase = BasicExample(**lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) __lowercase = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(lowerCamelCase , "temp_yaml" ) os.mkdir(lowerCamelCase ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(lowerCamelCase , lowerCamelCase ) __lowercase = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] __lowercase = BasicExample(**lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = HfArgumentParser(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase )
708
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
0
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _A : '''simple docstring''' def _snake_case ( self : List[str] , lowerCamelCase : int ): '''simple docstring''' raise NotImplementedError() def _snake_case ( self : Dict ): '''simple docstring''' raise NotImplementedError() class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : int , lowerCamelCase : str = False , **lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = tokenizer __lowercase = skip_prompt __lowercase = decode_kwargs # variables used in the streaming process __lowercase = [] __lowercase = 0 __lowercase = True def _snake_case ( self : List[str] , lowerCamelCase : str ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: __lowercase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __lowercase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): __lowercase = text[self.print_len :] __lowercase = [] __lowercase = 0 # If the last token is a CJK character, we print the characters. elif len(_lowerCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __lowercase = text[self.print_len :] self.print_len += len(_lowerCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __lowercase = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(_lowerCAmelCase ) self.on_finalized_text(_lowerCAmelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' if len(self.token_cache ) > 0: __lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __lowercase = text[self.print_len :] __lowercase = [] __lowercase = 0 else: __lowercase = "" __lowercase = True self.on_finalized_text(_lowerCAmelCase , stream_end=_lowerCAmelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : List[Any] = False ): '''simple docstring''' print(_lowerCAmelCase , flush=_lowerCAmelCase , end="" if not stream_end else None ) def _snake_case ( self : Any , lowerCamelCase : Tuple ): '''simple docstring''' if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False class _A ( _lowercase ): '''simple docstring''' def __init__( self : int , lowerCamelCase : Tuple , lowerCamelCase : str = False , lowerCamelCase : List[Any] = None , **lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) __lowercase = Queue() __lowercase = None __lowercase = timeout def _snake_case ( self : int , lowerCamelCase : int , lowerCamelCase : Any = False ): '''simple docstring''' self.text_queue.put(_lowerCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : List[str] ): '''simple docstring''' return self def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
709
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Any = logging.getLogger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return (preds == labels).mean() @dataclass class _A : '''simple docstring''' _snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _snake_case : Optional[str] = field( default=_lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _A : '''simple docstring''' _snake_case : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) _snake_case : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) _snake_case : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _snake_case : bool = field( default=_lowercase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ ( ): __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCamelCase__ ) # Set seed set_seed(training_args.seed ) try: __lowercase = processors[data_args.task_name]() __lowercase = processor.get_labels() __lowercase = len(lowerCamelCase__ ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __lowercase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __lowercase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_SCREAMING_SNAKE_CASE ) -> Dict: __lowercase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCamelCase__ , p.label_ids )} # Data collator __lowercase = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , compute_metrics=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowercase = trainer.evaluate() __lowercase = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(lowerCamelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowerCamelCase__ , lowerCamelCase__ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowerCamelCase__ ) return results def snake_case_ ( _SCREAMING_SNAKE_CASE ): main() if __name__ == "__main__": main()
710
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
0
import numpy as np def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = int(np.ceil((x_end - xa) / h ) ) __lowercase = np.zeros((n + 1,) ) __lowercase = ya __lowercase = xa for k in range(_lowerCAmelCase ): __lowercase = f(_lowerCAmelCase , y[k] ) __lowercase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowercase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowercase = f(x + h , y[k] + h * ka ) __lowercase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
711
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
0
from typing import TYPE_CHECKING from ...utils import _LazyModule snake_case__ : Optional[Any] = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys snake_case__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
712
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _A ( _snake_case ): '''simple docstring''' _snake_case : torch.FloatTensor class _A ( _snake_case , _snake_case ): '''simple docstring''' @register_to_config def __init__( self : Optional[int] , lowerCamelCase : int = 16 , lowerCamelCase : int = 88 , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : int = 32 , lowerCamelCase : Optional[int] = None , lowerCamelCase : bool = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : str = "geglu" , lowerCamelCase : bool = True , lowerCamelCase : bool = True , ): '''simple docstring''' super().__init__() __lowercase = num_attention_heads __lowercase = attention_head_dim __lowercase = num_attention_heads * attention_head_dim __lowercase = in_channels __lowercase = torch.nn.GroupNorm(num_groups=lowerCamelCase , num_channels=lowerCamelCase , eps=1e-6 , affine=lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # 3. Define transformers blocks __lowercase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase , lowerCamelCase , lowerCamelCase , dropout=lowerCamelCase , cross_attention_dim=lowerCamelCase , activation_fn=lowerCamelCase , attention_bias=lowerCamelCase , double_self_attention=lowerCamelCase , norm_elementwise_affine=lowerCamelCase , ) for d in range(lowerCamelCase ) ] ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]=None , lowerCamelCase : int=None , lowerCamelCase : Dict=None , lowerCamelCase : str=1 , lowerCamelCase : int=None , lowerCamelCase : bool = True , ): '''simple docstring''' __lowercase , __lowercase , __lowercase , __lowercase = hidden_states.shape __lowercase = batch_frames // num_frames __lowercase = hidden_states __lowercase = hidden_states[None, :].reshape(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowercase = self.norm(lowerCamelCase ) __lowercase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCamelCase , lowerCamelCase ) __lowercase = self.proj_in(lowerCamelCase ) # 2. Blocks for block in self.transformer_blocks: __lowercase = block( lowerCamelCase , encoder_hidden_states=lowerCamelCase , timestep=lowerCamelCase , cross_attention_kwargs=lowerCamelCase , class_labels=lowerCamelCase , ) # 3. Output __lowercase = self.proj_out(lowerCamelCase ) __lowercase = ( hidden_states[None, None, :] .reshape(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowercase = hidden_states.reshape(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCamelCase )
713
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup snake_case__ : Optional[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : Tuple , **lowerCamelCase : Tuple ): '''simple docstring''' requires_backends(self , ["bs4"] ) super().__init__(**_UpperCAmelCase ) def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = [] __lowercase = [] __lowercase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __lowercase = parent.find_all(child.name , recursive=_UpperCAmelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_UpperCAmelCase ) else next(i for i, s in enumerate(_UpperCAmelCase , 1 ) if s is child ) ) __lowercase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _snake_case ( self : Optional[Any] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = BeautifulSoup(_UpperCAmelCase , "html.parser" ) __lowercase = [] __lowercase = [] __lowercase = [] for element in html_code.descendants: if type(_UpperCAmelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __lowercase = html.unescape(_UpperCAmelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(_UpperCAmelCase ) __lowercase , __lowercase = self.xpath_soup(_UpperCAmelCase ) stringaxtag_seq.append(_UpperCAmelCase ) stringaxsubs_seq.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _snake_case ( self : Dict , lowerCamelCase : str , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = "" for tagname, subs in zip(_UpperCAmelCase , _UpperCAmelCase ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = False # Check that strings has a valid type if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = True elif isinstance(_UpperCAmelCase , (list, tuple) ): if len(_UpperCAmelCase ) == 0 or isinstance(html_strings[0] , _UpperCAmelCase ): __lowercase = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f"""but is of type {type(_UpperCAmelCase )}.""" ) __lowercase = bool(isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(html_strings[0] , _UpperCAmelCase )) ) if not is_batched: __lowercase = [html_strings] # Get nodes + xpaths __lowercase = [] __lowercase = [] for html_string in html_strings: __lowercase , __lowercase , __lowercase = self.get_three_from_single(_UpperCAmelCase ) nodes.append(_UpperCAmelCase ) __lowercase = [] for node, tag_list, sub_list in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __lowercase = self.construct_xpath(_UpperCAmelCase , _UpperCAmelCase ) xpath_strings.append(_UpperCAmelCase ) xpaths.append(_UpperCAmelCase ) # return as Dict __lowercase = {"nodes": nodes, "xpaths": xpaths} __lowercase = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) return encoded_inputs
714
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _A ( __lowerCAmelCase ): '''simple docstring''' _snake_case : str = (EulerDiscreteScheduler,) _snake_case : Union[str, Any] = 10 def _snake_case ( self : Tuple , **lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = { """num_train_timesteps""": 1_100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_UpperCamelCase ) return config def _snake_case ( self : List[str] ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCamelCase , beta_end=_UpperCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCamelCase ) def _snake_case ( self : Optional[int] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) __lowercase = model(_UpperCamelCase , _UpperCamelCase ) __lowercase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(_UpperCamelCase ) ) __lowercase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(prediction_type="v_prediction" ) __lowercase = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase = sample.to(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): __lowercase = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) __lowercase = model(_UpperCamelCase , _UpperCamelCase ) __lowercase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(_UpperCamelCase ) ) __lowercase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowercase = sample.to(_UpperCamelCase ) for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) __lowercase = model(_UpperCamelCase , _UpperCamelCase ) __lowercase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(_UpperCamelCase ) ) __lowercase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_UpperCamelCase , use_karras_sigmas=_UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCamelCase ) __lowercase = torch.manual_seed(0 ) __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __lowercase = sample.to(_UpperCamelCase ) for t in scheduler.timesteps: __lowercase = scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) __lowercase = model(_UpperCamelCase , _UpperCamelCase ) __lowercase = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ) __lowercase = output.prev_sample __lowercase = torch.sum(torch.abs(_UpperCamelCase ) ) __lowercase = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
715
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _A : '''simple docstring''' def __init__( self : Dict , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=13 , lowerCamelCase : List[str]=10 , lowerCamelCase : Tuple=3 , lowerCamelCase : int=2 , lowerCamelCase : str=2 , lowerCamelCase : List[str]=True , lowerCamelCase : List[Any]=True , lowerCamelCase : Dict=32 , lowerCamelCase : Union[str, Any]=5 , lowerCamelCase : int=4 , lowerCamelCase : Optional[int]=37 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.1 , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Tuple=10 , lowerCamelCase : Any=0.02 , lowerCamelCase : Any="divided_space_time" , lowerCamelCase : Tuple=None , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = patch_size __lowercase = num_frames __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = attention_type __lowercase = initializer_range __lowercase = scope __lowercase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __lowercase = (image_size // patch_size) ** 2 __lowercase = (num_frames) * self.num_patches_per_frame + 1 def _snake_case ( self : int ): '''simple docstring''' __lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __lowercase = self.num_labels return config def _snake_case ( self : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = TimesformerModel(config=_A ) model.to(_A ) model.eval() __lowercase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Tuple , lowerCamelCase : int , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = TimesformerForVideoClassification(_A ) model.to(_A ) model.eval() __lowercase = model(_A ) # verify the logits shape __lowercase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , _A ) def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase = config_and_inputs __lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _A ( a__ , a__ , unittest.TestCase ): '''simple docstring''' _snake_case : Union[str, Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _snake_case : Tuple = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) _snake_case : Optional[int] = False _snake_case : Union[str, Any] = False _snake_case : Union[str, Any] = False _snake_case : str = False def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = TimesformerModelTester(self ) __lowercase = ConfigTester( self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def _snake_case ( self : Dict , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any]=False ): '''simple docstring''' __lowercase = copy.deepcopy(_A ) if return_labels: if model_class in get_values(_A ): __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def _snake_case ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_A ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*_A ) @slow def _snake_case ( self : Dict ): '''simple docstring''' for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TimesformerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _snake_case ( self : Optional[int] ): '''simple docstring''' if not self.has_attentions: pass else: __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: __lowercase = self.model_tester.seq_length __lowercase = self.model_tester.num_frames __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_A , _A ) ) __lowercase = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_A , _A ) ) __lowercase = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __lowercase = len(_A ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + 1 , len(_A ) ) __lowercase = outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _snake_case ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] , lowerCamelCase : Tuple ): __lowercase = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_A , _A ) ) __lowercase = outputs.hidden_states __lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_A ) , _A ) __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_A , _A , _A ) def snake_case_ ( ): __lowercase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __lowercase = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) @require_torch @require_vision class _A ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Tuple ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _snake_case ( self : int ): '''simple docstring''' __lowercase = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( _A ) __lowercase = self.default_image_processor __lowercase = prepare_video() __lowercase = image_processor(video[:8] , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): __lowercase = model(**_A ) # verify the logits __lowercase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _A ) __lowercase = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
716
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not isinstance(_lowerCamelCase , _lowerCamelCase ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(_lowerCamelCase ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(_lowerCamelCase ) __lowercase = 1 for i in range(1 , _lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
717
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
0
from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : Optional[Any] = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class _A ( _UpperCAmelCase ): '''simple docstring''' _snake_case : Optional[Any] = """mctct""" def __init__( self : str , lowerCamelCase : Dict=8_065 , lowerCamelCase : Optional[Any]=1_536 , lowerCamelCase : int=36 , lowerCamelCase : List[str]=6_144 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : Tuple=384 , lowerCamelCase : str=920 , lowerCamelCase : List[str]=1e-5 , lowerCamelCase : Optional[int]=0.3 , lowerCamelCase : str="relu" , lowerCamelCase : Optional[Any]=0.02 , lowerCamelCase : str=0.3 , lowerCamelCase : Union[str, Any]=0.3 , lowerCamelCase : Optional[Any]=1 , lowerCamelCase : Union[str, Any]=0 , lowerCamelCase : str=2 , lowerCamelCase : Union[str, Any]=1 , lowerCamelCase : Union[str, Any]=0.3 , lowerCamelCase : List[Any]=1 , lowerCamelCase : Optional[int]=(7,) , lowerCamelCase : List[str]=(3,) , lowerCamelCase : Dict=80 , lowerCamelCase : Union[str, Any]=1 , lowerCamelCase : Any=None , lowerCamelCase : str="sum" , lowerCamelCase : List[Any]=False , **lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = num_attention_heads __lowercase = attention_head_dim __lowercase = max_position_embeddings __lowercase = layer_norm_eps __lowercase = layerdrop __lowercase = hidden_act __lowercase = initializer_range __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = eos_token_id __lowercase = conv_glu_dim __lowercase = conv_dropout __lowercase = num_conv_layers __lowercase = input_feat_per_channel __lowercase = input_channels __lowercase = conv_channels __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # prevents config testing fail with exporting to json __lowercase = list(lowerCamelCase_ ) __lowercase = list(lowerCamelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
718
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _A ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : int = 16 , lowerCamelCase : int = 88 , lowerCamelCase : Optional[int] = None , lowerCamelCase : int = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : int = 32 , lowerCamelCase : Optional[int] = None , lowerCamelCase : bool = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : str = "geglu" , lowerCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() __lowercase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __lowercase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __lowercase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __lowercase = [1, 0] def _snake_case ( self : Optional[int] , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Tuple=None , lowerCamelCase : bool = True , ): '''simple docstring''' __lowercase = hidden_states __lowercase = [] __lowercase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __lowercase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __lowercase = self.transformer_index_for_condition[i] __lowercase = self.transformers[transformer_index]( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __lowercase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __lowercase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__UpperCamelCase )
719
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
0
from math import factorial def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) __lowercase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __lowercase = float(factorial(_SCREAMING_SNAKE_CASE ) ) coefficient /= factorial(_SCREAMING_SNAKE_CASE ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.7_5))
720
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = word.split() def justify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: __lowercase = max_width - width __lowercase = len(__UpperCamelCase ) if len(__UpperCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __lowercase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __lowercase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __lowercase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__UpperCamelCase ): num_spaces_between_words_list[i] += 1 __lowercase = [] for i in range(__UpperCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__UpperCamelCase ) __lowercase = [] __lowercase = [] __lowercase = 0 for word in words: if width + len(__UpperCamelCase ) + len(__UpperCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__UpperCamelCase ) width += len(__UpperCamelCase ) else: # justify the line and add it to result answer.append(justify(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) # reset new line and new width __lowercase = [word], len(__UpperCamelCase ) __lowercase = max_width - width - len(__UpperCamelCase ) answer.append(" ".join(__UpperCamelCase ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
721
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
0
'''simple docstring''' import numpy as np def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = int(np.ceil((x_end - xa) / h ) ) __lowercase = np.zeros((n + 1,) ) __lowercase = ya __lowercase = xa for k in range(snake_case__ ): __lowercase = f(snake_case__ , y[k] ) __lowercase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowercase = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) __lowercase = f(x + h , y[k] + h * ka ) __lowercase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
700
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
0
import math def snake_case_ ( _SCREAMING_SNAKE_CASE ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_1 ): try: __lowercase = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) __lowercase = [] __lowercase = 2 while len(__SCREAMING_SNAKE_CASE ) < nth: if is_prime(__SCREAMING_SNAKE_CASE ): primes.append(__SCREAMING_SNAKE_CASE ) num += 1 else: num += 1 return primes[len(__SCREAMING_SNAKE_CASE ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
701
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __lowercase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __lowercase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __lowercase = subset[i - 1][j] if arr[i - 1] <= j: __lowercase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
702
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : Dict = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } snake_case__ : Optional[int] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } snake_case__ : List[Any] = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } snake_case__ : int = { """facebook/dpr-ctx_encoder-single-nq-base""": 5_12, """facebook/dpr-ctx_encoder-multiset-base""": 5_12, } snake_case__ : Tuple = { """facebook/dpr-question_encoder-single-nq-base""": 5_12, """facebook/dpr-question_encoder-multiset-base""": 5_12, } snake_case__ : Optional[int] = { """facebook/dpr-reader-single-nq-base""": 5_12, """facebook/dpr-reader-multiset-base""": 5_12, } snake_case__ : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } snake_case__ : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } snake_case__ : Any = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class _A ( UpperCamelCase_ ): '''simple docstring''' _snake_case : List[Any] = VOCAB_FILES_NAMES _snake_case : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[int] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _A ( UpperCamelCase_ ): '''simple docstring''' _snake_case : int = VOCAB_FILES_NAMES _snake_case : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _snake_case : str = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case__ : int = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) snake_case__ : List[Any] = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) snake_case__ : int = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCamelCase_ ) class _A : '''simple docstring''' def __call__( self : Dict , lowerCamelCase : int , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : Union[bool, str] = False , lowerCamelCase : Union[bool, str] = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[bool] = None , **lowerCamelCase : Any , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( __A , padding=__A , truncation=__A , max_length=__A , return_tensors=__A , return_attention_mask=__A , **__A , ) elif titles is None or texts is None: __lowercase = titles if texts is None else texts return super().__call__( __A , __A , padding=__A , truncation=__A , max_length=__A , return_tensors=__A , return_attention_mask=__A , **__A , ) __lowercase = titles if not isinstance(__A , __A ) else [titles] __lowercase = texts if not isinstance(__A , __A ) else [texts] __lowercase = len(__A ) __lowercase = questions if not isinstance(__A , __A ) else [questions] * n_passages if len(__A ) != len(__A ): raise ValueError( f"""There should be as many titles than texts but got {len(__A )} titles and {len(__A )} texts.""" ) __lowercase = super().__call__(__A , __A , padding=__A , truncation=__A )["input_ids"] __lowercase = super().__call__(__A , add_special_tokens=__A , padding=__A , truncation=__A )["input_ids"] __lowercase = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__A , __A ) ] } if return_attention_mask is not False: __lowercase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase = attention_mask return self.pad(__A , padding=__A , max_length=__A , return_tensors=__A ) def _snake_case ( self : Optional[int] , lowerCamelCase : BatchEncoding , lowerCamelCase : DPRReaderOutput , lowerCamelCase : int = 16 , lowerCamelCase : int = 64 , lowerCamelCase : int = 4 , ): '''simple docstring''' __lowercase = reader_input["input_ids"] __lowercase = reader_output[:3] __lowercase = len(__A ) __lowercase = sorted(range(__A ) , reverse=__A , key=relevance_logits.__getitem__ ) __lowercase = [] for doc_id in sorted_docs: __lowercase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase = sequence_ids.index(self.pad_token_id ) else: __lowercase = len(__A ) __lowercase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__A , top_spans=__A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__A , start_index=__A , end_index=__A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Any , lowerCamelCase : List[int] , lowerCamelCase : List[int] , lowerCamelCase : int , lowerCamelCase : int , ): '''simple docstring''' __lowercase = [] for start_index, start_score in enumerate(__A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase = sorted(__A , key=lambda lowerCamelCase : x[1] , reverse=__A ) __lowercase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) __lowercase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase_ ) class _A ( UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' _snake_case : Dict = VOCAB_FILES_NAMES _snake_case : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP _snake_case : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : List[str] = READER_PRETRAINED_INIT_CONFIGURATION _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""]
703
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
0
import functools from typing import Any def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all( isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie __lowercase = {} __lowercase = "WORD_KEEPER" for word in words: __lowercase = trie for c in word: if c not in trie_node: __lowercase = {} __lowercase = trie_node[c] __lowercase = True __lowercase = len(_lowerCamelCase ) # Dynamic programming method @functools.cache def is_breakable(_SCREAMING_SNAKE_CASE ) -> bool: if index == len_string: return True __lowercase = trie for i in range(_lowerCamelCase , _lowerCamelCase ): __lowercase = trie_node.get(string[i] , _lowerCamelCase ) if trie_node is None: return False if trie_node.get(_lowerCamelCase , _lowerCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
704
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) __lowercase = (boundary[1] - boundary[0]) / steps __lowercase = boundary[0] __lowercase = boundary[1] __lowercase = make_points(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = 0.0 y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(_SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) return y def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = a + h while x < (b - h): yield x __lowercase = x + h def snake_case_ ( _SCREAMING_SNAKE_CASE ): # enter your function here __lowercase = (x - 0) * (x - 0) return y def snake_case_ ( ): __lowercase = 0.0 # Lower bound of integration __lowercase = 1.0 # Upper bound of integration __lowercase = 1_0.0 # define number of steps or resolution __lowercase = [a, b] # define boundary of integration __lowercase = method_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(F"""y = {y}""" ) if __name__ == "__main__": main()
705
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case__ : int = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case__ : List[str] = 12_80_22 snake_case__ : List[str] = 12_80_28 @require_sentencepiece class _A ( __a , unittest.TestCase ): '''simple docstring''' _snake_case : int = MaMaaaTokenizer _snake_case : Tuple = False _snake_case : List[str] = False _snake_case : Tuple = True def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().setUp() __lowercase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowercase = dict(zip(a_ , range(len(a_ ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(a_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __lowercase = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Optional[Any] , **lowerCamelCase : Optional[int] ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **a_ ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' return ( "This is a test", "This is a test", ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = """</s>""" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(a_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def _snake_case ( self : Any ): '''simple docstring''' pass def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.get_tokenizer() __lowercase = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [2, 3, 4, 5, 6] , ) __lowercase = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(a_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) __lowercase = tokenizer.convert_tokens_to_string(a_ ) self.assertEqual(a_ , "This is a test" ) @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = {"""input_ids""": [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): '''simple docstring''' _snake_case : Optional[int] = """facebook/m2m100_418M""" _snake_case : Union[str, Any] = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] _snake_case : Tuple = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off _snake_case : Optional[int] = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def _snake_case ( cls : List[Any] ): '''simple docstring''' __lowercase = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) __lowercase = 1 return cls def _snake_case ( self : List[str] ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128_006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128_022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128_076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128_063 ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.tokenizer.get_vocab() self.assertEqual(len(a_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , a_ ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = """en""" __lowercase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a_ ) def _snake_case ( self : Tuple ): '''simple docstring''' self.assertIn(a_ , self.tokenizer.all_special_ids ) # fmt: off __lowercase = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on __lowercase = self.tokenizer.decode(a_ , skip_special_tokens=a_ ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a_ ) self.assertEqual(a_ , a_ ) self.assertNotIn(self.tokenizer.eos_token , a_ ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(a_ ) __lowercase = MaMaaaTokenizer.from_pretrained(a_ ) self.assertDictEqual(new_tok.lang_token_to_id , a_ ) @require_torch def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = """en""" __lowercase = """fr""" __lowercase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a_ , return_tensors="pt" ) __lowercase = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __lowercase = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __lowercase = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __lowercase = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(a_ ) , { # en_XX, A, test, EOS "input_ids": [[128_022, 58, 4_183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128_006, } , )
706
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE ): if num <= 0: raise ValueError("Input must be a positive integer" ) __lowercase = [True] * (num + 1) __lowercase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __snake_case ): __lowercase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : List[Any] = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
707
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1_0_2_4 ): __lowercase = [], [] __lowercase = list(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) __lowercase = sorted_examples[0] def is_too_big(_SCREAMING_SNAKE_CASE ): return tok(UpperCAmelCase__ , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __lowercase = new_src + """ """ + src __lowercase = new_tgt + """ """ + tgt if is_too_big(UpperCAmelCase__ ) or is_too_big(UpperCAmelCase__ ): # cant fit, finalize example finished_src.append(UpperCAmelCase__ ) finished_tgt.append(UpperCAmelCase__ ) __lowercase = src, tgt else: # can fit, keep adding __lowercase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCAmelCase__ ) finished_tgt.append(UpperCAmelCase__ ) return finished_src, finished_tgt def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = Path(UpperCAmelCase__ ) save_path.mkdir(exist_ok=UpperCAmelCase__ ) for split in ["train"]: __lowercase = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" __lowercase = [x.rstrip() for x in Path(UpperCAmelCase__ ).open().readlines()] __lowercase = [x.rstrip() for x in Path(UpperCAmelCase__ ).open().readlines()] __lowercase = pack_examples(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) print(F"""packed {split} split from {len(UpperCAmelCase__ )} examples -> {len(UpperCAmelCase__ )}.""" ) Path(save_path / F"""{split}.source""" ).open("w" ).write("\n".join(UpperCAmelCase__ ) ) Path(save_path / F"""{split}.target""" ).open("w" ).write("\n".join(UpperCAmelCase__ ) ) for split in ["val", "test"]: __lowercase = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(UpperCAmelCase__ , save_path / F"""{split}.source""" ) shutil.copyfile(UpperCAmelCase__ , save_path / F"""{split}.target""" ) def snake_case_ ( ): __lowercase = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=UpperCAmelCase__ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=UpperCAmelCase__ , default=1_2_8 ) parser.add_argument("--data_dir" , type=UpperCAmelCase__ ) parser.add_argument("--save_path" , type=UpperCAmelCase__ ) __lowercase = parser.parse_args() __lowercase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCAmelCase__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
708
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return round(float(moles / volume ) * nfactor ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
709
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): '''simple docstring''' __lowercase = tempfile.mkdtemp() __lowercase = BlipImageProcessor() __lowercase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) __lowercase = BlipProcessor(__lowerCAmelCase , __lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Tuple , **lowerCamelCase : Optional[Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).tokenizer def _snake_case ( self : List[str] , **lowerCamelCase : str ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ).image_processor def _snake_case ( self : Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : int ): '''simple docstring''' __lowercase = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowercase = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) __lowercase = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(__lowerCAmelCase , return_tensors="np" ) __lowercase = processor(images=__lowerCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __lowercase = "lower newer" __lowercase = processor(text=__lowerCAmelCase ) __lowercase = tokenizer(__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __lowercase = "lower newer" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(__lowerCAmelCase ) __lowercase = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = BlipProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) __lowercase = "lower newer" __lowercase = self.prepare_image_inputs() __lowercase = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
710
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
0
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params snake_case__ : Tuple = getLogger(__name__) snake_case__ : Union[str, Any] = """cuda""" if torch.cuda.is_available() else """cpu""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 8 , _SCREAMING_SNAKE_CASE = DEFAULT_DEVICE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="summarization" , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): __lowercase = Path(_snake_case ).open("w" , encoding="utf-8" ) __lowercase = str(_snake_case ) __lowercase = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).to(_snake_case ) if fpaa: __lowercase = model.half() __lowercase = AutoTokenizer.from_pretrained(_snake_case ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. __lowercase = time.time() # update config with task specific params use_task_specific_params(_snake_case , _snake_case ) if prefix is None: __lowercase = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(_snake_case , _snake_case ) ) ): __lowercase = [prefix + text for text in examples_chunk] __lowercase = tokenizer(_snake_case , return_tensors="pt" , truncation=_snake_case , padding="longest" ).to(_snake_case ) __lowercase = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_snake_case , ) __lowercase = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() __lowercase = int(time.time() - start_time ) # seconds __lowercase = len(_snake_case ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def snake_case_ ( ): return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def snake_case_ ( _SCREAMING_SNAKE_CASE=True ): __lowercase = argparse.ArgumentParser() parser.add_argument("model_name" , type=_snake_case , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=_snake_case , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=_snake_case , help="where to save summaries" ) parser.add_argument("--reference_path" , type=_snake_case , required=_snake_case , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=_snake_case , required=_snake_case , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=_snake_case , required=_snake_case , default=_snake_case , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=_snake_case , required=_snake_case , default=_snake_case , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=_snake_case , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=_snake_case , default=8 , required=_snake_case , help="batch size" ) parser.add_argument( "--n_obs" , type=_snake_case , default=-1 , required=_snake_case , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=_snake_case , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate __lowercase , __lowercase = parser.parse_known_args() __lowercase = parse_numeric_n_bool_cl_kwargs(_snake_case ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) __lowercase = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: __lowercase = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=_snake_case ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can\'t mix --fp16 and --device cpu" ) __lowercase = generate_summaries_or_translations( _snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_snake_case , ) if args.reference_path is None: return {} # Compute scores __lowercase = calculate_bleu if "translation" in args.task else calculate_rouge __lowercase = [x.rstrip() for x in open(args.save_path ).readlines()] __lowercase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_snake_case )] __lowercase = score_fn(_snake_case , _snake_case ) scores.update(_snake_case ) if args.dump_args: scores.update(_snake_case ) if args.info: __lowercase = args.info if verbose: print(_snake_case ) if args.score_path is not None: json.dump(_snake_case , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
711
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
0
import math import qiskit def snake_case_ ( _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 1 ): if ( isinstance(_lowercase , _lowercase ) or isinstance(_lowercase , _lowercase ) or isinstance(_lowercase , _lowercase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(_lowercase ) != input_a) or (math.floor(_lowercase ) != input_a) or (math.floor(_lowercase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers __lowercase = qiskit.QuantumRegister(4 , "qr" ) __lowercase = qiskit.ClassicalRegister(2 , "cr" ) # list the entries __lowercase = [input_a, input_a, carry_in] __lowercase = qiskit.QuantumCircuit(_lowercase , _lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _lowercase ) # measure the last two qbits __lowercase = qiskit.Aer.get_backend("aer_simulator" ) __lowercase = qiskit.execute(_lowercase , _lowercase , shots=1_0_0_0 ) return job.result().get_counts(_lowercase ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
712
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( ): __lowercase = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=__UpperCamelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=__UpperCamelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=__UpperCamelCase ) return parser.parse_args() def snake_case_ ( ): __lowercase = parse_args() # Import training_script as a module. __lowercase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowercase = script_fpath.stem __lowercase = importlib.import_module(__UpperCamelCase ) # Patch sys.argv __lowercase = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
713
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
0
import argparse import collections import json import os import re import string import sys import numpy as np snake_case__ : List[str] = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) snake_case__ : List[Any] = None def snake_case_ ( ): __lowercase = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=_SCREAMING_SNAKE_CASE , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=_SCREAMING_SNAKE_CASE , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowercase = bool(qa["answers"]["text"] ) return qid_to_has_ans def snake_case_ ( _SCREAMING_SNAKE_CASE ): def remove_articles(_SCREAMING_SNAKE_CASE ): return ARTICLES_REGEX.sub(" " , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE ): __lowercase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not s: return [] return normalize_answer(_SCREAMING_SNAKE_CASE ).split() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = get_tokens(_SCREAMING_SNAKE_CASE ) __lowercase = get_tokens(_SCREAMING_SNAKE_CASE ) __lowercase = collections.Counter(_SCREAMING_SNAKE_CASE ) & collections.Counter(_SCREAMING_SNAKE_CASE ) __lowercase = sum(common.values() ) if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __lowercase = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) __lowercase = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) __lowercase = (2 * precision * recall) / (precision + recall) return fa def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = {} __lowercase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowercase = qa["""id"""] __lowercase = [t for t in qa["""answers"""]["""text"""] if normalize_answer(_SCREAMING_SNAKE_CASE )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __lowercase = [""""""] if qid not in preds: print(F"""Missing prediction for {qid}""" ) continue __lowercase = preds[qid] # Take max over all gold answers __lowercase = max(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) __lowercase = max(compute_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) return exact_scores, fa_scores def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = {} for qid, s in scores.items(): __lowercase = na_probs[qid] > na_prob_thresh if pred_na: __lowercase = float(not qid_to_has_ans[qid] ) else: __lowercase = s return new_scores def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if not qid_list: __lowercase = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ("exact", 1_0_0.0 * sum(exact_scores.values() ) / total), ("f1", 1_0_0.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: __lowercase = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ("exact", 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for k in new_eval: __lowercase = new_eval[k] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): plt.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color="b" , alpha=0.2 , where="post" ) plt.fill_between(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(_SCREAMING_SNAKE_CASE ) plt.savefig(_SCREAMING_SNAKE_CASE ) plt.clf() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): __lowercase = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) __lowercase = 0.0 __lowercase = 1.0 __lowercase = 0.0 __lowercase = [1.0] __lowercase = [0.0] __lowercase = 0.0 for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid_to_has_ans[qid]: true_pos += scores[qid] __lowercase = true_pos / float(i + 1 ) __lowercase = true_pos / float(_SCREAMING_SNAKE_CASE ) if i == len(_SCREAMING_SNAKE_CASE ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_SCREAMING_SNAKE_CASE ) recalls.append(_SCREAMING_SNAKE_CASE ) if out_image: plot_pr_curve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"ap": 1_0_0.0 * avg_prec} def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if out_image_dir and not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) __lowercase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __lowercase = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) __lowercase = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) __lowercase = {k: float(_SCREAMING_SNAKE_CASE ) for k, v in qid_to_has_ans.items()} __lowercase = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "pr_exact" ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "pr_f1" ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "pr_oracle" ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not qid_list: return __lowercase = [na_probs[k] for k in qid_list] __lowercase = np.ones_like(_SCREAMING_SNAKE_CASE ) / float(len(_SCREAMING_SNAKE_CASE ) ) plt.hist(_SCREAMING_SNAKE_CASE , weights=_SCREAMING_SNAKE_CASE , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(_SCREAMING_SNAKE_CASE , F"""na_prob_hist_{name}.png""" ) ) plt.clf() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __lowercase = num_no_ans __lowercase = cur_score __lowercase = 0.0 __lowercase = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid not in scores: continue if qid_to_has_ans[qid]: __lowercase = scores[qid] else: if preds[qid]: __lowercase = -1 else: __lowercase = 0 cur_score += diff if cur_score > best_score: __lowercase = cur_score __lowercase = na_probs[qid] return 1_0_0.0 * best_score / len(_SCREAMING_SNAKE_CASE ), best_thresh def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = best_exact __lowercase = exact_thresh __lowercase = best_fa __lowercase = fa_thresh def snake_case_ ( ): with open(OPTS.data_file ) as f: __lowercase = json.load(_SCREAMING_SNAKE_CASE ) __lowercase = dataset_json["""data"""] with open(OPTS.pred_file ) as f: __lowercase = json.load(_SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __lowercase = json.load(_SCREAMING_SNAKE_CASE ) else: __lowercase = {k: 0.0 for k in preds} __lowercase = make_qid_to_has_ans(_SCREAMING_SNAKE_CASE ) # maps qid to True/False __lowercase = [k for k, v in qid_to_has_ans.items() if v] __lowercase = [k for k, v in qid_to_has_ans.items() if not v] __lowercase = get_raw_scores(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) __lowercase = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) __lowercase = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if has_ans_qids: __lowercase = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "HasAns" ) if no_ans_qids: __lowercase = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: print(json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) if __name__ == "__main__": snake_case__ : Optional[int] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
714
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
0
import copy import random from transformers import CLIPTokenizer class _A ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[int] , *lowerCamelCase : Optional[Any] , **lowerCamelCase : str ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) __lowercase = {} def _snake_case ( self : Union[str, Any] , lowerCamelCase : int , *lowerCamelCase : List[str] , **lowerCamelCase : Dict ): '''simple docstring''' __lowercase = super().add_tokens(__lowercase , *__lowercase , **__lowercase ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer." ) def _snake_case ( self : Dict , lowerCamelCase : List[Any] , *lowerCamelCase : List[Any] , lowerCamelCase : str=1 , **lowerCamelCase : int ): '''simple docstring''' __lowercase = [] if num_vec_per_token == 1: self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase ) output.append(__lowercase ) else: __lowercase = [] for i in range(__lowercase ): __lowercase = placeholder_token + f"""_{i}""" self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase ) output.append(__lowercase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) __lowercase = output def _snake_case ( self : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : str=False , lowerCamelCase : Dict=1.0 ): '''simple docstring''' if isinstance(__lowercase , __lowercase ): __lowercase = [] for i in range(len(__lowercase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__lowercase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __lowercase = self.token_map[placeholder_token] __lowercase = tokens[: 1 + int(len(__lowercase ) * prop_tokens_to_load )] if vector_shuffle: __lowercase = copy.copy(__lowercase ) random.shuffle(__lowercase ) __lowercase = text.replace(__lowercase , " ".join(__lowercase ) ) return text def __call__( self : Optional[int] , lowerCamelCase : Tuple , *lowerCamelCase : Dict , lowerCamelCase : Any=False , lowerCamelCase : Optional[int]=1.0 , **lowerCamelCase : Tuple ): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase ) , *__lowercase , **__lowercase , ) def _snake_case ( self : Optional[Any] , lowerCamelCase : Any , *lowerCamelCase : Union[str, Any] , lowerCamelCase : int=False , lowerCamelCase : Optional[int]=1.0 , **lowerCamelCase : Any ): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase ) , *__lowercase , **__lowercase , )
715
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu snake_case__ : int = False class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self : Any ): '''simple docstring''' return 12 @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return 12 @property def _snake_case ( self : List[str] ): '''simple docstring''' return 32 @property def _snake_case ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _snake_case ( self : str ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(A_ ) @property def _snake_case ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = 12 __lowercase = 12 __lowercase = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } __lowercase = TransformeraDModel(**A_ ) return model def _snake_case ( self : str ): '''simple docstring''' __lowercase = "cpu" __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings(learnable=A_ ) __lowercase = VQDiffusionPipeline( vqvae=A_ , text_encoder=A_ , tokenizer=A_ , transformer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) __lowercase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowercase = "teddy bear playing in the pool" __lowercase = torch.Generator(device=A_ ).manual_seed(0 ) __lowercase = pipe([prompt] , generator=A_ , num_inference_steps=2 , output_type="np" ) __lowercase = output.images __lowercase = torch.Generator(device=A_ ).manual_seed(0 ) __lowercase = pipe( [prompt] , generator=A_ , output_type="np" , return_dict=A_ , num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = "cpu" __lowercase = self.dummy_vqvae __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_transformer __lowercase = VQDiffusionScheduler(self.num_embed ) __lowercase = LearnedClassifierFreeSamplingEmbeddings( learnable=A_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowercase = VQDiffusionPipeline( vqvae=A_ , text_encoder=A_ , tokenizer=A_ , transformer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) __lowercase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __lowercase = "teddy bear playing in the pool" __lowercase = torch.Generator(device=A_ ).manual_seed(0 ) __lowercase = pipe([prompt] , generator=A_ , num_inference_steps=2 , output_type="np" ) __lowercase = output.images __lowercase = torch.Generator(device=A_ ).manual_seed(0 ) __lowercase = pipe( [prompt] , generator=A_ , output_type="np" , return_dict=A_ , num_inference_steps=2 )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) __lowercase = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) __lowercase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase = torch.Generator(device=A_ ).manual_seed(0 ) __lowercase = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=A_ , output_type="np" , ) __lowercase = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
716
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _A : '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : Optional[int]=32 , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Any=10 , lowerCamelCase : Tuple=[8, 16, 32, 64] , lowerCamelCase : Optional[Any]=[1, 1, 2, 1] , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Optional[int]="relu" , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : List[str]=None , lowerCamelCase : Optional[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase : Dict=[2, 3, 4] , lowerCamelCase : int=1 , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = embeddings_size __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = hidden_act __lowercase = num_labels __lowercase = scope __lowercase = len(lowerCamelCase ) __lowercase = out_features __lowercase = out_indices __lowercase = num_groups def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def _snake_case ( self : Optional[int] ): '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = BitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self : int , lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = self.num_labels __lowercase = BitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Dict , lowerCamelCase : Any ): '''simple docstring''' __lowercase = BitBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase = None __lowercase = BitBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' _snake_case : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _snake_case : int = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) _snake_case : Dict = False _snake_case : Optional[Any] = False _snake_case : str = False _snake_case : List[Any] = False _snake_case : str = False def _snake_case ( self : int ): '''simple docstring''' __lowercase = BitModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Optional[Any] ): '''simple docstring''' return @unittest.skip(reason="Bit does not output attentions" ) def _snake_case ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def _snake_case ( self : int ): '''simple docstring''' pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def _snake_case ( self : int ): '''simple docstring''' pass def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(config=lowerCamelCase ) for name, module in model.named_modules(): if isinstance(lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def _snake_case ( self : int ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : str , lowerCamelCase : int , lowerCamelCase : List[str] ): __lowercase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __lowercase = layer_type __lowercase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def _snake_case ( self : Tuple ): '''simple docstring''' pass def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def _snake_case ( self : List[str] ): '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = BitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def snake_case_ ( ): __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __lowercase = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @require_torch class _A ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' _snake_case : Any = (BitBackbone,) if is_torch_available() else () _snake_case : str = BitConfig _snake_case : Optional[Any] = False def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = BitModelTester(self )
717
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [0] * len(__lowerCAmelCase ) for i in range(1 , len(__lowerCAmelCase ) ): # use last results for better performance - dynamic programming __lowercase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __lowercase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __lowercase = j return prefix_result def snake_case_ ( _SCREAMING_SNAKE_CASE ): return max(prefix_function(__lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
718
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
0
'''simple docstring''' def snake_case_ ( _SCREAMING_SNAKE_CASE = 5_0 ): __lowercase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
719
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch snake_case__ : List[Any] = random.Random() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): if rng is None: __lowercase = global_rng __lowercase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _A ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : str , lowerCamelCase : Union[str, Any]=7 , lowerCamelCase : int=400 , lowerCamelCase : Union[str, Any]=2_000 , lowerCamelCase : int=1 , lowerCamelCase : Union[str, Any]=0.0 , lowerCamelCase : Union[str, Any]=16_000 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[int]=80 , lowerCamelCase : Union[str, Any]=16 , lowerCamelCase : Union[str, Any]=64 , lowerCamelCase : Any="hann_window" , lowerCamelCase : Any=80 , lowerCamelCase : Union[str, Any]=7_600 , lowerCamelCase : Dict=1e-10 , lowerCamelCase : List[str]=True , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = min_seq_length __lowercase = max_seq_length __lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase = feature_size __lowercase = padding_value __lowercase = sampling_rate __lowercase = do_normalize __lowercase = num_mel_bins __lowercase = hop_length __lowercase = win_length __lowercase = win_function __lowercase = fmin __lowercase = fmax __lowercase = mel_floor __lowercase = return_attention_mask def _snake_case ( self : str ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _snake_case ( self : int , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Tuple=False ): '''simple docstring''' def _flatten(lowerCamelCase : Any ): return list(itertools.chain(*__a ) ) if equal_length: __lowercase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __lowercase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(__a ) for x in speech_inputs] return speech_inputs def _snake_case ( self : Dict , lowerCamelCase : Tuple=False , lowerCamelCase : int=False ): '''simple docstring''' if equal_length: __lowercase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowercase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(__a ) for x in speech_inputs] return speech_inputs @require_torch class _A ( __lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Optional[int] = SpeechTaFeatureExtractor def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = SpeechTaFeatureExtractionTester(self ) def _snake_case ( self : Tuple , lowerCamelCase : Dict ): '''simple docstring''' self.assertTrue(np.all(np.mean(__a , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__a , axis=0 ) - 1 ) < 1e-3 ) ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __lowercase = [np.asarray(__a ) for speech_input in speech_inputs] # Test not batched input __lowercase = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __lowercase = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) # Test batched __lowercase = feat_extract(__a , return_tensors="np" ).input_values __lowercase = feat_extract(__a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __lowercase = ["""longest""", """max_length""", """do_not_pad"""] __lowercase = [None, 1_600, None] for max_length, padding in zip(__a , __a ): __lowercase = feat_extract(__a , padding=__a , max_length=__a , return_tensors="np" ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = range(800 , 1_400 , 200 ) __lowercase = [floats_list((1, x) )[0] for x in lengths] __lowercase = ["""longest""", """max_length""", """do_not_pad"""] __lowercase = [None, 1_600, None] for max_length, padding in zip(__a , __a ): __lowercase = feat_extract(__a , max_length=__a , padding=__a ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __lowercase = feat_extract( __a , truncation=__a , max_length=1_000 , padding="max_length" , return_tensors="np" ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __lowercase = feat_extract( __a , truncation=__a , max_length=1_000 , padding="longest" , return_tensors="np" ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) __lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __lowercase = feat_extract( __a , truncation=__a , max_length=2_000 , padding="longest" , return_tensors="np" ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = np.random.rand(100 ).astype(np.floataa ) __lowercase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __lowercase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __lowercase = [np.asarray(__a ) for speech_input in speech_inputs] # Test feature size __lowercase = feature_extractor(audio_target=__a , padding=__a , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input __lowercase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values __lowercase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) # Test batched __lowercase = feature_extractor(__a , return_tensors="np" ).input_values __lowercase = feature_extractor(__a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowercase = [floats_list((1, x) )[0] for x in (800, 800, 800)] __lowercase = np.asarray(__a ) __lowercase = feature_extractor(__a , return_tensors="np" ).input_values __lowercase = feature_extractor(__a , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__a , __a ): self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__a ) == len(__a ) for x, y in zip(__a , processed_features[input_name] ) ) ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__a ) __lowercase = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__a ) __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) __lowercase = processed_features[input_name] if len(batch_features_input.shape ) < 3: __lowercase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.num_mel_bins # hack! __lowercase = feat_extract.pad(__a , padding="longest" , return_tensors="np" )[input_name] __lowercase = feat_extract.pad(__a , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**__a ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = [len(__a ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = feat_extract.num_mel_bins # hack! __lowercase = feat_extract.pad(__a , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , __a ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __a ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.feat_extract_dict __lowercase = True __lowercase = self.feature_extraction_class(**__a ) __lowercase = self.feat_extract_tester.prepare_inputs_for_target() __lowercase = [len(__a ) for x in speech_inputs] __lowercase = feat_extract.model_input_names[0] __lowercase = BatchFeature({input_name: speech_inputs} ) __lowercase = min(__a ) __lowercase = feat_extract.num_mel_bins # hack! __lowercase = feat_extract.pad( __a , padding="max_length" , max_length=__a , truncation=__a , return_tensors="np" ) self.assertIn("attention_mask" , __a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' from datasets import load_dataset __lowercase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __lowercase = ds.sort("id" ).select(range(__a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _snake_case ( self : int ): '''simple docstring''' __lowercase = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on __lowercase = self._load_datasamples(1 ) __lowercase = SpeechTaFeatureExtractor() __lowercase = feature_extractor(__a , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , __a , atol=1e-6 ) ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on __lowercase = self._load_datasamples(1 ) __lowercase = SpeechTaFeatureExtractor() __lowercase = feature_extractor(audio_target=__a , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __a , atol=1e-4 ) )
720
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": snake_case__ : List[str] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--original_config_file""", type=str, required=True, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--image_size""", default=5_12, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( """--use_linear_projection""", help="""Override for use linear projection""", required=False, type=parse_bool ) parser.add_argument("""--cross_attention_dim""", help="""Override for cross attention_dim""", required=False, type=int) snake_case__ : Optional[Any] = parser.parse_args() snake_case__ : Union[str, Any] = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
721
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _A ( metaclass=__a ): '''simple docstring''' _snake_case : Optional[Any] = ["""transformers""", """torch""", """note_seq"""] def __init__( self : Dict , *lowerCamelCase : Tuple , **lowerCamelCase : Any ): '''simple docstring''' requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def _snake_case ( cls : List[str] , *lowerCamelCase : str , **lowerCamelCase : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def _snake_case ( cls : List[str] , *lowerCamelCase : List[Any] , **lowerCamelCase : Optional[int] ): '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] )
700
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
0
from __future__ import annotations from fractions import Fraction def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] __lowercase = 1_1 __lowercase = int("1" + "0" * digit_len ) for num in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 __lowercase = 1_0 return solutions def snake_case_ ( _SCREAMING_SNAKE_CASE = 2 ): __lowercase = 1.0 for fraction in fraction_list(_SCREAMING_SNAKE_CASE ): __lowercase = Fraction(_SCREAMING_SNAKE_CASE ) result *= frac.denominator / frac.numerator return int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
701
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
0
import math def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [True] * n __lowercase = False __lowercase = False __lowercase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): __lowercase = i * 2 while index < n: __lowercase = False __lowercase = index + i __lowercase = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def snake_case_ ( _SCREAMING_SNAKE_CASE = 9_9_9_9_6_6_6_6_3_3_3_3 ): __lowercase = math.floor(math.sqrt(lowercase__ ) ) + 1_0_0 __lowercase = prime_sieve(lowercase__ ) __lowercase = 0 __lowercase = 0 __lowercase = primes[prime_index] while (last_prime**2) <= limit: __lowercase = primes[prime_index + 1] __lowercase = last_prime**2 __lowercase = next_prime**2 # Get numbers divisible by lps(current) __lowercase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __lowercase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __lowercase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __lowercase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
702
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
0
snake_case__ : Union[str, Any] = tuple[float, float, float] snake_case__ : int = tuple[float, float, float] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = end_pointa[0] - end_pointa[0] __lowercase = end_pointa[1] - end_pointa[1] __lowercase = end_pointa[2] - end_pointa[2] return (x, y, z) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = ab[1] * ac[2] - ab[2] * ac[1] # *i __lowercase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __lowercase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return tuple(round(lowerCAmelCase_ , lowerCAmelCase_ ) for x in vector ) == (0, 0, 0) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1_0 ): __lowercase = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase = create_vector(lowerCAmelCase_ , lowerCAmelCase_ ) return is_zero_vector(get_ad_vectors_cross(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
703
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case__ : Union[str, Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") snake_case__ : Tuple = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) snake_case__ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _A : '''simple docstring''' _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """The column name of the images in the files. If not set, will try to use 'image' or 'img'."""} , ) _snake_case : Optional[str] = field(default=_UpperCAmelCase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=_UpperCAmelCase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.1_5 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : int = field(default=32 , metadata={"""help""": """The size of the square patches to use for masking."""} ) _snake_case : float = field( default=0.6 , metadata={"""help""": """Percentage of patches to mask."""} , ) _snake_case : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = {} if self.train_dir is not None: __lowercase = self.train_dir if self.validation_dir is not None: __lowercase = self.validation_dir __lowercase = data_files if data_files else None @dataclass class _A : '''simple docstring''' _snake_case : str = field( default=_UpperCAmelCase , metadata={ """help""": ( """The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a """ """checkpoint identifier on the hub. """ """Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCAmelCase )} , ) _snake_case : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case : Optional[str] = field( default=_UpperCAmelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"""} , ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=_UpperCAmelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=_UpperCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """The size (resolution) of each image. If not specified, will use `image_size` of the configuration.""" ) } , ) _snake_case : Optional[int] = field( default=_UpperCAmelCase , metadata={ """help""": ( """The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.""" ) } , ) _snake_case : Optional[int] = field( default=_UpperCAmelCase , metadata={"""help""": """Stride to use for the encoder."""} , ) class _A : '''simple docstring''' def __init__( self : Any , lowerCamelCase : Dict=192 , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : List[str]=4 , lowerCamelCase : Union[str, Any]=0.6 ): '''simple docstring''' __lowercase = input_size __lowercase = mask_patch_size __lowercase = model_patch_size __lowercase = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) __lowercase = self.input_size // self.mask_patch_size __lowercase = self.mask_patch_size // self.model_patch_size __lowercase = self.rand_size**2 __lowercase = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Tuple ): '''simple docstring''' __lowercase = np.random.permutation(self.token_count )[: self.mask_count] __lowercase = np.zeros(self.token_count , dtype=lowercase__ ) __lowercase = 1 __lowercase = mask.reshape((self.rand_size, self.rand_size) ) __lowercase = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def snake_case_ ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: __lowercase = torch.stack([example["pixel_values"] for example in examples] ) __lowercase = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def snake_case_ ( ) -> Dict: __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE__ ) and data_args.train_val_split > 0.0: __lowercase = ds["""train"""].train_test_split(data_args.train_val_split ) __lowercase = split["""train"""] __lowercase = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.config_name_or_path , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(SCREAMING_SNAKE_CASE__ , "decoder_type" ): __lowercase = """simmim""" # adapt config __lowercase = model_args.image_size if model_args.image_size is not None else config.image_size __lowercase = model_args.patch_size if model_args.patch_size is not None else config.patch_size __lowercase = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: __lowercase = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: __lowercase = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: __lowercase = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } __lowercase = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: __lowercase = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) __lowercase = AutoModelForMaskedImageModeling.from_config(SCREAMING_SNAKE_CASE__ ) if training_args.do_train: __lowercase = ds["""train"""].column_names else: __lowercase = ds["""validation"""].column_names if data_args.image_column_name is not None: __lowercase = data_args.image_column_name elif "image" in column_names: __lowercase = """image""" elif "img" in column_names: __lowercase = """img""" else: __lowercase = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py __lowercase = Compose( [ Lambda(lambda _SCREAMING_SNAKE_CASE : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.6_7, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator __lowercase = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(_SCREAMING_SNAKE_CASE ): __lowercase = [transforms(SCREAMING_SNAKE_CASE__ ) for image in examples[image_column_name]] __lowercase = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: __lowercase = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: __lowercase = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE__ ) # Initialize our trainer __lowercase = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: __lowercase = None if training_args.resume_from_checkpoint is not None: __lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase = last_checkpoint __lowercase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase = trainer.evaluate() trainer.log_metrics("eval" , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("eval" , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub __lowercase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
704
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[Any] = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _A ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _snake_case : Union[str, Any] = """vit_msn""" def __init__( self : List[str] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : Any=12 , lowerCamelCase : List[str]=12 , lowerCamelCase : Any=3_072 , lowerCamelCase : Any="gelu" , lowerCamelCase : int=0.0 , lowerCamelCase : str=0.0 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : int=1e-06 , lowerCamelCase : Any=224 , lowerCamelCase : Dict=16 , lowerCamelCase : Dict=3 , lowerCamelCase : Union[str, Any]=True , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**__snake_case ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias
705
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
0
from __future__ import annotations def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): __lowercase = word_bank or [] # create a table __lowercase = len(_SCREAMING_SNAKE_CASE ) + 1 __lowercase = [] for _ in range(_SCREAMING_SNAKE_CASE ): table.append([] ) # seed value __lowercase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_SCREAMING_SNAKE_CASE ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_SCREAMING_SNAKE_CASE )] == word: __lowercase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_SCREAMING_SNAKE_CASE )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_SCREAMING_SNAKE_CASE )]: combination.reverse() return table[len(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
706
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
707
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
0
from __future__ import annotations snake_case__ : Any = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class _A : '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : dict[str, list[str]] , lowerCamelCase : str ): '''simple docstring''' __lowercase = graph # mapping node to its parent in resulting breadth first tree __lowercase = {} __lowercase = source_vertex def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = {self.source_vertex} __lowercase = None __lowercase = [self.source_vertex] # first in first out queue while queue: __lowercase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_snake_case ) __lowercase = vertex queue.append(_snake_case ) def _snake_case ( self : str , lowerCamelCase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __lowercase = self.parent.get(_snake_case ) if target_vertex_parent is None: __lowercase = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(_snake_case ) return self.shortest_path(_snake_case ) + f"""->{target_vertex}""" if __name__ == "__main__": snake_case__ : List[Any] = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
708
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : Any = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } snake_case__ : List[Any] = {"""mobilebert-uncased""": 5_12} snake_case__ : Optional[Any] = {} class _A ( _lowerCAmelCase ): '''simple docstring''' _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Tuple = PRETRAINED_INIT_CONFIGURATION _snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Optional[int] = MobileBertTokenizer def __init__( self : List[Any] , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Any=None , lowerCamelCase : int=True , lowerCamelCase : Union[str, Any]="[UNK]" , lowerCamelCase : List[str]="[SEP]" , lowerCamelCase : Dict="[PAD]" , lowerCamelCase : str="[CLS]" , lowerCamelCase : List[str]="[MASK]" , lowerCamelCase : str=True , lowerCamelCase : Tuple=None , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCAmelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_lowerCAmelCase , normalizer_state.pop("type" ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_lowerCAmelCase ) __lowercase = do_lower_case def _snake_case ( self : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int]=None ): '''simple docstring''' __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self : Dict , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' __lowercase = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
709
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _A ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , lowerCamelCase : Dict , lowerCamelCase : Dict=13 , lowerCamelCase : Union[str, Any]=7 , lowerCamelCase : List[str]=True , lowerCamelCase : Any=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Optional[int]=99 , lowerCamelCase : Dict=32 , lowerCamelCase : str=5 , lowerCamelCase : List[str]=4 , lowerCamelCase : Any=37 , lowerCamelCase : Union[str, Any]="gelu" , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : str=512 , lowerCamelCase : str=16 , lowerCamelCase : Dict=2 , lowerCamelCase : int=0.02 , lowerCamelCase : Optional[int]=4 , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase = config_and_inputs __lowercase = True __lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _A ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' _snake_case : str = True _snake_case : Dict = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = FlaxRobertaModelTester(self ) @slow def _snake_case ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained("roberta-base" , from_pt=_a ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a )
710
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
0
snake_case__ : Union[str, Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' snake_case__ : Optional[int] = [{'type': 'code', 'content': INSTALL_CONTENT}] snake_case__ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
711
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
0
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient snake_case__ : List[Any] = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = test_results.split(" " ) __lowercase = 0 __lowercase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. __lowercase = expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(lowerCamelCase_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = {} __lowercase = None __lowercase = False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , lowerCamelCase_ ): __lowercase = True __lowercase = line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): __lowercase = line __lowercase = False return failures class _A : '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = title __lowercase = doc_test_results["time_spent"].split("," )[0] __lowercase = doc_test_results["success"] __lowercase = doc_test_results["failures"] __lowercase = self.n_success + self.n_failures # Failures and success of the modeling tests __lowercase = doc_test_results @property def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = [self._time_spent] __lowercase = 0 for time in time_spent: __lowercase = time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_lowerCamelCase ) == 1: __lowercase = [0, 0, time_parts[0]] __lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds __lowercase , __lowercase , __lowercase = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return f"""{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s""" @property def _snake_case ( self : Optional[int] ): '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _snake_case ( self : List[str] ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = 40 __lowercase = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase , _lowerCamelCase )} __lowercase = "" for category, failures in category_failures.items(): if len(_lowerCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_lowerCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_lowerCamelCase ) @staticmethod def _snake_case ( ): '''simple docstring''' __lowercase = [ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(_lowerCamelCase )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=_lowerCamelCase , ) def _snake_case ( self : Any ): '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) __lowercase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else "All tests passed." __lowercase = client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=_lowerCamelCase , ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : int , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = "" for key, value in failures.items(): __lowercase = value[:200] + " [Truncated]" if len(_lowerCamelCase ) > 250 else value failures_text += f"""*{key}*\n_{value}_\n\n""" __lowercase = job_name __lowercase = {"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: __lowercase = { "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _snake_case ( self : int ): '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) __lowercase = self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) __lowercase = sorted(self.doc_test_results.items() , key=lambda lowerCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): __lowercase = f"""*Num failures* :{len(job_result['failed'] )} \n""" __lowercase = job_result["failures"] __lowercase = self.get_reply_blocks(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , text=_lowerCamelCase ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=f"""Results for {job}""" , blocks=_lowerCamelCase , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def snake_case_ ( ): __lowercase = os.environ["GITHUB_RUN_ID"] __lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" __lowercase = requests.get(lowerCamelCase_ ).json() __lowercase = {} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) __lowercase = math.ceil((result["total_count"] - 1_0_0) / 1_0_0 ) for i in range(lowerCamelCase_ ): __lowercase = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , lowerCamelCase_ ) return {} def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = {} if os.path.exists(lowerCamelCase_ ): __lowercase = os.listdir(lowerCamelCase_ ) for file in files: try: with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding="utf-8" ) as f: __lowercase = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}.""" ) from e return _artifact def snake_case_ ( ): class _A : '''simple docstring''' def __init__( self : str , lowerCamelCase : int ): '''simple docstring''' __lowercase = name __lowercase = [] def __str__( self : Any ): '''simple docstring''' return self.name def _snake_case ( self : Union[str, Any] , lowerCamelCase : Dict ): '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) __lowercase = {} __lowercase = filter(os.path.isdir , os.listdir() ) for directory in directories: __lowercase = directory if artifact_name not in _available_artifacts: __lowercase = Artifact(lowerCamelCase_ ) _available_artifacts[artifact_name].add_path(lowerCamelCase_ ) return _available_artifacts if __name__ == "__main__": snake_case__ : int = get_job_links() snake_case__ : Dict = retrieve_available_artifacts() snake_case__ : Union[str, Any] = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' snake_case__ : Dict = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job snake_case__ : Optional[int] = github_actions_job_links.get("""run_doctests""") snake_case__ : Dict = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] snake_case__ : List[Any] = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: snake_case__ , snake_case__ , snake_case__ : Optional[Any] = handle_test_results(artifact["""stats"""]) snake_case__ : Union[str, Any] = failed snake_case__ : Optional[int] = success snake_case__ : Dict = time_spent[1:-1] + """, """ snake_case__ : List[str] = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): snake_case__ : List[str] = line.replace("""FAILED """, """""") snake_case__ : Any = line.split()[0].replace("""\n""", """""") if "::" in line: snake_case__ , snake_case__ : List[Any] = line.split("""::""") else: snake_case__ , snake_case__ : List[str] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): snake_case__ : List[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) snake_case__ : List[str] = all_failures[test] if test in all_failures else """N/A""" snake_case__ : Tuple = failure break snake_case__ : Optional[int] = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
712
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline snake_case__ : int = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": snake_case__ : str = "hopper-medium-v2" snake_case__ : Optional[int] = gym.make(env_name) snake_case__ : List[Any] = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) snake_case__ : List[str] = env.reset() snake_case__ : List[Any] = 0 snake_case__ : int = 0 snake_case__ : List[str] = 10_00 snake_case__ : str = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy snake_case__ : List[str] = pipeline(obs, planning_horizon=32) # execute action in environment snake_case__ : Dict = env.step(denorm_actions) snake_case__ : List[Any] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) snake_case__ : Union[str, Any] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
713
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
0
import pprint import requests snake_case__ : int = """https://zenquotes.io/api""" def snake_case_ ( ): return requests.get(API_ENDPOINT_URL + "/today" ).json() def snake_case_ ( ): return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": snake_case__ : List[Any] = random_quotes() pprint.pprint(response)
714
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
0
from __future__ import annotations snake_case__ : int = [] def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for i in range(len(UpperCamelCase__ ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase__ , -1 , -1 ) , range(UpperCamelCase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase__ , -1 , -1 ) , range(UpperCamelCase__ , len(UpperCamelCase__ ) ) ): if board[i][j] == 1: return False return True def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if row >= len(UpperCamelCase__ ): solution.append(UpperCamelCase__ ) printboard(UpperCamelCase__ ) print() return True for i in range(len(UpperCamelCase__ ) ): if is_safe(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): __lowercase = 1 solve(UpperCamelCase__ , row + 1 ) __lowercase = 0 return False def snake_case_ ( _SCREAMING_SNAKE_CASE ): for i in range(len(UpperCamelCase__ ) ): for j in range(len(UpperCamelCase__ ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) snake_case__ : Optional[int] = 8 snake_case__ : List[Any] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
715
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class _A ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _snake_case : str = BlenderbotSmallTokenizer _snake_case : Optional[int] = False def _snake_case ( self : Tuple ): '''simple docstring''' super().setUp() __lowercase = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] __lowercase = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __lowercase = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] __lowercase = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__SCREAMING_SNAKE_CASE ) ) def _snake_case ( self : Union[str, Any] , **lowerCamelCase : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self : Dict , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = "adapt act apte" __lowercase = "adapt act apte" return input_text, output_text def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase = "adapt act apte" __lowercase = ["adapt", "act", "ap@@", "te"] __lowercase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowercase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __lowercase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_384] __lowercase = "I am a small frog." __lowercase = tok([src_text] , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE )["input_ids"] __lowercase = tok.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) __lowercase = "I am a small frog ." __lowercase = "." __lowercase = tok(__SCREAMING_SNAKE_CASE )["input_ids"] __lowercase = tok(__SCREAMING_SNAKE_CASE )["input_ids"] assert encoded[-1] == encoded_dot[0]
716
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
0
from __future__ import annotations from collections import deque class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(__a ) self.set_fail_transitions() def _snake_case ( self : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : List[str] ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = 0 for character in keyword: __lowercase = self.find_next_state(__a , __a ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __lowercase = len(self.adlist ) - 1 else: __lowercase = next_state self.adlist[current_state]["output"].append(__a ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = deque() for node in self.adlist[0]["next_states"]: q.append(__a ) __lowercase = 0 while q: __lowercase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__a ) __lowercase = self.adlist[r]['fail_state'] while ( self.find_next_state(__a , self.adlist[child]["value"] ) is None and state != 0 ): __lowercase = self.adlist[state]['fail_state'] __lowercase = self.find_next_state( __a , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: __lowercase = 0 __lowercase = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def _snake_case ( self : int , lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = {} # returns a dict with keywords and list of its occurrences __lowercase = 0 for i in range(len(__a ) ): while ( self.find_next_state(__a , string[i] ) is None and current_state != 0 ): __lowercase = self.adlist[current_state]['fail_state'] __lowercase = self.find_next_state(__a , string[i] ) if next_state is None: __lowercase = 0 else: __lowercase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __lowercase = [] result[key].append(i - len(__a ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
717
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Any = """▁""" snake_case__ : str = {"""vocab_file""": """sentencepiece.bpe.model"""} snake_case__ : str = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } snake_case__ : Dict = { """facebook/mbart-large-50-one-to-many-mmt""": 10_24, } # fmt: off snake_case__ : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class _A ( _lowercase ): '''simple docstring''' _snake_case : Union[str, Any] = VOCAB_FILES_NAMES _snake_case : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[str] = ["""input_ids""", """attention_mask"""] _snake_case : List[Any] = [] _snake_case : Dict = [] def __init__( self : List[str] , lowerCamelCase : Dict , lowerCamelCase : Dict=None , lowerCamelCase : List[str]=None , lowerCamelCase : List[Any]="</s>" , lowerCamelCase : Any="</s>" , lowerCamelCase : Optional[Any]="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Optional[Any]="<pad>" , lowerCamelCase : Tuple="<mask>" , lowerCamelCase : Optional[Dict[str, Any]] = None , **lowerCamelCase : Union[str, Any] , ): '''simple docstring''' __lowercase = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs __lowercase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__A , tgt_lang=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) __lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowercase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase = 1 __lowercase = len(self.sp_model ) __lowercase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__A ) } __lowercase = {v: k for k, v in self.lang_code_to_id.items()} __lowercase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowercase = src_lang if src_lang is not None else "en_XX" __lowercase = self.lang_code_to_id[self._src_lang] __lowercase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self : str ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self : Any ): '''simple docstring''' return self._src_lang @src_lang.setter def _snake_case ( self : Dict , lowerCamelCase : str ): '''simple docstring''' __lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : str ): '''simple docstring''' __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : int , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self : Tuple , lowerCamelCase : str ): '''simple docstring''' return self.sp_model.encode(__A , out_type=__A ) def _snake_case ( self : List[str] , lowerCamelCase : str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase = self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self : Tuple , lowerCamelCase : int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = [] __lowercase = "" __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__A ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(__A ) __lowercase = False out_string += self.sp_model.decode(__A ) return out_string.strip() def _snake_case ( self : Dict , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , "wb" ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def _snake_case ( self : Optional[int] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) __lowercase = [1] * len(self.prefix_tokens ) __lowercase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__A )) + suffix_ones return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self : Tuple , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[str] , lowerCamelCase : Optional[str] , **lowerCamelCase : Any ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) __lowercase = src_lang __lowercase = self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) __lowercase = self.convert_tokens_to_ids(__A ) __lowercase = tgt_lang_id return inputs def _snake_case ( self : Optional[int] , lowerCamelCase : List[str] , lowerCamelCase : str = "en_XX" , lowerCamelCase : Optional[List[str]] = None , lowerCamelCase : str = "ro_RO" , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = src_lang __lowercase = tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def _snake_case ( self : List[str] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self : Tuple ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self : Dict , lowerCamelCase : str ): '''simple docstring''' __lowercase = self.lang_code_to_id[src_lang] __lowercase = [self.cur_lang_code_id] __lowercase = [self.eos_token_id] def _snake_case ( self : List[str] , lowerCamelCase : str ): '''simple docstring''' __lowercase = self.lang_code_to_id[tgt_lang] __lowercase = [self.cur_lang_code_id] __lowercase = [self.eos_token_id]
718
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
0
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) snake_case__ : Tuple = { """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = {} state_dict.pop("pixel_mean" , _lowerCamelCase ) state_dict.pop("pixel_std" , _lowerCamelCase ) __lowercase = r""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowercase = key.replace(_lowerCamelCase , _lowerCamelCase ) if re.match(_lowerCamelCase , _lowerCamelCase ): __lowercase = int(re.match(_lowerCamelCase , _lowerCamelCase ).group(2 ) ) if layer_nb == 0: __lowercase = key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: __lowercase = key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: __lowercase = key.replace("layers.2" , "proj_out" ) __lowercase = value __lowercase = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="ybelkada/segment-anything" ): __lowercase = hf_hub_download(_lowerCamelCase , F"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: __lowercase = SamConfig() elif "sam_vit_l" in model_name: __lowercase = SamVisionConfig( hidden_size=1_0_2_4 , num_hidden_layers=2_4 , num_attention_heads=1_6 , global_attn_indexes=[5, 1_1, 1_7, 2_3] , ) __lowercase = SamConfig( vision_config=_lowerCamelCase , ) elif "sam_vit_h" in model_name: __lowercase = SamVisionConfig( hidden_size=1_2_8_0 , num_hidden_layers=3_2 , num_attention_heads=1_6 , global_attn_indexes=[7, 1_5, 2_3, 3_1] , ) __lowercase = SamConfig( vision_config=_lowerCamelCase , ) __lowercase = torch.load(_lowerCamelCase , map_location="cpu" ) __lowercase = replace_keys(_lowerCamelCase ) __lowercase = SamImageProcessor() __lowercase = SamProcessor(image_processor=_lowerCamelCase ) __lowercase = SamModel(_lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) __lowercase = hf_model.to("cuda" ) __lowercase = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" __lowercase = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ).convert("RGB" ) __lowercase = [[[4_0_0, 6_5_0]]] __lowercase = [[1]] __lowercase = processor(images=np.array(_lowerCamelCase ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): __lowercase = hf_model(**_lowerCamelCase ) __lowercase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 __lowercase = processor( images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): __lowercase = hf_model(**_lowerCamelCase ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 __lowercase = ((7_5, 2_7_5, 1_7_2_5, 8_5_0),) __lowercase = processor(images=np.array(_lowerCamelCase ) , input_boxes=_lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): __lowercase = hf_model(**_lowerCamelCase ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. __lowercase = [[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]] __lowercase = [[1, 1]] __lowercase = processor( images=np.array(_lowerCamelCase ) , input_points=_lowerCamelCase , input_labels=_lowerCamelCase , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): __lowercase = hf_model(**_lowerCamelCase ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() snake_case__ : List[Any] = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) snake_case__ : Optional[int] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
719
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case__ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys snake_case__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
720
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): __lowercase = [image] if isinstance(image[0] , PIL.Image.Image ): __lowercase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] __lowercase = np.concatenate(lowerCAmelCase__ , axis=0 ) __lowercase = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 2_5_5.0 __lowercase = image.transpose(0 , 3 , 1 , 2 ) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(lowerCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): __lowercase = torch.cat(lowerCAmelCase__ , dim=0 ) return image def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9_9_9_5 ): if not isinstance(lowerCAmelCase__ , np.ndarray ): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(lowerCAmelCase__ ) * np.linalg.norm(lowerCAmelCase__ )) ) if np.abs(lowerCAmelCase__ ) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(lowerCAmelCase__ ) __lowercase = np.sin(lowerCAmelCase__ ) __lowercase = theta_a * t __lowercase = np.sin(lowerCAmelCase__ ) __lowercase = np.sin(theta_a - theta_t ) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) return va def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = F.normalize(lowerCAmelCase__ , dim=-1 ) __lowercase = F.normalize(lowerCAmelCase__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param in model.parameters(): __lowercase = value class _A ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : int=None , lowerCamelCase : List[Any]=None , lowerCamelCase : List[str]=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=_a , text_encoder=_a , clip_model=_a , tokenizer=_a , unet=_a , scheduler=_a , feature_extractor=_a , coca_model=_a , coca_tokenizer=_a , coca_transform=_a , ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size , _a ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _a ) set_requires_grad(self.clip_model , _a ) def _snake_case ( self : str , lowerCamelCase : int = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def _snake_case ( self : Tuple ): '''simple docstring''' self.enable_attention_slicing(_a ) def _snake_case ( self : Optional[int] ): '''simple docstring''' set_requires_grad(self.vae , _a ) def _snake_case ( self : Optional[int] ): '''simple docstring''' set_requires_grad(self.vae , _a ) def _snake_case ( self : Any ): '''simple docstring''' set_requires_grad(self.unet , _a ) def _snake_case ( self : Any ): '''simple docstring''' set_requires_grad(self.unet , _a ) def _snake_case ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = min(int(num_inference_steps * strength ) , _a ) __lowercase = max(num_inference_steps - init_timestep , 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : str=None ): '''simple docstring''' if not isinstance(_a , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(_a )}""" ) __lowercase = image.to(device=_a , dtype=_a ) if isinstance(_a , _a ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_a ) ] __lowercase = torch.cat(_a , dim=0 ) else: __lowercase = self.vae.encode(_a ).latent_dist.sample(_a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.1_8215 * init_latents __lowercase = init_latents.repeat_interleave(_a , dim=0 ) __lowercase = randn_tensor(init_latents.shape , generator=_a , device=_a , dtype=_a ) # get latents __lowercase = self.scheduler.add_noise(_a , _a , _a ) __lowercase = init_latents return latents def _snake_case ( self : Optional[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.coca_transform(_a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = self.feature_extractor.preprocess(_a ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(_a ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_a ) __lowercase = image_embeddings_clip.repeat_interleave(_a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _snake_case ( self : int , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Any , lowerCamelCase : Dict , ): '''simple docstring''' __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __lowercase = self.unet(_a , _a , encoder_hidden_states=_a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(_a ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _a ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.1_8215 * sample __lowercase = self.vae.decode(_a ).sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(_a ) __lowercase = self.normalize(_a ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(_a ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_a ) __lowercase = spherical_dist_loss(_a , _a ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(_a , _a )[0] if isinstance(self.scheduler , _a ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(_a ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : int , lowerCamelCase : Optional[int] = None , lowerCamelCase : List[str] = None , lowerCamelCase : List[Any] = 512 , lowerCamelCase : int = 512 , lowerCamelCase : Union[str, Any] = 0.6 , lowerCamelCase : int = 50 , lowerCamelCase : Tuple = 7.5 , lowerCamelCase : List[str] = 1 , lowerCamelCase : str = 0.0 , lowerCamelCase : Dict = 100 , lowerCamelCase : Optional[Any] = None , lowerCamelCase : List[str] = "pil" , lowerCamelCase : Optional[int] = True , lowerCamelCase : str = 0.8 , lowerCamelCase : List[Any] = 0.1 , lowerCamelCase : Union[str, Any] = 0.1 , ): '''simple docstring''' if isinstance(_a , _a ) and len(_a ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(_a )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(_a , torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(_a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_a ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(_a ) if style_prompt is None: if len(_a ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(_a ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( _a , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=_a , return_tensors="pt" , ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( _a , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=_a , return_tensors="pt" , ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(_a , _a , _a ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(_a , dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(_a , **_a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase , __lowercase = self.get_timesteps(_a , _a , self.device ) __lowercase = timesteps[:1].repeat(_a ) # Preprocess image __lowercase = preprocess(_a , _a , _a ) __lowercase = self.prepare_latents( _a , _a , _a , text_embeddings.dtype , self.device , _a ) __lowercase = preprocess(_a , _a , _a ) __lowercase = self.prepare_latents( _a , _a , _a , text_embeddings.dtype , self.device , _a ) __lowercase = slerp(_a , _a , _a ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(_a , _a ) __lowercase = self.get_clip_image_embeddings(_a , _a ) __lowercase = slerp( _a , _a , _a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""] , padding="max_length" , max_length=_a , return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(_a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(_a , generator=_a , device="cpu" , dtype=_a ).to( self.device ) else: __lowercase = torch.randn(_a , generator=_a , device=self.device , dtype=_a ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=_a ): for i, t in enumerate(_a ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual __lowercase = self.unet(_a , _a , encoder_hidden_states=_a ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase , __lowercase = self.cond_fn( _a , _a , _a , _a , _a , _a , _a , ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.1_8215 * latents __lowercase = self.vae.decode(_a ).sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_a , nsfw_content_detected=_a )
721
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets snake_case__ : int = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ snake_case__ : Tuple = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ snake_case__ : Any = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return float((preds == labels).mean() ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = simple_accuracy(_lowerCamelCase , _lowerCamelCase ) __lowercase = float(fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = float(pearsonr(_lowerCamelCase , _lowerCamelCase )[0] ) __lowercase = float(spearmanr(_lowerCamelCase , _lowerCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): '''simple docstring''' def _snake_case ( self : Tuple ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), "references": datasets.Value("int64" if self.config_name != "stsb" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def _snake_case ( self : Tuple , lowerCamelCase : int , lowerCamelCase : Tuple ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase__ , UpperCamelCase__ )} elif self.config_name == "stsb": return pearson_and_spearman(UpperCamelCase__ , UpperCamelCase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", " "\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
700
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
0
from copy import deepcopy class _A : '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : Optional[Any] = None , lowerCamelCase : Dict = None ): '''simple docstring''' if arr is None and size is not None: __lowercase = size __lowercase = [0] * size elif arr is not None: self.init(lowerCamelCase ) else: raise ValueError("Either arr or size must be specified" ) def _snake_case ( self : Optional[int] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = len(lowerCamelCase ) __lowercase = deepcopy(lowerCamelCase ) for i in range(1 , self.size ): __lowercase = self.next_(lowerCamelCase ) if j < self.size: self.tree[j] += self.tree[i] def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): __lowercase = self.next_(lowerCamelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _snake_case ( lowerCamelCase : List[Any] ): '''simple docstring''' return index + (index & (-index)) @staticmethod def _snake_case ( lowerCamelCase : Tuple ): '''simple docstring''' return index - (index & (-index)) def _snake_case ( self : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : str ): '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value __lowercase = self.next_(lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' self.add(lowerCamelCase , value - self.get(lowerCamelCase ) ) def _snake_case ( self : int , lowerCamelCase : Optional[Any] ): '''simple docstring''' if right == 0: return 0 __lowercase = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] __lowercase = self.prev(lowerCamelCase ) return result def _snake_case ( self : Tuple , lowerCamelCase : Any , lowerCamelCase : int ): '''simple docstring''' return self.prefix(lowerCamelCase ) - self.prefix(lowerCamelCase ) def _snake_case ( self : int , lowerCamelCase : List[Any] ): '''simple docstring''' return self.query(lowerCamelCase , index + 1 ) def _snake_case ( self : int , lowerCamelCase : Any ): '''simple docstring''' value -= self.tree[0] if value < 0: return -1 __lowercase = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 __lowercase = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
701
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : List[str] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : List[Any] = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] snake_case__ : Tuple = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } snake_case__ : List[str] = {F'''funnel-transformer/{name}''': 5_12 for name in _model_names} snake_case__ : Union[str, Any] = {F'''funnel-transformer/{name}''': {"""do_lower_case""": True} for name in _model_names} class _A ( _UpperCAmelCase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Optional[int] = PRETRAINED_INIT_CONFIGURATION _snake_case : Any = FunnelTokenizer _snake_case : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : str = 2 def __init__( self : List[Any] , lowerCamelCase : List[str]=None , lowerCamelCase : str=None , lowerCamelCase : str=True , lowerCamelCase : int="<unk>" , lowerCamelCase : Tuple="<sep>" , lowerCamelCase : List[Any]="<pad>" , lowerCamelCase : int="<cls>" , lowerCamelCase : Dict="<mask>" , lowerCamelCase : Optional[int]="<s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Tuple=True , lowerCamelCase : Tuple=True , lowerCamelCase : str=None , lowerCamelCase : Optional[int]="##" , **lowerCamelCase : List[str] , ): '''simple docstring''' super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , clean_text=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , wordpieces_prefix=lowercase__ , **lowercase__ , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowercase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowercase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase__ ) != tokenize_chinese_chars ): __lowercase = getattr(lowercase__ , normalizer_state.pop("type" ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**lowercase__ ) __lowercase = do_lower_case def _snake_case ( self : Any , lowerCamelCase : str , lowerCamelCase : Optional[int]=None ): '''simple docstring''' __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self : Tuple , lowerCamelCase : str , lowerCamelCase : int = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : List[str] , lowerCamelCase : int , lowerCamelCase : List[Any] = None ): '''simple docstring''' __lowercase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ )
702
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput snake_case__ : Tuple = 8 def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): __lowercase = x.device __lowercase = (x * 2_5_5).int().clamp(0 , 2_5_5 ) __lowercase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=SCREAMING_SNAKE_CASE_ ) __lowercase = rearrange(SCREAMING_SNAKE_CASE_ , "d -> d 1 1" ) __lowercase = rearrange(SCREAMING_SNAKE_CASE_ , "b c h w -> b c 1 h w" ) __lowercase = ((x & mask) != 0).float() __lowercase = rearrange(SCREAMING_SNAKE_CASE_ , "b c d h w -> b (c d) h w" ) __lowercase = bits * 2 - 1 return bits def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ): __lowercase = x.device __lowercase = (x > 0).int() __lowercase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=SCREAMING_SNAKE_CASE_ , dtype=torch.intaa ) __lowercase = rearrange(SCREAMING_SNAKE_CASE_ , "d -> d 1 1" ) __lowercase = rearrange(SCREAMING_SNAKE_CASE_ , "b (c d) h w -> b c d h w" , d=8 ) __lowercase = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 2_5_5).clamp(0.0 , 1.0 ) def snake_case_ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): if self.num_inference_steps is None: raise ValueError( "Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __lowercase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __lowercase = self.alphas_cumprod[timestep] __lowercase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __lowercase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __lowercase = self.bit_scale if self.config.clip_sample: __lowercase = torch.clamp(SCREAMING_SNAKE_CASE_ , -scale , SCREAMING_SNAKE_CASE_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __lowercase = self._get_variance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowercase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __lowercase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __lowercase = model_output.device if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else 'cpu' __lowercase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __lowercase = self._get_variance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ** 0.5 * eta * noise __lowercase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ): __lowercase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __lowercase = torch.split(SCREAMING_SNAKE_CASE_ , sample.shape[1] , dim=1 ) else: __lowercase = None # 1. compute alphas, betas __lowercase = self.alphas_cumprod[t] __lowercase = self.alphas_cumprod[t - 1] if t > 0 else self.one __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __lowercase = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" __lowercase = self.bit_scale if self.config.clip_sample: __lowercase = torch.clamp(SCREAMING_SNAKE_CASE_ , -scale , SCREAMING_SNAKE_CASE_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __lowercase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowercase = 0 if t > 0: __lowercase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=SCREAMING_SNAKE_CASE_ ).to(model_output.device ) __lowercase = (self._get_variance(SCREAMING_SNAKE_CASE_ , predicted_variance=SCREAMING_SNAKE_CASE_ ) ** 0.5) * noise __lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) class _A ( _lowercase ): '''simple docstring''' def __init__( self : str , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[DDIMScheduler, DDPMScheduler] , lowerCamelCase : Optional[float] = 1.0 , ): '''simple docstring''' super().__init__() __lowercase = bit_scale __lowercase = ( ddim_bit_scheduler_step if isinstance(lowerCamelCase , lowerCamelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self : List[Any] , lowerCamelCase : Optional[int] = 256 , lowerCamelCase : Optional[int] = 256 , lowerCamelCase : Optional[int] = 50 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , **lowerCamelCase : List[Any] , ): '''simple docstring''' __lowercase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCamelCase , ) __lowercase = decimal_to_bits(lowerCamelCase ) * self.bit_scale __lowercase = latents.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __lowercase = self.unet(lowerCamelCase , lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample __lowercase = bits_to_decimal(lowerCamelCase ) if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
703
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) __lowercase = str(bin(__lowercase ) )[2:] # remove the leading "0b" __lowercase = str(bin(__lowercase ) )[2:] __lowercase = max(len(__lowercase ) , len(__lowercase ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__lowercase ) , b_binary.zfill(__lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
704
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _A ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = StableUnCLIPImgaImgPipeline _snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _snake_case : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case : int = frozenset([] ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = 32 __lowercase = embedder_hidden_size # image encoding components __lowercase = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __lowercase = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __lowercase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __lowercase = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase = AutoencoderKL() __lowercase = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 , lowerCamelCase : Union[str, Any]=True ): '''simple docstring''' if str(lowerCamelCase ).startswith("mps" ): __lowercase = torch.manual_seed(lowerCamelCase ) else: __lowercase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __lowercase = input_image * 0.5 + 0.5 __lowercase = input_image.clamp(0 , 1 ) __lowercase = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __lowercase = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __lowercase = sd_pipe(**lowerCamelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _snake_case ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Any ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __lowercase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __lowercase = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
655
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Tuple = KandinskyVaaControlnetImgaImgPipeline _snake_case : int = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _snake_case : List[Any] = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _snake_case : Optional[Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _snake_case : str = False @property def _snake_case ( self : Dict ): '''simple docstring''' return 32 @property def _snake_case ( self : List[Any] ): '''simple docstring''' return 32 @property def _snake_case ( self : str ): '''simple docstring''' return self.time_input_dim @property def _snake_case ( self : List[Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def _snake_case ( self : Any ): '''simple docstring''' return 100 @property def _snake_case ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __lowercase = UNetaDConditionModel(**_A ) return model @property def _snake_case ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _snake_case ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = self.dummy_unet __lowercase = self.dummy_movq __lowercase = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.0_0085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } __lowercase = DDIMScheduler(**_A ) __lowercase = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _snake_case ( self : Tuple , lowerCamelCase : Dict , lowerCamelCase : Dict=0 ): '''simple docstring''' __lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) __lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image __lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase = Image.fromarray(np.uinta(_A ) ).convert("RGB" ).resize((256, 256) ) # create hint __lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith("mps" ): __lowercase = torch.manual_seed(_A ) else: __lowercase = torch.Generator(device=_A ).manual_seed(_A ) __lowercase = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = "cpu" __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_A ) __lowercase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __lowercase = pipe(**self.get_dummy_inputs(_A ) ) __lowercase = output.images __lowercase = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _A ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __lowercase = init_image.resize((512, 512) ) __lowercase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) __lowercase = torch.from_numpy(np.array(_A ) ).float() / 255.0 __lowercase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __lowercase = "A robot, 4k photo" __lowercase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_A ) __lowercase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) __lowercase = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) __lowercase = torch.Generator(device="cpu" ).manual_seed(0 ) __lowercase , __lowercase = pipe_prior( _A , image=_A , strength=0.85 , generator=_A , negative_prompt="" , ).to_tuple() __lowercase = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , hint=_A , generator=_A , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="np" , ) __lowercase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_A , _A )
705
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _A ( _lowercase , _lowercase ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , *, lowerCamelCase : int = 4 , lowerCamelCase : int = 768 , lowerCamelCase : int , lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__() __lowercase = nn.Parameter(torch.zeros(lowerCamelCase ) ) # parameters for additional clip time embeddings __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) # parameters for encoder hidden states __lowercase = clip_extra_context_tokens __lowercase = nn.Linear( lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim ) __lowercase = nn.Linear(lowerCamelCase , lowerCamelCase ) __lowercase = nn.LayerNorm(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , *, lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings __lowercase = image_embeddings.shape[0] __lowercase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) __lowercase = classifier_free_guidance_embeddings.expand( lowerCamelCase , -1 ) __lowercase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] __lowercase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... __lowercase = self.embedding_proj(lowerCamelCase ) __lowercase = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase ) __lowercase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" __lowercase = self.clip_extra_context_tokens_proj(lowerCamelCase ) __lowercase = clip_extra_context_tokens.reshape(lowerCamelCase , -1 , self.clip_extra_context_tokens ) __lowercase = clip_extra_context_tokens.permute(0 , 2 , 1 ) __lowercase = self.encoder_hidden_states_proj(lowerCamelCase ) __lowercase = self.text_encoder_hidden_states_norm(lowerCamelCase ) __lowercase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
655
0
import math def snake_case_ ( _SCREAMING_SNAKE_CASE ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( _SCREAMING_SNAKE_CASE = 0.1 ): __lowercase = 3 __lowercase = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
706
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case__ : Union[str, Any] = TypeVar("""T""") snake_case__ : Optional[int] = TypeVar("""U""") class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : T | None , lowerCamelCase : U | None ): '''simple docstring''' __lowercase = key __lowercase = val __lowercase = None __lowercase = None def __repr__( self : Any ): '''simple docstring''' return ( f"""Node: key: {self.key}, val: {self.val}, """ f"""has next: {bool(self.next )}, has prev: {bool(self.prev )}""" ) class _A ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) __lowercase , __lowercase = self.rear, self.head def __repr__( self : Optional[Any] ): '''simple docstring''' __lowercase = ["DoubleLinkedList"] __lowercase = self.head while node.next is not None: rep.append(str(lowerCamelCase ) ) __lowercase = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' __lowercase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None __lowercase = node __lowercase = previous __lowercase = node __lowercase = self.rear def _snake_case ( self : Optional[int] , lowerCamelCase : DoubleLinkedListNode[T, U] ): '''simple docstring''' if node.prev is None or node.next is None: return None __lowercase = node.next __lowercase = node.prev __lowercase = None __lowercase = None return node class _A ( Generic[T, U] ): '''simple docstring''' _snake_case : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = DoubleLinkedList() __lowercase = capacity __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = {} def __repr__( self : Optional[Any] ): '''simple docstring''' return ( f"""CacheInfo(hits={self.hits}, misses={self.miss}, """ f"""capacity={self.capacity}, current size={self.num_keys})""" ) def __contains__( self : Dict , lowerCamelCase : T ): '''simple docstring''' return key in self.cache def _snake_case ( self : List[Any] , lowerCamelCase : T ): '''simple docstring''' if key in self.cache: self.hits += 1 __lowercase = self.cache[key] __lowercase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowerCamelCase ) return node.val self.miss += 1 return None def _snake_case ( self : Union[str, Any] , lowerCamelCase : T , lowerCamelCase : U ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity __lowercase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowerCamelCase ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 __lowercase = DoubleLinkedListNode(lowerCamelCase , lowerCamelCase ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value __lowercase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list __lowercase = value self.list.add(lowerCamelCase ) @classmethod def _snake_case ( cls : Union[str, Any] , lowerCamelCase : int = 128 ): '''simple docstring''' def cache_decorator_inner(lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCamelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: __lowercase = LRUCache(lowerCamelCase ) __lowercase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: __lowercase = func(*lowerCamelCase ) cls.decorator_function_to_instance_map[func].put(args[0] , lowerCamelCase ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowerCamelCase , "cache_info" , lowerCamelCase ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
655
0
from math import sqrt def snake_case_ ( _SCREAMING_SNAKE_CASE ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_1 ): __lowercase = 0 __lowercase = 1 while count != nth and number < 3: number += 1 if is_prime(lowerCAmelCase_ ): count += 1 while count != nth: number += 2 if is_prime(lowerCAmelCase_ ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
707
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) snake_case__ : Optional[Any] = logging.getLogger() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = "\n".join(_SCREAMING_SNAKE_CASE ) Path(_SCREAMING_SNAKE_CASE ).open("w" ).writelines(_SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """patrickvonplaten/t5-tiny-random""" snake_case__ : int = """sshleifer/bart-tiny-random""" snake_case__ : Union[str, Any] = """sshleifer/tiny-mbart""" snake_case__ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : str , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(lowerCamelCase , lowerCamelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): run_generate() assert Path(lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _snake_case ( self : Dict ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' self.run_eval_tester(lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _snake_case ( self : Optional[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" __lowercase = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() __lowercase = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / "scores.json" ) __lowercase = str(tmp_dir / "val.target" ) _dump_articles(lowerCamelCase , text["en"] ) _dump_articles(lowerCamelCase , text["de"] ) __lowercase = "translation_en_to_de" if model == T5_TINY else "summarization" __lowercase = f""" run_eval_search.py {model} {str(lowerCamelCase )} {str(lowerCamelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): with CaptureStdout() as cs: run_search() __lowercase = [" num_beams | length_penalty", model, "Best score args"] __lowercase = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(lowerCamelCase ).exists() os.remove(Path(lowerCamelCase ) )
655
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): try: __lowercase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowercase = default else: # KEY is set, convert it to True or False. try: __lowercase = strtobool(_snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value snake_case__ : Optional[Any] = parse_flag_from_env("""RUN_SLOW""", default=False) snake_case__ : List[Any] = parse_flag_from_env("""RUN_REMOTE""", default=False) snake_case__ : Dict = parse_flag_from_env("""RUN_LOCAL""", default=True) snake_case__ : List[Any] = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression snake_case__ : str = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") snake_case__ : List[str] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") snake_case__ : Optional[int] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio snake_case__ : Dict = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam snake_case__ : Tuple = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility snake_case__ : List[Any] = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows snake_case__ : List[Any] = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): try: import faiss # noqa except ImportError: __lowercase = unittest.skip("test requires faiss" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): try: import regex # noqa except ImportError: __lowercase = unittest.skip("test requires regex" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): try: import elasticsearch # noqa except ImportError: __lowercase = unittest.skip("test requires elasticsearch" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): try: import sqlalchemy # noqa except ImportError: __lowercase = unittest.skip("test requires sqlalchemy" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not config.TORCH_AVAILABLE: __lowercase = unittest.skip("test requires PyTorch" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not config.TF_AVAILABLE: __lowercase = unittest.skip("test requires TensorFlow" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not config.JAX_AVAILABLE: __lowercase = unittest.skip("test requires JAX" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not config.PIL_AVAILABLE: __lowercase = unittest.skip("test requires Pillow" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(_snake_case ) else: return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(_snake_case ) else: return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(_snake_case ) else: return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): def _require_spacy_model(_SCREAMING_SNAKE_CASE ): try: import spacy # noqa F401 spacy.load(_snake_case ) except ImportError: return unittest.skip("test requires spacy" )(_snake_case ) except OSError: return unittest.skip("test requires spacy model '{}'".format(_snake_case ) )(_snake_case ) else: return test_case return _require_spacy_model def snake_case_ ( _SCREAMING_SNAKE_CASE ): try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(_snake_case ) else: return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(_snake_case ) else: return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not _run_slow_tests or _run_slow_tests == 0: __lowercase = unittest.skip("test is slow" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not _run_local_tests or _run_local_tests == 0: __lowercase = unittest.skip("test is local" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not _run_packaged_tests or _run_packaged_tests == 0: __lowercase = unittest.skip("test is packaged" )(_snake_case ) return test_case def snake_case_ ( _SCREAMING_SNAKE_CASE ): if not _run_remote_tests or _run_remote_tests == 0: __lowercase = unittest.skip("test requires remote" )(_snake_case ) return test_case def snake_case_ ( *_SCREAMING_SNAKE_CASE ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_snake_case ) and name.startswith("test" ): for decorator in decorators: __lowercase = decorator(_snake_case ) setattr(cls , _snake_case , _snake_case ) return cls return decorate class _A ( _lowercase ): '''simple docstring''' pass class _A ( _lowercase ): '''simple docstring''' _snake_case : Tuple = 0 _snake_case : Optional[Any] = 1 _snake_case : Dict = 2 @contextmanager def snake_case_ ( _SCREAMING_SNAKE_CASE=OfflineSimulationMode.CONNECTION_FAILS , _SCREAMING_SNAKE_CASE=1E-1_6 ): __lowercase = requests.Session().request def timeout_request(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # Change the url to an invalid url so that the connection hangs __lowercase = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __lowercase = timeout try: return online_request(_snake_case , _snake_case , **_snake_case ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __lowercase = url __lowercase = e.args[0] __lowercase = (max_retry_error.args[0].replace("10.255.255.1" , F"""OfflineMock[{url}]""" ),) __lowercase = (max_retry_error,) raise def raise_connection_error(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): raise requests.ConnectionError("Offline mode is enabled." , request=_snake_case ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , _snake_case ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , _snake_case ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , _snake_case ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def snake_case_ ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): __lowercase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_snake_case , **_snake_case ) as tmp_dir: try: os.chdir(_snake_case ) yield finally: os.chdir(_snake_case ) @contextmanager def snake_case_ ( ): import gc gc.collect() __lowercase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def snake_case_ ( ): import gc gc.collect() __lowercase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return deepcopy(_snake_case ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_snake_case ).integers(0 , 1_0_0 , 1_0 ).tolist() def snake_case_ ( _SCREAMING_SNAKE_CASE ): import decorator from requests.exceptions import HTTPError def _wrapper(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): try: return func(*_snake_case , **_snake_case ) except HTTPError as err: if str(_snake_case ).startswith("500" ) or str(_snake_case ).startswith("502" ): pytest.xfail(str(_snake_case ) ) raise err return decorator.decorator(_wrapper , _snake_case ) class _A : '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Dict , lowerCamelCase : str , lowerCamelCase : Any ): '''simple docstring''' __lowercase = returncode __lowercase = stdout __lowercase = stderr async def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): while True: __lowercase = await stream.readline() if line: callback(_snake_case ) else: break async def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): if echo: print("\nRunning: " , " ".join(_snake_case ) ) __lowercase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowercase = [] __lowercase = [] def tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" ): __lowercase = line.decode("utf-8" ).rstrip() sink.append(_snake_case ) if not quiet: print(_snake_case , _snake_case , file=_snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _SCREAMING_SNAKE_CASE : tee(_snake_case , _snake_case , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda _SCREAMING_SNAKE_CASE : tee(_snake_case , _snake_case , sys.stderr , label="stderr:" ) ), ] , timeout=_snake_case , ) return _RunOutput(await p.wait() , _snake_case , _snake_case ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1_8_0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True ): __lowercase = asyncio.get_event_loop() __lowercase = loop.run_until_complete( _stream_subprocess(_snake_case , env=_snake_case , stdin=_snake_case , timeout=_snake_case , quiet=_snake_case , echo=_snake_case ) ) __lowercase = " ".join(_snake_case ) if result.returncode > 0: __lowercase = "\n".join(result.stderr ) raise RuntimeError( F"""\'{cmd_str}\' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""\'{cmd_str}\' produced no output.""" ) return result def snake_case_ ( ): __lowercase = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) __lowercase = re.sub(R"^gw" , "" , _snake_case , 0 , re.M ) return int(_snake_case ) def snake_case_ ( ): __lowercase = 2_9_5_0_0 __lowercase = pytest_xdist_worker_id() return port + uniq_delta
708
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _A : '''simple docstring''' _snake_case : int _snake_case : TreeNode | None = None _snake_case : TreeNode | None = None snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""") def snake_case_ ( _SCREAMING_SNAKE_CASE ): if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __lowercase , __lowercase = get_distrib(node.left ) __lowercase , __lowercase = get_distrib(node.right ) __lowercase = 1 - left_distrib_excess __lowercase = 1 - right_distrib_excess __lowercase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) __lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
655
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case__ : Tuple = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
709
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
710
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED snake_case__ : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } snake_case__ : List[str] = { """allenai/led-base-16384""": 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def snake_case_ ( ): __lowercase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __lowercase = bs[:] __lowercase = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 __lowercase = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() __lowercase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase = char return pairs class _A ( _lowercase ): '''simple docstring''' _snake_case : List[str] = VOCAB_FILES_NAMES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[int]="replace" , lowerCamelCase : Dict="<s>" , lowerCamelCase : Dict="</s>" , lowerCamelCase : Optional[Any]="</s>" , lowerCamelCase : Any="<s>" , lowerCamelCase : List[str]="<unk>" , lowerCamelCase : Union[str, Any]="<pad>" , lowerCamelCase : Any="<mask>" , lowerCamelCase : str=False , **lowerCamelCase : Optional[Any] , ): '''simple docstring''' __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else bos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else sep_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else cls_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token super().__init__( errors=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , add_prefix_space=lowerCamelCase , **lowerCamelCase , ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: __lowercase = json.load(lowerCamelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = errors # how to handle errors in decoding __lowercase = bytes_to_unicode() __lowercase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: __lowercase = merges_handle.read().split("\n" )[1:-1] __lowercase = [tuple(merge.split() ) for merge in bpe_merges] __lowercase = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __lowercase = {} __lowercase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _snake_case ( self : Optional[int] ): '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : List[Any] , lowerCamelCase : str ): '''simple docstring''' if token in self.cache: return self.cache[token] __lowercase = tuple(lowerCamelCase ) __lowercase = get_pairs(lowerCamelCase ) if not pairs: return token while True: __lowercase = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase = bigram __lowercase = [] __lowercase = 0 while i < len(lowerCamelCase ): try: __lowercase = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase = tuple(lowerCamelCase ) __lowercase = new_word if len(lowerCamelCase ) == 1: break else: __lowercase = get_pairs(lowerCamelCase ) __lowercase = " ".join(lowerCamelCase ) __lowercase = word return word def _snake_case ( self : List[Any] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = [] for token in re.findall(self.pat , lowerCamelCase ): __lowercase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Dict , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : str , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.decoder.get(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = "".join(lowerCamelCase ) __lowercase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) __lowercase = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) __lowercase = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def _snake_case ( self : int , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Dict , lowerCamelCase : Any , lowerCamelCase : Tuple=False , **lowerCamelCase : Any ): '''simple docstring''' __lowercase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase ) > 0 and not text[0].isspace()): __lowercase = " " + text return (text, kwargs) def _snake_case ( self : List[Any] , lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase : Optional[int] = None , lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' __lowercase = super()._pad( encoded_inputs=lowerCamelCase , max_length=lowerCamelCase , padding_strategy=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: __lowercase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase ) if needs_to_be_padded: __lowercase = len(lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowercase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
655
0
# Algorithm for the pigeonhole sorting def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = min(_SCREAMING_SNAKE_CASE ) # min() finds the minimum value __lowercase = max(_SCREAMING_SNAKE_CASE ) # max() finds the maximum value __lowercase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __lowercase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __lowercase = 0 for count in range(_SCREAMING_SNAKE_CASE ): while holes[count] > 0: holes[count] -= 1 __lowercase = count + min_val i += 1 def snake_case_ ( ): __lowercase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_SCREAMING_SNAKE_CASE ) print("Sorted order is:" , " ".join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
711
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __lowercase = [p / w for p, w in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] # Creating a copy of the list and sorting profit/weight in ascending order __lowercase = sorted(_SCREAMING_SNAKE_CASE ) # declaring useful variables __lowercase = len(_SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __lowercase = sorted_profit_by_weight[length - i - 1] __lowercase = profit_by_weight.index(_SCREAMING_SNAKE_CASE ) __lowercase = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) snake_case__ : str = [int(x) for x in input("""Input profits separated by spaces: """).split()] snake_case__ : str = [int(x) for x in input("""Input weights separated by spaces: """).split()] snake_case__ : Optional[Any] = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
655
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Any = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) __lowercase = {int(__snake_case ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __lowercase = BitConfig( conv_layer=__snake_case , num_labels=1_0_0_0 , idalabel=__snake_case , labelaid=__snake_case , ) return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "stem.conv" in name: __lowercase = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: __lowercase = name.replace("blocks" , "layers" ) if "head.fc" in name: __lowercase = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): __lowercase = "bit." + name if "bit" not in name and "classifier" not in name: __lowercase = "bit.encoder." + name return name def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_config(__snake_case ) # load original model from timm __lowercase = create_model(__snake_case , pretrained=__snake_case ) timm_model.eval() # load state_dict of original model __lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): __lowercase = state_dict.pop(__snake_case ) __lowercase = val.squeeze() if "head" in key else val # load HuggingFace model __lowercase = BitForImageClassification(__snake_case ) model.eval() model.load_state_dict(__snake_case ) # create image processor __lowercase = create_transform(**resolve_data_config({} , model=__snake_case ) ) __lowercase = transform.transforms __lowercase = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } __lowercase = BitImageProcessor( do_resize=__snake_case , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__snake_case , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=__snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __lowercase = prepare_img() __lowercase = transform(__snake_case ).unsqueeze(0 ) __lowercase = processor(__snake_case , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(__snake_case , __snake_case ) # verify logits with torch.no_grad(): __lowercase = model(__snake_case ) __lowercase = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) __lowercase = timm_model(__snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__snake_case , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(F"""ybelkada/{model_name}""" ) processor.push_to_hub(F"""ybelkada/{model_name}""" ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) snake_case__ : str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """openai/whisper-base""" _snake_case : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) _snake_case : Any = """transcriber""" _snake_case : Any = WhisperProcessor _snake_case : Optional[int] = WhisperForConditionalGeneration _snake_case : str = ["""audio"""] _snake_case : Optional[int] = ["""text"""] def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' return self.pre_processor(lowerCamelCase , return_tensors="pt" ).input_features def _snake_case ( self : str , lowerCamelCase : List[Any] ): '''simple docstring''' return self.model.generate(inputs=lowerCamelCase ) def _snake_case ( self : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )[0]
655
0
from typing import Any class _A : '''simple docstring''' def __init__( self : Any , lowerCamelCase : Any ): '''simple docstring''' __lowercase = data __lowercase = None def __repr__( self : List[Any] ): '''simple docstring''' return f"""Node({self.data})""" class _A : '''simple docstring''' def __init__( self : List[Any] ): '''simple docstring''' __lowercase = None def __iter__( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.head while node: yield node.data __lowercase = node.next def __len__( self : Dict ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : str ): '''simple docstring''' return "->".join([str(lowerCamelCase_ ) for item in self] ) def __getitem__( self : Optional[Any] , lowerCamelCase : int ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : int , lowerCamelCase : int , lowerCamelCase : Any ): '''simple docstring''' if not 0 <= index < len(self ): raise ValueError("list index out of range." ) __lowercase = self.head for _ in range(lowerCamelCase_ ): __lowercase = current.next __lowercase = data def _snake_case ( self : Union[str, Any] , lowerCamelCase : Any ): '''simple docstring''' self.insert_nth(len(self ) , lowerCamelCase_ ) def _snake_case ( self : Dict , lowerCamelCase : Any ): '''simple docstring''' self.insert_nth(0 , lowerCamelCase_ ) def _snake_case ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any ): '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) __lowercase = Node(lowerCamelCase_ ) if self.head is None: __lowercase = new_node elif index == 0: __lowercase = self.head # link new_node to head __lowercase = new_node else: __lowercase = self.head for _ in range(index - 1 ): __lowercase = temp.next __lowercase = temp.next __lowercase = new_node def _snake_case ( self : Optional[Any] ): # print every node data '''simple docstring''' print(self ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return self.delete_nth(0 ) def _snake_case ( self : List[Any] ): # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def _snake_case ( self : Tuple , lowerCamelCase : int = 0 ): '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) __lowercase = self.head # default first node if index == 0: __lowercase = self.head.next else: __lowercase = self.head for _ in range(index - 1 ): __lowercase = temp.next __lowercase = temp.next __lowercase = temp.next.next return delete_node.data def _snake_case ( self : Dict ): '''simple docstring''' return self.head is None def _snake_case ( self : List[str] ): '''simple docstring''' __lowercase = None __lowercase = self.head while current: # Store the current node's next node. __lowercase = current.next # Make the current node's next point backwards __lowercase = prev # Make the previous node be the current node __lowercase = current # Make the current node the next node (to progress iteration) __lowercase = next_node # Return prev in order to put the head at the end __lowercase = prev def snake_case_ ( ): __lowercase = LinkedList() assert linked_list.is_empty() is True assert str(lowerCamelCase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(lowerCamelCase_ ) == i linked_list.insert_nth(lowerCamelCase_ , i + 1 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(lowerCamelCase_ ) == 9 assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __lowercase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowerCamelCase_ ) == "->".join(str(lowerCamelCase_ ) for i in range(-8 , 1 ) ) def snake_case_ ( ): __lowercase = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), """dlrow olleH""", 7, 5_5_5_5, 0, -1_9_2.5_5_5_5_5, """Hello, world!""", 7_7.9, Node(1_0 ), None, None, 1_2.2_0, ] __lowercase = LinkedList() for i in test_input: linked_list.insert_tail(lowerCamelCase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowerCamelCase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __lowercase = linked_list.delete_head() assert result == -9 assert ( str(lowerCamelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __lowercase = linked_list.delete_tail() assert result == 1_2.2 assert ( str(lowerCamelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __lowercase = linked_list.delete_nth(1_0 ) assert result is None assert ( str(lowerCamelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(lowerCamelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowerCamelCase_ ) assert ( str(lowerCamelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowerCamelCase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def snake_case_ ( ): from doctest import testmod testmod() __lowercase = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(lowerCamelCase_ ) print("\nReading/changing Node data using indexing:" ) print(F"""Element at Position 1: {linked_list[1]}""" ) __lowercase = input("Enter New Value: " ).strip() print("New list:" ) print(lowerCamelCase_ ) print(F"""length of linked_list is : {len(lowerCamelCase_ )}""" ) if __name__ == "__main__": main()
713
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
0
from functools import lru_cache def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = 2 __lowercase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(A__ ) if n > 1: factors.add(A__ ) return factors @lru_cache def snake_case_ ( _SCREAMING_SNAKE_CASE ): return len(unique_prime_factors(A__ ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): return len(set(A__ ) ) in (0, 1) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = 2 while True: # Increment each value of a generated range __lowercase = [base + i for i in range(A__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowercase = [upf_len(A__ ) for x in group] checker.append(A__ ) # If all numbers in the list are equal, return the group variable. if equality(A__ ): return group # Increment our base variable by 1 base += 1 def snake_case_ ( _SCREAMING_SNAKE_CASE = 4 ): __lowercase = run(A__ ) return results[0] if len(A__ ) else None if __name__ == "__main__": print(solution())
714
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
655
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(lowerCamelCase__ , torch.Tensor ): return image elif isinstance(lowerCamelCase__ , PIL.Image.Image ): __lowercase = [image] if isinstance(image[0] , PIL.Image.Image ): __lowercase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] __lowercase = np.concatenate(lowerCamelCase__ , axis=0 ) __lowercase = np.array(lowerCamelCase__ ).astype(np.floataa ) / 2_5_5.0 __lowercase = image.transpose(0 , 3 , 1 , 2 ) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(lowerCamelCase__ ) elif isinstance(image[0] , torch.Tensor ): __lowercase = torch.cat(lowerCamelCase__ , dim=0 ) return image def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9_9_9_5 ): if not isinstance(lowerCamelCase__ , np.ndarray ): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(lowerCamelCase__ ) * np.linalg.norm(lowerCamelCase__ )) ) if np.abs(lowerCamelCase__ ) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(lowerCamelCase__ ) __lowercase = np.sin(lowerCamelCase__ ) __lowercase = theta_a * t __lowercase = np.sin(lowerCamelCase__ ) __lowercase = np.sin(theta_a - theta_t ) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) return va def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = F.normalize(lowerCamelCase__ , dim=-1 ) __lowercase = F.normalize(lowerCamelCase__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param in model.parameters(): __lowercase = value class _A ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Any , lowerCamelCase : AutoencoderKL , lowerCamelCase : CLIPTextModel , lowerCamelCase : CLIPModel , lowerCamelCase : CLIPTokenizer , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowerCamelCase : CLIPFeatureExtractor , lowerCamelCase : Any=None , lowerCamelCase : Tuple=None , lowerCamelCase : Tuple=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=lowerCamelCase , text_encoder=lowerCamelCase , clip_model=lowerCamelCase , tokenizer=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase , feature_extractor=lowerCamelCase , coca_model=lowerCamelCase , coca_tokenizer=lowerCamelCase , coca_transform=lowerCamelCase , ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size , lowerCamelCase ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowerCamelCase ) set_requires_grad(self.clip_model , lowerCamelCase ) def _snake_case ( self : int , lowerCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase ) def _snake_case ( self : List[Any] ): '''simple docstring''' self.enable_attention_slicing(lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' set_requires_grad(self.vae , lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' set_requires_grad(self.vae , lowerCamelCase ) def _snake_case ( self : List[str] ): '''simple docstring''' set_requires_grad(self.unet , lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' set_requires_grad(self.unet , lowerCamelCase ) def _snake_case ( self : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = min(int(num_inference_steps * strength ) , lowerCamelCase ) __lowercase = max(num_inference_steps - init_timestep , 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : str=None ): '''simple docstring''' if not isinstance(lowerCamelCase , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(lowerCamelCase )}""" ) __lowercase = image.to(device=lowerCamelCase , dtype=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCamelCase ) ] __lowercase = torch.cat(lowerCamelCase , dim=0 ) else: __lowercase = self.vae.encode(lowerCamelCase ).latent_dist.sample(lowerCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.1_8215 * init_latents __lowercase = init_latents.repeat_interleave(lowerCamelCase , dim=0 ) __lowercase = randn_tensor(init_latents.shape , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) # get latents __lowercase = self.scheduler.add_noise(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = init_latents return latents def _snake_case ( self : int , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = self.coca_transform(lowerCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = self.feature_extractor.preprocess(lowerCamelCase ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(lowerCamelCase ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCamelCase ) __lowercase = image_embeddings_clip.repeat_interleave(lowerCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _snake_case ( self : Optional[Any] , lowerCamelCase : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , ): '''simple docstring''' __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual __lowercase = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(lowerCamelCase ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowerCamelCase ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.1_8215 * sample __lowercase = self.vae.decode(lowerCamelCase ).sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(lowerCamelCase ) __lowercase = self.normalize(lowerCamelCase ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(lowerCamelCase ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCamelCase ) __lowercase = spherical_dist_loss(lowerCamelCase , lowerCamelCase ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(lowerCamelCase , lowerCamelCase )[0] if isinstance(self.scheduler , lowerCamelCase ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(lowerCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : List[str] , lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[int] = 512 , lowerCamelCase : Optional[int] = 512 , lowerCamelCase : float = 0.6 , lowerCamelCase : Optional[int] = 50 , lowerCamelCase : Optional[float] = 7.5 , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : float = 0.0 , lowerCamelCase : Optional[float] = 100 , lowerCamelCase : Optional[torch.Generator] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , lowerCamelCase : float = 0.8 , lowerCamelCase : float = 0.1 , lowerCamelCase : float = 0.1 , ): '''simple docstring''' if isinstance(lowerCamelCase , lowerCamelCase ) and len(lowerCamelCase ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(lowerCamelCase )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(lowerCamelCase , torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(lowerCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCamelCase ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(lowerCamelCase ) if style_prompt is None: if len(lowerCamelCase ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(lowerCamelCase ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=lowerCamelCase , return_tensors="pt" , ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( lowerCamelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=lowerCamelCase , return_tensors="pt" , ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(lowerCamelCase , dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(lowerCamelCase , **lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase = self.get_timesteps(lowerCamelCase , lowerCamelCase , self.device ) __lowercase = timesteps[:1].repeat(lowerCamelCase ) # Preprocess image __lowercase = preprocess(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = self.prepare_latents( lowerCamelCase , lowerCamelCase , lowerCamelCase , text_embeddings.dtype , self.device , lowerCamelCase ) __lowercase = preprocess(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = self.prepare_latents( lowerCamelCase , lowerCamelCase , lowerCamelCase , text_embeddings.dtype , self.device , lowerCamelCase ) __lowercase = slerp(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(lowerCamelCase , lowerCamelCase ) __lowercase = self.get_clip_image_embeddings(lowerCamelCase , lowerCamelCase ) __lowercase = slerp( lowerCamelCase , lowerCamelCase , lowerCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""] , padding="max_length" , max_length=lowerCamelCase , return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(lowerCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(lowerCamelCase , generator=lowerCamelCase , device="cpu" , dtype=lowerCamelCase ).to( self.device ) else: __lowercase = torch.randn(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=lowerCamelCase ): for i, t in enumerate(lowerCamelCase ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual __lowercase = self.unet(lowerCamelCase , lowerCamelCase , encoder_hidden_states=lowerCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase = self.cond_fn( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.1_8215 * latents __lowercase = self.vae.decode(lowerCamelCase ).sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCamelCase , nsfw_content_detected=lowerCamelCase )
715
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _A ( ctypes.Structure ): '''simple docstring''' _snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case_ ( ): if os.name == "nt": __lowercase = CursorInfo() __lowercase = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) __lowercase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_SCREAMING_SNAKE_CASE , ctypes.byref(_SCREAMING_SNAKE_CASE ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case_ ( ): try: hide_cursor() yield finally: show_cursor()
655
0
from __future__ import annotations snake_case__ : Union[str, Any] = [True] * 1_00_00_01 snake_case__ : Tuple = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): snake_case__ : Optional[int] = False i += 1 def snake_case_ ( _SCREAMING_SNAKE_CASE ): return seive[n] def snake_case_ ( _SCREAMING_SNAKE_CASE ): return any(digit in "02468" for digit in str(a__ ) ) def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_0_0_0 ): __lowercase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(a__ ) and not contains_an_even_digit(a__ ): __lowercase = str(a__ ) __lowercase = [int(str_num[j:] + str_num[:j] ) for j in range(len(a__ ) )] if all(is_prime(a__ ) for i in list_nums ): result.append(a__ ) return result def snake_case_ ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
716
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : List[str] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowercase ): '''simple docstring''' _snake_case : List[Any] = """yolos""" def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=768 , lowerCamelCase : int=12 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Optional[Any]=3_072 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Any=0.02 , lowerCamelCase : Optional[Any]=1e-12 , lowerCamelCase : Optional[Any]=[512, 864] , lowerCamelCase : str=16 , lowerCamelCase : Dict=3 , lowerCamelCase : str=True , lowerCamelCase : List[Any]=100 , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=1 , lowerCamelCase : str=5 , lowerCamelCase : Any=2 , lowerCamelCase : str=5 , lowerCamelCase : Optional[int]=2 , lowerCamelCase : List[Any]=0.1 , **lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = qkv_bias __lowercase = num_detection_tokens __lowercase = use_mid_position_embeddings __lowercase = auxiliary_loss # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = version.parse("""1.11""" ) @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : str ): '''simple docstring''' return 1e-4 @property def _snake_case ( self : Tuple ): '''simple docstring''' return 12
655
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = prime_factors(snake_case__ ) if is_square_free(snake_case__ ): return -1 if len(snake_case__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
717
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _SCREAMING_SNAKE_CASE ) if matches: __lowercase = float(matches[1] ) __lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __lowercase = 1_0_0_1 __lowercase = "imagenet-1k-id2label.json" __lowercase = "huggingface/label-files" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ) + 1: v for k, v in idalabel.items()} __lowercase = "background" __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): __lowercase = get_mobilenet_va_config(_SCREAMING_SNAKE_CASE ) # Load 🤗 model __lowercase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 3_2} , ) __lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": __lowercase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": __lowercase = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: __lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) __lowercase = "google/" + model_name image_processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Dict = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
655
0
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowercase = set() return any( node not in visited and depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for node in graph ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): visited.add(_SCREAMING_SNAKE_CASE ) rec_stk.add(_SCREAMING_SNAKE_CASE ) for node in graph[vertex]: if node not in visited: if depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_SCREAMING_SNAKE_CASE ) return False if __name__ == "__main__": from doctest import testmod testmod()
718
from __future__ import annotations from typing import Any class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _snake_case ( self : Dict , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : List[Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : int ): '''simple docstring''' if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : list[int] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(lowerCamelCase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase , __lowercase , __lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
655
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : int = logging.get_logger(__name__) snake_case__ : str = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case : Dict = """big_bird""" def __init__( self : int , lowerCamelCase : Any=50_358 , lowerCamelCase : Optional[Any]=768 , lowerCamelCase : Tuple=12 , lowerCamelCase : Tuple=12 , lowerCamelCase : int=3_072 , lowerCamelCase : str="gelu_new" , lowerCamelCase : int=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : str=4_096 , lowerCamelCase : List[str]=2 , lowerCamelCase : Union[str, Any]=0.02 , lowerCamelCase : str=1e-12 , lowerCamelCase : Tuple=True , lowerCamelCase : List[Any]=0 , lowerCamelCase : Optional[Any]=1 , lowerCamelCase : str=2 , lowerCamelCase : str=66 , lowerCamelCase : Dict="block_sparse" , lowerCamelCase : Optional[Any]=True , lowerCamelCase : str=False , lowerCamelCase : Optional[int]=64 , lowerCamelCase : Dict=3 , lowerCamelCase : List[str]=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , sep_token_id=snake_case__ , **snake_case__ , ) __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = use_cache __lowercase = rescale_embeddings __lowercase = attention_type __lowercase = use_bias __lowercase = block_size __lowercase = num_random_blocks __lowercase = classifier_dropout class _A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _snake_case ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": __lowercase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowercase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
719
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : List[str] = { """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
655
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case__ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
720
from __future__ import annotations import bisect def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): if hi < 0: __lowercase = len(_SCREAMING_SNAKE_CASE ) while lo < hi: __lowercase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowercase = mid + 1 else: __lowercase = mid return lo def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ): sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = 0 __lowercase = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: __lowercase = left + (right - left) // 2 __lowercase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowercase = midpoint - 1 else: __lowercase = midpoint + 1 return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if right < left: return None __lowercase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": snake_case__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip() snake_case__ : Any = sorted(int(item) for item in user_input.split(""",""")) snake_case__ : Any = int(input("""Enter a single number to be found in the list:\n""")) snake_case__ : List[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
655
0
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType snake_case__ : Optional[List[str]] = None snake_case__ : Optional[Any] = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image snake_case__ : str = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class _A : '''simple docstring''' _snake_case : bool = True _snake_case : Optional[str] = None # Automatically constructed _snake_case : ClassVar[str] = "PIL.Image.Image" _snake_case : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) _snake_case : str = field(default="""Image""" , init=_snake_case , repr=_snake_case ) def __call__( self : Union[str, Any] ): '''simple docstring''' return self.pa_type def _snake_case ( self : Optional[int] , lowerCamelCase : List[Any] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(snake_case_ , snake_case_ ): __lowercase = np.array(snake_case_ ) if isinstance(snake_case_ , snake_case_ ): return {"path": value, "bytes": None} elif isinstance(snake_case_ , snake_case_ ): return {"path": None, "bytes": value} elif isinstance(snake_case_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(snake_case_ ) elif isinstance(snake_case_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(snake_case_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"""An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def _snake_case ( self : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : str=None ): '''simple docstring''' if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: __lowercase = {} __lowercase = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) else: if is_local_path(snake_case_ ): __lowercase = PIL.Image.open(snake_case_ ) else: __lowercase = path.split("::" )[-1] try: __lowercase = string_to_dict(snake_case_ , config.HUB_DATASETS_URL )["repo_id"] __lowercase = token_per_repo_id.get(snake_case_ ) except ValueError: __lowercase = None with xopen(snake_case_ , "rb" , use_auth_token=snake_case_ ) as f: __lowercase = BytesIO(f.read() ) __lowercase = PIL.Image.open(bytes_ ) else: __lowercase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def _snake_case ( self : str ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def _snake_case ( self : Tuple , lowerCamelCase : int ): '''simple docstring''' if pa.types.is_string(storage.type ): __lowercase = pa.array([None] * len(snake_case_ ) , type=pa.binary() ) __lowercase = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __lowercase = pa.array([None] * len(snake_case_ ) , type=pa.string() ) __lowercase = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: __lowercase = storage.field("bytes" ) else: __lowercase = pa.array([None] * len(snake_case_ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: __lowercase = storage.field("path" ) else: __lowercase = pa.array([None] * len(snake_case_ ) , type=pa.string() ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __lowercase = pa.array( [encode_np_array(np.array(snake_case_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __lowercase = pa.array([None] * len(snake_case_ ) , type=pa.string() ) __lowercase = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(snake_case_ , self.pa_type ) def _snake_case ( self : Any , lowerCamelCase : List[Any] ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowerCamelCase : Dict ): with xopen(snake_case_ , "rb" ) as f: __lowercase = f.read() return bytes_ __lowercase = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __lowercase = pa.array( [os.path.basename(snake_case_ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(snake_case_ , self.pa_type ) def snake_case_ ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __lowercase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = BytesIO() if image.format in list_image_compression_formats(): __lowercase = image.format else: __lowercase = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_SCREAMING_SNAKE_CASE , format=_SCREAMING_SNAKE_CASE ) return buffer.getvalue() def snake_case_ ( _SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_SCREAMING_SNAKE_CASE )} def snake_case_ ( _SCREAMING_SNAKE_CASE ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) __lowercase = array.dtype __lowercase = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER __lowercase = dtype.kind __lowercase = dtype.itemsize __lowercase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __lowercase = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __lowercase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __lowercase = dtype_byteorder + dtype_kind + str(_SCREAMING_SNAKE_CASE ) __lowercase = np.dtype(_SCREAMING_SNAKE_CASE ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) __lowercase = PIL.Image.fromarray(array.astype(_SCREAMING_SNAKE_CASE ) ) return {"path": None, "bytes": image_to_bytes(_SCREAMING_SNAKE_CASE )} def snake_case_ ( _SCREAMING_SNAKE_CASE ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: __lowercase = first_non_null_value(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): __lowercase = no_op_if_value_is_null(_SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(_SCREAMING_SNAKE_CASE ) for obj in objs] elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): __lowercase = no_op_if_value_is_null(_SCREAMING_SNAKE_CASE ) return [obj_to_image_dict_func(_SCREAMING_SNAKE_CASE ) for obj in objs] else: return objs else: return objs
721
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case__ : int = logging.get_logger(__name__) snake_case__ : Optional[int] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class _A ( _lowercase ): '''simple docstring''' _snake_case : Dict = """conditional_detr""" _snake_case : Union[str, Any] = ["""past_key_values"""] _snake_case : Optional[int] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Optional[Any] , lowerCamelCase : int=True , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[int]=300 , lowerCamelCase : List[Any]=6 , lowerCamelCase : str=2_048 , lowerCamelCase : Any=8 , lowerCamelCase : List[str]=6 , lowerCamelCase : Any=2_048 , lowerCamelCase : List[Any]=8 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : List[str]=0.0 , lowerCamelCase : List[Any]=True , lowerCamelCase : str="relu" , lowerCamelCase : int=256 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[Any]=0.0 , lowerCamelCase : Dict=0.0 , lowerCamelCase : Tuple=0.02 , lowerCamelCase : int=1.0 , lowerCamelCase : Tuple=False , lowerCamelCase : List[str]="sine" , lowerCamelCase : List[Any]="resnet50" , lowerCamelCase : Any=True , lowerCamelCase : Any=False , lowerCamelCase : List[Any]=2 , lowerCamelCase : List[Any]=5 , lowerCamelCase : str=2 , lowerCamelCase : Dict=1 , lowerCamelCase : List[str]=1 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : Dict=5 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Tuple=0.25 , **lowerCamelCase : List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowercase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = backbone_config.get("model_type" ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCamelCase ) __lowercase = use_timm_backbone __lowercase = backbone_config __lowercase = num_channels __lowercase = num_queries __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = encoder_layers __lowercase = auxiliary_loss __lowercase = position_embedding_type __lowercase = backbone __lowercase = use_pretrained_backbone __lowercase = dilation # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = cls_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase , **lowerCamelCase ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def _snake_case ( self : str ): '''simple docstring''' return self.d_model def _snake_case ( self : int ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output class _A ( _lowercase ): '''simple docstring''' _snake_case : Any = version.parse("""1.11""" ) @property def _snake_case ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _snake_case ( self : Any ): '''simple docstring''' return 1e-5 @property def _snake_case ( self : Optional[Any] ): '''simple docstring''' return 12
655
0
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def snake_case_ ( _SCREAMING_SNAKE_CASE = "isbn/0140328726" ): __lowercase = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: __lowercase = F"""{olid} is not a valid Open Library olid""" raise ValueError(_SCREAMING_SNAKE_CASE ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } __lowercase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __lowercase = [ get_openlibrary_data(author["key"] )['''name'''] for author in data['''Authors'''] ] __lowercase = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = ''', '''.join(_SCREAMING_SNAKE_CASE ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: snake_case__ : int = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: snake_case__ : Optional[Any] = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("""\n""".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
700
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Any = logging.get_logger(__name__) class _A ( _lowercase , _lowercase ): '''simple docstring''' _snake_case : Dict = """maskformer-swin""" _snake_case : List[str] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] , lowerCamelCase : Any=224 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : Dict=3 , lowerCamelCase : Tuple=96 , lowerCamelCase : str=[2, 2, 6, 2] , lowerCamelCase : Dict=[3, 6, 12, 24] , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Any=4.0 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : List[str]=0.0 , lowerCamelCase : Optional[int]=0.0 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : int="gelu" , lowerCamelCase : Optional[int]=False , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : Tuple=1e-5 , lowerCamelCase : Dict=None , lowerCamelCase : Dict=None , **lowerCamelCase : int , ): '''simple docstring''' super().__init__(**lowerCamelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(lowerCamelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(lowerCamelCase ) - 1) ) __lowercase = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=lowerCamelCase , out_indices=lowerCamelCase , stage_names=self.stage_names )
655
0
import os import string import sys snake_case__ : str = 1 << 8 snake_case__ : List[Any] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } snake_case__ : List[Any] = KEYMAP["""up"""] snake_case__ : str = KEYMAP["""left"""] if sys.platform == "win32": snake_case__ : Union[str, Any] = [] snake_case__ : Any = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): snake_case__ : Union[str, Any] = ord(str(i)) def snake_case_ ( ): if os.name == "nt": import msvcrt __lowercase = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowerCAmelCase ) == 0: # Read the keystroke __lowercase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __lowercase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __lowercase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(_lowerCAmelCase ) if ord(_lowerCAmelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) __lowercase = chr(KEYMAP["esc"] ) except KeyError: __lowercase = cha[1] else: __lowercase = ch.decode(_lowerCAmelCase ) else: __lowercase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __lowercase = sys.stdin.fileno() __lowercase = termios.tcgetattr(_lowerCAmelCase ) try: tty.setraw(_lowerCAmelCase ) __lowercase = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowerCAmelCase , termios.TCSADRAIN , _lowerCAmelCase ) return ch def snake_case_ ( ): __lowercase = get_raw_chars() if ord(_lowerCAmelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowerCAmelCase ) == KEYMAP["esc"]: __lowercase = get_raw_chars() if ord(_lowerCAmelCase ) == KEYMAP["mod_int"]: __lowercase = get_raw_chars() if ord(_lowerCAmelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowerCAmelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowerCAmelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
701
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
0
from __future__ import annotations class _A : '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : List[Any] ): '''simple docstring''' __lowercase = order # a_{0} ... a_{k} __lowercase = [1.0] + [0.0] * order # b_{0} ... b_{k} __lowercase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __lowercase = [0.0] * self.order # y[n-1] ... y[n-k] __lowercase = [0.0] * self.order def _snake_case ( self : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] ): '''simple docstring''' if len(__lowerCamelCase ) < self.order: __lowercase = [1.0, *a_coeffs] if len(__lowerCamelCase ) != self.order + 1: __lowercase = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) if len(__lowerCamelCase ) != self.order + 1: __lowercase = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) __lowercase = a_coeffs __lowercase = b_coeffs def _snake_case ( self : Any , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __lowercase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __lowercase = self.input_history[:-1] __lowercase = self.output_history[:-1] __lowercase = sample __lowercase = result return result
702
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): model.train() __lowercase = model(_SCREAMING_SNAKE_CASE ) __lowercase = F.mse_loss(_SCREAMING_SNAKE_CASE , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): set_seed(4_2 ) __lowercase = RegressionModel() __lowercase = deepcopy(_SCREAMING_SNAKE_CASE ) __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) model.to(accelerator.device ) if sched: __lowercase = AdamW(params=model.parameters() , lr=1E-3 ) __lowercase = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) __lowercase = LambdaLR(_SCREAMING_SNAKE_CASE , lr_lambda=lambda _SCREAMING_SNAKE_CASE : epoch**0.6_5 ) # Make a copy of `model` if sched: __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test when on a single CPU or GPU that the context manager does nothing __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE ): # Test on distributed setup that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) # Use a single batch __lowercase , __lowercase = next(iter(_SCREAMING_SNAKE_CASE ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # Sync grads step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_SCREAMING_SNAKE_CASE ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) __lowercase = ddp_input[torch.randperm(len(_SCREAMING_SNAKE_CASE ) )] GradientState._reset_state() def snake_case_ ( _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ): __lowercase = Accelerator( split_batches=_SCREAMING_SNAKE_CASE , dispatch_batches=_SCREAMING_SNAKE_CASE , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = get_training_setup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iteration, batch in enumerate(_SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = batch.values() # Gather the distributed inputs and targs for the base model __lowercase , __lowercase = accelerator.gather((ddp_input, ddp_target) ) __lowercase , __lowercase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): step_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __lowercase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_SCREAMING_SNAKE_CASE )) if accelerator.num_processes > 1: check_model_parameters(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def snake_case_ ( ): __lowercase = Accelerator() __lowercase = RegressionDataset(length=8_0 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase = RegressionDataset(length=9_6 ) __lowercase = DataLoader(_SCREAMING_SNAKE_CASE , batch_size=1_6 ) __lowercase , __lowercase = accelerator.prepare(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if iteration < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_SCREAMING_SNAKE_CASE ): assert id(accelerator.gradient_state.active_dataloader ) == id(_SCREAMING_SNAKE_CASE ) if batch_num < len(_SCREAMING_SNAKE_CASE ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def snake_case_ ( ): __lowercase = Accelerator() __lowercase = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_SCREAMING_SNAKE_CASE ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _A ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Any , lowerCamelCase : List[str] , lowerCamelCase : List[str]=13 , lowerCamelCase : int=7 , lowerCamelCase : int=True , lowerCamelCase : List[str]=True , lowerCamelCase : str=False , lowerCamelCase : str=True , lowerCamelCase : Tuple=99 , lowerCamelCase : List[str]=32 , lowerCamelCase : Optional[int]=5 , lowerCamelCase : Union[str, Any]=4 , lowerCamelCase : int=37 , lowerCamelCase : Union[str, Any]="gelu" , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : Union[str, Any]=512 , lowerCamelCase : Optional[Any]=16 , lowerCamelCase : List[str]=2 , lowerCamelCase : int=0.02 , lowerCamelCase : str=3 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : Optional[int]=None , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : Any ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _snake_case ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = DistilBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() __lowercase = model(_lowercase , _lowercase ) __lowercase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Tuple , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = DistilBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() __lowercase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Any , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = DistilBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() __lowercase = model( _lowercase , attention_mask=_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Any , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = self.num_labels __lowercase = DistilBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() __lowercase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[int] , lowerCamelCase : List[Any] , lowerCamelCase : Dict , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Dict , lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = self.num_labels __lowercase = DistilBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() __lowercase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : List[Any] , lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = self.num_choices __lowercase = DistilBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _lowercase , attention_mask=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() ((__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase)) = config_and_inputs __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _snake_case : Optional[int] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case : List[Any] = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case : Optional[Any] = True _snake_case : List[str] = True _snake_case : Tuple = True _snake_case : Any = True def _snake_case ( self : Dict ): '''simple docstring''' __lowercase = DistilBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_lowercase , dim=37 ) def _snake_case ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowercase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowercase ) def _snake_case ( self : Any ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowercase ) def _snake_case ( self : int ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowercase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowercase ) def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowercase ) @slow def _snake_case ( self : Tuple ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DistilBertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @slow @require_torch_gpu def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __lowercase = True __lowercase = model_class(config=_lowercase ) __lowercase = self._prepare_for_class(_lowercase , _lowercase ) __lowercase = torch.jit.trace( _lowercase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , "traced_model.pt" ) ) __lowercase = torch.jit.load(os.path.join(_lowercase , "traced_model.pt" ) , map_location=_lowercase ) loaded(inputs_dict["input_ids"].to(_lowercase ) , inputs_dict["attention_mask"].to(_lowercase ) ) @require_torch class _A ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self : int ): '''simple docstring''' __lowercase = DistilBertModel.from_pretrained("distilbert-base-uncased" ) __lowercase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_lowercase , attention_mask=_lowercase )[0] __lowercase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowercase ) __lowercase = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) )
703
from ....utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : List[str] , lowerCamelCase : Any , lowerCamelCase : Dict=None , lowerCamelCase : Dict=2_048 ): '''simple docstring''' __lowercase = config.__dict__ __lowercase = modal_hidden_size if num_labels: __lowercase = num_labels
655
0