code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowercase_ = Mapping[str, np.ndarray] lowercase_ = Mapping[str, Any] # Is a nested dict. lowercase_ = 0.01 @dataclasses.dataclass(frozen=UpperCAmelCase ) class SCREAMING_SNAKE_CASE : _UpperCamelCase : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _UpperCamelCase : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _UpperCamelCase : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _UpperCamelCase : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _UpperCamelCase : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions _UpperCamelCase : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files _UpperCamelCase : Optional[str] = None # Templates used to generate this protein (prediction-only) _UpperCamelCase : Optional[Sequence[str]] = None # Chain corresponding to each parent _UpperCamelCase : Optional[Sequence[int]] = None def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Protein: lowercase__ = R'(\[[A-Z]+\]\n)' lowercase__ = [tag.strip() for tag in re.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0] lowercase__ = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) lowercase__ = ['N', 'CA', 'C'] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(_SCREAMING_SNAKE_CASE ) ): if seq[i] not in residue_constants.restypes: lowercase__ = 'X' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(_SCREAMING_SNAKE_CASE , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(_SCREAMING_SNAKE_CASE , g[1][axis].split() ) ) ) lowercase__ = np.array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(_SCREAMING_SNAKE_CASE ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_SCREAMING_SNAKE_CASE , atom_mask=_SCREAMING_SNAKE_CASE , aatype=_SCREAMING_SNAKE_CASE , residue_index=np.arange(len(_SCREAMING_SNAKE_CASE ) ) , b_factors=_SCREAMING_SNAKE_CASE , ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ) -> List[str]: lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i == chain_id] if parents is None or len(_SCREAMING_SNAKE_CASE ) == 0: lowercase__ = ['N/A'] pdb_headers.append(F"""PARENT {" ".join(_SCREAMING_SNAKE_CASE )}""" ) return pdb_headers def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ = [] lowercase__ = pdb_str.split('\n' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_SCREAMING_SNAKE_CASE ) , [] ) parent_dict[str(_SCREAMING_SNAKE_CASE )].append(_SCREAMING_SNAKE_CASE ) lowercase__ = max([int(_SCREAMING_SNAKE_CASE ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(_SCREAMING_SNAKE_CASE ) , ['N/A'] ) parents_per_chain.append(_SCREAMING_SNAKE_CASE ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['N/A']] def make_parent_line(_SCREAMING_SNAKE_CASE ) -> str: return F"""PARENT {" ".join(_SCREAMING_SNAKE_CASE )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(_SCREAMING_SNAKE_CASE ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_SCREAMING_SNAKE_CASE ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_SCREAMING_SNAKE_CASE ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['N/A'] out_pdb_lines.append(make_parent_line(_SCREAMING_SNAKE_CASE ) ) return "\n".join(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = residue_constants.restypes + ['X'] def res_atoa(_SCREAMING_SNAKE_CASE ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) lowercase__ = get_pdb_headers(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: pdb_lines.extend(_SCREAMING_SNAKE_CASE ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(_SCREAMING_SNAKE_CASE ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_SCREAMING_SNAKE_CASE , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = 'ATOM' lowercase__ = atom_name if len(_SCREAMING_SNAKE_CASE ) == 4 else F""" {atom_name}""" lowercase__ = '' lowercase__ = '' lowercase__ = 1.0_0 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '' lowercase__ = 'A' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = 'TER' lowercase__ = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Protein: return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=_SCREAMING_SNAKE_CASE , remark=_SCREAMING_SNAKE_CASE , parents=_SCREAMING_SNAKE_CASE , parents_chain_index=_SCREAMING_SNAKE_CASE , )
705
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase_ = False class SCREAMING_SNAKE_CASE (unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) lowercase__ = VersatileDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = generator.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = 'cyberpunk 2077' lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt=a , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = 'A painting of a squirrel eating a burger ' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.text_to_image( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = pipe.image_variation(a , generator=a , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
45
0
from __future__ import annotations import time import numpy as np lowercase_ = [8, 5, 9, 7] lowercase_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowercase_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class SCREAMING_SNAKE_CASE : def __init__( self : Dict , a : list[int] , a : list[list[int]] , a : list[list[int]] , )-> None: """simple docstring""" lowercase__ = claim_vector lowercase__ = allocated_resources_table lowercase__ = maximum_claim_table def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def SCREAMING_SNAKE_CASE_ ( self : str )-> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def SCREAMING_SNAKE_CASE_ ( self : Dict )-> dict[int, list[int]]: """simple docstring""" return {self.__need().index(a ): i for i in self.__need()} def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , **a : List[str] )-> None: """simple docstring""" lowercase__ = self.__need() lowercase__ = self.__allocated_resources_table lowercase__ = self.__available_resources() lowercase__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: lowercase__ = False for each_need in need_list: lowercase__ = True for index, need in enumerate(a ): if need > available_resources[index]: lowercase__ = False break if execution: lowercase__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowercase__ = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(a ) # update available/freed resources stack lowercase__ = np.array(a ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(a ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[int]: """simple docstring""" print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(a ) + 1}""" + ' '.join(f"""{it:>8}""" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(a ) + 1}""" + ' '.join(f"""{it:>8}""" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(a ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
706
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_SCREAMING_SNAKE_CASE ) == 1: return True lowercase__ = series[1] - series[0] for index in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> float: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) lowercase__ = 0 for val in series: answer += val return answer / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
45
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: # Initialise PyTorch model lowercase__ = FunnelConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__ = FunnelBaseModel(_SCREAMING_SNAKE_CASE ) if base_model else FunnelModel(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) lowercase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
707
from __future__ import annotations import math from collections.abc import Callable def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 100 , ) -> float: lowercase__ = x_start lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) lowercase__ = 0.0 for _ in range(_SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ = (x_end - x_start) / steps + xa lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ = xa lowercase__ = fxa return length if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowercase_ = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
45
0
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCamelCase () -> Optional[int]: lowercase__ = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) lowercase__ = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) DownloadCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) RunCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) ServeCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) UserCommands.register_subcommand(_SCREAMING_SNAKE_CASE ) AddNewModelCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) AddNewModelLikeCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) LfsCommands.register_subcommand(_SCREAMING_SNAKE_CASE ) PTtoTFCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Let's go lowercase__ = parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run lowercase__ = args.func(_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
from math import sqrt def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 10001 ) -> int: lowercase__ = 0 lowercase__ = 1 while count != nth and number < 3: number += 1 if is_prime(_SCREAMING_SNAKE_CASE ): count += 1 while count != nth: number += 2 if is_prime(_SCREAMING_SNAKE_CASE ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
709
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
45
0
from math import sqrt def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 1000000 ) -> int: lowercase__ = 0 lowercase__ = 0 lowercase__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_SCREAMING_SNAKE_CASE , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
710
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Optional[Any] , a : UNetaDModel , a : UNetaDModel , a : DDPMScheduler , a : Any , )-> Dict: """simple docstring""" super().__init__() lowercase__ = value_function lowercase__ = unet lowercase__ = scheduler lowercase__ = env lowercase__ = env.get_dataset() lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].mean() except: # noqa: E722 pass lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].std() except: # noqa: E722 pass lowercase__ = env.observation_space.shape[0] lowercase__ = env.action_space.shape[0] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Any , a : int )-> Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : List[str] )-> str: """simple docstring""" return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Tuple )-> Tuple: """simple docstring""" if type(a ) is dict: return {k: self.to_torch(a ) for k, v in x_in.items()} elif torch.is_tensor(a ): return x_in.to(self.unet.device ) return torch.tensor(a , device=self.unet.device ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[int] , a : Dict , a : Optional[Any] )-> List[Any]: """simple docstring""" for key, val in cond.items(): lowercase__ = val.clone() return x_in def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[Any] , a : Any , a : Optional[Any] , a : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = x.shape[0] lowercase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ = torch.full((batch_size,) , a , device=self.unet.device , dtype=torch.long ) for _ in range(a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ = self.value_function(x.permute(0 , 2 , 1 ) , a ).sample lowercase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowercase__ = self.scheduler._get_variance(a ) lowercase__ = torch.exp(0.5 * posterior_variance ) lowercase__ = model_std * grad lowercase__ = 0 lowercase__ = x.detach() lowercase__ = x + scale * grad lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.unet(x.permute(0 , 2 , 1 ) , a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase__ = self.scheduler.step(a , a , a , predict_epsilon=a )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) return x, y def __call__( self : Any , a : Tuple , a : int=64 , a : Tuple=32 , a : List[Any]=2 , a : List[str]=0.1 )-> List[Any]: """simple docstring""" lowercase__ = self.normalize(a , 'observations' ) lowercase__ = obs[None].repeat(a , axis=0 ) lowercase__ = {0: self.to_torch(a )} lowercase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ = randn_tensor(a , device=self.unet.device ) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) # run the diffusion process lowercase__ , lowercase__ = self.run_diffusion(a , a , a , a ) # sort output trajectories by value lowercase__ = y.argsort(0 , descending=a ).squeeze() lowercase__ = x[sorted_idx] lowercase__ = sorted_values[:, :, : self.action_dim] lowercase__ = actions.detach().cpu().numpy() lowercase__ = self.de_normalize(a , key='actions' ) # select the action with the highest value if y is not None: lowercase__ = 0 else: # if we didn't run value guiding, select a random action lowercase__ = np.random.randint(0 , a ) lowercase__ = denorm_actions[selected_index, 0] return denorm_actions
45
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = 'vit_msn' def __init__( self : Union[str, Any] , a : List[Any]=768 , a : Optional[Any]=12 , a : Optional[int]=12 , a : str=3_072 , a : Tuple="gelu" , a : Dict=0.0 , a : Dict=0.0 , a : Optional[Any]=0.02 , a : Any=1E-0_6 , a : List[Any]=224 , a : Union[str, Any]=16 , a : Tuple=3 , a : List[Any]=True , **a : Any , )-> Tuple: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias
711
from PIL import Image def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Image: def brightness(_SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
45
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowercase_ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: for attribute in key.split('.' ): lowercase__ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase__ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor lowercase__ = hf_model.adapter for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(_SCREAMING_SNAKE_CASE )[0].split('.' )[-2] lowercase__ = mapped_key.replace('*' , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase__ = 'weight_g' elif "weight_v" in name: lowercase__ = 'weight_v' elif "bias" in name: lowercase__ = 'bias' elif "weight" in name: lowercase__ = 'weight' else: lowercase__ = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = full_name.split('conv_layers.' )[-1] lowercase__ = name.split('.' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: lowercase__ = full_name.split('adaptor.' )[-1] lowercase__ = name.split('.' ) if items[1].isdigit(): lowercase__ = int(items[1] ) else: lowercase__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" lowercase__ = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" lowercase__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" lowercase__ = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" lowercase__ = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" lowercase__ = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" lowercase__ = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: lowercase__ = WavaVecaConfig.from_pretrained( _SCREAMING_SNAKE_CASE , add_adapter=_SCREAMING_SNAKE_CASE , adapter_stride=_SCREAMING_SNAKE_CASE , adapter_kernel_size=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , output_hidden_size=_SCREAMING_SNAKE_CASE , ) lowercase__ = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) # load model lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) lowercase__ = model[0].eval() # load feature extractor lowercase__ = WavaVecaFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(_SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder , _SCREAMING_SNAKE_CASE ) # load decoder weights lowercase__ = MBartForCausalLM(_SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_SCREAMING_SNAKE_CASE ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowercase__ = SpeechEncoderDecoderModel(encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE ) lowercase__ = False lowercase__ = MBartaaTokenizer(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = 'mbart50' lowercase__ = 'wav2vec2' lowercase__ = tokenizer.eos_token_id lowercase__ = 250004 lowercase__ = tokenizer.eos_token_id lowercase__ = SpeechEncoderDecoderConfig.from_dict(_SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(_SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1_024, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=250_004, type=int, help="""`decoder_start_token_id` of model config""") lowercase_ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
712
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : Any , a : str , a : List[Any]=7 , a : int=3 , a : int=18 , a : Optional[Any]=30 , a : Optional[int]=400 , a : int=True , a : Tuple=None , a : Optional[Any]=True , a : str=False , a : str=True , a : int=True , a : Tuple=[0.5, 0.5, 0.5] , a : Any=[0.5, 0.5, 0.5] , )-> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {'height': 18, 'width': 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : int )-> List[Any]: """simple docstring""" lowercase__ = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_thumbnail' ) ) self.assertTrue(hasattr(a , 'do_align_long_axis' ) ) self.assertTrue(hasattr(a , 'do_pad' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
45
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
713
import math def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_SCREAMING_SNAKE_CASE ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase_ = """Enter the base and the power separated by a comma: """ lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. lowercase_ = res(xa, ya) lowercase_ = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
45
0
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: try: lowercase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ = default else: # KEY is set, convert it to True or False. try: lowercase__ = strtobool(_SCREAMING_SNAKE_CASE ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value lowercase_ = parse_flag_from_env("""RUN_SLOW""", default=False) lowercase_ = parse_flag_from_env("""RUN_REMOTE""", default=False) lowercase_ = parse_flag_from_env("""RUN_LOCAL""", default=True) lowercase_ = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression lowercase_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") lowercase_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") lowercase_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio lowercase_ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam lowercase_ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility lowercase_ = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows lowercase_ = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: try: import faiss # noqa except ImportError: lowercase__ = unittest.skip('test requires faiss' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: try: import regex # noqa except ImportError: lowercase__ = unittest.skip('test requires regex' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: try: import elasticsearch # noqa except ImportError: lowercase__ = unittest.skip('test requires elasticsearch' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: try: import sqlalchemy # noqa except ImportError: lowercase__ = unittest.skip('test requires sqlalchemy' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[int]: if not config.TORCH_AVAILABLE: lowercase__ = unittest.skip('test requires PyTorch' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: if not config.TF_AVAILABLE: lowercase__ = unittest.skip('test requires TensorFlow' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[int]: if not config.JAX_AVAILABLE: lowercase__ = unittest.skip('test requires JAX' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: if not config.PIL_AVAILABLE: lowercase__ = unittest.skip('test requires Pillow' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(_SCREAMING_SNAKE_CASE ) else: return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(_SCREAMING_SNAKE_CASE ) else: return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(_SCREAMING_SNAKE_CASE ) else: return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: def _require_spacy_model(_SCREAMING_SNAKE_CASE ): try: import spacy # noqa F401 spacy.load(_SCREAMING_SNAKE_CASE ) except ImportError: return unittest.skip('test requires spacy' )(_SCREAMING_SNAKE_CASE ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(_SCREAMING_SNAKE_CASE ) )(_SCREAMING_SNAKE_CASE ) else: return test_case return _require_spacy_model def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(_SCREAMING_SNAKE_CASE ) else: return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(_SCREAMING_SNAKE_CASE ) else: return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: if not _run_slow_tests or _run_slow_tests == 0: lowercase__ = unittest.skip('test is slow' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: if not _run_local_tests or _run_local_tests == 0: lowercase__ = unittest.skip('test is local' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if not _run_packaged_tests or _run_packaged_tests == 0: lowercase__ = unittest.skip('test is packaged' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[int]: if not _run_remote_tests or _run_remote_tests == 0: lowercase__ = unittest.skip('test requires remote' )(_SCREAMING_SNAKE_CASE ) return test_case def __UpperCamelCase (*_SCREAMING_SNAKE_CASE ) -> Tuple: def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_SCREAMING_SNAKE_CASE ) and name.startswith('test' ): for decorator in decorators: lowercase__ = decorator(_SCREAMING_SNAKE_CASE ) setattr(cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return cls return decorate class SCREAMING_SNAKE_CASE (UpperCAmelCase ): pass class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Any = 1 _UpperCamelCase : Optional[Any] = 2 @contextmanager def __UpperCamelCase (_SCREAMING_SNAKE_CASE=OfflineSimulationMode.CONNECTION_FAILS , _SCREAMING_SNAKE_CASE=1E-16 ) -> Tuple: lowercase__ = requests.Session().request def timeout_request(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # Change the url to an invalid url so that the connection hangs lowercase__ = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) lowercase__ = timeout try: return online_request(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowercase__ = url lowercase__ = e.args[0] lowercase__ = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) lowercase__ = (max_retry_error,) raise def raise_connection_error(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): raise requests.ConnectionError('Offline mode is enabled.' , request=_SCREAMING_SNAKE_CASE ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , _SCREAMING_SNAKE_CASE ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , _SCREAMING_SNAKE_CASE ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , _SCREAMING_SNAKE_CASE ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def __UpperCamelCase (*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) as tmp_dir: try: os.chdir(_SCREAMING_SNAKE_CASE ) yield finally: os.chdir(_SCREAMING_SNAKE_CASE ) @contextmanager def __UpperCamelCase () -> str: import gc gc.collect() lowercase__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __UpperCamelCase () -> Tuple: import gc gc.collect() lowercase__ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: return deepcopy(_SCREAMING_SNAKE_CASE ).integers(0 , 100 , 10 ).tolist() == deepcopy(_SCREAMING_SNAKE_CASE ).integers(0 , 100 , 10 ).tolist() def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: import decorator from requests.exceptions import HTTPError def _wrapper(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): try: return func(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) except HTTPError as err: if str(_SCREAMING_SNAKE_CASE ).startswith('500' ) or str(_SCREAMING_SNAKE_CASE ).startswith('502' ): pytest.xfail(str(_SCREAMING_SNAKE_CASE ) ) raise err return decorator.decorator(_wrapper , _SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE : def __init__( self : List[str] , a : List[Any] , a : Any , a : Optional[int] )-> List[str]: """simple docstring""" lowercase__ = returncode lowercase__ = stdout lowercase__ = stderr async def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: while True: lowercase__ = await stream.readline() if line: callback(_SCREAMING_SNAKE_CASE ) else: break async def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> _RunOutput: if echo: print('\nRunning: ' , ' '.join(_SCREAMING_SNAKE_CASE ) ) lowercase__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_SCREAMING_SNAKE_CASE , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ = [] lowercase__ = [] def tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" ): lowercase__ = line.decode('utf-8' ).rstrip() sink.append(_SCREAMING_SNAKE_CASE ) if not quiet: print(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , file=_SCREAMING_SNAKE_CASE ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _SCREAMING_SNAKE_CASE : tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda _SCREAMING_SNAKE_CASE : tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sys.stderr , label='stderr:' ) ), ] , timeout=_SCREAMING_SNAKE_CASE , ) return _RunOutput(await p.wait() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=180 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True ) -> _RunOutput: lowercase__ = asyncio.get_event_loop() lowercase__ = loop.run_until_complete( _stream_subprocess(_SCREAMING_SNAKE_CASE , env=_SCREAMING_SNAKE_CASE , stdin=_SCREAMING_SNAKE_CASE , timeout=_SCREAMING_SNAKE_CASE , quiet=_SCREAMING_SNAKE_CASE , echo=_SCREAMING_SNAKE_CASE ) ) lowercase__ = ' '.join(_SCREAMING_SNAKE_CASE ) if result.returncode > 0: lowercase__ = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def __UpperCamelCase () -> List[str]: lowercase__ = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) lowercase__ = re.sub(R'^gw' , '' , _SCREAMING_SNAKE_CASE , 0 , re.M ) return int(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase () -> Optional[int]: lowercase__ = 29500 lowercase__ = pytest_xdist_worker_id() return port + uniq_delta
714
class SCREAMING_SNAKE_CASE : # Public class to implement a graph def __init__( self : int , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = row lowercase__ = col lowercase__ = graph def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int , a : list[list[bool]] )-> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: # And finally, count all islands. """simple docstring""" lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(a , a , a ) count += 1 return count
45
0
from __future__ import annotations from PIL import Image # Define glider example lowercase_ = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example lowercase_ = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> list[list[int]]: lowercase__ = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowercase__ = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_SCREAMING_SNAKE_CASE ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_SCREAMING_SNAKE_CASE ) - 1: neighbour_count += cells[i + 1][j] if i < len(_SCREAMING_SNAKE_CASE ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowercase__ = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_SCREAMING_SNAKE_CASE ) return next_generation def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[Image.Image]: lowercase__ = [] for _ in range(_SCREAMING_SNAKE_CASE ): # Create output image lowercase__ = Image.new('RGB' , (len(cells[0] ), len(_SCREAMING_SNAKE_CASE )) ) lowercase__ = img.load() # Save cells to image for x in range(len(_SCREAMING_SNAKE_CASE ) ): for y in range(len(cells[0] ) ): lowercase__ = 255 - cells[y][x] * 255 lowercase__ = (colour, colour, colour) # Save image images.append(_SCREAMING_SNAKE_CASE ) lowercase__ = new_generation(_SCREAMING_SNAKE_CASE ) return images if __name__ == "__main__": lowercase_ = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
715
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ = '' lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: lowercase__ = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __UpperCamelCase (_SCREAMING_SNAKE_CASE = "" ) -> dict[str, float]: lowercase__ = url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' lowercase__ = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE ).text , 'html.parser' ) lowercase__ = soup.find_all('td' , attrs='titleColumn' ) lowercase__ = soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) } def __UpperCamelCase (_SCREAMING_SNAKE_CASE = "IMDb_Top_250_Movies.csv" ) -> None: lowercase__ = get_imdb_top_aaa_movies() with open(_SCREAMING_SNAKE_CASE , 'w' , newline='' ) as out_file: lowercase__ = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
716
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a : Any , a : Optional[int]=13 , a : Tuple=30 , a : Union[str, Any]=2 , a : List[str]=3 , a : Dict=True , a : List[str]=True , a : List[Any]=32 , a : List[str]=5 , a : Optional[int]=4 , a : List[str]=37 , a : Dict="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : int=10 , a : List[str]=0.02 , a : int=None , a : List[str]=2 , )-> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[Any] , a : List[str] , a : Dict )-> Optional[Any]: """simple docstring""" lowercase__ = ViTModel(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] , a : int , a : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForMaskedImageModeling(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForMaskedImageModeling(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[str] , a : int , a : List[Any] )-> str: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : int = True _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = ViTModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def __UpperCamelCase () -> str: lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(a ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ = model(**a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int )-> List[str]: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' ).to(a ) lowercase__ = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass with torch.no_grad(): lowercase__ = model(a , interpolate_pos_encoding=a ) # verify the logits lowercase__ = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a ) lowercase__ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase__ = model(a )
45
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowercase_ = TypeVar("""T""") def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return (position - 1) // 2 def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return (2 * position) + 1 def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return (2 * position) + 2 class SCREAMING_SNAKE_CASE (Generic[T] ): def __init__( self : Optional[Any] )-> None: """simple docstring""" lowercase__ = [] lowercase__ = {} lowercase__ = 0 def __len__( self : List[Any] )-> int: """simple docstring""" return self.elements def __repr__( self : str )-> str: """simple docstring""" return str(self.heap ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> bool: """simple docstring""" return self.elements == 0 def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : T , a : int )-> None: """simple docstring""" self.heap.append((elem, weight) ) lowercase__ = self.elements self.elements += 1 self._bubble_up(a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowercase__ , lowercase__ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowercase__ , lowercase__ = self.heap[0] self._bubble_down(a ) return elem def SCREAMING_SNAKE_CASE_ ( self : Any , a : T , a : int )-> None: """simple docstring""" lowercase__ = self.position_map[elem] lowercase__ = (elem, weight) if position > 0: lowercase__ = get_parent_position(a ) lowercase__ , lowercase__ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(a ) else: self._bubble_down(a ) else: self._bubble_down(a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : T )-> None: """simple docstring""" lowercase__ = self.position_map[elem] if curr_pos == 0: return None lowercase__ = get_parent_position(a ) lowercase__ , lowercase__ = self.heap[curr_pos] lowercase__ , lowercase__ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(a , a ) return self._bubble_up(a ) return None def SCREAMING_SNAKE_CASE_ ( self : str , a : T )-> None: """simple docstring""" lowercase__ = self.position_map[elem] lowercase__ , lowercase__ = self.heap[curr_pos] lowercase__ = get_child_left_position(a ) lowercase__ = get_child_right_position(a ) if child_left_position < self.elements and child_right_position < self.elements: lowercase__ , lowercase__ = self.heap[child_left_position] lowercase__ , lowercase__ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(a , a ) return self._bubble_down(a ) if child_left_position < self.elements: lowercase__ , lowercase__ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(a , a ) return self._bubble_down(a ) else: return None if child_right_position < self.elements: lowercase__ , lowercase__ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(a , a ) return self._bubble_down(a ) return None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : int , a : int )-> None: """simple docstring""" lowercase__ = self.heap[nodea_pos][0] lowercase__ = self.heap[nodea_pos][0] lowercase__ , lowercase__ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowercase__ = nodea_pos lowercase__ = nodea_pos class SCREAMING_SNAKE_CASE (Generic[T] ): def __init__( self : Union[str, Any] )-> None: """simple docstring""" lowercase__ = {} lowercase__ = 0 def __repr__( self : Dict )-> str: """simple docstring""" return str(self.connections ) def __len__( self : Tuple )-> int: """simple docstring""" return self.nodes def SCREAMING_SNAKE_CASE_ ( self : Any , a : T )-> None: """simple docstring""" if node not in self.connections: lowercase__ = {} self.nodes += 1 def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : T , a : T , a : int )-> None: """simple docstring""" self.add_node(a ) self.add_node(a ) lowercase__ = weight lowercase__ = weight def __UpperCamelCase (_SCREAMING_SNAKE_CASE , ) -> tuple[dict[T, int], dict[T, T | None]]: lowercase__ = {node: maxsize for node in graph.connections} lowercase__ = {node: None for node in graph.connections} lowercase__ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization lowercase__ = priority_queue.extract_min() lowercase__ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) lowercase__ = node # running prim's algorithm while not priority_queue.is_empty(): lowercase__ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) lowercase__ = node return dist, parent
717
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: stooge(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return arr def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase__ , lowercase__ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase__ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(_SCREAMING_SNAKE_CASE , i + t , (_SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
45
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
718
from scipy.stats import spearmanr import datasets lowercase_ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowercase_ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowercase_ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Any , a : str=False )-> Optional[int]: """simple docstring""" lowercase__ = spearmanr(a , a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
45
0
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(_SCREAMING_SNAKE_CASE )] ) lowercase__ = np.array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , _SCREAMING_SNAKE_CASE ) ) , x.transpose() ) , _SCREAMING_SNAKE_CASE ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( _SCREAMING_SNAKE_CASE , exog=_SCREAMING_SNAKE_CASE , order=_SCREAMING_SNAKE_CASE , seasonal_order=_SCREAMING_SNAKE_CASE ) lowercase__ = model.fit(disp=_SCREAMING_SNAKE_CASE , maxiter=600 , method='nm' ) lowercase__ = model_fit.predict(1 , len(_SCREAMING_SNAKE_CASE ) , exog=[test_match] ) return result[0] def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: lowercase__ = SVR(kernel='rbf' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = regressor.predict(_SCREAMING_SNAKE_CASE ) return y_pred[0] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> float: train_user.sort() lowercase__ = np.percentile(_SCREAMING_SNAKE_CASE , 25 ) lowercase__ = np.percentile(_SCREAMING_SNAKE_CASE , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(_SCREAMING_SNAKE_CASE ) - abs(_SCREAMING_SNAKE_CASE ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase_ = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] lowercase_ = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) lowercase_ = Normalizer().fit_transform(data_input_df.values) # split data lowercase_ = normalize_df[:, 2].tolist() lowercase_ = normalize_df[:, 0].tolist() lowercase_ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase_ = normalize_df[:, [1, 2]].tolist() lowercase_ = x[: len(x) - 1] lowercase_ = x[len(x) - 1 :] # for linear regression & sarimax lowercase_ = total_date[: len(total_date) - 1] lowercase_ = total_user[: len(total_user) - 1] lowercase_ = total_match[: len(total_match) - 1] lowercase_ = total_date[len(total_date) - 1 :] lowercase_ = total_user[len(total_user) - 1 :] lowercase_ = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase_ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase_ = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
720
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowercase_ = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = EfficientNetConfig() lowercase__ = CONFIG_MAP[model_name]['hidden_dim'] lowercase__ = CONFIG_MAP[model_name]['width_coef'] lowercase__ = CONFIG_MAP[model_name]['depth_coef'] lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = CONFIG_MAP[model_name]['dropout_rate'] lowercase__ = CONFIG_MAP[model_name]['dw_padding'] lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 1000 lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> Tuple: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase__ = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} lowercase__ = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase__ = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase__ = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ = 'efficientnet.' + item[1] lowercase__ = 'classifier.weight' lowercase__ = 'classifier.bias' return key_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation='softmax' , ) lowercase__ = original_model.trainable_variables lowercase__ = original_model.non_trainable_variables lowercase__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ = param.numpy() lowercase__ = list(tf_params.keys() ) # Load HuggingFace model lowercase__ = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowercase__ = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowercase__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase__ = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowercase__ = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowercase__ = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ = hf_model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.detach().numpy() # Original model inference lowercase__ = False lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowercase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
45
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: lowercase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: for i in range(config.num_hidden_layers ): if base_model: lowercase__ = '' else: lowercase__ = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowercase__ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = dct.pop(_SCREAMING_SNAKE_CASE ) lowercase__ = val def __UpperCamelCase () -> str: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: lowercase__ = ViTConfig() lowercase__ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowercase__ = True lowercase__ = int(vit_name[-12:-10] ) lowercase__ = int(vit_name[-9:-6] ) else: lowercase__ = 1000 lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = int(vit_name[-6:-4] ) lowercase__ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): lowercase__ = 192 lowercase__ = 768 lowercase__ = 12 lowercase__ = 3 elif vit_name[9:].startswith('small' ): lowercase__ = 384 lowercase__ = 1536 lowercase__ = 12 lowercase__ = 6 else: pass else: if vit_name[4:].startswith('small' ): lowercase__ = 768 lowercase__ = 2304 lowercase__ = 8 lowercase__ = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): lowercase__ = 1024 lowercase__ = 4096 lowercase__ = 24 lowercase__ = 16 elif vit_name[4:].startswith('huge' ): lowercase__ = 1280 lowercase__ = 5120 lowercase__ = 32 lowercase__ = 16 # load original model from timm lowercase__ = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__ = timm_model.state_dict() if base_model: remove_classification_head_(_SCREAMING_SNAKE_CASE ) lowercase__ = create_rename_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model if vit_name[-5:] == "in21k": lowercase__ = ViTModel(_SCREAMING_SNAKE_CASE ).eval() else: lowercase__ = ViTForImageClassification(_SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowercase__ = DeiTImageProcessor(size=config.image_size ) else: lowercase__ = ViTImageProcessor(size=config.image_size ) lowercase__ = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase__ = encoding['pixel_values'] lowercase__ = model(_SCREAMING_SNAKE_CASE ) if base_model: lowercase__ = timm_model.forward_features(_SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1E-3 ) else: lowercase__ = timm_model(_SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
721
import argparse import json import subprocess def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = [] lowercase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowercase__ = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode('utf-8' ) lowercase__ = json.loads(_SCREAMING_SNAKE_CASE ) lowercase__ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return values.split(',' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
45
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Tuple = BertTokenizer _UpperCamelCase : Tuple = BertTokenizerFast _UpperCamelCase : Dict = True _UpperCamelCase : List[Any] = True _UpperCamelCase : List[Any] = filter_non_english def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Union[str, Any]: """simple docstring""" super().setUp() lowercase__ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE_ ( self : str , a : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = 'UNwant\u00E9d,running' lowercase__ = 'unwanted, running' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer_class(self.vocab_file ) lowercase__ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(a , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'UNwant\u00E9d,running' lowercase__ = tokenizer.tokenize(a ) lowercase__ = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowercase__ = tokenizer.encode(a , add_special_tokens=a ) lowercase__ = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(a ) lowercase__ = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) # With lower casing lowercase__ = self.get_tokenizer(do_lower_case=a ) lowercase__ = self.get_rust_tokenizer(do_lower_case=a ) lowercase__ = 'UNwant\u00E9d,running' lowercase__ = tokenizer.tokenize(a ) lowercase__ = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowercase__ = tokenizer.encode(a , add_special_tokens=a ) lowercase__ = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(a ) lowercase__ = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[int]: """simple docstring""" lowercase__ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Union[str, Any]: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[Any]: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Tuple: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[Any]: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> List[str]: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Dict: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=a , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[Any]: """simple docstring""" lowercase__ = BasicTokenizer() lowercase__ = 'a\n\'ll !!to?\'d of, can\'t.' lowercase__ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(a ) , a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" lowercase__ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowercase__ = {} for i, token in enumerate(a ): lowercase__ = i lowercase__ = WordpieceTokenizer(vocab=a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Dict: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Union[str, Any]: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(a ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Optional[Any]: """simple docstring""" lowercase__ = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowercase__ = tokenizer.encode('sequence builders' , add_special_tokens=a ) lowercase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=a ) lowercase__ = tokenizer.build_inputs_with_special_tokens(a ) lowercase__ = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ = self.rust_tokenizer_class.from_pretrained(a , **a ) lowercase__ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowercase__ = tokenizer_r.encode_plus( a , return_attention_mask=a , return_token_type_ids=a , return_offsets_mapping=a , add_special_tokens=a , ) lowercase__ = tokenizer_r.do_lower_case if hasattr(a , 'do_lower_case' ) else False lowercase__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Dict: """simple docstring""" lowercase__ = ['的', '人', '有'] lowercase__ = ''.join(a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ = True lowercase__ = self.tokenizer_class.from_pretrained(a , **a ) lowercase__ = self.rust_tokenizer_class.from_pretrained(a , **a ) lowercase__ = tokenizer_p.encode(a , add_special_tokens=a ) lowercase__ = tokenizer_r.encode(a , add_special_tokens=a ) lowercase__ = tokenizer_r.convert_ids_to_tokens(a ) lowercase__ = tokenizer_p.convert_ids_to_tokens(a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a , a ) self.assertListEqual(a , a ) lowercase__ = False lowercase__ = self.rust_tokenizer_class.from_pretrained(a , **a ) lowercase__ = self.tokenizer_class.from_pretrained(a , **a ) lowercase__ = tokenizer_r.encode(a , add_special_tokens=a ) lowercase__ = tokenizer_p.encode(a , add_special_tokens=a ) lowercase__ = tokenizer_r.convert_ids_to_tokens(a ) lowercase__ = tokenizer_p.convert_ids_to_tokens(a ) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(a ) ] self.assertListEqual(a , a ) self.assertListEqual(a , a )
700
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Tuple = 'ClapFeatureExtractor' _UpperCamelCase : Union[str, Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : List[Any] , a : int , a : str )-> Any: """simple docstring""" super().__init__(a , a ) def __call__( self : Any , a : Tuple=None , a : Optional[int]=None , a : int=None , **a : Optional[int] )-> Union[str, Any]: """simple docstring""" lowercase__ = kwargs.pop('sampling_rate' , a ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: lowercase__ = self.tokenizer(a , return_tensors=a , **a ) if audios is not None: lowercase__ = self.feature_extractor( a , sampling_rate=a , return_tensors=a , **a ) if text is not None and audios is not None: lowercase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def SCREAMING_SNAKE_CASE_ ( self : str , *a : Dict , **a : int )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , *a : int , **a : Dict )-> Dict: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
45
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'efficientformer' def __init__( self : Any , a : List[int] = [3, 2, 6, 4] , a : List[int] = [48, 96, 224, 448] , a : List[bool] = [True, True, True, True] , a : int = 448 , a : int = 32 , a : int = 4 , a : int = 7 , a : int = 5 , a : int = 8 , a : int = 4 , a : float = 0.0 , a : int = 16 , a : int = 3 , a : int = 3 , a : int = 3 , a : int = 2 , a : int = 1 , a : float = 0.0 , a : int = 1 , a : bool = True , a : bool = True , a : float = 1E-5 , a : str = "gelu" , a : float = 0.02 , a : float = 1E-1_2 , a : int = 224 , a : float = 1E-0_5 , **a : Tuple , )-> None: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = hidden_sizes lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = patch_size lowercase__ = num_channels lowercase__ = depths lowercase__ = mlp_expansion_ratio lowercase__ = downsamples lowercase__ = dim lowercase__ = key_dim lowercase__ = attention_ratio lowercase__ = resolution lowercase__ = pool_size lowercase__ = downsample_patch_size lowercase__ = downsample_stride lowercase__ = downsample_pad lowercase__ = drop_path_rate lowercase__ = num_metaad_blocks lowercase__ = distillation lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = image_size lowercase__ = batch_norm_eps
701
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } lowercase_ = """▁""" class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] _UpperCamelCase : int = BarthezTokenizer def __init__( self : List[Any] , a : Union[str, Any]=None , a : Optional[Any]=None , a : Dict="<s>" , a : Union[str, Any]="</s>" , a : List[str]="</s>" , a : Optional[Any]="<s>" , a : int="<unk>" , a : str="<pad>" , a : Optional[int]="<mask>" , **a : Union[str, Any] , )-> Tuple: """simple docstring""" lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , **a , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
45
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = os.path.abspath(_SCREAMING_SNAKE_CASE ) logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model lowercase__ = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) lowercase__ = [] lowercase__ = [] lowercase__ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase__ = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(F"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' lowercase__ = name[1:] # figure out how many levels deep the name is lowercase__ = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(_SCREAMING_SNAKE_CASE ) # read data lowercase__ = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) names.append('/'.join(_SCREAMING_SNAKE_CASE ) ) arrays.append(_SCREAMING_SNAKE_CASE ) logger.info(F"""Read a total of {len(_SCREAMING_SNAKE_CASE ):,} layers""" ) # Sanity check if len(set(_SCREAMING_SNAKE_CASE ) ) != 1: raise ValueError(F"""Found layer names with different depths (layer depth {list(set(_SCREAMING_SNAKE_CASE ) )})""" ) lowercase__ = list(set(_SCREAMING_SNAKE_CASE ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = full_name.split('/' ) lowercase__ = model lowercase__ = [] for i, m_name in enumerate(_SCREAMING_SNAKE_CASE ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): lowercase__ = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'embeddings' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'encoder' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'layer' ) lowercase__ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'pooler' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'token_type_embeddings' ) else: raise ValueError(F"""Unknown embedding layer with name {full_name}""" ) trace.append('weight' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'attention' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'attention' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'output' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'attention' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'output' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'output' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'output' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'intermediate' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'weight' ) else: logger.warning(F"""Ignored {m_name}""" ) # for certain layers reshape is necessary lowercase__ = '.'.join(_SCREAMING_SNAKE_CASE ) if re.match(R'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , _SCREAMING_SNAKE_CASE ) or re.match( R'(\S+)\.attention\.output\.dense\.weight' , _SCREAMING_SNAKE_CASE ): lowercase__ = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase__ = array.transpose() if pointer.shape == array.shape: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) else: raise ValueError( F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" F""" {array.shape}""" ) logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: # Instantiate model logger.info(F"""Loading model based on config from {config_path}...""" ) lowercase__ = BertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) lowercase__ = BertModel(_SCREAMING_SNAKE_CASE ) # Load weights from checkpoint logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) lowercase_ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
702
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = StableDiffusionSAGPipeline _UpperCamelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(a ) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[int] , a : Any=0 )-> Union[str, Any]: """simple docstring""" if str(a ).startswith('mps' ): lowercase__ = torch.manual_seed(a ) else: lowercase__ = torch.Generator(device=a ).manual_seed(a ) lowercase__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) lowercase__ = output.images assert image.shape == (1, 512, 768, 3)
45
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowercase_ = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = EfficientNetConfig() lowercase__ = CONFIG_MAP[model_name]['hidden_dim'] lowercase__ = CONFIG_MAP[model_name]['width_coef'] lowercase__ = CONFIG_MAP[model_name]['depth_coef'] lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = CONFIG_MAP[model_name]['dropout_rate'] lowercase__ = CONFIG_MAP[model_name]['dw_padding'] lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 1000 lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> Tuple: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase__ = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} lowercase__ = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase__ = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase__ = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ = 'efficientnet.' + item[1] lowercase__ = 'classifier.weight' lowercase__ = 'classifier.bias' return key_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation='softmax' , ) lowercase__ = original_model.trainable_variables lowercase__ = original_model.non_trainable_variables lowercase__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ = param.numpy() lowercase__ = list(tf_params.keys() ) # Load HuggingFace model lowercase__ = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowercase__ = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowercase__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase__ = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowercase__ = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowercase__ = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ = hf_model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.detach().numpy() # Original model inference lowercase__ = False lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowercase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'deit' def __init__( self : Any , a : Union[str, Any]=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Optional[int]="gelu" , a : Optional[Any]=0.0 , a : List[Any]=0.0 , a : int=0.02 , a : List[str]=1E-1_2 , a : Optional[int]=224 , a : Tuple=16 , a : List[Any]=3 , a : List[str]=True , a : Any=16 , **a : Union[str, Any] , )-> int: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = encoder_stride class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> float: """simple docstring""" return 1E-4
45
0
import random from typing import Any def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> list[Any]: for _ in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) lowercase__ = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) lowercase__ , lowercase__ = data[b], data[a] return data if __name__ == "__main__": lowercase_ = [0, 1, 2, 3, 4, 5, 6, 7] lowercase_ = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
704
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ) -> List[Any]: lowercase__ = None if token is not None: lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase__ = '636036' lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run['id'] break return workflow_run_id def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): lowercase__ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read().decode('UTF-8' ) return results
45
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
705
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase_ = False class SCREAMING_SNAKE_CASE (unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) lowercase__ = VersatileDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = generator.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = 'cyberpunk 2077' lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt=a , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = 'A painting of a squirrel eating a burger ' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.text_to_image( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = pipe.image_variation(a , generator=a , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
45
0
import json import sys def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: lowercase__ = json.load(_SCREAMING_SNAKE_CASE ) lowercase__ = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(_SCREAMING_SNAKE_CASE ): lowercase__ = results[benchmark_name] lowercase__ = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) lowercase__ = '| metric |' lowercase__ = '|--------|' lowercase__ = '| new / old (diff) |' for metric_name in sorted(_SCREAMING_SNAKE_CASE ): lowercase__ = benchmark_res[metric_name] lowercase__ = metric_vals['new'] lowercase__ = metric_vals.get('old' , _SCREAMING_SNAKE_CASE ) lowercase__ = metric_vals.get('diff' , _SCREAMING_SNAKE_CASE ) lowercase__ = F""" {new_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(_SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": lowercase_ = sys.argv[1] lowercase_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
706
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_SCREAMING_SNAKE_CASE ) == 1: return True lowercase__ = series[1] - series[0] for index in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> float: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) lowercase__ = 0 for val in series: answer += val return answer / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
45
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[str] = (PNDMScheduler,) _UpperCamelCase : Optional[int] = (('num_inference_steps', 50),) def SCREAMING_SNAKE_CASE_ ( self : Any , **a : Any )-> Optional[Any]: """simple docstring""" lowercase__ = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**a ) return config def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[Any]=0 , **a : int )-> Union[str, Any]: """simple docstring""" lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('num_inference_steps' , a ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config(**a ) lowercase__ = scheduler_class(**a ) scheduler.set_timesteps(a ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a ) lowercase__ = scheduler_class.from_pretrained(a ) new_scheduler.set_timesteps(a ) # copy over dummy past residuals lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(a , a , a , **a ).prev_sample lowercase__ = new_scheduler.step_prk(a , a , a , **a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step_plms(a , a , a , **a ).prev_sample lowercase__ = new_scheduler.step_plms(a , a , a , **a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : str , a : List[Any]=0 , **a : List[Any] )-> str: """simple docstring""" lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('num_inference_steps' , a ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**a ) scheduler.set_timesteps(a ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a ) lowercase__ = scheduler_class.from_pretrained(a ) # copy over dummy past residuals new_scheduler.set_timesteps(a ) # copy over dummy past residual (must be after setting timesteps) lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(a , a , a , **a ).prev_sample lowercase__ = new_scheduler.step_prk(a , a , a , **a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowercase__ = scheduler.step_plms(a , a , a , **a ).prev_sample lowercase__ = new_scheduler.step_plms(a , a , a , **a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **a : Dict )-> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**a ) lowercase__ = scheduler_class(**a ) lowercase__ = 10 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(a ) for i, t in enumerate(scheduler.prk_timesteps ): lowercase__ = model(a , a ) lowercase__ = scheduler.step_prk(a , a , a ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowercase__ = model(a , a ) lowercase__ = scheduler.step_plms(a , a , a ).prev_sample return sample def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Tuple: """simple docstring""" lowercase__ = dict(self.forward_default_kwargs ) lowercase__ = kwargs.pop('num_inference_steps' , a ) for scheduler_class in self.scheduler_classes: lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**a ) lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample if num_inference_steps is not None and hasattr(a , 'set_timesteps' ): scheduler.set_timesteps(a ) elif num_inference_steps is not None and not hasattr(a , 'set_timesteps' ): lowercase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowercase__ = dummy_past_residuals[:] lowercase__ = scheduler.step_prk(a , 0 , a , **a ).prev_sample lowercase__ = scheduler.step_prk(a , 1 , a , **a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowercase__ = scheduler.step_plms(a , 0 , a , **a ).prev_sample lowercase__ = scheduler.step_plms(a , 1 , a , **a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[Any]: """simple docstring""" for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a ) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1 ) lowercase__ = scheduler_class(**a ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def SCREAMING_SNAKE_CASE_ ( self : int )-> List[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=a , beta_end=a ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Any: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=a ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Tuple: """simple docstring""" lowercase__ = 27 for scheduler_class in self.scheduler_classes: lowercase__ = self.dummy_sample lowercase__ = 0.1 * sample lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**a ) scheduler.set_timesteps(a ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowercase__ = scheduler.step_prk(a , a , a ).prev_sample def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[int]: """simple docstring""" with self.assertRaises(a ): lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**a ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(a ) ) lowercase__ = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction' ) lowercase__ = torch.sum(torch.abs(a ) ) lowercase__ = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Optional[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=a , beta_start=0.01 ) lowercase__ = torch.sum(torch.abs(a ) ) lowercase__ = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : Any )-> Union[str, Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=a , beta_start=0.01 ) lowercase__ = torch.sum(torch.abs(a ) ) lowercase__ = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
707
from __future__ import annotations import math from collections.abc import Callable def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 100 , ) -> float: lowercase__ = x_start lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) lowercase__ = 0.0 for _ in range(_SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ = (x_end - x_start) / steps + xa lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ = xa lowercase__ = fxa return length if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowercase_ = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
45
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: lowercase__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowercase__ = s_dict.pop(_SCREAMING_SNAKE_CASE ) elif "subsample" in key: lowercase__ = s_dict.pop(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) lowercase__ = mam_aaa['args'] lowercase__ = mam_aaa['model'] lowercase__ = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) rename_keys(_SCREAMING_SNAKE_CASE ) lowercase__ = state_dict['decoder.embed_tokens.weight'].shape[0] lowercase__ = args.share_decoder_input_output_embed lowercase__ = [int(_SCREAMING_SNAKE_CASE ) for i in args.conv_kernel_sizes.split(',' )] lowercase__ = SpeechaTextConfig( vocab_size=_SCREAMING_SNAKE_CASE , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(_SCREAMING_SNAKE_CASE ) , conv_channels=args.conv_channels , conv_kernel_sizes=_SCREAMING_SNAKE_CASE , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_SCREAMING_SNAKE_CASE , num_beams=5 , max_length=200 , use_cache=_SCREAMING_SNAKE_CASE , decoder_start_token_id=2 , early_stopping=_SCREAMING_SNAKE_CASE , ) lowercase__ = SpeechaTextForConditionalGeneration(_SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = model.model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0 and not set(_SCREAMING_SNAKE_CASE ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F""" but all the following weights are missing {missing}""" ) if tie_embeds: lowercase__ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase__ = lm_head_weights model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowercase_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
class SCREAMING_SNAKE_CASE : # Public class to implement a graph def __init__( self : int , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = row lowercase__ = col lowercase__ = graph def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int , a : list[list[bool]] )-> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: # And finally, count all islands. """simple docstring""" lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(a , a , a ) count += 1 return count
709
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
45
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class SCREAMING_SNAKE_CASE (unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , a : Dict , a : str=13 , a : List[str]=7 , a : int=True , a : Tuple=True , a : str=True , a : List[str]=True , a : str=99 , a : str=32 , a : Tuple=5 , a : Dict=4 , a : Optional[Any]=37 , a : Dict="gelu" , a : Optional[int]=0.1 , a : Any=0.1 , a : Dict=512 , a : Any=16 , a : Tuple=2 , a : Optional[Any]=0.02 , a : Any=4 , )-> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> int: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Tuple: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : str = True _UpperCamelCase : List[str] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" lowercase__ = FlaxRobertaModelTester(self ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('roberta-base' , from_pt=a ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(a )
710
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Optional[Any] , a : UNetaDModel , a : UNetaDModel , a : DDPMScheduler , a : Any , )-> Dict: """simple docstring""" super().__init__() lowercase__ = value_function lowercase__ = unet lowercase__ = scheduler lowercase__ = env lowercase__ = env.get_dataset() lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].mean() except: # noqa: E722 pass lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].std() except: # noqa: E722 pass lowercase__ = env.observation_space.shape[0] lowercase__ = env.action_space.shape[0] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Any , a : int )-> Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : List[str] )-> str: """simple docstring""" return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Tuple )-> Tuple: """simple docstring""" if type(a ) is dict: return {k: self.to_torch(a ) for k, v in x_in.items()} elif torch.is_tensor(a ): return x_in.to(self.unet.device ) return torch.tensor(a , device=self.unet.device ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[int] , a : Dict , a : Optional[Any] )-> List[Any]: """simple docstring""" for key, val in cond.items(): lowercase__ = val.clone() return x_in def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[Any] , a : Any , a : Optional[Any] , a : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = x.shape[0] lowercase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ = torch.full((batch_size,) , a , device=self.unet.device , dtype=torch.long ) for _ in range(a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ = self.value_function(x.permute(0 , 2 , 1 ) , a ).sample lowercase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowercase__ = self.scheduler._get_variance(a ) lowercase__ = torch.exp(0.5 * posterior_variance ) lowercase__ = model_std * grad lowercase__ = 0 lowercase__ = x.detach() lowercase__ = x + scale * grad lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.unet(x.permute(0 , 2 , 1 ) , a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase__ = self.scheduler.step(a , a , a , predict_epsilon=a )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) return x, y def __call__( self : Any , a : Tuple , a : int=64 , a : Tuple=32 , a : List[Any]=2 , a : List[str]=0.1 )-> List[Any]: """simple docstring""" lowercase__ = self.normalize(a , 'observations' ) lowercase__ = obs[None].repeat(a , axis=0 ) lowercase__ = {0: self.to_torch(a )} lowercase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ = randn_tensor(a , device=self.unet.device ) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) # run the diffusion process lowercase__ , lowercase__ = self.run_diffusion(a , a , a , a ) # sort output trajectories by value lowercase__ = y.argsort(0 , descending=a ).squeeze() lowercase__ = x[sorted_idx] lowercase__ = sorted_values[:, :, : self.action_dim] lowercase__ = actions.detach().cpu().numpy() lowercase__ = self.de_normalize(a , key='actions' ) # select the action with the highest value if y is not None: lowercase__ = 0 else: # if we didn't run value guiding, select a random action lowercase__ = np.random.randint(0 , a ) lowercase__ = denorm_actions[selected_index, 0] return denorm_actions
45
0
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase_ = """.""" # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowercase_ = [ """Assert""", """AssignVariableOp""", """EmptyTensorList""", """MergeV2Checkpoints""", """ReadVariableOp""", """ResourceGather""", """RestoreV2""", """SaveV2""", """ShardedFilename""", """StatefulPartitionedCall""", """StaticRegexFullMatch""", """VarHandleOp""", ] def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: lowercase__ = SavedModel() lowercase__ = [] with open(os.path.join(_SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: lowercase__ = json.load(_SCREAMING_SNAKE_CASE )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_SCREAMING_SNAKE_CASE )] ) with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: saved_model.ParseFromString(f.read() ) lowercase__ = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want lowercase__ = sorted(_SCREAMING_SNAKE_CASE ) lowercase__ = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_SCREAMING_SNAKE_CASE ) if strict and len(_SCREAMING_SNAKE_CASE ) > 0: raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops ) elif len(_SCREAMING_SNAKE_CASE ) > 0: print(F"""Found the following incompatible ops for the opset {opset}:""" ) print(*_SCREAMING_SNAKE_CASE , sep='\n' ) else: print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) lowercase_ = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
711
from PIL import Image def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Image: def brightness(_SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
45
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: return int(input_a == input_a == 0 ) def __UpperCamelCase () -> None: print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
712
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : Any , a : str , a : List[Any]=7 , a : int=3 , a : int=18 , a : Optional[Any]=30 , a : Optional[int]=400 , a : int=True , a : Tuple=None , a : Optional[Any]=True , a : str=False , a : str=True , a : int=True , a : Tuple=[0.5, 0.5, 0.5] , a : Any=[0.5, 0.5, 0.5] , )-> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {'height': 18, 'width': 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : int )-> List[Any]: """simple docstring""" lowercase__ = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_thumbnail' ) ) self.assertTrue(hasattr(a , 'do_align_long_axis' ) ) self.assertTrue(hasattr(a , 'do_pad' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
45
0
from __future__ import annotations def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[str]: if nth_term == "": return [""] lowercase__ = int(_SCREAMING_SNAKE_CASE ) lowercase__ = int(_SCREAMING_SNAKE_CASE ) lowercase__ = [] for temp in range(int(_SCREAMING_SNAKE_CASE ) ): series.append(F"""1 / {pow(temp + 1 , int(_SCREAMING_SNAKE_CASE ) )}""" if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input("""Enter the last number (nth term) of the P-Series""")) lowercase_ = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
713
import math def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_SCREAMING_SNAKE_CASE ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase_ = """Enter the base and the power separated by a comma: """ lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. lowercase_ = res(xa, ya) lowercase_ = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
45
0
import random def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = a[left_index] lowercase__ = left_index + 1 for j in range(left_index + 1 , _SCREAMING_SNAKE_CASE ): if a[j] < pivot: lowercase__ , lowercase__ = a[i], a[j] i += 1 lowercase__ , lowercase__ = a[i - 1], a[left_index] return i - 1 def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if left < right: lowercase__ = random.randint(_SCREAMING_SNAKE_CASE , right - 1 ) lowercase__ , lowercase__ = ( a[left], a[pivot], ) # switches the pivot with the left most bound lowercase__ = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) quick_sort_random( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the left of the pivot point quick_sort_random( _SCREAMING_SNAKE_CASE , pivot_index + 1 , _SCREAMING_SNAKE_CASE ) # recursive quicksort to the right of the pivot point def __UpperCamelCase () -> Dict: lowercase__ = input('Enter numbers separated by a comma:\n' ).strip() lowercase__ = [int(_SCREAMING_SNAKE_CASE ) for item in user_input.split(',' )] quick_sort_random(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
714
class SCREAMING_SNAKE_CASE : # Public class to implement a graph def __init__( self : int , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = row lowercase__ = col lowercase__ = graph def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int , a : list[list[bool]] )-> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: # And finally, count all islands. """simple docstring""" lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(a , a , a ) count += 1 return count
45
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowercase_ = """Usage of script: script_name <size_of_canvas:int>""" lowercase_ = [0] * 100 + [1] * 10 random.shuffle(choice) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> list[list[bool]]: lowercase__ = [[False for i in range(_SCREAMING_SNAKE_CASE )] for j in range(_SCREAMING_SNAKE_CASE )] return canvas def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> None: for i, row in enumerate(_SCREAMING_SNAKE_CASE ): for j, _ in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = bool(random.getrandbits(1 ) ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> list[list[bool]]: lowercase__ = np.array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(_SCREAMING_SNAKE_CASE ): for c, pt in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = __judge_point( _SCREAMING_SNAKE_CASE , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowercase__ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowercase__ = current_canvas.tolist() return return_canvas def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: lowercase__ = 0 lowercase__ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowercase__ = pt if pt: if alive < 2: lowercase__ = False elif alive == 2 or alive == 3: lowercase__ = True elif alive > 3: lowercase__ = False else: if alive == 3: lowercase__ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowercase_ = int(sys.argv[1]) # main working structure of this module. lowercase_ = create_canvas(canvas_size) seed(c) lowercase_ , lowercase_ = plt.subplots() fig.show() lowercase_ = ListedColormap(["""w""", """k"""]) try: while True: lowercase_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
715
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ = '' lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: lowercase__ = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : int = 'distilbert' _UpperCamelCase : int = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : Optional[int] , a : Union[str, Any]=30_522 , a : List[Any]=512 , a : Optional[Any]=False , a : Any=6 , a : int=12 , a : int=768 , a : int=4 * 768 , a : List[Any]=0.1 , a : Dict=0.1 , a : List[str]="gelu" , a : Union[str, Any]=0.02 , a : Dict=0.1 , a : Optional[Any]=0.2 , a : Optional[int]=0 , **a : Tuple , )-> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = sinusoidal_pos_embds lowercase__ = n_layers lowercase__ = n_heads lowercase__ = dim lowercase__ = hidden_dim lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation lowercase__ = initializer_range lowercase__ = qa_dropout lowercase__ = seq_classif_dropout super().__init__(**a , pad_token_id=a ) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
716
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a : Any , a : Optional[int]=13 , a : Tuple=30 , a : Union[str, Any]=2 , a : List[str]=3 , a : Dict=True , a : List[str]=True , a : List[Any]=32 , a : List[str]=5 , a : Optional[int]=4 , a : List[str]=37 , a : Dict="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : int=10 , a : List[str]=0.02 , a : int=None , a : List[str]=2 , )-> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[Any] , a : List[str] , a : Dict )-> Optional[Any]: """simple docstring""" lowercase__ = ViTModel(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] , a : int , a : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForMaskedImageModeling(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForMaskedImageModeling(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[str] , a : int , a : List[Any] )-> str: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : int = True _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = ViTModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def __UpperCamelCase () -> str: lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(a ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ = model(**a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int )-> List[str]: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' ).to(a ) lowercase__ = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass with torch.no_grad(): lowercase__ = model(a , interpolate_pos_encoding=a ) # verify the logits lowercase__ = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a ) lowercase__ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase__ = model(a )
45
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , a : Optional[int] , a : List[str]=3 , a : List[str]=32 , a : Optional[Any]=3 , a : List[Any]=10 , a : Union[str, Any]=[8, 16, 32, 64] , a : List[str]=[1, 1, 2, 1] , a : List[str]=True , a : Optional[int]=True , a : Any="relu" , a : Union[str, Any]=3 , a : int=None , a : str=["stage2", "stage3", "stage4"] , a : List[Any]=[2, 3, 4] , a : Union[str, Any]=1 , )-> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(a ) lowercase__ = out_features lowercase__ = out_indices lowercase__ = num_groups def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Optional[int]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Optional[int]: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def SCREAMING_SNAKE_CASE_ ( self : str , a : Any , a : Dict , a : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = BitModel(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : List[str] , a : Optional[int] , a : List[str] )-> List[str]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = BitForImageClassification(a ) model.to(a ) model.eval() lowercase__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : List[Any] , a : List[Any] , a : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = BitBackbone(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = BitBackbone(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () _UpperCamelCase : Dict = ( {'feature-extraction': BitModel, 'image-classification': BitForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Dict = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Any = False def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[int]: """simple docstring""" lowercase__ = BitModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , has_text_modality=a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self : int )-> List[str]: """simple docstring""" return @unittest.skip(reason='Bit does not output attentions' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(config=a ) for name, module in model.named_modules(): if isinstance(a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[Any]: """simple docstring""" def check_hidden_states_output(a : int , a : Optional[Any] , a : Dict ): lowercase__ = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(a , a ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ = layer_type lowercase__ = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(a , a , a ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> int: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Optional[Any]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = BitModel.from_pretrained(a ) self.assertIsNotNone(a ) def __UpperCamelCase () -> Dict: lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any )-> Dict: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Dict: """simple docstring""" lowercase__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(a ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ = model(**a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[str] = (BitBackbone,) if is_torch_available() else () _UpperCamelCase : Any = BitConfig _UpperCamelCase : Optional[int] = False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = BitModelTester(self )
717
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: stooge(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return arr def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase__ , lowercase__ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase__ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(_SCREAMING_SNAKE_CASE , i + t , (_SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
45
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Optional[Any] , a : UNetaDModel , a : UNetaDModel , a : DDPMScheduler , a : Any , )-> Dict: """simple docstring""" super().__init__() lowercase__ = value_function lowercase__ = unet lowercase__ = scheduler lowercase__ = env lowercase__ = env.get_dataset() lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].mean() except: # noqa: E722 pass lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].std() except: # noqa: E722 pass lowercase__ = env.observation_space.shape[0] lowercase__ = env.action_space.shape[0] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Any , a : int )-> Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : List[str] )-> str: """simple docstring""" return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Tuple )-> Tuple: """simple docstring""" if type(a ) is dict: return {k: self.to_torch(a ) for k, v in x_in.items()} elif torch.is_tensor(a ): return x_in.to(self.unet.device ) return torch.tensor(a , device=self.unet.device ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[int] , a : Dict , a : Optional[Any] )-> List[Any]: """simple docstring""" for key, val in cond.items(): lowercase__ = val.clone() return x_in def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[Any] , a : Any , a : Optional[Any] , a : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = x.shape[0] lowercase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ = torch.full((batch_size,) , a , device=self.unet.device , dtype=torch.long ) for _ in range(a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ = self.value_function(x.permute(0 , 2 , 1 ) , a ).sample lowercase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowercase__ = self.scheduler._get_variance(a ) lowercase__ = torch.exp(0.5 * posterior_variance ) lowercase__ = model_std * grad lowercase__ = 0 lowercase__ = x.detach() lowercase__ = x + scale * grad lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.unet(x.permute(0 , 2 , 1 ) , a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase__ = self.scheduler.step(a , a , a , predict_epsilon=a )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) return x, y def __call__( self : Any , a : Tuple , a : int=64 , a : Tuple=32 , a : List[Any]=2 , a : List[str]=0.1 )-> List[Any]: """simple docstring""" lowercase__ = self.normalize(a , 'observations' ) lowercase__ = obs[None].repeat(a , axis=0 ) lowercase__ = {0: self.to_torch(a )} lowercase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ = randn_tensor(a , device=self.unet.device ) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) # run the diffusion process lowercase__ , lowercase__ = self.run_diffusion(a , a , a , a ) # sort output trajectories by value lowercase__ = y.argsort(0 , descending=a ).squeeze() lowercase__ = x[sorted_idx] lowercase__ = sorted_values[:, :, : self.action_dim] lowercase__ = actions.detach().cpu().numpy() lowercase__ = self.de_normalize(a , key='actions' ) # select the action with the highest value if y is not None: lowercase__ = 0 else: # if we didn't run value guiding, select a random action lowercase__ = np.random.randint(0 , a ) lowercase__ = denorm_actions[selected_index, 0] return denorm_actions
718
from scipy.stats import spearmanr import datasets lowercase_ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowercase_ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowercase_ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Any , a : str=False )-> Optional[int]: """simple docstring""" lowercase__ = spearmanr(a , a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
0
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowercase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) lowercase_ = """sshleifer/student_marian_en_ro_6_1""" lowercase_ = """sshleifer/tiny-mbart""" @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Union[str, Any]=False , a : Optional[Any]=None , a : int=True , a : List[Any]=True , a : Optional[int]=True , a : Optional[Any]=True , )-> Optional[Any]: """simple docstring""" lowercase__ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=a , num_train_epochs=1 , distributed=a , extra_args_str=a , predict_with_generate=a , do_train=a , do_eval=a , do_predict=a , ) lowercase__ = TrainerState.load_from_json(os.path.join(a , 'trainer_state.json' ) ).log_history if not do_eval: return lowercase__ = [log for log in logs if 'eval_loss' in log.keys()] lowercase__ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats lowercase__ = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'] , a ) assert not math.isnan(float(last_step_stats['eval_loss'] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : str )-> Any: """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" self.run_seqaseq_quick(distributed=a ) @require_torch_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" self.run_seqaseq_quick(distributed=a ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" self.run_seqaseq_quick(distributed=a , extra_args_str='--sharded_ddp simple' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=a , extra_args_str='--sharded_ddp simple --fp16' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" self.run_seqaseq_quick(distributed=a , extra_args_str='--sharded_ddp zero_dp_2' , predict_with_generate=a ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: """simple docstring""" self.run_seqaseq_quick( distributed=a , extra_args_str='--sharded_ddp zero_dp_2 --fp16' , predict_with_generate=a ) @require_apex @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Dict: """simple docstring""" self.run_seqaseq_quick(distributed=a , extra_args_str='--fp16 --fp16_backend=apex' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=a , extra_args_str='--fp16 --fp16_backend=apex' ) @parameterized.expand(['base', 'low', 'high', 'mixed'] ) @require_torch_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : int )-> int: """simple docstring""" lowercase__ = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } lowercase__ = experiments[experiment_id] lowercase__ = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} lowercase__ = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**a , extra_args_str=data['extra_args_str'] ) lowercase__ = len(re.findall(a , cl.err ) ) self.assertEqual(a , data['n_matches'] ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" lowercase__ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=a , learning_rate=3E-4 , num_train_epochs=10 , distributed=a , ) # Check metrics lowercase__ = TrainerState.load_from_json(os.path.join(a , 'trainer_state.json' ) ).log_history lowercase__ = [log for log in logs if 'eval_loss' in log.keys()] lowercase__ = eval_metrics[0] lowercase__ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'] , a ) # test if do_predict saves generations and metrics lowercase__ = os.listdir(a ) lowercase__ = {os.path.basename(a ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Dict: """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(a : str ) -> Tuple[int, float]: lowercase__ = '--skip_memory_metrics 0' lowercase__ = self.run_trainer( max_len=128 , model_name=a , learning_rate=3E-4 , num_train_epochs=1 , optim=a , distributed=a , extra_args_str=a , do_eval=a , do_predict=a , n_gpus_to_use=1 , ) # Check metrics lowercase__ = TrainerState.load_from_json(Path(a , 'trainer_state.json' ) ).log_history lowercase__ = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**20 ) lowercase__ = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**20 ) lowercase__ = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss lowercase__ , lowercase__ , lowercase__ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) lowercase__ , lowercase__ , lowercase__ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) lowercase__ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb lowercase__ = gpu_peak_mem_orig + gpu_alloc_mem_orig lowercase__ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb lowercase__ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings lowercase__ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( a , a , 'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' f""" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and""" f""" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB""" , ) self.assertGreater( a , a , 'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' f""" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and""" f""" gpu_total_mem_bnb={gpu_total_mem_bnb}MB""" , ) self.assertEqual( a , a , f"""loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}""" ) def SCREAMING_SNAKE_CASE_ ( self : int , a : int , a : str , a : int , a : float = 3E-3 , a : str = "adafactor" , a : bool = False , a : str = None , a : int = 0 , a : bool = True , a : bool = True , a : bool = True , a : bool = True , a : int = None , )-> Dict: """simple docstring""" lowercase__ = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = f""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(a )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(a )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX """.split() lowercase__ = f""" --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(a )} """.split() lowercase__ = '\n --do_predict\n '.split() lowercase__ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"""--optim {optim}""".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: lowercase__ = get_gpu_count() lowercase__ = get_torch_dist_unique_port() lowercase__ = f""" -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py """.split() lowercase__ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(a , env=self.get_env() ) else: lowercase__ = ['run_translation.py'] + args with patch.object(a , 'argv' , a ): main() return output_dir
719
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
45
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: # picklable for multiprocessing return x.sum() def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: # picklable for multiprocessing return i + 1 @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : int _UpperCamelCase : str class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[Any]: """simple docstring""" lowercase__ = {} lowercase__ = [] lowercase__ = 1 lowercase__ = [1, 2] lowercase__ = {'a': 1, 'b': 2} lowercase__ = {'a': [1, 2], 'b': [3, 4]} lowercase__ = {'a': {'1': 1}, 'b': 2} lowercase__ = {'a': 1, 'b': 2, 'c': 3, 'd': 4} lowercase__ = {} lowercase__ = [] lowercase__ = 2 lowercase__ = [2, 3] lowercase__ = {'a': 2, 'b': 3} lowercase__ = {'a': [2, 3], 'b': [4, 5]} lowercase__ = {'a': {'1': 2}, 'b': 3} lowercase__ = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(a , a ) , a ) self.assertEqual(map_nested(a , a ) , a ) self.assertEqual(map_nested(a , a ) , a ) self.assertEqual(map_nested(a , a ) , a ) self.assertEqual(map_nested(a , a ) , a ) self.assertEqual(map_nested(a , a ) , a ) self.assertEqual(map_nested(a , a ) , a ) self.assertEqual(map_nested(a , a ) , a ) lowercase__ = 2 self.assertEqual(map_nested(a , a , num_proc=a ) , a ) self.assertEqual(map_nested(a , a , num_proc=a ) , a ) self.assertEqual(map_nested(a , a , num_proc=a ) , a ) self.assertEqual(map_nested(a , a , num_proc=a ) , a ) self.assertEqual(map_nested(a , a , num_proc=a ) , a ) self.assertEqual(map_nested(a , a , num_proc=a ) , a ) self.assertEqual(map_nested(a , a , num_proc=a ) , a ) self.assertEqual(map_nested(a , a , num_proc=a ) , a ) lowercase__ = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} lowercase__ = {'a': 2, 'b': 0, 'c': 2} lowercase__ = { 'a': np.eye(2 ).astype(a ), 'b': np.zeros(3 ).astype(a ), 'c': np.ones(2 ).astype(a ), } self.assertEqual(map_nested(a , a , map_numpy=a ) , a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(a , a , map_numpy=a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(a , a , map_numpy=a , num_proc=a ) , a ) self.assertEqual( {k: v.tolist() for k, v in map_nested(a , a , map_numpy=a , num_proc=a ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(a ): # can't pickle a local lambda map_nested(lambda a : x + 1 , a , num_proc=a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Any: """simple docstring""" lowercase__ = {'a': 1, 'b': 2} lowercase__ = {'a': 3, 'b': 4} lowercase__ = {'a': 5, 'b': 6} lowercase__ = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(a , a , a ) ) , a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> int: """simple docstring""" class SCREAMING_SNAKE_CASE : _UpperCamelCase : Any = 'bar' lowercase__ = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(a , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: lowercase__ = {F"""{i}""": i for i in range(_SCREAMING_SNAKE_CASE )} lowercase__ = map_nested(lambda _SCREAMING_SNAKE_CASE : x + 10 , _SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class SCREAMING_SNAKE_CASE (UpperCAmelCase ): @require_tf def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> str: """simple docstring""" import tensorflow as tf from tensorflow.keras import layers lowercase__ = layers.Dense(2 ) def gen_random_output(): lowercase__ = tf.random.uniform((1, 3) ) return model(a ).numpy() with temp_seed(42 , set_tensorflow=a ): lowercase__ = gen_random_output() with temp_seed(42 , set_tensorflow=a ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(a , a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" import torch def gen_random_output(): lowercase__ = torch.nn.Linear(3 , 2 ) lowercase__ = torch.rand(1 , 3 ) return model(a ).detach().numpy() with temp_seed(42 , set_pytorch=a ): lowercase__ = gen_random_output() with temp_seed(42 , set_pytorch=a ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(a , a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Tuple: """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowercase__ = gen_random_output() with temp_seed(42 ): lowercase__ = gen_random_output() lowercase__ = gen_random_output() np.testing.assert_equal(a , a ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = NestedDataStructure(_SCREAMING_SNAKE_CASE ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = NestedDataStructure(_SCREAMING_SNAKE_CASE ).flatten() assert output == expected_output def __UpperCamelCase () -> int: lowercase__ = A(x=1 , y='foobar' ) lowercase__ = {'x': 1, 'y': 'foobar'} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output lowercase__ = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} lowercase__ = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(_SCREAMING_SNAKE_CASE ) == expected_output with pytest.raises(_SCREAMING_SNAKE_CASE ): asdict([1, A(x=10 , y='foo' )] ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: return text.split() def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __UpperCamelCase () -> Any: with Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase__ = list(iflatmap_unordered(_SCREAMING_SNAKE_CASE , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(_SCREAMING_SNAKE_CASE ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase__ = [] for yield_time, content in iflatmap_unordered( _SCREAMING_SNAKE_CASE , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_SCREAMING_SNAKE_CASE ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(_SCREAMING_SNAKE_CASE ) == 4
720
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowercase_ = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = EfficientNetConfig() lowercase__ = CONFIG_MAP[model_name]['hidden_dim'] lowercase__ = CONFIG_MAP[model_name]['width_coef'] lowercase__ = CONFIG_MAP[model_name]['depth_coef'] lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = CONFIG_MAP[model_name]['dropout_rate'] lowercase__ = CONFIG_MAP[model_name]['dw_padding'] lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 1000 lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> Tuple: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase__ = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} lowercase__ = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase__ = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase__ = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ = 'efficientnet.' + item[1] lowercase__ = 'classifier.weight' lowercase__ = 'classifier.bias' return key_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation='softmax' , ) lowercase__ = original_model.trainable_variables lowercase__ = original_model.non_trainable_variables lowercase__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ = param.numpy() lowercase__ = list(tf_params.keys() ) # Load HuggingFace model lowercase__ = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowercase__ = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowercase__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase__ = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowercase__ = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowercase__ = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ = hf_model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.detach().numpy() # Original model inference lowercase__ = False lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowercase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
45
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def __UpperCamelCase () -> str: lowercase__ = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_SCREAMING_SNAKE_CASE , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_SCREAMING_SNAKE_CASE , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_SCREAMING_SNAKE_CASE , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_SCREAMING_SNAKE_CASE , default='data/dump' , help='The dump file prefix.' ) lowercase__ = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": lowercase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) lowercase__ = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowercase__ = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowercase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowercase__ = tokenizer.special_tokens_map['cls_token'] # `<s>` lowercase__ = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowercase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowercase__ = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowercase__ = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowercase__ = fp.readlines() logger.info('Start encoding' ) logger.info(F"""{len(_SCREAMING_SNAKE_CASE )} examples to process.""" ) lowercase__ = [] lowercase__ = 0 lowercase__ = 10000 lowercase__ = time.time() for text in data: lowercase__ = F"""{bos} {text.strip()} {sep}""" lowercase__ = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) rslt.append(_SCREAMING_SNAKE_CASE ) iter += 1 if iter % interval == 0: lowercase__ = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) lowercase__ = time.time() logger.info('Finished binarization' ) logger.info(F"""{len(_SCREAMING_SNAKE_CASE )} examples processed.""" ) lowercase__ = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" lowercase__ = tokenizer.vocab_size if vocab_size < (1 << 16): lowercase__ = [np.uintaa(_SCREAMING_SNAKE_CASE ) for d in rslt] else: lowercase__ = [np.intaa(_SCREAMING_SNAKE_CASE ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(_SCREAMING_SNAKE_CASE , 'wb' ) as handle: pickle.dump(rslt_ , _SCREAMING_SNAKE_CASE , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
721
import argparse import json import subprocess def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = [] lowercase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowercase__ = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode('utf-8' ) lowercase__ = json.loads(_SCREAMING_SNAKE_CASE ) lowercase__ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return values.split(',' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
45
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file snake_case_ = TapasConfig.from_json_file(lowercase__ ) # set absolute/relative position embeddings parameter snake_case_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WTQ": # run_task_main.py hparams snake_case_ = 4 snake_case_ = True # hparam_utils.py hparams snake_case_ = 0.66_4694 snake_case_ = 0.20_7951 snake_case_ = 0.12_1194 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = 0.035_2513 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams snake_case_ = 4 snake_case_ = False # hparam_utils.py hparams snake_case_ = 36.4519 snake_case_ = 0.90_3421 snake_case_ = 222.088 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = 0.76_3141 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "TABFACT": snake_case_ = TapasForSequenceClassification(config=lowercase__ ) elif task == "MLM": snake_case_ = TapasForMaskedLM(config=lowercase__ ) elif task == "INTERMEDIATE_PRETRAINING": snake_case_ = TapasModel(config=lowercase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) snake_case_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(lowercase__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
46
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=None , __UpperCamelCase=2 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 2 def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = TFDeiTModel(config=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = TFDeiTForMaskedImageModeling(config=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = TFDeiTForMaskedImageModeling(__UpperCamelCase ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.type_sequence_label_size snake_case_ = TFDeiTForImageClassification(__UpperCamelCase ) snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = TFDeiTForImageClassification(__UpperCamelCase ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __A = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFDeiTModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , tf.keras.layers.Dense ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" snake_case_ = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFDeiTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a(): '''simple docstring''' snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='tf' ) # forward pass snake_case_ = model(**__UpperCamelCase ) # verify the logits snake_case_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
46
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=[1, 2, 1] , __UpperCamelCase=[2, 2, 4] , __UpperCamelCase=2 , __UpperCamelCase=2.0 , __UpperCamelCase=True , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase="gelu" , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=0.02 , __UpperCamelCase=1E-5 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=10 , __UpperCamelCase=8 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = depths snake_case_ = num_heads snake_case_ = window_size snake_case_ = mlp_ratio snake_case_ = qkv_bias snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = drop_path_rate snake_case_ = hidden_act snake_case_ = use_absolute_embeddings snake_case_ = patch_norm snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = is_training snake_case_ = scope snake_case_ = use_labels snake_case_ = type_sequence_label_size snake_case_ = encoder_stride def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = SwinvaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) snake_case_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = SwinvaForMaskedImageModeling(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = SwinvaForMaskedImageModeling(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.type_sequence_label_size snake_case_ = SwinvaForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __A = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SwinvaModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , embed_dim=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.attentions snake_case_ = len(self.model_tester.depths ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = config.window_size**2 snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) snake_case_ = len(__UpperCamelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): snake_case_ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case_ = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCamelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # Swinv2 has a different seq_length snake_case_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) snake_case_ = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = reshaped_hidden_states[0].shape snake_case_ = ( reshaped_hidden_states[0].view(__UpperCamelCase , __UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SwinvaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: snake_case_ = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
46
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A = get_tests_dir('fixtures') class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = mock.Mock() snake_case_ = 5_00 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__UpperCamelCase ) as mock_head: snake_case_ = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @classmethod def __lowerCAmelCase ( cls ): """simple docstring""" snake_case_ = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def __lowerCAmelCase ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = WavaVecaFeatureExtractor.from_pretrained(__UpperCamelCase ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __UpperCamelCase , repo_id='test-feature-extractor' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = WavaVecaFeatureExtractor.from_pretrained(__UpperCamelCase ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __UpperCamelCase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def __lowerCAmelCase ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() snake_case_ = CustomFeatureExtractor.from_pretrained(__UpperCamelCase ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) snake_case_ = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
46
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline A = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') A = parser.parse_args() A = 'cpu' A = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' A = 'path-to-your-trained-model' A = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) A = pipe.to(device) # to channels last A = pipe.unet.to(memory_format=torch.channels_last) A = pipe.vae.to(memory_format=torch.channels_last) A = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: A = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex A = torch.randn(2, 4, 64, 64) A = torch.rand(1) * 999 A = torch.randn(2, 77, 768) A = (sample, timestep, encoder_hidden_status) try: A = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: A = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) A = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) A = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: A = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute A = 666 A = torch.Generator(device).manual_seed(seed) A = {'generator': generator} if args.steps is not None: A = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): A = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
46
1
from __future__ import annotations def a(lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) < k or k < 0: raise ValueError('Invalid Input' ) snake_case_ = snake_case_ = sum(array[:k] ) for i in range(len(lowercase__ ) - k ): snake_case_ = current_sum - array[i] + array[i + k] snake_case_ = max(lowercase__ , lowercase__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() A = [randint(-1000, 1000) for i in range(100)] A = randint(0, 110) print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
46
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """unispeech-sat""" def __init__( self , __UpperCamelCase=32 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-5 , __UpperCamelCase="group" , __UpperCamelCase="gelu" , __UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCamelCase=False , __UpperCamelCase=1_28 , __UpperCamelCase=16 , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=0.05 , __UpperCamelCase=10 , __UpperCamelCase=2 , __UpperCamelCase=0.0 , __UpperCamelCase=10 , __UpperCamelCase=0 , __UpperCamelCase=3_20 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , __UpperCamelCase=1_00 , __UpperCamelCase=2_56 , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase="mean" , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=2_56 , __UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 15_00) , __UpperCamelCase=(5, 3, 3, 1, 1) , __UpperCamelCase=(1, 2, 3, 1, 1) , __UpperCamelCase=5_12 , __UpperCamelCase=0 , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=5_04 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size snake_case_ = num_clusters snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = feat_quantizer_dropout snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = xvector_output_dim @property def __lowerCAmelCase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
46
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) A = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = state_dict.pop(lowercase__ ) snake_case_ = val def a(lowercase__ ): '''simple docstring''' snake_case_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case_ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case_ = value else: snake_case_ = value return new_state_dict def a(lowercase__ , lowercase__=False ): '''simple docstring''' snake_case_ = '' if is_panoptic: snake_case_ = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case_ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[:256, :] snake_case_ = in_proj_bias[:256] snake_case_ = in_proj_weight[256:512, :] snake_case_ = in_proj_bias[256:512] snake_case_ = in_proj_weight[-256:, :] snake_case_ = in_proj_bias[-256:] def a(): '''simple docstring''' snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case_ = 'resnet101' if "dc5" in model_name: snake_case_ = True snake_case_ = 'panoptic' in model_name if is_panoptic: snake_case_ = 250 else: snake_case_ = 91 snake_case_ = 'huggingface/label-files' snake_case_ = 'coco-detection-id2label.json' snake_case_ = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(lowercase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # load image processor snake_case_ = 'coco_panoptic' if is_panoptic else 'coco_detection' snake_case_ = ConditionalDetrImageProcessor(format=lowercase__ ) # prepare image snake_case_ = prepare_img() snake_case_ = image_processor(images=lowercase__ , return_tensors='pt' ) snake_case_ = encoding['pixel_values'] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub snake_case_ = torch.hub.load('DeppMeng/ConditionalDETR' , lowercase__ , pretrained=lowercase__ ).eval() snake_case_ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case_ = 'conditional_detr.' + src rename_key(lowercase__ , lowercase__ , lowercase__ ) snake_case_ = rename_backbone_keys(lowercase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase__ , is_panoptic=lowercase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case_ = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case_ = state_dict.pop(lowercase__ ) snake_case_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case_ = state_dict.pop(lowercase__ ) snake_case_ = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case_ = state_dict.pop(lowercase__ ) snake_case_ = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case_ = state_dict.pop(lowercase__ ) snake_case_ = val # finally, create HuggingFace model and load state dict snake_case_ = ConditionalDetrForSegmentation(lowercase__ ) if is_panoptic else ConditionalDetrForObjectDetection(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() model.push_to_hub(repo_id=lowercase__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case_ = conditional_detr(lowercase__ ) snake_case_ = model(lowercase__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) A = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
46
class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = name snake_case_ = val def __str__( self ): """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , __UpperCamelCase ): """simple docstring""" return self.val < other.val class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = {} snake_case_ = {} snake_case_ = self.build_heap(__UpperCamelCase ) def __getitem__( self , __UpperCamelCase ): """simple docstring""" return self.get_value(__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return (idx - 1) // 2 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return idx * 2 + 1 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return idx * 2 + 2 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return self.heap_dict[key] def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = len(__UpperCamelCase ) - 1 snake_case_ = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): snake_case_ = idx snake_case_ = i.val for i in range(__UpperCamelCase , -1 , -1 ): self.sift_down(__UpperCamelCase , __UpperCamelCase ) return array def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" while True: snake_case_ = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 snake_case_ = self.get_right_child_idx(__UpperCamelCase ) snake_case_ = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: snake_case_ = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: snake_case_ = r if smallest != idx: snake_case_ , snake_case_ = array[smallest], array[idx] ( ( snake_case_ ) , ( snake_case_ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) snake_case_ = smallest else: break def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: snake_case_ , snake_case_ = self.heap[idx], self.heap[p] snake_case_ , snake_case_ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) snake_case_ = p snake_case_ = self.get_parent_idx(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" return self.heap[0] def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.heap[-1], self.heap[0] snake_case_ , snake_case_ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) snake_case_ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" self.heap.append(__UpperCamelCase ) snake_case_ = len(self.heap ) - 1 snake_case_ = node.val self.sift_up(len(self.heap ) - 1 ) def __lowerCAmelCase ( self ): """simple docstring""" return len(self.heap ) == 0 def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" snake_case_ = new_value snake_case_ = new_value self.sift_up(self.idx_of_element[node] ) A = Node('R', -1) A = Node('B', 6) A = Node('A', 3) A = Node('X', 1) A = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
46
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file snake_case_ = TapasConfig.from_json_file(lowercase__ ) # set absolute/relative position embeddings parameter snake_case_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WTQ": # run_task_main.py hparams snake_case_ = 4 snake_case_ = True # hparam_utils.py hparams snake_case_ = 0.66_4694 snake_case_ = 0.20_7951 snake_case_ = 0.12_1194 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = 0.035_2513 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams snake_case_ = 4 snake_case_ = False # hparam_utils.py hparams snake_case_ = 36.4519 snake_case_ = 0.90_3421 snake_case_ = 222.088 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = 0.76_3141 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "TABFACT": snake_case_ = TapasForSequenceClassification(config=lowercase__ ) elif task == "MLM": snake_case_ = TapasForMaskedLM(config=lowercase__ ) elif task == "INTERMEDIATE_PRETRAINING": snake_case_ = TapasModel(config=lowercase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) snake_case_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(lowercase__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
46
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['PerceiverFeatureExtractor'] A = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase = "cpu" , __UpperCamelCase = "openai/clip-vit-large-patch14" ): """simple docstring""" snake_case_ = device snake_case_ = CLIPTokenizerFast.from_pretrained(__UpperCamelCase ) snake_case_ = [0.4814_5466, 0.457_8275, 0.4082_1073] snake_case_ = [0.2686_2954, 0.2613_0258, 0.2757_7711] snake_case_ = torchvision.transforms.Normalize(self.image_mean , self.image_std ) snake_case_ = torchvision.transforms.Resize(2_24 ) snake_case_ = torchvision.transforms.CenterCrop(2_24 ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self.resize(__UpperCamelCase ) snake_case_ = self.center_crop(__UpperCamelCase ) snake_case_ = self.normalize(__UpperCamelCase ) return images def __call__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" snake_case_ = self.tokenizer(text=__UpperCamelCase , **__UpperCamelCase ) snake_case_ = self.preprocess_img(__UpperCamelCase ) snake_case_ = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self , __UpperCamelCase=10 , __UpperCamelCase=0.01 , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase="image" , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=False , ): """simple docstring""" super().__init__() snake_case_ = None snake_case_ = device if device else get_device() if vqgan: snake_case_ = vqgan else: snake_case_ = load_vqgan(self.device , conf_path=__UpperCamelCase , ckpt_path=__UpperCamelCase ) self.vqgan.eval() if clip: snake_case_ = clip else: snake_case_ = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) snake_case_ = ProcessorGradientFlow(device=self.device ) snake_case_ = iterations snake_case_ = lr snake_case_ = log snake_case_ = make_grid snake_case_ = return_val snake_case_ = quantize snake_case_ = self.vqgan.decoder.z_shape def __lowerCAmelCase ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=5 , __UpperCamelCase=True ): """simple docstring""" snake_case_ = [] if output_path is None: snake_case_ = './animation.gif' if input_path is None: snake_case_ = self.save_path snake_case_ = sorted(glob(input_path + '/*' ) ) if not len(__UpperCamelCase ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(__UpperCamelCase ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) snake_case_ = total_duration / len(__UpperCamelCase ) snake_case_ = [frame_duration] * len(__UpperCamelCase ) if extend_frames: snake_case_ = 1.5 snake_case_ = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(__UpperCamelCase ) ) imageio.mimsave(__UpperCamelCase , __UpperCamelCase , duration=__UpperCamelCase ) print(f"""gif saved to {output_path}""" ) def __lowerCAmelCase ( self , __UpperCamelCase=None , __UpperCamelCase=None ): """simple docstring""" if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError snake_case_ = preprocess(Image.open(__UpperCamelCase ) , target_image_size=2_56 ).to(self.device ) snake_case_ = preprocess_vqgan(__UpperCamelCase ) snake_case_ , *snake_case_ = self.vqgan.encode(__UpperCamelCase ) return z def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self.latent.detach().requires_grad_() snake_case_ = base_latent + transform_vector if self.quantize: snake_case_ , *snake_case_ = self.vqgan.quantize(__UpperCamelCase ) else: snake_case_ = trans_latent return self.vqgan.decode(__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): """simple docstring""" snake_case_ = self.clip_preprocessor(text=__UpperCamelCase , images=__UpperCamelCase , return_tensors='pt' , padding=__UpperCamelCase ) snake_case_ = self.clip(**__UpperCamelCase ) snake_case_ = clip_outputs.logits_per_image if weights is not None: snake_case_ = similarity_logits * weights return similarity_logits.sum() def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self._get_clip_similarity(pos_prompts['prompts'] , __UpperCamelCase , weights=(1 / pos_prompts['weights']) ) if neg_prompts: snake_case_ = self._get_clip_similarity(neg_prompts['prompts'] , __UpperCamelCase , weights=neg_prompts['weights'] ) else: snake_case_ = torch.tensor([1] , device=self.device ) snake_case_ = -torch.log(__UpperCamelCase ) + torch.log(__UpperCamelCase ) return loss def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = torch.randn_like(self.latent , requires_grad=__UpperCamelCase , device=self.device ) snake_case_ = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() snake_case_ = self._add_vector(__UpperCamelCase ) snake_case_ = loop_post_process(__UpperCamelCase ) snake_case_ = self._get_CLIP_loss(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) print('CLIP loss' , __UpperCamelCase ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=__UpperCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" wandb.init(reinit=__UpperCamelCase , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: snake_case_ = Image.open(__UpperCamelCase ) snake_case_ = image.resize((2_56, 2_56) ) wandb.log('Original Image' , wandb.Image(__UpperCamelCase ) ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" if not prompts: return [] snake_case_ = [] snake_case_ = [] if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(__UpperCamelCase , (tuple, list) ): snake_case_ = prompt[0] snake_case_ = float(prompt[1] ) elif ":" in prompt: snake_case_ , snake_case_ = prompt.split(':' ) snake_case_ = float(__UpperCamelCase ) else: snake_case_ = prompt snake_case_ = 1.0 processed_prompts.append(__UpperCamelCase ) weights.append(__UpperCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(__UpperCamelCase , device=self.device ), } def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=None , ): """simple docstring""" if image_path: snake_case_ = self._get_latent(__UpperCamelCase ) else: snake_case_ = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." snake_case_ = self.process_prompts(__UpperCamelCase ) snake_case_ = self.process_prompts(__UpperCamelCase ) if save_final and save_path is None: snake_case_ = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) else: snake_case_ = save_path + '_' + get_timestamp() os.makedirs(__UpperCamelCase ) snake_case_ = save_path snake_case_ = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(__UpperCamelCase ) ) snake_case_ = loop_post_process(__UpperCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ): if show_intermediate: show_pil(__UpperCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({'Image': wandb.Image(__UpperCamelCase )} ) if show_final: show_pil(__UpperCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
46
def a(lowercase__ , lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(lowercase__ , lowercase__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) snake_case_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
46
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = (DDIMParallelScheduler,) __A = (("""eta""", 0.0), ("""num_inference_steps""", 5_0)) def __lowerCAmelCase ( self , **__UpperCamelCase ): """simple docstring""" snake_case_ = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**__UpperCamelCase ) return config def __lowerCAmelCase ( self , **__UpperCamelCase ): """simple docstring""" snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(**__UpperCamelCase ) snake_case_ = scheduler_class(**__UpperCamelCase ) snake_case_ , snake_case_ = 10, 0.0 snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for t in scheduler.timesteps: snake_case_ = model(__UpperCamelCase , __UpperCamelCase ) snake_case_ = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def __lowerCAmelCase ( self ): """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__UpperCamelCase ) snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config(steps_offset=1 ) snake_case_ = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def __lowerCAmelCase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" self.check_over_configs(thresholding=__UpperCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , ) def __lowerCAmelCase ( self ): """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__UpperCamelCase , num_inference_steps=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__UpperCamelCase , eta=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**__UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_4771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_2460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1E-5 def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.scheduler_classes[0] snake_case_ = self.get_scheduler_config() snake_case_ = scheduler_class(**__UpperCamelCase ) snake_case_ , snake_case_ = 10, 0.0 scheduler.set_timesteps(__UpperCamelCase ) snake_case_ = self.dummy_model() snake_case_ = self.dummy_sample_deter snake_case_ = self.dummy_sample_deter + 0.1 snake_case_ = self.dummy_sample_deter - 0.1 snake_case_ = samplea.shape[0] snake_case_ = torch.stack([samplea, samplea, samplea] , dim=0 ) snake_case_ = torch.arange(__UpperCamelCase )[0:3, None].repeat(1 , __UpperCamelCase ) snake_case_ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) snake_case_ = scheduler.batch_step_no_noise(__UpperCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __UpperCamelCase ) snake_case_ = torch.sum(torch.abs(__UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.full_loop() snake_case_ = torch.sum(torch.abs(__UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_3967 ) < 1E-3 def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.full_loop(prediction_type='v_prediction' ) snake_case_ = torch.sum(torch.abs(__UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.01 ) snake_case_ = torch.sum(torch.abs(__UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.full_loop(set_alpha_to_one=__UpperCamelCase , beta_start=0.01 ) snake_case_ = torch.sum(torch.abs(__UpperCamelCase ) ) snake_case_ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
46
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = 1.5 snake_case_ = int(factor * num_class_images ) snake_case_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowercase__ , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=lowercase__ ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: snake_case_ = client.query(text=lowercase__ ) if len(lowercase__ ) >= factor * num_class_images or num_images > 1e4: break else: snake_case_ = int(factor * num_images ) snake_case_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowercase__ , aesthetic_weight=0.1 , ) snake_case_ = 0 snake_case_ = 0 snake_case_ = tqdm(desc='downloading real regularization images' , total=lowercase__ ) with open(f"""{class_data_dir}/caption.txt""" , 'w' ) as fa, open(f"""{class_data_dir}/urls.txt""" , 'w' ) as fa, open( f"""{class_data_dir}/images.txt""" , 'w' ) as fa: while total < num_class_images: snake_case_ = class_images[count] count += 1 try: snake_case_ = requests.get(images['url'] ) if img.status_code == 200: snake_case_ = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def a(): '''simple docstring''' snake_case_ = argparse.ArgumentParser('' , add_help=lowercase__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=lowercase__ , type=lowercase__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=lowercase__ , type=lowercase__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=lowercase__ ) return parser.parse_args() if __name__ == "__main__": A = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
46
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): """simple docstring""" __A = OpenAIGPTTokenizer __A = OpenAIGPTTokenizerFast __A = True __A = False def __lowerCAmelCase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] snake_case_ = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) snake_case_ = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__UpperCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return "lower newer", "lower newer" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) snake_case_ = 'lower' snake_case_ = ['low', 'er</w>'] snake_case_ = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case_ = tokens + ['<unk>'] snake_case_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case_ = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) # Simple input snake_case_ = 'This is a simple input' snake_case_ = ['This is a simple input 1', 'This is a simple input 2'] snake_case_ = ('This is a simple input', 'This is a pair') snake_case_ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__UpperCamelCase , tokenizer_r.encode , __UpperCamelCase , max_length=__UpperCamelCase , padding='max_length' ) # Simple input self.assertRaises(__UpperCamelCase , tokenizer_r.encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding='max_length' ) # Simple input self.assertRaises( __UpperCamelCase , tokenizer_r.batch_encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding='max_length' , ) # Pair input self.assertRaises(__UpperCamelCase , tokenizer_r.encode , __UpperCamelCase , max_length=__UpperCamelCase , padding='max_length' ) # Pair input self.assertRaises(__UpperCamelCase , tokenizer_r.encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding='max_length' ) # Pair input self.assertRaises( __UpperCamelCase , tokenizer_r.batch_encode_plus , __UpperCamelCase , max_length=__UpperCamelCase , padding='max_length' , ) def __lowerCAmelCase ( self ): """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" pass
46
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
46
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') A = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __A = field( default=__snake_case , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __A = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __A = field( default=__snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field(default=__snake_case , metadata={"""help""": """The input training data file (a text file)."""} ) __A = field( default=__snake_case , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __A = field( default=__snake_case , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __A = field( default=__snake_case , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __A = field( default=__snake_case , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCAmelCase ( self ): """simple docstring""" if self.train_file is not None: snake_case_ = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: snake_case_ = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = 42 __A = True __A = None __A = None def __call__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = 'label' if 'label' in features[0].keys() else 'labels' snake_case_ = [feature.pop(__UpperCamelCase ) for feature in features] snake_case_ = len(__UpperCamelCase ) snake_case_ = len(features[0]['input_ids'] ) snake_case_ = [ [{k: v[i] for k, v in feature.items()} for i in range(__UpperCamelCase )] for feature in features ] snake_case_ = list(chain(*__UpperCamelCase ) ) snake_case_ = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten snake_case_ = {k: v.view(__UpperCamelCase , __UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels snake_case_ = torch.tensor(__UpperCamelCase , dtype=torch.intaa ) return batch def a(): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(lowercase__ ) datasets.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: snake_case_ = {} if data_args.train_file is not None: snake_case_ = data_args.train_file if data_args.validation_file is not None: snake_case_ = data_args.validation_file snake_case_ = data_args.train_file.split('.' )[-1] snake_case_ = load_dataset( lowercase__ , data_files=lowercase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. snake_case_ = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. snake_case_ = [f"""ending{i}""" for i in range(4 )] snake_case_ = 'sent1' snake_case_ = 'sent2' if data_args.max_seq_length is None: snake_case_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) snake_case_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowercase__ ): snake_case_ = [[context] * 4 for context in examples[context_name]] snake_case_ = examples[question_header_name] snake_case_ = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(lowercase__ ) ] # Flatten out snake_case_ = list(chain(*lowercase__ ) ) snake_case_ = list(chain(*lowercase__ ) ) # Tokenize snake_case_ = tokenizer( lowercase__ , lowercase__ , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowercase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case_ = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case_ = min(len(lowercase__ ) , data_args.max_train_samples ) snake_case_ = train_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): snake_case_ = train_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case_ = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case_ = min(len(lowercase__ ) , data_args.max_eval_samples ) snake_case_ = eval_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): snake_case_ = eval_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator snake_case_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowercase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowercase__ ): snake_case_ , snake_case_ = eval_predictions snake_case_ = np.argmax(lowercase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer snake_case_ = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase__ ) ) snake_case_ = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('train' , lowercase__ ) trainer.save_metrics('train' , lowercase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase__ ) snake_case_ = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) snake_case_ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def a(lowercase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
46
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__UpperCamelCase ): snake_case_ = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) snake_case_ = FlaxAutoModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__UpperCamelCase ): snake_case_ = AutoConfig.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) snake_case_ = FlaxAutoModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: snake_case_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ = FlaxBertModel.from_pretrained(__UpperCamelCase ) snake_case_ = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__UpperCamelCase ): return model(**__UpperCamelCase ) eval(**__UpperCamelCase ).block_until_ready() @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: snake_case_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) snake_case_ = FlaxRobertaModel.from_pretrained(__UpperCamelCase ) snake_case_ = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__UpperCamelCase ): return model(**__UpperCamelCase ) eval(**__UpperCamelCase ).block_until_ready() def __lowerCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __UpperCamelCase , 'bert-base is not a local folder and is not a valid model identifier' ): snake_case_ = FlaxAutoModel.from_pretrained('bert-base' ) def __lowerCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __UpperCamelCase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): snake_case_ = FlaxAutoModel.from_pretrained(__UpperCamelCase , revision='aaaaaa' ) def __lowerCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __UpperCamelCase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): snake_case_ = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def __lowerCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex(__UpperCamelCase , 'Use `from_pt=True` to load this model' ): snake_case_ = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
46
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available A = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def a(): '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=lowercase__ , default=lowercase__ , required=lowercase__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=lowercase__ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=lowercase__ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=lowercase__ , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=lowercase__ , default=0 , help='cuda_id.' , ) snake_case_ = parser.parse_args() return args def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if not len(lowercase__ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) snake_case_ , snake_case_ = imgs[0].size snake_case_ = Image.new('RGB' , size=(cols * w, rows * h) ) snake_case_ , snake_case_ = grid.size for i, img in enumerate(lowercase__ ): grid.paste(lowercase__ , box=(i % cols * w, i // cols * h) ) return grid def a(lowercase__ , lowercase__="robotic cat with wings" , lowercase__=7.5 , lowercase__=50 , lowercase__=1 , lowercase__=42 , ): '''simple docstring''' snake_case_ = torch.Generator(pipeline.device ).manual_seed(lowercase__ ) snake_case_ = pipeline( lowercase__ , guidance_scale=lowercase__ , num_inference_steps=lowercase__ , generator=lowercase__ , num_images_per_prompt=lowercase__ , ).images snake_case_ = int(math.sqrt(lowercase__ ) ) snake_case_ = image_grid(lowercase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images A = parse_args() # Load models and create wrapper for stable diffusion A = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') A = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') A = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') A = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') A = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) A = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): A = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: A = unet.to(torch.device('cuda', args.cuda_id)) A = pipeline.to(unet.device) A , A = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) A = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
46
import operator as op def a(lowercase__ ): '''simple docstring''' snake_case_ = [] snake_case_ = lambda lowercase__ , lowercase__ : int(x / y ) # noqa: E731 integer division operation snake_case_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(lowercase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) else: snake_case_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) snake_case_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) stack.append( str(opr[x](int(lowercase__ ) , int(lowercase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": A = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
46
1
def a(lowercase__ , lowercase__ ): '''simple docstring''' return abs(lowercase__ ) if a == 0 else greatest_common_divisor(b % a , lowercase__ ) def a(lowercase__ , lowercase__ ): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. snake_case_ , snake_case_ = y, x % y return abs(lowercase__ ) def a(): '''simple docstring''' try: snake_case_ = input('Enter two integers separated by comma (,): ' ).split(',' ) snake_case_ = int(nums[0] ) snake_case_ = int(nums[1] ) print( f"""greatest_common_divisor({num_a}, {num_a}) = """ f"""{greatest_common_divisor(lowercase__ , lowercase__ )}""" ) print(f"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowercase__ , lowercase__ )}""" ) except (IndexError, UnboundLocalError, ValueError): print('Wrong input' ) if __name__ == "__main__": main()
46
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" __A = """bit""" __A = ["""preactivation""", """bottleneck"""] __A = ["""SAME""", """VALID"""] def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=64 , __UpperCamelCase=[2_56, 5_12, 10_24, 20_48] , __UpperCamelCase=[3, 4, 6, 3] , __UpperCamelCase="preactivation" , __UpperCamelCase="relu" , __UpperCamelCase=None , __UpperCamelCase=32 , __UpperCamelCase=0.0 , __UpperCamelCase=False , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case_ = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = global_padding snake_case_ = num_groups snake_case_ = drop_path_rate snake_case_ = embedding_dynamic_padding snake_case_ = output_stride snake_case_ = width_factor snake_case_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
46
1
from dataclasses import dataclass, field from typing import Optional @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __A = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __A = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __A = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __A = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __A = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __A = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __A = field( default=1_0_0_0_0 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __A = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __A = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __A = field( default=7_5_0 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __A = field( default=1_6 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __A = field( default=__snake_case , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __A = field(default=5_0_0_0_0 , metadata={"""help""": """Maximum number of training steps."""} ) __A = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __A = field(default=1_0_2_4 , metadata={"""help""": """Sequence lengths used for training."""} ) __A = field(default=1 , metadata={"""help""": """Training seed."""} ) __A = field( default=1_0_2_4 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __A = field( default=__snake_case , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __A = field(default=__snake_case , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __A = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __A = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __A = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __A = field(default=1_0_2_4 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __A = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __A = field(default=__snake_case , metadata={"""help""": """Number of workers used for code evaluation."""} ) __A = field( default=__snake_case , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __A = field( default=__snake_case , metadata={"""help""": """Sample from the language model's output distribution."""} ) __A = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __A = field(default=2_5_6 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __A = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __A = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __A = field(default=1_0 , metadata={"""help""": """Number of generations to run in parallel."""} ) __A = field( default=2_0_0 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __A = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __A = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __A = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __A = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( default=__snake_case , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __A = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __A = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __A = field( default=1_0_0_0_0_0 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __A = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __A = field( default=1_0_0_0 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __A = field( default=1_0_0 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __A = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __A = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __A = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __A = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __A = field( default=__snake_case , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __A = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __A = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __A = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __A = field(default=2_0_0_0_0_0 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __A = field( default=3_2_7_6_8 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __A = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __A = field(default=__snake_case , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __A = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __A = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __A = field(default=__snake_case , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __A = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __A = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __A = field(default=__snake_case , metadata={"""help""": """Push saved tokenizer to the hub."""} )
46
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.dummy_uncond_unet snake_case_ = DDIMScheduler() snake_case_ = self.dummy_vq_model snake_case_ = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type='numpy' ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type='numpy' , return_dict=__UpperCamelCase )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) snake_case_ = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type='numpy' ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case_ = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) snake_case_ = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
46
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = ["""image_processor""", """tokenizer"""] __A = """ViltImageProcessor""" __A = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCamelCase , ) snake_case_ = kwargs.pop('feature_extractor' ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCamelCase , __UpperCamelCase ) snake_case_ = self.image_processor def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" snake_case_ = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # add pixel_values + pixel_mask snake_case_ = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase ) encoding.update(__UpperCamelCase ) return encoding def __lowerCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def __lowerCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.tokenizer.model_input_names snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCamelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCamelCase , ) return self.image_processor
46
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" __A = LEDConfig __A = {} __A = """gelu""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=20 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=4 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after snake_case_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests snake_case_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) snake_case_ = prepare_led_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ = tf.concat( [tf.zeros_like(__UpperCamelCase )[:, :-1], tf.ones_like(__UpperCamelCase )[:, -1:]] , axis=-1 , ) snake_case_ = global_attention_mask return config, inputs_dict def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = TFLEDModel(config=__UpperCamelCase ).get_decoder() snake_case_ = inputs_dict['input_ids'] snake_case_ = input_ids[:1, :] snake_case_ = inputs_dict['attention_mask'][:1, :] snake_case_ = 1 # first forward pass snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ = output_from_no_past[:, -3:, random_slice_idx] snake_case_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) def a(lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): '''simple docstring''' if attention_mask is None: snake_case_ = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __A = (TFLEDForConditionalGeneration,) if is_tf_available() else () __A = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __A = True __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = tf.zeros_like(inputs_dict['attention_mask'] ) snake_case_ = 2 snake_case_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) snake_case_ = True snake_case_ = self.model_tester.seq_length snake_case_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__UpperCamelCase ): snake_case_ = outputs.decoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__UpperCamelCase ): snake_case_ = [t.numpy() for t in outputs.encoder_attentions] snake_case_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = len(__UpperCamelCase ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) if self.is_encoder_decoder: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_decoder_attentions_output(__UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" pass def a(lowercase__ ): '''simple docstring''' return tf.constant(lowercase__ , dtype=tf.intaa ) A = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here snake_case_ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) snake_case_ = model(**__UpperCamelCase )[0] snake_case_ = (1, 10_24, 7_68) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here snake_case_ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-3 ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here snake_case_ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) snake_case_ = model(**__UpperCamelCase )[0] snake_case_ = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here snake_case_ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-3 , rtol=1E-3 )
46
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A = TypeVar('T') class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" __A = 42 # Cache store of keys __A = 42 # References of the keys in cache __A = 1_0 # Maximum capacity of cache def __init__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = deque() snake_case_ = set() if not n: snake_case_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: snake_case_ = n def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case_ = self.dq_store.pop() self.key_reference.remove(__UpperCamelCase ) else: self.dq_store.remove(__UpperCamelCase ) self.dq_store.appendleft(__UpperCamelCase ) self.key_reference.add(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" for k in self.dq_store: print(__UpperCamelCase ) def __repr__( self ): """simple docstring""" return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() A = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
46
from collections import defaultdict def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = first_str.lower().strip() snake_case_ = second_str.lower().strip() # Remove whitespace snake_case_ = first_str.replace(' ' , '' ) snake_case_ = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(lowercase__ ) != len(lowercase__ ): return False # Default values for count should be 0 snake_case_ = defaultdict(lowercase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowercase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() A = input('Enter the first string ').strip() A = input('Enter the second string ').strip() A = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
46
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , __snake_case ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = load_tool('text-to-speech' ) self.tool.setup() def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = self.tool('hey' ) snake_case_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = self.tool('hey' ) snake_case_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
46
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.dummy_uncond_unet snake_case_ = ScoreSdeVeScheduler() snake_case_ = ScoreSdeVePipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) sde_ve.to(__UpperCamelCase ) sde_ve.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__UpperCamelCase ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__UpperCamelCase , return_dict=__UpperCamelCase )[ 0 ] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 'google/ncsnpp-church-256' snake_case_ = UNetaDModel.from_pretrained(__UpperCamelCase ) snake_case_ = ScoreSdeVeScheduler.from_pretrained(__UpperCamelCase ) snake_case_ = ScoreSdeVePipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) sde_ve.to(__UpperCamelCase ) sde_ve.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=__UpperCamelCase ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
46
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() A = logging.get_logger(__name__) A = 'The Nymphenburg Palace is a beautiful palace in Munich!' def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1024, 'hidden_size': 768, 'max_length': 512, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1024, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } snake_case_ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py snake_case_ = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowercase__ , output_all_encodings=lowercase__ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowercase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later snake_case_ = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab snake_case_ = os.path.join(get_home_dir() , 'models' ) snake_case_ = _load_vocab(lowercase__ , lowercase__ , lowercase__ , cls=lowercase__ ) snake_case_ = nlp.model.BERTModel( lowercase__ , len(lowercase__ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowercase__ , use_token_type_embed=lowercase__ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowercase__ , use_decoder=lowercase__ , ) original_bort.load_parameters(lowercase__ , cast_dtype=lowercase__ , ignore_extra=lowercase__ ) snake_case_ = original_bort._collect_params_with_prefix() # Build our config 🤗 snake_case_ = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowercase__ ), } snake_case_ = BertConfig.from_dict(lowercase__ ) snake_case_ = BertForMaskedLM(lowercase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowercase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowercase__ , lowercase__ ): snake_case_ = hf_param.shape snake_case_ = to_torch(params[gluon_param] ) snake_case_ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param snake_case_ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) snake_case_ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) snake_case_ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) snake_case_ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) snake_case_ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): snake_case_ = hf_bort_model.bert.encoder.layer[i] # self attention snake_case_ = layer.attention.self snake_case_ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) snake_case_ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) snake_case_ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) snake_case_ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) snake_case_ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) snake_case_ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output snake_case_ = layer.attention.output snake_case_ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) snake_case_ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) snake_case_ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) snake_case_ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate snake_case_ = layer.intermediate snake_case_ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) snake_case_ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output snake_case_ = layer.output snake_case_ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) snake_case_ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) snake_case_ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) snake_case_ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models snake_case_ = RobertaTokenizer.from_pretrained('roberta-base' ) snake_case_ = tokenizer.encode_plus(lowercase__ )['input_ids'] # Get gluon output snake_case_ = mx.nd.array([input_ids] ) snake_case_ = original_bort(inputs=lowercase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowercase__ ) snake_case_ = BertModel.from_pretrained(lowercase__ ) hf_bort_model.eval() snake_case_ = tokenizer.encode_plus(lowercase__ , return_tensors='pt' ) snake_case_ = hf_bort_model(**lowercase__ )[0] snake_case_ = output_gluon[0].asnumpy() snake_case_ = output_hf[0].detach().numpy() snake_case_ = np.max(np.abs(hf_layer - gluon_layer ) ).item() snake_case_ = np.allclose(lowercase__ , lowercase__ , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowercase__ ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
46
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput A = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" @register_to_config def __init__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None ): """simple docstring""" super().__init__() snake_case_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case_ = torch.zeros(__UpperCamelCase , __UpperCamelCase ) else: snake_case_ = None snake_case_ = torch.nn.Parameter(__UpperCamelCase ) class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = 42 __A = 42 __A = 42 __A = 42 __A = 42 __A = 42 def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" super().__init__() self.register_modules( vqvae=__UpperCamelCase , transformer=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , scheduler=__UpperCamelCase , learned_classifier_free_sampling_embeddings=__UpperCamelCase , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = len(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else 1 # get prompt text embeddings snake_case_ = self.tokenizer( __UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) snake_case_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) snake_case_ = text_input_ids[:, : self.tokenizer.model_max_length] snake_case_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate text embeddings for each generation per prompt snake_case_ = prompt_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case_ = self.learned_classifier_free_sampling_embeddings.embeddings snake_case_ = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCamelCase , 1 , 1 ) else: snake_case_ = [''] * batch_size snake_case_ = text_input_ids.shape[-1] snake_case_ = self.tokenizer( __UpperCamelCase , padding='max_length' , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='pt' , ) snake_case_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ = negative_prompt_embeds.shape[1] snake_case_ = negative_prompt_embeds.repeat(1 , __UpperCamelCase , 1 ) snake_case_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase = 1_00 , __UpperCamelCase = 5.0 , __UpperCamelCase = 1.0 , __UpperCamelCase = 1 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , ): """simple docstring""" if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ = len(__UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}""" ) snake_case_ = batch_size * num_images_per_prompt snake_case_ = guidance_scale > 1.0 snake_case_ = self._encode_prompt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__UpperCamelCase )}.""" ) # get the initial completely masked latents unless the user supplied it snake_case_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case_ = self.transformer.num_vector_embeds - 1 snake_case_ = torch.full(__UpperCamelCase , __UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) snake_case_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) snake_case_ = self.scheduler.timesteps.to(self.device ) snake_case_ = latents for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance snake_case_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case_ = self.transformer(__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase ).sample if do_classifier_free_guidance: snake_case_ , snake_case_ = model_output.chunk(2 ) snake_case_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCamelCase , dim=1 , keepdim=__UpperCamelCase ) snake_case_ = self.truncate(__UpperCamelCase , __UpperCamelCase ) # remove `log(0)`'s (`-inf`s) snake_case_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step(__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , generator=__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ = self.vqvae.config.vq_embed_dim snake_case_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case_ = self.vqvae.quantize.get_codebook_entry(__UpperCamelCase , shape=__UpperCamelCase ) snake_case_ = self.vqvae.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase ).sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ , snake_case_ = torch.sort(__UpperCamelCase , 1 , descending=__UpperCamelCase ) snake_case_ = torch.exp(__UpperCamelCase ) snake_case_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case_ = torch.full_like(keep_mask[:, 0:1, :] , __UpperCamelCase ) snake_case_ = torch.cat((all_true, keep_mask) , dim=1 ) snake_case_ = keep_mask[:, :-1, :] snake_case_ = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case_ = log_p_x_0.clone() snake_case_ = -torch.inf # -inf = log(0) return rv
46
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 1 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__UpperCamelCase ) return image @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__UpperCamelCase ) @property def __lowerCAmelCase ( self ): """simple docstring""" def extract(*__UpperCamelCase , **__UpperCamelCase ): class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ): """simple docstring""" snake_case_ = torch.ones([0] ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" self.pixel_values.to(__UpperCamelCase ) return self return Out() return extract def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 'cpu' # ensure determinism for the device-dependent torch.Generator snake_case_ = self.dummy_cond_unet snake_case_ = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) snake_case_ = self.dummy_vae snake_case_ = self.dummy_text_encoder snake_case_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) snake_case_ = 77 snake_case_ = self.dummy_image.to(__UpperCamelCase ) snake_case_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionImgaImgPipeline( unet=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=self.dummy_extractor , ) snake_case_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCamelCase ) snake_case_ = alt_pipe.to(__UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = 'A painting of a squirrel eating a burger' snake_case_ = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) snake_case_ = alt_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=__UpperCamelCase , ) snake_case_ = output.images snake_case_ = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) snake_case_ = alt_pipe( [prompt] , generator=__UpperCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.dummy_cond_unet snake_case_ = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) snake_case_ = self.dummy_vae snake_case_ = self.dummy_text_encoder snake_case_ = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) snake_case_ = 77 snake_case_ = self.dummy_image.to(__UpperCamelCase ) # put models in fp16 snake_case_ = unet.half() snake_case_ = vae.half() snake_case_ = bert.half() # make sure here that pndm scheduler skips prk snake_case_ = AltDiffusionImgaImgPipeline( unet=__UpperCamelCase , scheduler=__UpperCamelCase , vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=self.dummy_extractor , ) snake_case_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__UpperCamelCase ) snake_case_ = alt_pipe.to(__UpperCamelCase ) alt_pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = 'A painting of a squirrel eating a burger' snake_case_ = torch.manual_seed(0 ) snake_case_ = alt_pipe( [prompt] , generator=__UpperCamelCase , num_inference_steps=2 , output_type='np' , image=__UpperCamelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ = init_image.resize((7_60, 5_04) ) snake_case_ = 'BAAI/AltDiffusion' snake_case_ = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCamelCase , output_type='np' , ) snake_case_ = output.images[0] snake_case_ = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) snake_case_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) snake_case_ = init_image.resize((7_68, 5_12) ) snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) snake_case_ = 'BAAI/AltDiffusion' snake_case_ = AltDiffusionImgaImgPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() snake_case_ = 'A fantasy landscape, trending on artstation' snake_case_ = torch.manual_seed(0 ) snake_case_ = pipe( prompt=__UpperCamelCase , image=__UpperCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__UpperCamelCase , output_type='np' , ) snake_case_ = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
46
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'num_attention_heads' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=6_40 , __UpperCamelCase=4 , __UpperCamelCase="silu" , __UpperCamelCase=3 , __UpperCamelCase=32 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=10 , __UpperCamelCase=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = last_hidden_size snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = conv_kernel_size snake_case_ = output_stride snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = classifier_dropout_prob snake_case_ = use_labels snake_case_ = is_training snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = scope def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self ): """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MobileViTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MobileViTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MobileViTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __A = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTModelTester(self ) snake_case_ = MobileViTConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MobileViT does not output attentions' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = 5 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case_ = 2 for i in range(len(__UpperCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MobileViTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a(): '''simple docstring''' snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(__UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = model.to(__UpperCamelCase ) snake_case_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) snake_case_ = outputs.logits # verify the logits snake_case_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=__UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = model.to(__UpperCamelCase ) snake_case_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase , target_sizes=[(50, 60)] ) snake_case_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase ) snake_case_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase )
46
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = 1.5 snake_case_ = int(factor * num_class_images ) snake_case_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowercase__ , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=lowercase__ ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: snake_case_ = client.query(text=lowercase__ ) if len(lowercase__ ) >= factor * num_class_images or num_images > 1e4: break else: snake_case_ = int(factor * num_images ) snake_case_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowercase__ , aesthetic_weight=0.1 , ) snake_case_ = 0 snake_case_ = 0 snake_case_ = tqdm(desc='downloading real regularization images' , total=lowercase__ ) with open(f"""{class_data_dir}/caption.txt""" , 'w' ) as fa, open(f"""{class_data_dir}/urls.txt""" , 'w' ) as fa, open( f"""{class_data_dir}/images.txt""" , 'w' ) as fa: while total < num_class_images: snake_case_ = class_images[count] count += 1 try: snake_case_ = requests.get(images['url'] ) if img.status_code == 200: snake_case_ = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def a(): '''simple docstring''' snake_case_ = argparse.ArgumentParser('' , add_help=lowercase__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=lowercase__ , type=lowercase__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=lowercase__ , type=lowercase__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=lowercase__ ) return parser.parse_args() if __name__ == "__main__": A = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
46
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] )
46
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def a(lowercase__ , lowercase__=False ): '''simple docstring''' snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def a(lowercase__ , lowercase__ , lowercase__=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case_ = '' else: snake_case_ = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) snake_case_ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def a(lowercase__ ): '''simple docstring''' snake_case_ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = dct.pop(lowercase__ ) snake_case_ = val def a(): '''simple docstring''' snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case_ = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def a(lowercase__ , lowercase__ , lowercase__=True ): '''simple docstring''' snake_case_ = ViTConfig() # patch_size if model_name[-1] == "8": snake_case_ = 8 # set labels if required if not base_model: snake_case_ = 1000 snake_case_ = 'huggingface/label-files' snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(lowercase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: snake_case_ = 384 snake_case_ = 1536 snake_case_ = 12 snake_case_ = 6 # load original model from torch hub snake_case_ = torch.hub.load('facebookresearch/dino:main' , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) snake_case_ = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: snake_case_ = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: snake_case_ = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor snake_case_ = ViTImageProcessor() snake_case_ = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case_ = encoding['pixel_values'] snake_case_ = model(lowercase__ ) if base_model: snake_case_ = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: snake_case_ = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1e-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) A = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
46
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(__UpperCamelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('inf' )] snake_case_ = tf.cast( tf.where(tf.not_equal(__UpperCamelCase , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1E-12 ) tf.debugging.assert_equal(__UpperCamelCase , __UpperCamelCase ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase , __snake_case ): """simple docstring""" if is_tf_available(): __A = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 2 snake_case_ = 2 class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__( self , __UpperCamelCase ): """simple docstring""" super(__UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=__UpperCamelCase , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.model.generate( input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , max_new_tokens=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_02, 1_03]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={'serving_default': dummy_model.serving} ) snake_case_ = tf.saved_model.load(__UpperCamelCase ).signatures['serving_default'] for batch_size in range(1 , len(__UpperCamelCase ) + 1 ): snake_case_ = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**__UpperCamelCase )['sequences'] snake_case_ = test_model.generate(**__UpperCamelCase , max_new_tokens=__UpperCamelCase ) tf.debugging.assert_equal(__UpperCamelCase , __UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 1 snake_case_ = 2 class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__( self , __UpperCamelCase ): """simple docstring""" super(__UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=__UpperCamelCase , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.model.generate( input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , max_new_tokens=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_02, 1_03]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={'serving_default': dummy_model.serving} ) snake_case_ = tf.saved_model.load(__UpperCamelCase ).signatures['serving_default'] for input_row in range(len(__UpperCamelCase ) ): snake_case_ = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**__UpperCamelCase )['sequences'] snake_case_ = test_model.generate(**__UpperCamelCase , max_new_tokens=__UpperCamelCase ) tf.debugging.assert_equal(__UpperCamelCase , __UpperCamelCase ) @slow @require_tensorflow_text def __lowerCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=__UpperCamelCase ) class SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__UpperCamelCase , 'spiece.model' ) , 'rb' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def __lowerCAmelCase ( self , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" snake_case_ = self.tokenizer.tokenize(__UpperCamelCase ) snake_case_ , snake_case_ = text.pad_model_inputs( __UpperCamelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase ) return self.tokenizer.detokenize(__UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) snake_case_ = complete_model(__UpperCamelCase ) snake_case_ = tf.keras.Model(__UpperCamelCase , __UpperCamelCase ) keras_model.save(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } snake_case_ = 14 snake_case_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 'Hello, my dog is cute and' snake_case_ = tokenizer(__UpperCamelCase , return_tensors='tf' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_38, 1_98] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = 'Hugging Face is a technology company based in New York and Paris.' snake_case_ = bart_tokenizer(__UpperCamelCase , return_tensors='tf' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = bart_model.generate(__UpperCamelCase ).numpy() class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" return super().call(__UpperCamelCase , **__UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = bart_model.generate(__UpperCamelCase , foo='bar' ).numpy() self.assertTrue(np.array_equal(__UpperCamelCase , __UpperCamelCase ) ) class SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ): """simple docstring""" def __lowerCAmelCase ( self , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return super().call(__UpperCamelCase , **__UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(__UpperCamelCase ).numpy() with self.assertRaises(__UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__UpperCamelCase , foo='bar' )
46
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A = 16 A = 32 def a(lowercase__ , lowercase__ = 16 ): '''simple docstring''' snake_case_ = AutoTokenizer.from_pretrained('bert-base-cased' ) snake_case_ = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowercase__ ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ = 16 elif accelerator.mixed_precision != "no": snake_case_ = 8 else: snake_case_ = None return tokenizer.pad( lowercase__ , padding='longest' , max_length=lowercase__ , pad_to_multiple_of=lowercase__ , return_tensors='pt' , ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets['train'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) snake_case_ = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A = mocked_dataloaders # noqa: F811 def a(lowercase__ , lowercase__ ): '''simple docstring''' # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , lowercase__ ) == "1": snake_case_ = 2 # Initialize accelerator snake_case_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config['lr'] snake_case_ = int(config['num_epochs'] ) snake_case_ = int(config['seed'] ) snake_case_ = int(config['batch_size'] ) snake_case_ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation snake_case_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ = batch_size // MAX_GPU_BATCH_SIZE snake_case_ = MAX_GPU_BATCH_SIZE set_seed(lowercase__ ) snake_case_ , snake_case_ = get_dataloaders(lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ = model.to(accelerator.device ) # Instantiate optimizer snake_case_ = AdamW(params=model.parameters() , lr=lowercase__ ) # Instantiate scheduler snake_case_ = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=100 , num_training_steps=(len(lowercase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ = model(**lowercase__ ) snake_case_ = outputs.loss snake_case_ = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() snake_case_ = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**lowercase__ ) snake_case_ = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowercase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples snake_case_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase__ ) def a(): '''simple docstring''' snake_case_ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowercase__ , default=lowercase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) snake_case_ = parser.parse_args() snake_case_ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
46
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=8 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=16 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=36 , __UpperCamelCase="gelu" , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=5_12 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.get_config() snake_case_ = 3_00 return config def __lowerCAmelCase ( self ): """simple docstring""" ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = self.prepare_config_and_inputs() snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MraModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" snake_case_ = True snake_case_ = MraModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MraForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MraForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MraForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MraForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_choices snake_case_ = MraForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): """simple docstring""" __A = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __A = False __A = False __A = False __A = False __A = () def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MraModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip(reason='MRA does not output attentions' ) def __lowerCAmelCase ( self ): """simple docstring""" return @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) snake_case_ = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(__UpperCamelCase )[0] snake_case_ = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) snake_case_ = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(__UpperCamelCase )[0] snake_case_ = 5_02_65 snake_case_ = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) snake_case_ = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(__UpperCamelCase )[0] snake_case_ = 5_02_65 snake_case_ = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) )
46
1
from collections import defaultdict def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = first_str.lower().strip() snake_case_ = second_str.lower().strip() # Remove whitespace snake_case_ = first_str.replace(' ' , '' ) snake_case_ = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(lowercase__ ) != len(lowercase__ ): return False # Default values for count should be 0 snake_case_ = defaultdict(lowercase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowercase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() A = input('Enter the first string ').strip() A = input('Enter the second string ').strip() A = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
46
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file snake_case_ = TapasConfig.from_json_file(lowercase__ ) # set absolute/relative position embeddings parameter snake_case_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WTQ": # run_task_main.py hparams snake_case_ = 4 snake_case_ = True # hparam_utils.py hparams snake_case_ = 0.66_4694 snake_case_ = 0.20_7951 snake_case_ = 0.12_1194 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = 0.035_2513 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams snake_case_ = 4 snake_case_ = False # hparam_utils.py hparams snake_case_ = 36.4519 snake_case_ = 0.90_3421 snake_case_ = 222.088 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = 0.76_3141 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "TABFACT": snake_case_ = TapasForSequenceClassification(config=lowercase__ ) elif task == "MLM": snake_case_ = TapasForMaskedLM(config=lowercase__ ) elif task == "INTERMEDIATE_PRETRAINING": snake_case_ = TapasModel(config=lowercase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) snake_case_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(lowercase__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
46
1
def a(lowercase__ ): '''simple docstring''' snake_case_ = [] for data in source_data: for i, el in enumerate(lowercase__ ): if len(lowercase__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowercase__ ) ) return data_lists def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = [] for dlist, weight in zip(lowercase__ , lowercase__ ): snake_case_ = min(lowercase__ ) snake_case_ = max(lowercase__ ) snake_case_ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: snake_case_ = f"""Invalid weight of {weight:f} provided""" raise ValueError(lowercase__ ) score_lists.append(lowercase__ ) return score_lists def a(lowercase__ ): '''simple docstring''' snake_case_ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowercase__ ): snake_case_ = final_scores[j] + ele return final_scores def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = get_data(lowercase__ ) snake_case_ = calculate_each_score(lowercase__ , lowercase__ ) snake_case_ = generate_final_scores(lowercase__ ) # append scores to source data for i, ele in enumerate(lowercase__ ): source_data[i].append(lowercase__ ) return source_data
46
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=[1, 2, 1] , __UpperCamelCase=[2, 2, 4] , __UpperCamelCase=2 , __UpperCamelCase=2.0 , __UpperCamelCase=True , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase="gelu" , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=0.02 , __UpperCamelCase=1E-5 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=10 , __UpperCamelCase=8 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = depths snake_case_ = num_heads snake_case_ = window_size snake_case_ = mlp_ratio snake_case_ = qkv_bias snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = drop_path_rate snake_case_ = hidden_act snake_case_ = use_absolute_embeddings snake_case_ = patch_norm snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = is_training snake_case_ = scope snake_case_ = use_labels snake_case_ = type_sequence_label_size snake_case_ = encoder_stride def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = SwinvaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) snake_case_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = SwinvaForMaskedImageModeling(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = SwinvaForMaskedImageModeling(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.type_sequence_label_size snake_case_ = SwinvaForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __A = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SwinvaModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , embed_dim=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.attentions snake_case_ = len(self.model_tester.depths ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = config.window_size**2 snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) snake_case_ = len(__UpperCamelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): snake_case_ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case_ = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCamelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # Swinv2 has a different seq_length snake_case_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) snake_case_ = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = reshaped_hidden_states[0].shape snake_case_ = ( reshaped_hidden_states[0].view(__UpperCamelCase , __UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SwinvaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: snake_case_ = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
46
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = 42 __A = None __A = None A = namedtuple('CoinsDistribResult', 'moves excess') def a(lowercase__ ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(lowercase__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase__ ) != count_coins(lowercase__ ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(lowercase__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) snake_case_ , snake_case_ = get_distrib(node.left ) snake_case_ , snake_case_ = get_distrib(node.right ) snake_case_ = 1 - left_distrib_excess snake_case_ = 1 - right_distrib_excess snake_case_ = ( left_distrib_moves + right_distrib_moves + abs(lowercase__ ) + abs(lowercase__ ) ) snake_case_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase__ , lowercase__ ) return get_distrib(lowercase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
46
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline A = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') A = parser.parse_args() A = 'cpu' A = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' A = 'path-to-your-trained-model' A = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) A = pipe.to(device) # to channels last A = pipe.unet.to(memory_format=torch.channels_last) A = pipe.vae.to(memory_format=torch.channels_last) A = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: A = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex A = torch.randn(2, 4, 64, 64) A = torch.rand(1) * 999 A = torch.randn(2, 77, 768) A = (sample, timestep, encoder_hidden_status) try: A = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: A = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) A = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) A = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: A = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute A = 666 A = torch.Generator(device).manual_seed(seed) A = {'generator': generator} if args.steps is not None: A = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): A = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
46
1
import math def a(lowercase__ ): '''simple docstring''' snake_case_ = [] snake_case_ = 2 snake_case_ = int(math.sqrt(lowercase__ ) ) # Size of every segment snake_case_ = [True] * (end + 1) snake_case_ = [] while start <= end: if temp[start] is True: in_prime.append(lowercase__ ) for i in range(start * start , end + 1 , lowercase__ ): snake_case_ = False start += 1 prime += in_prime snake_case_ = end + 1 snake_case_ = min(2 * end , lowercase__ ) while low <= n: snake_case_ = [True] * (high - low + 1) for each in in_prime: snake_case_ = math.floor(low / each ) * each if t < low: t += each for j in range(lowercase__ , high + 1 , lowercase__ ): snake_case_ = False for j in range(len(lowercase__ ) ): if temp[j] is True: prime.append(j + low ) snake_case_ = high + 1 snake_case_ = min(high + end , lowercase__ ) return prime print(sieve(10**6))
46
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """unispeech-sat""" def __init__( self , __UpperCamelCase=32 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-5 , __UpperCamelCase="group" , __UpperCamelCase="gelu" , __UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCamelCase=False , __UpperCamelCase=1_28 , __UpperCamelCase=16 , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=0.05 , __UpperCamelCase=10 , __UpperCamelCase=2 , __UpperCamelCase=0.0 , __UpperCamelCase=10 , __UpperCamelCase=0 , __UpperCamelCase=3_20 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , __UpperCamelCase=1_00 , __UpperCamelCase=2_56 , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase="mean" , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=2_56 , __UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 15_00) , __UpperCamelCase=(5, 3, 3, 1, 1) , __UpperCamelCase=(1, 2, 3, 1, 1) , __UpperCamelCase=5_12 , __UpperCamelCase=0 , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=5_04 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size snake_case_ = num_clusters snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = feat_quantizer_dropout snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = xvector_output_dim @property def __lowerCAmelCase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
46
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser A = re.compile(R'\s+') def a(lowercase__ ): '''simple docstring''' return {"hash": hashlib.mda(re.sub(lowercase__ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a(lowercase__ ): '''simple docstring''' snake_case_ = [len(lowercase__ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(lowercase__ ), "line_max": max(lowercase__ )} def a(lowercase__ ): '''simple docstring''' snake_case_ = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a(lowercase__ , lowercase__ ): '''simple docstring''' if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a(lowercase__ , lowercase__=5 ): '''simple docstring''' snake_case_ = ['auto-generated', 'autogenerated', 'automatically generated'] snake_case_ = example['content'].splitlines() for _, line in zip(range(lowercase__ ) , lowercase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a(lowercase__ , lowercase__=5 , lowercase__=0.05 ): '''simple docstring''' snake_case_ = ['unit tests', 'test file', 'configuration file'] snake_case_ = example['content'].splitlines() snake_case_ = 0 snake_case_ = 0 # first test for _, line in zip(range(lowercase__ ) , lowercase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ = example['content'].count('\n' ) snake_case_ = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a(lowercase__ ): '''simple docstring''' snake_case_ = ['def ', 'class ', 'for ', 'while '] snake_case_ = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a(lowercase__ , lowercase__=4 ): '''simple docstring''' snake_case_ = example['content'].splitlines() snake_case_ = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a(lowercase__ ): '''simple docstring''' snake_case_ = tokenizer(example['content'] , truncation=lowercase__ )['input_ids'] snake_case_ = len(example['content'] ) / len(lowercase__ ) return {"ratio": ratio} def a(lowercase__ ): '''simple docstring''' snake_case_ = {} results.update(get_hash(lowercase__ ) ) results.update(line_stats(lowercase__ ) ) results.update(alpha_stats(lowercase__ ) ) results.update(char_token_ratio(lowercase__ ) ) results.update(is_autogenerated(lowercase__ ) ) results.update(is_config_or_test(lowercase__ ) ) results.update(has_no_keywords(lowercase__ ) ) results.update(has_few_assignments(lowercase__ ) ) return results def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if not check_uniques(lowercase__ , lowercase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a(lowercase__ ): '''simple docstring''' with open(lowercase__ , 'rb' ) as f_in: with gzip.open(str(lowercase__ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(lowercase__ , lowercase__ ) os.unlink(lowercase__ ) # Settings A = HfArgumentParser(PreprocessingArguments) A = parser.parse_args() if args.num_workers is None: A = multiprocessing.cpu_count() A = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset A = time.time() A = load_dataset(args.dataset_name, split='train') print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing A = time.time() A = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes A = set(ds.unique('hash')) A = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics A = time.time() A = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: A = time.time() A , A = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file A = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) A = output_dir / 'data' data_dir.mkdir(exist_ok=True) A = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): A = str(data_dir / f"""file-{file_number+1:012}.json""") A = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
46
class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = name snake_case_ = val def __str__( self ): """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , __UpperCamelCase ): """simple docstring""" return self.val < other.val class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = {} snake_case_ = {} snake_case_ = self.build_heap(__UpperCamelCase ) def __getitem__( self , __UpperCamelCase ): """simple docstring""" return self.get_value(__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return (idx - 1) // 2 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return idx * 2 + 1 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return idx * 2 + 2 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return self.heap_dict[key] def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = len(__UpperCamelCase ) - 1 snake_case_ = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): snake_case_ = idx snake_case_ = i.val for i in range(__UpperCamelCase , -1 , -1 ): self.sift_down(__UpperCamelCase , __UpperCamelCase ) return array def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" while True: snake_case_ = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 snake_case_ = self.get_right_child_idx(__UpperCamelCase ) snake_case_ = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: snake_case_ = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: snake_case_ = r if smallest != idx: snake_case_ , snake_case_ = array[smallest], array[idx] ( ( snake_case_ ) , ( snake_case_ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) snake_case_ = smallest else: break def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: snake_case_ , snake_case_ = self.heap[idx], self.heap[p] snake_case_ , snake_case_ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) snake_case_ = p snake_case_ = self.get_parent_idx(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" return self.heap[0] def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.heap[-1], self.heap[0] snake_case_ , snake_case_ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) snake_case_ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" self.heap.append(__UpperCamelCase ) snake_case_ = len(self.heap ) - 1 snake_case_ = node.val self.sift_up(len(self.heap ) - 1 ) def __lowerCAmelCase ( self ): """simple docstring""" return len(self.heap ) == 0 def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" snake_case_ = new_value snake_case_ = new_value self.sift_up(self.idx_of_element[node] ) A = Node('R', -1) A = Node('B', 6) A = Node('A', 3) A = Node('X', 1) A = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
46
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def a(lowercase__ ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def a(lowercase__ ): '''simple docstring''' snake_case_ = np.max(_outputs , axis=-1 , keepdims=lowercase__ ) snake_case_ = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase__ ) class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """sigmoid""" __A = """softmax""" __A = """none""" @add_end_docstrings( __snake_case , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = False __A = ClassificationFunction.NONE def __init__( self , **__UpperCamelCase ): """simple docstring""" super().__init__(**__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __lowerCAmelCase ( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="" , **__UpperCamelCase ): """simple docstring""" snake_case_ = tokenizer_kwargs snake_case_ = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: snake_case_ = self.model.config.return_all_scores if isinstance(__UpperCamelCase , __UpperCamelCase ) or top_k is None: snake_case_ = top_k snake_case_ = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , __UpperCamelCase , ) if return_all_scores: snake_case_ = None else: snake_case_ = 1 if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: snake_case_ = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" snake_case_ = super().__call__(*__UpperCamelCase , **__UpperCamelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. snake_case_ = 'top_k' not in kwargs if isinstance(args[0] , __UpperCamelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __lowerCAmelCase ( self , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" snake_case_ = self.framework if isinstance(__UpperCamelCase , __UpperCamelCase ): return self.tokenizer(**__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) == 1 and isinstance(inputs[0] , __UpperCamelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__UpperCamelCase , **__UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return self.model(**__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=1 , __UpperCamelCase=True ): """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: snake_case_ = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: snake_case_ = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: snake_case_ = self.model.config.function_to_apply else: snake_case_ = ClassificationFunction.NONE snake_case_ = model_outputs['logits'][0] snake_case_ = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: snake_case_ = sigmoid(__UpperCamelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: snake_case_ = softmax(__UpperCamelCase ) elif function_to_apply == ClassificationFunction.NONE: snake_case_ = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} snake_case_ = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(__UpperCamelCase ) ] if not _legacy: dict_scores.sort(key=lambda __UpperCamelCase : x["score"] , reverse=__UpperCamelCase ) if top_k is not None: snake_case_ = dict_scores[:top_k] return dict_scores
46
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['PerceiverFeatureExtractor'] A = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
1
def a(lowercase__ , lowercase__ ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.2_5) = }""") print(f"""{price_plus_tax(1_2_5.5_0, 0.0_5) = }""")
46
def a(lowercase__ , lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(lowercase__ , lowercase__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) snake_case_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
46
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=18 , __UpperCamelCase=30 , __UpperCamelCase=4_00 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , ): """simple docstring""" snake_case_ = size if size is not None else {'shortest_edge': 18} snake_case_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_center_crop snake_case_ = crop_size snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std def __lowerCAmelCase ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): """simple docstring""" __A = LevitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = LevitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'image_std' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'size' ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case_ = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case_ = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched snake_case_ = image_processing(__UpperCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
46
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = 1.5 snake_case_ = int(factor * num_class_images ) snake_case_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowercase__ , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=lowercase__ ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: snake_case_ = client.query(text=lowercase__ ) if len(lowercase__ ) >= factor * num_class_images or num_images > 1e4: break else: snake_case_ = int(factor * num_images ) snake_case_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowercase__ , aesthetic_weight=0.1 , ) snake_case_ = 0 snake_case_ = 0 snake_case_ = tqdm(desc='downloading real regularization images' , total=lowercase__ ) with open(f"""{class_data_dir}/caption.txt""" , 'w' ) as fa, open(f"""{class_data_dir}/urls.txt""" , 'w' ) as fa, open( f"""{class_data_dir}/images.txt""" , 'w' ) as fa: while total < num_class_images: snake_case_ = class_images[count] count += 1 try: snake_case_ = requests.get(images['url'] ) if img.status_code == 200: snake_case_ = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def a(): '''simple docstring''' snake_case_ = argparse.ArgumentParser('' , add_help=lowercase__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=lowercase__ , type=lowercase__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=lowercase__ , type=lowercase__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=lowercase__ ) return parser.parse_args() if __name__ == "__main__": A = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
46
1
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration A = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def a(lowercase__ ): '''simple docstring''' snake_case_ = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) A = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def a(lowercase__ ): '''simple docstring''' snake_case_ = list(s_dict.keys() ) for key in keys: snake_case_ = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ = new_key.replace(lowercase__ , lowercase__ ) print(f"""{key} -> {new_key}""" ) snake_case_ = s_dict.pop(lowercase__ ) return s_dict def a(lowercase__ ): '''simple docstring''' snake_case_ , snake_case_ = emb.weight.shape snake_case_ = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) snake_case_ = emb.weight.data return lin_layer def a(lowercase__ , lowercase__ ): '''simple docstring''' os.makedirs(lowercase__ , exist_ok=lowercase__ ) snake_case_ = os.path.basename(lowercase__ ) snake_case_ = url.split('/' )[-2] snake_case_ = os.path.join(lowercase__ , lowercase__ ) if os.path.exists(lowercase__ ) and not os.path.isfile(lowercase__ ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(lowercase__ ): snake_case_ = open(lowercase__ , 'rb' ).read() if hashlib.shaaaa(lowercase__ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(lowercase__ ) as source, open(lowercase__ , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=80 , unit='iB' , unit_scale=lowercase__ , unit_divisor=1024 ) as loop: while True: snake_case_ = source.read(8192 ) if not buffer: break output.write(lowercase__ ) loop.update(len(lowercase__ ) ) snake_case_ = open(lowercase__ , 'rb' ).read() if hashlib.shaaaa(lowercase__ ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def a(lowercase__ , lowercase__ ): '''simple docstring''' if ".pt" not in checkpoint_path: snake_case_ = _download(_MODELS[checkpoint_path] ) else: snake_case_ = torch.load(lowercase__ , map_location='cpu' ) snake_case_ = original_checkpoint['dims'] snake_case_ = original_checkpoint['model_state_dict'] snake_case_ = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(lowercase__ ) rename_keys(lowercase__ ) snake_case_ = True snake_case_ = state_dict['decoder.layers.0.fc1.weight'].shape[0] snake_case_ = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=lowercase__ , decoder_ffn_dim=lowercase__ , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) snake_case_ = WhisperForConditionalGeneration(lowercase__ ) snake_case_ , snake_case_ = model.model.load_state_dict(lowercase__ , strict=lowercase__ ) if len(lowercase__ ) > 0 and not set(lowercase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f""" but all the following weights are missing {missing}""" ) if tie_embeds: snake_case_ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ = proj_out_weights model.save_pretrained(lowercase__ ) if __name__ == "__main__": A = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') A = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
46
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
46
1
def a(lowercase__=28123 ): '''simple docstring''' snake_case_ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i snake_case_ = set() snake_case_ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
46
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') A = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __A = field( default=__snake_case , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __A = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __A = field( default=__snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field(default=__snake_case , metadata={"""help""": """The input training data file (a text file)."""} ) __A = field( default=__snake_case , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __A = field( default=__snake_case , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __A = field( default=__snake_case , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __A = field( default=__snake_case , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCAmelCase ( self ): """simple docstring""" if self.train_file is not None: snake_case_ = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: snake_case_ = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = 42 __A = True __A = None __A = None def __call__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = 'label' if 'label' in features[0].keys() else 'labels' snake_case_ = [feature.pop(__UpperCamelCase ) for feature in features] snake_case_ = len(__UpperCamelCase ) snake_case_ = len(features[0]['input_ids'] ) snake_case_ = [ [{k: v[i] for k, v in feature.items()} for i in range(__UpperCamelCase )] for feature in features ] snake_case_ = list(chain(*__UpperCamelCase ) ) snake_case_ = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten snake_case_ = {k: v.view(__UpperCamelCase , __UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels snake_case_ = torch.tensor(__UpperCamelCase , dtype=torch.intaa ) return batch def a(): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(lowercase__ ) datasets.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: snake_case_ = {} if data_args.train_file is not None: snake_case_ = data_args.train_file if data_args.validation_file is not None: snake_case_ = data_args.validation_file snake_case_ = data_args.train_file.split('.' )[-1] snake_case_ = load_dataset( lowercase__ , data_files=lowercase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. snake_case_ = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. snake_case_ = [f"""ending{i}""" for i in range(4 )] snake_case_ = 'sent1' snake_case_ = 'sent2' if data_args.max_seq_length is None: snake_case_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) snake_case_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowercase__ ): snake_case_ = [[context] * 4 for context in examples[context_name]] snake_case_ = examples[question_header_name] snake_case_ = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(lowercase__ ) ] # Flatten out snake_case_ = list(chain(*lowercase__ ) ) snake_case_ = list(chain(*lowercase__ ) ) # Tokenize snake_case_ = tokenizer( lowercase__ , lowercase__ , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowercase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case_ = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case_ = min(len(lowercase__ ) , data_args.max_train_samples ) snake_case_ = train_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): snake_case_ = train_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case_ = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case_ = min(len(lowercase__ ) , data_args.max_eval_samples ) snake_case_ = eval_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): snake_case_ = eval_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator snake_case_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowercase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowercase__ ): snake_case_ , snake_case_ = eval_predictions snake_case_ = np.argmax(lowercase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer snake_case_ = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase__ ) ) snake_case_ = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('train' , lowercase__ ) trainer.save_metrics('train' , lowercase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase__ ) snake_case_ = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) snake_case_ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def a(lowercase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
46
1
from __future__ import annotations from typing import TypedDict class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = 42 __A = 42 def a(lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(lowercase__ ) )] def a(lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) snake_case_ = all_rotations(lowercase__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation snake_case_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowercase__ ), } return response def a(lowercase__ , lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: snake_case_ = int(lowercase__ ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(lowercase__ ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) snake_case_ = [''] * len(lowercase__ ) for _ in range(len(lowercase__ ) ): for i in range(len(lowercase__ ) ): snake_case_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": A = 'Provide a string that I will generate its BWT transform: ' A = input(entry_msg).strip() A = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) A = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
46
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available A = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """Wav2Vec2FeatureExtractor""" __A = """AutoTokenizer""" def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" super().__init__(__UpperCamelCase , __UpperCamelCase ) snake_case_ = self.feature_extractor snake_case_ = False @classmethod def __lowerCAmelCase ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" try: return super().from_pretrained(__UpperCamelCase , **__UpperCamelCase ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , __UpperCamelCase , ) snake_case_ = WavaVecaFeatureExtractor.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) snake_case_ = WavaVecaCTCTokenizer.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) return cls(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase ) def __call__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase , **__UpperCamelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) snake_case_ = kwargs.pop('raw_speech' ) else: snake_case_ = kwargs.pop('audio' , __UpperCamelCase ) snake_case_ = kwargs.pop('sampling_rate' , __UpperCamelCase ) snake_case_ = kwargs.pop('text' , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: snake_case_ = args[0] snake_case_ = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: snake_case_ = self.feature_extractor(__UpperCamelCase , *__UpperCamelCase , sampling_rate=__UpperCamelCase , **__UpperCamelCase ) if text is not None: snake_case_ = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) if text is None: return inputs elif audio is None: return encodings else: snake_case_ = encodings['input_ids'] return inputs def __lowerCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*__UpperCamelCase , **__UpperCamelCase ) snake_case_ = kwargs.pop('input_features' , __UpperCamelCase ) snake_case_ = kwargs.pop('labels' , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: snake_case_ = args[0] snake_case_ = args[1:] if input_features is not None: snake_case_ = self.feature_extractor.pad(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if labels is not None: snake_case_ = self.tokenizer.pad(__UpperCamelCase , **__UpperCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: snake_case_ = labels['input_ids'] return input_features def __lowerCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def __lowerCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @contextmanager def __lowerCAmelCase ( self ): """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) snake_case_ = True snake_case_ = self.tokenizer yield snake_case_ = self.feature_extractor snake_case_ = False
46
import operator as op def a(lowercase__ ): '''simple docstring''' snake_case_ = [] snake_case_ = lambda lowercase__ , lowercase__ : int(x / y ) # noqa: E731 integer division operation snake_case_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(lowercase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) else: snake_case_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) snake_case_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) stack.append( str(opr[x](int(lowercase__ ) , int(lowercase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": A = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
46
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" __A = """bit""" __A = ["""preactivation""", """bottleneck"""] __A = ["""SAME""", """VALID"""] def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=64 , __UpperCamelCase=[2_56, 5_12, 10_24, 20_48] , __UpperCamelCase=[3, 4, 6, 3] , __UpperCamelCase="preactivation" , __UpperCamelCase="relu" , __UpperCamelCase=None , __UpperCamelCase=32 , __UpperCamelCase=0.0 , __UpperCamelCase=False , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case_ = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = global_padding snake_case_ = num_groups snake_case_ = drop_path_rate snake_case_ = embedding_dynamic_padding snake_case_ = output_stride snake_case_ = width_factor snake_case_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
46
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['PerceiverFeatureExtractor'] A = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.dummy_uncond_unet snake_case_ = DDIMScheduler() snake_case_ = self.dummy_vq_model snake_case_ = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type='numpy' ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type='numpy' , return_dict=__UpperCamelCase )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) snake_case_ = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type='numpy' ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case_ = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) snake_case_ = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
46
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A = logging.get_logger(__name__) A = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } A = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' for attribute in key.split('.' ): snake_case_ = getattr(lowercase__ , lowercase__ ) if weight_type is not None: snake_case_ = getattr(lowercase__ , lowercase__ ).shape else: snake_case_ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": snake_case_ = value elif weight_type == "weight_g": snake_case_ = value elif weight_type == "weight_v": snake_case_ = value elif weight_type == "bias": snake_case_ = value else: snake_case_ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = [] snake_case_ = fairseq_model.state_dict() snake_case_ = hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case_ = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == 'group' , ) snake_case_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case_ = True if "*" in mapped_key: snake_case_ = name.split(lowercase__ )[0].split('.' )[-2] snake_case_ = mapped_key.replace('*' , lowercase__ ) if "weight_g" in name: snake_case_ = 'weight_g' elif "weight_v" in name: snake_case_ = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: snake_case_ = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case_ = 'weight' else: snake_case_ = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = full_name.split('conv_layers.' )[-1] snake_case_ = name.split('.' ) snake_case_ = int(items[0] ) snake_case_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) snake_case_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) snake_case_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def a(lowercase__ , lowercase__ , lowercase__=None ): '''simple docstring''' # load the pre-trained checkpoints snake_case_ = torch.load(lowercase__ ) snake_case_ = WavLMConfigOrig(checkpoint['cfg'] ) snake_case_ = WavLMOrig(lowercase__ ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: snake_case_ = WavLMConfig.from_pretrained(lowercase__ ) else: snake_case_ = WavLMConfig() snake_case_ = WavLMModel(lowercase__ ) recursively_load_weights(lowercase__ , lowercase__ ) hf_wavlm.save_pretrained(lowercase__ ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') A = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
46
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" __A = LEDConfig __A = {} __A = """gelu""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=20 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=4 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after snake_case_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests snake_case_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) snake_case_ = prepare_led_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ = tf.concat( [tf.zeros_like(__UpperCamelCase )[:, :-1], tf.ones_like(__UpperCamelCase )[:, -1:]] , axis=-1 , ) snake_case_ = global_attention_mask return config, inputs_dict def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = TFLEDModel(config=__UpperCamelCase ).get_decoder() snake_case_ = inputs_dict['input_ids'] snake_case_ = input_ids[:1, :] snake_case_ = inputs_dict['attention_mask'][:1, :] snake_case_ = 1 # first forward pass snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ = output_from_no_past[:, -3:, random_slice_idx] snake_case_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) def a(lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): '''simple docstring''' if attention_mask is None: snake_case_ = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __A = (TFLEDForConditionalGeneration,) if is_tf_available() else () __A = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __A = True __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = tf.zeros_like(inputs_dict['attention_mask'] ) snake_case_ = 2 snake_case_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) snake_case_ = True snake_case_ = self.model_tester.seq_length snake_case_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__UpperCamelCase ): snake_case_ = outputs.decoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__UpperCamelCase ): snake_case_ = [t.numpy() for t in outputs.encoder_attentions] snake_case_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = len(__UpperCamelCase ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) if self.is_encoder_decoder: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_decoder_attentions_output(__UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" pass def a(lowercase__ ): '''simple docstring''' return tf.constant(lowercase__ , dtype=tf.intaa ) A = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here snake_case_ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) snake_case_ = model(**__UpperCamelCase )[0] snake_case_ = (1, 10_24, 7_68) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here snake_case_ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-3 ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here snake_case_ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) snake_case_ = model(**__UpperCamelCase )[0] snake_case_ = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here snake_case_ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-3 , rtol=1E-3 )
46
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) __A = field( default=__snake_case , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __A = field( default=__snake_case , metadata={"""help""": """The column name of the images in the files."""} ) __A = field(default=__snake_case , metadata={"""help""": """A folder containing the training data."""} ) __A = field(default=__snake_case , metadata={"""help""": """A folder containing the validation data."""} ) __A = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = {} if self.train_dir is not None: snake_case_ = self.train_dir if self.validation_dir is not None: snake_case_ = self.validation_dir snake_case_ = data_files if data_files else None @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( default=__snake_case , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) __A = field( default=__snake_case , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __A = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) __A = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __A = field(default=__snake_case , metadata={"""help""": """Name or path of preprocessor config."""} ) __A = field( default=__snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __A = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) __A = field( default=__snake_case , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def a(lowercase__ ): '''simple docstring''' snake_case_ = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def a(): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case_ = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: snake_case_ = ds['train'].train_test_split(data_args.train_val_split ) snake_case_ = split['train'] snake_case_ = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: snake_case_ = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: snake_case_ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: snake_case_ = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: snake_case_ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: snake_case_ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: snake_case_ = ViTImageProcessor() # create model if model_args.model_name_or_path: snake_case_ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) snake_case_ = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: snake_case_ = ds['train'].column_names else: snake_case_ = ds['validation'].column_names if data_args.image_column_name is not None: snake_case_ = data_args.image_column_name elif "image" in column_names: snake_case_ = 'image' elif "img" in column_names: snake_case_ = 'img' else: snake_case_ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: snake_case_ = image_processor.size['shortest_edge'] else: snake_case_ = (image_processor.size['height'], image_processor.size['width']) snake_case_ = Compose( [ Lambda(lambda lowercase__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ ): snake_case_ = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: snake_case_ = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: snake_case_ = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate snake_case_ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: snake_case_ = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer snake_case_ = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case_ = trainer.evaluate() trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) # Write model card and (optionally) push to hub snake_case_ = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def a(lowercase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
46
from collections import defaultdict def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = first_str.lower().strip() snake_case_ = second_str.lower().strip() # Remove whitespace snake_case_ = first_str.replace(' ' , '' ) snake_case_ = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(lowercase__ ) != len(lowercase__ ): return False # Default values for count should be 0 snake_case_ = defaultdict(lowercase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowercase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() A = input('Enter the first string ').strip() A = input('Enter the second string ').strip() A = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
46
1
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=8 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=16 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=36 , __UpperCamelCase="gelu" , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=5_12 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.get_config() snake_case_ = 3_00 return config def __lowerCAmelCase ( self ): """simple docstring""" ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = self.prepare_config_and_inputs() snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MraModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" snake_case_ = True snake_case_ = MraModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MraForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MraForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MraForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MraForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_choices snake_case_ = MraForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): """simple docstring""" __A = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __A = False __A = False __A = False __A = False __A = () def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MraModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip(reason='MRA does not output attentions' ) def __lowerCAmelCase ( self ): """simple docstring""" return @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) snake_case_ = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(__UpperCamelCase )[0] snake_case_ = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) snake_case_ = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(__UpperCamelCase )[0] snake_case_ = 5_02_65 snake_case_ = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) snake_case_ = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(__UpperCamelCase )[0] snake_case_ = 5_02_65 snake_case_ = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) )
46
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.dummy_uncond_unet snake_case_ = ScoreSdeVeScheduler() snake_case_ = ScoreSdeVePipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) sde_ve.to(__UpperCamelCase ) sde_ve.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__UpperCamelCase ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__UpperCamelCase , return_dict=__UpperCamelCase )[ 0 ] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 'google/ncsnpp-church-256' snake_case_ = UNetaDModel.from_pretrained(__UpperCamelCase ) snake_case_ = ScoreSdeVeScheduler.from_pretrained(__UpperCamelCase ) snake_case_ = ScoreSdeVePipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) sde_ve.to(__UpperCamelCase ) sde_ve.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=__UpperCamelCase ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
46
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """gpt_neox_japanese""" def __init__( self , __UpperCamelCase=3_20_00 , __UpperCamelCase=25_60 , __UpperCamelCase=32 , __UpperCamelCase=32 , __UpperCamelCase=4 , __UpperCamelCase="gelu" , __UpperCamelCase=1.00 , __UpperCamelCase=1_00_00 , __UpperCamelCase=20_48 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-5 , __UpperCamelCase=True , __UpperCamelCase=3_19_96 , __UpperCamelCase=3_19_99 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , **__UpperCamelCase , ): """simple docstring""" super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_multiple_size snake_case_ = hidden_act snake_case_ = rotary_pct snake_case_ = rotary_emb_base snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = attention_dropout snake_case_ = hidden_dropout
46
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput A = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" @register_to_config def __init__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None ): """simple docstring""" super().__init__() snake_case_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" snake_case_ = torch.zeros(__UpperCamelCase , __UpperCamelCase ) else: snake_case_ = None snake_case_ = torch.nn.Parameter(__UpperCamelCase ) class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = 42 __A = 42 __A = 42 __A = 42 __A = 42 __A = 42 def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" super().__init__() self.register_modules( vqvae=__UpperCamelCase , transformer=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , scheduler=__UpperCamelCase , learned_classifier_free_sampling_embeddings=__UpperCamelCase , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = len(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else 1 # get prompt text embeddings snake_case_ = self.tokenizer( __UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) snake_case_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) snake_case_ = text_input_ids[:, : self.tokenizer.model_max_length] snake_case_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 snake_case_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate text embeddings for each generation per prompt snake_case_ = prompt_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: snake_case_ = self.learned_classifier_free_sampling_embeddings.embeddings snake_case_ = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCamelCase , 1 , 1 ) else: snake_case_ = [''] * batch_size snake_case_ = text_input_ids.shape[-1] snake_case_ = self.tokenizer( __UpperCamelCase , padding='max_length' , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors='pt' , ) snake_case_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings snake_case_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ = negative_prompt_embeds.shape[1] snake_case_ = negative_prompt_embeds.repeat(1 , __UpperCamelCase , 1 ) snake_case_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __UpperCamelCase , __UpperCamelCase = 1_00 , __UpperCamelCase = 5.0 , __UpperCamelCase = 1.0 , __UpperCamelCase = 1 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , ): """simple docstring""" if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case_ = len(__UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}""" ) snake_case_ = batch_size * num_images_per_prompt snake_case_ = guidance_scale > 1.0 snake_case_ = self._encode_prompt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__UpperCamelCase )}.""" ) # get the initial completely masked latents unless the user supplied it snake_case_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: snake_case_ = self.transformer.num_vector_embeds - 1 snake_case_ = torch.full(__UpperCamelCase , __UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) snake_case_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) snake_case_ = self.scheduler.timesteps.to(self.device ) snake_case_ = latents for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance snake_case_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` snake_case_ = self.transformer(__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase ).sample if do_classifier_free_guidance: snake_case_ , snake_case_ = model_output.chunk(2 ) snake_case_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCamelCase , dim=1 , keepdim=__UpperCamelCase ) snake_case_ = self.truncate(__UpperCamelCase , __UpperCamelCase ) # remove `log(0)`'s (`-inf`s) snake_case_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step(__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , generator=__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ = self.vqvae.config.vq_embed_dim snake_case_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) snake_case_ = self.vqvae.quantize.get_codebook_entry(__UpperCamelCase , shape=__UpperCamelCase ) snake_case_ = self.vqvae.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase ).sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ , snake_case_ = torch.sort(__UpperCamelCase , 1 , descending=__UpperCamelCase ) snake_case_ = torch.exp(__UpperCamelCase ) snake_case_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out snake_case_ = torch.full_like(keep_mask[:, 0:1, :] , __UpperCamelCase ) snake_case_ = torch.cat((all_true, keep_mask) , dim=1 ) snake_case_ = keep_mask[:, :-1, :] snake_case_ = keep_mask.gather(1 , indices.argsort(1 ) ) snake_case_ = log_p_x_0.clone() snake_case_ = -torch.inf # -inf = log(0) return rv
46
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A = 'src/diffusers' A = '.' # This is to make sure the diffusers module imported is the one in the repo. A = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) A = spec.loader.load_module() def a(lowercase__ , lowercase__ ): '''simple docstring''' return line.startswith(lowercase__ ) or len(lowercase__ ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , lowercase__ ) is not None def a(lowercase__ ): '''simple docstring''' snake_case_ = object_name.split('.' ) snake_case_ = 0 # First let's find the module where our object lives. snake_case_ = parts[i] while i < len(lowercase__ ) and not os.path.isfile(os.path.join(lowercase__ , f"""{module}.py""" ) ): i += 1 if i < len(lowercase__ ): snake_case_ = os.path.join(lowercase__ , parts[i] ) if i >= len(lowercase__ ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(lowercase__ , f"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: snake_case_ = f.readlines() # Now let's find the class / func in the code! snake_case_ = '' snake_case_ = 0 for name in parts[i + 1 :]: while ( line_index < len(lowercase__ ) and re.search(Rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowercase__ ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). snake_case_ = line_index while line_index < len(lowercase__ ) and _should_continue(lines[line_index] , lowercase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ = lines[start_index:line_index] return "".join(lowercase__ ) A = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') A = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') A = re.compile(R'<FILL\s+[^>]*>') def a(lowercase__ ): '''simple docstring''' snake_case_ = code.split('\n' ) snake_case_ = 0 while idx < len(lowercase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowercase__ ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def a(lowercase__ ): '''simple docstring''' snake_case_ = len(get_indent(lowercase__ ) ) > 0 if has_indent: snake_case_ = f"""class Bla:\n{code}""" snake_case_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowercase__ ) snake_case_ = black.format_str(lowercase__ , mode=lowercase__ ) snake_case_ , snake_case_ = style_docstrings_in_code(lowercase__ ) return result[len('class Bla:\n' ) :] if has_indent else result def a(lowercase__ , lowercase__=False ): '''simple docstring''' with open(lowercase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: snake_case_ = f.readlines() snake_case_ = [] snake_case_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowercase__ ): snake_case_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. snake_case_ , snake_case_ , snake_case_ = search.groups() snake_case_ = find_code_in_diffusers(lowercase__ ) snake_case_ = get_indent(lowercase__ ) snake_case_ = line_index + 1 if indent == theoretical_indent else line_index + 2 snake_case_ = theoretical_indent snake_case_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. snake_case_ = True while line_index < len(lowercase__ ) and should_continue: line_index += 1 if line_index >= len(lowercase__ ): break snake_case_ = lines[line_index] snake_case_ = _should_continue(lowercase__ , lowercase__ ) and re.search(f"""^{indent}# End copy""" , lowercase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ = lines[start_index:line_index] snake_case_ = ''.join(lowercase__ ) # Remove any nested `Copied from` comments to avoid circular copies snake_case_ = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(lowercase__ ) is None] snake_case_ = '\n'.join(lowercase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowercase__ ) > 0: snake_case_ = replace_pattern.replace('with' , '' ).split(',' ) snake_case_ = [_re_replace_pattern.search(lowercase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue snake_case_ , snake_case_ , snake_case_ = pattern.groups() snake_case_ = re.sub(lowercase__ , lowercase__ , lowercase__ ) if option.strip() == "all-casing": snake_case_ = re.sub(obja.lower() , obja.lower() , lowercase__ ) snake_case_ = re.sub(obja.upper() , obja.upper() , lowercase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line snake_case_ = blackify(lines[start_index - 1] + theoretical_code ) snake_case_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: snake_case_ = lines[:start_index] + [theoretical_code] + lines[line_index:] snake_case_ = start_index + 1 if overwrite and len(lowercase__ ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(lowercase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowercase__ ) return diffs def a(lowercase__ = False ): '''simple docstring''' snake_case_ = glob.glob(os.path.join(lowercase__ , '**/*.py' ) , recursive=lowercase__ ) snake_case_ = [] for filename in all_files: snake_case_ = is_copy_consistent(lowercase__ , lowercase__ ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(lowercase__ ) > 0: snake_case_ = '\n'.join(lowercase__ ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') A = parser.parse_args() check_copies(args.fix_and_overwrite)
46
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'num_attention_heads' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=6_40 , __UpperCamelCase=4 , __UpperCamelCase="silu" , __UpperCamelCase=3 , __UpperCamelCase=32 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=10 , __UpperCamelCase=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = last_hidden_size snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = conv_kernel_size snake_case_ = output_stride snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = classifier_dropout_prob snake_case_ = use_labels snake_case_ = is_training snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = scope def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self ): """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MobileViTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MobileViTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MobileViTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __A = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTModelTester(self ) snake_case_ = MobileViTConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MobileViT does not output attentions' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = 5 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case_ = 2 for i in range(len(__UpperCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MobileViTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a(): '''simple docstring''' snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(__UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = model.to(__UpperCamelCase ) snake_case_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) snake_case_ = outputs.logits # verify the logits snake_case_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=__UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = model.to(__UpperCamelCase ) snake_case_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase , target_sizes=[(50, 60)] ) snake_case_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase ) snake_case_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase )
46
1
from math import log from scipy.constants import Boltzmann, physical_constants A = 300 # TEMPERATURE (unit = K) def a(lowercase__ , lowercase__ , lowercase__ , ): '''simple docstring''' if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
46
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class SCREAMING_SNAKE_CASE ( metaclass=__snake_case ): """simple docstring""" __A = ["""torch""", """transformers""", """onnx"""] def __init__( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __lowerCAmelCase ( cls , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['torch', 'transformers', 'onnx'] )
46
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" def __init__( self , __UpperCamelCase=0.01 , __UpperCamelCase=10_00 ): """simple docstring""" snake_case_ = p_stop snake_case_ = max_length def __iter__( self ): """simple docstring""" snake_case_ = 0 snake_case_ = False while not stop and count < self.max_length: yield count count += 1 snake_case_ = random.random() < self.p_stop class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=True ): """simple docstring""" snake_case_ = [ BatchSamplerShard(__UpperCamelCase , 2 , __UpperCamelCase , split_batches=__UpperCamelCase , even_batches=__UpperCamelCase ) for i in range(2 ) ] snake_case_ = [list(__UpperCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCamelCase ) for shard in batch_sampler_shards] , [len(__UpperCamelCase ) for e in expected] ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase ) snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase ) snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase ) snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase ) snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase ) snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [[], []] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [[], []] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , even_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , even_batches=__UpperCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , even_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , even_batches=__UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , even_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , even_batches=__UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , even_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , even_batches=__UpperCamelCase ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , even_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCamelCase ) snake_case_ = [[], []] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , even_batches=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase , even_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase , even_batches=__UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase , even_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase , even_batches=__UpperCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase , even_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase , even_batches=__UpperCamelCase ) # Check the shards when the dataset is very small. snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase , even_batches=__UpperCamelCase ) snake_case_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = [[], []] self.check_batch_sampler_shards(__UpperCamelCase , __UpperCamelCase , split_batches=__UpperCamelCase , even_batches=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] snake_case_ = [BatchSamplerShard(__UpperCamelCase , 2 , __UpperCamelCase , even_batches=__UpperCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False , __UpperCamelCase=2 , __UpperCamelCase=False ): """simple docstring""" random.seed(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = [ IterableDatasetShard( __UpperCamelCase , batch_size=__UpperCamelCase , drop_last=__UpperCamelCase , num_processes=__UpperCamelCase , process_index=__UpperCamelCase , split_batches=__UpperCamelCase , ) for i in range(__UpperCamelCase ) ] snake_case_ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCamelCase ) iterable_dataset_lists.append(list(__UpperCamelCase ) ) snake_case_ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size snake_case_ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) self.assertTrue(len(__UpperCamelCase ) % shard_batch_size == 0 ) snake_case_ = [] for idx in range(0 , len(__UpperCamelCase ) , __UpperCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCamelCase ) < len(__UpperCamelCase ): reference += reference self.assertListEqual(__UpperCamelCase , reference[: len(__UpperCamelCase )] ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 42 snake_case_ = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCamelCase , __UpperCamelCase , batch_size=4 , drop_last=__UpperCamelCase , split_batches=__UpperCamelCase ) self.check_iterable_dataset_shards(__UpperCamelCase , __UpperCamelCase , batch_size=4 , drop_last=__UpperCamelCase , split_batches=__UpperCamelCase ) self.check_iterable_dataset_shards(__UpperCamelCase , __UpperCamelCase , batch_size=4 , drop_last=__UpperCamelCase , split_batches=__UpperCamelCase ) self.check_iterable_dataset_shards(__UpperCamelCase , __UpperCamelCase , batch_size=4 , drop_last=__UpperCamelCase , split_batches=__UpperCamelCase ) # Edge case with a very small dataset snake_case_ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCamelCase , __UpperCamelCase , batch_size=4 , drop_last=__UpperCamelCase , split_batches=__UpperCamelCase ) self.check_iterable_dataset_shards(__UpperCamelCase , __UpperCamelCase , batch_size=4 , drop_last=__UpperCamelCase , split_batches=__UpperCamelCase ) self.check_iterable_dataset_shards(__UpperCamelCase , __UpperCamelCase , batch_size=4 , drop_last=__UpperCamelCase , split_batches=__UpperCamelCase ) self.check_iterable_dataset_shards(__UpperCamelCase , __UpperCamelCase , batch_size=4 , drop_last=__UpperCamelCase , split_batches=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCamelCase ) snake_case_ = SkipBatchSampler(__UpperCamelCase , 2 ) self.assertListEqual(list(__UpperCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = DataLoader(list(range(16 ) ) , batch_size=4 ) snake_case_ = skip_first_batches(__UpperCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __lowerCAmelCase ( self ): """simple docstring""" Accelerator() snake_case_ = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
46
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) snake_case_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above snake_case_ = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above snake_case_ = tf_top_k_top_p_filtering(__UpperCamelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) snake_case_ = output[output != -float('inf' )] snake_case_ = tf.cast( tf.where(tf.not_equal(__UpperCamelCase , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1E-12 ) tf.debugging.assert_equal(__UpperCamelCase , __UpperCamelCase ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase , __snake_case ): """simple docstring""" if is_tf_available(): __A = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 2 snake_case_ = 2 class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__( self , __UpperCamelCase ): """simple docstring""" super(__UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=__UpperCamelCase , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.model.generate( input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , max_new_tokens=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2, 0], [1_02, 1_03]] snake_case_ = [[1, 0], [1, 1]] snake_case_ = DummyModel(model=__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={'serving_default': dummy_model.serving} ) snake_case_ = tf.saved_model.load(__UpperCamelCase ).signatures['serving_default'] for batch_size in range(1 , len(__UpperCamelCase ) + 1 ): snake_case_ = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } snake_case_ = serving_func(**__UpperCamelCase )['sequences'] snake_case_ = test_model.generate(**__UpperCamelCase , max_new_tokens=__UpperCamelCase ) tf.debugging.assert_equal(__UpperCamelCase , __UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 1 snake_case_ = 2 class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__( self , __UpperCamelCase ): """simple docstring""" super(__UpperCamelCase , self ).__init__() snake_case_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=__UpperCamelCase , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.model.generate( input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , max_new_tokens=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , ) return {"sequences": outputs["sequences"]} snake_case_ = [[2], [1_02, 1_03]] snake_case_ = [[1], [1, 1]] snake_case_ = DummyModel(model=__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={'serving_default': dummy_model.serving} ) snake_case_ = tf.saved_model.load(__UpperCamelCase ).signatures['serving_default'] for input_row in range(len(__UpperCamelCase ) ): snake_case_ = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } snake_case_ = serving_func(**__UpperCamelCase )['sequences'] snake_case_ = test_model.generate(**__UpperCamelCase , max_new_tokens=__UpperCamelCase ) tf.debugging.assert_equal(__UpperCamelCase , __UpperCamelCase ) @slow @require_tensorflow_text def __lowerCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=__UpperCamelCase ) class SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() snake_case_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__UpperCamelCase , 'spiece.model' ) , 'rb' ).read() ) snake_case_ = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def __lowerCAmelCase ( self , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" snake_case_ = self.tokenizer.tokenize(__UpperCamelCase ) snake_case_ , snake_case_ = text.pad_model_inputs( __UpperCamelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) snake_case_ = self.model.generate(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase ) return self.tokenizer.detokenize(__UpperCamelCase ) snake_case_ = CompleteSentenceTransformer() snake_case_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) snake_case_ = complete_model(__UpperCamelCase ) snake_case_ = tf.keras.Model(__UpperCamelCase , __UpperCamelCase ) keras_model.save(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } snake_case_ = 14 snake_case_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 'Hello, my dog is cute and' snake_case_ = tokenizer(__UpperCamelCase , return_tensors='tf' ) snake_case_ = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) snake_case_ = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) snake_case_ = [6_38, 1_98] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) snake_case_ = model.generate(**__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = 'Hugging Face is a technology company based in New York and Paris.' snake_case_ = bart_tokenizer(__UpperCamelCase , return_tensors='tf' ).input_ids snake_case_ = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = bart_model.generate(__UpperCamelCase ).numpy() class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" return super().call(__UpperCamelCase , **__UpperCamelCase ) snake_case_ = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) snake_case_ = bart_model.generate(__UpperCamelCase , foo='bar' ).numpy() self.assertTrue(np.array_equal(__UpperCamelCase , __UpperCamelCase ) ) class SCREAMING_SNAKE_CASE ( bart_model.model.encoder.__class__ ): """simple docstring""" def __lowerCAmelCase ( self , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return super().call(__UpperCamelCase , **__UpperCamelCase ) snake_case_ = FakeEncoder(bart_model.config , bart_model.model.shared ) snake_case_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) snake_case_ = bart_model.generate(__UpperCamelCase ).numpy() with self.assertRaises(__UpperCamelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__UpperCamelCase , foo='bar' )
46
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): """simple docstring""" def __init__( self , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" super().__init__(features=__UpperCamelCase ) snake_case_ = torch_tensor_kwargs import torch # noqa import torch at initialization def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" import torch if isinstance(__UpperCamelCase , __UpperCamelCase ) and column: if all( isinstance(__UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__UpperCamelCase ) return column def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" import torch if isinstance(__UpperCamelCase , (str, bytes, type(__UpperCamelCase )) ): return value elif isinstance(__UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case_ = {} if isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case_ = {'dtype': torch.intaa} elif isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case_ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__UpperCamelCase , PIL.Image.Image ): snake_case_ = np.asarray(__UpperCamelCase ) return torch.tensor(__UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(__UpperCamelCase , '__array__' ) and not isinstance(__UpperCamelCase , torch.Tensor ): snake_case_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] ) elif isinstance(__UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return map_nested(self._recursive_tensorize , __UpperCamelCase , map_list=__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self.numpy_arrow_extractor().extract_row(__UpperCamelCase ) snake_case_ = self.python_features_decoder.decode_row(__UpperCamelCase ) return self.recursive_tensorize(__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self.numpy_arrow_extractor().extract_column(__UpperCamelCase ) snake_case_ = self.python_features_decoder.decode_column(__UpperCamelCase , pa_table.column_names[0] ) snake_case_ = self.recursive_tensorize(__UpperCamelCase ) snake_case_ = self._consolidate(__UpperCamelCase ) return column def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self.numpy_arrow_extractor().extract_batch(__UpperCamelCase ) snake_case_ = self.python_features_decoder.decode_batch(__UpperCamelCase ) snake_case_ = self.recursive_tensorize(__UpperCamelCase ) for column_name in batch: snake_case_ = self._consolidate(batch[column_name] ) return batch
46
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=2 , __UpperCamelCase=8 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=16 , __UpperCamelCase=5 , __UpperCamelCase=2 , __UpperCamelCase=36 , __UpperCamelCase="gelu" , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=5_12 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.get_config() snake_case_ = 3_00 return config def __lowerCAmelCase ( self ): """simple docstring""" ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = self.prepare_config_and_inputs() snake_case_ = True snake_case_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MraModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): """simple docstring""" snake_case_ = True snake_case_ = MraModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MraForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MraForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MraForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MraForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_choices snake_case_ = MraForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ): """simple docstring""" __A = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __A = False __A = False __A = False __A = False __A = () def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MraModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @unittest.skip(reason='MRA does not output attentions' ) def __lowerCAmelCase ( self ): """simple docstring""" return @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) snake_case_ = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(__UpperCamelCase )[0] snake_case_ = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) snake_case_ = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(__UpperCamelCase )[0] snake_case_ = 5_02_65 snake_case_ = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) snake_case_ = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): snake_case_ = model(__UpperCamelCase )[0] snake_case_ = 5_02_65 snake_case_ = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 ) )
46
1
def a(lowercase__ ): '''simple docstring''' if not head: return True # split the list to two parts snake_case_ , snake_case_ = head.next, head while fast and fast.next: snake_case_ = fast.next.next snake_case_ = slow.next snake_case_ = slow.next snake_case_ = None # Don't forget here! But forget still works! # reverse the second part snake_case_ = None while second: snake_case_ = second.next snake_case_ = node snake_case_ = second snake_case_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False snake_case_ = node.next snake_case_ = head.next return True def a(lowercase__ ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) snake_case_ = snake_case_ = snake_case_ = head while fast and fast.next: snake_case_ , snake_case_ = fast.next.next, slow.next # 2. Push the second half into the stack snake_case_ = [slow.val] while slow.next: snake_case_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False snake_case_ = cur.next return True def a(lowercase__ ): '''simple docstring''' if not head or not head.next: return True snake_case_ = {} snake_case_ = 0 while head: if head.val in d: d[head.val].append(lowercase__ ) else: snake_case_ = [pos] snake_case_ = head.next pos += 1 snake_case_ = pos - 1 snake_case_ = 0 for v in d.values(): if len(lowercase__ ) % 2 != 0: middle += 1 else: snake_case_ = 0 for i in range(0 , len(lowercase__ ) ): if v[i] + v[len(lowercase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
46
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file snake_case_ = TapasConfig.from_json_file(lowercase__ ) # set absolute/relative position embeddings parameter snake_case_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WTQ": # run_task_main.py hparams snake_case_ = 4 snake_case_ = True # hparam_utils.py hparams snake_case_ = 0.66_4694 snake_case_ = 0.20_7951 snake_case_ = 0.12_1194 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = 0.035_2513 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams snake_case_ = 4 snake_case_ = False # hparam_utils.py hparams snake_case_ = 36.4519 snake_case_ = 0.90_3421 snake_case_ = 222.088 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = 0.76_3141 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "TABFACT": snake_case_ = TapasForSequenceClassification(config=lowercase__ ) elif task == "MLM": snake_case_ = TapasForMaskedLM(config=lowercase__ ) elif task == "INTERMEDIATE_PRETRAINING": snake_case_ = TapasModel(config=lowercase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) snake_case_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(lowercase__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
46
1
def a(lowercase__ = 50 ): '''simple docstring''' snake_case_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
46
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=[1, 2, 1] , __UpperCamelCase=[2, 2, 4] , __UpperCamelCase=2 , __UpperCamelCase=2.0 , __UpperCamelCase=True , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase="gelu" , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=0.02 , __UpperCamelCase=1E-5 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=10 , __UpperCamelCase=8 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = depths snake_case_ = num_heads snake_case_ = window_size snake_case_ = mlp_ratio snake_case_ = qkv_bias snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = drop_path_rate snake_case_ = hidden_act snake_case_ = use_absolute_embeddings snake_case_ = patch_norm snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = is_training snake_case_ = scope snake_case_ = use_labels snake_case_ = type_sequence_label_size snake_case_ = encoder_stride def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = SwinvaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) snake_case_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = SwinvaForMaskedImageModeling(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = SwinvaForMaskedImageModeling(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.type_sequence_label_size snake_case_ = SwinvaForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __A = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SwinvaModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , embed_dim=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.attentions snake_case_ = len(self.model_tester.depths ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = config.window_size**2 snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) snake_case_ = len(__UpperCamelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): snake_case_ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case_ = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCamelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # Swinv2 has a different seq_length snake_case_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) snake_case_ = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = reshaped_hidden_states[0].shape snake_case_ = ( reshaped_hidden_states[0].view(__UpperCamelCase , __UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SwinvaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: snake_case_ = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
46
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def a(lowercase__ , lowercase__=False , lowercase__=False , lowercase__=False ): '''simple docstring''' snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""transformer.blocks.{i}.norm1.weight""", f"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm1.bias""", f"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.weight""", f"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""transformer.blocks.{i}.attn.proj.bias""", f"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.weight""", f"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.norm2.bias""", f"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (f"""transformer.blocks.{i}.mlp.fc1.weight""", f"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc1.bias""", f"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.weight""", f"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""transformer.blocks.{i}.mlp.fc2.bias""", f"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def a(lowercase__ , lowercase__ ): '''simple docstring''' for i in range(config.num_hidden_layers ): snake_case_ = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.weight""" ) snake_case_ = state_dict.pop(f"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def a(lowercase__ ): '''simple docstring''' snake_case_ = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = dct.pop(lowercase__ ) snake_case_ = val @torch.no_grad() def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowercase__ ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False if "vqa" in checkpoint_url: snake_case_ = True snake_case_ = 3129 snake_case_ = 'huggingface/label-files' snake_case_ = 'vqa2-id2label.json' snake_case_ = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) snake_case_ = {int(lowercase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = ViltForQuestionAnswering(lowercase__ ) elif "nlvr" in checkpoint_url: snake_case_ = True snake_case_ = 2 snake_case_ = {0: 'False', 1: 'True'} snake_case_ = {v: k for k, v in config.idalabel.items()} snake_case_ = 3 snake_case_ = ViltForImagesAndTextClassification(lowercase__ ) elif "irtr" in checkpoint_url: snake_case_ = True snake_case_ = ViltForImageAndTextRetrieval(lowercase__ ) elif "mlm_itm" in checkpoint_url: snake_case_ = True snake_case_ = ViltForMaskedLM(lowercase__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys snake_case_ = torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' )['state_dict'] snake_case_ = create_rename_keys(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ ) if mlm_model or irtr_model: snake_case_ = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: snake_case_ , snake_case_ = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowercase__ ) # Define processor snake_case_ = ViltImageProcessor(size=384 ) snake_case_ = BertTokenizer.from_pretrained('bert-base-uncased' ) snake_case_ = ViltProcessor(lowercase__ , lowercase__ ) # Forward pass on example inputs (image + text) if nlvr_model: snake_case_ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw ) snake_case_ = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw ) snake_case_ = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) snake_case_ = processor(lowercase__ , lowercase__ , return_tensors='pt' ) snake_case_ = processor(lowercase__ , lowercase__ , return_tensors='pt' ) snake_case_ = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: snake_case_ = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowercase__ ).raw ) if mlm_model: snake_case_ = 'a bunch of [MASK] laying on a [MASK].' else: snake_case_ = 'How many cats are there?' snake_case_ = processor(lowercase__ , lowercase__ , return_tensors='pt' ) snake_case_ = model(**lowercase__ ) # Verify outputs if mlm_model: snake_case_ = torch.Size([1, 11, 30522] ) snake_case_ = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1e-4 ) # verify masked token prediction equals "cats" snake_case_ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: snake_case_ = torch.Size([1, 3129] ) snake_case_ = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1e-4 ) # verify vqa prediction equals "2" snake_case_ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: snake_case_ = torch.Size([1, 2] ) snake_case_ = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) A = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline A = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') A = parser.parse_args() A = 'cpu' A = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' A = 'path-to-your-trained-model' A = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) A = pipe.to(device) # to channels last A = pipe.unet.to(memory_format=torch.channels_last) A = pipe.vae.to(memory_format=torch.channels_last) A = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: A = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex A = torch.randn(2, 4, 64, 64) A = torch.rand(1) * 999 A = torch.randn(2, 77, 768) A = (sample, timestep, encoder_hidden_status) try: A = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: A = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) A = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) A = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: A = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute A = 666 A = torch.Generator(device).manual_seed(seed) A = {'generator': generator} if args.steps is not None: A = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): A = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
46
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME A = ['small', 'medium', 'large'] A = 'lm_head.decoder.weight' A = 'lm_head.weight' def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = torch.load(lowercase__ ) snake_case_ = d.pop(lowercase__ ) os.makedirs(lowercase__ , exist_ok=lowercase__ ) torch.save(lowercase__ , os.path.join(lowercase__ , lowercase__ ) ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) A = parser.parse_args() for MODEL in DIALOGPT_MODELS: A = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") A = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
46
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" __A = """unispeech-sat""" def __init__( self , __UpperCamelCase=32 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-5 , __UpperCamelCase="group" , __UpperCamelCase="gelu" , __UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCamelCase=False , __UpperCamelCase=1_28 , __UpperCamelCase=16 , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=0.05 , __UpperCamelCase=10 , __UpperCamelCase=2 , __UpperCamelCase=0.0 , __UpperCamelCase=10 , __UpperCamelCase=0 , __UpperCamelCase=3_20 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , __UpperCamelCase=1_00 , __UpperCamelCase=2_56 , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase="mean" , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=2_56 , __UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 15_00) , __UpperCamelCase=(5, 3, 3, 1, 1) , __UpperCamelCase=(1, 2, 3, 1, 1) , __UpperCamelCase=5_12 , __UpperCamelCase=0 , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=5_04 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = vocab_size snake_case_ = num_clusters snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = feat_quantizer_dropout snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = list(__UpperCamelCase ) snake_case_ = xvector_output_dim @property def __lowerCAmelCase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
46
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=30 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=0.6 , __UpperCamelCase=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = mask_ratio snake_case_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = TFViTMAEModel(config=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = TFViTMAEForPreTraining(__UpperCamelCase ) snake_case_ = model(__UpperCamelCase , training=__UpperCamelCase ) # expected sequence length = num_patches snake_case_ = (self.image_size // self.patch_size) ** 2 snake_case_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case_ = 1 snake_case_ = TFViTMAEForPreTraining(__UpperCamelCase ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(__UpperCamelCase , training=__UpperCamelCase ) snake_case_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ((snake_case_) , (snake_case_) , (snake_case_)) = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __A = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFViTMAEModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , tf.keras.layers.Layer ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" np.random.seed(2 ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) snake_case_ = model(__UpperCamelCase , noise=__UpperCamelCase ) snake_case_ = copy.deepcopy(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = model(**__UpperCamelCase , noise=__UpperCamelCase ) snake_case_ = outputs_dict[0].numpy() snake_case_ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def __lowerCAmelCase ( self ): """simple docstring""" np.random.seed(2 ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__UpperCamelCase ): snake_case_ = {} for k, v in inputs_dict.items(): if tf.is_tensor(__UpperCamelCase ): snake_case_ = v.numpy() else: snake_case_ = np.array(__UpperCamelCase ) return inputs_np_dict for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) snake_case_ = prepare_numpy_arrays(__UpperCamelCase ) snake_case_ = model(__UpperCamelCase , noise=__UpperCamelCase ) snake_case_ = model(**__UpperCamelCase , noise=__UpperCamelCase ) self.assert_outputs_same(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" np.random.seed(2 ) snake_case_ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ = tf.constant(__UpperCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case_ = tf_noise super().check_pt_tf_models(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" np.random.seed(2 ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__UpperCamelCase ) if module_member_name.endswith('MainLayer' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )] for module_member in (getattr(__UpperCamelCase , __UpperCamelCase ),) if isinstance(__UpperCamelCase , __UpperCamelCase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__UpperCamelCase , '_keras_serializable' , __UpperCamelCase ) } snake_case_ = int((config.image_size // config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case_ = tf.convert_to_tensor(__UpperCamelCase ) inputs_dict.update({'noise': noise} ) for main_layer_class in tf_main_layer_classes: snake_case_ = main_layer_class(__UpperCamelCase ) snake_case_ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case_ = tf.keras.Model(__UpperCamelCase , outputs=main_layer(__UpperCamelCase ) ) snake_case_ = model(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(__UpperCamelCase , 'keras_model.h5' ) model.save(__UpperCamelCase ) snake_case_ = tf.keras.models.load_model( __UpperCamelCase , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__UpperCamelCase , tf.keras.Model ) snake_case_ = model(__UpperCamelCase ) self.assert_outputs_same(__UpperCamelCase , __UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" np.random.seed(2 ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) snake_case_ = model(__UpperCamelCase , noise=__UpperCamelCase ) if model_class.__name__ == "TFViTMAEModel": snake_case_ = outputs.last_hidden_state.numpy() snake_case_ = 0 else: snake_case_ = outputs.logits.numpy() snake_case_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase , saved_model=__UpperCamelCase ) snake_case_ = model_class.from_pretrained(__UpperCamelCase ) snake_case_ = model(__UpperCamelCase , noise=__UpperCamelCase ) if model_class.__name__ == "TFViTMAEModel": snake_case_ = after_outputs['last_hidden_state'].numpy() snake_case_ = 0 else: snake_case_ = after_outputs['logits'].numpy() snake_case_ = 0 snake_case_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCamelCase , 1E-5 ) def __lowerCAmelCase ( self ): """simple docstring""" np.random.seed(2 ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = int((config.image_size // config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) snake_case_ = model(__UpperCamelCase , noise=__UpperCamelCase ) snake_case_ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__UpperCamelCase ) snake_case_ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case_ = model_class.from_config(model.config ) snake_case_ = new_model(__UpperCamelCase ) # Build model new_model.set_weights(model.get_weights() ) snake_case_ = new_model(__UpperCamelCase , noise=__UpperCamelCase ) self.assert_outputs_same(__UpperCamelCase , __UpperCamelCase ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(__UpperCamelCase ) def a(): '''simple docstring''' snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ): """simple docstring""" np.random.seed(2 ) snake_case_ = TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='tf' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case_ = ViTMAEConfig() snake_case_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case_ = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case_ = model(**__UpperCamelCase , noise=__UpperCamelCase ) # verify the logits snake_case_ = tf.convert_to_tensor([1, 1_96, 7_68] ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __UpperCamelCase , atol=1E-4 )
46
class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = name snake_case_ = val def __str__( self ): """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , __UpperCamelCase ): """simple docstring""" return self.val < other.val class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = {} snake_case_ = {} snake_case_ = self.build_heap(__UpperCamelCase ) def __getitem__( self , __UpperCamelCase ): """simple docstring""" return self.get_value(__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return (idx - 1) // 2 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return idx * 2 + 1 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return idx * 2 + 2 def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" return self.heap_dict[key] def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = len(__UpperCamelCase ) - 1 snake_case_ = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): snake_case_ = idx snake_case_ = i.val for i in range(__UpperCamelCase , -1 , -1 ): self.sift_down(__UpperCamelCase , __UpperCamelCase ) return array def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" while True: snake_case_ = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 snake_case_ = self.get_right_child_idx(__UpperCamelCase ) snake_case_ = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: snake_case_ = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: snake_case_ = r if smallest != idx: snake_case_ , snake_case_ = array[smallest], array[idx] ( ( snake_case_ ) , ( snake_case_ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) snake_case_ = smallest else: break def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: snake_case_ , snake_case_ = self.heap[idx], self.heap[p] snake_case_ , snake_case_ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) snake_case_ = p snake_case_ = self.get_parent_idx(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" return self.heap[0] def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.heap[-1], self.heap[0] snake_case_ , snake_case_ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) snake_case_ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" self.heap.append(__UpperCamelCase ) snake_case_ = len(self.heap ) - 1 snake_case_ = node.val self.sift_up(len(self.heap ) - 1 ) def __lowerCAmelCase ( self ): """simple docstring""" return len(self.heap ) == 0 def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" snake_case_ = new_value snake_case_ = new_value self.sift_up(self.idx_of_element[node] ) A = Node('R', -1) A = Node('B', 6) A = Node('A', 3) A = Node('X', 1) A = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array A = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
46
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" __A = """bit""" __A = ["""preactivation""", """bottleneck"""] __A = ["""SAME""", """VALID"""] def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=64 , __UpperCamelCase=[2_56, 5_12, 10_24, 20_48] , __UpperCamelCase=[3, 4, 6, 3] , __UpperCamelCase="preactivation" , __UpperCamelCase="relu" , __UpperCamelCase=None , __UpperCamelCase=32 , __UpperCamelCase=0.0 , __UpperCamelCase=False , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case_ = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = global_padding snake_case_ = num_groups snake_case_ = drop_path_rate snake_case_ = embedding_dynamic_padding snake_case_ = output_stride snake_case_ = width_factor snake_case_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
46
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['PerceiverFeatureExtractor'] A = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=99 , __UpperCamelCase=64 , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = embedding_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MegatronBertModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MegatronBertForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MegatronBertForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MegatronBertForNextSentencePrediction(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MegatronBertForPreTraining(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , next_sentence_label=__UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MegatronBertForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MegatronBertForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MegatronBertForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_choices snake_case_ = MegatronBertForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __A = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __A = True # test_resize_embeddings = False __A = False def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ): """simple docstring""" snake_case_ = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): snake_case_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MegatronBertModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__UpperCamelCase ) def a(lowercase__ ): '''simple docstring''' return torch.tensor( lowercase__ , dtype=torch.long , device=lowercase__ , ) A = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.' ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: snake_case_ = os.path.join(os.environ['MYDIR'] , __UpperCamelCase ) snake_case_ = MegatronBertModel.from_pretrained(__UpperCamelCase ) model.to(__UpperCamelCase ) model.half() snake_case_ = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): snake_case_ = model(__UpperCamelCase )[0] snake_case_ = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , __UpperCamelCase ) snake_case_ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): snake_case_ = output[0, ii, jj] snake_case_ = expected[3 * ii + jj] snake_case_ = 'ii={} jj={} a={} b={}'.format(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) self.assertTrue(math.isclose(__UpperCamelCase , __UpperCamelCase , rel_tol=__UpperCamelCase , abs_tol=__UpperCamelCase ) , msg=__UpperCamelCase )
46
def a(lowercase__ , lowercase__ ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(lowercase__ , lowercase__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) snake_case_ = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
46
1
def a(lowercase__ , lowercase__ , lowercase__ = 0 , lowercase__ = 0 ): '''simple docstring''' snake_case_ = right or len(lowercase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase__ , lowercase__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
46
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = 1.5 snake_case_ = int(factor * num_class_images ) snake_case_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowercase__ , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=lowercase__ ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: snake_case_ = client.query(text=lowercase__ ) if len(lowercase__ ) >= factor * num_class_images or num_images > 1e4: break else: snake_case_ = int(factor * num_images ) snake_case_ = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=lowercase__ , aesthetic_weight=0.1 , ) snake_case_ = 0 snake_case_ = 0 snake_case_ = tqdm(desc='downloading real regularization images' , total=lowercase__ ) with open(f"""{class_data_dir}/caption.txt""" , 'w' ) as fa, open(f"""{class_data_dir}/urls.txt""" , 'w' ) as fa, open( f"""{class_data_dir}/images.txt""" , 'w' ) as fa: while total < num_class_images: snake_case_ = class_images[count] count += 1 try: snake_case_ = requests.get(images['url'] ) if img.status_code == 200: snake_case_ = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def a(): '''simple docstring''' snake_case_ = argparse.ArgumentParser('' , add_help=lowercase__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=lowercase__ , type=lowercase__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=lowercase__ , type=lowercase__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=lowercase__ ) return parser.parse_args() if __name__ == "__main__": A = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
46
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
46
1
import os import sys import unittest A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') A = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = get_test_to_tester_mapping(__UpperCamelCase ) snake_case_ = get_test_to_tester_mapping(__UpperCamelCase ) snake_case_ = {'BertModelTest': 'BertModelTester'} snake_case_ = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = get_model_to_test_mapping(__UpperCamelCase ) snake_case_ = get_model_to_test_mapping(__UpperCamelCase ) snake_case_ = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } snake_case_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = get_model_to_tester_mapping(__UpperCamelCase ) snake_case_ = get_model_to_tester_mapping(__UpperCamelCase ) snake_case_ = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } snake_case_ = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(get_test_info.to_json(__UpperCamelCase ) , __UpperCamelCase )
46
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') A = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __A = field( default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __A = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __A = field( default=__snake_case , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __A = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __A = field( default=__snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = field(default=__snake_case , metadata={"""help""": """The input training data file (a text file)."""} ) __A = field( default=__snake_case , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __A = field( default=__snake_case , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __A = field( default=__snake_case , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __A = field( default=__snake_case , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __A = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __lowerCAmelCase ( self ): """simple docstring""" if self.train_file is not None: snake_case_ = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: snake_case_ = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" __A = 42 __A = True __A = None __A = None def __call__( self , __UpperCamelCase ): """simple docstring""" snake_case_ = 'label' if 'label' in features[0].keys() else 'labels' snake_case_ = [feature.pop(__UpperCamelCase ) for feature in features] snake_case_ = len(__UpperCamelCase ) snake_case_ = len(features[0]['input_ids'] ) snake_case_ = [ [{k: v[i] for k, v in feature.items()} for i in range(__UpperCamelCase )] for feature in features ] snake_case_ = list(chain(*__UpperCamelCase ) ) snake_case_ = self.tokenizer.pad( __UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten snake_case_ = {k: v.view(__UpperCamelCase , __UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels snake_case_ = torch.tensor(__UpperCamelCase , dtype=torch.intaa ) return batch def a(): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ = training_args.get_process_log_level() logger.setLevel(lowercase__ ) datasets.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: snake_case_ = {} if data_args.train_file is not None: snake_case_ = data_args.train_file if data_args.validation_file is not None: snake_case_ = data_args.validation_file snake_case_ = data_args.train_file.split('.' )[-1] snake_case_ = load_dataset( lowercase__ , data_files=lowercase__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. snake_case_ = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. snake_case_ = [f"""ending{i}""" for i in range(4 )] snake_case_ = 'sent1' snake_case_ = 'sent2' if data_args.max_seq_length is None: snake_case_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) snake_case_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) snake_case_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowercase__ ): snake_case_ = [[context] * 4 for context in examples[context_name]] snake_case_ = examples[question_header_name] snake_case_ = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(lowercase__ ) ] # Flatten out snake_case_ = list(chain(*lowercase__ ) ) snake_case_ = list(chain(*lowercase__ ) ) # Tokenize snake_case_ = tokenizer( lowercase__ , lowercase__ , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowercase__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) snake_case_ = raw_datasets['train'] if data_args.max_train_samples is not None: snake_case_ = min(len(lowercase__ ) , data_args.max_train_samples ) snake_case_ = train_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): snake_case_ = train_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) snake_case_ = raw_datasets['validation'] if data_args.max_eval_samples is not None: snake_case_ = min(len(lowercase__ ) , data_args.max_eval_samples ) snake_case_ = eval_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): snake_case_ = eval_dataset.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator snake_case_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowercase__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowercase__ ): snake_case_ , snake_case_ = eval_predictions snake_case_ = np.argmax(lowercase__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer snake_case_ = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: snake_case_ = None if training_args.resume_from_checkpoint is not None: snake_case_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ = last_checkpoint snake_case_ = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase__ ) ) snake_case_ = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('train' , lowercase__ ) trainer.save_metrics('train' , lowercase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase__ ) snake_case_ = min(lowercase__ , len(lowercase__ ) ) trainer.log_metrics('eval' , lowercase__ ) trainer.save_metrics('eval' , lowercase__ ) snake_case_ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def a(lowercase__ ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
46
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. A = 10 def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' for i in range(lowercase__ , lowercase__ ): if array[i] == target: return i return -1 def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = 0 snake_case_ = len(lowercase__ ) while left <= right: if right - left < precision: return lin_search(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) snake_case_ = (left + right) // 3 + 1 snake_case_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: snake_case_ = one_third - 1 elif array[two_third] < target: snake_case_ = two_third + 1 else: snake_case_ = one_third + 1 snake_case_ = two_third - 1 else: return -1 def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if left < right: if right - left < precision: return lin_search(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) snake_case_ = (left + right) // 3 + 1 snake_case_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase__ , one_third - 1 , lowercase__ , lowercase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowercase__ , lowercase__ , lowercase__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase__ , lowercase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() A = input('Enter numbers separated by comma:\n').strip() A = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." A = int(input('Enter the number to be found in the list:\n').strip()) A = ite_ternary_search(collection, target) A = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"""Iterative search: {target} found at positions: {resulta}""") print(f"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
46
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available A = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
46
import operator as op def a(lowercase__ ): '''simple docstring''' snake_case_ = [] snake_case_ = lambda lowercase__ , lowercase__ : int(x / y ) # noqa: E731 integer division operation snake_case_ = { '^': op.pow, '*': op.mul, '/': div, '+': op.add, '-': op.sub, } # operators & their respective operation # print table header print('Symbol'.center(8 ) , 'Action'.center(12 ) , 'Stack' , sep=' | ' ) print('-' * (30 + len(lowercase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('push(' + x + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) else: snake_case_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + b + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) snake_case_ = stack.pop() # pop stack # output in tabular format print(''.rjust(8 ) , ('pop(' + a + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' ) stack.append( str(opr[x](int(lowercase__ ) , int(lowercase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('push(' + a + x + b + ')').ljust(12 ) , ','.join(lowercase__ ) , sep=' | ' , ) return int(stack[0] ) if __name__ == "__main__": A = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
46
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' # Construct model if openai_config_file == "": snake_case_ = OpenAIGPTConfig() else: snake_case_ = OpenAIGPTConfig.from_json_file(lowercase__ ) snake_case_ = OpenAIGPTModel(lowercase__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model snake_case_ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME snake_case_ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , lowercase__ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) A = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
46
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" __A = """bit""" __A = ["""preactivation""", """bottleneck"""] __A = ["""SAME""", """VALID"""] def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=64 , __UpperCamelCase=[2_56, 5_12, 10_24, 20_48] , __UpperCamelCase=[3, 4, 6, 3] , __UpperCamelCase="preactivation" , __UpperCamelCase="relu" , __UpperCamelCase=None , __UpperCamelCase=32 , __UpperCamelCase=0.0 , __UpperCamelCase=False , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case_ = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = global_padding snake_case_ = num_groups snake_case_ = drop_path_rate snake_case_ = embedding_dynamic_padding snake_case_ = output_stride snake_case_ = width_factor snake_case_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
46
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" __A = LEDConfig __A = {} __A = """gelu""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=20 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=4 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after snake_case_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests snake_case_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) snake_case_ = prepare_led_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ = tf.concat( [tf.zeros_like(__UpperCamelCase )[:, :-1], tf.ones_like(__UpperCamelCase )[:, -1:]] , axis=-1 , ) snake_case_ = global_attention_mask return config, inputs_dict def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = TFLEDModel(config=__UpperCamelCase ).get_decoder() snake_case_ = inputs_dict['input_ids'] snake_case_ = input_ids[:1, :] snake_case_ = inputs_dict['attention_mask'][:1, :] snake_case_ = 1 # first forward pass snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ = output_from_no_past[:, -3:, random_slice_idx] snake_case_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) def a(lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): '''simple docstring''' if attention_mask is None: snake_case_ = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __A = (TFLEDForConditionalGeneration,) if is_tf_available() else () __A = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __A = True __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = tf.zeros_like(inputs_dict['attention_mask'] ) snake_case_ = 2 snake_case_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) snake_case_ = True snake_case_ = self.model_tester.seq_length snake_case_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__UpperCamelCase ): snake_case_ = outputs.decoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__UpperCamelCase ): snake_case_ = [t.numpy() for t in outputs.encoder_attentions] snake_case_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = len(__UpperCamelCase ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) if self.is_encoder_decoder: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_decoder_attentions_output(__UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" pass def a(lowercase__ ): '''simple docstring''' return tf.constant(lowercase__ , dtype=tf.intaa ) A = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here snake_case_ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) snake_case_ = model(**__UpperCamelCase )[0] snake_case_ = (1, 10_24, 7_68) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here snake_case_ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-3 ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here snake_case_ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) snake_case_ = model(**__UpperCamelCase )[0] snake_case_ = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here snake_case_ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-3 , rtol=1E-3 )
46
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.dummy_uncond_unet snake_case_ = DDIMScheduler() snake_case_ = self.dummy_vq_model snake_case_ = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type='numpy' ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type='numpy' , return_dict=__UpperCamelCase )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) snake_case_ = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type='numpy' ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case_ = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) snake_case_ = 1E-2 if torch_device != 'mps' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
46
1
def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. snake_case_ = [p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order snake_case_ = sorted(lowercase__ ) # declaring useful variables snake_case_ = len(lowercase__ ) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight snake_case_ = sorted_profit_by_weight[length - i - 1] snake_case_ = profit_by_weight.index(lowercase__ ) snake_case_ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) A = [int(x) for x in input('Input profits separated by spaces: ').split()] A = [int(x) for x in input('Input weights separated by spaces: ').split()] A = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
46
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE : """simple docstring""" __A = LEDConfig __A = {} __A = """gelu""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=99 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=20 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=4 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after snake_case_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests snake_case_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) snake_case_ = prepare_led_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ = tf.concat( [tf.zeros_like(__UpperCamelCase )[:, :-1], tf.ones_like(__UpperCamelCase )[:, -1:]] , axis=-1 , ) snake_case_ = global_attention_mask return config, inputs_dict def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = TFLEDModel(config=__UpperCamelCase ).get_decoder() snake_case_ = inputs_dict['input_ids'] snake_case_ = input_ids[:1, :] snake_case_ = inputs_dict['attention_mask'][:1, :] snake_case_ = 1 # first forward pass snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase ) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] snake_case_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ = output_from_no_past[:, -3:, random_slice_idx] snake_case_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) def a(lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ): '''simple docstring''' if attention_mask is None: snake_case_ = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: snake_case_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: snake_case_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __A = (TFLEDForConditionalGeneration,) if is_tf_available() else () __A = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __A = True __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = tf.zeros_like(inputs_dict['attention_mask'] ) snake_case_ = 2 snake_case_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['global_attention_mask'] , ) snake_case_ = True snake_case_ = self.model_tester.seq_length snake_case_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__UpperCamelCase ): snake_case_ = outputs.decoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__UpperCamelCase ): snake_case_ = [t.numpy() for t in outputs.encoder_attentions] snake_case_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = False snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = len(__UpperCamelCase ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) if self.is_encoder_decoder: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_decoder_attentions_output(__UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) snake_case_ = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __UpperCamelCase ) check_encoder_attentions_output(__UpperCamelCase ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" pass def a(lowercase__ ): '''simple docstring''' return tf.constant(lowercase__ , dtype=tf.intaa ) A = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here snake_case_ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) snake_case_ = model(**__UpperCamelCase )[0] snake_case_ = (1, 10_24, 7_68) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here snake_case_ = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-3 ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here snake_case_ = _long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = _long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) snake_case_ = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase ) snake_case_ = model(**__UpperCamelCase )[0] snake_case_ = (1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , __UpperCamelCase ) # change to expected output here snake_case_ = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-3 , rtol=1E-3 )
46
1
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def a(*lowercase__ , lowercase__ = None , lowercase__=True , lowercase__=2 ): '''simple docstring''' from .. import __version__ snake_case_ = take_from snake_case_ = () if not isinstance(args[0] , lowercase__ ): snake_case_ = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase__ ).base_version ) >= version.parse(lowercase__ ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) snake_case_ = None if isinstance(lowercase__ , lowercase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase__ ),) snake_case_ = f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(lowercase__ , lowercase__ ): values += (getattr(lowercase__ , lowercase__ ),) snake_case_ = f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: snake_case_ = f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: snake_case_ = warning + ' ' if standard_warn else '' warnings.warn(warning + message , lowercase__ , stacklevel=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0: snake_case_ = inspect.getouterframes(inspect.currentframe() )[1] snake_case_ = call_frame.filename snake_case_ = call_frame.lineno snake_case_ = call_frame.function snake_case_ , snake_case_ = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(lowercase__ ) == 0: return elif len(lowercase__ ) == 1: return values[0] return values
46
from collections import defaultdict def a(lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = first_str.lower().strip() snake_case_ = second_str.lower().strip() # Remove whitespace snake_case_ = first_str.replace(' ' , '' ) snake_case_ = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(lowercase__ ) != len(lowercase__ ): return False # Default values for count should be 0 snake_case_ = defaultdict(lowercase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowercase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() A = input('Enter the first string ').strip() A = input('Enter the second string ').strip() A = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
46
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" __A = """pixel_values""" __A = False __A = TimmBackboneConfig def __init__( self , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(self , 'timm' ) super().__init__(__UpperCamelCase ) snake_case_ = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(__UpperCamelCase , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) snake_case_ = getattr(__UpperCamelCase , 'use_pretrained_backbone' , __UpperCamelCase ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. snake_case_ = config.out_indices if getattr(__UpperCamelCase , 'out_indices' , __UpperCamelCase ) is not None else (-1,) snake_case_ = timm.create_model( config.backbone , pretrained=__UpperCamelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__UpperCamelCase , **__UpperCamelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. snake_case_ = self._backbone.return_layers snake_case_ = {layer['module']: str(__UpperCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__UpperCamelCase ) @classmethod def __lowerCAmelCase ( cls , __UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig snake_case_ = kwargs.pop('config' , TimmBackboneConfig() ) snake_case_ = kwargs.pop('use_timm_backbone' , __UpperCamelCase ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) snake_case_ = kwargs.pop('num_channels' , config.num_channels ) snake_case_ = kwargs.pop('features_only' , config.features_only ) snake_case_ = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) snake_case_ = kwargs.pop('out_indices' , config.out_indices ) snake_case_ = TimmBackboneConfig( backbone=__UpperCamelCase , num_channels=__UpperCamelCase , features_only=__UpperCamelCase , use_pretrained_backbone=__UpperCamelCase , out_indices=__UpperCamelCase , ) return super()._from_config(__UpperCamelCase , **__UpperCamelCase ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" pass def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ): """simple docstring""" snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone snake_case_ = self._all_layers snake_case_ = self._backbone(__UpperCamelCase , **__UpperCamelCase ) snake_case_ = self._return_layers snake_case_ = tuple(hidden_states[i] for i in self.out_indices ) else: snake_case_ = self._backbone(__UpperCamelCase , **__UpperCamelCase ) snake_case_ = None snake_case_ = tuple(__UpperCamelCase ) snake_case_ = tuple(__UpperCamelCase ) if hidden_states is not None else None if not return_dict: snake_case_ = (feature_maps,) if output_hidden_states: snake_case_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=__UpperCamelCase , hidden_states=__UpperCamelCase , attentions=__UpperCamelCase )
46
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.dummy_uncond_unet snake_case_ = ScoreSdeVeScheduler() snake_case_ = ScoreSdeVePipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) sde_ve.to(__UpperCamelCase ) sde_ve.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__UpperCamelCase ).images snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__UpperCamelCase , return_dict=__UpperCamelCase )[ 0 ] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = 'google/ncsnpp-church-256' snake_case_ = UNetaDModel.from_pretrained(__UpperCamelCase ) snake_case_ = ScoreSdeVeScheduler.from_pretrained(__UpperCamelCase ) snake_case_ = ScoreSdeVePipeline(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) sde_ve.to(__UpperCamelCase ) sde_ve.set_progress_bar_config(disable=__UpperCamelCase ) snake_case_ = torch.manual_seed(0 ) snake_case_ = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=__UpperCamelCase ).images snake_case_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) snake_case_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
46
1