code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ = '' lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: lowercase__ = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
0
from __future__ import annotations def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
716
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a : Any , a : Optional[int]=13 , a : Tuple=30 , a : Union[str, Any]=2 , a : List[str]=3 , a : Dict=True , a : List[str]=True , a : List[Any]=32 , a : List[str]=5 , a : Optional[int]=4 , a : List[str]=37 , a : Dict="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : int=10 , a : List[str]=0.02 , a : int=None , a : List[str]=2 , )-> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[Any] , a : List[str] , a : Dict )-> Optional[Any]: """simple docstring""" lowercase__ = ViTModel(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] , a : int , a : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForMaskedImageModeling(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForMaskedImageModeling(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[str] , a : int , a : List[Any] )-> str: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : int = True _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = ViTModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def __UpperCamelCase () -> str: lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(a ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ = model(**a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int )-> List[str]: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' ).to(a ) lowercase__ = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass with torch.no_grad(): lowercase__ = model(a , interpolate_pos_encoding=a ) # verify the logits lowercase__ = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a ) lowercase__ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase__ = model(a )
45
0
# flake8: noqa # Lint as: python3 lowercase_ = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
717
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: stooge(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return arr def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase__ , lowercase__ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase__ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(_SCREAMING_SNAKE_CASE , i + t , (_SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
45
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "x" , _SCREAMING_SNAKE_CASE = 10**-10 , _SCREAMING_SNAKE_CASE = 1 , ) -> complex: lowercase__ = symbols(_SCREAMING_SNAKE_CASE ) lowercase__ = lambdify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = lambdify(_SCREAMING_SNAKE_CASE , diff(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowercase__ = starting_point while True: if diff_function(_SCREAMING_SNAKE_CASE ) != 0: lowercase__ = prev_guess - multiplicity * func(_SCREAMING_SNAKE_CASE ) / diff_function( _SCREAMING_SNAKE_CASE ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase__ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}''') # Find value of e print( """The root of log(y) - 1 = 0 is """, f'''{newton_raphson("log(y) - 1", 2, variable="y")}''', ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", f'''{newton_raphson("exp(x) - 1", 10, precision=0.005)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}''')
718
from scipy.stats import spearmanr import datasets lowercase_ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowercase_ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowercase_ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Any , a : str=False )-> Optional[int]: """simple docstring""" lowercase__ = spearmanr(a , a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> str: """simple docstring""" lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase__ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowercase__ = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase__ = {'unk_token': '<unk>'} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) lowercase__ = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } lowercase__ = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **a : Optional[Any] )-> List[Any]: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , **a : Dict )-> List[str]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **a : Dict )-> Optional[Any]: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : str )-> List[str]: """simple docstring""" lowercase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ ) lowercase__ = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[Any]: """simple docstring""" lowercase__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowercase__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ ) lowercase__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[int]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) lowercase__ = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> str: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowercase__ = 'lower newer' lowercase__ = processor(text=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) lowercase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowercase__ = 'lower newer' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> str: """simple docstring""" lowercase__ = 'google/owlvit-base-patch32' lowercase__ = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase__ = ['cat', 'nasa badge'] lowercase__ = processor(text=SCREAMING_SNAKE_CASE_ ) lowercase__ = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" lowercase__ = 'google/owlvit-base-patch32' lowercase__ = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase__ = [['cat', 'nasa badge'], ['person']] lowercase__ = processor(text=SCREAMING_SNAKE_CASE_ ) lowercase__ = 16 lowercase__ = len(SCREAMING_SNAKE_CASE_ ) lowercase__ = max([len(SCREAMING_SNAKE_CASE_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Tuple: """simple docstring""" lowercase__ = 'google/owlvit-base-patch32' lowercase__ = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase__ = ['cat', 'nasa badge'] lowercase__ = processor(text=SCREAMING_SNAKE_CASE_ ) lowercase__ = 16 lowercase__ = inputs['input_ids'] lowercase__ = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowercase__ = self.prepare_image_inputs() lowercase__ = self.prepare_image_inputs() lowercase__ = processor(images=SCREAMING_SNAKE_CASE_ , query_images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> List[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) lowercase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
719
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
45
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE (_snake_case ): _UpperCamelCase : int = """audio-spectrogram-transformer""" def __init__( self : List[Any] , a : Optional[int]=768 , a : int=12 , a : int=12 , a : List[Any]=3_072 , a : Optional[Any]="gelu" , a : int=0.0 , a : Optional[Any]=0.0 , a : str=0.02 , a : Union[str, Any]=1E-1_2 , a : Tuple=16 , a : List[Any]=True , a : str=10 , a : Optional[Any]=10 , a : Dict=1_024 , a : Dict=128 , **a : Tuple , )-> Dict: """simple docstring""" super().__init__(**snake_case_ ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = patch_size lowercase__ = qkv_bias lowercase__ = frequency_stride lowercase__ = time_stride lowercase__ = max_length lowercase__ = num_mel_bins
720
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowercase_ = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = EfficientNetConfig() lowercase__ = CONFIG_MAP[model_name]['hidden_dim'] lowercase__ = CONFIG_MAP[model_name]['width_coef'] lowercase__ = CONFIG_MAP[model_name]['depth_coef'] lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = CONFIG_MAP[model_name]['dropout_rate'] lowercase__ = CONFIG_MAP[model_name]['dw_padding'] lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 1000 lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> Tuple: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase__ = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} lowercase__ = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase__ = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase__ = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ = 'efficientnet.' + item[1] lowercase__ = 'classifier.weight' lowercase__ = 'classifier.bias' return key_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation='softmax' , ) lowercase__ = original_model.trainable_variables lowercase__ = original_model.non_trainable_variables lowercase__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ = param.numpy() lowercase__ = list(tf_params.keys() ) # Load HuggingFace model lowercase__ = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowercase__ = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowercase__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase__ = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowercase__ = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowercase__ = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ = hf_model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.detach().numpy() # Original model inference lowercase__ = False lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowercase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
45
0
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (lowercase__ , unittest.TestCase ): _UpperCamelCase : int = DDIMPipeline _UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _UpperCamelCase : Any = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } _UpperCamelCase : Any = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Any = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) lowercase__ = DDIMScheduler() lowercase__ = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Dict=0 )-> Dict: """simple docstring""" if str(UpperCAmelCase__ ).startswith('mps' ): lowercase__ = torch.manual_seed(UpperCAmelCase__ ) else: lowercase__ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowercase__ = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE_ ( self : int )-> Tuple: """simple docstring""" lowercase__ = '''cpu''' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase__ = self.get_dummy_inputs(UpperCAmelCase__ ) lowercase__ = pipe(**UpperCAmelCase__ ).images lowercase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__ = np.array( [1.0_0_0E0_0, 5.7_1_7E-0_1, 4.7_1_7E-0_1, 1.0_0_0E0_0, 0.0_0_0E0_0, 1.0_0_0E0_0, 3.0_0_0E-0_4, 0.0_0_0E0_0, 9.0_0_0E-0_4] ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase__ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> int: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[int]: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Union[str, Any]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ = '''google/ddpm-cifar10-32''' lowercase__ = UNetaDModel.from_pretrained(UpperCAmelCase__ ) lowercase__ = DDIMScheduler() lowercase__ = DDIMPipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) ddim.to(UpperCAmelCase__ ) ddim.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase__ = torch.manual_seed(0 ) lowercase__ = ddim(generator=UpperCAmelCase__ , eta=0.0 , output_type='numpy' ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[Any]: """simple docstring""" lowercase__ = '''google/ddpm-ema-bedroom-256''' lowercase__ = UNetaDModel.from_pretrained(UpperCAmelCase__ ) lowercase__ = DDIMScheduler.from_pretrained(UpperCAmelCase__ ) lowercase__ = DDIMPipeline(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) ddpm.to(UpperCAmelCase__ ) ddpm.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase__ = torch.manual_seed(0 ) lowercase__ = ddpm(generator=UpperCAmelCase__ , output_type='numpy' ).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
721
import argparse import json import subprocess def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = [] lowercase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowercase__ = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode('utf-8' ) lowercase__ = json.loads(_SCREAMING_SNAKE_CASE ) lowercase__ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return values.split(',' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
45
0
lowercase_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: # Make sure the supplied data is a bytes-like object if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_lowerCAmelCase ) lowercase__ = ''.join(bin(_lowerCAmelCase )[2:].zfill(8 ) for byte in data ) lowercase__ = len(_lowerCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b'=' * ((6 - len(_lowerCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowerCAmelCase ) % 6) else: lowercase__ = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowerCAmelCase ) , 6 ) ).encode() + padding ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ = ( 'argument should be a bytes-like object or ASCII string, ' F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_lowerCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: lowercase__ = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) lowercase__ = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = ''.join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = ''.join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowerCAmelCase ) , 8 ) ] return bytes(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
700
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Tuple = 'ClapFeatureExtractor' _UpperCamelCase : Union[str, Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : List[Any] , a : int , a : str )-> Any: """simple docstring""" super().__init__(a , a ) def __call__( self : Any , a : Tuple=None , a : Optional[int]=None , a : int=None , **a : Optional[int] )-> Union[str, Any]: """simple docstring""" lowercase__ = kwargs.pop('sampling_rate' , a ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: lowercase__ = self.tokenizer(a , return_tensors=a , **a ) if audios is not None: lowercase__ = self.feature_extractor( a , sampling_rate=a , return_tensors=a , **a ) if text is not None and audios is not None: lowercase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def SCREAMING_SNAKE_CASE_ ( self : str , *a : Dict , **a : int )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , *a : int , **a : Dict )-> Dict: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
45
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): _UpperCamelCase : Optional[int] = StableDiffusionSAGPipeline _UpperCamelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : int = False def SCREAMING_SNAKE_CASE_ ( self : str )-> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(__lowerCamelCase ) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Tuple , a : Dict=0 )-> List[str]: """simple docstring""" if str(__lowerCamelCase ).startswith('mps' ): lowercase__ = torch.manual_seed(__lowerCamelCase ) else: lowercase__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowercase__ = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Any )-> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : str )-> Any: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowercase__ = sag_pipe.to(__lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowercase__ = '''.''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : str )-> Tuple: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(__lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowercase__ = '''.''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(__lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowercase__ = '''.''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=__lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) lowercase__ = output.images assert image.shape == (1, 512, 768, 3)
701
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } lowercase_ = """▁""" class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] _UpperCamelCase : int = BarthezTokenizer def __init__( self : List[Any] , a : Union[str, Any]=None , a : Optional[Any]=None , a : Dict="<s>" , a : Union[str, Any]="</s>" , a : List[str]="</s>" , a : Optional[Any]="<s>" , a : int="<unk>" , a : str="<pad>" , a : Optional[int]="<mask>" , **a : Union[str, Any] , )-> Tuple: """simple docstring""" lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , **a , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
45
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : Any = field( metadata={'help': 'The output directory where the model will be written.'} , ) _UpperCamelCase : Dict = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) _UpperCamelCase : Tuple = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) _UpperCamelCase : str = field( default=UpperCAmelCase_ , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) _UpperCamelCase : Tuple = field( default=UpperCAmelCase_ , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def __UpperCamelCase () -> Any: lowercase__ = HfArgumentParser((ModelArguments,) ) ((lowercase__ ) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowercase__ = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowercase__ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowercase__ = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowercase__ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowercase__ = True lowercase__ = True lowercase__ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=UpperCamelCase__ , decoder_config=UpperCamelCase__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowercase__ = decoder_config.decoder_start_token_id lowercase__ = decoder_config.pad_token_id if decoder_start_token_id is None: lowercase__ = decoder_config.bos_token_id if pad_token_id is None: lowercase__ = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowercase__ = decoder_config.eos_token_id lowercase__ = decoder_start_token_id lowercase__ = pad_token_id lowercase__ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowercase__ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowercase__ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
702
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = StableDiffusionSAGPipeline _UpperCamelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(a ) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[int] , a : Any=0 )-> Union[str, Any]: """simple docstring""" if str(a ).startswith('mps' ): lowercase__ = torch.manual_seed(a ) else: lowercase__ = torch.Generator(device=a ).manual_seed(a ) lowercase__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) lowercase__ = output.images assert image.shape == (1, 512, 768, 3)
45
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowercase_ = """src/diffusers""" lowercase_ = """.""" # This is to make sure the diffusers module imported is the one in the repo. lowercase_ = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) lowercase_ = spec.loader.load_module() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: return line.startswith(__SCREAMING_SNAKE_CASE ) or len(__SCREAMING_SNAKE_CASE ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , __SCREAMING_SNAKE_CASE ) is not None def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = object_name.split('.' ) lowercase__ = 0 # First let's find the module where our object lives. lowercase__ = parts[i] while i < len(__SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , F"""{module}.py""" ) ): i += 1 if i < len(__SCREAMING_SNAKE_CASE ): lowercase__ = os.path.join(__SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(__SCREAMING_SNAKE_CASE ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(__SCREAMING_SNAKE_CASE , F"""{module}.py""" ) , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase__ = f.readlines() # Now let's find the class / func in the code! lowercase__ = "" lowercase__ = 0 for name in parts[i + 1 :]: while ( line_index < len(__SCREAMING_SNAKE_CASE ) and re.search(RF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__SCREAMING_SNAKE_CASE ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowercase__ = line_index while line_index < len(__SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , __SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase__ = lines[start_index:line_index] return "".join(__SCREAMING_SNAKE_CASE ) lowercase_ = re.compile(R"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") lowercase_ = re.compile(R"""^\s*(\S+)->(\S+)(\s+.*|$)""") lowercase_ = re.compile(R"""<FILL\s+[^>]*>""") def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: lowercase__ = code.split('\n' ) lowercase__ = 0 while idx < len(__SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__SCREAMING_SNAKE_CASE ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = len(get_indent(__SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: lowercase__ = F"""class Bla:\n{code}""" lowercase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__SCREAMING_SNAKE_CASE ) lowercase__ = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE ) lowercase__ = style_docstrings_in_code(__SCREAMING_SNAKE_CASE ) return result[len('class Bla:\n' ) :] if has_indent else result def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__SCREAMING_SNAKE_CASE ): lowercase__ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowercase__ = search.groups() lowercase__ = find_code_in_diffusers(__SCREAMING_SNAKE_CASE ) lowercase__ = get_indent(__SCREAMING_SNAKE_CASE ) lowercase__ = line_index + 1 if indent == theoretical_indent else line_index + 2 lowercase__ = theoretical_indent lowercase__ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowercase__ = True while line_index < len(__SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(__SCREAMING_SNAKE_CASE ): break lowercase__ = lines[line_index] lowercase__ = _should_continue(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and re.search(F"""^{indent}# End copy""" , __SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowercase__ = lines[start_index:line_index] lowercase__ = "".join(__SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies lowercase__ = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(__SCREAMING_SNAKE_CASE ) is None] lowercase__ = "\n".join(__SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase__ = replace_pattern.replace('with' , '' ).split(',' ) lowercase__ = [_re_replace_pattern.search(__SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue lowercase__ = pattern.groups() lowercase__ = re.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": lowercase__ = re.sub(obja.lower() , obja.lower() , __SCREAMING_SNAKE_CASE ) lowercase__ = re.sub(obja.upper() , obja.upper() , __SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowercase__ = blackify(lines[start_index - 1] + theoretical_code ) lowercase__ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowercase__ = lines[:start_index] + [theoretical_code] + lines[line_index:] lowercase__ = start_index + 1 if overwrite and len(__SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(__SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) return diffs def __UpperCamelCase (_SCREAMING_SNAKE_CASE = False ) -> Any: lowercase__ = glob.glob(os.path.join(__SCREAMING_SNAKE_CASE , '**/*.py' ) , recursive=__SCREAMING_SNAKE_CASE ) lowercase__ = [] for filename in all_files: lowercase__ = is_copy_consistent(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(__SCREAMING_SNAKE_CASE ) > 0: lowercase__ = "\n".join(__SCREAMING_SNAKE_CASE ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowercase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'deit' def __init__( self : Any , a : Union[str, Any]=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Optional[int]="gelu" , a : Optional[Any]=0.0 , a : List[Any]=0.0 , a : int=0.02 , a : List[str]=1E-1_2 , a : Optional[int]=224 , a : Tuple=16 , a : List[Any]=3 , a : List[str]=True , a : Any=16 , **a : Union[str, Any] , )-> int: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = encoder_stride class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> float: """simple docstring""" return 1E-4
45
0
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class SCREAMING_SNAKE_CASE (_UpperCAmelCase ): _UpperCamelCase : List[Any] = None _UpperCamelCase : Optional[Any] = None @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Optional[Any]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A_ , 'feature_size' ) ) self.assertTrue(hasattr(A_ , 'sampling_rate' ) ) self.assertTrue(hasattr(A_ , 'padding_value' ) ) def SCREAMING_SNAKE_CASE_ ( self : str )-> List[str]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(A_ ) == len(A_ ) for x, y in zip(A_ , processed_features[input_name] ) ) ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A_ ) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) lowercase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A_ ) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) lowercase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> List[Any]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=A_ ) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) lowercase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Union[str, Any]=False )-> Optional[Any]: """simple docstring""" def _inputs_have_equal_length(a : int ): lowercase__ = len(input[0] ) for input_slice in input[1:]: if len(A_ ) != length: return False return True def _inputs_are_equal(a : int , a : Optional[int] ): if len(A_ ) != len(A_ ): return False for input_slice_a, input_slice_a in zip(A_ , A_ ): if not np.allclose(np.asarray(A_ ) , np.asarray(A_ ) , atol=1E-3 ): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=A_ ) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(A_ , padding=A_ ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(A_ , padding='longest' ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(A_ , padding='max_length' , max_length=len(speech_inputs[-1] ) ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(A_ , padding='longest' , return_tensors='np' ) lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='max_length' )[input_name] lowercase__ = feat_extract.pad( A_ , padding='max_length' , max_length=A_ , return_tensors='np' ) lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_are_equal(A_ , A_ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(A_ , pad_to_multiple_of=10 ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(A_ , padding='longest' , pad_to_multiple_of=10 ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( A_ , padding='max_length' , pad_to_multiple_of=10 , max_length=A_ ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( A_ , padding='max_length' , pad_to_multiple_of=10 , max_length=A_ , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(A_ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(A_ , A_ ) ) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(A_ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : Optional[int]=False )-> Dict: """simple docstring""" def _inputs_have_equal_length(a : Any ): lowercase__ = len(input[0] ) for input_slice in input[1:]: if len(A_ ) != length: return False return True def _inputs_are_equal(a : str , a : str ): if len(A_ ) != len(A_ ): return False for input_slice_a, input_slice_a in zip(A_ , A_ ): if not np.allclose(np.asarray(A_ ) , np.asarray(A_ ) , atol=1E-3 ): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=A_ ) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowercase__ = feat_extract.pad( A_ , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=A_ ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(A_ , padding='max_length' , max_length=len(speech_inputs[0] ) ) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertFalse(_inputs_have_equal_length(A_ ) ) # truncate to smallest with np lowercase__ = feat_extract.pad( A_ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=A_ , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( A_ , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A_ ) ) # truncate to middle lowercase__ = feat_extract.pad( A_ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=A_ , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( A_ , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=A_ ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( A_ , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertTrue(_inputs_are_equal(A_ , A_ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(A_ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(A_ ): feat_extract.pad(A_ , truncation=A_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='longest' , truncation=A_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='longest' , truncation=A_ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(A_ ): feat_extract.pad(A_ , padding='max_length' , truncation=A_ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( A_ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A_ , truncation=A_ , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( A_ , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=A_ , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(A_ ) ) self.assertFalse(_inputs_have_equal_length(A_ ) ) def SCREAMING_SNAKE_CASE_ ( self : int )-> str: """simple docstring""" self._check_padding(numpify=A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Optional[Any]: """simple docstring""" self._check_padding(numpify=A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Dict: """simple docstring""" self._check_truncation(numpify=A_ ) def SCREAMING_SNAKE_CASE_ ( self : int )-> str: """simple docstring""" self._check_truncation(numpify=A_ ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = feat_extract.pad(A_ , padding='longest' , return_tensors='np' )[input_name] lowercase__ = feat_extract.pad(A_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : int )-> Tuple: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = feat_extract.pad(A_ , padding='longest' , return_tensors='np' )[input_name] lowercase__ = feat_extract.pad(A_ , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**A_ ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(A_ ) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = feat_extract.pad(A_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , A_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**A_ ) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(A_ ) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} ) lowercase__ = min(A_ ) lowercase__ = feat_extract.pad( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='np' ) self.assertIn('attention_mask' , A_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
704
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ) -> List[Any]: lowercase__ = None if token is not None: lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase__ = '636036' lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run['id'] break return workflow_run_id def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): lowercase__ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read().decode('UTF-8' ) return results
45
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __UpperCamelCase () -> Dict: lowercase__ = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=_lowerCamelCase ) lowercase__ = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_lowerCamelCase ) EnvironmentCommand.register_subcommand(_lowerCamelCase ) TestCommand.register_subcommand(_lowerCamelCase ) RunBeamCommand.register_subcommand(_lowerCamelCase ) DummyDataCommand.register_subcommand(_lowerCamelCase ) # Parse args lowercase__ = parser.parse_known_args() if not hasattr(_lowerCamelCase , 'func' ): parser.print_help() exit(1 ) lowercase__ = parse_unknown_args(_lowerCamelCase ) # Run lowercase__ = args.func(_lowerCamelCase , **_lowerCamelCase ) service.run() if __name__ == "__main__": main()
705
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase_ = False class SCREAMING_SNAKE_CASE (unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) lowercase__ = VersatileDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = generator.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = 'cyberpunk 2077' lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt=a , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = 'A painting of a squirrel eating a burger ' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.text_to_image( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = pipe.image_variation(a , generator=a , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
45
0
from manim import * class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Tuple: """simple docstring""" lowercase__ = Rectangle(height=0.5 , width=0.5 ) lowercase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) lowercase__ = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) lowercase__ = VGroup(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) lowercase__ = Text('CPU' , font_size=24 ) lowercase__ = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__UpperCamelCase ) lowercase__ = [mem.copy() for i in range(1 )] lowercase__ = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) lowercase__ = Text('GPU' , font_size=24 ) lowercase__ = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) gpu.align_to(__UpperCamelCase , __UpperCamelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(__UpperCamelCase ) lowercase__ = [mem.copy() for i in range(6 )] lowercase__ = VGroup(*__UpperCamelCase ).arrange(__UpperCamelCase , buff=0 ) lowercase__ = Text('Model' , font_size=24 ) lowercase__ = Group(__UpperCamelCase , __UpperCamelCase ).arrange(__UpperCamelCase , buff=0.5 , aligned_edge=__UpperCamelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) , Create(__UpperCamelCase , run_time=1 ) , ) lowercase__ = MarkupText( f"""First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.""" , font_size=24 , ) lowercase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__UpperCamelCase , run_time=2.5 ) , Write(__UpperCamelCase ) , Write(__UpperCamelCase ) ) self.add(__UpperCamelCase ) lowercase__ = [] lowercase__ = [] lowercase__ = [] for i, rect in enumerate(__UpperCamelCase ): lowercase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__UpperCamelCase , opacity=0.7 ) cpu_target.move_to(__UpperCamelCase ) cpu_target.generate_target() lowercase__ = 0.46 / 4 lowercase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__UpperCamelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__UpperCamelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__UpperCamelCase , buff=0.0 ) cpu_targs.append(__UpperCamelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__UpperCamelCase ) ) second_animations.append(MoveToTarget(__UpperCamelCase , run_time=1.5 ) ) self.play(*__UpperCamelCase ) self.play(*__UpperCamelCase ) self.wait()
706
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_SCREAMING_SNAKE_CASE ) == 1: return True lowercase__ = series[1] - series[0] for index in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> float: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) lowercase__ = 0 for val in series: answer += val return answer / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
45
0
from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE : def __init__( self : int , a : Tuple )-> Tuple: """simple docstring""" lowercase__ = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(a ) self.set_fail_transitions() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : int , a : List[str] )-> Union[str, Any]: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def SCREAMING_SNAKE_CASE_ ( self : str , a : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(a , a ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> int: """simple docstring""" lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(a ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(a ) lowercase__ = self.adlist[r]["""fail_state"""] while ( self.find_next_state(a , self.adlist[child]['value'] ) is None and state != 0 ): lowercase__ = self.adlist[state]["""fail_state"""] lowercase__ = self.find_next_state( a , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Dict )-> Optional[Any]: """simple docstring""" lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(a ) ): while ( self.find_next_state(a , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]["""fail_state"""] lowercase__ = self.find_next_state(a , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(a ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
707
from __future__ import annotations import math from collections.abc import Callable def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 100 , ) -> float: lowercase__ = x_start lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) lowercase__ = 0.0 for _ in range(_SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ = (x_end - x_start) / steps + xa lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ = xa lowercase__ = fxa return length if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowercase_ = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
45
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase_ = """pt""" elif is_tf_available(): lowercase_ = """tf""" else: lowercase_ = """jax""" class SCREAMING_SNAKE_CASE (__A , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ByTaTokenizer _UpperCamelCase : str = False def SCREAMING_SNAKE_CASE_ ( self : str )-> Union[str, Any]: """simple docstring""" super().setUp() lowercase__ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any )-> List[Any]: """simple docstring""" return ByTaTokenizer.from_pretrained('google/byt5-small' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **a : Optional[int] )-> List[str]: """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : int , a : Tuple=False , a : Union[str, Any]=20 , a : Tuple=5 )-> Union[str, Any]: """simple docstring""" lowercase__ = [] for i in range(len(UpperCamelCase__ ) ): try: lowercase__ = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowercase__ = list(filter(lambda a : re.match(R'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase__ ) ) lowercase__ = list(filter(lambda a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase__ ) , UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: lowercase__ = toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: lowercase__ = toks + toks # toks_str = [t[1] for t in toks] lowercase__ = [t[0] for t in toks] # Ensure consistency lowercase__ = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: lowercase__ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: lowercase__ = ' ' + output_txt lowercase__ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def SCREAMING_SNAKE_CASE_ ( self : Dict )-> str: """simple docstring""" lowercase__ = self.ta_base_tokenizer lowercase__ = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) lowercase__ = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" lowercase__ = self.ta_base_tokenizer lowercase__ = 'Unicode €.' lowercase__ = tokenizer(UpperCamelCase__ ) lowercase__ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase__ ) # decoding lowercase__ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , 'Unicode €.</s>' ) lowercase__ = tokenizer('e è é ê ë' ) lowercase__ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase__ ) # decoding lowercase__ = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> List[str]: """simple docstring""" lowercase__ = self.ta_base_tokenizer lowercase__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowercase__ = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) if FRAMEWORK != "jax": lowercase__ = list(batch.input_ids.numpy()[0] ) else: lowercase__ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Any: """simple docstring""" lowercase__ = self.ta_base_tokenizer lowercase__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowercase__ = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase__ ) self.assertIn('attention_mask' , UpperCamelCase__ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase__ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Dict: """simple docstring""" lowercase__ = self.ta_base_tokenizer lowercase__ = [ 'Summary of the text.', 'Another summary.', ] lowercase__ = tokenizer( text_target=UpperCamelCase__ , max_length=32 , padding='max_length' , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = self.ta_base_tokenizer lowercase__ = ['A long paragraph for summarization. </s>'] lowercase__ = ['Summary of the text. </s>'] # fmt: off lowercase__ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowercase__ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowercase__ = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase__ , batch['labels'][0] ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = ' He is very happy, UNwant\u00E9d,running' lowercase__ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) lowercase__ = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) lowercase__ = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) lowercase__ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowercase__ = tempfile.mkdtemp() lowercase__ = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) lowercase__ = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) lowercase__ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) lowercase__ = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) lowercase__ = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowercase__ = tokenizer.__class__.from_pretrained(UpperCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: lowercase__ = json.load(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: lowercase__ = json.load(UpperCamelCase__ ) lowercase__ = [f"""<extra_id_{i}>""" for i in range(125 )] lowercase__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] lowercase__ = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowercase__ = tokenizer_class.from_pretrained( UpperCamelCase__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowercase__ = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase__ )] lowercase__ = tokenizer_class.from_pretrained( UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> int: """simple docstring""" lowercase__ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) lowercase__ = tokenizer_class.from_pretrained(UpperCamelCase__ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> str: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> str: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Tuple: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : int )-> List[str]: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[Any]: """simple docstring""" lowercase__ = self.get_tokenizers(fast=UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowercase__ = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] lowercase__ = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" lowercase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowercase__ = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] lowercase__ = 0 lowercase__ = tokenizer.convert_ids_to_tokens( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for attr in attributes_list: setattr(UpperCamelCase__ , attr + '_id' , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + '_id' ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , attr + '_id' , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + '_id' ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase__ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class SCREAMING_SNAKE_CASE (a__ ): _UpperCamelCase : Union[str, Any] = "open-llama" def __init__( self : Optional[Any] , a : Tuple=100_000 , a : List[Any]=4_096 , a : Optional[int]=11_008 , a : Tuple=32 , a : Optional[int]=32 , a : Optional[Any]="silu" , a : Any=2_048 , a : List[str]=0.02 , a : int=1E-6 , a : Optional[int]=True , a : Any=0 , a : Optional[int]=1 , a : Dict=2 , a : List[Any]=False , a : Tuple=True , a : Tuple=0.1 , a : Union[str, Any]=0.1 , a : str=True , a : Optional[int]=True , a : Optional[int]=None , **a : Optional[Any] , )-> List[Any]: """simple docstring""" lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = initializer_range lowercase__ = rms_norm_eps lowercase__ = use_cache lowercase__ = kwargs.pop( 'use_memorry_efficient_attention' , lowerCamelCase_ ) lowercase__ = hidden_dropout_prob lowercase__ = attention_dropout_prob lowercase__ = use_stable_embedding lowercase__ = shared_input_output_embedding lowercase__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , tie_word_embeddings=lowerCamelCase_ , **lowerCamelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) lowercase__ = self.rope_scaling.get('type' , lowerCamelCase_ ) lowercase__ = self.rope_scaling.get('factor' , lowerCamelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
709
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
45
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class SCREAMING_SNAKE_CASE (lowercase_ ): '''simple docstring''' _UpperCamelCase : Dict = ['''pixel_values'''] def __init__( self : Any , a : bool = True , a : Dict[str, int] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 255 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : int , )-> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) lowercase__ = size if size is not None else {'shortest_edge': 256} lowercase__ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase__ = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase__ = get_size_dict(UpperCamelCase__ , param_name='crop_size' ) lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = offset lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BILINEAR , a : Optional[Union[str, ChannelDimension]] = None , **a : int , )-> Dict: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" in size: lowercase__ = get_resize_output_image_size(UpperCamelCase__ , size['shortest_edge'] , default_to_square=UpperCamelCase__ ) elif "height" in size and "width" in size: lowercase__ = (size['height'], size['width']) else: raise ValueError(f"""Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}""" ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , )-> Tuple: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have \'height\' and \'width\' as keys. Got {size.keys()}""" ) return center_crop(UpperCamelCase__ , size=(size['height'], size['width']) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : np.ndarray , a : Union[int, float] , a : bool = True , a : Optional[Union[str, ChannelDimension]] = None , **a : str , )-> str: """simple docstring""" lowercase__ = image.astype(np.floataa ) if offset: lowercase__ = image - (scale / 2) return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , )-> Tuple: """simple docstring""" return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[ChannelDimension] = ChannelDimension.FIRST , )-> str: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. lowercase__ = to_numpy_array(UpperCamelCase__ ) if do_resize: lowercase__ = self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) if do_center_crop: lowercase__ = self.center_crop(UpperCamelCase__ , size=UpperCamelCase__ ) if do_rescale: lowercase__ = self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ , offset=UpperCamelCase__ ) if do_normalize: lowercase__ = self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) lowercase__ = to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) return image def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , )-> str: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = offset if offset is not None else self.offset lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(UpperCamelCase__ , param_name='crop_size' ) if not valid_images(UpperCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) lowercase__ = make_batched(UpperCamelCase__ ) lowercase__ = [ [ self._preprocess_image( image=UpperCamelCase__ , do_resize=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , crop_size=UpperCamelCase__ , do_rescale=UpperCamelCase__ , rescale_factor=UpperCamelCase__ , offset=UpperCamelCase__ , do_normalize=UpperCamelCase__ , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ , data_format=UpperCamelCase__ , ) for img in video ] for video in videos ] lowercase__ = {'pixel_values': videos} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
710
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Optional[Any] , a : UNetaDModel , a : UNetaDModel , a : DDPMScheduler , a : Any , )-> Dict: """simple docstring""" super().__init__() lowercase__ = value_function lowercase__ = unet lowercase__ = scheduler lowercase__ = env lowercase__ = env.get_dataset() lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].mean() except: # noqa: E722 pass lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].std() except: # noqa: E722 pass lowercase__ = env.observation_space.shape[0] lowercase__ = env.action_space.shape[0] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Any , a : int )-> Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : List[str] )-> str: """simple docstring""" return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Tuple )-> Tuple: """simple docstring""" if type(a ) is dict: return {k: self.to_torch(a ) for k, v in x_in.items()} elif torch.is_tensor(a ): return x_in.to(self.unet.device ) return torch.tensor(a , device=self.unet.device ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[int] , a : Dict , a : Optional[Any] )-> List[Any]: """simple docstring""" for key, val in cond.items(): lowercase__ = val.clone() return x_in def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[Any] , a : Any , a : Optional[Any] , a : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = x.shape[0] lowercase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ = torch.full((batch_size,) , a , device=self.unet.device , dtype=torch.long ) for _ in range(a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ = self.value_function(x.permute(0 , 2 , 1 ) , a ).sample lowercase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowercase__ = self.scheduler._get_variance(a ) lowercase__ = torch.exp(0.5 * posterior_variance ) lowercase__ = model_std * grad lowercase__ = 0 lowercase__ = x.detach() lowercase__ = x + scale * grad lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.unet(x.permute(0 , 2 , 1 ) , a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase__ = self.scheduler.step(a , a , a , predict_epsilon=a )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) return x, y def __call__( self : Any , a : Tuple , a : int=64 , a : Tuple=32 , a : List[Any]=2 , a : List[str]=0.1 )-> List[Any]: """simple docstring""" lowercase__ = self.normalize(a , 'observations' ) lowercase__ = obs[None].repeat(a , axis=0 ) lowercase__ = {0: self.to_torch(a )} lowercase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ = randn_tensor(a , device=self.unet.device ) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) # run the diffusion process lowercase__ , lowercase__ = self.run_diffusion(a , a , a , a ) # sort output trajectories by value lowercase__ = y.argsort(0 , descending=a ).squeeze() lowercase__ = x[sorted_idx] lowercase__ = sorted_values[:, :, : self.action_dim] lowercase__ = actions.detach().cpu().numpy() lowercase__ = self.de_normalize(a , key='actions' ) # select the action with the highest value if y is not None: lowercase__ = 0 else: # if we didn't run value guiding, select a random action lowercase__ = np.random.randint(0 , a ) lowercase__ = denorm_actions[selected_index, 0] return denorm_actions
45
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Tuple[int, ...]]: lowercase__ = [] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[int, ...]: lowercase__ = [] for d in reversed(__lowerCAmelCase ): idx.append(flat_idx % d ) lowercase__ = flat_idx // d return tuple(reversed(__lowerCAmelCase ) ) @torch.jit.ignore def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> List[Tuple[slice, ...]]: def reduce_edge_list(_SCREAMING_SNAKE_CASE ) -> None: lowercase__ = True for i in range(len(__lowerCAmelCase ) ): lowercase__ = -1 * (i + 1) l[reversed_idx] &= tally lowercase__ = l[reversed_idx] if start_edges is None: lowercase__ = [s == 0 for s in start] reduce_edge_list(__lowerCAmelCase ) if end_edges is None: lowercase__ = [e == (d - 1) for e, d in zip(__lowerCAmelCase , __lowerCAmelCase )] reduce_edge_list(__lowerCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__lowerCAmelCase ) == 0: return [()] elif len(__lowerCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] lowercase__ = [] lowercase__ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__lowerCAmelCase , __lowerCAmelCase ): if s == e: path_list.append(slice(__lowerCAmelCase , s + 1 ) ) else: break lowercase__ = tuple(__lowerCAmelCase ) lowercase__ = len(__lowerCAmelCase ) # start == end, and we're done if divergence_idx == len(__lowerCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ = start[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None lowercase__ = end[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) lowercase__ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> torch.Tensor: lowercase__ = t.shape[:no_batch_dims] lowercase__ = list(_flat_idx_to_idx(__lowerCAmelCase , __lowerCAmelCase ) ) # _get_minimal_slice_set is inclusive lowercase__ = list(_flat_idx_to_idx(flat_end - 1 , __lowerCAmelCase ) ) # Get an ordered list of slices to perform lowercase__ = _get_minimal_slice_set( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) lowercase__ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> Any: if not (len(__lowerCAmelCase ) > 0): raise ValueError('Must provide at least one input' ) lowercase__ = [shape[:no_batch_dims] for shape in _fetch_dims(__lowerCAmelCase )] lowercase__ = tuple([max(__lowerCAmelCase ) for s in zip(*__lowerCAmelCase )] ) def _prep_inputs(_SCREAMING_SNAKE_CASE ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: lowercase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) lowercase__ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: lowercase__ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t lowercase__ = tensor_tree_map(_prep_inputs , __lowerCAmelCase ) lowercase__ = None if _out is not None: lowercase__ = tensor_tree_map(lambda _SCREAMING_SNAKE_CASE : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) lowercase__ = 1 for d in orig_batch_dims: flat_batch_dim *= d lowercase__ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_SCREAMING_SNAKE_CASE ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t lowercase__ = 0 lowercase__ = prepped_outputs for _ in range(__lowerCAmelCase ): # Chunk the input if not low_mem: lowercase__ = _select_chunk else: lowercase__ = partial( _chunk_slice , flat_start=__lowerCAmelCase , flat_end=min(__lowerCAmelCase , i + chunk_size ) , no_batch_dims=len(__lowerCAmelCase ) , ) lowercase__ = tensor_tree_map(__lowerCAmelCase , __lowerCAmelCase ) # Run the layer on the chunk lowercase__ = layer(**__lowerCAmelCase ) # Allocate space for the output if out is None: lowercase__ = tensor_tree_map(lambda _SCREAMING_SNAKE_CASE : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __lowerCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(__lowerCAmelCase , __lowerCAmelCase ): def assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: for k, v in da.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): assign(__lowerCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: lowercase__ = da[k] assign(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): for xa, xa in zip(__lowerCAmelCase , __lowerCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: lowercase__ = xa elif isinstance(__lowerCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: lowercase__ = output_chunk else: raise ValueError('Not supported' ) i += chunk_size lowercase__ = tensor_tree_map(lambda _SCREAMING_SNAKE_CASE : t.view(orig_batch_dims + t.shape[1:] ) , __lowerCAmelCase ) return out class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , a : int = 512 , )-> Any: """simple docstring""" lowercase__ = max_chunk_size lowercase__ = None lowercase__ = None def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Callable , a : tuple , a : int )-> str: """simple docstring""" logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size lowercase__ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] lowercase__ = [c for c in candidates if c > min_chunk_size] lowercase__ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(a : int ) -> bool: try: with torch.no_grad(): fn(*lowerCAmelCase_ , chunk_size=lowerCAmelCase_ ) return True except RuntimeError: return False lowercase__ = 0 lowercase__ = len(lowerCAmelCase_ ) - 1 while i > min_viable_chunk_size_index: lowercase__ = test_chunk_size(candidates[i] ) if not viable: lowercase__ = (min_viable_chunk_size_index + i) // 2 else: lowercase__ = i lowercase__ = (i + len(lowerCAmelCase_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : Iterable , a : Iterable )-> str: """simple docstring""" lowercase__ = True for aa, aa in zip(lowerCAmelCase_ , lowerCAmelCase_ ): assert type(lowerCAmelCase_ ) == type(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , (list, tuple) ): consistent &= self._compare_arg_caches(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): lowercase__ = [v for _, v in sorted(aa.items() , key=lambda a : x[0] )] lowercase__ = [v for _, v in sorted(aa.items() , key=lambda a : x[0] )] consistent &= self._compare_arg_caches(lowerCAmelCase_ , lowerCAmelCase_ ) else: consistent &= aa == aa return consistent def SCREAMING_SNAKE_CASE_ ( self : int , a : Callable , a : tuple , a : int , )-> Union[str, Any]: """simple docstring""" lowercase__ = True lowercase__ = tree_map(lambda a : a.shape if isinstance(lowerCAmelCase_ , torch.Tensor ) else a , lowerCAmelCase_ , lowerCAmelCase_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowerCAmelCase_ ) lowercase__ = self._compare_arg_caches(self.cached_arg_data , lowerCAmelCase_ ) else: # Otherwise, we can reuse the precomputed value lowercase__ = False if not consistent: lowercase__ = self._determine_favorable_chunk_size( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) lowercase__ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
711
from PIL import Image def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Image: def brightness(_SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
45
0
import os import pytest from attr import dataclass lowercase_ = """us-east-1""" # defaults region @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : Optional[Any] = 42 _UpperCamelCase : Any = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _UpperCamelCase : str = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_00, 'save_steps': 55_00, } _UpperCamelCase : int = {**hyperparameters, 'max_steps': 10_00} @property def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Optional[Any]: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def SCREAMING_SNAKE_CASE_ ( self : str )-> List[str]: """simple docstring""" return f"""{self.framework}-transfromers-test""" @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Dict: """simple docstring""" return f"""./tests/sagemaker/scripts/{self.framework}""" @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = SageMakerTestEnvironment(framework=request.cls.framework )
712
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : Any , a : str , a : List[Any]=7 , a : int=3 , a : int=18 , a : Optional[Any]=30 , a : Optional[int]=400 , a : int=True , a : Tuple=None , a : Optional[Any]=True , a : str=False , a : str=True , a : int=True , a : Tuple=[0.5, 0.5, 0.5] , a : Any=[0.5, 0.5, 0.5] , )-> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {'height': 18, 'width': 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : int )-> List[Any]: """simple docstring""" lowercase__ = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_thumbnail' ) ) self.assertTrue(hasattr(a , 'do_align_long_axis' ) ) self.assertTrue(hasattr(a , 'do_pad' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
45
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : _UpperCamelCase : List[str] = 42 _UpperCamelCase : Optional[Any] = None @staticmethod def SCREAMING_SNAKE_CASE_ ( )-> Tuple: """simple docstring""" raise NotImplementedError def SCREAMING_SNAKE_CASE_ ( self : int , a : Tuple , a : List[str] , a : Union[str, Any] , **a : List[str] )-> int: """simple docstring""" raise NotImplementedError def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : str )-> List[str]: """simple docstring""" raise NotImplementedError def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[Any]: """simple docstring""" if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any )-> Any: """simple docstring""" return f"""`pip install {cls.pip_package or cls.name}`""" class SCREAMING_SNAKE_CASE (_a ): _UpperCamelCase : Tuple = 'optuna' @staticmethod def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: """simple docstring""" return is_optuna_available() def SCREAMING_SNAKE_CASE_ ( self : str , a : List[Any] , a : Optional[int] , a : List[str] , **a : Union[str, Any] )-> Dict: """simple docstring""" return run_hp_search_optuna(_A , _A , _A , **_A ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : Any )-> Tuple: """simple docstring""" return default_hp_space_optuna(_A ) class SCREAMING_SNAKE_CASE (_a ): _UpperCamelCase : Union[str, Any] = 'ray' _UpperCamelCase : Dict = '\'ray[tune]\'' @staticmethod def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: """simple docstring""" return is_ray_available() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : List[Any] , a : int , a : List[Any] , **a : Any )-> List[Any]: """simple docstring""" return run_hp_search_ray(_A , _A , _A , **_A ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int )-> Optional[int]: """simple docstring""" return default_hp_space_ray(_A ) class SCREAMING_SNAKE_CASE (_a ): _UpperCamelCase : Optional[int] = 'sigopt' @staticmethod def SCREAMING_SNAKE_CASE_ ( )-> Dict: """simple docstring""" return is_sigopt_available() def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[Any] , a : str , a : Optional[Any] , **a : Dict )-> str: """simple docstring""" return run_hp_search_sigopt(_A , _A , _A , **_A ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : Optional[Any] )-> List[str]: """simple docstring""" return default_hp_space_sigopt(_A ) class SCREAMING_SNAKE_CASE (_a ): _UpperCamelCase : str = 'wandb' @staticmethod def SCREAMING_SNAKE_CASE_ ( )-> Tuple: """simple docstring""" return is_wandb_available() def SCREAMING_SNAKE_CASE_ ( self : Any , a : int , a : List[str] , a : Any , **a : str )-> Any: """simple docstring""" return run_hp_search_wandb(_A , _A , _A , **_A ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[int] )-> List[Any]: """simple docstring""" return default_hp_space_wandb(_A ) lowercase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __UpperCamelCase () -> Tuple: lowercase__ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(UpperCAmelCase__ ) > 0: lowercase__ = available_backends[0].name if len(UpperCAmelCase__ ) > 1: logger.info( F"""{len(UpperCAmelCase__ )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
713
import math def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_SCREAMING_SNAKE_CASE ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase_ = """Enter the base and the power separated by a comma: """ lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. lowercase_ = res(xa, ya) lowercase_ = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
45
0
from math import sqrt def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 1000000 ) -> int: lowercase__ = 0 lowercase__ = 0 lowercase__ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(UpperCAmelCase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
714
class SCREAMING_SNAKE_CASE : # Public class to implement a graph def __init__( self : int , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = row lowercase__ = col lowercase__ = graph def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int , a : list[list[bool]] )-> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: # And finally, count all islands. """simple docstring""" lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(a , a , a ) count += 1 return count
45
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : List[Any] , a : List[str] , a : List[Any] , a : Tuple , a : str , a : Optional[int] , a : str , a : List[Any] , )-> List[str]: """simple docstring""" super().__init__() self.register_modules( vae=a , text_encoder=a , tokenizer=a , unet=a , scheduler=a , safety_checker=a , feature_extractor=a , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : str = "auto" )-> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[Any]: """simple docstring""" self.enable_attention_slicing(a ) @torch.no_grad() def __call__( self : Dict , a : Optional[int] , a : Tuple = 512 , a : str = 512 , a : Optional[int] = 50 , a : List[Any] = 7.5 , a : Dict = None , a : Any = 1 , a : Optional[int] = 0.0 , a : int = None , a : int = None , a : Union[str, Any] = "pil" , a : Dict = True , a : Optional[Any] = None , a : Optional[Any] = 1 , a : Any = None , **a : Union[str, Any] , )-> Tuple: """simple docstring""" if isinstance(a , a ): lowercase__ = 1 elif isinstance(a , a ): lowercase__ = len(a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a , a ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(a )}.""" ) # get prompt text embeddings lowercase__ = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1 , a , 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt , a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [''] elif type(a ) is not type(a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(a )} !=""" f""" {type(a )}.""" ) elif isinstance(a , a ): lowercase__ = [negative_prompt] elif batch_size != len(a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( a , padding='max_length' , max_length=a , truncation=a , return_tensors='pt' , ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(a , a , 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn( a , generator=a , device='cpu' , dtype=a ).to(self.device ) lowercase__ = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: lowercase__ = torch.randn( a , generator=a , device=self.device , dtype=a ) lowercase__ = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents_reference.to(self.device ) lowercase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ = 0 if dx < 0 else dx lowercase__ = 0 if dy < 0 else dy lowercase__ = max(-dx , 0 ) lowercase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ = self.unet(a , a , encoder_hidden_states=a ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(a , a , a , **a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a , a , a ) lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(a ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase__ = self.feature_extractor(self.numpy_to_pil(a ) , return_tensors='pt' ).to( self.device ) lowercase__ , lowercase__ = self.safety_checker( images=a , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase__ = None if output_type == "pil": lowercase__ = self.numpy_to_pil(a ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
715
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ = '' lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: lowercase__ = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__UpperCAmelCase ) class SCREAMING_SNAKE_CASE (__UpperCAmelCase ): _UpperCamelCase : Any = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _UpperCamelCase : List[Any] = Features({'image': Image()} ) _UpperCamelCase : int = Features({'labels': ClassLabel} ) _UpperCamelCase : int = 'image' _UpperCamelCase : List[Any] = 'labels' def SCREAMING_SNAKE_CASE_ ( self : int , a : Dict )-> Optional[Any]: """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , a ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowercase__ = copy.deepcopy(self ) lowercase__ = self.label_schema.copy() lowercase__ = features[self.label_column] lowercase__ = label_schema return task_template @property def SCREAMING_SNAKE_CASE_ ( self : str )-> Any: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
716
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a : Any , a : Optional[int]=13 , a : Tuple=30 , a : Union[str, Any]=2 , a : List[str]=3 , a : Dict=True , a : List[str]=True , a : List[Any]=32 , a : List[str]=5 , a : Optional[int]=4 , a : List[str]=37 , a : Dict="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : int=10 , a : List[str]=0.02 , a : int=None , a : List[str]=2 , )-> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[Any] , a : List[str] , a : Dict )-> Optional[Any]: """simple docstring""" lowercase__ = ViTModel(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] , a : int , a : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForMaskedImageModeling(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForMaskedImageModeling(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[str] , a : int , a : List[Any] )-> str: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : int = True _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = ViTModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def __UpperCamelCase () -> str: lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(a ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ = model(**a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int )-> List[str]: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' ).to(a ) lowercase__ = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass with torch.no_grad(): lowercase__ = model(a , interpolate_pos_encoding=a ) # verify the logits lowercase__ = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a ) lowercase__ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase__ = model(a )
45
0
from typing import TYPE_CHECKING from ..utils import _LazyModule lowercase_ = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: stooge(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return arr def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase__ , lowercase__ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase__ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(_SCREAMING_SNAKE_CASE , i + t , (_SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
45
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if isinstance(snake_case_ , torch.Tensor ): return image elif isinstance(snake_case_ , PIL.Image.Image ): lowercase__ = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] lowercase__ = np.concatenate(snake_case_ , axis=0 ) lowercase__ = np.array(snake_case_ ).astype(np.floataa ) / 255.0 lowercase__ = image.transpose(0 , 3 , 1 , 2 ) lowercase__ = 2.0 * image - 1.0 lowercase__ = torch.from_numpy(snake_case_ ) elif isinstance(image[0] , torch.Tensor ): lowercase__ = torch.cat(snake_case_ , dim=0 ) return image def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9_9_9_5 ) -> List[Any]: if not isinstance(snake_case_ , np.ndarray ): lowercase__ = True lowercase__ = va.device lowercase__ = va.cpu().numpy() lowercase__ = va.cpu().numpy() lowercase__ = np.sum(va * va / (np.linalg.norm(snake_case_ ) * np.linalg.norm(snake_case_ )) ) if np.abs(snake_case_ ) > DOT_THRESHOLD: lowercase__ = (1 - t) * va + t * va else: lowercase__ = np.arccos(snake_case_ ) lowercase__ = np.sin(snake_case_ ) lowercase__ = theta_a * t lowercase__ = np.sin(snake_case_ ) lowercase__ = np.sin(theta_a - theta_t ) / sin_theta_a lowercase__ = sin_theta_t / sin_theta_a lowercase__ = sa * va + sa * va if inputs_are_torch: lowercase__ = torch.from_numpy(snake_case_ ).to(snake_case_ ) return va def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ = F.normalize(snake_case_ , dim=-1 ) lowercase__ = F.normalize(snake_case_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: for param in model.parameters(): lowercase__ = value class SCREAMING_SNAKE_CASE (UpperCamelCase_ ): def __init__( self : List[str] , a : Tuple , a : Tuple , a : Union[str, Any] , a : Any , a : Optional[int] , a : List[str] , a : List[Any] , a : Optional[Any]=None , a : int=None , a : Tuple=None , )-> str: """simple docstring""" super().__init__() self.register_modules( vae=a , text_encoder=a , clip_model=a , tokenizer=a , unet=a , scheduler=a , feature_extractor=a , coca_model=a , coca_tokenizer=a , coca_transform=a , ) lowercase__ = ( feature_extractor.size if isinstance(feature_extractor.size , a ) else feature_extractor.size['''shortest_edge'''] ) lowercase__ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , a ) set_requires_grad(self.clip_model , a ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : List[Any] = "auto" )-> Dict: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" self.enable_attention_slicing(a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> str: """simple docstring""" set_requires_grad(self.vae , a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Any: """simple docstring""" set_requires_grad(self.vae , a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Optional[Any]: """simple docstring""" set_requires_grad(self.unet , a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Union[str, Any]: """simple docstring""" set_requires_grad(self.unet , a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : Dict , a : List[str] , a : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = min(int(num_inference_steps * strength ) , a ) lowercase__ = max(num_inference_steps - init_timestep , 0 ) lowercase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Tuple , a : Dict , a : Dict , a : Tuple , a : List[Any] , a : Optional[Any]=None )-> Any: """simple docstring""" if not isinstance(a , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(a )}""" ) lowercase__ = image.to(device=a , dtype=a ) if isinstance(a , a ): lowercase__ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase__ = torch.cat(a , dim=0 ) else: lowercase__ = self.vae.encode(a ).latent_dist.sample(a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ = 0.18215 * init_latents lowercase__ = init_latents.repeat_interleave(a , dim=0 ) lowercase__ = randn_tensor(init_latents.shape , generator=a , device=a , dtype=a ) # get latents lowercase__ = self.scheduler.add_noise(a , a , a ) lowercase__ = init_latents return latents def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : Optional[int] )-> Any: """simple docstring""" lowercase__ = self.coca_transform(a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase__ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowercase__ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[Any] , a : int )-> List[str]: """simple docstring""" lowercase__ = self.feature_extractor.preprocess(a ) lowercase__ = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() lowercase__ = self.clip_model.get_image_features(a ) lowercase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) lowercase__ = image_embeddings_clip.repeat_interleave(a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : Union[str, Any] , a : int , a : List[Any] , a : Optional[int] , a : Dict , a : List[Any] , )-> Tuple: """simple docstring""" lowercase__ = latents.detach().requires_grad_() lowercase__ = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ = self.unet(a , a , encoder_hidden_states=a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase__ = self.scheduler.alphas_cumprod[timestep] lowercase__ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase__ = torch.sqrt(a ) lowercase__ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , a ): lowercase__ = self.scheduler.sigmas[index] lowercase__ = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ = 1 / 0.18215 * sample lowercase__ = self.vae.decode(a ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ = transforms.Resize(self.feature_extractor_size )(a ) lowercase__ = self.normalize(a ).to(latents.dtype ) lowercase__ = self.clip_model.get_image_features(a ) lowercase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) lowercase__ = spherical_dist_loss(a , a ).mean() * clip_guidance_scale lowercase__ = -torch.autograd.grad(a , a )[0] if isinstance(self.scheduler , a ): lowercase__ = latents.detach() + grads * (sigma**2) lowercase__ = noise_pred_original else: lowercase__ = noise_pred_original - torch.sqrt(a ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : int , a : int , a : Optional[int] , a : List[Any] = None , a : str = None , a : List[str] = 512 , a : Tuple = 512 , a : List[str] = 0.6 , a : List[str] = 50 , a : Optional[Any] = 7.5 , a : Dict = 1 , a : Optional[Any] = 0.0 , a : Any = 100 , a : Optional[int] = None , a : Union[str, Any] = "pil" , a : int = True , a : Optional[Any] = 0.8 , a : int = 0.1 , a : Union[str, Any] = 0.1 , )-> Optional[Any]: """simple docstring""" if isinstance(a , a ) and len(a ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(a )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(a , torch.Generator ) and batch_size > 1: lowercase__ = [generator] + [None] * (batch_size - 1) lowercase__ = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] lowercase__ = [x[0] for x in coca_is_none if x[1]] lowercase__ = ''', '''.join(a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(a ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowercase__ = self.get_image_description(a ) if style_prompt is None: if len(a ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowercase__ = self.get_image_description(a ) # get prompt text embeddings for content and style lowercase__ = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) lowercase__ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase__ = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) lowercase__ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase__ = slerp(a , a , a ) # duplicate text embeddings for each generation per prompt lowercase__ = text_embeddings.repeat_interleave(a , dim=0 ) # set timesteps lowercase__ = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase__ = {} if accepts_offset: lowercase__ = 1 self.scheduler.set_timesteps(a , **a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase__ = self.get_timesteps(a , a , self.device ) lowercase__ = timesteps[:1].repeat(a ) # Preprocess image lowercase__ = preprocess(a , a , a ) lowercase__ = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) lowercase__ = preprocess(a , a , a ) lowercase__ = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) lowercase__ = slerp(a , a , a ) if clip_guidance_scale > 0: lowercase__ = self.get_clip_image_embeddings(a , a ) lowercase__ = self.get_clip_image_embeddings(a , a ) lowercase__ = slerp( a , a , a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = content_text_input.input_ids.shape[-1] lowercase__ = self.tokenizer([''] , padding='max_length' , max_length=a , return_tensors='pt' ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase__ = uncond_embeddings.repeat_interleave(a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase__ = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: lowercase__ = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta # check if the scheduler accepts generator lowercase__ = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase__ = generator with self.progress_bar(total=a ): for i, t in enumerate(a ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ = self.unet(a , a , encoder_hidden_states=a ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase__ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase__ = self.cond_fn( a , a , a , a , a , a , a , ) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(a , a , a , **a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ = 1 / 0.18215 * latents lowercase__ = self.vae.decode(a ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
718
from scipy.stats import spearmanr import datasets lowercase_ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowercase_ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowercase_ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Any , a : str=False )-> Optional[int]: """simple docstring""" lowercase__ = spearmanr(a , a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
0
from __future__ import annotations def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Any: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
719
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
45
0
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): lowercase_ = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: lowercase_ = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: lowercase__ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase__ = numpy_to_pil(lowerCamelCase__ ) return images def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: if images.ndim == 3: lowercase__ = images[None, ...] lowercase__ = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase__ = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: lowercase__ = [Image.fromarray(lowerCamelCase__ ) for image in images] return pil_images
720
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowercase_ = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = EfficientNetConfig() lowercase__ = CONFIG_MAP[model_name]['hidden_dim'] lowercase__ = CONFIG_MAP[model_name]['width_coef'] lowercase__ = CONFIG_MAP[model_name]['depth_coef'] lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = CONFIG_MAP[model_name]['dropout_rate'] lowercase__ = CONFIG_MAP[model_name]['dw_padding'] lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 1000 lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> Tuple: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase__ = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} lowercase__ = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase__ = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase__ = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ = 'efficientnet.' + item[1] lowercase__ = 'classifier.weight' lowercase__ = 'classifier.bias' return key_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation='softmax' , ) lowercase__ = original_model.trainable_variables lowercase__ = original_model.non_trainable_variables lowercase__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ = param.numpy() lowercase__ = list(tf_params.keys() ) # Load HuggingFace model lowercase__ = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowercase__ = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowercase__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase__ = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowercase__ = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowercase__ = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ = hf_model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.detach().numpy() # Original model inference lowercase__ = False lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowercase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
45
0
def __UpperCamelCase () -> int: lowercase__ = 0 for i in range(1 , 1001 ): total += i**i return str(_SCREAMING_SNAKE_CASE )[-10:] if __name__ == "__main__": print(solution())
721
import argparse import json import subprocess def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = [] lowercase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowercase__ = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode('utf-8' ) lowercase__ = json.loads(_SCREAMING_SNAKE_CASE ) lowercase__ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return values.split(',' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
45
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , a : Optional[Any] , a : str=13 , a : Optional[int]=7 , a : Dict=True , a : List[str]=True , a : Any=True , a : Optional[int]=True , a : Tuple=99 , a : List[str]=32 , a : Optional[Any]=5 , a : List[Any]=4 , a : Tuple=4 , a : Dict="gelu" , a : str=0.0 , a : int=0.1 , a : str=True , a : List[str]=512 , a : Any=16 , a : Optional[Any]=2 , a : List[Any]=0.02 , a : Tuple=3 , a : Union[str, Any]=4 , a : Optional[int]=None , )-> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_multiple_size lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = weight_tying lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> str: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.prepare_config_and_inputs() lowercase__ = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Union[str, Any] , a : List[str] , a : Tuple )-> Optional[int]: """simple docstring""" lowercase__ = GPTNeoXJapaneseModel(config=a ) model.to(a ) model.eval() lowercase__ = model(a , attention_mask=a ) lowercase__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : List[str] , a : Any , a : int )-> int: """simple docstring""" lowercase__ = True lowercase__ = GPTNeoXJapaneseModel(a ) model.to(a ) model.eval() lowercase__ = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Tuple , a : Optional[int] , a : Dict , a : str )-> int: """simple docstring""" lowercase__ = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() lowercase__ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : str , a : str , a : Optional[int] , a : Optional[Any] )-> List[Any]: """simple docstring""" lowercase__ = True lowercase__ = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowercase__ = model(a , attention_mask=a , use_cache=a ) lowercase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase__ = model(a , attention_mask=a , output_hidden_states=a ) lowercase__ = output_from_no_past['hidden_states'][0] lowercase__ = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Tuple: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : str = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _UpperCamelCase : Optional[int] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _UpperCamelCase : str = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : str = False _UpperCamelCase : Optional[int] = False _UpperCamelCase : str = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Tuple: """simple docstring""" lowercase__ = GPTNeoXJapaneseModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Any: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> int: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Dict: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Tuple: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase__ = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> str: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[Any]: """simple docstring""" lowercase__ = 'abeja/gpt-neox-japanese-2.7b' lowercase__ = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] lowercase__ = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] lowercase__ = GPTNeoXJapaneseTokenizer.from_pretrained(a ) lowercase__ = GPTNeoXJapaneseForCausalLM.from_pretrained(a ) lowercase__ = [] for prompt in prompts: lowercase__ = tokenizer(a , return_tensors='pt' ).input_ids lowercase__ = model.generate(a , max_length=50 ) lowercase__ = tokenizer.batch_decode(a , skip_special_tokens=a ) predicted_outputs += generated_string self.assertListEqual(a , a )
700
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Tuple = 'ClapFeatureExtractor' _UpperCamelCase : Union[str, Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : List[Any] , a : int , a : str )-> Any: """simple docstring""" super().__init__(a , a ) def __call__( self : Any , a : Tuple=None , a : Optional[int]=None , a : int=None , **a : Optional[int] )-> Union[str, Any]: """simple docstring""" lowercase__ = kwargs.pop('sampling_rate' , a ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: lowercase__ = self.tokenizer(a , return_tensors=a , **a ) if audios is not None: lowercase__ = self.feature_extractor( a , sampling_rate=a , return_tensors=a , **a ) if text is not None and audios is not None: lowercase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def SCREAMING_SNAKE_CASE_ ( self : str , *a : Dict , **a : int )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , *a : int , **a : Dict )-> Dict: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
45
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowercase_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : List[str] , a : Optional[int] )-> Optional[Any]: """simple docstring""" super().__init__() lowercase__ = torchvision.models.resnetaaa(pretrained=a ) lowercase__ = list(model.children() )[:-2] lowercase__ = nn.Sequential(*a ) lowercase__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Union[str, Any] )-> List[str]: """simple docstring""" lowercase__ = self.pool(self.model(a ) ) lowercase__ = torch.flatten(a , start_dim=2 ) lowercase__ = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Any , a : str , a : str , a : Optional[Any] , a : List[Any] , a : Dict )-> Union[str, Any]: """simple docstring""" lowercase__ = [json.loads(a ) for l in open(a )] lowercase__ = os.path.dirname(a ) lowercase__ = tokenizer lowercase__ = labels lowercase__ = len(a ) lowercase__ = max_seq_length lowercase__ = transforms def __len__( self : Dict )-> Any: """simple docstring""" return len(self.data ) def __getitem__( self : Optional[Any] , a : Optional[Any] )-> Any: """simple docstring""" lowercase__ = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=a ) ) lowercase__ , lowercase__ , lowercase__ = sentence[0], sentence[1:-1], sentence[-1] lowercase__ = sentence[: self.max_seq_length] lowercase__ = torch.zeros(self.n_classes ) lowercase__ = 1 lowercase__ = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) lowercase__ = self.transforms(a ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[str]: """simple docstring""" lowercase__ = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: lowercase__ = [len(row['sentence'] ) for row in batch] lowercase__ , lowercase__ = len(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE ) lowercase__ = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.long ) lowercase__ = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): lowercase__ = input_row['sentence'] lowercase__ = 1 lowercase__ = torch.stack([row['image'] for row in batch] ) lowercase__ = torch.stack([row['label'] for row in batch] ) lowercase__ = torch.stack([row['image_start_token'] for row in batch] ) lowercase__ = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __UpperCamelCase () -> List[str]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __UpperCamelCase () -> Dict: return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
701
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } lowercase_ = """▁""" class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] _UpperCamelCase : int = BarthezTokenizer def __init__( self : List[Any] , a : Union[str, Any]=None , a : Optional[Any]=None , a : Dict="<s>" , a : Union[str, Any]="</s>" , a : List[str]="</s>" , a : Optional[Any]="<s>" , a : int="<unk>" , a : str="<pad>" , a : Optional[int]="<mask>" , **a : Union[str, Any] , )-> Tuple: """simple docstring""" lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , **a , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
45
0
lowercase_ = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on lowercase_ = {value: key for key, value in MORSE_CODE_DICT.items()} def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return "".join(REVERSE_DICT[char] for char in message.split() ) def __UpperCamelCase () -> None: lowercase__ = 'Morse code here!' print(_SCREAMING_SNAKE_CASE ) lowercase__ = encrypt(_SCREAMING_SNAKE_CASE ) print(_SCREAMING_SNAKE_CASE ) lowercase__ = decrypt(_SCREAMING_SNAKE_CASE ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
702
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = StableDiffusionSAGPipeline _UpperCamelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(a ) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[int] , a : Any=0 )-> Union[str, Any]: """simple docstring""" if str(a ).startswith('mps' ): lowercase__ = torch.manual_seed(a ) else: lowercase__ = torch.Generator(device=a ).manual_seed(a ) lowercase__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) lowercase__ = output.images assert image.shape == (1, 512, 768, 3)
45
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase ): _UpperCamelCase : int = 'dinat' _UpperCamelCase : Any = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , a : Optional[int]=4 , a : Tuple=3 , a : List[str]=64 , a : Optional[Any]=[3, 4, 6, 5] , a : Tuple=[2, 4, 8, 16] , a : Union[str, Any]=7 , a : Optional[Any]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , a : int=3.0 , a : Union[str, Any]=True , a : Any=0.0 , a : Optional[Any]=0.0 , a : int=0.1 , a : Dict="gelu" , a : List[str]=0.02 , a : List[str]=1E-5 , a : Any=0.0 , a : Optional[int]=None , a : Optional[Any]=None , **a : Union[str, Any] , )-> Optional[int]: """simple docstring""" super().__init__(**a ) lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = len(a ) lowercase__ = num_heads lowercase__ = kernel_size lowercase__ = dilations lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = layer_norm_eps lowercase__ = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ = int(embed_dim * 2 ** (len(a ) - 1) ) lowercase__ = layer_scale_init_value lowercase__ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(a ) + 1 )] lowercase__ , lowercase__ = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names )
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'deit' def __init__( self : Any , a : Union[str, Any]=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Optional[int]="gelu" , a : Optional[Any]=0.0 , a : List[Any]=0.0 , a : int=0.02 , a : List[str]=1E-1_2 , a : Optional[int]=224 , a : Tuple=16 , a : List[Any]=3 , a : List[str]=True , a : Any=16 , **a : Union[str, Any] , )-> int: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = encoder_stride class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> float: """simple docstring""" return 1E-4
45
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase_ = """\ Text data. Second line of data.""" lowercase_ = """file""" @pytest.fixture(scope='session' ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') lowercase__ = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' ) with zstd.open(_SCREAMING_SNAKE_CASE , 'wb' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return path @pytest.fixture def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: with open(os.path.join(tmpfs.local_root_dir , _SCREAMING_SNAKE_CASE ) , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} lowercase__ = input_paths[compression_format] lowercase__ = tmp_path / 'cache' lowercase__ = DownloadConfig(cache_dir=_SCREAMING_SNAKE_CASE , extract_compressed_file=_SCREAMING_SNAKE_CASE ) lowercase__ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read() with open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = 'custom_cache' lowercase__ = 'custom_extracted_dir' lowercase__ = tmp_path / 'custom_extracted_path' if default_extracted: lowercase__ = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _SCREAMING_SNAKE_CASE ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_SCREAMING_SNAKE_CASE ) ) lowercase__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase__ = xz_file lowercase__ = ( DownloadConfig(extract_compressed_file=_SCREAMING_SNAKE_CASE ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_SCREAMING_SNAKE_CASE ) ) lowercase__ = cached_path(_SCREAMING_SNAKE_CASE , download_config=_SCREAMING_SNAKE_CASE ) assert Path(_SCREAMING_SNAKE_CASE ).parent.parts[-2:] == expected def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: # absolute path lowercase__ = str(Path(_SCREAMING_SNAKE_CASE ).resolve() ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file # relative path lowercase__ = str(Path(_SCREAMING_SNAKE_CASE ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_SCREAMING_SNAKE_CASE ) == text_file def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # absolute path lowercase__ = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) # relative path lowercase__ = './__missing_file__.txt' with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase () -> List[Any]: with pytest.raises(_SCREAMING_SNAKE_CASE ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_SCREAMING_SNAKE_CASE ): http_get('https://huggingface.co' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_get('ftp://huggingface.co' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_get('s3://huggingface.co' , temp_file=_SCREAMING_SNAKE_CASE ) with pytest.raises(_SCREAMING_SNAKE_CASE ): fsspec_head('s3://huggingface.co' )
704
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ) -> List[Any]: lowercase__ = None if token is not None: lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase__ = '636036' lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run['id'] break return workflow_run_id def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): lowercase__ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read().decode('UTF-8' ) return results
45
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = os.path.join(args.tf_model_dir , 'parameters.json' ) lowercase__ = json.loads(open(_SCREAMING_SNAKE_CASE ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith('.pt' ): lowercase__ = args.output + '.pt' lowercase__ = OrderedDict() with tf.device('/CPU:0' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) if key_name.endswith('/adam_m' ) or key_name.endswith('/adam_v' ): continue if key_name.startswith('pasts/' ): if key_name.startswith('pasts/mlp' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('pasts/out' ): lowercase__ = 8 lowercase__ = 'model.sqout.%d.weight' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/moe' ): lowercase__ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/switch_gating/kernel' ): lowercase__ = 'model.blocks.%d.feed_forward.mlp.router.classifier.weight' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith('/softmlp/kernel' ): lowercase__ = 'model.blocks.%d.feed_forward.soft_bypass_mlp.weight' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith('/wo/kernel' ) or key_name.endswith('/wi/kernel' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = 'model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/mlp' ): lowercase__ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/p1/kernel' ): lowercase__ = 'model.blocks.%d.feed_forward.mlp.wi.weight' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith('/p1/bias' ): lowercase__ = 'model.blocks.%d.feed_forward.mlp.wi.bias' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith('/p2/kernel' ): lowercase__ = 'model.blocks.%d.feed_forward.mlp.wo.weight' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith('/p2/bias' ): lowercase__ = 'model.blocks.%d.feed_forward.mlp.wo.bias' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/ln' ): lowercase__ = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): lowercase__ = 'model.blocks.%d.feed_forward.norm.bias' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith('/g' ): lowercase__ = 'model.blocks.%d.feed_forward.norm.weight' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/att' ): lowercase__ = int(key_name[9:].split('/' )[0] ) if key_name.endswith('/qkv/kernel' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = 'model.blocks.%d.self_attn.self_attn.q_proj.weight' % player lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) lowercase__ = 'model.blocks.%d.self_attn.self_attn.k_proj.weight' % player lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) lowercase__ = 'model.blocks.%d.self_attn.self_attn.v_proj.weight' % player lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith('/o/kernel' ): lowercase__ = 'model.blocks.%d.self_attn.self_attn.out_proj.weight' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/an' ): lowercase__ = int(key_name[8:].split('/' )[0] ) if key_name.endswith('/b' ): lowercase__ = 'model.blocks.%d.self_attn.norm.bias' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.endswith('/g' ): lowercase__ = 'model.blocks.%d.self_attn.norm.weight' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif ( key_name.startswith('model/wte' ) or key_name.startswith('model/wpe' ) or key_name.startswith('model/ete' ) ): lowercase__ = {'wte': 'embed_tokens', 'wpe': 'position_embeddings', 'ete': 'extra_position_embeddings'}[ key_name[-3:] ] lowercase__ = 'model.%s.weight' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) if key_name.startswith('model/wte' ): lowercase__ = 'lm_head.weight' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name.startswith('model/wob' ): lowercase__ = 'final_logits_bias' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name == "model/dense/kernel": lowercase__ = 'model.last_project.weight' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) elif key_name == "model/dense_1/bias": lowercase__ = 'model.last_project.bias' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , args.output ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") lowercase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
705
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase_ = False class SCREAMING_SNAKE_CASE (unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) lowercase__ = VersatileDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = generator.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = 'cyberpunk 2077' lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt=a , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = 'A painting of a squirrel eating a burger ' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.text_to_image( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = pipe.image_variation(a , generator=a , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
45
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: lowercase__ = {} for old_key in state_dict.keys(): lowercase__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowercase__ = key.replace('moe_layer.experts.0' , F"""ffn.experts.expert_{expert_idx}""" ) else: lowercase__ = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: lowercase__ = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: lowercase__ = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: lowercase__ = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: lowercase__ = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: lowercase__ = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: lowercase__ = key.replace('final_layer_norm' , 'ff_layer_norm' ) lowercase__ = state_dict[old_key] return new_dict def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = WEIGHTS_NAME ) -> List[Any]: lowercase__ = [] lowercase__ = 0 os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) for expert in range(_SCREAMING_SNAKE_CASE ): lowercase__ = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(_SCREAMING_SNAKE_CASE ): lowercase__ = torch.load(_SCREAMING_SNAKE_CASE )['model'] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) lowercase__ = rename_fairseq_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = os.path.join( _SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_SCREAMING_SNAKE_CASE )[0]].dtype ) # Add the last block lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) lowercase__ = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) lowercase__ = rename_fairseq_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_SCREAMING_SNAKE_CASE ) == 1: lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Otherwise, let's build the index lowercase__ = {} for idx, shard in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = weights_name.replace('.bin' , F"""-{idx+1:05d}-of-{len(_SCREAMING_SNAKE_CASE ):05d}.bin""" ) lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for key in shard: lowercase__ = shard_file # Add the metadata lowercase__ = {'total_size': total_size} lowercase__ = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 'w' , encoding='utf-8' ) as f: lowercase__ = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + '\n' f.write(_SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowercase_ = parser.parse_args() lowercase_ , lowercase_ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowercase_ = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowercase_ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
706
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_SCREAMING_SNAKE_CASE ) == 1: return True lowercase__ = series[1] - series[0] for index in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> float: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) lowercase__ = 0 for val in series: answer += val return answer / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
45
0
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) lowercase__ = precision lowercase__ = ceil(precision / 14 ) lowercase__ = 426880 * Decimal(10005 ).sqrt() lowercase__ = 1 lowercase__ = 13591409 lowercase__ = Decimal(_SCREAMING_SNAKE_CASE ) for k in range(1 , _SCREAMING_SNAKE_CASE ): lowercase__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(_SCREAMING_SNAKE_CASE ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowercase_ = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
707
from __future__ import annotations import math from collections.abc import Callable def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 100 , ) -> float: lowercase__ = x_start lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) lowercase__ = 0.0 for _ in range(_SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ = (x_end - x_start) / steps + xa lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ = xa lowercase__ = fxa return length if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowercase_ = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
45
0
from math import isqrt def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(_SCREAMING_SNAKE_CASE ) + 1 ) ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 10**6 ) -> int: lowercase__ = 0 lowercase__ = 1 lowercase__ = 7 while prime_candidate < max_prime: primes_count += is_prime(_SCREAMING_SNAKE_CASE ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: lowercase__ = to_pil_image(_SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = pil_image.size lowercase__ = pytesseract.image_to_data(_SCREAMING_SNAKE_CASE , lang=_SCREAMING_SNAKE_CASE , output_type='dict' , config=_SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowercase__ = [idx for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if not word.strip()] lowercase__ = [word for idx, word in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase__ = [coord for idx, coord in enumerate(_SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase__ = [] for x, y, w, h in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = [x, y, x + w, y + h] actual_boxes.append(_SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes lowercase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[str] = ['pixel_values'] def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : float = 1 / 255 , a : bool = True , a : Union[float, Iterable[float]] = None , a : Union[float, Iterable[float]] = None , a : bool = True , a : Optional[str] = None , a : Optional[str] = "" , **a : Any , )-> None: """simple docstring""" super().__init__(**a ) lowercase__ = size if size is not None else {'height': 224, 'width': 224} lowercase__ = get_size_dict(a ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_value lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase__ = apply_ocr lowercase__ = ocr_lang lowercase__ = tesseract_config def SCREAMING_SNAKE_CASE_ ( self : str , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BILINEAR , a : Optional[Union[str, ChannelDimension]] = None , **a : List[Any] , )-> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowercase__ = (size['height'], size['width']) return resize(a , size=a , resample=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , )-> np.ndarray: """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : np.ndarray , a : Union[float, Iterable[float]] , a : Union[float, Iterable[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Tuple , )-> np.ndarray: """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : List[str]=None , a : bool = None , a : float = None , a : bool = None , a : Union[float, Iterable[float]] = None , a : Union[float, Iterable[float]] = None , a : bool = None , a : Optional[str] = None , a : Optional[str] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : int , )-> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(a ) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(a ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) lowercase__ = [] lowercase__ = [] for image in images: lowercase__ , lowercase__ = apply_tesseract(a , a , a ) words_batch.append(a ) boxes_batch.append(a ) if do_resize: lowercase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=a , mean=a , std=a ) for image in images] lowercase__ = [to_channel_dimension_format(a , a ) for image in images] lowercase__ = BatchFeature(data={'pixel_values': images} , tensor_type=a ) if apply_ocr: lowercase__ = words_batch lowercase__ = boxes_batch return data
709
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
45
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = np.full((len(_SCREAMING_SNAKE_CASE ), sequence_length, 2) , _SCREAMING_SNAKE_CASE ) else: lowercase__ = np.full((len(_SCREAMING_SNAKE_CASE ), sequence_length) , _SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(_SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = tensor[:sequence_length] else: lowercase__ = tensor[:sequence_length] return out_tensor.tolist() def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = ord(_SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True lowercase__ = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat.startswith('P' ): return True return False @dataclass class SCREAMING_SNAKE_CASE (UpperCAmelCase ): '''simple docstring''' _UpperCamelCase : PreTrainedTokenizerBase _UpperCamelCase : Union[bool, str, PaddingStrategy] = True _UpperCamelCase : Optional[int] = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : int = -1_00 _UpperCamelCase : str = "pt" def SCREAMING_SNAKE_CASE_ ( self : str , a : List[str] )-> str: """simple docstring""" import torch lowercase__ = 'label' if 'label' in features[0].keys() else 'labels' lowercase__ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowercase__ = self.tokenizer.pad( a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch lowercase__ = torch.tensor(batch['entity_ids'] ).shape[1] lowercase__ = self.tokenizer.padding_side if padding_side == "right": lowercase__ = [ list(a ) + [self.label_pad_token_id] * (sequence_length - len(a )) for label in labels ] else: lowercase__ = [ [self.label_pad_token_id] * (sequence_length - len(a )) + list(a ) for label in labels ] lowercase__ = [feature['ner_tags'] for feature in features] lowercase__ = padding_tensor(a , -1 , a , a ) lowercase__ = [feature['original_entity_spans'] for feature in features] lowercase__ = padding_tensor(a , (-1, -1) , a , a ) lowercase__ = {k: torch.tensor(a , dtype=torch.intaa ) for k, v in batch.items()} return batch
710
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Optional[Any] , a : UNetaDModel , a : UNetaDModel , a : DDPMScheduler , a : Any , )-> Dict: """simple docstring""" super().__init__() lowercase__ = value_function lowercase__ = unet lowercase__ = scheduler lowercase__ = env lowercase__ = env.get_dataset() lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].mean() except: # noqa: E722 pass lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].std() except: # noqa: E722 pass lowercase__ = env.observation_space.shape[0] lowercase__ = env.action_space.shape[0] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Any , a : int )-> Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : List[str] )-> str: """simple docstring""" return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Tuple )-> Tuple: """simple docstring""" if type(a ) is dict: return {k: self.to_torch(a ) for k, v in x_in.items()} elif torch.is_tensor(a ): return x_in.to(self.unet.device ) return torch.tensor(a , device=self.unet.device ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[int] , a : Dict , a : Optional[Any] )-> List[Any]: """simple docstring""" for key, val in cond.items(): lowercase__ = val.clone() return x_in def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[Any] , a : Any , a : Optional[Any] , a : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = x.shape[0] lowercase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ = torch.full((batch_size,) , a , device=self.unet.device , dtype=torch.long ) for _ in range(a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ = self.value_function(x.permute(0 , 2 , 1 ) , a ).sample lowercase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowercase__ = self.scheduler._get_variance(a ) lowercase__ = torch.exp(0.5 * posterior_variance ) lowercase__ = model_std * grad lowercase__ = 0 lowercase__ = x.detach() lowercase__ = x + scale * grad lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.unet(x.permute(0 , 2 , 1 ) , a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase__ = self.scheduler.step(a , a , a , predict_epsilon=a )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) return x, y def __call__( self : Any , a : Tuple , a : int=64 , a : Tuple=32 , a : List[Any]=2 , a : List[str]=0.1 )-> List[Any]: """simple docstring""" lowercase__ = self.normalize(a , 'observations' ) lowercase__ = obs[None].repeat(a , axis=0 ) lowercase__ = {0: self.to_torch(a )} lowercase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ = randn_tensor(a , device=self.unet.device ) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) # run the diffusion process lowercase__ , lowercase__ = self.run_diffusion(a , a , a , a ) # sort output trajectories by value lowercase__ = y.argsort(0 , descending=a ).squeeze() lowercase__ = x[sorted_idx] lowercase__ = sorted_values[:, :, : self.action_dim] lowercase__ = actions.detach().cpu().numpy() lowercase__ = self.de_normalize(a , key='actions' ) # select the action with the highest value if y is not None: lowercase__ = 0 else: # if we didn't run value guiding, select a random action lowercase__ = np.random.randint(0 , a ) lowercase__ = denorm_actions[selected_index, 0] return denorm_actions
45
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'deit' def __init__( self : Any , a : Union[str, Any]=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Optional[int]="gelu" , a : Optional[Any]=0.0 , a : List[Any]=0.0 , a : int=0.02 , a : List[str]=1E-1_2 , a : Optional[int]=224 , a : Tuple=16 , a : List[Any]=3 , a : List[str]=True , a : Any=16 , **a : Union[str, Any] , )-> int: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = encoder_stride class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> float: """simple docstring""" return 1E-4
711
from PIL import Image def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Image: def brightness(_SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
45
0
from collections.abc import Sequence def __UpperCamelCase (_SCREAMING_SNAKE_CASE = None ) -> int: if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) lowercase__ = nums[0] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = nums[i] lowercase__ = max(_SCREAMING_SNAKE_CASE , ans + num , _SCREAMING_SNAKE_CASE ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowercase_ = int(input("""Enter number of elements : """).strip()) lowercase_ = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
712
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : Any , a : str , a : List[Any]=7 , a : int=3 , a : int=18 , a : Optional[Any]=30 , a : Optional[int]=400 , a : int=True , a : Tuple=None , a : Optional[Any]=True , a : str=False , a : str=True , a : int=True , a : Tuple=[0.5, 0.5, 0.5] , a : Any=[0.5, 0.5, 0.5] , )-> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {'height': 18, 'width': 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : int )-> List[Any]: """simple docstring""" lowercase__ = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_thumbnail' ) ) self.assertTrue(hasattr(a , 'do_align_long_axis' ) ) self.assertTrue(hasattr(a , 'do_pad' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
45
0
import unittest from knapsack import greedy_knapsack as kp class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Dict: """simple docstring""" lowercase__ = [10, 20, 30, 40, 50, 60] lowercase__ = [2, 4, 6, 8, 10, 12] lowercase__ = 100 self.assertEqual(kp.calc_profit(a , a , a ) , 210 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" self.assertRaisesRegex(a , 'max_weight must greater than zero.' ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[Any]: """simple docstring""" self.assertRaisesRegex(a , 'Weight can not be negative.' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" self.assertRaisesRegex(a , 'Profit can not be negative.' ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[str]: """simple docstring""" self.assertRaisesRegex(a , 'max_weight must greater than zero.' ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Union[str, Any]: """simple docstring""" self.assertRaisesRegex( a , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
713
import math def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_SCREAMING_SNAKE_CASE ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase_ = """Enter the base and the power separated by a comma: """ lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. lowercase_ = res(xa, ya) lowercase_ = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
45
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
class SCREAMING_SNAKE_CASE : # Public class to implement a graph def __init__( self : int , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = row lowercase__ = col lowercase__ = graph def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int , a : list[list[bool]] )-> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: # And finally, count all islands. """simple docstring""" lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(a , a , a ) count += 1 return count
45
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
715
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ = '' lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: lowercase__ = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
716
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a : Any , a : Optional[int]=13 , a : Tuple=30 , a : Union[str, Any]=2 , a : List[str]=3 , a : Dict=True , a : List[str]=True , a : List[Any]=32 , a : List[str]=5 , a : Optional[int]=4 , a : List[str]=37 , a : Dict="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : int=10 , a : List[str]=0.02 , a : int=None , a : List[str]=2 , )-> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[Any] , a : List[str] , a : Dict )-> Optional[Any]: """simple docstring""" lowercase__ = ViTModel(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] , a : int , a : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForMaskedImageModeling(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForMaskedImageModeling(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[str] , a : int , a : List[Any] )-> str: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : int = True _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = ViTModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def __UpperCamelCase () -> str: lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(a ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ = model(**a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int )-> List[str]: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' ).to(a ) lowercase__ = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass with torch.no_grad(): lowercase__ = model(a , interpolate_pos_encoding=a ) # verify the logits lowercase__ = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a ) lowercase__ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase__ = model(a )
45
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , a : int , )-> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = 13 lowercase__ = 7 lowercase__ = 30 lowercase__ = self.seq_length + self.mem_len lowercase__ = 15 lowercase__ = True lowercase__ = True lowercase__ = 99 lowercase__ = [10, 50, 80] lowercase__ = 32 lowercase__ = 32 lowercase__ = 4 lowercase__ = 8 lowercase__ = 128 lowercase__ = 2 lowercase__ = 2 lowercase__ = None lowercase__ = 1 lowercase__ = 0 lowercase__ = 3 lowercase__ = self.vocab_size - 1 lowercase__ = 0.01 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> List[Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> str: """simple docstring""" random.seed(self.seed ) tf.random.set_seed(self.seed ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : Union[str, Any] , a : List[str] , a : Union[str, Any] , a : Any )-> Optional[int]: """simple docstring""" lowercase__ = TFTransfoXLModel(a ) lowercase__ , lowercase__ = model(a ).to_tuple() lowercase__ = {'input_ids': input_ids_a, 'mems': mems_a} lowercase__ , lowercase__ = model(a ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Union[str, Any] , a : Tuple , a : int , a : Tuple )-> str: """simple docstring""" lowercase__ = TFTransfoXLLMHeadModel(a ) lowercase__ , lowercase__ = model(a ).to_tuple() lowercase__ = {'input_ids': input_ids_a, 'labels': lm_labels} lowercase__ , lowercase__ = model(a ).to_tuple() lowercase__ , lowercase__ = model([input_ids_a, mems_a] ).to_tuple() lowercase__ = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels} lowercase__ , lowercase__ = model(a ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE_ ( self : str , a : Optional[Any] , a : Tuple , a : int , a : Dict )-> Dict: """simple docstring""" lowercase__ = TFTransfoXLForSequenceClassification(a ) lowercase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {'input_ids': input_ids_a} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : int = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : List[str] = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : Optional[int] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Tuple = False _UpperCamelCase : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : Any , a : Union[str, Any] , a : List[str] , a : Tuple , a : Dict )-> str: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def SCREAMING_SNAKE_CASE_ ( self : int )-> Any: """simple docstring""" lowercase__ = TFTransfoXLModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , d_embed=37 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> str: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Any )-> Dict: """simple docstring""" self.model_tester.set_seed() lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> List[str]: """simple docstring""" self.model_tester.set_seed() lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowercase__ = model_class(a ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowercase__ = model.get_output_embeddings() assert isinstance(a , tf.keras.layers.Layer ) lowercase__ = model.get_bias() assert name is None else: lowercase__ = model.get_output_embeddings() assert x is None lowercase__ = model.get_bias() assert name is None def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Union[str, Any]: """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Any: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFTransfoXLModel.from_pretrained(a ) self.assertIsNotNone(a ) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> List[str]: """simple docstring""" pass @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @unittest.skip('Skip test until #12651 is resolved.' ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[str]: """simple docstring""" lowercase__ = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' ) # fmt: off lowercase__ = tf.convert_to_tensor([[33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowercase__ = [33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0,33,1,1_857,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,28,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowercase__ = model.generate(a , max_length=200 , do_sample=a ) self.assertListEqual(output_ids[0].numpy().tolist() , a )
717
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: stooge(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return arr def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase__ , lowercase__ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase__ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(_SCREAMING_SNAKE_CASE , i + t , (_SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
45
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: if got_ver is None or want_ver is None: raise ValueError( F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" F""" reinstalling {pkg}.""" ) if not ops[op](version.parse(_SCREAMING_SNAKE_CASE ) , version.parse(_SCREAMING_SNAKE_CASE ) ): raise ImportError( F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> None: lowercase__ = F"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , _SCREAMING_SNAKE_CASE ): lowercase__ , lowercase__ , lowercase__ = requirement, None, None else: lowercase__ = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , _SCREAMING_SNAKE_CASE ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F""" got {requirement}""" ) lowercase__ , lowercase__ = match[0] lowercase__ = want_full.split(',' ) # there could be multiple requirements lowercase__ = {} for w in want_range: lowercase__ = re.findall(R'^([\s!=<>]{1,2})(.+)' , _SCREAMING_SNAKE_CASE ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F""" but got {requirement}""" ) lowercase__ , lowercase__ = match[0] lowercase__ = want_ver if op not in ops: raise ValueError(F"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": lowercase__ = '.'.join([str(_SCREAMING_SNAKE_CASE ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return # check if any version is installed try: lowercase__ = importlib.metadata.version(_SCREAMING_SNAKE_CASE ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
718
from scipy.stats import spearmanr import datasets lowercase_ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowercase_ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowercase_ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Any , a : str=False )-> Optional[int]: """simple docstring""" lowercase__ = spearmanr(a , a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="""%(message)s""") def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> np.ndarray: return input_array.reshape((input_array.size, 1) ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> np.ndarray: lowercase__ = np.nan for i in range(_SCREAMING_SNAKE_CASE ): lowercase__ = features[:, labels == i] lowercase__ = data.mean(1 ) # Centralize the data of class i lowercase__ = data - column_reshape(_SCREAMING_SNAKE_CASE ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_SCREAMING_SNAKE_CASE , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase__ = np.dot(_SCREAMING_SNAKE_CASE , centered_data.T ) return covariance_sum / features.shape[1] def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> np.ndarray: lowercase__ = features.mean(1 ) lowercase__ = np.nan for i in range(_SCREAMING_SNAKE_CASE ): lowercase__ = features[:, labels == i] lowercase__ = data.shape[1] lowercase__ = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_SCREAMING_SNAKE_CASE ) - column_reshape(_SCREAMING_SNAKE_CASE ) , (column_reshape(_SCREAMING_SNAKE_CASE ) - column_reshape(_SCREAMING_SNAKE_CASE )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowercase__ = device_data * np.dot( column_reshape(_SCREAMING_SNAKE_CASE ) - column_reshape(_SCREAMING_SNAKE_CASE ) , (column_reshape(_SCREAMING_SNAKE_CASE ) - column_reshape(_SCREAMING_SNAKE_CASE )).T , ) return covariance_sum / features.shape[1] def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> np.ndarray: # Check if the features have been loaded if features.any(): lowercase__ = features.mean(1 ) # Center the dataset lowercase__ = features - np.reshape(_SCREAMING_SNAKE_CASE , (data_mean.size, 1) ) lowercase__ = np.dot(_SCREAMING_SNAKE_CASE , centered_data.T ) / features.shape[1] lowercase__ , lowercase__ = np.linalg.eigh(_SCREAMING_SNAKE_CASE ) # Take all the columns in the reverse order (-1), and then takes only the first lowercase__ = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowercase__ = np.dot(filtered_eigenvectors.T , _SCREAMING_SNAKE_CASE ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=_SCREAMING_SNAKE_CASE ) logging.error('Dataset empty' ) raise AssertionError def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: lowercase__ , lowercase__ = eigh( covariance_between_classes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , covariance_within_classes(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) lowercase__ = eigenvectors[:, ::-1][:, :dimensions] lowercase__ , lowercase__ , lowercase__ = np.linalg.svd(_SCREAMING_SNAKE_CASE ) lowercase__ = svd_matrix[:, 0:dimensions] lowercase__ = np.dot(filtered_svd_matrix.T , _SCREAMING_SNAKE_CASE ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=_SCREAMING_SNAKE_CASE ) logging.error('Dataset empty' ) raise AssertionError def __UpperCamelCase () -> None: # Create dummy dataset with 2 classes and 3 features lowercase__ = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowercase__ = np.array([0, 0, 0, 1, 1] ) lowercase__ = 2 lowercase__ = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_SCREAMING_SNAKE_CASE ) as error_info: lowercase__ = linear_discriminant_analysis( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def __UpperCamelCase () -> None: lowercase__ = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowercase__ = 2 lowercase__ = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(_SCREAMING_SNAKE_CASE ) as error_info: lowercase__ = principal_component_analysis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
719
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
45
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Tuple = 'ClapFeatureExtractor' _UpperCamelCase : Union[str, Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : List[Any] , a : int , a : str )-> Any: """simple docstring""" super().__init__(a , a ) def __call__( self : Any , a : Tuple=None , a : Optional[int]=None , a : int=None , **a : Optional[int] )-> Union[str, Any]: """simple docstring""" lowercase__ = kwargs.pop('sampling_rate' , a ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: lowercase__ = self.tokenizer(a , return_tensors=a , **a ) if audios is not None: lowercase__ = self.feature_extractor( a , sampling_rate=a , return_tensors=a , **a ) if text is not None and audios is not None: lowercase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def SCREAMING_SNAKE_CASE_ ( self : str , *a : Dict , **a : int )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , *a : int , **a : Dict )-> Dict: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
720
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowercase_ = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = EfficientNetConfig() lowercase__ = CONFIG_MAP[model_name]['hidden_dim'] lowercase__ = CONFIG_MAP[model_name]['width_coef'] lowercase__ = CONFIG_MAP[model_name]['depth_coef'] lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = CONFIG_MAP[model_name]['dropout_rate'] lowercase__ = CONFIG_MAP[model_name]['dw_padding'] lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 1000 lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> Tuple: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase__ = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} lowercase__ = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase__ = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase__ = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ = 'efficientnet.' + item[1] lowercase__ = 'classifier.weight' lowercase__ = 'classifier.bias' return key_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation='softmax' , ) lowercase__ = original_model.trainable_variables lowercase__ = original_model.non_trainable_variables lowercase__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ = param.numpy() lowercase__ = list(tf_params.keys() ) # Load HuggingFace model lowercase__ = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowercase__ = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowercase__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase__ = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowercase__ = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowercase__ = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ = hf_model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.detach().numpy() # Original model inference lowercase__ = False lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowercase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
45
0
# Algorithm for the pigeonhole sorting def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: lowercase__ = min(_SCREAMING_SNAKE_CASE ) # min() finds the minimum value lowercase__ = max(_SCREAMING_SNAKE_CASE ) # max() finds the maximum value lowercase__ = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size lowercase__ = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. lowercase__ = 0 for count in range(_SCREAMING_SNAKE_CASE ): while holes[count] > 0: holes[count] -= 1 lowercase__ = count + min_val i += 1 def __UpperCamelCase () -> str: lowercase__ = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_SCREAMING_SNAKE_CASE ) print('Sorted order is:' , ' '.join(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main()
721
import argparse import json import subprocess def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = [] lowercase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowercase__ = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode('utf-8' ) lowercase__ = json.loads(_SCREAMING_SNAKE_CASE ) lowercase__ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return values.split(',' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
45
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase , UpperCAmelCase ): def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Any: """simple docstring""" lowercase__ = load_tool('text-to-speech' ) self.tool.setup() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = self.tool('hey' ) lowercase__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = self.tool('hey' ) lowercase__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
700
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Tuple = 'ClapFeatureExtractor' _UpperCamelCase : Union[str, Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : List[Any] , a : int , a : str )-> Any: """simple docstring""" super().__init__(a , a ) def __call__( self : Any , a : Tuple=None , a : Optional[int]=None , a : int=None , **a : Optional[int] )-> Union[str, Any]: """simple docstring""" lowercase__ = kwargs.pop('sampling_rate' , a ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: lowercase__ = self.tokenizer(a , return_tensors=a , **a ) if audios is not None: lowercase__ = self.feature_extractor( a , sampling_rate=a , return_tensors=a , **a ) if text is not None and audios is not None: lowercase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def SCREAMING_SNAKE_CASE_ ( self : str , *a : Dict , **a : int )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , *a : int , **a : Dict )-> Dict: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
45
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase_ = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } lowercase_ = """▁""" class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] _UpperCamelCase : int = BarthezTokenizer def __init__( self : List[Any] , a : Union[str, Any]=None , a : Optional[Any]=None , a : Dict="<s>" , a : Union[str, Any]="</s>" , a : List[str]="</s>" , a : Optional[Any]="<s>" , a : int="<unk>" , a : str="<pad>" , a : Optional[int]="<mask>" , **a : Union[str, Any] , )-> Tuple: """simple docstring""" lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , **a , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
45
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("""fixtures/test_sentencepiece.model""") lowercase_ = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") lowercase_ = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : str = CamembertTokenizer _UpperCamelCase : Any = CamembertTokenizerFast _UpperCamelCase : List[str] = True _UpperCamelCase : List[str] = True def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = CamembertTokenizer(a ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(a ) , 1_004 ) def SCREAMING_SNAKE_CASE_ ( self : str )-> List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = CamembertTokenizer(a ) tokenizer.save_pretrained(self.tmpdirname ) lowercase__ = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.encode(a ) lowercase__ = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) lowercase__ = tokenizer.encode(a , add_special_tokens=a ) lowercase__ = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) lowercase__ = tokenizer.convert_ids_to_tokens(a ) lowercase__ = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(a ) lowercase__ = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowercase__ = tokenizer.encode(a , add_special_tokens=a ) lowercase__ = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(a ) lowercase__ = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Optional[Any]: """simple docstring""" lowercase__ = {'input_ids': [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. lowercase__ = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=a , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=a , )
702
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = StableDiffusionSAGPipeline _UpperCamelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(a ) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[int] , a : Any=0 )-> Union[str, Any]: """simple docstring""" if str(a ).startswith('mps' ): lowercase__ = torch.manual_seed(a ) else: lowercase__ = torch.Generator(device=a ).manual_seed(a ) lowercase__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) lowercase__ = output.images assert image.shape == (1, 512, 768, 3)
45
0
lowercase_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/""" def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_SCREAMING_SNAKE_CASE ) lowercase__ = ''.join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase__ = b'=' * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6) else: lowercase__ = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = ( 'argument should be a bytes-like object or ASCII string, ' F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: lowercase__ = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) lowercase__ = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase__ = encoded_data[:-padding] lowercase__ = ''.join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase__ = ''.join( bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) lowercase__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'deit' def __init__( self : Any , a : Union[str, Any]=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Optional[int]="gelu" , a : Optional[Any]=0.0 , a : List[Any]=0.0 , a : int=0.02 , a : List[str]=1E-1_2 , a : Optional[int]=224 , a : Tuple=16 , a : List[Any]=3 , a : List[str]=True , a : Any=16 , **a : Union[str, Any] , )-> int: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = encoder_stride class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> float: """simple docstring""" return 1E-4
45
0
lowercase_ = { """joule""": 1.0, """kilojoule""": 1_000, """megajoule""": 1_000_000, """gigajoule""": 1_000_000_000, """wattsecond""": 1.0, """watthour""": 3_600, """kilowatthour""": 3_600_000, """newtonmeter""": 1.0, """calorie_nutr""": 4_186.8, """kilocalorie_nutr""": 4_186_800.00, """electronvolt""": 1.6_0217_6634E-19, """britishthermalunit_it""": 1_055.05_585, """footpound""": 1.355_818, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowercase__ = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {", ".join(_SCREAMING_SNAKE_CASE )}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
704
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ) -> List[Any]: lowercase__ = None if token is not None: lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase__ = '636036' lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run['id'] break return workflow_run_id def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): lowercase__ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read().decode('UTF-8' ) return results
45
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel lowercase_ = logging.getLogger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: # save results if os.path.exists(_SCREAMING_SNAKE_CASE ): if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ): os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ): os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) else: os.makedirs(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: lowercase__ = 2 if unlogit: lowercase__ = torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = p * torch.log(_SCREAMING_SNAKE_CASE ) lowercase__ = 0 return -plogp.sum(dim=-1 ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: logger.info('lv, h >\t' + '\t'.join(F"""{x + 1}""" for x in range(len(_SCREAMING_SNAKE_CASE ) ) ) ) for row in range(len(_SCREAMING_SNAKE_CASE ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + '\t'.join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + '\t'.join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) -> str: lowercase__ , lowercase__ = model.config.num_hidden_layers, model.config.num_attention_heads lowercase__ = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) lowercase__ = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) if head_mask is None: lowercase__ = torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device ) head_mask.requires_grad_(requires_grad=_SCREAMING_SNAKE_CASE ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowercase__ = None lowercase__ = 0.0 lowercase__ = 0.0 for step, inputs in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): lowercase__ = tuple(t.to(args.device ) for t in inputs ) ((lowercase__ ) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowercase__ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowercase__ , lowercase__ , lowercase__ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = entropy(attn.detach() , _SCREAMING_SNAKE_CASE ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_SCREAMING_SNAKE_CASE ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowercase__ = 2 lowercase__ = torch.pow(torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: lowercase__ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) logger.info('Head ranked by importance scores' ) lowercase__ = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowercase__ = torch.arange( head_importance.numel() , device=args.device ) lowercase__ = head_ranks.view_as(_SCREAMING_SNAKE_CASE ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) return attn_entropy, head_importance, total_loss def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ , lowercase__ , lowercase__ = compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE ) lowercase__ = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , _SCREAMING_SNAKE_CASE , original_score * args.masking_threshold ) lowercase__ = torch.ones_like(_SCREAMING_SNAKE_CASE ) lowercase__ = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowercase__ = original_score while current_score >= original_score * args.masking_threshold: lowercase__ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowercase__ = float('Inf' ) lowercase__ = head_importance.view(-1 ).sort()[1] if len(_SCREAMING_SNAKE_CASE ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads lowercase__ = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) lowercase__ = new_head_mask.view(-1 ) lowercase__ = 0.0 lowercase__ = new_head_mask.view_as(_SCREAMING_SNAKE_CASE ) lowercase__ = new_head_mask.clone().detach() print_ad_tensor(_SCREAMING_SNAKE_CASE ) # Compute metric and head importance again lowercase__ , lowercase__ , lowercase__ = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) lowercase__ = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , _SCREAMING_SNAKE_CASE , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(_SCREAMING_SNAKE_CASE ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: lowercase__ = datetime.now() lowercase__ , lowercase__ , lowercase__ = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE ) lowercase__ = 1 / loss lowercase__ = datetime.now() - before_time lowercase__ = sum(p.numel() for p in model.parameters() ) lowercase__ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_SCREAMING_SNAKE_CASE ) ) } for k, v in heads_to_prune.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = [ v, ] assert sum(len(_SCREAMING_SNAKE_CASE ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_SCREAMING_SNAKE_CASE ) lowercase__ = sum(p.numel() for p in model.parameters() ) lowercase__ = datetime.now() lowercase__ , lowercase__ , lowercase__ = compute_heads_importance( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , actually_pruned=_SCREAMING_SNAKE_CASE , ) lowercase__ = 1 / loss lowercase__ = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(_SCREAMING_SNAKE_CASE , args.output_dir ) def __UpperCamelCase () -> Union[str, Any]: lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=_SCREAMING_SNAKE_CASE , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=_SCREAMING_SNAKE_CASE , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=_SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=_SCREAMING_SNAKE_CASE , help='Batch size.' ) parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=42 ) parser.add_argument('--local_rank' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) lowercase__ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowercase__ = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) lowercase__ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowercase__ = torch.device('cuda' , args.local_rank ) lowercase__ = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowercase__ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowercase__ = nn.parallel.DistributedDataParallel( _SCREAMING_SNAKE_CASE , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_SCREAMING_SNAKE_CASE ) elif args.n_gpu > 1: lowercase__ = nn.DataParallel(_SCREAMING_SNAKE_CASE ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Prepare dataset lowercase__ = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowercase__ = (torch.from_numpy(_SCREAMING_SNAKE_CASE ),) lowercase__ = TensorDataset(*_SCREAMING_SNAKE_CASE ) lowercase__ = RandomSampler(_SCREAMING_SNAKE_CASE ) lowercase__ = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowercase__ = mask_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) prune_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
705
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase_ = False class SCREAMING_SNAKE_CASE (unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) lowercase__ = VersatileDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = generator.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = 'cyberpunk 2077' lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt=a , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = 'A painting of a squirrel eating a burger ' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.text_to_image( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = pipe.image_variation(a , generator=a , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
45
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : List[Any] , a : Tuple , a : Tuple=7 , a : List[str]=3 , a : Dict=18 , a : int=30 , a : List[Any]=400 , a : Any=True , a : Any=32 , a : str=True , )-> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size_divisor lowercase__ = do_rescale def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Optional[int] = GLPNImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[Any]: """simple docstring""" lowercase__ = GLPNImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : int )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size_divisor' ) ) self.assertTrue(hasattr(a , 'resample' ) ) self.assertTrue(hasattr(a , 'do_rescale' ) ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[int]: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : int )-> List[str]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
706
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_SCREAMING_SNAKE_CASE ) == 1: return True lowercase__ = series[1] - series[0] for index in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> float: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) lowercase__ = 0 for val in series: answer += val return answer / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
45
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'The column name of the images in the files.'} ) _UpperCamelCase : Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'A folder containing the training data.'} ) _UpperCamelCase : Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'A folder containing the validation data.'} ) _UpperCamelCase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) _UpperCamelCase : Optional[int] = field( default=UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _UpperCamelCase : Optional[int] = field( default=UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = {} if self.train_dir is not None: lowercase__ = self.train_dir if self.validation_dir is not None: lowercase__ = self.validation_dir lowercase__ = data_files if data_files else None @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : str = field( default=UpperCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) _UpperCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _UpperCamelCase : str = field(default=UpperCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} ) _UpperCamelCase : bool = field( default=UpperCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _UpperCamelCase : float = field( default=0.75 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) _UpperCamelCase : bool = field( default=UpperCAmelCase , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : float = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: lowercase__ = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def __UpperCamelCase () -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(_SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: lowercase__ = ds['train'].train_test_split(data_args.train_val_split ) lowercase__ = split['train'] lowercase__ = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase__ = ViTMAEConfig.from_pretrained(model_args.config_name , **_SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowercase__ = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_SCREAMING_SNAKE_CASE ) else: lowercase__ = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowercase__ = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowercase__ = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_SCREAMING_SNAKE_CASE ) else: lowercase__ = ViTImageProcessor() # create model if model_args.model_name_or_path: lowercase__ = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) lowercase__ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) if training_args.do_train: lowercase__ = ds['train'].column_names else: lowercase__ = ds['validation'].column_names if data_args.image_column_name is not None: lowercase__ = data_args.image_column_name elif "image" in column_names: lowercase__ = 'image' elif "img" in column_names: lowercase__ = 'img' else: lowercase__ = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowercase__ = image_processor.size['shortest_edge'] else: lowercase__ = (image_processor.size['height'], image_processor.size['width']) lowercase__ = Compose( [ Lambda(lambda _SCREAMING_SNAKE_CASE : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_SCREAMING_SNAKE_CASE , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_SCREAMING_SNAKE_CASE ): lowercase__ = [transforms(_SCREAMING_SNAKE_CASE ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: lowercase__ = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: lowercase__ = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_SCREAMING_SNAKE_CASE ) # Compute absolute learning rate lowercase__ = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowercase__ = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer lowercase__ = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=_SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics('eval' , _SCREAMING_SNAKE_CASE ) trainer.save_metrics('eval' , _SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub lowercase__ = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
707
from __future__ import annotations import math from collections.abc import Callable def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 100 , ) -> float: lowercase__ = x_start lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) lowercase__ = 0.0 for _ in range(_SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ = (x_end - x_start) / steps + xa lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ = xa lowercase__ = fxa return length if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowercase_ = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
45
0
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , a : List[str] , a : int=13 , a : List[Any]=7 , a : Optional[Any]=True , a : Dict=True , a : str=99 , a : str=32 , a : int=5 , a : int=4 , a : Dict=37 , a : Optional[int]="gelu" , a : Any=0.1 , a : Any=0.1 , a : int=50 , a : Optional[Any]=0.02 , a : Any=True , a : Optional[int]=None , )-> Any: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = use_labels lowercase__ = scope def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Optional[Any]: """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=a , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Any: """simple docstring""" ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.prepare_config_and_inputs() lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : int , a : List[Any] , a : List[Any] , a : Dict , **a : List[Any] , )-> Dict: """simple docstring""" lowercase__ = BertGenerationEncoder(config=a ) model.to(a ) model.eval() lowercase__ = model(a , attention_mask=a ) lowercase__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , a : List[str] , a : Any , a : Dict , a : int , a : Any , a : int , **a : Optional[int] , )-> Dict: """simple docstring""" lowercase__ = True lowercase__ = BertGenerationEncoder(config=a ) model.to(a ) model.eval() lowercase__ = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowercase__ = model( a , attention_mask=a , encoder_hidden_states=a , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : Optional[int] , a : Union[str, Any] , a : Optional[Any] , a : Any , a : List[str] , a : Any , **a : List[Any] , )-> Optional[Any]: """simple docstring""" lowercase__ = True lowercase__ = True lowercase__ = BertGenerationDecoder(config=a ).to(a ).eval() # first forward pass lowercase__ = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowercase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase__ = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowercase__ = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : List[str] , a : Optional[int] , a : int , a : Any , *a : Union[str, Any] , )-> Tuple: """simple docstring""" lowercase__ = BertGenerationDecoder(a ) model.to(a ) model.eval() lowercase__ = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Any: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.prepare_config_and_inputs() lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : int = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _UpperCamelCase : Union[str, Any] = (BertGenerationDecoder,) if is_torch_available() else () _UpperCamelCase : str = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" lowercase__ = BertGenerationEncoderTester(self ) lowercase__ = ConfigTester(self , config_class=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Tuple: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : int )-> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : str )-> List[str]: """simple docstring""" lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = 'bert' self.model_tester.create_and_check_model(a , a , a , a ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> List[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase__ = None self.model_tester.create_and_check_model_as_decoder( a , a , a , a , a , a , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*a ) @slow def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" lowercase__ = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) self.assertIsNotNone(a ) @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[Any]: """simple docstring""" lowercase__ = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase__ = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]] ) with torch.no_grad(): lowercase__ = model(a )[0] lowercase__ = torch.Size([1, 8, 1_024] ) self.assertEqual(output.shape , a ) lowercase__ = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Any: """simple docstring""" lowercase__ = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) lowercase__ = torch.tensor([[101, 7_592, 1_010, 2_026, 3_899, 2_003, 10_140, 102]] ) with torch.no_grad(): lowercase__ = model(a )[0] lowercase__ = torch.Size([1, 8, 50_358] ) self.assertEqual(output.shape , a ) lowercase__ = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1E-4 ) )
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[str] = KandinskyInpaintPipeline _UpperCamelCase : Optional[Any] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _UpperCamelCase : List[Any] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _UpperCamelCase : int = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCamelCase : str = False @property def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> List[Any]: """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Any: """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" return 100 @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> int: """simple docstring""" lowercase__ = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) lowercase__ = MultilingualCLIP(a ) lowercase__ = text_encoder.eval() return text_encoder @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowercase__ = UNetaDConditionModel(**a ) return model @property def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[int]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[str]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" lowercase__ = self.dummy_text_encoder lowercase__ = self.dummy_tokenizer lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=a , set_alpha_to_one=a , steps_offset=1 , prediction_type='epsilon' , thresholding=a , ) lowercase__ = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : Tuple , a : Any=0 )-> Optional[Any]: """simple docstring""" lowercase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a ) ).to(a ) lowercase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(a ) ).to(a ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(a ) ).convert('RGB' ).resize((256, 256) ) # create mask lowercase__ = np.ones((64, 64) , dtype=np.floataa ) lowercase__ = 0 if str(a ).startswith('mps' ): lowercase__ = torch.manual_seed(a ) else: lowercase__ = torch.Generator(device=a ).manual_seed(a ) lowercase__ = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE_ ( self : int )-> str: """simple docstring""" lowercase__ = 'cpu' lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**a ) lowercase__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = pipe(**self.get_dummy_inputs(a ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Dict: """simple docstring""" lowercase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowercase__ = np.ones((768, 768) , dtype=np.floataa ) lowercase__ = 0 lowercase__ = 'a hat' lowercase__ = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(a ) lowercase__ = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) lowercase__ = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowercase__ = torch.Generator(device='cpu' ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( a , generator=a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowercase__ = pipeline( a , image=a , mask_image=a , image_embeds=a , negative_image_embeds=a , generator=a , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a , a )
709
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
45
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , *a : Optional[int] , **a : List[Any] )-> None: """simple docstring""" warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , a , ) super().__init__(*a , **a )
710
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Optional[Any] , a : UNetaDModel , a : UNetaDModel , a : DDPMScheduler , a : Any , )-> Dict: """simple docstring""" super().__init__() lowercase__ = value_function lowercase__ = unet lowercase__ = scheduler lowercase__ = env lowercase__ = env.get_dataset() lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].mean() except: # noqa: E722 pass lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].std() except: # noqa: E722 pass lowercase__ = env.observation_space.shape[0] lowercase__ = env.action_space.shape[0] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Any , a : int )-> Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : List[str] )-> str: """simple docstring""" return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Tuple )-> Tuple: """simple docstring""" if type(a ) is dict: return {k: self.to_torch(a ) for k, v in x_in.items()} elif torch.is_tensor(a ): return x_in.to(self.unet.device ) return torch.tensor(a , device=self.unet.device ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[int] , a : Dict , a : Optional[Any] )-> List[Any]: """simple docstring""" for key, val in cond.items(): lowercase__ = val.clone() return x_in def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[Any] , a : Any , a : Optional[Any] , a : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = x.shape[0] lowercase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ = torch.full((batch_size,) , a , device=self.unet.device , dtype=torch.long ) for _ in range(a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ = self.value_function(x.permute(0 , 2 , 1 ) , a ).sample lowercase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowercase__ = self.scheduler._get_variance(a ) lowercase__ = torch.exp(0.5 * posterior_variance ) lowercase__ = model_std * grad lowercase__ = 0 lowercase__ = x.detach() lowercase__ = x + scale * grad lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.unet(x.permute(0 , 2 , 1 ) , a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase__ = self.scheduler.step(a , a , a , predict_epsilon=a )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) return x, y def __call__( self : Any , a : Tuple , a : int=64 , a : Tuple=32 , a : List[Any]=2 , a : List[str]=0.1 )-> List[Any]: """simple docstring""" lowercase__ = self.normalize(a , 'observations' ) lowercase__ = obs[None].repeat(a , axis=0 ) lowercase__ = {0: self.to_torch(a )} lowercase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ = randn_tensor(a , device=self.unet.device ) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) # run the diffusion process lowercase__ , lowercase__ = self.run_diffusion(a , a , a , a ) # sort output trajectories by value lowercase__ = y.argsort(0 , descending=a ).squeeze() lowercase__ = x[sorted_idx] lowercase__ = sorted_values[:, :, : self.action_dim] lowercase__ = actions.detach().cpu().numpy() lowercase__ = self.de_normalize(a , key='actions' ) # select the action with the highest value if y is not None: lowercase__ = 0 else: # if we didn't run value guiding, select a random action lowercase__ = np.random.randint(0 , a ) lowercase__ = denorm_actions[selected_index, 0] return denorm_actions
45
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase lowercase_ = logging.get_logger(__name__) lowercase_ = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = 'longformer' def __init__( self : Optional[int] , a : Union[List[int], int] = 512 , a : int = 2 , a : int = 1 , a : int = 0 , a : int = 2 , a : int = 30_522 , a : int = 768 , a : int = 12 , a : int = 12 , a : int = 3_072 , a : str = "gelu" , a : float = 0.1 , a : float = 0.1 , a : int = 512 , a : int = 2 , a : float = 0.02 , a : float = 1E-1_2 , a : bool = False , **a : Optional[int] , )-> Dict: """simple docstring""" super().__init__(pad_token_id=a , **a ) lowercase__ = attention_window lowercase__ = sep_token_id lowercase__ = bos_token_id lowercase__ = eos_token_id lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = onnx_export class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Tuple , a : "PretrainedConfig" , a : str = "default" , a : "List[PatchingSpec]" = None )-> List[str]: """simple docstring""" super().__init__(a , a , a ) lowercase__ = True @property def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : str )-> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = super().outputs if self.task == "default": lowercase__ = {0: 'batch'} return outputs @property def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> float: """simple docstring""" return 1E-4 @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> int: """simple docstring""" return max(super().default_onnx_opset , 14 ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : "PreTrainedTokenizerBase" , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , )-> Mapping[str, Any]: """simple docstring""" lowercase__ = super().generate_dummy_inputs( preprocessor=a , batch_size=a , seq_length=a , is_pair=a , framework=a ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly lowercase__ = torch.zeros_like(inputs['input_ids'] ) # make every second token global lowercase__ = 1 return inputs
711
from PIL import Image def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Image: def brightness(_SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
45
0
from random import shuffle import tensorflow as tf from numpy import array def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: lowercase__ = int(_SCREAMING_SNAKE_CASE ) assert noofclusters < len(_SCREAMING_SNAKE_CASE ) # Find out the dimensionality lowercase__ = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase__ = list(range(len(_SCREAMING_SNAKE_CASE ) ) ) shuffle(_SCREAMING_SNAKE_CASE ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase__ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase__ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase__ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_SCREAMING_SNAKE_CASE ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase__ = tf.placeholder('float64' , [dim] ) lowercase__ = [] for centroid in centroids: cent_assigns.append(tf.assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase__ = [tf.Variable(0 ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase__ = tf.placeholder('int32' ) lowercase__ = [] for assignment in assignments: cluster_assigns.append(tf.assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase__ = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase__ = tf.reduce_mean(_SCREAMING_SNAKE_CASE , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase__ = tf.placeholder('float' , [dim] ) lowercase__ = tf.placeholder('float' , [dim] ) lowercase__ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase__ = tf.placeholder('float' , [noofclusters] ) lowercase__ = tf.argmin(_SCREAMING_SNAKE_CASE , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase__ = tf.initialize_all_variables() # Initialize all variables sess.run(_SCREAMING_SNAKE_CASE ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase__ = 100 for _ in range(_SCREAMING_SNAKE_CASE ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase__ = [ sess.run(_SCREAMING_SNAKE_CASE , feed_dict={va: vect, va: sess.run(_SCREAMING_SNAKE_CASE )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase__ = sess.run( _SCREAMING_SNAKE_CASE , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_SCREAMING_SNAKE_CASE ): # Collect all the vectors assigned to this cluster lowercase__ = [ vectors[i] for i in range(len(_SCREAMING_SNAKE_CASE ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase__ = sess.run( _SCREAMING_SNAKE_CASE , feed_dict={mean_input: array(_SCREAMING_SNAKE_CASE )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase__ = sess.run(_SCREAMING_SNAKE_CASE ) lowercase__ = sess.run(_SCREAMING_SNAKE_CASE ) return centroids, assignments
712
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : Any , a : str , a : List[Any]=7 , a : int=3 , a : int=18 , a : Optional[Any]=30 , a : Optional[int]=400 , a : int=True , a : Tuple=None , a : Optional[Any]=True , a : str=False , a : str=True , a : int=True , a : Tuple=[0.5, 0.5, 0.5] , a : Any=[0.5, 0.5, 0.5] , )-> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {'height': 18, 'width': 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : int )-> List[Any]: """simple docstring""" lowercase__ = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_thumbnail' ) ) self.assertTrue(hasattr(a , 'do_align_long_axis' ) ) self.assertTrue(hasattr(a , 'do_pad' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
45
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
713
import math def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_SCREAMING_SNAKE_CASE ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase_ = """Enter the base and the power separated by a comma: """ lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. lowercase_ = res(xa, ya) lowercase_ = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
45
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a : Any , a : Optional[int]=13 , a : List[str]=32 , a : int=2 , a : Optional[Any]=3 , a : List[str]=16 , a : Union[str, Any]=[32, 64, 128] , a : Tuple=[1, 2, 1] , a : Optional[int]=[2, 2, 4] , a : Optional[Any]=2 , a : str=2.0 , a : Any=True , a : List[Any]=0.0 , a : Tuple=0.0 , a : str=0.1 , a : Dict="gelu" , a : Tuple=False , a : Optional[int]=True , a : str=0.02 , a : int=1E-5 , a : int=True , a : Union[str, Any]=None , a : List[Any]=True , a : Union[str, Any]=10 , a : Any=8 , a : str=["stage1", "stage2"] , a : Dict=[1, 2] , )-> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = num_heads lowercase__ = window_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = use_absolute_embeddings lowercase__ = patch_norm lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = is_training lowercase__ = scope lowercase__ = use_labels lowercase__ = type_sequence_label_size lowercase__ = encoder_stride lowercase__ = out_features lowercase__ = out_indices def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[str]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> str: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : Optional[int] , a : int , a : int )-> Optional[int]: """simple docstring""" lowercase__ = FocalNetModel(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) lowercase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : int , a : List[Any] , a : Dict )-> Tuple: """simple docstring""" lowercase__ = FocalNetBackbone(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = FocalNetBackbone(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[Any] , a : Optional[Any] , a : int )-> Optional[Any]: """simple docstring""" lowercase__ = FocalNetForMaskedImageModeling(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = FocalNetForMaskedImageModeling(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : str , a : Union[str, Any] , a : Union[str, Any] , a : Dict )-> Union[str, Any]: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = FocalNetForImageClassification(a ) model.to(a ) model.eval() lowercase__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = FocalNetForImageClassification(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Tuple = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _UpperCamelCase : List[str] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Any = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[int] = False _UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" lowercase__ = FocalNetModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , embed_dim=37 , has_text_modality=a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Tuple: """simple docstring""" return def SCREAMING_SNAKE_CASE_ ( self : Any )-> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Any: """simple docstring""" pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE_ ( self : Any )-> Tuple: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase__ = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Tuple: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase__ = model_class(a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : Optional[Any] , a : Any , a : int , a : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(a , a ) ) lowercase__ = outputs.hidden_states lowercase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(a ) , a ) # FocalNet has a different seq_length lowercase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase__ = outputs.reshaped_hidden_states self.assertEqual(len(a ) , a ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = reshaped_hidden_states[0].shape lowercase__ = ( reshaped_hidden_states[0].view(a , a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase__ = True self.check_hidden_states_output(a , a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(a , a , a , a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> str: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase__ = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True self.check_hidden_states_output(a , a , a , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[str]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = FocalNetModel.from_pretrained(a ) self.assertIsNotNone(a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> str: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = _config_zero_init(a ) for model_class in self.all_model_classes: lowercase__ = model_class(config=a ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> str: """simple docstring""" return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(a ) lowercase__ = self.default_image_processor lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowercase__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ = model(**a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Any = (FocalNetBackbone,) if is_torch_available() else () _UpperCamelCase : Union[str, Any] = FocalNetConfig _UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> int: """simple docstring""" lowercase__ = FocalNetModelTester(self )
714
class SCREAMING_SNAKE_CASE : # Public class to implement a graph def __init__( self : int , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = row lowercase__ = col lowercase__ = graph def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int , a : list[list[bool]] )-> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: # And finally, count all islands. """simple docstring""" lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(a , a , a ) count += 1 return count
45
0
from __future__ import annotations import bisect def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ) -> int: if hi < 0: lowercase__ = len(_SCREAMING_SNAKE_CASE ) while lo < hi: lowercase__ = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowercase__ = mid + 1 else: lowercase__ = mid return lo def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ) -> int: if hi < 0: lowercase__ = len(_SCREAMING_SNAKE_CASE ) while lo < hi: lowercase__ = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowercase__ = mid + 1 else: lowercase__ = mid return lo def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ) -> None: sorted_collection.insert(bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = -1 ) -> None: sorted_collection.insert(bisect_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int | None: lowercase__ = 0 lowercase__ = len(_SCREAMING_SNAKE_CASE ) - 1 while left <= right: lowercase__ = left + (right - left) // 2 lowercase__ = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowercase__ = midpoint - 1 else: lowercase__ = midpoint + 1 return None def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int | None: lowercase__ = bisect.bisect_left(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if index != len(_SCREAMING_SNAKE_CASE ) and sorted_collection[index] == item: return index return None def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int | None: if right < left: return None lowercase__ = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint - 1 ) else: return binary_search_by_recursion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , midpoint + 1 , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by comma:\n""").strip() lowercase_ = sorted(int(item) for item in user_input.split(""",""")) lowercase_ = int(input("""Enter a single number to be found in the list:\n""")) lowercase_ = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
715
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ = '' lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: lowercase__ = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.txt"""} lowercase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } lowercase_ = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } lowercase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = ConvBertTokenizer def __init__( self : Any , a : int=None , a : Union[str, Any]=None , a : List[Any]=True , a : Optional[Any]="[UNK]" , a : Optional[Any]="[SEP]" , a : int="[PAD]" , a : Any="[CLS]" , a : List[str]="[MASK]" , a : Optional[Any]=True , a : Optional[int]=None , **a : Optional[Any] , )-> Dict: """simple docstring""" super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a ) != do_lower_case or normalizer_state.get('strip_accents' , a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a ) != tokenize_chinese_chars ): lowercase__ = getattr(a , normalizer_state.pop('type' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**a ) lowercase__ = do_lower_case def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Any , a : List[str]=None )-> str: """simple docstring""" lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(a , name=a ) return tuple(a )
716
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a : Any , a : Optional[int]=13 , a : Tuple=30 , a : Union[str, Any]=2 , a : List[str]=3 , a : Dict=True , a : List[str]=True , a : List[Any]=32 , a : List[str]=5 , a : Optional[int]=4 , a : List[str]=37 , a : Dict="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : int=10 , a : List[str]=0.02 , a : int=None , a : List[str]=2 , )-> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[Any] , a : List[str] , a : Dict )-> Optional[Any]: """simple docstring""" lowercase__ = ViTModel(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] , a : int , a : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForMaskedImageModeling(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForMaskedImageModeling(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[str] , a : int , a : List[Any] )-> str: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : int = True _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = ViTModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def __UpperCamelCase () -> str: lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(a ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ = model(**a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int )-> List[str]: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' ).to(a ) lowercase__ = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass with torch.no_grad(): lowercase__ = model(a , interpolate_pos_encoding=a ) # verify the logits lowercase__ = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a ) lowercase__ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase__ = model(a )
45
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Union[str, Any] = 'sew-d' def __init__( self : Any , a : str=32 , a : Optional[int]=768 , a : List[str]=12 , a : Optional[int]=12 , a : Tuple=3_072 , a : Optional[Any]=2 , a : Any=512 , a : List[str]=256 , a : int=True , a : int=True , a : List[Any]=("p2c", "c2p") , a : Any="layer_norm" , a : str="gelu_python" , a : Optional[Any]=0.1 , a : str=0.1 , a : Any=0.1 , a : Tuple=0.0 , a : List[Any]=0.1 , a : List[str]=0.02 , a : Optional[Any]=1E-7 , a : List[Any]=1E-5 , a : Optional[int]="group" , a : Tuple="gelu" , a : List[str]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , a : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , a : str=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , a : List[Any]=False , a : Optional[int]=128 , a : Tuple=16 , a : Tuple=True , a : Optional[Any]=0.05 , a : List[Any]=10 , a : Dict=2 , a : Optional[Any]=0.0 , a : Optional[Any]=10 , a : Any=0 , a : Union[str, Any]="mean" , a : List[str]=False , a : str=False , a : Union[str, Any]=256 , a : int=0 , a : Optional[Any]=1 , a : Tuple=2 , **a : List[Any] , )-> Optional[Any]: """simple docstring""" super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowercase__ = hidden_size lowercase__ = feat_extract_norm lowercase__ = feat_extract_activation lowercase__ = list(a ) lowercase__ = list(a ) lowercase__ = list(a ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = squeeze_factor lowercase__ = max_position_embeddings lowercase__ = position_buckets lowercase__ = share_att_key lowercase__ = relative_attention lowercase__ = norm_rel_ebd lowercase__ = list(a ) lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layer_norm_eps lowercase__ = feature_layer_norm_eps lowercase__ = initializer_range lowercase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # sequence classification lowercase__ = use_weighted_layer_sum lowercase__ = classifier_proj_size @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
717
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: stooge(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return arr def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase__ , lowercase__ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase__ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(_SCREAMING_SNAKE_CASE , i + t , (_SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
45
0
from __future__ import annotations def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: if not nums: return 0 lowercase__ = nums[0] lowercase__ = 0 for num in nums[1:]: lowercase__ , lowercase__ = ( max_excluding + num, max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
718
from scipy.stats import spearmanr import datasets lowercase_ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowercase_ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowercase_ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Any , a : str=False )-> Optional[int]: """simple docstring""" lowercase__ = spearmanr(a , a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowercase_ = 6_378_137.0 lowercase_ = 6_356_752.314_245 lowercase_ = 6_378_137 def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: lowercase__ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowercase__ = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(_SCREAMING_SNAKE_CASE ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowercase__ = haversine_distance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowercase__ = (b_lata + b_lata) / 2 lowercase__ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowercase__ = (sin(_SCREAMING_SNAKE_CASE ) ** 2) * (cos(_SCREAMING_SNAKE_CASE ) ** 2) lowercase__ = cos(sigma / 2 ) ** 2 lowercase__ = (sigma - sin(_SCREAMING_SNAKE_CASE )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowercase__ = (cos(_SCREAMING_SNAKE_CASE ) ** 2) * (sin(_SCREAMING_SNAKE_CASE ) ** 2) lowercase__ = sin(sigma / 2 ) ** 2 lowercase__ = (sigma + sin(_SCREAMING_SNAKE_CASE )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
719
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
45
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase_ = get_tests_dir("""fixtures""") lowercase_ = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") lowercase_ = get_tests_dir("""fixtures/dummy-config.json""") class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Dict )-> str: """simple docstring""" lowercase__ = 0 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[Any]: """simple docstring""" lowercase__ = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(a , a ) def SCREAMING_SNAKE_CASE_ ( self : str )-> List[str]: """simple docstring""" lowercase__ = AutoFeatureExtractor.from_pretrained(a ) self.assertIsInstance(a , a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowercase__ = AutoFeatureExtractor.from_pretrained(a ).to_dict() config_dict.pop('feature_extractor_type' ) lowercase__ = WavaVecaFeatureExtractor(**a ) # save in new folder model_config.save_pretrained(a ) config.save_pretrained(a ) lowercase__ = AutoFeatureExtractor.from_pretrained(a ) # make sure private variable is not incorrectly saved lowercase__ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(a , a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = AutoFeatureExtractor.from_pretrained(a ) self.assertIsInstance(a , a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Tuple: """simple docstring""" with self.assertRaisesRegex( a , 'bert-base is not a local folder and is not a valid model identifier' ): lowercase__ = AutoFeatureExtractor.from_pretrained('bert-base' ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Dict: """simple docstring""" with self.assertRaisesRegex( a , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase__ = AutoFeatureExtractor.from_pretrained(a , revision='aaaaaa' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Any: """simple docstring""" with self.assertRaisesRegex( a , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): lowercase__ = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[str]: """simple docstring""" with self.assertRaises(a ): lowercase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(a ): lowercase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=a ) lowercase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=a ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a ) lowercase__ = AutoFeatureExtractor.from_pretrained(a , trust_remote_code=a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Dict: """simple docstring""" try: AutoConfig.register('custom' , a ) AutoFeatureExtractor.register(a , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): AutoFeatureExtractor.register(a , a ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase__ = CustomFeatureExtractor.from_pretrained(a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a ) lowercase__ = AutoFeatureExtractor.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = True try: AutoConfig.register('custom' , a ) AutoFeatureExtractor.register(a , a ) # If remote code is not set, the default is to use local lowercase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowercase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=a ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowercase__ = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=a ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(a , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
720
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowercase_ = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = EfficientNetConfig() lowercase__ = CONFIG_MAP[model_name]['hidden_dim'] lowercase__ = CONFIG_MAP[model_name]['width_coef'] lowercase__ = CONFIG_MAP[model_name]['depth_coef'] lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = CONFIG_MAP[model_name]['dropout_rate'] lowercase__ = CONFIG_MAP[model_name]['dw_padding'] lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 1000 lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> Tuple: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase__ = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} lowercase__ = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase__ = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase__ = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ = 'efficientnet.' + item[1] lowercase__ = 'classifier.weight' lowercase__ = 'classifier.bias' return key_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation='softmax' , ) lowercase__ = original_model.trainable_variables lowercase__ = original_model.non_trainable_variables lowercase__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ = param.numpy() lowercase__ = list(tf_params.keys() ) # Load HuggingFace model lowercase__ = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowercase__ = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowercase__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase__ = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowercase__ = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowercase__ = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ = hf_model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.detach().numpy() # Original model inference lowercase__ = False lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowercase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
45
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = RobertaPreLayerNormConfig.from_pretrained( _SCREAMING_SNAKE_CASE , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict lowercase__ = torch.load(hf_hub_download(repo_id=_SCREAMING_SNAKE_CASE , filename='pytorch_model.bin' ) ) lowercase__ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): lowercase__ = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue lowercase__ = tensor_value lowercase__ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_SCREAMING_SNAKE_CASE , config=_SCREAMING_SNAKE_CASE , state_dict=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) # convert tokenizer lowercase__ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase_ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
721
import argparse import json import subprocess def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = [] lowercase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowercase__ = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode('utf-8' ) lowercase__ = json.loads(_SCREAMING_SNAKE_CASE ) lowercase__ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return values.split(',' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
45
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = 'Wav2Vec2FeatureExtractor' _UpperCamelCase : Any = 'AutoTokenizer' def __init__( self : str , a : Dict , a : List[str] )-> Tuple: """simple docstring""" super().__init__(a , a ) lowercase__ = self.feature_extractor lowercase__ = False @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , a : List[Any] , **a : int )-> Dict: """simple docstring""" try: return super().from_pretrained(a , **a ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , a , ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained(a , **a ) lowercase__ = WavaVecaCTCTokenizer.from_pretrained(a , **a ) return cls(feature_extractor=a , tokenizer=a ) def __call__( self : Dict , *a : Optional[Any] , **a : Optional[Any] )-> List[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*a , **a ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowercase__ = kwargs.pop('raw_speech' ) else: lowercase__ = kwargs.pop('audio' , a ) lowercase__ = kwargs.pop('sampling_rate' , a ) lowercase__ = kwargs.pop('text' , a ) if len(a ) > 0: lowercase__ = args[0] lowercase__ = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowercase__ = self.feature_extractor(a , *a , sampling_rate=a , **a ) if text is not None: lowercase__ = self.tokenizer(a , **a ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ = encodings['input_ids'] return inputs def SCREAMING_SNAKE_CASE_ ( self : Any , *a : Tuple , **a : Any )-> Optional[int]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*a , **a ) lowercase__ = kwargs.pop('input_features' , a ) lowercase__ = kwargs.pop('labels' , a ) if len(a ) > 0: lowercase__ = args[0] lowercase__ = args[1:] if input_features is not None: lowercase__ = self.feature_extractor.pad(a , *a , **a ) if labels is not None: lowercase__ = self.tokenizer.pad(a , **a ) if labels is None: return input_features elif input_features is None: return labels else: lowercase__ = labels['input_ids'] return input_features def SCREAMING_SNAKE_CASE_ ( self : Any , *a : Optional[Any] , **a : Optional[Any] )-> Any: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , *a : str , **a : str )-> int: """simple docstring""" return self.tokenizer.decode(*a , **a ) @contextmanager def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Any: """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowercase__ = True lowercase__ = self.tokenizer yield lowercase__ = self.feature_extractor lowercase__ = False
700
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Tuple = 'ClapFeatureExtractor' _UpperCamelCase : Union[str, Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : List[Any] , a : int , a : str )-> Any: """simple docstring""" super().__init__(a , a ) def __call__( self : Any , a : Tuple=None , a : Optional[int]=None , a : int=None , **a : Optional[int] )-> Union[str, Any]: """simple docstring""" lowercase__ = kwargs.pop('sampling_rate' , a ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: lowercase__ = self.tokenizer(a , return_tensors=a , **a ) if audios is not None: lowercase__ = self.feature_extractor( a , sampling_rate=a , return_tensors=a , **a ) if text is not None and audios is not None: lowercase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def SCREAMING_SNAKE_CASE_ ( self : str , *a : Dict , **a : int )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , *a : int , **a : Dict )-> Dict: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
45
0
from __future__ import annotations def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[int]: lowercase__ = 0 lowercase__ = len(_SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowercase__ = i + 1 else: lowercase__ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
701
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } lowercase_ = """▁""" class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] _UpperCamelCase : int = BarthezTokenizer def __init__( self : List[Any] , a : Union[str, Any]=None , a : Optional[Any]=None , a : Dict="<s>" , a : Union[str, Any]="</s>" , a : List[str]="</s>" , a : Optional[Any]="<s>" , a : int="<unk>" , a : str="<pad>" , a : Optional[int]="<mask>" , **a : Union[str, Any] , )-> Tuple: """simple docstring""" lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , **a , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
45
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , a : Collection[float] | None = None )-> None: """simple docstring""" if components is None: lowercase__ = [] lowercase__ = list(a ) def __len__( self : int )-> int: """simple docstring""" return len(self.__components ) def __str__( self : Dict )-> str: """simple docstring""" return "(" + ",".join(map(a , self.__components ) ) + ")" def __add__( self : str , a : Vector )-> Vector: """simple docstring""" lowercase__ = len(self ) if size == len(a ): lowercase__ = [self.__components[i] + other.component(a ) for i in range(a )] return Vector(a ) else: raise Exception('must have the same size' ) def __sub__( self : List[Any] , a : Vector )-> Vector: """simple docstring""" lowercase__ = len(self ) if size == len(a ): lowercase__ = [self.__components[i] - other.component(a ) for i in range(a )] return Vector(a ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : List[str] , a : float )-> Vector: """simple docstring""" ... @overload def __mul__( self : Any , a : Vector )-> float: """simple docstring""" ... def __mul__( self : Optional[Any] , a : float | Vector )-> float | Vector: """simple docstring""" if isinstance(a , (float, int) ): lowercase__ = [c * other for c in self.__components] return Vector(a ) elif isinstance(a , a ) and len(self ) == len(a ): lowercase__ = len(self ) lowercase__ = [self.__components[i] * other.component(a ) for i in range(a )] return sum(a ) else: # error case raise Exception('invalid operand!' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Vector: """simple docstring""" return Vector(self.__components ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : int )-> float: """simple docstring""" if isinstance(a , a ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : int , a : float )-> None: """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) lowercase__ = value def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> float: """simple docstring""" if len(self.__components ) == 0: raise Exception('Vector is empty' ) lowercase__ = [c**2 for c in self.__components] return math.sqrt(sum(a ) ) def SCREAMING_SNAKE_CASE_ ( self : str , a : Vector , a : bool = False )-> float: """simple docstring""" lowercase__ = self * other lowercase__ = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Vector: assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return Vector([0] * dimension ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Vector: assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )) lowercase__ = [0] * dimension lowercase__ = 1 return Vector(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Vector: assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (isinstance(_SCREAMING_SNAKE_CASE , (int, float) )) ) return x * scalar + y def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Vector: random.seed(_SCREAMING_SNAKE_CASE ) lowercase__ = [random.randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE )] return Vector(_SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE : def __init__( self : str , a : list[list[float]] , a : int , a : int )-> None: """simple docstring""" lowercase__ = matrix lowercase__ = w lowercase__ = h def __str__( self : List[Any] )-> str: """simple docstring""" lowercase__ = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : int , a : Matrix )-> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): lowercase__ = [] for i in range(self.__height ): lowercase__ = [ self.__matrix[i][j] + other.component(a , a ) for j in range(self.__width ) ] matrix.append(a ) return Matrix(a , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Optional[Any] , a : Matrix )-> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): lowercase__ = [] for i in range(self.__height ): lowercase__ = [ self.__matrix[i][j] - other.component(a , a ) for j in range(self.__width ) ] matrix.append(a ) return Matrix(a , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : Dict , a : float )-> Matrix: """simple docstring""" ... @overload def __mul__( self : str , a : Vector )-> Vector: """simple docstring""" ... def __mul__( self : int , a : float | Vector )-> Vector | Matrix: """simple docstring""" if isinstance(a , a ): # matrix-vector if len(a ) == self.__width: lowercase__ = zero_vector(self.__height ) for i in range(self.__height ): lowercase__ = [ self.__matrix[i][j] * other.component(a ) for j in range(self.__width ) ] ans.change_component(a , sum(a ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(a , (int, float) ): # matrix-scalar lowercase__ = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(a , self.__width , self.__height ) return None def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" return self.__height def SCREAMING_SNAKE_CASE_ ( self : int )-> int: """simple docstring""" return self.__width def SCREAMING_SNAKE_CASE_ ( self : str , a : int , a : int )-> float: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : int , a : float )-> None: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: lowercase__ = value else: raise Exception('change_component: indices out of bounds' ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : int , a : int )-> float: """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) lowercase__ = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(a ) ): lowercase__ = minor[i][:y] + minor[i][y + 1 :] return Matrix(a , self.__width - 1 , self.__height - 1 ).determinant() def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int )-> float: """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(a , a ) else: raise Exception('Indices out of bounds' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> float: """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase__ = [ self.__matrix[0][y] * self.cofactor(0 , a ) for y in range(self.__width ) ] return sum(a ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Matrix: lowercase__ = [[0] * n for _ in range(_SCREAMING_SNAKE_CASE )] return Matrix(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Matrix: random.seed(_SCREAMING_SNAKE_CASE ) lowercase__ = [ [random.randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE ) ] return Matrix(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
702
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = StableDiffusionSAGPipeline _UpperCamelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(a ) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[int] , a : Any=0 )-> Union[str, Any]: """simple docstring""" if str(a ).startswith('mps' ): lowercase__ = torch.manual_seed(a ) else: lowercase__ = torch.Generator(device=a ).manual_seed(a ) lowercase__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) lowercase__ = output.images assert image.shape == (1, 512, 768, 3)
45
0
from scipy.stats import spearmanr import datasets lowercase_ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowercase_ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowercase_ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Any , a : str=False )-> Optional[int]: """simple docstring""" lowercase__ = spearmanr(a , a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'deit' def __init__( self : Any , a : Union[str, Any]=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Optional[int]="gelu" , a : Optional[Any]=0.0 , a : List[Any]=0.0 , a : int=0.02 , a : List[str]=1E-1_2 , a : Optional[int]=224 , a : Tuple=16 , a : List[Any]=3 , a : List[str]=True , a : Any=16 , **a : Union[str, Any] , )-> int: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = encoder_stride class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> float: """simple docstring""" return 1E-4
45
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = GPTSwaTokenizer _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : List[str] = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = GPTSwaTokenizer(a , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str )-> Dict: """simple docstring""" lowercase__ = 'This is a test' lowercase__ = 'This is a test' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" lowercase__ = '<s>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Dict: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(a ) , 2_000 ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> str: """simple docstring""" lowercase__ = GPTSwaTokenizer(a ) lowercase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [465, 287, 265, 631, 842] ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( a , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowercase__ = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) lowercase__ = tokenizer.convert_ids_to_tokens(a ) # fmt: off self.assertListEqual( a , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = GPTSwaTokenizer(a ) lowercase__ = ['This is a test', 'I was born in 92000, and this is falsé.'] lowercase__ = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(a , a ): self.assertListEqual(tokenizer.encode_fast(a ) , a ) # Test that decode_fast returns the input text for text, token_ids in zip(a , a ): self.assertEqual(tokenizer.decode_fast(a ) , a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowercase__ = {'input_ids': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='AI-Sweden/gpt-sw3-126m' , sequences=a , )
704
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ) -> List[Any]: lowercase__ = None if token is not None: lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase__ = '636036' lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run['id'] break return workflow_run_id def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): lowercase__ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read().decode('UTF-8' ) return results
45
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Optional[Any] = ['input_features', 'attention_mask'] def __init__( self : Tuple , a : List[str]=80 , a : List[Any]=16_000 , a : Any=80 , a : str=0.0 , a : List[Any]=True , a : List[str]=True , a : int=True , **a : str , )-> int: """simple docstring""" super().__init__(feature_size=a , sampling_rate=a , padding_value=a , **a ) lowercase__ = num_mel_bins lowercase__ = do_ceptral_normalize lowercase__ = normalize_means lowercase__ = normalize_vars lowercase__ = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : np.ndarray , )-> np.ndarray: """simple docstring""" lowercase__ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowercase__ = torch.from_numpy(a ).unsqueeze(0 ) lowercase__ = ta_kaldi.fbank(a , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def SCREAMING_SNAKE_CASE_ ( a : np.ndarray , a : int , a : Optional[bool] = True , a : Optional[bool] = True , a : float = 0.0 , )-> np.ndarray: """simple docstring""" if normalize_means: lowercase__ = x[:input_length].mean(axis=0 ) lowercase__ = np.subtract(a , a ) if normalize_vars: lowercase__ = x[:input_length].std(axis=0 ) lowercase__ = np.divide(a , a ) if input_length < x.shape[0]: lowercase__ = padding_value # make sure array is in float32 lowercase__ = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : List[np.ndarray] , a : Optional[np.ndarray] = None )-> List[np.ndarray]: """simple docstring""" lowercase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(a , a , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(a , a ) ] def __call__( self : Tuple , a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a : Union[bool, str, PaddingStrategy] = False , a : Optional[int] = None , a : bool = False , a : Optional[int] = None , a : Optional[Union[str, TensorType]] = None , a : Optional[int] = None , a : Optional[bool] = None , **a : List[Any] , )-> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase__ = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ = [np.asarray(a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): lowercase__ = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ = [raw_speech] # extract fbank features lowercase__ = [self._extract_fbank_features(a ) for waveform in raw_speech] # convert into correct format for padding lowercase__ = BatchFeature({'input_features': features} ) lowercase__ = self.pad( a , padding=a , max_length=a , truncation=a , pad_to_multiple_of=a , return_attention_mask=a , **a , ) # make sure list is in array format lowercase__ = padded_inputs.get('input_features' ) if isinstance(input_features[0] , a ): lowercase__ = [np.asarray(a , dtype=np.floataa ) for feature in input_features] lowercase__ = padded_inputs.get('attention_mask' ) if attention_mask is not None: lowercase__ = [np.asarray(a , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowercase__ = ( np.array(a , dtype=np.intaa ) if self._get_padding_strategies(a , max_length=a ) is not PaddingStrategy.DO_NOT_PAD else None ) lowercase__ = self.normalize( padded_inputs['input_features'] , attention_mask=a ) if return_tensors is not None: lowercase__ = padded_inputs.convert_to_tensors(a ) return padded_inputs
705
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase_ = False class SCREAMING_SNAKE_CASE (unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) lowercase__ = VersatileDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = generator.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" lowercase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase__ = 'cyberpunk 2077' lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.dual_guided( prompt=a , image=a , text_to_image_strength=0.75 , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = 'A painting of a squirrel eating a burger ' lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe.text_to_image( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowercase__ = pipe.image_variation(a , generator=a , output_type='numpy' ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
45
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: lowercase__ = len(_SCREAMING_SNAKE_CASE ) print('The following activities are selected:' ) # The first activity is always selected lowercase__ = 0 print(_SCREAMING_SNAKE_CASE , end=',' ) # Consider rest of the activities for j in range(_SCREAMING_SNAKE_CASE ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_SCREAMING_SNAKE_CASE , end=',' ) lowercase__ = j if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = [1, 3, 0, 5, 8, 5] lowercase_ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
706
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) if len(_SCREAMING_SNAKE_CASE ) == 1: return True lowercase__ = series[1] - series[0] for index in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> float: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Input list must be a non empty list' ) lowercase__ = 0 for val in series: answer += val return answer / len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
45
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Dict , *a : Dict , **a : int )-> None: """simple docstring""" warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , a , ) super().__init__(*a , **a )
707
from __future__ import annotations import math from collections.abc import Callable def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 100 , ) -> float: lowercase__ = x_start lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) lowercase__ = 0.0 for _ in range(_SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ = (x_end - x_start) / steps + xa lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ = xa lowercase__ = fxa return length if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowercase_ = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
45
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = """▁""" lowercase_ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : str = BigBirdTokenizer _UpperCamelCase : Optional[Any] = BigBirdTokenizerFast _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = True def SCREAMING_SNAKE_CASE_ ( self : Dict )-> int: """simple docstring""" super().setUp() lowercase__ = self.tokenizer_class(a , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Dict: """simple docstring""" lowercase__ = '<s>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '[MASK]' ) self.assertEqual(len(a ) , 1_004 ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(a ) lowercase__ = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowercase__ = tokenizer.encode(a , add_special_tokens=a ) lowercase__ = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(a ) lowercase__ = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" lowercase__ = BigBirdTokenizer(a , keep_accents=a ) lowercase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [285, 46, 10, 170, 382] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase__ = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Tuple: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [65, 18_536, 2_260, 101, 66] self.assertListEqual(a , self.big_tokenizer.encode(a ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : str )-> List[Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(a , self.big_tokenizer.encode(a ) ) @require_torch @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Dict: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence lowercase__ = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase__ = ' '.join(a ) lowercase__ = self.big_tokenizer.encode_plus(a , return_tensors='pt' , return_token_type_ids=a ) lowercase__ = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=a ) lowercase__ = BigBirdConfig(attention_type='original_full' ) lowercase__ = BigBirdModel(a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a ) model(**a ) @slow def SCREAMING_SNAKE_CASE_ ( self : int )-> Dict: """simple docstring""" lowercase__ = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' ) lowercase__ = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids ) self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = {'input_ids': [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
0
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class SCREAMING_SNAKE_CASE : def __init__( self : int , a : Tuple )-> Tuple: """simple docstring""" if isinstance(a , a ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowercase__ = deepcopy(a ) elif os.path.exists(a ): with io.open(a , 'r' , encoding='utf-8' ) as f: lowercase__ = json.load(a ) else: try: lowercase__ = baseaa.urlsafe_baadecode(a ).decode('utf-8' ) lowercase__ = json.loads(a ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) lowercase__ = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" lowercase__ = self.get_value('zero_optimization.stage' , -1 ) # offload lowercase__ = False if self.is_zeroa() or self.is_zeroa(): lowercase__ = set(['cpu', 'nvme'] ) lowercase__ = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowercase__ = True def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Dict )-> List[str]: """simple docstring""" lowercase__ = self.config # find the config node of interest if it exists lowercase__ = ds_key_long.split('.' ) lowercase__ = nodes.pop() for node in nodes: lowercase__ = config.get(a ) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : str , a : Dict , a : List[Any]=None )-> Tuple: """simple docstring""" lowercase__ , lowercase__ = self.find_config_node(a ) if config is None: return default return config.get(a , a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : int , a : Optional[Any]=False )-> int: """simple docstring""" lowercase__ = self.config # find the config node of interest if it exists lowercase__ = ds_key_long.split('.' ) for node in nodes: lowercase__ = config lowercase__ = config.get(a ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(a ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Dict )-> List[str]: """simple docstring""" lowercase__ = self.get_value(a ) return False if value is None else bool(a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[str] )-> List[Any]: """simple docstring""" lowercase__ = self.get_value(a ) return False if value is None else not bool(a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[str]: """simple docstring""" return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[Any]: """simple docstring""" return self._offload class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , a : Optional[int] )-> str: """simple docstring""" lowercase__ = engine def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : Dict , **a : List[str] )-> List[str]: """simple docstring""" self.engine.backward(a , **a ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Optional[int] , a : str )-> Any: """simple docstring""" super().__init__(a , device_placement=a , scaler=a ) lowercase__ = hasattr(self.optimizer , 'overflow' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : Optional[Any]=None )-> str: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Any: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> str: """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : str , a : Optional[int] , a : Union[str, Any] )-> Tuple: """simple docstring""" super().__init__(a , a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> str: """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , a : List[str] , a : Dict=0.001 , a : int=0 , **a : Any )-> Union[str, Any]: """simple docstring""" lowercase__ = params lowercase__ = lr lowercase__ = weight_decay lowercase__ = kwargs class SCREAMING_SNAKE_CASE : def __init__( self : str , a : List[str] , a : List[Any]=None , a : Dict=0 , **a : Union[str, Any] )-> Optional[Any]: """simple docstring""" lowercase__ = optimizer lowercase__ = total_num_steps lowercase__ = warmup_num_steps lowercase__ = kwargs
709
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
45
0
import argparse import json import subprocess def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = [] lowercase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowercase__ = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode('utf-8' ) lowercase__ = json.loads(_SCREAMING_SNAKE_CASE ) lowercase__ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return values.split(',' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
710
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : Optional[Any] , a : UNetaDModel , a : UNetaDModel , a : DDPMScheduler , a : Any , )-> Dict: """simple docstring""" super().__init__() lowercase__ = value_function lowercase__ = unet lowercase__ = scheduler lowercase__ = env lowercase__ = env.get_dataset() lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].mean() except: # noqa: E722 pass lowercase__ = {} for key in self.data.keys(): try: lowercase__ = self.data[key].std() except: # noqa: E722 pass lowercase__ = env.observation_space.shape[0] lowercase__ = env.action_space.shape[0] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Any , a : int )-> Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : List[str] )-> str: """simple docstring""" return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Tuple )-> Tuple: """simple docstring""" if type(a ) is dict: return {k: self.to_torch(a ) for k, v in x_in.items()} elif torch.is_tensor(a ): return x_in.to(self.unet.device ) return torch.tensor(a , device=self.unet.device ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[int] , a : Dict , a : Optional[Any] )-> List[Any]: """simple docstring""" for key, val in cond.items(): lowercase__ = val.clone() return x_in def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[Any] , a : Any , a : Optional[Any] , a : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = x.shape[0] lowercase__ = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ = torch.full((batch_size,) , a , device=self.unet.device , dtype=torch.long ) for _ in range(a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ = self.value_function(x.permute(0 , 2 , 1 ) , a ).sample lowercase__ = torch.autograd.grad([y.sum()] , [x] )[0] lowercase__ = self.scheduler._get_variance(a ) lowercase__ = torch.exp(0.5 * posterior_variance ) lowercase__ = model_std * grad lowercase__ = 0 lowercase__ = x.detach() lowercase__ = x + scale * grad lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.unet(x.permute(0 , 2 , 1 ) , a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase__ = self.scheduler.step(a , a , a , predict_epsilon=a )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) return x, y def __call__( self : Any , a : Tuple , a : int=64 , a : Tuple=32 , a : List[Any]=2 , a : List[str]=0.1 )-> List[Any]: """simple docstring""" lowercase__ = self.normalize(a , 'observations' ) lowercase__ = obs[None].repeat(a , axis=0 ) lowercase__ = {0: self.to_torch(a )} lowercase__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ = randn_tensor(a , device=self.unet.device ) lowercase__ = self.reset_xa(a , a , self.action_dim ) lowercase__ = self.to_torch(a ) # run the diffusion process lowercase__ , lowercase__ = self.run_diffusion(a , a , a , a ) # sort output trajectories by value lowercase__ = y.argsort(0 , descending=a ).squeeze() lowercase__ = x[sorted_idx] lowercase__ = sorted_values[:, :, : self.action_dim] lowercase__ = actions.detach().cpu().numpy() lowercase__ = self.de_normalize(a , key='actions' ) # select the action with the highest value if y is not None: lowercase__ = 0 else: # if we didn't run value guiding, select a random action lowercase__ = np.random.randint(0 , a ) lowercase__ = denorm_actions[selected_index, 0] return denorm_actions
45
0
from __future__ import annotations import math from collections.abc import Callable def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 100 , ) -> float: lowercase__ = x_start lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) lowercase__ = 0.0 for _ in range(_SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length lowercase__ = (x_end - x_start) / steps + xa lowercase__ = fnc(_SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowercase__ = xa lowercase__ = fxa return length if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") lowercase_ = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
711
from PIL import Image def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Image: def brightness(_SCREAMING_SNAKE_CASE ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
45
0
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : def __init__( self : List[str] , a : int , a : int , a : float = 0 )-> None: """simple docstring""" lowercase__ , lowercase__ = row, column lowercase__ = [[default_value for c in range(a )] for r in range(a )] def __str__( self : int )-> str: """simple docstring""" lowercase__ = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowercase__ = 0 for row_vector in self.array: for obj in row_vector: lowercase__ = max(a , len(str(a ) ) ) lowercase__ = f"""%{max_element_length}s""" # Make string and return def single_line(a : list[float] ) -> str: nonlocal string_format_identifier lowercase__ = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(a ) for row_vector in self.array ) return s def __repr__( self : List[str] )-> str: """simple docstring""" return str(self ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : tuple[int, int] )-> bool: """simple docstring""" if not (isinstance(a , (list, tuple) ) and len(a ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : List[Any] , a : tuple[int, int] )-> Any: """simple docstring""" assert self.validate_indicies(a ) return self.array[loc[0]][loc[1]] def __setitem__( self : int , a : tuple[int, int] , a : float )-> None: """simple docstring""" assert self.validate_indicies(a ) lowercase__ = value def __add__( self : List[Any] , a : Matrix )-> Matrix: """simple docstring""" assert isinstance(a , a ) assert self.row == another.row and self.column == another.column # Add lowercase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowercase__ = self[r, c] + another[r, c] return result def __neg__( self : str )-> Matrix: """simple docstring""" lowercase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowercase__ = -self[r, c] return result def __sub__( self : int , a : Matrix )-> Matrix: """simple docstring""" return self + (-another) def __mul__( self : Any , a : int | float | Matrix )-> Matrix: """simple docstring""" if isinstance(a , (int, float) ): # Scalar multiplication lowercase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowercase__ = self[r, c] * another return result elif isinstance(a , a ): # Matrix multiplication assert self.column == another.row lowercase__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowercase__ = f"""Unsupported type given for another ({type(a )})""" raise TypeError(a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Matrix: """simple docstring""" lowercase__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowercase__ = self[r, c] return result def SCREAMING_SNAKE_CASE_ ( self : int , a : Matrix , a : Matrix )-> Any: """simple docstring""" assert isinstance(a , a ) and isinstance(a , a ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowercase__ = v.transpose() lowercase__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __UpperCamelCase () -> None: # a^(-1) lowercase__ = Matrix(3 , 3 , 0 ) for i in range(3 ): lowercase__ = 1 print(F"""a^(-1) is {ainv}""" ) # u, v lowercase__ = Matrix(3 , 1 , 0 ) lowercase__ , lowercase__ , lowercase__ = 1, 2, -3 lowercase__ = Matrix(3 , 1 , 0 ) lowercase__ , lowercase__ , lowercase__ = 4, -2, 5 print(F"""u is {u}""" ) print(F"""v is {v}""" ) print(F"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}""" ) def __UpperCamelCase () -> None: import doctest doctest.testmod() testa()
712
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : Any , a : str , a : List[Any]=7 , a : int=3 , a : int=18 , a : Optional[Any]=30 , a : Optional[int]=400 , a : int=True , a : Tuple=None , a : Optional[Any]=True , a : str=False , a : str=True , a : int=True , a : Tuple=[0.5, 0.5, 0.5] , a : Any=[0.5, 0.5, 0.5] , )-> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {'height': 18, 'width': 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DonutImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : int )-> List[Any]: """simple docstring""" lowercase__ = DonutImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Any )-> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_thumbnail' ) ) self.assertTrue(hasattr(a , 'do_align_long_axis' ) ) self.assertTrue(hasattr(a , 'do_pad' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Dict: """simple docstring""" pass @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Tuple: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase__ = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
45
0
from __future__ import annotations lowercase_ = 8.988E9 # units = N * m^s * C^-2 def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> dict[str, float]: lowercase__ = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: lowercase__ = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase__ = abs(_SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase__ = abs(_SCREAMING_SNAKE_CASE ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase__ = (COULOMBS_CONSTANT * charge_product / abs(_SCREAMING_SNAKE_CASE )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
713
import math def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_SCREAMING_SNAKE_CASE ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase_ = """Enter the base and the power separated by a comma: """ lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. lowercase_ = res(xa, ya) lowercase_ = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
45
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
class SCREAMING_SNAKE_CASE : # Public class to implement a graph def __init__( self : int , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = row lowercase__ = col lowercase__ = graph def SCREAMING_SNAKE_CASE_ ( self : Dict , a : int , a : int , a : list[list[bool]] )-> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : int , a : int , a : list[list[bool]] )-> None: """simple docstring""" lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: # And finally, count all islands. """simple docstring""" lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(a , a , a ) count += 1 return count
45
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str | Literal[False]: lowercase__ = list(_SCREAMING_SNAKE_CASE ) lowercase__ = list(_SCREAMING_SNAKE_CASE ) lowercase__ = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count += 1 lowercase__ = '_' if count > 1: return False else: return "".join(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> list[str]: lowercase__ = [] while True: lowercase__ = ['$'] * len(_SCREAMING_SNAKE_CASE ) lowercase__ = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = compare_string(binary[i] , binary[j] ) if k is False: lowercase__ = '*' lowercase__ = '*' temp.append('X' ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_SCREAMING_SNAKE_CASE ) == 0: return pi lowercase__ = list(set(_SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[str]: lowercase__ = [] for minterm in minterms: lowercase__ = '' for _ in range(_SCREAMING_SNAKE_CASE ): lowercase__ = str(minterm % 2 ) + string minterm //= 2 temp.append(_SCREAMING_SNAKE_CASE ) return temp def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: lowercase__ = list(_SCREAMING_SNAKE_CASE ) lowercase__ = list(_SCREAMING_SNAKE_CASE ) lowercase__ = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[str]: lowercase__ = [] lowercase__ = [0] * len(_SCREAMING_SNAKE_CASE ) for i in range(len(chart[0] ) ): lowercase__ = 0 lowercase__ = -1 for j in range(len(_SCREAMING_SNAKE_CASE ) ): if chart[j][i] == 1: count += 1 lowercase__ = j if count == 1: lowercase__ = 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = 0 temp.append(prime_implicants[i] ) while True: lowercase__ = 0 lowercase__ = -1 lowercase__ = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = chart[i].count(1 ) if count_n > max_n: lowercase__ = count_n lowercase__ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = 0 def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> list[list[int]]: lowercase__ = [[0 for x in range(len(_SCREAMING_SNAKE_CASE ) )] for x in range(len(_SCREAMING_SNAKE_CASE ) )] for i in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = prime_implicants[i].count('_' ) for j in range(len(_SCREAMING_SNAKE_CASE ) ): if is_for_table(prime_implicants[i] , binary[j] , _SCREAMING_SNAKE_CASE ): lowercase__ = 1 return chart def __UpperCamelCase () -> None: lowercase__ = int(input('Enter the no. of variables\n' ) ) lowercase__ = [ float(_SCREAMING_SNAKE_CASE ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] lowercase__ = decimal_to_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = check(_SCREAMING_SNAKE_CASE ) print('Prime Implicants are:' ) print(_SCREAMING_SNAKE_CASE ) lowercase__ = prime_implicant_chart(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = selection(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print('Essential Prime Implicants are:' ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
715
from string import ascii_uppercase lowercase_ = {str(ord(c) - 55): c for c in ascii_uppercase} def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) lowercase__ = '' lowercase__ = 0 lowercase__ = 0 while div != 1: lowercase__ , lowercase__ = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if base >= 11 and 9 < mod < 36: lowercase__ = ALPHABET_VALUES[str(_SCREAMING_SNAKE_CASE )] else: lowercase__ = str(_SCREAMING_SNAKE_CASE ) new_value += actual_value lowercase__ = num // base lowercase__ = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
45
0
from __future__ import annotations def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> tuple[int, float, str]: lowercase__ = cipher_alphabet or [chr(_SCREAMING_SNAKE_CASE ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowercase__ = { 'a': 0.0_8_4_9_7, 'b': 0.0_1_4_9_2, 'c': 0.0_2_2_0_2, 'd': 0.0_4_2_5_3, 'e': 0.1_1_1_6_2, 'f': 0.0_2_2_2_8, 'g': 0.0_2_0_1_5, 'h': 0.0_6_0_9_4, 'i': 0.0_7_5_4_6, 'j': 0.0_0_1_5_3, 'k': 0.0_1_2_9_2, 'l': 0.0_4_0_2_5, 'm': 0.0_2_4_0_6, 'n': 0.0_6_7_4_9, 'o': 0.0_7_5_0_7, 'p': 0.0_1_9_2_9, 'q': 0.0_0_0_9_5, 'r': 0.0_7_5_8_7, 's': 0.0_6_3_2_7, 't': 0.0_9_3_5_6, 'u': 0.0_2_7_5_8, 'v': 0.0_0_9_7_8, 'w': 0.0_2_5_6_0, 'x': 0.0_0_1_5_0, 'y': 0.0_1_9_9_4, 'z': 0.0_0_0_7_7, } else: # Custom frequencies dictionary lowercase__ = frequencies_dict if not case_sensitive: lowercase__ = ciphertext.lower() # Chi squared statistic values lowercase__ = {} # cycle through all of the shifts for shift in range(len(_SCREAMING_SNAKE_CASE ) ): lowercase__ = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowercase__ = (alphabet_letters.index(letter.lower() ) - shift) % len( _SCREAMING_SNAKE_CASE ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowercase__ = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowercase__ = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowercase__ = decrypted_with_shift.lower().count(_SCREAMING_SNAKE_CASE ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowercase__ = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowercase__ = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowercase__ = decrypted_with_shift.count(_SCREAMING_SNAKE_CASE ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowercase__ = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowercase__ = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowercase__ = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_SCREAMING_SNAKE_CASE ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowercase__ = min( _SCREAMING_SNAKE_CASE , key=_SCREAMING_SNAKE_CASE , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowercase__ ) , ( lowercase__ ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
716
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , a : Any , a : Optional[int]=13 , a : Tuple=30 , a : Union[str, Any]=2 , a : List[str]=3 , a : Dict=True , a : List[str]=True , a : List[Any]=32 , a : List[str]=5 , a : Optional[int]=4 , a : List[str]=37 , a : Dict="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : int=10 , a : List[str]=0.02 , a : int=None , a : List[str]=2 , )-> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = scope lowercase__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = num_patches + 1 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Any: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> List[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : List[Any] , a : List[str] , a : Dict )-> Optional[Any]: """simple docstring""" lowercase__ = ViTModel(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] , a : int , a : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForMaskedImageModeling(config=a ) model.to(a ) model.eval() lowercase__ = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForMaskedImageModeling(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : List[str] , a : int , a : List[Any] )-> str: """simple docstring""" lowercase__ = self.type_sequence_label_size lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ = 1 lowercase__ = ViTForImageClassification(a ) model.to(a ) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : int = True _UpperCamelCase : int = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[str]: """simple docstring""" lowercase__ = ViTModelTester(self ) lowercase__ = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[int]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(a ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict )-> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def __UpperCamelCase () -> str: lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(a ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ = model(**a ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int )-> List[str]: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' ).to(a ) lowercase__ = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass with torch.no_grad(): lowercase__ = model(a , interpolate_pos_encoding=a ) # verify the logits lowercase__ = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a ) lowercase__ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : str )-> str: """simple docstring""" lowercase__ = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=a , return_tensors='pt' ) lowercase__ = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase__ = model(a )
45
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class SCREAMING_SNAKE_CASE (unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : List[str] )-> Any: """simple docstring""" lowercase__ = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowercase__ = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Optional[Any]: """simple docstring""" lowercase__ = AutoConfig.from_pretrained('gpt2' ) lowercase__ = GenerationConfig.from_model_config(a ) lowercase__ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : str )-> Any: """simple docstring""" lowercase__ = GenerationConfig() lowercase__ = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowercase__ = copy.deepcopy(a ) lowercase__ = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def SCREAMING_SNAKE_CASE_ ( self : Dict )-> Tuple: """simple docstring""" lowercase__ = GenerationConfig() lowercase__ = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowercase__ = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowercase__ = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> List[str]: """simple docstring""" lowercase__ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowercase__ = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowercase__ = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class SCREAMING_SNAKE_CASE (unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple )-> List[str]: """simple docstring""" lowercase__ = TOKEN HfFolder.save_token(a ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] )-> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[int]: """simple docstring""" lowercase__ = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> List[Any]: """simple docstring""" lowercase__ = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowercase__ = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
717
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: stooge(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) return arr def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowercase__ , lowercase__ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowercase__ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) # Recursively sort last 2/3 elements stooge(_SCREAMING_SNAKE_CASE , i + t , (_SCREAMING_SNAKE_CASE) ) # Recursively sort first 2/3 elements stooge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (h - t) ) if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
45
0
from datetime import datetime import requests def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bytes: lowercase__ = 'https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' lowercase__ = requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(_SCREAMING_SNAKE_CASE ).content if __name__ == "__main__": lowercase_ = input("""Enter Video/IGTV url: """).strip() lowercase_ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
718
from scipy.stats import spearmanr import datasets lowercase_ = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowercase_ = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowercase_ = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Any , a : str=False )-> Optional[int]: """simple docstring""" lowercase__ = spearmanr(a , a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
45
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> str: if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path lowercase__ = quote(_SCREAMING_SNAKE_CASE ) return hfh.hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' , revision=_SCREAMING_SNAKE_CASE )
719
def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 50 ) -> int: lowercase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
45
0
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): def __init__( self : str , *a : Any , **a : int )-> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , a , ) super().__init__(*a , **a )
720
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } lowercase_ = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = EfficientNetConfig() lowercase__ = CONFIG_MAP[model_name]['hidden_dim'] lowercase__ = CONFIG_MAP[model_name]['width_coef'] lowercase__ = CONFIG_MAP[model_name]['depth_coef'] lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = CONFIG_MAP[model_name]['dropout_rate'] lowercase__ = CONFIG_MAP[model_name]['dw_padding'] lowercase__ = 'huggingface/label-files' lowercase__ = 'imagenet-1k-id2label.json' lowercase__ = 1000 lowercase__ = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase () -> Tuple: lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_SCREAMING_SNAKE_CASE , ) return preprocessor def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] lowercase__ = sorted(set(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) lowercase__ = {b: str(_SCREAMING_SNAKE_CASE ) for b, i in zip(_SCREAMING_SNAKE_CASE , range(_SCREAMING_SNAKE_CASE ) )} lowercase__ = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: lowercase__ = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) lowercase__ = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ = 'efficientnet.' + item[1] lowercase__ = 'classifier.weight' lowercase__ = 'classifier.bias' return key_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ = torch.from_numpy(np.transpose(_SCREAMING_SNAKE_CASE ) ) else: lowercase__ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = model_classes[model_name]( include_top=_SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=_SCREAMING_SNAKE_CASE , input_shape=_SCREAMING_SNAKE_CASE , pooling=_SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation='softmax' , ) lowercase__ = original_model.trainable_variables lowercase__ = original_model.non_trainable_variables lowercase__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ = param.numpy() lowercase__ = list(tf_params.keys() ) # Load HuggingFace model lowercase__ = get_efficientnet_config(_SCREAMING_SNAKE_CASE ) lowercase__ = EfficientNetForImageClassification(_SCREAMING_SNAKE_CASE ).eval() lowercase__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) lowercase__ = rename_keys(_SCREAMING_SNAKE_CASE ) replace_params(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowercase__ = convert_image_processor(_SCREAMING_SNAKE_CASE ) lowercase__ = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ = hf_model(**_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits.detach().numpy() # Original model inference lowercase__ = False lowercase__ = CONFIG_MAP[model_name]['image_size'] lowercase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ = image.img_to_array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.expand_dims(_SCREAMING_SNAKE_CASE , axis=0 ) lowercase__ = original_model.predict(_SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.mkdir(_SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(_SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") lowercase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
45
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/config.json""", # See all XGLM models at https://huggingface.co/models?filter=xglm } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Optional[Any] = 'xglm' _UpperCamelCase : str = ['past_key_values'] _UpperCamelCase : Union[str, Any] = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , a : List[Any]=256_008 , a : List[str]=2_048 , a : List[str]=1_024 , a : int=4_096 , a : int=24 , a : List[str]=16 , a : Dict="gelu" , a : Optional[int]=0.1 , a : Optional[Any]=0.1 , a : Optional[Any]=0.0 , a : int=0.0 , a : Optional[int]=0.02 , a : Union[str, Any]=True , a : List[Any]=True , a : Any=2 , a : Dict=1 , a : str=0 , a : Tuple=2 , **a : Optional[Any] , )-> List[Any]: """simple docstring""" lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = ffn_dim lowercase__ = num_layers lowercase__ = attention_heads lowercase__ = activation_function lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = layerdrop lowercase__ = init_std lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_cache super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , decoder_start_token_id=a , **a , )
721
import argparse import json import subprocess def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowercase__ = [] lowercase__ = ( F"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowercase__ = subprocess.run(_SCREAMING_SNAKE_CASE , shell=_SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE ) lowercase__ = output.stdout.decode('utf-8' ) lowercase__ = json.loads(_SCREAMING_SNAKE_CASE ) lowercase__ = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_SCREAMING_SNAKE_CASE ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > 0: lowercase__ = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: return values.split(',' ) lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowercase_ = parser.parse_args() get_runner_status(args.target_runners, args.token)
45
0
def __UpperCamelCase () -> int: return 1 def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return 0 if x < 0 else two_pound(x - 200 ) + one_pound(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE = 200 ) -> int: return two_pound(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution(int(input().strip())))
700
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Tuple = 'ClapFeatureExtractor' _UpperCamelCase : Union[str, Any] = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : List[Any] , a : int , a : str )-> Any: """simple docstring""" super().__init__(a , a ) def __call__( self : Any , a : Tuple=None , a : Optional[int]=None , a : int=None , **a : Optional[int] )-> Union[str, Any]: """simple docstring""" lowercase__ = kwargs.pop('sampling_rate' , a ) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.' ) if text is not None: lowercase__ = self.tokenizer(a , return_tensors=a , **a ) if audios is not None: lowercase__ = self.feature_extractor( a , sampling_rate=a , return_tensors=a , **a ) if text is not None and audios is not None: lowercase__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def SCREAMING_SNAKE_CASE_ ( self : str , *a : Dict , **a : int )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , *a : int , **a : Dict )-> Dict: """simple docstring""" return self.tokenizer.decode(*a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
45
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: lowercase__ = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"""{test_file} instead.""" ) lowercase__ = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) lowercase__ = components[:-1] + [test_fn.replace('.py' , '' )] lowercase__ = '.'.join(_SCREAMING_SNAKE_CASE ) return test_module_path def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: lowercase__ = get_module_path(_SCREAMING_SNAKE_CASE ) lowercase__ = importlib.import_module(_SCREAMING_SNAKE_CASE ) return test_module def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [] lowercase__ = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = [] lowercase__ = get_test_module(_SCREAMING_SNAKE_CASE ) for attr in dir(_SCREAMING_SNAKE_CASE ): lowercase__ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowercase__ = getattr(_SCREAMING_SNAKE_CASE , 'all_model_classes' , [] ) if len(_SCREAMING_SNAKE_CASE ) > 0: test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_test_classes(_SCREAMING_SNAKE_CASE ) lowercase__ = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = test_class() if hasattr(_SCREAMING_SNAKE_CASE , 'setUp' ): test.setUp() lowercase__ = None if hasattr(_SCREAMING_SNAKE_CASE , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowercase__ = test.model_tester.__class__ return model_tester def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = get_test_classes(_SCREAMING_SNAKE_CASE ) lowercase__ = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = [] for test_class in test_classes: lowercase__ = get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) if tester_class is not None: tester_classes.append(_SCREAMING_SNAKE_CASE ) # sort with class names return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x.__name__ ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = get_test_classes(_SCREAMING_SNAKE_CASE ) lowercase__ = {test_class: get_model_tester_from_test_class(_SCREAMING_SNAKE_CASE ) for test_class in test_classes} return test_tester_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = get_model_classes(_SCREAMING_SNAKE_CASE ) lowercase__ = { model_class: get_test_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_test_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = get_model_classes(_SCREAMING_SNAKE_CASE ) lowercase__ = { model_class: get_tester_classes_for_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in model_classes } return model_to_tester_mapping def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[Any]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return o.__name__ elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return [to_json(_SCREAMING_SNAKE_CASE ) for x in o] elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {to_json(_SCREAMING_SNAKE_CASE ): to_json(_SCREAMING_SNAKE_CASE ) for k, v in o.items()} else: return o
701
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } lowercase_ = """▁""" class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] _UpperCamelCase : int = BarthezTokenizer def __init__( self : List[Any] , a : Union[str, Any]=None , a : Optional[Any]=None , a : Dict="<s>" , a : Union[str, Any]="</s>" , a : List[str]="</s>" , a : Optional[Any]="<s>" , a : int="<unk>" , a : str="<pad>" , a : Optional[int]="<mask>" , **a : Union[str, Any] , )-> Tuple: """simple docstring""" lowercase__ = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( a , tokenizer_file=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , **a , ) lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase__ = [self.cls_token_id] lowercase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : List[int] , a : Optional[List[int]] = None )-> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
45
0
import torch def __UpperCamelCase () -> Dict: if torch.cuda.is_available(): lowercase__ = torch.cuda.device_count() else: lowercase__ = 0 print(F"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
702
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE (UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = StableDiffusionSAGPipeline _UpperCamelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCamelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(a ) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[int] , a : Any=0 )-> Union[str, Any]: """simple docstring""" if str(a ).startswith('mps' ): lowercase__ = torch.manual_seed(a ) else: lowercase__ = torch.Generator(device=a ).manual_seed(a ) lowercase__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE_ ( self : Any )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str )-> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) lowercase__ = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase__ = '.' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) lowercase__ = output.images assert image.shape == (1, 512, 768, 3)
45
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[Any]: lowercase__ = {} lowercase__ = tokenizer(example['content'] , truncation=_SCREAMING_SNAKE_CASE )['input_ids'] lowercase__ = len(example['content'] ) / len(output['input_ids'] ) return output lowercase_ = HfArgumentParser(PretokenizationArguments) lowercase_ = parser.parse_args() if args.num_workers is None: lowercase_ = multiprocessing.cpu_count() lowercase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowercase_ = time.time() lowercase_ = load_dataset(args.dataset_name, split="""train""") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') lowercase_ = time.time() lowercase_ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowercase_ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Any = 'deit' def __init__( self : Any , a : Union[str, Any]=768 , a : Optional[Any]=12 , a : Union[str, Any]=12 , a : Optional[int]=3_072 , a : Optional[int]="gelu" , a : Optional[Any]=0.0 , a : List[Any]=0.0 , a : int=0.02 , a : List[str]=1E-1_2 , a : Optional[int]=224 , a : Tuple=16 , a : List[Any]=3 , a : List[str]=True , a : Any=16 , **a : Union[str, Any] , )-> int: """simple docstring""" super().__init__(**a ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = encoder_stride class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : List[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : int )-> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> float: """simple docstring""" return 1E-4
45
0
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: lowercase__ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowercase__ = n - k # Calculate C(n,k) for i in range(_SCREAMING_SNAKE_CASE ): result *= n - i result //= i + 1 return result def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return binomial_coefficient(2 * node_count , _SCREAMING_SNAKE_CASE ) // (node_count + 1) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: if n < 0: raise ValueError('factorial() not defined for negative values' ) lowercase__ = 1 for i in range(1 , n + 1 ): result *= i return result def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> int: return catalan_number(_SCREAMING_SNAKE_CASE ) * factorial(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
704
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ) -> List[Any]: lowercase__ = None if token is not None: lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) lowercase__ = '636036' lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" lowercase__ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run['id'] break return workflow_run_id def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: lowercase__ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): lowercase__ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: lowercase__ = f.read().decode('UTF-8' ) return results
45
0