code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import numpy as np def _A ( lowercase , lowercase , lowercase = 1E-12 , lowercase = 1_00 , ): """simple docstring""" assert np.shape(lowercase )[0] == np.shape(lowercase )[1] # Ensure proper dimensionality. assert np.shape(lowercase )[0] == np.shape(lowercase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowercase ) == np.iscomplexobj(lowercase ) a =np.iscomplexobj(lowercase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowercase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. a =False a =0 a =0 a =1E12 while not convergence: # Multiple matrix by the vector. a =np.dot(lowercase , lowercase ) # Normalize the resulting output vector. a =w / np.linalg.norm(lowercase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) a =vector.conj().T if is_complex else vector.T a =np.dot(lowercase , np.dot(lowercase , lowercase ) ) # Check convergence. a =np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: a =True a =lambda_ if is_complex: a =np.real(lambda_ ) return lambda_, vector def _A ( ): """simple docstring""" a =np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) a =np.array([41, 4, 20] ) a =real_input_matrix.astype(np.complexaaa ) a =np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T a =np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": a =real_input_matrix a =real_vector elif problem_type == "complex": a =complex_input_matrix a =complex_vector # Our implementation. a , a =power_iteration(lowercase , lowercase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). a , a =np.linalg.eigh(lowercase ) # Last eigenvalue is the maximum one. a =eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. a =eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowercase ) - np.abs(lowercase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
81
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
0
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _lowerCAmelCase = remove_duplicates(key.upper() ) _lowerCAmelCase = len(snake_case ) # First fill cipher with key characters _lowerCAmelCase = {alphabet[i]: char for i, char in enumerate(snake_case )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(snake_case ) , 26 ): _lowerCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _lowerCAmelCase = alphabet[i - offset] _lowerCAmelCase = char return cipher_alphabet def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" return "".join(cipher_map.get(snake_case , snake_case ) for ch in message.upper() ) def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(snake_case , snake_case ) for ch in message.upper() ) def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = input("""Enter message to encode or decode: """ ).strip() _lowerCAmelCase = input("""Enter keyword: """ ).strip() _lowerCAmelCase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: _lowerCAmelCase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) _lowerCAmelCase = create_cipher_map(snake_case ) print(func(snake_case , snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
82
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase__ ( lowercase ): lowercase__ = 42 lowercase__ = jnp.floataa lowercase__ = True def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' super().setup() _UpperCamelCase : Optional[int] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self : Optional[Any] ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : Any = super().__call__(*lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase__ ( lowercase ): lowercase__ = FlaxBigBirdForNaturalQuestionsModule def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def cross_entropy(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): _UpperCamelCase : Union[str, Any] = logits.shape[-1] _UpperCamelCase : List[str] = (labels[..., None] == jnp.arange(UpperCAmelCase_ )[None]).astype('f4' ) _UpperCamelCase : Optional[int] = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) _UpperCamelCase : List[str] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _UpperCamelCase : Optional[Any] = reduction(UpperCAmelCase_ ) return loss _UpperCamelCase : Dict = partial(UpperCAmelCase_ , reduction=jnp.mean ) _UpperCamelCase : List[Any] = cross_entropy(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[str] = cross_entropy(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = cross_entropy(UpperCAmelCase_ , UpperCAmelCase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase__ : lowercase__ = "google/bigbird-roberta-base" lowercase__ = 30_00 lowercase__ = 1_05_00 lowercase__ = 1_28 lowercase__ = 3 lowercase__ = 1 lowercase__ = 5 # tx_args lowercase__ = 3E-5 lowercase__ = 0.0 lowercase__ = 2_00_00 lowercase__ = 0.00_95 lowercase__ = "bigbird-roberta-natural-questions" lowercase__ = "training-expt" lowercase__ = "data/nq-training.jsonl" lowercase__ = "data/nq-validation.jsonl" def UpperCamelCase_ ( self : Dict ): '''simple docstring''' os.makedirs(self.base_dir ,exist_ok=lowerCamelCase__ ) _UpperCamelCase : Tuple = os.path.join(self.base_dir ,self.save_dir ) _UpperCamelCase : Union[str, Any] = self.batch_size_per_device * jax.device_count() @dataclass class lowercase__ : lowercase__ = 42 lowercase__ = 40_96 # no dynamic padding on TPUs def __call__( self : Optional[int] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : List[str] = self.collate_fn(lowerCamelCase__ ) _UpperCamelCase : List[Any] = jax.tree_util.tree_map(lowerCamelCase__ ,lowerCamelCase__ ) return batch def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Optional[int] = self.fetch_inputs(features['input_ids'] ) _UpperCamelCase : Tuple = { 'input_ids': jnp.array(lowerCamelCase__ ,dtype=jnp.intaa ), 'attention_mask': jnp.array(lowerCamelCase__ ,dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] ,dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] ,dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] ,dtype=jnp.intaa ), } return batch def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : list ): '''simple docstring''' _UpperCamelCase : List[str] = [self._fetch_inputs(lowerCamelCase__ ) for ids in input_ids] return zip(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : list ): '''simple docstring''' _UpperCamelCase : List[str] = [1 for _ in range(len(lowerCamelCase__ ) )] while len(lowerCamelCase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ): if seed is not None: _UpperCamelCase : int = dataset.shuffle(seed=UpperCAmelCase_ ) for i in range(len(UpperCAmelCase_ ) // batch_size ): _UpperCamelCase : Union[str, Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(UpperCAmelCase_ ) @partial(jax.pmap , axis_name='batch' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ): def loss_fn(UpperCAmelCase_ ): _UpperCamelCase : int = model_inputs.pop('start_labels' ) _UpperCamelCase : Tuple = model_inputs.pop('end_labels' ) _UpperCamelCase : Optional[int] = model_inputs.pop('pooled_labels' ) _UpperCamelCase : str = state.apply_fn(**UpperCAmelCase_ , params=UpperCAmelCase_ , dropout_rng=UpperCAmelCase_ , train=UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Any = outputs return state.loss_fn( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) _UpperCamelCase , _UpperCamelCase : List[Any] = jax.random.split(UpperCAmelCase_ ) _UpperCamelCase : Any = jax.value_and_grad(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Union[str, Any] = grad_fn(state.params ) _UpperCamelCase : List[str] = jax.lax.pmean({'loss': loss} , axis_name='batch' ) _UpperCamelCase : str = jax.lax.pmean(UpperCAmelCase_ , 'batch' ) _UpperCamelCase : Optional[int] = state.apply_gradients(grads=UpperCAmelCase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def A__ ( UpperCAmelCase_ , **UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = model_inputs.pop('start_labels' ) _UpperCamelCase : Optional[Any] = model_inputs.pop('end_labels' ) _UpperCamelCase : List[str] = model_inputs.pop('pooled_labels' ) _UpperCamelCase : Tuple = state.apply_fn(**UpperCAmelCase_ , params=state.params , train=UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = outputs _UpperCamelCase : int = state.loss_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Dict = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class lowercase__ ( train_state.TrainState ): lowercase__ = struct.field(pytree_node=lowercase ) @dataclass class lowercase__ : lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = None def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Dict=None ): '''simple docstring''' _UpperCamelCase : List[str] = model.params _UpperCamelCase : Any = TrainState.create( apply_fn=model.__call__ ,params=lowerCamelCase__ ,tx=lowerCamelCase__ ,loss_fn=lowerCamelCase__ ,) if ckpt_dir is not None: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Union[str, Any] = restore_checkpoint(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : int = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } _UpperCamelCase , _UpperCamelCase : Union[str, Any] = build_tx(**lowerCamelCase__ ) _UpperCamelCase : Tuple = train_state.TrainState( step=lowerCamelCase__ ,apply_fn=model.__call__ ,params=lowerCamelCase__ ,tx=lowerCamelCase__ ,opt_state=lowerCamelCase__ ,) _UpperCamelCase : Tuple = args _UpperCamelCase : Any = data_collator _UpperCamelCase : Optional[int] = lr _UpperCamelCase : str = params _UpperCamelCase : List[Any] = jax_utils.replicate(lowerCamelCase__ ) return state def UpperCamelCase_ ( self : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.args _UpperCamelCase : Dict = len(lowerCamelCase__ ) // args.batch_size _UpperCamelCase : Dict = jax.random.PRNGKey(0 ) _UpperCamelCase : List[str] = jax.random.split(lowerCamelCase__ ,jax.device_count() ) for epoch in range(args.max_epochs ): _UpperCamelCase : Union[str, Any] = jnp.array(0 ,dtype=jnp.floataa ) _UpperCamelCase : Optional[Any] = get_batched_dataset(lowerCamelCase__ ,args.batch_size ,seed=lowerCamelCase__ ) _UpperCamelCase : Tuple = 0 for batch in tqdm(lowerCamelCase__ ,total=lowerCamelCase__ ,desc=F'Running EPOCH-{epoch}' ): _UpperCamelCase : Optional[Any] = self.data_collator(lowerCamelCase__ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = self.train_step_fn(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: _UpperCamelCase : str = jax_utils.unreplicate(state.step ) _UpperCamelCase : str = running_loss.item() / i _UpperCamelCase : str = self.scheduler_fn(state_step - 1 ) _UpperCamelCase : List[Any] = self.evaluate(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(lowerCamelCase__ ) ) self.logger.log(lowerCamelCase__ ,commit=lowerCamelCase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}' ,state=lowerCamelCase__ ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : Optional[int] = get_batched_dataset(lowerCamelCase__ ,self.args.batch_size ) _UpperCamelCase : Union[str, Any] = len(lowerCamelCase__ ) // self.args.batch_size _UpperCamelCase : Union[str, Any] = jnp.array(0 ,dtype=jnp.floataa ) _UpperCamelCase : Any = 0 for batch in tqdm(lowerCamelCase__ ,total=lowerCamelCase__ ,desc='Evaluating ... ' ): _UpperCamelCase : str = self.data_collator(lowerCamelCase__ ) _UpperCamelCase : Any = self.val_step_fn(lowerCamelCase__ ,**lowerCamelCase__ ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : List[Any] = jax_utils.unreplicate(lowerCamelCase__ ) print(F'SAVING CHECKPOINT IN {save_dir}' ,end=' ... ' ) self.model_save_fn(lowerCamelCase__ ,params=state.params ) with open(os.path.join(lowerCamelCase__ ,'opt_state.msgpack' ) ,'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(lowerCamelCase__ ,'args.joblib' ) ) joblib.dump(self.data_collator ,os.path.join(lowerCamelCase__ ,'data_collator.joblib' ) ) with open(os.path.join(lowerCamelCase__ ,'training_state.json' ) ,'w' ) as f: json.dump({'step': state.step.item()} ,lowerCamelCase__ ) print('DONE' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=' ... ' ) with open(os.path.join(UpperCAmelCase_ , 'flax_model.msgpack' ) , 'rb' ) as f: _UpperCamelCase : Optional[int] = from_bytes(state.params , f.read() ) with open(os.path.join(UpperCAmelCase_ , 'opt_state.msgpack' ) , 'rb' ) as f: _UpperCamelCase : Optional[int] = from_bytes(state.opt_state , f.read() ) _UpperCamelCase : Optional[Any] = joblib.load(os.path.join(UpperCAmelCase_ , 'args.joblib' ) ) _UpperCamelCase : Dict = joblib.load(os.path.join(UpperCAmelCase_ , 'data_collator.joblib' ) ) with open(os.path.join(UpperCAmelCase_ , 'training_state.json' ) , 'r' ) as f: _UpperCamelCase : Optional[Any] = json.load(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = num_train_steps - warmup_steps _UpperCamelCase : int = optax.linear_schedule(init_value=UpperCAmelCase_ , end_value=UpperCAmelCase_ , transition_steps=UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = optax.linear_schedule(init_value=UpperCAmelCase_ , end_value=1E-7 , transition_steps=UpperCAmelCase_ ) _UpperCamelCase : List[str] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def weight_decay_mask(UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = traverse_util.flatten_dict(UpperCAmelCase_ ) _UpperCamelCase : List[Any] = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(UpperCAmelCase_ ) _UpperCamelCase : str = scheduler_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : int = optax.adamw(learning_rate=UpperCAmelCase_ , weight_decay=UpperCAmelCase_ , mask=UpperCAmelCase_ ) return tx, lr
83
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :List[Any] = "unispeech" def __init__( self , __A=32 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.1 , __A=0.1 , __A=0.0_2 , __A=1E-5 , __A="group" , __A="gelu" , __A=(512, 512, 512, 512, 512, 512, 512) , __A=(5, 2, 2, 2, 2, 2, 2) , __A=(10, 3, 3, 3, 3, 2, 2) , __A=False , __A=128 , __A=16 , __A=False , __A=True , __A=0.0_5 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=0 , __A=320 , __A=2 , __A=0.1 , __A=100 , __A=256 , __A=256 , __A=0.1 , __A="mean" , __A=False , __A=False , __A=256 , __A=80 , __A=0 , __A=1 , __A=2 , __A=0.5 , **__A , ) -> Tuple: super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) lowerCAmelCase_ :str = hidden_size lowerCAmelCase_ :Dict = feat_extract_norm lowerCAmelCase_ :Optional[int] = feat_extract_activation lowerCAmelCase_ :List[str] = list(__A ) lowerCAmelCase_ :Dict = list(__A ) lowerCAmelCase_ :int = list(__A ) lowerCAmelCase_ :List[str] = conv_bias lowerCAmelCase_ :Tuple = num_conv_pos_embeddings lowerCAmelCase_ :Dict = num_conv_pos_embedding_groups lowerCAmelCase_ :Optional[Any] = len(self.conv_dim ) lowerCAmelCase_ :Optional[Any] = num_hidden_layers lowerCAmelCase_ :Any = intermediate_size lowerCAmelCase_ :List[Any] = hidden_act lowerCAmelCase_ :Optional[int] = num_attention_heads lowerCAmelCase_ :str = hidden_dropout lowerCAmelCase_ :str = attention_dropout lowerCAmelCase_ :Optional[Any] = activation_dropout lowerCAmelCase_ :Tuple = feat_proj_dropout lowerCAmelCase_ :Tuple = final_dropout lowerCAmelCase_ :Tuple = layerdrop lowerCAmelCase_ :Optional[int] = layer_norm_eps lowerCAmelCase_ :List[str] = initializer_range lowerCAmelCase_ :Union[str, Any] = num_ctc_classes lowerCAmelCase_ :List[str] = vocab_size lowerCAmelCase_ :int = do_stable_layer_norm lowerCAmelCase_ :Dict = use_weighted_layer_sum lowerCAmelCase_ :Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ :Dict = apply_spec_augment lowerCAmelCase_ :Optional[Any] = mask_time_prob lowerCAmelCase_ :Dict = mask_time_length lowerCAmelCase_ :int = mask_time_min_masks lowerCAmelCase_ :Optional[Any] = mask_feature_prob lowerCAmelCase_ :Dict = mask_feature_length lowerCAmelCase_ :Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase_ :str = num_codevectors_per_group lowerCAmelCase_ :Union[str, Any] = num_codevector_groups lowerCAmelCase_ :int = contrastive_logits_temperature lowerCAmelCase_ :List[Any] = feat_quantizer_dropout lowerCAmelCase_ :Optional[int] = num_negatives lowerCAmelCase_ :Optional[Any] = codevector_dim lowerCAmelCase_ :List[Any] = proj_codevector_dim lowerCAmelCase_ :List[Any] = diversity_loss_weight # ctc loss lowerCAmelCase_ :Union[str, Any] = ctc_loss_reduction lowerCAmelCase_ :int = ctc_zero_infinity # pretraining loss lowerCAmelCase_ :Union[str, Any] = replace_prob @property def __lowerCAmelCase ( self ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
84
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _SCREAMING_SNAKE_CASE : Dict = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } _SCREAMING_SNAKE_CASE : Optional[int] = {"allegro/herbert-base-cased": 514} _SCREAMING_SNAKE_CASE : Any = {} class _snake_case ( lowercase_ ): lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : str = HerbertTokenizer def __init__( self , a__=None , a__=None , a__=None , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__="</s>" , **a__ , ) -> List[str]: '''simple docstring''' super().__init__( a__ , a__ , tokenizer_file=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , sep_token=a__ , **a__ , ) def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self , a__ , a__ = None , a__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> List[int]: '''simple docstring''' snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' snake_case_ = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ )
85
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
0
"""simple docstring""" import os from pathlib import Path def __lowerCAmelCase (): from torch.utils.cpp_extension import load __lowerCAmelCase : Dict = Path(_UpperCamelCase ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' __lowerCAmelCase : int = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , _UpperCamelCase , with_cuda=_UpperCamelCase , extra_include_paths=[str(_UpperCamelCase )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
86
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch UpperCamelCase = logging.get_logger(__name__) class snake_case_ ( __A ): __A : Any = ["pixel_values"] def __init__( self : str , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 2_55 , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , **lowercase_ : Dict , ) -> None: super().__init__(**lowercase_ ) lowercase__ : List[str] = size if size is not None else {"shortest_edge": 2_24} lowercase__ : List[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase__ : Optional[Any] = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} lowercase__ : str = get_size_dict(lowercase_ , param_name="crop_size" ) lowercase__ : Tuple = do_resize lowercase__ : int = size lowercase__ : str = resample lowercase__ : Optional[Any] = do_rescale lowercase__ : Tuple = rescale_factor lowercase__ : List[str] = do_center_crop lowercase__ : List[str] = crop_size lowercase__ : Dict = do_flip_channel_order def __UpperCamelCase ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PIL.Image.BILINEAR , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ) -> np.ndarray: lowercase__ : List[str] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase__ : Optional[int] = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ) -> np.ndarray: lowercase__ : Any = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : int , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Dict , ) -> Optional[Any]: return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def __UpperCamelCase ( self : Dict , lowercase_ : np.ndarray , lowercase_ : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: return flip_channel_order(lowercase_ , data_format=lowercase_ ) def __UpperCamelCase ( self : Any , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : Tuple , ) -> PIL.Image.Image: lowercase__ : int = do_resize if do_resize is not None else self.do_resize lowercase__ : Any = resample if resample is not None else self.resample lowercase__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : int = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowercase__ : Dict = size if size is not None else self.size lowercase__ : int = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase__ : str = crop_size if crop_size is not None else self.crop_size lowercase__ : str = get_size_dict(lowercase_ , param_name="crop_size" ) lowercase__ : Optional[Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. lowercase__ : Tuple = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowercase__ : int = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: lowercase__ : List[Any] = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: lowercase__ : Any = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowercase__ : str = [self.flip_channel_order(image=lowercase_ ) for image in images] lowercase__ : str = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase__ : Optional[int] = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : int , lowercase_ : List[Tuple] = None ) -> List[Any]: lowercase__ : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowercase_ ): lowercase__ : Any = target_sizes.numpy() lowercase__ : Optional[Any] = [] for idx in range(len(lowercase_ ) ): lowercase__ : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowercase_ ) lowercase__ : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowercase__ : Optional[int] = logits.argmax(dim=1 ) lowercase__ : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
87
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any]=13 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : int=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]=99 , UpperCamelCase__ : Optional[Any]=32 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : str=16 , UpperCamelCase__ : str=2 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Dict=None , ) -> List[Any]: """simple docstring""" __magic_name__ = parent __magic_name__ = 13 __magic_name__ = 7 __magic_name__ = True __magic_name__ = True __magic_name__ = True __magic_name__ = True __magic_name__ = 99 __magic_name__ = 384 __magic_name__ = 2 __magic_name__ = 4 __magic_name__ = 37 __magic_name__ = """gelu""" __magic_name__ = 0.1 __magic_name__ = 0.1 __magic_name__ = 512 __magic_name__ = 16 __magic_name__ = 2 __magic_name__ = 0.02 __magic_name__ = 3 __magic_name__ = 4 __magic_name__ = 128 __magic_name__ = 2 __magic_name__ = 9 __magic_name__ = 1 __magic_name__ = None def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_input_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCamelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> Optional[Any]: """simple docstring""" __magic_name__ = TFConvBertModel(config=UpperCamelCase__ ) __magic_name__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __magic_name__ = [input_ids, input_mask] __magic_name__ = model(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" __magic_name__ = TFConvBertForMaskedLM(config=UpperCamelCase__ ) __magic_name__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = TFConvBertForSequenceClassification(config=UpperCamelCase__ ) __magic_name__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int ) -> str: """simple docstring""" __magic_name__ = self.num_choices __magic_name__ = TFConvBertForMultipleChoice(config=UpperCamelCase__ ) __magic_name__ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __magic_name__ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __magic_name__ = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __magic_name__ = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Optional[int]: """simple docstring""" __magic_name__ = self.num_labels __magic_name__ = TFConvBertForTokenClassification(config=UpperCamelCase__ ) __magic_name__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : List[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __magic_name__ = TFConvBertForQuestionAnswering(config=UpperCamelCase__ ) __magic_name__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __magic_name__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : List[str] ) -> Optional[int]: """simple docstring""" __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _A , _A , unittest.TestCase ): '''simple docstring''' a__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a__ = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a__ = False a__ = False a__ = False def _lowercase ( self : List[str] ) -> Any: """simple docstring""" __magic_name__ = TFConvBertModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self : str ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self : int ) -> str: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self : Dict ) -> List[str]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def _lowercase ( self : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def _lowercase ( self : int ) -> Optional[int]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def _lowercase ( self : Any ) -> Optional[Any]: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def _lowercase ( self : Optional[Any] ) -> int: """simple docstring""" __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def _lowercase ( self : Tuple ) -> Optional[int]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = True __magic_name__ = True if hasattr(UpperCamelCase__ , """use_cache""" ): __magic_name__ = True __magic_name__ = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __magic_name__ = getattr(self.model_tester , """key_length""" , UpperCamelCase__ ) for model_class in self.all_model_classes: __magic_name__ = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = len(model(UpperCamelCase__ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ , saved_model=UpperCamelCase__ ) __magic_name__ = os.path.join(UpperCamelCase__ , """saved_model""" , """1""" ) __magic_name__ = tf.keras.models.load_model(UpperCamelCase__ ) __magic_name__ = model(UpperCamelCase__ ) if self.is_encoder_decoder: __magic_name__ = outputs["""encoder_hidden_states"""] __magic_name__ = outputs["""encoder_attentions"""] else: __magic_name__ = outputs["""hidden_states"""] __magic_name__ = outputs["""attentions"""] self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) __magic_name__ = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowercase ( self : Dict ) -> Tuple: """simple docstring""" __magic_name__ = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ = True __magic_name__ = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) __magic_name__ = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) __magic_name__ = getattr(self.model_tester , """key_length""" , UpperCamelCase__ ) __magic_name__ = getattr(self.model_tester , """key_length""" , UpperCamelCase__ ) def check_decoder_attentions_output(UpperCamelCase__ : List[str] ): __magic_name__ = len(UpperCamelCase__ ) self.assertEqual(out_len % 2 , 0 ) __magic_name__ = outputs.decoder_attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCamelCase__ : Optional[Any] ): __magic_name__ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __magic_name__ = True __magic_name__ = False __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __magic_name__ = len(UpperCamelCase__ ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) if self.is_encoder_decoder: __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_decoder_attentions_output(UpperCamelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __magic_name__ = True __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) # Check attention is always last and order is fine __magic_name__ = True __magic_name__ = True __magic_name__ = model_class(UpperCamelCase__ ) __magic_name__ = model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCamelCase__ ) ) self.assertEqual(model.config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self : int ) -> List[str]: """simple docstring""" __magic_name__ = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) __magic_name__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ = model(UpperCamelCase__ )[0] __magic_name__ = [1, 6, 768] self.assertEqual(output.shape , UpperCamelCase__ ) __magic_name__ = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 )
88
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> list[list[int]]: _a : list[list[int]] = [] _a : list[int] = [] _a : List[str] = 0 _a : List[str] = sum(lowerCAmelCase_ ) create_state_space_tree(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return result def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> None: if sum(lowerCAmelCase_ ) > max_sum or (remaining_nums_sum + sum(lowerCAmelCase_ )) < max_sum: return if sum(lowerCAmelCase_ ) == max_sum: result.append(lowerCAmelCase_ ) return for index in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): create_state_space_tree( lowerCAmelCase_ , lowerCAmelCase_ , index + 1 , [*path, nums[index]] , lowerCAmelCase_ , remaining_nums_sum - nums[index] , ) __lowerCAmelCase = [3, 34, 4, 12, 5, 2] __lowerCAmelCase = 9 __lowerCAmelCase = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
89
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = Mock() __lowerCamelCase = conn, Mock() __lowerCamelCase = iter([1, None] ) __lowerCamelCase = lambda UpperCamelCase__ : next(UpperCamelCase__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=UpperCamelCase__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
90
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = XLNetTokenizer __UpperCamelCase = XLNetTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ : str = XLNetTokenizer(lowercase_ , keep_accents=lowercase_) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = '''<s>''' SCREAMING_SNAKE_CASE_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_) , lowercase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_) , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''<eod>''') self.assertEqual(len(lowercase_) , 1006) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = XLNetTokenizer(lowercase_ , keep_accents=lowercase_) SCREAMING_SNAKE_CASE_ : int = tokenizer.tokenize('''This is a test''') self.assertListEqual(lowercase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , [285, 46, 10, 170, 382]) SCREAMING_SNAKE_CASE_ : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.convert_tokens_to_ids(lowercase_) self.assertListEqual(lowercase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.convert_ids_to_tokens(lowercase_) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = XLNetTokenizer(lowercase_ , do_lower_case=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''▁he''', '''ll''', '''o''']) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = XLNetTokenizer(lowercase_ , do_lower_case=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = XLNetTokenizer.from_pretrained('''xlnet-base-cased''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''input_ids''': [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
91
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ): __lowerCAmelCase = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=SCREAMING_SNAKE_CASE_ , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=SCREAMING_SNAKE_CASE_ ) return parser.parse_args() def _a ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(SCREAMING_SNAKE_CASE_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
92
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int | None = None , __SCREAMING_SNAKE_CASE : int | None = None ): """simple docstring""" if start is None: lowercase_ : Dict = 0 if end is None: lowercase_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) - 1 if start >= end: return lowercase_ : Tuple = (start + end) // 2 slowsort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) slowsort(__SCREAMING_SNAKE_CASE , mid + 1 , __SCREAMING_SNAKE_CASE ) if sequence[end] < sequence[mid]: lowercase_ , lowercase_ : List[str] = sequence[mid], sequence[end] slowsort(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
93
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __lowerCamelCase ( ): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join a :Optional[int] = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , UpperCAmelCase_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __lowerCamelCase ( ): """simple docstring""" assert _test_patching.open is open a :Dict = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , UpperCAmelCase_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __lowerCamelCase ( ): """simple docstring""" a :Any = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , UpperCAmelCase_ ): pass def __lowerCamelCase ( ): """simple docstring""" a :Any = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , UpperCAmelCase_ ) is None with patch_submodule(_test_patching , '''len''' , UpperCAmelCase_ ): assert _test_patching.len is mock assert _test_patching.len is len def __lowerCamelCase ( ): """simple docstring""" a :Tuple = '''__test_patch_submodule_start_and_stop_mock__''' a :Any = patch_submodule(_test_patching , '''open''' , UpperCAmelCase_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __lowerCamelCase ( ): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join a :Dict = '''__test_patch_submodule_successive_join__''' a :List[str] = '''__test_patch_submodule_successive_dirname__''' a :Any = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , UpperCAmelCase_ ): with patch_submodule(_test_patching , '''os.rename''' , UpperCAmelCase_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , UpperCAmelCase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , UpperCAmelCase_ ): with patch_submodule(_test_patching , '''os.path.join''' , UpperCAmelCase_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , UpperCAmelCase_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __lowerCamelCase ( ): """simple docstring""" a :Tuple = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , UpperCAmelCase_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , UpperCAmelCase_ ): pass
94
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCAmelCase : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase : Union[str, Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase : List[str] = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } UpperCAmelCase : Tuple = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Tuple = PRETRAINED_INIT_CONFIGURATION _lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[Any] = ElectraTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="[UNK]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[PAD]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[str]: '''simple docstring''' super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : Optional[int] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__ ) != tokenize_chinese_chars ): a__ : Tuple =getattr(lowerCAmelCase__ , normalizer_state.pop("type" ) ) a__ : List[Any] =do_lower_case a__ : Optional[int] =strip_accents a__ : str =tokenize_chinese_chars a__ : str =normalizer_class(**lowerCAmelCase__ ) a__ : List[Any] =do_lower_case def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Tuple: '''simple docstring''' a__ : str =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' a__ : List[Any] =[self.sep_token_id] a__ : Tuple =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' a__ : List[Any] =self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
95
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ) -> Tuple: lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCamelCase__ : Optional[Any] = True elif "IPython" in sys.modules: lowerCamelCase__ : Optional[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCamelCase__ : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = PrepareForLaunch(_UpperCAmelCase , distributed_type='TPU' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = PrepareForLaunch(_UpperCAmelCase , distributed_type='MULTI_GPU' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase__ : int = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowerCamelCase__ : Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' )
50
0
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase = 0 ): _lowerCamelCase, _lowerCamelCase : Tuple = row, column _lowerCamelCase : int = [[default_value for c in range(lowercase )] for r in range(lowercase )] def __str__( self ): _lowerCamelCase : Tuple = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _lowerCamelCase : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: _lowerCamelCase : int = max(lowercase , len(str(lowercase ) ) ) _lowerCamelCase : Optional[int] = F'''%{max_element_length}s''' # Make string and return def single_line(lowercase ) -> str: nonlocal string_format_identifier _lowerCamelCase : int = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowercase ) for row_vector in self.array ) return s def __repr__( self ): return str(self ) def A_ ( self , lowercase ): if not (isinstance(lowercase , (list, tuple) ) and len(lowercase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , lowercase ): assert self.validate_indicies(lowercase ) return self.array[loc[0]][loc[1]] def __setitem__( self , lowercase , lowercase ): assert self.validate_indicies(lowercase ) _lowerCamelCase : Dict = value def __add__( self , lowercase ): assert isinstance(lowercase , lowercase ) assert self.row == another.row and self.column == another.column # Add _lowerCamelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : List[str] = self[r, c] + another[r, c] return result def __neg__( self ): _lowerCamelCase : int = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : List[str] = -self[r, c] return result def __sub__( self , lowercase ): return self + (-another) def __mul__( self , lowercase ): if isinstance(lowercase , (int, float) ): # Scalar multiplication _lowerCamelCase : int = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : Optional[Any] = self[r, c] * another return result elif isinstance(lowercase , lowercase ): # Matrix multiplication assert self.column == another.row _lowerCamelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCamelCase : Optional[int] = F'''Unsupported type given for another ({type(lowercase )})''' raise TypeError(lowercase ) def A_ ( self ): _lowerCamelCase : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : Optional[Any] = self[r, c] return result def A_ ( self , lowercase , lowercase ): assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCamelCase : Optional[int] = v.transpose() _lowerCamelCase : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _snake_case ( ): # a^(-1) _lowerCamelCase : Optional[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCamelCase : Optional[Any] = 1 print(f'''a^(-1) is {ainv}''' ) # u, v _lowerCamelCase : Tuple = Matrix(3 , 1 , 0 ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = 1, 2, -3 _lowerCamelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowercase__ , lowercase__ )}''' ) def _snake_case ( ): import doctest doctest.testmod() testa()
96
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.bpe.model'''} __snake_case = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } __snake_case = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __snake_case = '''▁''' class lowercase ( A__ ): """simple docstring""" _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ['input_ids', 'attention_mask'] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ): '''simple docstring''' UpperCamelCase__ :Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token UpperCamelCase__ :Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) UpperCamelCase__ :List[str] = vocab_file UpperCamelCase__ :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) UpperCamelCase__ :Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCamelCase__ :Optional[int] = len(self.sp_model ) - 1 UpperCamelCase__ :Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ :Optional[int] = [self.cls_token_id] UpperCamelCase__ :List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = [self.sep_token_id] UpperCamelCase__ :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ :List[Any] = self.sp_model.PieceToId(UpperCamelCase_ ) return spm_id if spm_id else self.unk_token_id def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = [] UpperCamelCase__ :Optional[int] = '''''' UpperCamelCase__ :str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token UpperCamelCase__ :List[str] = True UpperCamelCase__ :Any = [] else: current_sub_tokens.append(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def __getstate__( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.__dict__.copy() UpperCamelCase__ :str = None return state def __setstate__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ :List[str] = {} UpperCamelCase__ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase__ :Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: UpperCamelCase__ :Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
97
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
"""simple docstring""" def a_ ( lowerCamelCase ): if len(lowerCamelCase ) <= 1: return [tuple(lowerCamelCase )] UpperCAmelCase__ = [] def generate(lowerCamelCase , lowerCamelCase ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCamelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even UpperCAmelCase__ , UpperCAmelCase__ = arr[k - 1], arr[i] else: # k is odd UpperCAmelCase__ , UpperCAmelCase__ = arr[k - 1], arr[0] generate(k - 1 , lowerCamelCase ) generate(len(lowerCamelCase ) , lowerCamelCase ) return res if __name__ == "__main__": lowerCAmelCase__ : Tuple = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase__ : List[Any] = [int(item) for item in user_input.split(',')] print(heaps(arr))
98
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[int] = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Tuple = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : str = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCamelCase__ : Union[str, Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = num_labels lowerCamelCase__ : Dict = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCamelCase__ : List[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCamelCase__ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCamelCase__ : Optional[Any] = [2, 2, 20] lowerCamelCase__ : Optional[int] = [3, 12, 16] lowerCamelCase__ : str = [192, 768, 1024] lowerCamelCase__ : Any = CvtForImageClassification(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : List[str] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lowerCamelCase__ : Optional[int] = OrderedDict() lowerCamelCase__ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCamelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCamelCase__ : str = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCamelCase__ : str = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
50
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def A_ ( A__ ) -> Union[str, Any]: a__ : List[str] = split_dict._to_yaml_list() assert len(A__ ) == len(A__ ) a__ : List[Any] = SplitDict._from_yaml_list(A__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump a__ : Any = None # the split name of split_dict takes over the name of the split info object a__ : str = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=A__ ), SplitInfo(dataset_name='my_dataset' )] ) def A_ ( A__ ) -> Any: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files a__ : Any = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
99
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
0
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = cva.getAffineTransform(UpperCamelCase_ , UpperCamelCase_ ) return cva.warpAffine(UpperCamelCase_ , UpperCamelCase_ , (rows, cols) ) if __name__ == "__main__": # read original image __magic_name__ = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __magic_name__ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __magic_name__, __magic_name__ = gray_img.shape # set different points to rotate image __magic_name__ = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __magic_name__ = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __magic_name__ = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __magic_name__ = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __magic_name__ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __magic_name__ = plt.figure(1) __magic_name__ = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
100
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
0
from random import randint from tempfile import TemporaryFile import numpy as np def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 if start < end: lowercase = randint(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = a[end] lowercase = a[pivot] lowercase = temp lowercase , lowercase = _in_place_partition(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) count += _in_place_quick_sort(lowerCAmelCase__ , lowerCAmelCase__ , p - 1 ) count += _in_place_quick_sort(lowerCAmelCase__ , p + 1 , lowerCAmelCase__ ) return count def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = 0 lowercase = randint(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = a[end] lowercase = a[pivot] lowercase = temp lowercase = start - 1 for index in range(lowerCAmelCase__ , lowerCAmelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowercase = new_pivot_index + 1 lowercase = a[new_pivot_index] lowercase = a[index] lowercase = temp lowercase = a[new_pivot_index + 1] lowercase = a[end] lowercase = temp return new_pivot_index + 1, count lowercase__ :Optional[Any] = TemporaryFile() lowercase__ :Tuple = 100 # 1000 elements are to be sorted lowercase__ , lowercase__ :List[str] = 0, 1 # mean and standard deviation lowercase__ :str = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array lowercase__ :int = np.load(outfile) lowercase__ :Dict = len(M) - 1 lowercase__ :int = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
101
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
0
"""simple docstring""" def lowercase ( ) ->Optional[Any]: """simple docstring""" __snake_case : Dict = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __snake_case : Optional[Any] = 6 __snake_case : Tuple = 1 __snake_case : Tuple = 1_901 __snake_case : Tuple = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __snake_case : str = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __snake_case : Optional[Any] = day - 29 else: if day > days_per_month[month - 1]: month += 1 __snake_case : Tuple = day - days_per_month[month - 2] if month > 12: year += 1 __snake_case : Tuple = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
102
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig A__ : str = logging.get_logger(__name__) # General docstring A__ : List[str] = '''ResNetConfig''' # Base docstring A__ : Tuple = '''microsoft/resnet-50''' A__ : List[str] = [1, 2048, 7, 7] # Image classification docstring A__ : str = '''microsoft/resnet-50''' A__ : List[str] = '''tiger cat''' A__ : Dict = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __snake_case ( nn.Module ): def __init__( self : int , A_ : int , A_ : int , A_ : int = 3 , A_ : int = 1 , A_ : str = "relu"): super().__init__() lowerCAmelCase_ : Optional[Any] = nn.Convad( A_ , A_ , kernel_size=A_ , stride=A_ , padding=kernel_size // 2 , bias=A_) lowerCAmelCase_ : Any = nn.BatchNormad(A_) lowerCAmelCase_ : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tensor): lowerCAmelCase_ : Tuple = self.convolution(A_) lowerCAmelCase_ : str = self.normalization(A_) lowerCAmelCase_ : Tuple = self.activation(A_) return hidden_state class __snake_case ( nn.Module ): def __init__( self : Optional[Any] , A_ : ResNetConfig): super().__init__() lowerCAmelCase_ : Union[str, Any] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act) lowerCAmelCase_ : Any = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1) lowerCAmelCase_ : Dict = config.num_channels def UpperCAmelCase__ ( self : Any , A_ : Tensor): lowerCAmelCase_ : Tuple = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''') lowerCAmelCase_ : int = self.embedder(A_) lowerCAmelCase_ : List[str] = self.pooler(A_) return embedding class __snake_case ( nn.Module ): def __init__( self : List[str] , A_ : int , A_ : int , A_ : int = 2): super().__init__() lowerCAmelCase_ : Optional[Any] = nn.Convad(A_ , A_ , kernel_size=1 , stride=A_ , bias=A_) lowerCAmelCase_ : int = nn.BatchNormad(A_) def UpperCAmelCase__ ( self : Any , A_ : Tensor): lowerCAmelCase_ : str = self.convolution(A_) lowerCAmelCase_ : Optional[int] = self.normalization(A_) return hidden_state class __snake_case ( nn.Module ): def __init__( self : int , A_ : int , A_ : int , A_ : int = 1 , A_ : str = "relu"): super().__init__() lowerCAmelCase_ : Tuple = in_channels != out_channels or stride != 1 lowerCAmelCase_ : str = ( ResNetShortCut(A_ , A_ , stride=A_) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase_ : str = nn.Sequential( ResNetConvLayer(A_ , A_ , stride=A_) , ResNetConvLayer(A_ , A_ , activation=A_) , ) lowerCAmelCase_ : List[Any] = ACTaFN[activation] def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Dict): lowerCAmelCase_ : Optional[int] = hidden_state lowerCAmelCase_ : Any = self.layer(A_) lowerCAmelCase_ : Optional[int] = self.shortcut(A_) hidden_state += residual lowerCAmelCase_ : Tuple = self.activation(A_) return hidden_state class __snake_case ( nn.Module ): def __init__( self : Optional[int] , A_ : int , A_ : int , A_ : int = 1 , A_ : str = "relu" , A_ : int = 4): super().__init__() lowerCAmelCase_ : Union[str, Any] = in_channels != out_channels or stride != 1 lowerCAmelCase_ : List[str] = out_channels // reduction lowerCAmelCase_ : Union[str, Any] = ( ResNetShortCut(A_ , A_ , stride=A_) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase_ : List[Any] = nn.Sequential( ResNetConvLayer(A_ , A_ , kernel_size=1) , ResNetConvLayer(A_ , A_ , stride=A_) , ResNetConvLayer(A_ , A_ , kernel_size=1 , activation=A_) , ) lowerCAmelCase_ : int = ACTaFN[activation] def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Dict): lowerCAmelCase_ : List[str] = hidden_state lowerCAmelCase_ : Optional[Any] = self.layer(A_) lowerCAmelCase_ : Optional[Any] = self.shortcut(A_) hidden_state += residual lowerCAmelCase_ : Dict = self.activation(A_) return hidden_state class __snake_case ( nn.Module ): def __init__( self : int , A_ : ResNetConfig , A_ : int , A_ : int , A_ : int = 2 , A_ : int = 2 , ): super().__init__() lowerCAmelCase_ : List[str] = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer lowerCAmelCase_ : int = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , stride=A_ , activation=config.hidden_act) , *[layer(A_ , A_ , activation=config.hidden_act) for _ in range(depth - 1)] , ) def UpperCAmelCase__ ( self : Tuple , A_ : Tensor): lowerCAmelCase_ : Union[str, Any] = input for layer in self.layers: lowerCAmelCase_ : List[str] = layer(A_) return hidden_state class __snake_case ( nn.Module ): def __init__( self : List[str] , A_ : ResNetConfig): super().__init__() lowerCAmelCase_ : Union[str, Any] = nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) lowerCAmelCase_ : Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(A_ , config.depths[1:]): self.stages.append(ResNetStage(A_ , A_ , A_ , depth=A_)) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tensor , A_ : bool = False , A_ : bool = True): lowerCAmelCase_ : Union[str, Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase_ : int = hidden_states + (hidden_state,) lowerCAmelCase_ : int = stage_module(A_) if output_hidden_states: lowerCAmelCase_ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=A_ , hidden_states=A_ , ) class __snake_case ( UpperCamelCase_ ): _a = ResNetConfig _a = '''resnet''' _a = '''pixel_values''' _a = True def UpperCAmelCase__ ( self : Optional[Any] , A_ : Any): if isinstance(A_ , nn.Convad): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''') elif isinstance(A_ , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCAmelCase__ ( self : str , A_ : int , A_ : Union[str, Any]=False): if isinstance(A_ , A_): lowerCAmelCase_ : Union[str, Any] = value A__ : Any = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' A__ : Union[str, Any] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' ,UpperCamelCase_ ,) class __snake_case ( UpperCamelCase_ ): def __init__( self : Any , A_ : Any): super().__init__(A_) lowerCAmelCase_ : str = config lowerCAmelCase_ : Union[str, Any] = ResNetEmbeddings(A_) lowerCAmelCase_ : Dict = ResNetEncoder(A_) lowerCAmelCase_ : Any = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self : Optional[int] , A_ : Tensor , A_ : Optional[bool] = None , A_ : Optional[bool] = None): lowerCAmelCase_ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Tuple = self.embedder(A_) lowerCAmelCase_ : Tuple = self.encoder( A_ , output_hidden_states=A_ , return_dict=A_) lowerCAmelCase_ : List[Any] = encoder_outputs[0] lowerCAmelCase_ : str = self.pooler(A_) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' ,UpperCamelCase_ ,) class __snake_case ( UpperCamelCase_ ): def __init__( self : Dict , A_ : List[str]): super().__init__(A_) lowerCAmelCase_ : Optional[Any] = config.num_labels lowerCAmelCase_ : Union[str, Any] = ResNetModel(A_) # classification head lowerCAmelCase_ : List[str] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self : int , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[torch.LongTensor] = None , A_ : Optional[bool] = None , A_ : Optional[bool] = None , ): lowerCAmelCase_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = self.resnet(A_ , output_hidden_states=A_ , return_dict=A_) lowerCAmelCase_ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase_ : List[str] = self.classifier(A_) lowerCAmelCase_ : List[str] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase_ : List[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase_ : Optional[Any] = '''single_label_classification''' else: lowerCAmelCase_ : str = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase_ : List[str] = MSELoss() if self.num_labels == 1: lowerCAmelCase_ : List[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: lowerCAmelCase_ : Dict = loss_fct(A_ , A_) elif self.config.problem_type == "single_label_classification": lowerCAmelCase_ : int = CrossEntropyLoss() lowerCAmelCase_ : Optional[int] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase_ : List[str] = BCEWithLogitsLoss() lowerCAmelCase_ : Tuple = loss_fct(A_ , A_) if not return_dict: lowerCAmelCase_ : int = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' ,UpperCamelCase_ ,) class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ): def __init__( self : Dict , A_ : int): super().__init__(A_) super()._init_backbone(A_) lowerCAmelCase_ : List[Any] = [config.embedding_size] + config.hidden_sizes lowerCAmelCase_ : Dict = ResNetEmbeddings(A_) lowerCAmelCase_ : Any = ResNetEncoder(A_) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_) @replace_return_docstrings(output_type=A_ , config_class=_CONFIG_FOR_DOC) def UpperCAmelCase__ ( self : List[str] , A_ : Tensor , A_ : Optional[bool] = None , A_ : Optional[bool] = None): lowerCAmelCase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = self.embedder(A_) lowerCAmelCase_ : str = self.encoder(A_ , output_hidden_states=A_ , return_dict=A_) lowerCAmelCase_ : Union[str, Any] = outputs.hidden_states lowerCAmelCase_ : List[Any] = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowerCAmelCase_ : Any = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=A_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=A_ , )
103
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): a : List[str] = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: a : Any = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] ) ->Any: '''simple docstring''' a : Optional[Any] = (images / 2 + 0.5).clamp(0 , 1 ) a : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a : int = numpy_to_pil(_lowercase ) return images def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->Optional[Any]: '''simple docstring''' if images.ndim == 3: a : Dict = images[None, ...] a : str = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images a : List[str] = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: a : int = [Image.fromarray(_lowercase ) for image in images] return pil_images
105
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
106
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : str = {'vocab_file': 'spiece.model'} __lowerCAmelCase : str = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } __lowerCAmelCase : Union[str, Any] = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Tuple = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : List[int] = [] def __init__( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : int="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : List[str]="[SEP]" , __lowerCamelCase : Optional[Any]="[MASK]" , __lowerCamelCase : Tuple="[CLS]" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[int] , ) -> None: a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it a = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , mask_token=__lowerCamelCase , cls_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def __UpperCAmelCase ( self : List[Any] ) -> str: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: a = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ) -> Dict: a = self.__dict__.copy() a = None return state def __setstate__( self : List[Any] , __lowerCamelCase : Union[str, Any] ) -> List[str]: a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : int , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str ) -> Any: return self.sp_model.piece_to_id(__lowerCamelCase ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Tuple ) -> Dict: a = self.sp_model.IdToPiece(__lowerCamelCase ) return token def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any ) -> str: a = [] a = "" a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token a = True a = [] else: current_sub_tokens.append(__lowerCamelCase ) a = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : bool = False , __lowerCamelCase : bool = None , __lowerCamelCase : bool = True , **__lowerCamelCase : str , ) -> str: a = kwargs.pop("use_source_tokenizer" , __lowerCamelCase ) a = self.convert_ids_to_tokens(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 a = [] a = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) a = [] sub_texts.append(__lowerCamelCase ) else: current_sub_text.append(__lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: a = re.sub(r" (\[(MASK|SEP)\])" , r"\1" , " ".join(__lowerCamelCase ) ) else: a = "".join(__lowerCamelCase ) a = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: a = self.clean_up_tokenization(__lowerCamelCase ) return clean_text else: return text def __UpperCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a = [self.cls_token_id] a = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
107
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
0
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowerCAmelCase__ = threading.Lock() lowerCAmelCase__ = None lowerCAmelCase__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowerCAmelCase__ = logging.WARNING lowerCAmelCase__ = True def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = os.getenv("TRANSFORMERS_VERBOSITY" , SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def a__ ( ): '''simple docstring''' return __name__.split("." )[0] def a__ ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def a__ ( ): '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return lowerCAmelCase : int = logging.StreamHandler() # Set sys.stderr as stream. lowerCAmelCase : Optional[int] = sys.stderr.flush # Apply our default configuration to the library root logger. lowerCAmelCase : Optional[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) lowerCAmelCase : List[Any] = False def a__ ( ): '''simple docstring''' global _default_handler with _lock: if not _default_handler: return lowerCAmelCase : Tuple = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) lowerCAmelCase : Optional[Any] = None def a__ ( ): '''simple docstring''' return log_levels def a__ ( SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if name is None: lowerCAmelCase : List[str] = _get_library_name() _configure_library_root_logger() return logging.getLogger(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def a__ ( SCREAMING_SNAKE_CASE : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' _configure_library_root_logger() lowerCAmelCase : Optional[Any] = False def a__ ( ): '''simple docstring''' _configure_library_root_logger() lowerCAmelCase : List[Any] = True def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = _get_library_root_logger().handlers for handler in handlers: lowerCAmelCase : Optional[Any] = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(SCREAMING_SNAKE_CASE ) def a__ ( self : int , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , SCREAMING_SNAKE_CASE ) if no_advisory_warnings: return self.warning(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = warning_advice @functools.lru_cache(SCREAMING_SNAKE_CASE ) def a__ ( self : str , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' self.warning(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = warning_once class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase : Dict = args[0] if args else None def __iter__( self ): """simple docstring""" return iter(self._iterator ) def __getattr__( self , snake_case__ ): """simple docstring""" def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): """simple docstring""" return self def __exit__( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCAmelCase__ = _tqdm_cls() def a__ ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : Optional[Any] = True hf_hub_utils.enable_progress_bars() def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : Tuple = False hf_hub_utils.disable_progress_bars()
108
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
0
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() A: Tuple = logging.get_logger(__name__) def _snake_case ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ): UpperCAmelCase : int = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"encoder.deit.blocks.{i}.norm1.weight", F"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm1.bias", F"encoder.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.weight", F"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.attn.proj.bias", F"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.norm2.weight", F"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.norm2.bias", F"encoder.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.weight", F"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc1.bias", F"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (F"encoder.deit.blocks.{i}.mlp.fc2.weight", F"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"encoder.deit.blocks.{i}.mlp.fc2.bias", F"encoder.encoder.layer.{i}.output.dense.bias") ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("""encoder.deit.cls_token""", """encoder.embeddings.cls_token"""), ("""encoder.deit.pos_embed""", """encoder.embeddings.position_embeddings"""), ("""encoder.deit.patch_embed.proj.weight""", """encoder.embeddings.patch_embeddings.projection.weight"""), ("""encoder.deit.patch_embed.proj.bias""", """encoder.embeddings.patch_embeddings.projection.bias"""), ("""encoder.deit.norm.weight""", """encoder.layernorm.weight"""), ("""encoder.deit.norm.bias""", """encoder.layernorm.bias"""), ] ) return rename_keys def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) UpperCAmelCase : Optional[int] = state_dict.pop(F"encoder.deit.blocks.{i}.attn.qkv.weight" ) UpperCAmelCase : str = in_proj_weight[ : encoder_config.hidden_size, : ] UpperCAmelCase : Dict = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] UpperCAmelCase : Optional[int] = in_proj_weight[ -encoder_config.hidden_size :, : ] def _snake_case ( UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : int ): UpperCAmelCase : Optional[int] = dct.pop(UpperCamelCase ) UpperCAmelCase : str = val def _snake_case ( UpperCamelCase : Any ): if "handwritten" in checkpoint_url: UpperCAmelCase : int = """https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg""" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase : Tuple = """https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg""" UpperCAmelCase : int = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ).convert("""RGB""" ) return im @torch.no_grad() def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : int ): UpperCAmelCase : Dict = ViTConfig(image_size=384 , qkv_bias=UpperCamelCase ) UpperCAmelCase : List[Any] = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: UpperCAmelCase : List[Any] = 768 elif "large" in checkpoint_url: # use ViT-large encoder UpperCAmelCase : Tuple = 1024 UpperCAmelCase : Any = 4096 UpperCAmelCase : List[str] = 24 UpperCAmelCase : str = 16 UpperCAmelCase : Optional[Any] = 1024 else: raise ValueError("""Should either find 'base' or 'large' in checkpoint URL""" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: UpperCAmelCase : Optional[Any] = False UpperCAmelCase : int = """relu""" UpperCAmelCase : Dict = 1024 UpperCAmelCase : List[str] = True UpperCAmelCase : List[str] = False UpperCAmelCase : Any = False # load HuggingFace model UpperCAmelCase : Any = ViTModel(UpperCamelCase , add_pooling_layer=UpperCamelCase ) UpperCAmelCase : Any = TrOCRForCausalLM(UpperCamelCase ) UpperCAmelCase : Dict = VisionEncoderDecoderModel(encoder=UpperCamelCase , decoder=UpperCamelCase ) model.eval() # load state_dict of original model, rename some keys UpperCAmelCase : str = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" , check_hash=UpperCamelCase )["""model"""] UpperCAmelCase : str = create_rename_keys(UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): UpperCAmelCase : Any = state_dict.pop(UpperCamelCase ) if key.startswith("""decoder""" ) and "output_projection" not in key: UpperCAmelCase : Union[str, Any] = val else: UpperCAmelCase : List[str] = val # load state dict model.load_state_dict(UpperCamelCase ) # Check outputs on an image UpperCAmelCase : Optional[Any] = ViTImageProcessor(size=encoder_config.image_size ) UpperCAmelCase : List[str] = RobertaTokenizer.from_pretrained("""roberta-large""" ) UpperCAmelCase : Union[str, Any] = TrOCRProcessor(UpperCamelCase , UpperCamelCase ) UpperCAmelCase : Tuple = processor(images=prepare_img(UpperCamelCase ) , return_tensors="""pt""" ).pixel_values # verify logits UpperCAmelCase : Dict = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) UpperCAmelCase : Dict = model(pixel_values=UpperCamelCase , decoder_input_ids=UpperCamelCase ) UpperCAmelCase : List[Any] = outputs.logits UpperCAmelCase : Optional[int] = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: UpperCAmelCase : Optional[Any] = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: UpperCAmelCase : Optional[int] = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: UpperCAmelCase : Tuple = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: UpperCAmelCase : Tuple = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , UpperCamelCase , atol=1e-3 ), "First elements of logits not as expected" Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": A: List[str] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A: List[str] = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
109
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') lowerCAmelCase = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : _lowercase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) _lowercase : Optional[str] = field(default=UpperCamelCase__ , metadata={'''help''': '''A folder containing the training data.'''} ) _lowercase : Optional[str] = field(default=UpperCamelCase__ , metadata={'''help''': '''A folder containing the validation data.'''} ) _lowercase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) _lowercase : int = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) _lowercase : float = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" lowercase__ = {} if self.train_dir is not None: lowercase__ = self.train_dir if self.validation_dir is not None: lowercase__ = self.validation_dir lowercase__ = data_files if data_files else None @dataclass class _a : _lowercase : str = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCamelCase__ )} , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) _lowercase : Optional[str] = field( default=UpperCamelCase__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) _lowercase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _lowercase : str = field(default=UpperCamelCase__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _lowercase : bool = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) _lowercase : Optional[int] = field( default=UpperCamelCase__ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class _a : def __init__( self: Optional[int] , UpperCamelCase_: Optional[Any]=192 , UpperCamelCase_: Optional[int]=32 , UpperCamelCase_: int=4 , UpperCamelCase_: List[Any]=0.6 ) -> Tuple: """simple docstring""" lowercase__ = input_size lowercase__ = mask_patch_size lowercase__ = model_patch_size lowercase__ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) lowercase__ = self.input_size // self.mask_patch_size lowercase__ = self.mask_patch_size // self.model_patch_size lowercase__ = self.rand_size**2 lowercase__ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self: Dict ) -> Union[str, Any]: """simple docstring""" lowercase__ = np.random.permutation(self.token_count )[: self.mask_count] lowercase__ = np.zeros(self.token_count , dtype=UpperCamelCase_ ) lowercase__ = 1 lowercase__ = mask.reshape((self.rand_size, self.rand_size) ) lowercase__ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = torch.stack([example['''pixel_values'''] for example in examples] ) lowercase__ = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _a ( ): """simple docstring""" lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase__ = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase__ = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: lowercase__ = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase__ = split['''train'''] lowercase__ = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.config_name_or_path , **SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowercase__ = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE ) else: lowercase__ = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(SCREAMING_SNAKE_CASE , '''decoder_type''' ): lowercase__ = '''simmim''' # adapt config lowercase__ = model_args.image_size if model_args.image_size is not None else config.image_size lowercase__ = model_args.patch_size if model_args.patch_size is not None else config.patch_size lowercase__ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: lowercase__ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE ) elif model_args.model_name_or_path: lowercase__ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE ) else: lowercase__ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } lowercase__ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: lowercase__ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase__ = AutoModelForMaskedImageModeling.from_config(SCREAMING_SNAKE_CASE ) if training_args.do_train: lowercase__ = ds['''train'''].column_names else: lowercase__ = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase__ = data_args.image_column_name elif "image" in column_names: lowercase__ = '''image''' elif "img" in column_names: lowercase__ = '''img''' else: lowercase__ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py lowercase__ = Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator lowercase__ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(SCREAMING_SNAKE_CASE ): lowercase__ = [transforms(SCREAMING_SNAKE_CASE ) for image in examples[image_column_name]] lowercase__ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase__ = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase__ = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE ) # Initialize our trainer lowercase__ = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowercase__ = None if training_args.resume_from_checkpoint is not None: lowercase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase__ = last_checkpoint lowercase__ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase__ = trainer.evaluate() trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub lowercase__ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
110
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __lowerCamelCase ( lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 'imagenet-1k-id2label.json' lowerCamelCase = 1000 lowerCamelCase = 'huggingface/label-files' lowerCamelCase = num_labels lowerCamelCase = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) lowerCamelCase = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase = idalabel lowerCamelCase = {v: k for k, v in idalabel.items()} lowerCamelCase = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": lowerCamelCase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": lowerCamelCase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCamelCase = [2, 2, 20] lowerCamelCase = [3, 12, 16] lowerCamelCase = [192, 768, 1024] lowerCamelCase = CvtForImageClassification(_UpperCAmelCase ) lowerCamelCase = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) lowerCamelCase = image_size lowerCamelCase = torch.load(_UpperCAmelCase , map_location=torch.device("""cpu""" ) ) lowerCamelCase = OrderedDict() lowerCamelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCamelCase = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCamelCase = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCamelCase = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_84, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
252
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() A_ :str = logging.get_logger(__name__) A_ :Dict = """Hello, World!""" A_ :Any = """en_XX""" def A ( a_ ,a_ ,a_ ) -> Any: __UpperCamelCase : Optional[Any] =Path('data_bin' ) __UpperCamelCase : Optional[Any] =FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_UpperCAmelCase ).parent ) ,checkpoint_file=Path(_UpperCAmelCase ).name ,_name='xmod_base' ,arch='xmod_base' ,task='multilingual_masked_lm' ,data_name_or_path=str(_UpperCAmelCase ) ,bpe='sentencepiece' ,sentencepiece_model=str(Path(_UpperCAmelCase ).parent / 'sentencepiece.bpe.model' ) ,src_dict=str(data_dir / 'dict.txt' ) ,) xmod.eval() # disable dropout print(_UpperCAmelCase ) __UpperCamelCase : Any =xmod.model.encoder.sentence_encoder __UpperCamelCase : Optional[int] =XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings ,hidden_size=xmod.cfg.model.encoder_embed_dim ,num_hidden_layers=xmod.cfg.model.encoder_layers ,num_attention_heads=xmod.cfg.model.encoder_attention_heads ,intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,pre_norm=xmod.cfg.model.encoder_normalize_before ,adapter_reduction_factor=getattr(xmod.cfg.model ,'bottleneck' ,2 ) ,adapter_layer_norm=xmod.cfg.model.adapter_layer_norm ,adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm ,ln_before_adapter=xmod.cfg.model.ln_before_adapter ,languages=xmod.cfg.model.languages ,) if classification_head: __UpperCamelCase : Optional[int] =xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' ,_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] =XmodForSequenceClassification(_UpperCAmelCase ) if classification_head else XmodForMaskedLM(_UpperCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings __UpperCamelCase : Any =xmod_sent_encoder.embed_tokens.weight __UpperCamelCase : str =xmod_sent_encoder.embed_positions.weight __UpperCamelCase : Optional[int] =torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __UpperCamelCase : Any =xmod_sent_encoder.layernorm_embedding.weight __UpperCamelCase : str =xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __UpperCamelCase : List[str] =model.roberta.encoder.layer[i] __UpperCamelCase : Dict =xmod_sent_encoder.layers[i] # self attention __UpperCamelCase : Union[str, Any] =layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __UpperCamelCase : Optional[int] =xmod_layer.self_attn.q_proj.weight __UpperCamelCase : Any =xmod_layer.self_attn.q_proj.bias __UpperCamelCase : Tuple =xmod_layer.self_attn.k_proj.weight __UpperCamelCase : Tuple =xmod_layer.self_attn.k_proj.bias __UpperCamelCase : int =xmod_layer.self_attn.v_proj.weight __UpperCamelCase : Any =xmod_layer.self_attn.v_proj.bias # self-attention output __UpperCamelCase : str =layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __UpperCamelCase : Optional[Any] =xmod_layer.self_attn.out_proj.weight __UpperCamelCase : Tuple =xmod_layer.self_attn.out_proj.bias __UpperCamelCase : Dict =xmod_layer.self_attn_layer_norm.weight __UpperCamelCase : Tuple =xmod_layer.self_attn_layer_norm.bias # intermediate __UpperCamelCase : Dict =layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __UpperCamelCase : Tuple =xmod_layer.fca.weight __UpperCamelCase : List[str] =xmod_layer.fca.bias # output __UpperCamelCase : List[str] =layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __UpperCamelCase : Union[str, Any] =xmod_layer.fca.weight __UpperCamelCase : int =xmod_layer.fca.bias __UpperCamelCase : List[Any] =xmod_layer.final_layer_norm.weight __UpperCamelCase : Union[str, Any] =xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __UpperCamelCase : Dict =xmod_layer.adapter_layer_norm.weight __UpperCamelCase : Tuple =xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __UpperCamelCase : Optional[int] =bert_output.adapter_modules[lang_code] __UpperCamelCase : List[Any] =xmod_layer.adapter_modules[lang_code] __UpperCamelCase : Dict =from_adapter.fca.weight __UpperCamelCase : Any =from_adapter.fca.bias __UpperCamelCase : Optional[Any] =from_adapter.fca.weight __UpperCamelCase : List[str] =from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __UpperCamelCase : List[Any] =xmod_sent_encoder.layer_norm.weight __UpperCamelCase : List[str] =xmod_sent_encoder.layer_norm.bias if classification_head: __UpperCamelCase : Union[str, Any] =xmod.model.classification_heads['mnli'].dense.weight __UpperCamelCase : Any =xmod.model.classification_heads['mnli'].dense.bias __UpperCamelCase : int =xmod.model.classification_heads['mnli'].out_proj.weight __UpperCamelCase : Union[str, Any] =xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __UpperCamelCase : Optional[int] =xmod.model.encoder.lm_head.dense.weight __UpperCamelCase : Any =xmod.model.encoder.lm_head.dense.bias __UpperCamelCase : Dict =xmod.model.encoder.lm_head.layer_norm.weight __UpperCamelCase : str =xmod.model.encoder.lm_head.layer_norm.bias __UpperCamelCase : str =xmod.model.encoder.lm_head.weight __UpperCamelCase : Optional[Any] =xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __UpperCamelCase : Optional[Any] =xmod.encode(_UpperCAmelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] =model(_UpperCAmelCase )[0] if classification_head: __UpperCamelCase : int =xmod.model.classification_heads['mnli'](xmod.extract_features(_UpperCAmelCase ) ) else: __UpperCamelCase : Any =xmod.model(_UpperCAmelCase ,lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape ,their_output.shape ) __UpperCamelCase : Any =torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __UpperCamelCase : Any =torch.allclose(_UpperCAmelCase ,_UpperCAmelCase ,atol=1e-3 ) print('Do both models output the same tensors?' ,'🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(_UpperCAmelCase ).mkdir(parents=_UpperCAmelCase ,exist_ok=_UpperCAmelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": A_ :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) A_ :Tuple = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
71
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
0
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } a = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } a = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def _snake_case ( _snake_case : Any ) -> str: '''simple docstring''' _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char _A = set(_UpperCAmelCase ) return pairs class lowercase_ ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase : int = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]="<s>" , _UpperCAmelCase : str="</s>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : List[str]="<s>" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : int="<mask>" , **_UpperCAmelCase : Tuple , ): super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) _A = vocab_file _A = merges_file _A = {} _A = 0 _A = 1 _A = 2 _A = 3 self.add_from_file(_UpperCAmelCase ) _A = {v: k for k, v in self.encoder.items()} with open(_UpperCAmelCase , encoding='utf-8' ) as merges_handle: _A = merges_handle.read().split('\n' )[:-1] _A = [tuple(merge.split()[:-1] ) for merge in merges] _A = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _A = {} def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase_ ( self : Dict ): return len(self.encoder ) def lowerCAmelCase_ ( self : int ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] ): if token in self.cache: return self.cache[token] _A = tuple(_UpperCAmelCase ) _A = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) _A = get_pairs(_UpperCAmelCase ) if not pairs: return token while True: _A = min(_UpperCAmelCase , key=lambda _UpperCAmelCase : self.bpe_ranks.get(_UpperCAmelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _A = bigram _A = [] _A = 0 while i < len(_UpperCAmelCase ): try: _A = word.index(_UpperCAmelCase , _UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(_UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(_UpperCAmelCase ) _A = new_word if len(_UpperCAmelCase ) == 1: break else: _A = get_pairs(_UpperCAmelCase ) _A = '@@ '.join(_UpperCAmelCase ) _A = word[:-4] _A = word return word def lowerCAmelCase_ ( self : int , _UpperCAmelCase : List[str] ): _A = [] _A = re.findall(r'\S+\n?' , _UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_UpperCAmelCase ).split(' ' ) ) ) return split_tokens def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Any ): return self.encoder.get(_UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Dict ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[str, Any] ): _A = ' '.join(_UpperCAmelCase ).replace('@@ ' , '' ).strip() return out_string def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.merges_file , _UpperCAmelCase ) return out_vocab_file, out_merge_file def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(_UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return _A = f.readlines() for lineTmp in lines: _A = lineTmp.strip() _A = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) _A = line[:idx] _A = len(self.encoder )
315
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): debug_launcher(test_script.main ) def lowerCAmelCase_ ( self : List[str] ): debug_launcher(test_ops.main )
225
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _snake_case = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase ( datasets.BuilderConfig ): _a = None _a = "utf-8" _a = None _a = None _a = True # deprecated _a = None # deprecated _a = 1_0 << 2_0 # 10MB _a = None class lowercase ( datasets.ArrowBasedBuilder ): _a = JsonConfig def a__ ( self ) -> Optional[int]: if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) _A : Optional[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def a__ ( self , _a ) -> Optional[int]: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _A : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _A : Optional[Any] = data_files if isinstance(_a , _a ): _A : List[Any] = [files] _A : Optional[Any] = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _A : Any = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _A : Tuple = [files] _A : Any = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"""files""": files} ) ) return splits def a__ ( self , _a ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _A : str = self.config.features.arrow_schema.field(_a ).type _A : int = pa_table.append_column(_a , pa.array([None] * len(_a ) , type=_a ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _A : int = table_cast(_a , self.config.features.arrow_schema ) return pa_table def a__ ( self , _a ) -> Dict: for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A : Optional[Any] = json.load(_a ) # We keep only the field we are interested in _A : Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_a , (list, tuple) ): _A : Any = set().union(*[row.keys() for row in dataset] ) _A : List[Any] = {col: [row.get(_a ) for row in dataset] for col in keys} else: _A : int = dataset _A : Union[str, Any] = pa.Table.from_pydict(_a ) yield file_idx, self._cast_table(_a ) # If the file has one json object per line else: with open(_a , """rb""" ) as f: _A : Any = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _A : Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) _A : List[str] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: _A : Optional[int] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_a ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _A : Union[str, Any] = batch.decode(self.config.encoding , errors=_a ).encode("""utf-8""" ) try: while True: try: _A : List[str] = paj.read_json( io.BytesIO(_a ) , read_options=paj.ReadOptions(block_size=_a ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_a , pa.ArrowInvalid ) and "straddling" not in str(_a ) or block_size > len(_a ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(_a )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A : str = json.load(_a ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_a , _a ): # list is the only sequence type supported in JSON try: _A : List[str] = set().union(*[row.keys() for row in dataset] ) _A : Optional[Any] = {col: [row.get(_a ) for row in dataset] for col in keys} _A : int = pa.Table.from_pydict(_a ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_a ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) batch_idx += 1
26
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): # Base Case if curr_ind == len(_UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_UpperCAmelCase ) ): if valid_connection(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Insert current vertex into path as next transition __lowerCAmelCase : List[Any] = next_ver # Validate created path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , curr_ind + 1 ): return True # Backtrack __lowerCAmelCase : List[str] = -1 return False def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase = 0 ): __lowerCAmelCase : Any = [-1] * (len(_UpperCAmelCase ) + 1) # initialize start and end of path with starting index __lowerCAmelCase : Optional[Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , 1 ) else []
86
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : Tuple ) -> int: """simple docstring""" if n == 1 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return 0 elif n == 2: return 1 else: snake_case : List[str] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowerCAmelCase ( lowercase : Tuple ) -> int: """simple docstring""" snake_case : List[str] = 0 snake_case : Dict = 2 while digits < n: index += 1 snake_case : Union[str, Any] = len(str(fibonacci(_UpperCAmelCase ) ) ) return index def __lowerCAmelCase ( lowercase : Tuple = 1000 ) -> int: """simple docstring""" return fibonacci_digits_index(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
203
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ) -> Tuple: lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCamelCase__ : Optional[Any] = True elif "IPython" in sys.modules: lowerCamelCase__ : Optional[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCamelCase__ : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = PrepareForLaunch(_UpperCAmelCase , distributed_type='TPU' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = PrepareForLaunch(_UpperCAmelCase , distributed_type='MULTI_GPU' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase__ : int = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowerCamelCase__ : Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' )
50
0
def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : str ) -> List[str]: A_ : int = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : str ) -> Union[str, Any]: A_ : List[str] = 0 while b > 0: if b & 1: A_ : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
300
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def __magic_name__ ( self : str ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Tuple = ort.SessionOptions() _A: int = False return options def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _A: int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _A: List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: List[Any] = 'A red cat sitting on a park bench' _A: Dict = np.random.RandomState(0 ) _A: Optional[int] = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowerCAmelCase_ , output_type='''np''' , ) _A: Any = output.images _A: Union[str, Any] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _A: Union[str, Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _A: Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _A: Tuple = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) _A: str = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _A: str = 'A red cat sitting on a park bench' _A: Tuple = np.random.RandomState(0 ) _A: int = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowerCAmelCase_ , output_type='''np''' , ) _A: str = output.images _A: Tuple = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _A: Dict = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
121
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Union[str, Any]: return 1 / (1 + np.exp(-z )) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[Any]: return (-y * np.log(_UpperCAmelCase ) - (1 - y) * np.log(1 - h )).mean() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> List[Any]: snake_case : List[Any] = np.dot(_UpperCAmelCase ,_UpperCAmelCase ) return np.sum(y * scores - np.log(1 + np.exp(_UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=70000 ) -> List[str]: snake_case : str = np.zeros(x.shape[1] ) for iterations in range(_UpperCAmelCase ): snake_case : List[str] = np.dot(_UpperCAmelCase ,_UpperCAmelCase ) snake_case : Union[str, Any] = sigmoid_function(_UpperCAmelCase ) snake_case : Tuple = np.dot(x.T ,h - y ) / y.size snake_case : List[Any] = theta - alpha * gradient # updating the weights snake_case : List[str] = np.dot(_UpperCAmelCase ,_UpperCAmelCase ) snake_case : List[Any] = sigmoid_function(_UpperCAmelCase ) snake_case : Optional[Any] = cost_function(_UpperCAmelCase ,_UpperCAmelCase ) if iterations % 100 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowerCamelCase : Optional[Any] = datasets.load_iris() lowerCamelCase : Optional[int] = iris.data[:, :2] lowerCamelCase : Tuple = (iris.target != 0) * 1 lowerCamelCase : List[Any] = 0.1 lowerCamelCase : str = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('theta: ', theta) # printing the theta i.e our weights vector def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[Any]: return sigmoid_function( np.dot(_UpperCAmelCase ,_UpperCAmelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') (lowerCamelCase) : str = (x[:, 0].min(), x[:, 0].max()) (lowerCamelCase) : Optional[int] = (x[:, 1].min(), x[:, 1].max()) (lowerCamelCase) : Union[str, Any] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowerCamelCase : Any = np.c_[xxa.ravel(), xxa.ravel()] lowerCamelCase : List[str] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
124
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[int] = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Tuple = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : str = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCamelCase__ : Union[str, Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = num_labels lowerCamelCase__ : Dict = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCamelCase__ : List[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCamelCase__ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCamelCase__ : Optional[Any] = [2, 2, 20] lowerCamelCase__ : Optional[int] = [3, 12, 16] lowerCamelCase__ : str = [192, 768, 1024] lowerCamelCase__ : Any = CvtForImageClassification(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : List[str] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lowerCamelCase__ : Optional[int] = OrderedDict() lowerCamelCase__ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCamelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCamelCase__ : str = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCamelCase__ : str = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
50
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ :List[Any] = logging.get_logger(__name__) a_ :Optional[int] = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class snake_case__ ( __UpperCamelCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = """lilt""" def __init__( self : Dict, _snake_case : int=3_0_5_2_2, _snake_case : Tuple=7_6_8, _snake_case : Optional[int]=1_2, _snake_case : List[str]=1_2, _snake_case : Union[str, Any]=3_0_7_2, _snake_case : Tuple="gelu", _snake_case : Optional[int]=0.1, _snake_case : List[str]=0.1, _snake_case : Any=5_1_2, _snake_case : List[str]=2, _snake_case : str=0.0_2, _snake_case : List[Any]=1e-12, _snake_case : List[str]=0, _snake_case : Union[str, Any]="absolute", _snake_case : str=None, _snake_case : Optional[Any]=4, _snake_case : Union[str, Any]=1_0_2_4, **_snake_case : str, ) ->Dict: super().__init__(pad_token_id=_snake_case, **_snake_case ) snake_case__ : Union[str, Any] = vocab_size snake_case__ : Dict = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Tuple = hidden_act snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Optional[int] = max_position_embeddings snake_case__ : Tuple = type_vocab_size snake_case__ : Dict = initializer_range snake_case__ : Union[str, Any] = layer_norm_eps snake_case__ : Any = position_embedding_type snake_case__ : List[str] = classifier_dropout snake_case__ : int = channel_shrink_ratio snake_case__ : int = max_ad_position_embeddings
277
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def __lowerCamelCase ( lowerCamelCase__ : Tuple ): '''simple docstring''' lowerCamelCase = emb.weight.shape lowerCamelCase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase = emb.weight.data return lin_layer def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase = torch.load(_UpperCAmelCase , map_location="""cpu""" ) lowerCamelCase = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowerCamelCase = state_dict['decoder.embed_tokens.weight'] lowerCamelCase = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : str = parser.parse_args() UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
252
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __A ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Optional[int] =( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ : Union[str, Any] =( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ : Dict =False UpperCamelCase__ : Any =False def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): """simple docstring""" __UpperCamelCase : Dict =super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): __UpperCamelCase : Any =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __A ( __UpperCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ): """simple docstring""" __UpperCamelCase : List[str] =parent __UpperCamelCase : Any =batch_size __UpperCamelCase : List[str] =seq_length __UpperCamelCase : List[str] =is_training __UpperCamelCase : Optional[Any] =use_input_mask __UpperCamelCase : List[Any] =use_token_type_ids __UpperCamelCase : Union[str, Any] =use_labels __UpperCamelCase : Union[str, Any] =vocab_size __UpperCamelCase : List[Any] =hidden_size __UpperCamelCase : int =num_hidden_layers __UpperCamelCase : Union[str, Any] =num_attention_heads __UpperCamelCase : List[Any] =intermediate_size __UpperCamelCase : Tuple =hidden_act __UpperCamelCase : int =hidden_dropout_prob __UpperCamelCase : Optional[Any] =attention_probs_dropout_prob __UpperCamelCase : Tuple =max_position_embeddings __UpperCamelCase : Optional[int] =type_vocab_size __UpperCamelCase : Any =type_sequence_label_size __UpperCamelCase : str =initializer_range __UpperCamelCase : Dict =num_labels __UpperCamelCase : List[str] =num_choices __UpperCamelCase : Optional[Any] =scope __UpperCamelCase : Dict =embedding_size def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : int =None if self.use_input_mask: __UpperCamelCase : List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : List[str] =None if self.use_token_type_ids: __UpperCamelCase : Any =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : Optional[int] =None __UpperCamelCase : Union[str, Any] =None __UpperCamelCase : Optional[int] =None if self.use_labels: __UpperCamelCase : List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : Optional[Any] =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : Optional[Any] =MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =TFMobileBertModel(config=lowerCamelCase__ ) __UpperCamelCase : Tuple ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : Dict =model(lowerCamelCase__ ) __UpperCamelCase : List[Any] =[input_ids, input_mask] __UpperCamelCase : Optional[Any] =model(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =TFMobileBertForMaskedLM(config=lowerCamelCase__ ) __UpperCamelCase : str ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : Tuple =model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =TFMobileBertForNextSentencePrediction(config=lowerCamelCase__ ) __UpperCamelCase : Optional[int] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : str =model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =TFMobileBertForPreTraining(config=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : Dict =model(lowerCamelCase__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =self.num_labels __UpperCamelCase : Tuple =TFMobileBertForSequenceClassification(config=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : Optional[Any] =model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.num_choices __UpperCamelCase : List[Any] =TFMobileBertForMultipleChoice(config=lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : Optional[Any] =tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : Tuple =tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : int ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase : Optional[int] =model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.num_labels __UpperCamelCase : List[str] =TFMobileBertForTokenClassification(config=lowerCamelCase__ ) __UpperCamelCase : List[Any] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : Optional[Any] =model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =TFMobileBertForQuestionAnswering(config=lowerCamelCase__ ) __UpperCamelCase : List[str] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : List[Any] =model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =self.prepare_config_and_inputs() ( __UpperCamelCase ) : int =config_and_inputs __UpperCamelCase : str ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =TFMobileBertModelTest.TFMobileBertModelTester(self ) __UpperCamelCase : Optional[Any] =ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["google/mobilebert-uncased"]: __UpperCamelCase : Union[str, Any] =TFMobileBertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) __UpperCamelCase : List[str] =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase : List[str] =model(lowerCamelCase__ )[0] __UpperCamelCase : Tuple =[1, 6, 30522] self.assertEqual(output.shape , lowerCamelCase__ ) __UpperCamelCase : List[Any] =tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 )
71
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
0
"""simple docstring""" from datetime import datetime as dt import os from github import Github a = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def _snake_case ( ) -> int: '''simple docstring''' _A = Github(os.environ['GITHUB_TOKEN'] ) _A = g.get_repo('huggingface/transformers' ) _A = repo.get_issues(state='open' ) for issue in open_issues: _A = sorted([comment for comment in issue.get_comments()] , key=lambda _snake_case : i.created_at , reverse=_UpperCAmelCase ) _A = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
315
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCamelCase__ : Union[str, Any] = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def UpperCAmelCase_ ( __UpperCAmelCase : Dict=True ) -> Optional[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCamelCase ) ) class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = None lowercase_ = None def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] ): with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = dataset_module_factory(_lowerCAmelCase , cache_dir=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = import_main_class(dataset_module.module_path , dataset=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = builder_cls( cache_dir=_lowerCAmelCase , config_name=_lowerCAmelCase , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_ = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_lowerCAmelCase ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE_ = cached_path(_lowerCAmelCase , cache_dir=_lowerCAmelCase ) self.assertTrue(os.path.exists(_lowerCAmelCase ) ) @pytest.mark.integration def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' SCREAMING_SNAKE_CASE_ = dataset_module_factory('wikipedia' , cache_dir=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE_ = builder_cls( cache_dir=_UpperCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE_ = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE_ = builder_instance.as_dataset() assert ds @pytest.mark.integration def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = dataset_module_factory('wikipedia' , cache_dir=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = import_main_class(dataset_module.module_path , dataset=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = builder_cls( cache_dir=_UpperCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_ = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , _UpperCAmelCase ) assert next(iter(ds['train'] ) )
225
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
0
from itertools import count def lowerCAmelCase_ ( snake_case_ = 50 ): _A : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase,n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(f"""{solution() = }""")
26
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCamelCase__ = get_tests_dir("""fixtures""") class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): # A mock response for an HTTP head request to emulate server down __lowerCAmelCase : Optional[Any] = mock.Mock() __lowerCAmelCase : Dict = 5_00 __lowerCAmelCase : Any = {} __lowerCAmelCase : Any = HTTPError __lowerCAmelCase : int = {} # Download this model to make sure it's in the cache. __lowerCAmelCase : Any = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: __lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCamelCase ( self ): # This test is for deprecated behavior and can be removed in v5 __lowerCAmelCase : Optional[Any] = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def __lowerCamelCase ( self ): with self.assertRaises(_SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCAmelCase : List[Any] = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) __lowerCAmelCase : List[str] = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @is_staging_test class A__ ( unittest.TestCase): @classmethod def __lowerCamelCase ( cls ): __lowerCAmelCase : Union[str, Any] = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __lowerCamelCase ( cls ): try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) __lowerCAmelCase : Any = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='test-image-processor' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) __lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) __lowerCAmelCase : List[str] = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='valid_org/test-image-processor-org' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) __lowerCAmelCase : Tuple = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self ): CustomImageProcessor.register_for_auto_class() __lowerCAmelCase : Union[str, Any] = CustomImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) __lowerCAmelCase : int = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor" , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
86
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
0
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __snake_case = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __snake_case = { """allenai/led-base-16384""": 16384, } class _lowerCAmelCase ( __UpperCamelCase ): __UpperCAmelCase : Dict = VOCAB_FILES_NAMES __UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] = LEDTokenizer __UpperCAmelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , UpperCamelCase__=True , **UpperCamelCase__ , ) -> List[Any]: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) snake_case : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__ ) != add_prefix_space: snake_case : int = getattr(UpperCamelCase__ , pre_tok_state.pop("type" ) ) snake_case : Optional[int] = add_prefix_space snake_case : List[str] = pre_tok_class(**UpperCamelCase__ ) snake_case : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` snake_case : str = 'post_processor' snake_case : Tuple = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) if tokenizer_component_instance: snake_case : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case : int = tuple(state["sep"] ) if "cls" in state: snake_case : Optional[int] = tuple(state["cls"] ) snake_case : Optional[int] = False if state.get("add_prefix_space" , UpperCamelCase__ ) != add_prefix_space: snake_case : Dict = add_prefix_space snake_case : Optional[Any] = True if state.get("trim_offsets" , UpperCamelCase__ ) != trim_offsets: snake_case : Any = trim_offsets snake_case : Tuple = True if changes_to_apply: snake_case : Tuple = getattr(UpperCamelCase__ , state.pop("type" ) ) snake_case : Any = component_class(**UpperCamelCase__ ) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : Any = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else value snake_case : Union[str, Any] = value def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> BatchEncoding: '''simple docstring''' snake_case : Union[str, Any] = kwargs.get("is_split_into_words" , UpperCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> BatchEncoding: '''simple docstring''' snake_case : Optional[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' snake_case : Union[str, Any] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> str: '''simple docstring''' snake_case : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' snake_case : Dict = [self.sep_token_id] snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = PaddingStrategy.DO_NOT_PAD , UpperCamelCase__ = None , UpperCamelCase__ = None , ) -> dict: '''simple docstring''' snake_case : List[str] = super()._pad( encoded_inputs=UpperCamelCase__ , max_length=UpperCamelCase__ , padding_strategy=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) # Load from model defaults if return_attention_mask is None: snake_case : Tuple = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: snake_case : List[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. snake_case : Dict = len(encoded_inputs["global_attention_mask"] ) != len(UpperCamelCase__ ) if needs_to_be_padded: snake_case : Any = len(UpperCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` snake_case : List[str] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": snake_case : Dict = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
203
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __magic_name__ ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): """simple docstring""" def __init__( self :str , snake_case :str=None , **snake_case :int ): '''simple docstring''' super().__init__(features=snake_case ) A_ : int = torch_tensor_kwargs import torch # noqa import torch at initialization def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' import torch if isinstance(snake_case , snake_case ) and column: if all( isinstance(snake_case , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(snake_case ) return column def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict ): '''simple docstring''' import torch if isinstance(snake_case , (str, bytes, type(snake_case )) ): return value elif isinstance(snake_case , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A_ : Union[str, Any] = {} if isinstance(snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): A_ : Optional[Any] = {'dtype': torch.intaa} elif isinstance(snake_case , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A_ : List[Any] = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(snake_case , PIL.Image.Image ): A_ : List[str] = np.asarray(snake_case ) return torch.tensor(snake_case , **{**default_dtype, **self.torch_tensor_kwargs} ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :Tuple ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(snake_case , "__array__" ) and not isinstance(snake_case , torch.Tensor ): A_ : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(snake_case , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(snake_case ) for substruct in data_struct] ) elif isinstance(snake_case , (list, tuple) ): return self._consolidate([self.recursive_tensorize(snake_case ) for substruct in data_struct] ) return self._tensorize(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , snake_case , map_list=snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :pa.Table ): '''simple docstring''' A_ : Tuple = self.numpy_arrow_extractor().extract_row(snake_case ) A_ : List[Any] = self.python_features_decoder.decode_row(snake_case ) return self.recursive_tensorize(snake_case ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :pa.Table ): '''simple docstring''' A_ : Optional[int] = self.numpy_arrow_extractor().extract_column(snake_case ) A_ : Optional[Any] = self.python_features_decoder.decode_column(snake_case , pa_table.column_names[0] ) A_ : int = self.recursive_tensorize(snake_case ) A_ : List[Any] = self._consolidate(snake_case ) return column def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :pa.Table ): '''simple docstring''' A_ : Optional[int] = self.numpy_arrow_extractor().extract_batch(snake_case ) A_ : List[Any] = self.python_features_decoder.decode_batch(snake_case ) A_ : Any = self.recursive_tensorize(snake_case ) for column_name in batch: A_ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
300
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
0
from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase__ ( a ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) _A: Tuple = precision _A: Optional[int] = ceil(precision / 14 ) _A: Optional[Any] = 42_68_80 * Decimal(1_00_05 ).sqrt() _A: int = 1 _A: List[str] = 13_59_14_09 _A: Union[str, Any] = Decimal(_UpperCAmelCase ) for k in range(1 , _UpperCAmelCase ): _A: int = factorial(6 * k ) // (factorial(3 * k ) * factorial(_UpperCAmelCase ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCAmelCase__ : List[str] = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
121
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("""socket.socket""" ) @patch("""builtins.open""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: # ===== initialization ===== snake_case : Union[str, Any] = Mock() snake_case : Any = conn, Mock() snake_case : int = iter([1, None] ) snake_case : Optional[int] = lambda lowercase : next(_UpperCAmelCase ) # ===== invoke ===== send_file(filename="""mytext.txt""" ,testing=_UpperCAmelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
124
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ :List[str] = logging.get_logger(__name__) a_ :Union[str, Any] = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class snake_case__ ( __UpperCamelCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = """xlm-roberta-xl""" def __init__( self : List[str], _snake_case : Dict=2_5_0_8_8_0, _snake_case : int=2_5_6_0, _snake_case : Tuple=3_6, _snake_case : Dict=3_2, _snake_case : Dict=1_0_2_4_0, _snake_case : List[Any]="gelu", _snake_case : Optional[Any]=0.1, _snake_case : Optional[int]=0.1, _snake_case : int=5_1_4, _snake_case : Any=1, _snake_case : Dict=0.0_2, _snake_case : Union[str, Any]=1e-05, _snake_case : List[Any]=1, _snake_case : Any=0, _snake_case : List[str]=2, _snake_case : List[Any]="absolute", _snake_case : Tuple=True, _snake_case : Optional[Any]=None, **_snake_case : Any, ) ->List[str]: super().__init__(pad_token_id=_snake_case, bos_token_id=_snake_case, eos_token_id=_snake_case, **_snake_case ) snake_case__ : Dict = vocab_size snake_case__ : str = hidden_size snake_case__ : str = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : List[str] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : Any = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : Tuple = max_position_embeddings snake_case__ : Any = type_vocab_size snake_case__ : Optional[Any] = initializer_range snake_case__ : List[str] = layer_norm_eps snake_case__ : Any = position_embedding_type snake_case__ : int = use_cache snake_case__ : int = classifier_dropout class snake_case__ ( __UpperCamelCase ): """simple docstring""" @property def lowercase_ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case__ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case__ : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
277
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
0
def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' if n_term == "": return [] lowerCamelCase = [] for temp in range(int(_UpperCAmelCase ) ): series.append(f'1/{temp + 1}' if series else """1""" ) return series if __name__ == "__main__": UpperCAmelCase : Tuple = input("Enter the last number (nth term) of the Harmonic Series") print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n") print(harmonic_series(nth_term))
252
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ :str = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :List[str] = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A_ :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _snake_case ( _snake_case : Union[str, Any] ) -> str: '''simple docstring''' if "cls_token" in name: _A = name.replace('cls_token' , 'vit.embeddings.cls_token' ) if "mask_token" in name: _A = name.replace('mask_token' , 'decoder.mask_token' ) if "decoder_pos_embed" in name: _A = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _A = name.replace('pos_embed' , 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _A = name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _A = name.replace('patch_embed.norm' , 'vit.embeddings.norm' ) if "decoder_blocks" in name: _A = name.replace('decoder_blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _A = name.replace('blocks' , 'vit.encoder.layer' ) if "attn.proj" in name: _A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _A = name.replace('attn' , 'attention.self' ) if "norm1" in name: _A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _A = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _A = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _A = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _A = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: _A = name.replace('norm.weight' , 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: _A = name.replace('norm.bias' , 'vit.layernorm.bias' ) return name def _snake_case ( _snake_case : Dict , _snake_case : Tuple ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _A = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: _A = key.split('.' ) _A = int(key_split[1] ) if "decoder_blocks" in key: _A = config.decoder_hidden_size _A = 'decoder.decoder_layers.' if "weight" in key: _A = val[:dim, :] _A = val[dim : dim * 2, :] _A = val[-dim:, :] elif "bias" in key: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] else: _A = config.hidden_size _A = 'vit.encoder.layer.' if "weight" in key: _A = val[:dim, :] _A = val[dim : dim * 2, :] _A = val[-dim:, :] elif "bias" in key: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] else: _A = val return orig_state_dict def _snake_case ( _snake_case : Optional[int] , _snake_case : Union[str, Any] ) -> int: '''simple docstring''' _A = ViTMAEConfig() if "large" in checkpoint_url: _A = 10_24 _A = 40_96 _A = 24 _A = 16 elif "huge" in checkpoint_url: _A = 14 _A = 12_80 _A = 51_20 _A = 32 _A = 16 _A = ViTMAEForPreTraining(_UpperCAmelCase ) _A = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )['model'] _A = ViTMAEImageProcessor(size=config.image_size ) _A = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() _A = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' _A = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) _A = ViTMAEImageProcessor(size=config.image_size ) _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) _A = model(**_UpperCAmelCase ) _A = outputs.logits if "large" in checkpoint_url: _A = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: _A = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: _A = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
315
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
0
def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 1 while len(_UpperCAmelCase ) < 1E6: constant.append(str(_UpperCAmelCase ) ) i += 1 SCREAMING_SNAKE_CASE_ = ''.join(_UpperCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
225
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
0
from collections.abc import Callable def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : float = a _A : float = b if function(_UpperCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCAmelCase ) == 0: return b elif ( function(_UpperCAmelCase ) * function(_UpperCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: _A : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_UpperCAmelCase ) == 0: return mid elif function(_UpperCAmelCase ) * function(_UpperCAmelCase ) < 0: _A : Optional[int] = mid else: _A : Optional[Any] = mid _A : Any = start + (end - start) / 2.0 return mid def lowerCAmelCase_ ( snake_case_ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
26
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
"""simple docstring""" from __future__ import annotations import math def __lowerCAmelCase (_UpperCamelCase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase__ = [num for num in range(3, 100_001, 2) if not is_prime(num)] def __lowerCAmelCase (_UpperCamelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __lowerCAmelCase : int = [] for num in range(len(_UpperCAmelCase ) ): __lowerCAmelCase : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: __lowerCAmelCase : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def __lowerCAmelCase (): return compute_nums(1 )[0] if __name__ == "__main__": print(f'{solution() = }')
86
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class _lowerCAmelCase ( __UpperCamelCase ): __UpperCAmelCase : Optional[int] = '''bart''' __UpperCAmelCase : Union[str, Any] = ['''past_key_values'''] __UpperCAmelCase : Union[str, Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , UpperCamelCase__=5_0265 , UpperCamelCase__=1024 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__="gelu" , UpperCamelCase__=1024 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=0.0 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=3 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=True , UpperCamelCase__=2 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = vocab_size snake_case : Tuple = max_position_embeddings snake_case : Optional[Any] = d_model snake_case : int = encoder_ffn_dim snake_case : int = encoder_layers snake_case : Optional[Any] = encoder_attention_heads snake_case : Dict = decoder_ffn_dim snake_case : Union[str, Any] = decoder_layers snake_case : List[Any] = decoder_attention_heads snake_case : List[str] = dropout snake_case : List[Any] = attention_dropout snake_case : Optional[Any] = activation_dropout snake_case : str = activation_function snake_case : List[str] = init_std snake_case : Optional[Any] = encoder_layerdrop snake_case : Optional[int] = decoder_layerdrop snake_case : int = classifier_dropout snake_case : Union[str, Any] = use_cache snake_case : str = encoder_layers snake_case : str = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , UpperCamelCase__ ): snake_case : Dict = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' "The config can simply be saved and uploaded again to be fixed." ) class _lowerCAmelCase ( __UpperCamelCase ): @property def lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case : Tuple = {0: 'batch'} snake_case : Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: snake_case : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} snake_case : Dict = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case : Optional[Any] = self.num_layers for i in range(UpperCamelCase__ ): snake_case : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} snake_case : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'} else: snake_case : Union[str, Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : int = super().outputs else: snake_case : Optional[Any] = super(UpperCamelCase__ , self ).outputs if self.use_past: snake_case : List[str] = self.num_layers for i in range(UpperCamelCase__ ): snake_case : Union[str, Any] = {0: 'batch', 2: 'past_sequence + sequence'} snake_case : List[str] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs snake_case : List[str] = seq_length if not self.use_past else 1 snake_case : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[str] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} snake_case : Optional[int] = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case : Optional[int] = common_inputs['input_ids'].shape snake_case : List[str] = common_inputs['decoder_input_ids'].shape[1] snake_case : List[str] = self.num_attention_heads snake_case : Any = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Dict = decoder_seq_length + 3 snake_case : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case : Dict = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) snake_case : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case : Tuple = self.num_layers snake_case : List[Any] = min(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Tuple = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers snake_case : str = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. snake_case : List[str] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values snake_case : Union[str, Any] = seqlen + 2 snake_case : List[Any] = self.num_layers snake_case : Union[str, Any] = self.num_attention_heads snake_case : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Union[str, Any] = common_inputs['attention_mask'].dtype snake_case : int = torch.cat( [common_inputs["attention_mask"], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) snake_case : Any = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : Tuple = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case : List[str] = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) snake_case : List[str] = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence snake_case : str = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case : Dict = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": snake_case : int = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: snake_case : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case : Dict = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: snake_case : str = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
203
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ) -> Tuple: lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCamelCase__ : Optional[Any] = True elif "IPython" in sys.modules: lowerCamelCase__ : Optional[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCamelCase__ : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = PrepareForLaunch(_UpperCAmelCase , distributed_type='TPU' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = PrepareForLaunch(_UpperCAmelCase , distributed_type='MULTI_GPU' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase__ : int = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowerCamelCase__ : Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' )
50
0
def __snake_case ( _lowerCAmelCase : str = 600851475143 ) -> int: try: A_ : Optional[Any] = int(_UpperCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A_ : List[Any] = 1 A_ : str = 2 while i * i <= n: while n % i == 0: A_ : Tuple = i n //= i i += 1 if n > 1: A_ : Tuple = n return int(_UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
300
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
0
from scipy.stats import pearsonr import datasets UpperCAmelCase__ : str = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ UpperCAmelCase__ : Union[str, Any] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ UpperCAmelCase__ : List[Any] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __magic_name__ ( self : Any ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any=False ): """simple docstring""" if return_pvalue: _A: int = pearsonr(lowerCAmelCase_ , lowerCAmelCase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase_ , lowerCAmelCase_ )[0] )}
121
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase = True ) -> int: print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": snake_case : Union[str, Any] = timm.create_model("""levit_128s""" ,pretrained=_UpperCAmelCase ) else: snake_case : int = timm.create_model("""levit_128""" ,pretrained=_UpperCAmelCase ) if hidden_sizes == 192: snake_case : List[str] = timm.create_model("""levit_192""" ,pretrained=_UpperCAmelCase ) if hidden_sizes == 256: snake_case : List[Any] = timm.create_model("""levit_256""" ,pretrained=_UpperCAmelCase ) if hidden_sizes == 384: snake_case : int = timm.create_model("""levit_384""" ,pretrained=_UpperCAmelCase ) from_model.eval() snake_case : Optional[Any] = LevitForImageClassificationWithTeacher(_UpperCAmelCase ).eval() snake_case : List[str] = OrderedDict() snake_case : str = from_model.state_dict() snake_case : Optional[Any] = list(from_model.state_dict().keys() ) snake_case : str = list(our_model.state_dict().keys() ) print(len(_UpperCAmelCase ) ,len(_UpperCAmelCase ) ) for i in range(len(_UpperCAmelCase ) ): snake_case : List[Any] = weights[og_keys[i]] our_model.load_state_dict(_UpperCAmelCase ) snake_case : int = torch.randn((2, 3, 224, 224) ) snake_case : Optional[int] = from_model(_UpperCAmelCase ) snake_case : Any = our_model(_UpperCAmelCase ).logits assert torch.allclose(_UpperCAmelCase ,_UpperCAmelCase ), "The model logits don't match the original one." snake_case : Optional[Any] = name print(_UpperCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) snake_case : int = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase = None ,lowercase = True ) -> List[str]: snake_case : Optional[int] = 'imagenet-1k-id2label.json' snake_case : Tuple = 1000 snake_case : Union[str, Any] = (1, num_labels) snake_case : List[str] = 'huggingface/label-files' snake_case : int = num_labels snake_case : Tuple = json.load(open(hf_hub_download(_UpperCAmelCase ,_UpperCAmelCase ,repo_type="""dataset""" ) ,"""r""" ) ) snake_case : List[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} snake_case : List[Any] = idalabel snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} snake_case : Union[str, Any] = partial(_UpperCAmelCase ,num_labels=_UpperCAmelCase ,idalabel=_UpperCAmelCase ,labelaid=_UpperCAmelCase ) snake_case : int = { 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } snake_case : int = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] ,num_attention_heads=[4, 6, 8] ,depths=[2, 3, 4] ,key_dim=[16, 16, 16] ,drop_path_rate=0 ,), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] ,num_attention_heads=[4, 8, 12] ,depths=[4, 4, 4] ,key_dim=[16, 16, 16] ,drop_path_rate=0 ,), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] ,num_attention_heads=[3, 5, 6] ,depths=[4, 4, 4] ,key_dim=[32, 32, 32] ,drop_path_rate=0 ,), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] ,num_attention_heads=[4, 6, 8] ,depths=[4, 4, 4] ,key_dim=[32, 32, 32] ,drop_path_rate=0 ,), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] ,num_attention_heads=[6, 9, 12] ,depths=[4, 4, 4] ,key_dim=[32, 32, 32] ,drop_path_rate=0.1 ,), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] ,_UpperCAmelCase ,names_to_config[model_name] ,_UpperCAmelCase ,_UpperCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) lowerCamelCase : Optional[Any] = parser.parse_args() lowerCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
124
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[int] = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Tuple = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : str = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCamelCase__ : Union[str, Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = num_labels lowerCamelCase__ : Dict = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCamelCase__ : List[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCamelCase__ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCamelCase__ : Optional[Any] = [2, 2, 20] lowerCamelCase__ : Optional[int] = [3, 12, 16] lowerCamelCase__ : str = [192, 768, 1024] lowerCamelCase__ : Any = CvtForImageClassification(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : List[str] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lowerCamelCase__ : Optional[int] = OrderedDict() lowerCamelCase__ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCamelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCamelCase__ : str = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCamelCase__ : str = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
50
0
from manim import * class snake_case__ ( __UpperCamelCase ): """simple docstring""" def lowercase_ ( self : Dict ) ->List[str]: snake_case__ : List[Any] = Rectangle(height=0.5, width=0.5 ) snake_case__ : Optional[Any] = Rectangle(height=0.4_6, width=0.4_6 ).set_stroke(width=0 ) snake_case__ : Optional[int] = [mem.copy() for i in range(6 )] snake_case__ : Union[str, Any] = [mem.copy() for i in range(6 )] snake_case__ : Any = VGroup(*_snake_case ).arrange(_snake_case, buff=0 ) snake_case__ : Any = VGroup(*_snake_case ).arrange(_snake_case, buff=0 ) snake_case__ : int = VGroup(_snake_case, _snake_case ).arrange(_snake_case, buff=0 ) snake_case__ : List[Any] = Text('CPU', font_size=2_4 ) snake_case__ : Union[str, Any] = Group(_snake_case, _snake_case ).arrange(_snake_case, buff=0.5, aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) snake_case__ : List[Any] = [mem.copy() for i in range(1 )] snake_case__ : str = VGroup(*_snake_case ).arrange(_snake_case, buff=0 ) snake_case__ : int = Text('GPU', font_size=2_4 ) snake_case__ : Optional[Any] = Group(_snake_case, _snake_case ).arrange(_snake_case, buff=0.5, aligned_edge=_snake_case ) gpu.align_to(_snake_case, _snake_case ) gpu.set_x(gpu.get_x() - 1 ) self.add(_snake_case ) snake_case__ : Optional[int] = [mem.copy() for i in range(6 )] snake_case__ : Tuple = VGroup(*_snake_case ).arrange(_snake_case, buff=0 ) snake_case__ : Dict = Text('Model', font_size=2_4 ) snake_case__ : Dict = Group(_snake_case, _snake_case ).arrange(_snake_case, buff=0.5, aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.play( Create(_snake_case, run_time=1 ), Create(_snake_case, run_time=1 ), Create(_snake_case, run_time=1 ), ) snake_case__ : Dict = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''', font_size=2_4, ) snake_case__ : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case__ : str = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''', font_size=1_8, ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case, run_time=2.5 ), Write(_snake_case ), Write(_snake_case ) ) self.add(_snake_case ) snake_case__ : int = [] snake_case__ : str = [] snake_case__ : Dict = [] for i, rect in enumerate(_snake_case ): snake_case__ : Union[str, Any] = Rectangle(height=0.4_6, width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_snake_case, opacity=0.7 ) cpu_target.move_to(_snake_case ) cpu_target.generate_target() snake_case__ : Dict = 0.4_6 / 4 snake_case__ : List[str] = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ), buff=0.0_2, direction=_snake_case ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target, direction=_snake_case, buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target, direction=_snake_case, buff=0.0 ) cpu_targs.append(_snake_case ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_snake_case ) ) second_animations.append(MoveToTarget(_snake_case, run_time=1.5 ) ) self.play(*_snake_case ) self.play(*_snake_case ) self.wait()
277
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Optional[Any] = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def A ( a_ ,a_ ,a_ ,a_ ,) -> list[float]: __UpperCamelCase : List[str] =coefficient_matrix.shape __UpperCamelCase : Tuple =constant_matrix.shape if rowsa != colsa: __UpperCamelCase : List[Any] =F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_UpperCAmelCase ) if colsa != 1: __UpperCamelCase : Tuple =F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_UpperCAmelCase ) if rowsa != rowsa: __UpperCamelCase : Optional[Any] =( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_UpperCAmelCase ) if len(_UpperCAmelCase ) != rowsa: __UpperCamelCase : Tuple =( 'Number of initial values must be equal to number of rows in coefficient ' F'matrix but received {len(_UpperCAmelCase )} and {rowsa}' ) raise ValueError(_UpperCAmelCase ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) __UpperCamelCase : NDArray[floataa] =np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) __UpperCamelCase : List[str] =table.shape strictly_diagonally_dominant(_UpperCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_UpperCAmelCase ): __UpperCamelCase : str =[] for row in range(_UpperCAmelCase ): __UpperCamelCase : Dict =0 for col in range(_UpperCAmelCase ): if col == row: __UpperCamelCase : int =table[row][col] elif col == cols - 1: __UpperCamelCase : Optional[int] =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCamelCase : Optional[Any] =(temp + val) / denom new_val.append(_UpperCAmelCase ) __UpperCamelCase : List[str] =new_val return [float(_UpperCAmelCase ) for i in new_val] def A ( a_ ) -> bool: __UpperCamelCase : List[Any] =table.shape __UpperCamelCase : Optional[int] =True for i in range(0 ,_UpperCAmelCase ): __UpperCamelCase : Optional[Any] =0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
71
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
0
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _snake_case ( _snake_case : str ) -> Dict: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _snake_case ( ) -> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _snake_case ( ) -> Any: '''simple docstring''' _A = 'mock-s3-bucket' _A = F'''s3://{mock_bucket}''' _A = extract_path_from_uri(_UpperCAmelCase ) assert dataset_path.startswith('s3://' ) is False _A = './local/path' _A = extract_path_from_uri(_UpperCAmelCase ) assert dataset_path == new_dataset_path def _snake_case ( _snake_case : int ) -> Union[str, Any]: '''simple docstring''' _A = is_remote_filesystem(_UpperCAmelCase ) assert is_remote is True _A = fsspec.filesystem('file' ) _A = is_remote_filesystem(_UpperCAmelCase ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , _UpperCAmelCase ) def _snake_case ( _snake_case : int , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : Optional[int] , _snake_case : str , _snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' _A = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} _A = input_paths[compression_fs_class.protocol] if input_path is None: _A = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCAmelCase ) _A = fsspec.filesystem(compression_fs_class.protocol , fo=_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) _A = os.path.basename(_UpperCAmelCase ) _A = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f, open(_UpperCAmelCase , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def _snake_case ( _snake_case : Optional[int] , _snake_case : str , _snake_case : Dict ) -> List[str]: '''simple docstring''' _A = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} _A = compressed_file_paths[protocol] _A = 'dataset.jsonl' _A = F'''{protocol}://{member_file_path}::{compressed_file_path}''' _A = fsspec.get_fs_token_paths(_UpperCAmelCase ) assert fs.isfile(_UpperCAmelCase ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : Dict , _snake_case : Any ) -> Tuple: '''simple docstring''' _A = hf_api.dataset_info(_UpperCAmelCase , token=_UpperCAmelCase ) _A = HfFileSystem(repo_info=_UpperCAmelCase , token=_UpperCAmelCase ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(_UpperCAmelCase ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def _snake_case ( ) -> List[Any]: '''simple docstring''' _A = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_UpperCAmelCase , _UpperCAmelCase , clobber=_UpperCAmelCase ) with pytest.warns(_UpperCAmelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_UpperCAmelCase ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
315
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
0
def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(_UpperCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , _UpperCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCAmelCase_ ( __UpperCAmelCase : Dict ) -> Union[str, Any]: if len(_UpperCAmelCase ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE_ = len(_UpperCAmelCase ) // 2 SCREAMING_SNAKE_CASE_ = arr[0:mid] SCREAMING_SNAKE_CASE_ = arr[mid:] SCREAMING_SNAKE_CASE_ = count_inversions_recursive(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = count_inversions_recursive(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = _count_cross_inversions(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCAmelCase_ ( __UpperCAmelCase : Any , __UpperCAmelCase : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 while i < len(_UpperCAmelCase ) and j < len(_UpperCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_UpperCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_UpperCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCAmelCase_ ( ) -> str: SCREAMING_SNAKE_CASE_ = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE_ = count_inversions_bf(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = count_inversions_recursive(_UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , _UpperCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE_ = count_inversions_bf(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = count_inversions_recursive(_UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , _UpperCAmelCase ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = count_inversions_bf(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = count_inversions_recursive(_UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , _UpperCAmelCase ) if __name__ == "__main__": main()
225
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowercase ( __UpperCamelCase ): _a = "deformable_detr" _a = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , _a=True , _a=None , _a=3 , _a=300 , _a=1024 , _a=6 , _a=1024 , _a=8 , _a=6 , _a=1024 , _a=8 , _a=0.0 , _a=True , _a="relu" , _a=256 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.02 , _a=1.0 , _a=True , _a=False , _a="sine" , _a="resnet50" , _a=True , _a=False , _a=4 , _a=4 , _a=4 , _a=False , _a=300 , _a=False , _a=1 , _a=5 , _a=2 , _a=1 , _a=1 , _a=5 , _a=2 , _a=0.1 , _a=0.25 , _a=False , **_a , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can\'t specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _A : Optional[Any] = CONFIG_MAPPING['resnet'](out_features=["""stage4"""] ) elif isinstance(_a , _a ): _A : Optional[int] = backbone_config.get("""model_type""" ) _A : int = CONFIG_MAPPING[backbone_model_type] _A : Union[str, Any] = config_class.from_dict(_a ) _A : Optional[Any] = use_timm_backbone _A : List[Any] = backbone_config _A : Union[str, Any] = num_channels _A : str = num_queries _A : Any = max_position_embeddings _A : Optional[Any] = d_model _A : List[str] = encoder_ffn_dim _A : Optional[Any] = encoder_layers _A : Tuple = encoder_attention_heads _A : Optional[int] = decoder_ffn_dim _A : List[Any] = decoder_layers _A : Optional[Any] = decoder_attention_heads _A : str = dropout _A : Any = attention_dropout _A : Any = activation_dropout _A : Tuple = activation_function _A : Union[str, Any] = init_std _A : str = init_xavier_std _A : Optional[int] = encoder_layerdrop _A : Union[str, Any] = auxiliary_loss _A : List[Any] = position_embedding_type _A : List[Any] = backbone _A : int = use_pretrained_backbone _A : List[str] = dilation # deformable attributes _A : Any = num_feature_levels _A : Optional[int] = encoder_n_points _A : Union[str, Any] = decoder_n_points _A : Union[str, Any] = two_stage _A : str = two_stage_num_proposals _A : Union[str, Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher _A : int = class_cost _A : str = bbox_cost _A : Optional[int] = giou_cost # Loss coefficients _A : int = mask_loss_coefficient _A : int = dice_loss_coefficient _A : Tuple = bbox_loss_coefficient _A : Union[str, Any] = giou_loss_coefficient _A : Any = eos_coefficient _A : Any = focal_alpha _A : Tuple = disable_custom_kernels super().__init__(is_encoder_decoder=_a , **_a ) @property def a__ ( self ) -> int: return self.encoder_attention_heads @property def a__ ( self ) -> int: return self.d_model def a__ ( self ) -> List[Any]: _A : int = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _A : Union[str, Any] = self.backbone_config.to_dict() _A : Dict = self.__class__.model_type return output
26
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
86
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """spiece.model"""} __snake_case = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } __snake_case = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } __snake_case = """▁""" class _lowerCAmelCase ( __UpperCamelCase ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="[CLS]" , UpperCamelCase__="[SEP]" , UpperCamelCase__="<unk>" , UpperCamelCase__="[SEP]" , UpperCamelCase__="<pad>" , UpperCamelCase__="[CLS]" , UpperCamelCase__="[MASK]" , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: '''simple docstring''' snake_case : int = ( AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ , normalized=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token ) snake_case : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) snake_case : Optional[Any] = do_lower_case snake_case : List[str] = remove_space snake_case : Any = keep_accents snake_case : Dict = vocab_file snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return len(self.sp_model ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: '''simple docstring''' snake_case : List[Any] = self.__dict__.copy() snake_case : List[Any] = None return state def __setstate__( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): snake_case : Dict = {} snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple: '''simple docstring''' if self.remove_space: snake_case : int = ' '.join(inputs.strip().split() ) else: snake_case : int = inputs snake_case : List[Any] = outputs.replace("``" , "\"" ).replace("\'\'" , "\"" ) if not self.keep_accents: snake_case : List[Any] = unicodedata.normalize("NFKD" , UpperCamelCase__ ) snake_case : Optional[Any] = ''.join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] ) if self.do_lower_case: snake_case : Any = outputs.lower() return outputs def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' snake_case : Optional[int] = self.preprocess_text(UpperCamelCase__ ) snake_case : Dict = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) snake_case : List[Any] = [] for piece in pieces: if len(UpperCamelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): snake_case : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case : List[str] = cur_pieces[1:] else: snake_case : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase__ ) else: new_pieces.append(UpperCamelCase__ ) return new_pieces def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.sp_model.PieceToId(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Any: '''simple docstring''' return self.sp_model.IdToPiece(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' snake_case : str = [] snake_case : Tuple = '' snake_case : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token snake_case : List[Any] = True snake_case : str = [] else: current_sub_tokens.append(UpperCamelCase__ ) snake_case : List[str] = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' snake_case : Optional[Any] = [self.sep_token_id] snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' snake_case : Optional[int] = [self.sep_token_id] snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case : Dict = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
203
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
0
import warnings from functools import wraps from typing import Callable def __snake_case ( _lowerCAmelCase : Dict ) -> Callable: @wraps(_UpperCAmelCase ) def _inner_fn(*_lowerCAmelCase : int , **_lowerCAmelCase : List[Any] ): warnings.warn( (f"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , _UpperCAmelCase , ) return fn(*_UpperCAmelCase , **_UpperCAmelCase ) return _inner_fn
300
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
0
from __future__ import annotations def lowerCamelCase__ ( a , a ) -> int: if len(_UpperCAmelCase ) < k or k < 0: raise ValueError('''Invalid Input''' ) _A: Optional[int] = sum(array[:k] ) for i in range(len(_UpperCAmelCase ) - k ): _A: str = current_sum - array[i] + array[i + k] _A: List[str] = max(_UpperCAmelCase , _UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() UpperCAmelCase__ : List[Any] = [randint(-1000, 1000) for i in range(100)] UpperCAmelCase__ : Optional[int] = randint(0, 110) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
121
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=False ) -> Union[str, Any]: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ): snake_case : Tuple = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: snake_case : Union[str, Any] = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: snake_case : Any = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase ,(list, tuple) ) and isinstance(_UpperCAmelCase ,(list, tuple) ): snake_case : int = [element for element in set_a if element in set_b] if alternative_union: snake_case : int = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: snake_case : Dict = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": lowerCamelCase : Optional[Any] = {"""a""", """b""", """c""", """d""", """e"""} lowerCamelCase : Tuple = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
124
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) ->str: snake_case__ : int = tempfile.mkdtemp() snake_case__ : Tuple = BlipImageProcessor() snake_case__ : str = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) snake_case__ : List[Any] = BlipaProcessor(_snake_case, _snake_case ) processor.save_pretrained(self.tmpdirname ) def lowercase_ ( self : List[str], **_snake_case : str ) ->str: return AutoProcessor.from_pretrained(self.tmpdirname, **_snake_case ).tokenizer def lowercase_ ( self : Optional[int], **_snake_case : List[str] ) ->Tuple: return AutoProcessor.from_pretrained(self.tmpdirname, **_snake_case ).image_processor def lowercase_ ( self : Optional[Any] ) ->Optional[Any]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Tuple ) ->Any: snake_case__ : Optional[Any] = [np.random.randint(2_5_5, size=(3, 3_0, 4_0_0), dtype=np.uinta )] snake_case__ : Optional[Any] = [Image.fromarray(np.moveaxis(_snake_case, 0, -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Dict ) ->List[str]: snake_case__ : Optional[Any] = BlipaProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) snake_case__ : Union[str, Any] = self.get_image_processor(do_normalize=_snake_case, padding_value=1.0 ) snake_case__ : str = BlipaProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=_snake_case, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, _snake_case ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, _snake_case ) def lowercase_ ( self : Tuple ) ->str: snake_case__ : Dict = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Any = BlipaProcessor(tokenizer=_snake_case, image_processor=_snake_case ) snake_case__ : Union[str, Any] = self.prepare_image_inputs() snake_case__ : List[Any] = image_processor(_snake_case, return_tensors='np' ) snake_case__ : List[Any] = processor(images=_snake_case, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase_ ( self : int ) ->Any: snake_case__ : Optional[Any] = self.get_image_processor() snake_case__ : List[str] = self.get_tokenizer() snake_case__ : int = BlipaProcessor(tokenizer=_snake_case, image_processor=_snake_case ) snake_case__ : Optional[Any] = 'lower newer' snake_case__ : Optional[int] = processor(text=_snake_case ) snake_case__ : Tuple = tokenizer(_snake_case, return_token_type_ids=_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase_ ( self : Tuple ) ->List[Any]: snake_case__ : Any = self.get_image_processor() snake_case__ : Dict = self.get_tokenizer() snake_case__ : Optional[Any] = BlipaProcessor(tokenizer=_snake_case, image_processor=_snake_case ) snake_case__ : Union[str, Any] = 'lower newer' snake_case__ : Optional[Any] = self.prepare_image_inputs() snake_case__ : Optional[Any] = processor(text=_snake_case, images=_snake_case ) self.assertListEqual(list(inputs.keys() ), ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def lowercase_ ( self : Dict ) ->Union[str, Any]: snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : str = BlipaProcessor(tokenizer=_snake_case, image_processor=_snake_case ) snake_case__ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : str = processor.batch_decode(_snake_case ) snake_case__ : str = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case, _snake_case ) def lowercase_ ( self : Tuple ) ->str: snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : List[str] = BlipaProcessor(tokenizer=_snake_case, image_processor=_snake_case ) snake_case__ : Any = 'lower newer' snake_case__ : Optional[Any] = self.prepare_image_inputs() snake_case__ : Union[str, Any] = processor(text=_snake_case, images=_snake_case ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ), ['pixel_values', 'input_ids', 'attention_mask'] )
277
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
0
from ... import PretrainedConfig UpperCAmelCase : List[str] = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class __lowercase ( __UpperCamelCase ): """simple docstring""" UpperCamelCase : str = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase : Optional[Any] = "nezha" def __init__( self , A=2_11_28 , A=7_68 , A=12 , A=12 , A=30_72 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=64 , A=2 , A=0.02 , A=1e-1_2 , A=0.1 , A=0 , A=2 , A=3 , A=True , **A , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = hidden_act lowerCamelCase = intermediate_size lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = max_position_embeddings lowerCamelCase = max_relative_position lowerCamelCase = type_vocab_size lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = classifier_dropout lowerCamelCase = use_cache
252
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def A ( a_ ) -> int: return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] ,unknown_args[1::2] )} def A ( ) -> Dict: __UpperCamelCase : Optional[Any] =ArgumentParser( 'HuggingFace Datasets CLI tool' ,usage='datasets-cli <command> [<args>]' ,allow_abbrev=_UpperCAmelCase ) __UpperCamelCase : List[Any] =parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_UpperCAmelCase ) EnvironmentCommand.register_subcommand(_UpperCAmelCase ) TestCommand.register_subcommand(_UpperCAmelCase ) RunBeamCommand.register_subcommand(_UpperCAmelCase ) DummyDataCommand.register_subcommand(_UpperCAmelCase ) # Parse args __UpperCamelCase : Optional[int] =parser.parse_known_args() if not hasattr(_UpperCAmelCase ,'func' ): parser.print_help() exit(1 ) __UpperCamelCase : Optional[Any] =parse_unknown_args(_UpperCAmelCase ) # Run __UpperCamelCase : Optional[int] =args.func(_UpperCAmelCase ,**_UpperCAmelCase ) service.run() if __name__ == "__main__": main()
71
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
0
"""simple docstring""" import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase_ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=13 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : str=4 , _UpperCAmelCase : List[Any]=37 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=10 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : int=0.6 , _UpperCAmelCase : Union[str, Any]=None , ): _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = mask_ratio _A = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : str ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ): _A = ViTMAEModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ): _A = ViTMAEForPreTraining(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = model(_UpperCAmelCase ) _A = (self.image_size // self.patch_size) ** 2 _A = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _A = 1 _A = ViTMAEForPreTraining(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(_UpperCAmelCase ) _A = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase_ ( self : Dict ): _A = self.prepare_config_and_inputs() _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCAmelCase : List[Any] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} UpperCAmelCase : Any = False UpperCAmelCase : str = False UpperCAmelCase : Any = False UpperCAmelCase : Union[str, Any] = False def lowerCAmelCase_ ( self : List[str] ): _A = ViTMAEModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[str] ): _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ): # make masks reproducible np.random.seed(2 ) _A = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _A = torch.from_numpy(_UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _A = pt_noise super().check_pt_tf_models(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = outputs[0].cpu().numpy() _A = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase ) _A = model_class.from_pretrained(_UpperCAmelCase ) model.to(_UpperCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) # Make sure we don't have nans _A = after_outputs[0].cpu().numpy() _A = 0 _A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_UpperCAmelCase , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCAmelCase_ ( self : int ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCAmelCase_ ( self : List[str] ): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def lowerCAmelCase_ ( self : List[str] ): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def lowerCAmelCase_ ( self : Tuple ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : List[Any] ): pass @slow def lowerCAmelCase_ ( self : int ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = ViTMAEModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _snake_case ( ) -> List[str]: '''simple docstring''' _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Dict ): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : str ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) _A = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(_UpperCAmelCase ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _A = ViTMAEConfig() _A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _A = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _A = model(**_UpperCAmelCase , noise=torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase ) ) # verify the logits _A = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _A = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_UpperCAmelCase ) , atol=1E-4 ) )
315
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' lowercase_ = XLMTokenizer lowercase_ = False def lowerCAmelCase_ ( self : str ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] SCREAMING_SNAKE_CASE_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE_ = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = 'lower newer' SCREAMING_SNAKE_CASE_ = 'lower newer' return input_text, output_text def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = XLMTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE_ = 'lower' SCREAMING_SNAKE_CASE_ = ['low', 'er</w>'] SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokens + ['<unk>'] SCREAMING_SNAKE_CASE_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , _lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('sequence builders' , add_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(_lowerCAmelCase , _lowerCAmelCase ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
225
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
0
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Union[str, Any] = position _A : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A : Dict = [] for position in positions: _A : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def lowerCAmelCase_ ( snake_case_ ): return not any(elem == 0 for row in board for elem in row ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase,len(_UpperCAmelCase ) ): _A : Optional[int] = position if board[y][x] == 0: _A : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase,_UpperCAmelCase,curr + 1 ): return True _A : Optional[Any] = 0 return False def lowerCAmelCase_ ( snake_case_ ): _A : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): _A : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase,(i, j),1 ): return board _A : Optional[Any] = 0 _A : Any = f'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
26
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
"""simple docstring""" import os def __lowerCAmelCase (_UpperCamelCase = "matrix.txt" ): with open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) as in_file: __lowerCAmelCase : int = in_file.read() __lowerCAmelCase : Tuple = [[int(_UpperCAmelCase ) for cell in row.split(',' )] for row in data.strip().splitlines()] __lowerCAmelCase : Any = [[0 for cell in row] for row in grid] __lowerCAmelCase : Optional[int] = len(grid[0] ) __lowerCAmelCase : Optional[Any] = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] __lowerCAmelCase : Any = grid[0][0] for i in range(1 , _UpperCAmelCase ): __lowerCAmelCase : Any = grid[0][i] + dp[0][i - 1] for i in range(1 , _UpperCAmelCase ): __lowerCAmelCase : Optional[int] = grid[i][0] + dp[i - 1][0] for i in range(1 , _UpperCAmelCase ): for j in range(1 , _UpperCAmelCase ): __lowerCAmelCase : List[Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'{solution() = }')
86
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : List[Any] , lowercase : Dict ) -> int: """simple docstring""" snake_case : Union[str, Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): snake_case : List[Any] = n - k # Calculate C(n,k) for i in range(_UpperCAmelCase ): result *= n - i result //= i + 1 return result def __lowerCAmelCase ( lowercase : Tuple ) -> int: """simple docstring""" return binomial_coefficient(2 * node_count , _UpperCAmelCase ) // (node_count + 1) def __lowerCAmelCase ( lowercase : Optional[Any] ) -> int: """simple docstring""" if n < 0: raise ValueError("factorial() not defined for negative values" ) snake_case : Dict = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCAmelCase ( lowercase : int ) -> int: """simple docstring""" return catalan_number(_UpperCAmelCase ) * factorial(_UpperCAmelCase ) if __name__ == "__main__": __snake_case = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
203
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ) -> Tuple: lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCamelCase__ : Optional[Any] = True elif "IPython" in sys.modules: lowerCamelCase__ : Optional[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCamelCase__ : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = PrepareForLaunch(_UpperCAmelCase , distributed_type='TPU' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = PrepareForLaunch(_UpperCAmelCase , distributed_type='MULTI_GPU' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase__ : int = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowerCamelCase__ : Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' )
50
0
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[Any] , *snake_case :Optional[Any] , **snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :int , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :Dict , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Tuple , *snake_case :int , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :Optional[Any] , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :Optional[Any] , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[Any] , *snake_case :str , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :str , **snake_case :List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :List[str] , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Tuple , *snake_case :List[str] , **snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :List[str] , **snake_case :int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :List[str] , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Dict , *snake_case :List[str] , **snake_case :int ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :Optional[int] , **snake_case :str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Tuple , *snake_case :str , **snake_case :str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Any , *snake_case :int , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Tuple , *snake_case :Optional[Any] , **snake_case :Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :List[Any] , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :int , *snake_case :List[Any] , **snake_case :List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :Optional[Any] , **snake_case :str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :int , *snake_case :Dict , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Any , *snake_case :Optional[Any] , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :str , *snake_case :Optional[Any] , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[Any] , *snake_case :Dict , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Optional[int] , *snake_case :Tuple , **snake_case :Dict ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :List[str] , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :int , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Union[str, Any] , *snake_case :Any , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :int , *snake_case :Tuple , **snake_case :Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :int , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Any , *snake_case :Optional[int] , **snake_case :Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :List[Any] , **snake_case :Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :Union[str, Any] , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) def __snake_case ( *_lowerCAmelCase : int , **_lowerCAmelCase : Dict ) -> Any: requires_backends(_UpperCAmelCase , ["torch"] ) def __snake_case ( *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ) -> str: requires_backends(_UpperCAmelCase , ["torch"] ) def __snake_case ( *_lowerCAmelCase : List[str] , **_lowerCAmelCase : List[Any] ) -> Optional[int]: requires_backends(_UpperCAmelCase , ["torch"] ) def __snake_case ( *_lowerCAmelCase : str , **_lowerCAmelCase : List[str] ) -> Any: requires_backends(_UpperCAmelCase , ["torch"] ) def __snake_case ( *_lowerCAmelCase : int , **_lowerCAmelCase : Tuple ) -> Tuple: requires_backends(_UpperCAmelCase , ["torch"] ) def __snake_case ( *_lowerCAmelCase : Dict , **_lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: requires_backends(_UpperCAmelCase , ["torch"] ) def __snake_case ( *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[Any] ) -> Any: requires_backends(_UpperCAmelCase , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Tuple , *snake_case :Tuple , **snake_case :Dict ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :Optional[int] , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :Tuple , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[Any] , *snake_case :List[Any] , **snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :List[str] , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :Union[str, Any] , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[Any] , *snake_case :Optional[Any] , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :List[Any] , **snake_case :Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :Dict , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[str] , *snake_case :int , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :Optional[int] , **snake_case :Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :Any , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :int , *snake_case :str , **snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Dict , *snake_case :Dict , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Dict , *snake_case :int , **snake_case :Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Tuple , *snake_case :Any , **snake_case :Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :Dict , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :Optional[Any] , **snake_case :Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[Any] , *snake_case :Optional[Any] , **snake_case :Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :Any , **snake_case :str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :Optional[Any] , **snake_case :Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Dict , *snake_case :List[Any] , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :Optional[int] , **snake_case :str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :Dict , **snake_case :int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :int , *snake_case :Optional[int] , **snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Dict , *snake_case :Optional[Any] , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :str , *snake_case :List[str] , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Union[str, Any] , *snake_case :List[str] , **snake_case :str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :int , *snake_case :Any , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[Any] , *snake_case :Dict , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[Any] , *snake_case :str , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :str , *snake_case :int , **snake_case :int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :Tuple , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Tuple , *snake_case :int , **snake_case :str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Dict , *snake_case :str , **snake_case :List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :Optional[Any] , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Union[str, Any] , *snake_case :Any , **snake_case :str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :str , **snake_case :List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[Any] , *snake_case :Optional[int] , **snake_case :List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :int , *snake_case :List[str] , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :int , *snake_case :Union[str, Any] , **snake_case :str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :Tuple , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[str] , *snake_case :List[Any] , **snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :Dict , **snake_case :int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :Optional[Any] , **snake_case :str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Any , *snake_case :Optional[Any] , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :List[str] , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[str] , *snake_case :Dict , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :Any , **snake_case :str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :Union[str, Any] , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Dict , *snake_case :Optional[int] , **snake_case :Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[Any] , *snake_case :Any , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[Any] , *snake_case :Tuple , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Optional[int] , *snake_case :Tuple , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :List[Any] , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :Tuple , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :str , *snake_case :int , **snake_case :str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Dict , *snake_case :Tuple , **snake_case :str ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[Any] , *snake_case :List[Any] , **snake_case :Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Dict , *snake_case :Any , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Dict , *snake_case :Tuple , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[Any] , *snake_case :List[str] , **snake_case :str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :int , **snake_case :str ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :Optional[int] , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Tuple , *snake_case :Optional[Any] , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :int , *snake_case :int , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :Tuple , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Union[str, Any] , *snake_case :List[str] , **snake_case :Dict ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :Union[str, Any] , **snake_case :List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :str , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Dict , *snake_case :Dict , **snake_case :Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :List[str] , **snake_case :Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Tuple , *snake_case :Union[str, Any] , **snake_case :Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Union[str, Any] , *snake_case :Dict , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :str , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :Union[str, Any] , **snake_case :int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :str , *snake_case :Tuple , **snake_case :str ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :int , *snake_case :int , **snake_case :Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Tuple , *snake_case :int , **snake_case :List[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Any , *snake_case :Union[str, Any] , **snake_case :int ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :Any , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :Tuple , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :str , *snake_case :int , **snake_case :Any ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :Dict , **snake_case :Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[Any] , *snake_case :List[str] , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[Any] , *snake_case :Optional[int] , **snake_case :Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :Optional[Any] , **snake_case :Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :List[Any] , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Any , *snake_case :str , **snake_case :int ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[Any] , *snake_case :List[str] , **snake_case :Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :int , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Tuple , *snake_case :Optional[int] , **snake_case :Dict ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[Any] , *snake_case :Tuple , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Tuple , *snake_case :Union[str, Any] , **snake_case :Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Union[str, Any] , *snake_case :Union[str, Any] , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :Dict , **snake_case :Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :Optional[int] , **snake_case :Any ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Union[str, Any] , *snake_case :Any , **snake_case :Dict ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :int , *snake_case :str , **snake_case :int ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :Optional[Any] , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Optional[int] , *snake_case :Tuple , **snake_case :Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :Optional[Any] , **snake_case :List[str] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , *snake_case :Optional[Any] , **snake_case :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Dict , *snake_case :str , **snake_case :List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Tuple , *snake_case :Optional[int] , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :Dict , **snake_case :int ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :List[str] , *snake_case :Dict , **snake_case :Dict ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[Any] , *snake_case :Optional[Any] , **snake_case :Optional[Any] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Dict , *snake_case :int , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Any , *snake_case :Union[str, Any] , **snake_case :int ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Optional[int] , *snake_case :List[str] , **snake_case :Tuple ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Tuple , *snake_case :str , **snake_case :Dict ): '''simple docstring''' requires_backends(cls , ["torch"] ) class __magic_name__ ( metaclass=__UpperCamelCase ): """simple docstring""" __UpperCamelCase = ['''torch'''] def __init__( self :Union[str, Any] , *snake_case :Union[str, Any] , **snake_case :List[str] ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , *snake_case :str , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , *snake_case :Optional[Any] , **snake_case :Optional[int] ): '''simple docstring''' requires_backends(cls , ["torch"] )
300
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : str = MBartConfig __UpperCamelCase : Dict = {} __UpperCamelCase : Tuple = '''gelu''' def __init__( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=1_3 , lowerCAmelCase_ : Union[str, Any]=7 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : int=3_2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Any=3_7 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : List[str]=2_0 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Dict=0 , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[str] = batch_size _A: str = seq_length _A: str = is_training _A: Dict = use_labels _A: List[Any] = vocab_size _A: int = hidden_size _A: List[Any] = num_hidden_layers _A: Dict = num_attention_heads _A: Optional[Any] = intermediate_size _A: Optional[int] = hidden_dropout_prob _A: Union[str, Any] = attention_probs_dropout_prob _A: Dict = max_position_embeddings _A: Dict = eos_token_id _A: Any = pad_token_id _A: int = bos_token_id def __magic_name__ ( self : Tuple ): """simple docstring""" _A: str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _A: Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _A: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) _A: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _A: int = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: Tuple = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _A: int = inputs_dict['input_ids'] _A: Union[str, Any] = input_ids[:1, :] _A: str = inputs_dict['attention_mask'][:1, :] _A: Union[str, Any] = inputs_dict['head_mask'] _A: Union[str, Any] = 1 # first forward pass _A: Union[str, Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _A: Any = outputs.to_tuple() _A: Optional[int] = past_key_values[1] def lowerCamelCase__ ( a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Union[str, Any]: if attention_mask is None: _A: Union[str, Any] = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _A: Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _A: Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __UpperCamelCase : Tuple = (TFMBartForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase : Optional[int] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : str = False def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = TFMBartModelTester(self ) _A: List[str] = ConfigTester(self , config_class=lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Tuple ): """simple docstring""" _A: int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase : str = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] __UpperCamelCase : Optional[Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] __UpperCamelCase : Optional[Any] = '''facebook/mbart-large-en-ro''' @cached_property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __magic_name__ ( self : List[Any] , **lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: List[str] = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def __magic_name__ ( self : str , **lowerCAmelCase_ : int ): """simple docstring""" _A: Union[str, Any] = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='''tf''' ) _A: Optional[int] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _A: str = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def __magic_name__ ( self : str ): """simple docstring""" self._assert_generated_batch_equal_expected()
121
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : str = { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __lowercase (__UpperCamelCase ): """simple docstring""" _snake_case = """speech_to_text""" _snake_case = ["""past_key_values"""] _snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , A=1_0_0_0_0 , A=1_2 , A=2_0_4_8 , A=4 , A=6 , A=2_0_4_8 , A=4 , A=0.0 , A=0.0 , A=True , A=True , A="relu" , A=2_5_6 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=2 , A=True , A=1 , A=0 , A=2 , A=6_0_0_0 , A=1_0_2_4 , A=2 , A=(5, 5) , A=1_0_2_4 , A=8_0 , A=1 , **A , ) -> Any: snake_case : Optional[int] = vocab_size snake_case : List[str] = d_model snake_case : int = encoder_ffn_dim snake_case : Optional[Any] = encoder_layers snake_case : Tuple = encoder_attention_heads snake_case : str = decoder_ffn_dim snake_case : Optional[Any] = decoder_layers snake_case : Dict = decoder_attention_heads snake_case : int = dropout snake_case : str = attention_dropout snake_case : Dict = activation_dropout snake_case : int = activation_function snake_case : Tuple = init_std snake_case : Optional[int] = encoder_layerdrop snake_case : Dict = decoder_layerdrop snake_case : Union[str, Any] = use_cache snake_case : Optional[Any] = encoder_layers snake_case : Any = scale_embedding # scale factor will be sqrt(d_model) if True snake_case : Optional[int] = max_source_positions snake_case : Optional[int] = max_target_positions snake_case : int = num_conv_layers snake_case : Union[str, Any] = list(A ) snake_case : int = conv_channels snake_case : Dict = input_feat_per_channel snake_case : int = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , **A , )
124
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[int] = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Tuple = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : str = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCamelCase__ : Union[str, Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = num_labels lowerCamelCase__ : Dict = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCamelCase__ : List[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCamelCase__ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCamelCase__ : Optional[Any] = [2, 2, 20] lowerCamelCase__ : Optional[int] = [3, 12, 16] lowerCamelCase__ : str = [192, 768, 1024] lowerCamelCase__ : Any = CvtForImageClassification(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : List[str] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lowerCamelCase__ : Optional[int] = OrderedDict() lowerCamelCase__ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCamelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCamelCase__ : str = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCamelCase__ : str = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
50
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class snake_case__ : """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 class snake_case__ : """simple docstring""" def __init__( self : List[str], _snake_case : int ) ->Dict: snake_case__ : list[list[Edge]] = [[] for _ in range(_snake_case )] snake_case__ : str = size def __getitem__( self : List[str], _snake_case : int ) ->Iterator[Edge]: return iter(self._graph[vertex] ) @property def lowercase_ ( self : Dict ) ->List[Any]: return self._size def lowercase_ ( self : Tuple, _snake_case : int, _snake_case : int, _snake_case : int ) ->List[Any]: if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(_snake_case, _snake_case ) ) def lowercase_ ( self : Union[str, Any], _snake_case : int, _snake_case : int ) ->int | None: snake_case__ : Dict = deque([start_vertex] ) snake_case__ : list[int | None] = [None] * self.size snake_case__ : int = 0 while queue: snake_case__ : str = queue.popleft() snake_case__ : List[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: snake_case__ : Any = current_distance + edge.weight snake_case__ : List[Any] = distances[edge.destination_vertex] if ( isinstance(_snake_case, _snake_case ) and new_distance >= dest_vertex_distance ): continue snake_case__ : List[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
277
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __lowercase ( __UpperCamelCase ): """simple docstring""" UpperCamelCase : Any = "gptsan-japanese" UpperCamelCase : List[str] = [ "past_key_values", ] UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , A=3_60_00 , A=12_80 , A=10_24 , A=81_92 , A=40_96 , A=1_28 , A=10 , A=0 , A=16 , A=16 , A=1_28 , A=0.0 , A=1e-5 , A=False , A=0.0 , A="float32" , A=False , A=False , A=False , A=0.002 , A=False , A=True , A=3_59_98 , A=3_59_95 , A=3_59_99 , **A , ) -> List[str]: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = max_position_embeddings lowerCamelCase = d_model lowerCamelCase = d_ff lowerCamelCase = d_ext lowerCamelCase = d_spout lowerCamelCase = num_switch_layers lowerCamelCase = num_ext_layers lowerCamelCase = num_switch_layers + num_ext_layers lowerCamelCase = num_heads lowerCamelCase = num_experts lowerCamelCase = expert_capacity lowerCamelCase = dropout_rate lowerCamelCase = layer_norm_epsilon lowerCamelCase = router_bias lowerCamelCase = router_jitter_noise lowerCamelCase = router_dtype lowerCamelCase = router_ignore_padding_tokens lowerCamelCase = output_hidden_states lowerCamelCase = output_attentions lowerCamelCase = initializer_factor lowerCamelCase = output_router_logits lowerCamelCase = use_cache super().__init__( separator_token_id=A , pad_token_id=A , eos_token_id=A , **A , )
252
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
0
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A_ :str = logging.get_logger(__name__) logging.set_verbosity_info() def A ( a_ ,a_ ) -> Dict: if "xprophetnet" in prophetnet_checkpoint_path: __UpperCamelCase : Union[str, Any] =XLMProphetNetForConditionalGenerationOld.from_pretrained(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] =XLMProphetNetForConditionalGeneration.from_pretrained( _UpperCAmelCase ,output_loading_info=_UpperCAmelCase ) else: __UpperCamelCase : str =ProphetNetForConditionalGenerationOld.from_pretrained(_UpperCAmelCase ) __UpperCamelCase : int =ProphetNetForConditionalGeneration.from_pretrained( _UpperCAmelCase ,output_loading_info=_UpperCAmelCase ) __UpperCamelCase : List[str] =['key_proj', 'value_proj', 'query_proj'] __UpperCamelCase : Union[str, Any] ={ 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: __UpperCamelCase : Optional[Any] =key.split('.' ) if attributes[0] == "lm_head": __UpperCamelCase : Optional[Any] =prophet __UpperCamelCase : Union[str, Any] =prophet_old else: __UpperCamelCase : int =prophet.prophetnet __UpperCamelCase : Optional[int] =prophet_old.model __UpperCamelCase : Dict =False for attribute in attributes: if attribute in mapping: __UpperCamelCase : Any =mapping[attribute] if not hasattr(_UpperCAmelCase ,_UpperCAmelCase ) and len(_UpperCAmelCase ) > 0: __UpperCamelCase : Any =attribute elif hasattr(_UpperCAmelCase ,_UpperCAmelCase ): __UpperCamelCase : Union[str, Any] =attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __UpperCamelCase : Union[str, Any] =old_model.weight logger.info(F'{attribute} is initialized.' ) __UpperCamelCase : Optional[Any] =True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __UpperCamelCase : List[Any] =old_model.bias logger.info(F'{attribute} is initialized' ) __UpperCamelCase : Union[str, Any] =True break elif attribute in special_keys and hasattr(_UpperCAmelCase ,'in_proj_weight' ): __UpperCamelCase : Union[str, Any] =old_model.in_proj_weight.shape[0] // 3 __UpperCamelCase : Dict =getattr(_UpperCAmelCase ,_UpperCAmelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __UpperCamelCase : Tuple =nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __UpperCamelCase : List[str] =nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __UpperCamelCase : Optional[int] =nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __UpperCamelCase : Optional[Any] =nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __UpperCamelCase : Optional[int] =nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __UpperCamelCase : Any =nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __UpperCamelCase : Optional[Any] =True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __UpperCamelCase : Any =nn.Parameter(old_model.embed_positions.weight[:512, :] ) __UpperCamelCase : Optional[Any] =True break if attribute.isdigit(): __UpperCamelCase : Optional[Any] =model[int(_UpperCAmelCase )] __UpperCamelCase : List[str] =old_model[int(_UpperCAmelCase )] else: __UpperCamelCase : int =getattr(_UpperCAmelCase ,_UpperCAmelCase ) if old_attribute == "": __UpperCamelCase : Optional[int] =old_model else: if not hasattr(_UpperCAmelCase ,_UpperCAmelCase ): raise ValueError(F'{old_model} does not have {old_attribute}' ) __UpperCamelCase : Optional[int] =getattr(_UpperCAmelCase ,_UpperCAmelCase ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": A_ :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) A_ :str = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
71
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
0
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowercase_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = DebertaVaTokenizer UpperCAmelCase : int = DebertaVaTokenizerFast UpperCAmelCase : Optional[int] = True UpperCAmelCase : Optional[Any] = True def lowerCAmelCase_ ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing _A = DebertaVaTokenizer(_UpperCAmelCase , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple ): _A = 'this is a test' _A = 'this is a test' return input_text, output_text def lowerCAmelCase_ ( self : Union[str, Any] ): _A = '<pad>' _A = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(_UpperCAmelCase ) , 30_001 ) def lowerCAmelCase_ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def lowerCAmelCase_ ( self : str ): # fmt: off _A = ' \tHeLLo!how \n Are yoU? ' _A = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on _A = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) _A = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def lowerCAmelCase_ ( self : Dict ): pass def lowerCAmelCase_ ( self : str ): # fmt: off _A = 'I was born in 92000, and this is falsé.' _A = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _A = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) _A = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : int ): # fmt: off _A = 'I was born in 92000, and this is falsé.' _A = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _A = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) _A = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): # fmt: off _A = 'I was born in 92000, and this is falsé.' _A = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _A = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) _A = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): # fmt: off _A = 'I was born in 92000, and this is falsé.' _A = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on _A = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) _A = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): # fmt: off _A = ' \tHeLLo!how \n Are yoU? ' _A = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on _A = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) _A = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = 'I was born in 92000, and this is falsé.' _A = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) _A = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = self.get_rust_tokenizer() _A = tokenizer.encode(_UpperCAmelCase ) _A = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = 'This is a test' _A = [13, 1, 4_398, 25, 21, 1_289] _A = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] _A = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] _A = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) _A = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off _A = 'I was born in 92000, and this is falsé.' _A = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] _A = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] _A = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : int ): _A = DebertaVaTokenizer(_UpperCAmelCase ) _A = tokenizer.encode('sequence builders' ) _A = tokenizer.encode('multi-sequence build' ) _A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def lowerCAmelCase_ ( self : Tuple ): # fmt: off _A = {'input_ids': [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
315
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = ["image_processor", "tokenizer"] lowercase_ = "BlipImageProcessor" lowercase_ = "AutoTokenizer" def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) # add QFormer tokenizer SCREAMING_SNAKE_CASE_ = qformer_tokenizer def __call__( self : str , _lowerCAmelCase : ImageInput = None , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Tuple , ): if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) SCREAMING_SNAKE_CASE_ = BatchFeature() if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) encoding.update(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.qformer_tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = qformer_text_encoding.pop('input_ids' ) SCREAMING_SNAKE_CASE_ = qformer_text_encoding.pop('attention_mask' ) if images is not None: SCREAMING_SNAKE_CASE_ = self.image_processor(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) encoding.update(_lowerCAmelCase ) return encoding def lowerCAmelCase_ ( self : Dict , *_lowerCAmelCase : str , **_lowerCAmelCase : Any ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[Any] ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[str] , **_lowerCAmelCase : Any ): if os.path.isfile(_lowerCAmelCase ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = os.path.join(_lowerCAmelCase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(_lowerCAmelCase ) return super().save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , _lowerCAmelCase : List[Any] , **_lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(_lowerCAmelCase , subfolder='qformer_tokenizer' ) SCREAMING_SNAKE_CASE_ = cls._get_arguments_from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) args.append(_lowerCAmelCase ) return cls(*_lowerCAmelCase )
225
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
0
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): _A : str = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): _A : Optional[Any] = key.replace("""module.encoder""","""glpn.encoder""" ) if key.startswith("""module.decoder""" ): _A : List[str] = key.replace("""module.decoder""","""decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _A : Dict = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] _A : Tuple = key.replace(f'''patch_embed{idx}''',f'''patch_embeddings.{int(_UpperCAmelCase )-1}''' ) if "norm" in key: _A : str = key.replace("""norm""","""layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _A : Dict = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] _A : str = key.replace(f'''layer_norm{idx}''',f'''layer_norm.{int(_UpperCAmelCase )-1}''' ) if "layer_norm1" in key: _A : Optional[int] = key.replace("""layer_norm1""","""layer_norm_1""" ) if "layer_norm2" in key: _A : Optional[int] = key.replace("""layer_norm2""","""layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 _A : List[Any] = key[key.find("""block""" ) + len("""block""" )] _A : int = key.replace(f'''block{idx}''',f'''block.{int(_UpperCAmelCase )-1}''' ) if "attn.q" in key: _A : Union[str, Any] = key.replace("""attn.q""","""attention.self.query""" ) if "attn.proj" in key: _A : Union[str, Any] = key.replace("""attn.proj""","""attention.output.dense""" ) if "attn" in key: _A : Dict = key.replace("""attn""","""attention.self""" ) if "fc1" in key: _A : Dict = key.replace("""fc1""","""dense1""" ) if "fc2" in key: _A : Any = key.replace("""fc2""","""dense2""" ) if "linear_pred" in key: _A : Dict = key.replace("""linear_pred""","""classifier""" ) if "linear_fuse" in key: _A : Tuple = key.replace("""linear_fuse.conv""","""linear_fuse""" ) _A : List[str] = key.replace("""linear_fuse.bn""","""batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _A : Optional[Any] = key[key.find("""linear_c""" ) + len("""linear_c""" )] _A : Dict = key.replace(f'''linear_c{idx}''',f'''linear_c.{int(_UpperCAmelCase )-1}''' ) if "bot_conv" in key: _A : str = key.replace("""bot_conv""","""0.convolution""" ) if "skip_conv1" in key: _A : Union[str, Any] = key.replace("""skip_conv1""","""1.convolution""" ) if "skip_conv2" in key: _A : List[Any] = key.replace("""skip_conv2""","""2.convolution""" ) if "fusion1" in key: _A : Optional[int] = key.replace("""fusion1""","""1.fusion""" ) if "fusion2" in key: _A : Union[str, Any] = key.replace("""fusion2""","""2.fusion""" ) if "fusion3" in key: _A : List[Any] = key.replace("""fusion3""","""3.fusion""" ) if "fusion" in key and "conv" in key: _A : str = key.replace("""conv""","""convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): _A : Dict = key.replace("""module.last_layer_depth""","""head.head""" ) _A : str = value return new_state_dict def lowerCAmelCase_ ( snake_case_,snake_case_ ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _A : Any = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _A : Optional[Any] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _A : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _A : Optional[int] = kv_bias[: config.hidden_sizes[i]] _A : Any = kv_weight[ config.hidden_sizes[i] :, : ] _A : Dict = kv_bias[config.hidden_sizes[i] :] def lowerCAmelCase_ ( ): _A : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _A : Tuple = Image.open(requests.get(_UpperCAmelCase,stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=False,snake_case_=None ): _A : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512],decoder_hidden_size=64,depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _A : Union[str, Any] = GLPNImageProcessor() # prepare image _A : str = prepare_img() _A : Tuple = image_processor(images=_UpperCAmelCase,return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict _A : Any = torch.load(_UpperCAmelCase,map_location=torch.device("""cpu""" ) ) # rename keys _A : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase,_UpperCAmelCase ) # create HuggingFace model and load state dict _A : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass _A : List[str] = model(_UpperCAmelCase ) _A : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _A : List[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _A : List[str] = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) _A : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3],_UpperCAmelCase,atol=1e-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase,_UpperCAmelCase ),organization="""nielsr""",commit_message="""Add model""",use_temp_dir=_UpperCAmelCase,) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase,_UpperCAmelCase ),organization="""nielsr""",commit_message="""Add image processor""",use_temp_dir=_UpperCAmelCase,) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) _snake_case = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
26
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCamelCase__ = logging.get_logger(__name__) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : str = set() __lowerCAmelCase : Any = [] def parse_line(_UpperCamelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowerCAmelCase : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: __lowerCAmelCase : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F": {x}: " in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: __lowerCAmelCase : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): __lowerCAmelCase : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Tuple = set() __lowerCAmelCase : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def __lowerCAmelCase (_UpperCamelCase ): return values.split(',' ) lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCamelCase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCamelCase__ = extract_warnings(args.output_dir, args.targets) lowerCamelCase__ = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
86
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
0
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def __lowerCAmelCase ( lowercase : Tuple , lowercase : int , lowercase : int ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(_UpperCAmelCase , 2 ) - pow(_UpperCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_UpperCAmelCase , 2 ) - pow(_UpperCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_UpperCAmelCase , 2 ) + pow(_UpperCAmelCase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
203
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : """simple docstring""" def __init__( self :int , snake_case :Optional[int] , snake_case :Union[str, Any]=13 , snake_case :Optional[int]=7 , snake_case :int=True , snake_case :Any=True , snake_case :Union[str, Any]=True , snake_case :List[Any]=True , snake_case :int=99 , snake_case :Tuple=24 , snake_case :Any=2 , snake_case :Tuple=6 , snake_case :int=37 , snake_case :Optional[Any]="gelu" , snake_case :Optional[Any]=0.1 , snake_case :List[str]=0.1 , snake_case :str=512 , snake_case :List[str]=16 , snake_case :int=2 , snake_case :List[str]=0.02 , snake_case :int=3 , snake_case :Optional[Any]=None , snake_case :str=1_000 , ): '''simple docstring''' A_ : List[str] = parent A_ : Union[str, Any] = batch_size A_ : Tuple = seq_length A_ : Any = is_training A_ : Optional[int] = use_input_mask A_ : Any = use_token_type_ids A_ : int = use_labels A_ : str = vocab_size A_ : int = hidden_size A_ : Dict = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : str = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : int = type_sequence_label_size A_ : str = initializer_range A_ : List[Any] = num_labels A_ : List[str] = scope A_ : str = range_bbox def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : Union[str, Any] = bbox[i, j, 3] A_ : List[str] = bbox[i, j, 1] A_ : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Optional[int] = bbox[i, j, 2] A_ : str = bbox[i, j, 0] A_ : str = t A_ : Any = None if self.use_input_mask: A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A_ : List[Any] = None if self.use_token_type_ids: A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Optional[int] = None A_ : List[str] = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Tuple = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Optional[Any] , snake_case :str , snake_case :Union[str, Any] , snake_case :Any , snake_case :Any , snake_case :List[str] , snake_case :Any , ): '''simple docstring''' A_ : str = LiltModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : str = model(snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : int = model(snake_case , bbox=snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , bbox=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :str , snake_case :List[Any] , snake_case :Union[str, Any] , snake_case :Union[str, Any] , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , ): '''simple docstring''' A_ : Tuple = self.num_labels A_ : List[str] = LiltForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() A_ : Dict = model( snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :int , snake_case :Optional[Any] , snake_case :List[str] , snake_case :str , snake_case :str , snake_case :Any , snake_case :Union[str, Any] , ): '''simple docstring''' A_ : Optional[int] = LiltForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() A_ : Optional[int] = model( snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Tuple = self.prepare_config_and_inputs() ( A_ ) : Optional[int] = config_and_inputs A_ : Any = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __magic_name__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :str , snake_case :List[str] ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : int = LiltModelTester(self ) A_ : Tuple = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Union[str, Any] = type self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[int] = LiltModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch @slow class __magic_name__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(snake_case ) A_ : List[Any] = torch.tensor([[1, 2]] , device=snake_case ) A_ : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case ) # forward pass with torch.no_grad(): A_ : str = model(input_ids=snake_case , bbox=snake_case ) A_ : List[str] = torch.Size([1, 2, 768] ) A_ : Any = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=snake_case , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case , atol=1e-3 ) )
300
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase__ : Tuple = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCAmelCase__ : Any = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } UpperCAmelCase__ : str = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase__ ( ) -> Optional[int]: _A: Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _A: Optional[Any] = bs[:] _A: List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 _A: Any = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ ( a ) -> Optional[int]: _A: Union[str, Any] = set() _A: List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A: Dict = char return pairs class UpperCAmelCase ( __UpperCamelCase ): '''simple docstring''' __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any]="replace" , lowerCAmelCase_ : str="<s>" , lowerCAmelCase_ : Tuple="</s>" , lowerCAmelCase_ : Dict="</s>" , lowerCAmelCase_ : Union[str, Any]="<s>" , lowerCAmelCase_ : int="<unk>" , lowerCAmelCase_ : Optional[Any]="<pad>" , lowerCAmelCase_ : int="<mask>" , lowerCAmelCase_ : str=False , **lowerCAmelCase_ : Any , ): """simple docstring""" _A: List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _A: Tuple = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _A: Dict = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token _A: Union[str, Any] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _A: Any = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _A: List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _A: str = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='''utf-8''' ) as vocab_handle: _A: int = json.load(lowerCAmelCase_ ) _A: List[Any] = {v: k for k, v in self.encoder.items()} _A: Tuple = errors # how to handle errors in decoding _A: List[str] = bytes_to_unicode() _A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as merges_handle: _A: Any = merges_handle.read().split('''\n''' )[1:-1] _A: Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] _A: Tuple = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _A: Dict = {} _A: Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _A: Optional[Any] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __magic_name__ ( self : Any ): """simple docstring""" return len(self.encoder ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int] ): """simple docstring""" if token in self.cache: return self.cache[token] _A: Union[str, Any] = tuple(lowerCAmelCase_ ) _A: int = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _A: List[str] = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A: int = bigram _A: Optional[Any] = [] _A: Union[str, Any] = 0 while i < len(lowerCAmelCase_ ): try: _A: int = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A: Optional[int] = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A: str = tuple(lowerCAmelCase_ ) _A: Union[str, Any] = new_word if len(lowerCAmelCase_ ) == 1: break else: _A: Optional[Any] = get_pairs(lowerCAmelCase_ ) _A: int = ' '.join(lowerCAmelCase_ ) _A: Tuple = word return word def __magic_name__ ( self : int , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: int = [] for token in re.findall(self.pat , lowerCAmelCase_ ): _A: List[Any] = ''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase_ ).split(''' ''' ) ) return bpe_tokens def __magic_name__ ( self : Any , lowerCAmelCase_ : List[Any] ): """simple docstring""" return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : Any ): """simple docstring""" return self.decoder.get(lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: str = ''.join(lowerCAmelCase_ ) _A: int = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __magic_name__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _A: List[str] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A: Union[str, Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '''\n''' ) _A: Any = 0 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _A: Union[str, Any] = token_index writer.write(''' '''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def __magic_name__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" _A: Any = [self.sep_token_id] _A: Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]=False , **lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: Any = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase_ ) > 0 and not text[0].isspace()): _A: str = ' ' + text return (text, kwargs) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def __magic_name__ ( self : Any , lowerCAmelCase_ : "Conversation" ): """simple docstring""" _A: Union[str, Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(lowerCAmelCase_ ) _A: Optional[Any] = ' '.join(lowerCAmelCase_ ) _A: Union[str, Any] = self.encode(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > self.model_max_length: _A: List[str] = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
121
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
0
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: if point: if isinstance(_UpperCAmelCase ,_UpperCAmelCase ): for item in point: if not isinstance(_UpperCAmelCase ,(int, float) ): snake_case : str = ( 'Expected a list of numbers as input, found ' f"""{type(_UpperCAmelCase ).__name__}""" ) raise TypeError(_UpperCAmelCase ) else: snake_case : Optional[Any] = f"""Expected a list of numbers as input, found {type(_UpperCAmelCase ).__name__}""" raise TypeError(_UpperCAmelCase ) else: raise ValueError("""Missing an input""" ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> float: _validate_point(_UpperCAmelCase ) _validate_point(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(_UpperCAmelCase ,_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
124
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
0
from __future__ import annotations import math a_ :Any = """2020.9.26""" a_ :Optional[int] = """xcodz-dot, cclaus, dhruvmanila""" def lowercase_ (A : str , A : Union[str, Any] , A : Any , A : Optional[Any] , A : Optional[int] ): if not all(isinstance(_UpperCAmelCase , (float, int) ) for val in locals().values() ): snake_case__ : Any = F'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(_UpperCAmelCase ) snake_case__ : str = ((x * distance) / (z + distance)) * scale snake_case__ : Union[str, Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowercase_ (A : str , A : str , A : int , A : Any , A : int ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('Axis must be a str' ) snake_case__ : List[str] = locals() del input_variables["axis"] if not all(isinstance(_UpperCAmelCase , (float, int) ) for val in input_variables.values() ): snake_case__ : str = ( 'Input values except axis must either be float or int: ' F'''{list(input_variables.values() )}''' ) raise TypeError(_UpperCAmelCase ) snake_case__ : Any = (angle % 3_6_0) / 4_5_0 * 1_8_0 / math.pi if axis == "z": snake_case__ : Dict = x * math.cos(_UpperCAmelCase ) - y * math.sin(_UpperCAmelCase ) snake_case__ : Dict = y * math.cos(_UpperCAmelCase ) + x * math.sin(_UpperCAmelCase ) snake_case__ : int = z elif axis == "x": snake_case__ : Dict = y * math.cos(_UpperCAmelCase ) - z * math.sin(_UpperCAmelCase ) snake_case__ : int = z * math.cos(_UpperCAmelCase ) + y * math.sin(_UpperCAmelCase ) snake_case__ : str = x elif axis == "y": snake_case__ : List[str] = x * math.cos(_UpperCAmelCase ) - z * math.sin(_UpperCAmelCase ) snake_case__ : int = z * math.cos(_UpperCAmelCase ) + x * math.sin(_UpperCAmelCase ) snake_case__ : Any = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
277
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
0
from __future__ import annotations def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Optional[int] ): '''simple docstring''' if b == 0: return (1, 0) (lowerCamelCase) = extended_euclid(_UpperCAmelCase , a % b ) lowerCamelCase = a // b return (y, x - k * y) def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int ): '''simple docstring''' (lowerCamelCase) = extended_euclid(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase = na * na lowerCamelCase = ra * x * na + ra * y * na return (n % m + m) % m def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str ): '''simple docstring''' (lowerCamelCase) = extended_euclid(_UpperCAmelCase , _UpperCAmelCase ) if b < 0: lowerCamelCase = (b % n + n) % n return b def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] ): '''simple docstring''' lowerCamelCase = invert_modulo(_UpperCAmelCase , _UpperCAmelCase ), invert_modulo(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase = na * na lowerCamelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
252
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
0
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ :List[str] = logging.get_logger(__name__) A_ :Tuple = {"""vocab_file""": """vocab.json"""} A_ :List[str] = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } A_ :str = {"""mgp-str""": 27} class __A ( __UpperCamelCase ): """simple docstring""" UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : List[str] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCamelCase__ , lowerCamelCase__="[GO]" , lowerCamelCase__="[GO]" , lowerCamelCase__="[s]" , lowerCamelCase__="[GO]" , **lowerCamelCase__ ): """simple docstring""" super().__init__( unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , **lowerCamelCase__ , ) with open(lowerCamelCase__ , encoding='utf-8' ) as vocab_handle: __UpperCamelCase : List[Any] =json.load(lowerCamelCase__ ) __UpperCamelCase : Optional[int] ={v: k for k, v in self.vocab.items()} @property def __lowercase ( self ): """simple docstring""" return len(self.vocab ) def __lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =[] for s in text: char_tokens.extend(lowerCamelCase__ ) return char_tokens def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.vocab.get(lowerCamelCase__ , self.vocab.get(self.unk_token ) ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.decoder.get(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCamelCase__ ) ) return __UpperCamelCase : str =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + '\n' ) return (vocab_file,)
71
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
0
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowercase_ ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase : str = DistilBertTokenizer UpperCAmelCase : Optional[int] = DistilBertTokenizerFast UpperCAmelCase : str = True @slow def lowerCAmelCase_ ( self : str ): _A = DistilBertTokenizer.from_pretrained('distilbert-base-uncased' ) _A = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
315
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ : int = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCamelCase__ : Optional[int] = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class lowerCamelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = ["input_ids", "attention_mask"] lowercase_ = RobertaTokenizer def __init__( self : Optional[Any] , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[Any]="replace" , _lowerCAmelCase : Any="<s>" , _lowerCAmelCase : Union[str, Any]="</s>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : Optional[Any]="<s>" , _lowerCAmelCase : Optional[Any]="<unk>" , _lowerCAmelCase : List[Any]="<pad>" , _lowerCAmelCase : int="<mask>" , _lowerCAmelCase : int=False , _lowerCAmelCase : str=True , **_lowerCAmelCase : Tuple , ): super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _lowerCAmelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = pre_tok_class(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = 'post_processor' SCREAMING_SNAKE_CASE_ = getattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE_ = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE_ = tuple(state['cls'] ) SCREAMING_SNAKE_CASE_ = False if state.get('add_prefix_space' , _lowerCAmelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE_ = add_prefix_space SCREAMING_SNAKE_CASE_ = True if state.get('trim_offsets' , _lowerCAmelCase ) != trim_offsets: SCREAMING_SNAKE_CASE_ = trim_offsets SCREAMING_SNAKE_CASE_ = True if changes_to_apply: SCREAMING_SNAKE_CASE_ = getattr(_lowerCAmelCase , state.pop('type' ) ) SCREAMING_SNAKE_CASE_ = component_class(**_lowerCAmelCase ) setattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) @property def lowerCAmelCase_ ( self : Optional[int] ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else value SCREAMING_SNAKE_CASE_ = value def lowerCAmelCase_ ( self : int , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = kwargs.get('is_split_into_words' , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , *_lowerCAmelCase : int , **_lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = kwargs.get('is_split_into_words' , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): SCREAMING_SNAKE_CASE_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None ): SCREAMING_SNAKE_CASE_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
225
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
0