code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase : def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=32 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : Tuple=10 , UpperCAmelCase : Union[str, Any]=[10, 20, 30, 40] , UpperCAmelCase : Union[str, Any]=[1, 1, 2, 1] , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[Any]="relu" , UpperCAmelCase : Any=3 , UpperCAmelCase : Optional[int]=None , ) -> Dict: lowerCamelCase__ : Tuple = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : Tuple = embeddings_size lowerCamelCase__ : Dict = hidden_sizes lowerCamelCase__ : List[Any] = depths lowerCamelCase__ : Any = is_training lowerCamelCase__ : Optional[int] = use_labels lowerCamelCase__ : Tuple = hidden_act lowerCamelCase__ : Union[str, Any] = num_labels lowerCamelCase__ : Optional[int] = scope lowerCamelCase__ : int = len(UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> Tuple: lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def A_ ( self : Dict ) -> Tuple: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A_ ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] ) -> Any: lowerCamelCase__ : List[str] = TFResNetModel(config=UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A_ ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] ) -> Optional[int]: lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : List[str] = TFResNetForImageClassification(UpperCAmelCase ) lowerCamelCase__ : Any = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = config_and_inputs lowerCamelCase__ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCAmelCase__ = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : Tuple ) -> int: lowerCamelCase__ : Optional[Any] = TFResNetModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def A_ ( self : int ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : List[Any] ) -> Optional[int]: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def A_ ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def A_ ( self : List[Any] ) -> str: pass def A_ ( self : List[str] ) -> int: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : int = [*signature.parameters.keys()] lowerCamelCase__ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[Any]: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : str ) -> int: def check_hidden_states_output(UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ): lowerCamelCase__ : Union[str, Any] = model_class(UpperCAmelCase ) lowerCamelCase__ : Dict = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCamelCase__ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : str = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Optional[Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase__ : int = layer_type lowerCamelCase__ : int = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : List[str] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A_ ( self : List[str] ) -> List[str]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def A_ ( self : List[str] ) -> Tuple: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def A_ ( self : int ) -> List[str]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A_ ( self : List[str] ) -> Dict: lowerCamelCase__ : Union[str, Any] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : Tuple = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass lowerCamelCase__ : Union[str, Any] = model(**UpperCAmelCase ) # verify the logits lowerCamelCase__ : Union[str, Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCamelCase__ : Any = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
50
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : List[Any] = abs(_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = 0 while n > 0: res += n % 10 n //= 10 return res def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Any = abs(_UpperCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: return sum(int(_UpperCAmelCase ) for c in str(abs(_UpperCAmelCase ) ) ) def SCREAMING_SNAKE_CASE ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCAmelCase , _UpperCAmelCase ) -> None: lowerCamelCase__ : Dict = F"""{func.__name__}({value})""" lowerCamelCase__ : Union[str, Any] = timeit(F"""__main__.{call}""" , setup='import __main__' ) print(F"""{call:56} = {func(_UpperCAmelCase )} -- {timing:.4f} seconds""" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_UpperCAmelCase , _UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
50
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _UpperCAmelCase : Any = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : int , **UpperCAmelCase : Any ) -> Tuple: super().__init__(**UpperCAmelCase ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self : Any , UpperCAmelCase : Union[np.ndarray, bytes, str] , **UpperCAmelCase : Dict ) -> Tuple: return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Any , **UpperCAmelCase : Tuple ) -> Optional[int]: lowerCamelCase__ : List[str] = {} if "candidate_labels" in kwargs: lowerCamelCase__ : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: lowerCamelCase__ : List[str] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def A_ ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]="This is a sound of {}." ) -> List[str]: if isinstance(UpperCAmelCase , UpperCAmelCase ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCamelCase__ : Dict = requests.get(UpperCAmelCase ).content else: with open(UpperCAmelCase , 'rb' ) as f: lowerCamelCase__ : List[Any] = f.read() if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[Any] = ffmpeg_read(UpperCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(UpperCAmelCase , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) lowerCamelCase__ : Optional[int] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) lowerCamelCase__ : Dict = candidate_labels lowerCamelCase__ : Any = [hypothesis_template.format(UpperCAmelCase ) for x in candidate_labels] lowerCamelCase__ : Optional[int] = self.tokenizer(UpperCAmelCase , return_tensors=self.framework , padding=UpperCAmelCase ) lowerCamelCase__ : Dict = [text_inputs] return inputs def A_ ( self : Any , UpperCAmelCase : Tuple ) -> List[str]: lowerCamelCase__ : str = model_inputs.pop('candidate_labels' ) lowerCamelCase__ : Dict = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCAmelCase ): lowerCamelCase__ : str = text_inputs[0] else: # Batching case. lowerCamelCase__ : Tuple = text_inputs[0][0] lowerCamelCase__ : int = self.model(**UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def A_ ( self : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Optional[int]: lowerCamelCase__ : Optional[int] = model_outputs.pop('candidate_labels' ) lowerCamelCase__ : List[Any] = model_outputs['logits'][0] if self.framework == "pt": lowerCamelCase__ : Optional[int] = logits.softmax(dim=0 ) lowerCamelCase__ : Tuple = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) lowerCamelCase__ : Any = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase , UpperCAmelCase ) , key=lambda UpperCAmelCase : -x[0] ) ] return result
50
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
1
from __future__ import annotations class lowerCAmelCase : def __init__( self : str , UpperCAmelCase : int ) -> None: lowerCamelCase__ : int = data lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. lowerCamelCase__ : Tuple = Node(1 ) lowerCamelCase__ : Tuple = Node(2 ) lowerCamelCase__ : List[Any] = Node(3 ) lowerCamelCase__ : Optional[Any] = Node(4 ) lowerCamelCase__ : Dict = Node(5 ) lowerCamelCase__ : Union[str, Any] = Node(6 ) lowerCamelCase__ : Optional[int] = Node(7 ) lowerCamelCase__ : Dict = Node(8 ) lowerCamelCase__ : List[Any] = Node(9 ) print(is_full_binary_tree(_UpperCAmelCase ) ) print(depth_of_tree(_UpperCAmelCase ) ) print('Tree is: ' ) display(_UpperCAmelCase ) if __name__ == "__main__": main()
50
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
1
import os import re import shutil import sys import tempfile import unittest import black _UpperCAmelCase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _UpperCAmelCase : Union[str, Any] = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : str ) -> Optional[Any]: lowerCamelCase__ : Any = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) lowerCamelCase__ : str = self.transformer_dir shutil.copy( os.path.join(UpperCAmelCase , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def A_ ( self : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[Any] = 'src/transformers' shutil.rmtree(self.transformer_dir ) def A_ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=None ) -> List[Any]: lowerCamelCase__ : List[str] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCamelCase__ : Tuple = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCamelCase__ : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase__ : int = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) lowerCamelCase__ : List[str] = os.path.join(self.transformer_dir , 'new_code.py' ) with open(UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCAmelCase ) with open(UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , UpperCAmelCase ) def A_ ( self : Optional[int] ) -> str: lowerCamelCase__ : Optional[Any] = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> Dict: # Base copy consistency self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , UpperCAmelCase ) , ) # Copy consistency with a really long name lowerCamelCase__ : Tuple = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub('Bert' , UpperCAmelCase , UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , UpperCAmelCase , overwrite_result=re.sub('Bert' , 'TestModel' , UpperCAmelCase ) , ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Tuple = check_copies.LOCALIZED_READMES['README_zh-hans.md'] lowerCamelCase__ : Optional[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) lowerCamelCase__ : Any = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCamelCase__ : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] = check_copies.convert_to_localized_md( UpperCAmelCase , UpperCAmelCase , localized_readme['format_model_list'] ) self.assertFalse(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Tuple = check_copies.convert_to_localized_md( UpperCAmelCase , UpperCAmelCase , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(UpperCAmelCase ) lowerCamelCase__ : Dict = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) lowerCamelCase__ : List[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCamelCase__ : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowerCamelCase__ , lowerCamelCase__ : Any = check_copies.convert_to_localized_md( UpperCAmelCase , UpperCAmelCase , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ) -> Tuple: lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCamelCase__ : Optional[Any] = True elif "IPython" in sys.modules: lowerCamelCase__ : Optional[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCamelCase__ : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = PrepareForLaunch(_UpperCAmelCase , distributed_type='TPU' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = PrepareForLaunch(_UpperCAmelCase , distributed_type='MULTI_GPU' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase__ : int = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowerCamelCase__ : Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' )
50
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _UpperCAmelCase : Optional[int] = """<<<<<<< This should probably be modified because it mentions: """ _UpperCAmelCase : List[Any] = """======= >>>>>>> """ _UpperCAmelCase : List[str] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] _UpperCAmelCase : str = [ # (pattern, replacement) # Order is important here for some replacements (R"""tfds\.core""", R"""datasets"""), (R"""tf\.io\.gfile\.GFile""", R"""open"""), (R"""tf\.([\w\d]+)""", R"""datasets.Value('\1')"""), (R"""tfds\.features\.Text\(\)""", R"""datasets.Value('string')"""), (R"""tfds\.features\.Text\(""", R"""datasets.Value('string'),"""), (R"""features\s*=\s*tfds.features.FeaturesDict\(""", R"""features=datasets.Features("""), (R"""tfds\.features\.FeaturesDict\(""", R"""dict("""), (R"""The TensorFlow Datasets Authors""", R"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (R"""tfds\.""", R"""datasets."""), (R"""dl_manager\.manual_dir""", R"""self.config.data_dir"""), (R"""self\.builder_config""", R"""self.config"""), ] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowerCAmelCase ( __UpperCamelCase ): @staticmethod def A_ ( UpperCAmelCase : ArgumentParser ) -> Tuple: lowerCamelCase__ : Union[str, Any] = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=UpperCAmelCase , required=UpperCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=UpperCAmelCase , required=UpperCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=UpperCAmelCase ) def __init__( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : str , *UpperCAmelCase : int ) -> Optional[Any]: lowerCamelCase__ : Any = get_logger('datasets-cli/converting' ) lowerCamelCase__ : Optional[Any] = tfds_path lowerCamelCase__ : Any = datasets_directory def A_ ( self : Dict ) -> str: if os.path.isdir(self._tfds_path ): lowerCamelCase__ : Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowerCamelCase__ : List[Any] = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) lowerCamelCase__ : List[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowerCamelCase__ : Any = [] lowerCamelCase__ : int = [] lowerCamelCase__ : List[str] = {} if os.path.isdir(self._tfds_path ): lowerCamelCase__ : Dict = os.listdir(UpperCAmelCase ) else: lowerCamelCase__ : List[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowerCamelCase__ : int = os.path.join(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : int = os.path.join(UpperCAmelCase , UpperCAmelCase ) if not os.path.isfile(UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(UpperCAmelCase , encoding='utf-8' ) as f: lowerCamelCase__ : Dict = f.readlines() lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : Tuple = [] for line in lines: lowerCamelCase__ : Union[str, Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowerCamelCase__ : Tuple = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here lowerCamelCase__ : List[Any] = '' continue elif "from absl import logging" in out_line: lowerCamelCase__ : List[Any] = 'from datasets import logging\n' elif "getLogger" in out_line: lowerCamelCase__ : Tuple = out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowerCamelCase__ : str = True lowerCamelCase__ : str = list(filter(lambda UpperCAmelCase : e in out_line , UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCAmelCase ) + '\n' ) out_lines.append(UpperCAmelCase ) out_lines.append(UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowerCamelCase__ : Union[str, Any] = re.sub(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowerCamelCase__ : Optional[int] = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) lowerCamelCase__ : Dict = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowerCamelCase__ : List[Any] = True out_lines.append(UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowerCamelCase__ : List[Any] = f_name.replace('.py' , '' ) lowerCamelCase__ : int = os.path.join(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = os.path.join(UpperCAmelCase , UpperCAmelCase ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCAmelCase ) if needs_manual_update: with_manual_update.append(UpperCAmelCase ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowerCamelCase__ : List[Any] = os.path.basename(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(UpperCAmelCase , UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
50
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow def A_ ( self : int ) -> Any: lowerCamelCase__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : str = AutoTokenizer.from_pretrained('google/mt5-small' ) lowerCamelCase__ : Any = tokenizer('Hello there' , return_tensors='pt' ).input_ids lowerCamelCase__ : Tuple = tokenizer('Hi I am' , return_tensors='pt' ).input_ids lowerCamelCase__ : Optional[int] = model(input_ids.to(UpperCAmelCase ) , labels=labels.to(UpperCAmelCase ) ).loss lowerCamelCase__ : Dict = -(labels.shape[-1] * loss.item()) lowerCamelCase__ : Optional[int] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
50
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[int] = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Tuple = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : str = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCamelCase__ : Union[str, Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = num_labels lowerCamelCase__ : Dict = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCamelCase__ : List[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCamelCase__ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCamelCase__ : Optional[Any] = [2, 2, 20] lowerCamelCase__ : Optional[int] = [3, 12, 16] lowerCamelCase__ : str = [192, 768, 1024] lowerCamelCase__ : Any = CvtForImageClassification(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : List[str] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lowerCamelCase__ : Optional[int] = OrderedDict() lowerCamelCase__ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCamelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCamelCase__ : str = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCamelCase__ : str = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
50
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : Dict = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
1
from math import factorial def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100 ) -> int: return sum(map(_UpperCAmelCase , str(factorial(_UpperCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
50
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
1
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase : def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Dict=30 , UpperCAmelCase : str=2 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Dict=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Union[str, Any]=10 , UpperCAmelCase : Union[str, Any]=0.0_2 , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : Any = parent lowerCamelCase__ : Optional[int] = batch_size lowerCamelCase__ : int = image_size lowerCamelCase__ : Tuple = patch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[str] = use_labels lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Optional[int] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : Tuple = (image_size // patch_size) ** 2 lowerCamelCase__ : Dict = num_patches + 1 def A_ ( self : Optional[Any] ) -> int: lowerCamelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None if self.use_labels: lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = self.get_config() return config, pixel_values, labels def A_ ( self : Union[str, Any] ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Dict ) -> Dict: lowerCamelCase__ : Optional[Any] = ViTMSNModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Dict = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any ) -> List[Any]: lowerCamelCase__ : List[Any] = self.type_sequence_label_size lowerCamelCase__ : Dict = ViTMSNForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : Optional[int] = 1 lowerCamelCase__ : Tuple = ViTMSNForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Any = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : List[str] ) -> List[Any]: lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = config_and_inputs lowerCamelCase__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () UpperCAmelCase__ = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : Any ) -> Union[str, Any]: lowerCamelCase__ : Any = ViTMSNModelTester(self ) lowerCamelCase__ : List[str] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A_ ( self : int ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def A_ ( self : Optional[int] ) -> Any: pass def A_ ( self : Optional[int] ) -> str: lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : int = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A_ ( self : List[str] ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Tuple = model_class(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Dict = [*signature.parameters.keys()] lowerCamelCase__ : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A_ ( self : Tuple ) -> Dict: lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> int: lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def A_ ( self : int ) -> Any: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[Any] = ViTMSNModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def A_ ( self : Dict ) -> List[str]: return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def A_ ( self : Optional[int] ) -> List[str]: torch.manual_seed(2 ) lowerCamelCase__ : Dict = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.default_image_processor lowerCamelCase__ : Any = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=UpperCAmelCase , return_tensors='pt' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : str = model(**UpperCAmelCase ) # verify the logits lowerCamelCase__ : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCamelCase__ : int = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
50
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
1
from __future__ import annotations import math _UpperCAmelCase : Any = """2020.9.26""" _UpperCAmelCase : Optional[int] = """xcodz-dot, cclaus, dhruvmanila""" def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> tuple[float, float]: if not all(isinstance(_UpperCAmelCase , (float, int) ) for val in locals().values() ): lowerCamelCase__ : Any = F"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(_UpperCAmelCase ) lowerCamelCase__ : str = ((x * distance) / (z + distance)) * scale lowerCamelCase__ : Union[str, Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> tuple[float, float, float]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('Axis must be a str' ) lowerCamelCase__ : List[str] = locals() del input_variables["axis"] if not all(isinstance(_UpperCAmelCase , (float, int) ) for val in input_variables.values() ): lowerCamelCase__ : str = ( 'Input values except axis must either be float or int: ' F"""{list(input_variables.values() )}""" ) raise TypeError(_UpperCAmelCase ) lowerCamelCase__ : Any = (angle % 360) / 450 * 180 / math.pi if axis == "z": lowerCamelCase__ : Dict = x * math.cos(_UpperCAmelCase ) - y * math.sin(_UpperCAmelCase ) lowerCamelCase__ : Dict = y * math.cos(_UpperCAmelCase ) + x * math.sin(_UpperCAmelCase ) lowerCamelCase__ : int = z elif axis == "x": lowerCamelCase__ : Dict = y * math.cos(_UpperCAmelCase ) - z * math.sin(_UpperCAmelCase ) lowerCamelCase__ : int = z * math.cos(_UpperCAmelCase ) + y * math.sin(_UpperCAmelCase ) lowerCamelCase__ : str = x elif axis == "y": lowerCamelCase__ : List[str] = x * math.cos(_UpperCAmelCase ) - z * math.sin(_UpperCAmelCase ) lowerCamelCase__ : int = z * math.cos(_UpperCAmelCase ) + x * math.sin(_UpperCAmelCase ) lowerCamelCase__ : Any = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
50
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase : str = logging.get_logger("""transformers.models.speecht5""") def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: hf_model.apply_weight_norm() lowerCamelCase__ : str = checkpoint['input_conv.weight_g'] lowerCamelCase__ : List[Any] = checkpoint['input_conv.weight_v'] lowerCamelCase__ : Union[str, Any] = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCamelCase__ : Any = checkpoint[F"""upsamples.{i}.1.weight_g"""] lowerCamelCase__ : Optional[Any] = checkpoint[F"""upsamples.{i}.1.weight_v"""] lowerCamelCase__ : int = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCamelCase__ : str = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] lowerCamelCase__ : Optional[int] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] lowerCamelCase__ : Optional[Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] lowerCamelCase__ : Tuple = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] lowerCamelCase__ : str = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] lowerCamelCase__ : List[Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] lowerCamelCase__ : Tuple = checkpoint['output_conv.1.weight_g'] lowerCamelCase__ : Dict = checkpoint['output_conv.1.weight_v'] lowerCamelCase__ : int = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , ) -> List[Any]: if config_path is not None: lowerCamelCase__ : List[Any] = SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase ) else: lowerCamelCase__ : Any = SpeechTaHifiGanConfig() lowerCamelCase__ : Tuple = SpeechTaHifiGan(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = torch.load(_UpperCAmelCase ) load_weights(orig_checkpoint['model']['generator'] , _UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : List[str] = np.load(_UpperCAmelCase ) lowerCamelCase__ : Tuple = stats[0].reshape(-1 ) lowerCamelCase__ : Optional[Any] = stats[1].reshape(-1 ) lowerCamelCase__ : int = torch.from_numpy(_UpperCAmelCase ).float() lowerCamelCase__ : Dict = torch.from_numpy(_UpperCAmelCase ).float() model.save_pretrained(_UpperCAmelCase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCAmelCase : Optional[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
50
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertJapaneseTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : Optional[int] ) -> Dict: super().setUp() lowerCamelCase__ : str = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] lowerCamelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : Tuple , UpperCAmelCase : Dict ) -> Optional[int]: lowerCamelCase__ : Tuple = 'こんにちは、世界。 \nこんばんは、世界。' lowerCamelCase__ : Union[str, Any] = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def A_ ( self : List[str] , UpperCAmelCase : List[Any] ) -> str: lowerCamelCase__ , lowerCamelCase__ : str = self.get_input_output_texts(UpperCAmelCase ) lowerCamelCase__ : int = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) return text, ids def A_ ( self : Dict ) -> List[str]: pass # TODO add if relevant def A_ ( self : List[Any] ) -> Dict: pass # TODO add if relevant def A_ ( self : Any ) -> Dict: pass # TODO add if relevant def A_ ( self : Any ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = self.tokenizer_class(self.vocab_file ) lowerCamelCase__ : str = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def A_ ( self : Any ) -> Tuple: lowerCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(UpperCAmelCase ) lowerCamelCase__ : Any = 'こんにちは、世界。\nこんばんは、世界。' lowerCamelCase__ : Union[str, Any] = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase__ : Any = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(UpperCAmelCase , 'wb' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , 'rb' ) as handle: lowerCamelCase__ : Tuple = pickle.load(UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self : Union[str, Any] ) -> Any: try: lowerCamelCase__ : Optional[int] = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self : int ) -> Union[str, Any]: try: lowerCamelCase__ : Optional[Any] = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self : str ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = MecabTokenizer(do_lower_case=UpperCAmelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def A_ ( self : int ) -> List[str]: try: lowerCamelCase__ : Optional[int] = MecabTokenizer( do_lower_case=UpperCAmelCase , normalize_text=UpperCAmelCase , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def A_ ( self : Dict ) -> Tuple: lowerCamelCase__ : Any = MecabTokenizer(normalize_text=UpperCAmelCase , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def A_ ( self : List[Any] ) -> Optional[Any]: lowerCamelCase__ : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = 'こんにちは、世界。\nこんばんは、世界。' lowerCamelCase__ : List[Any] = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(UpperCAmelCase , 'wb' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , 'rb' ) as handle: lowerCamelCase__ : Optional[int] = pickle.load(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @require_sudachi def A_ ( self : Dict ) -> int: lowerCamelCase__ : Any = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def A_ ( self : Dict ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def A_ ( self : Any ) -> int: lowerCamelCase__ : Union[str, Any] = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def A_ ( self : Any ) -> Union[str, Any]: lowerCamelCase__ : Dict = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def A_ ( self : str ) -> Optional[int]: lowerCamelCase__ : List[str] = SudachiTokenizer(do_lower_case=UpperCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def A_ ( self : Union[str, Any] ) -> Tuple: lowerCamelCase__ : int = SudachiTokenizer(normalize_text=UpperCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def A_ ( self : List[Any] ) -> Tuple: lowerCamelCase__ : Union[str, Any] = SudachiTokenizer(trim_whitespace=UpperCAmelCase , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(UpperCAmelCase ) lowerCamelCase__ : Any = 'こんにちは、世界。\nこんばんは、世界。' lowerCamelCase__ : Any = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCamelCase__ : Any = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(UpperCAmelCase , 'wb' ) as handle: pickle.dump(UpperCAmelCase , UpperCAmelCase ) with open(UpperCAmelCase , 'rb' ) as handle: lowerCamelCase__ : Optional[int] = pickle.load(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = tokenizer_new.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @require_jumanpp def A_ ( self : Tuple ) -> Tuple: lowerCamelCase__ : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self : str ) -> Optional[Any]: lowerCamelCase__ : List[str] = JumanppTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self : Tuple ) -> List[str]: lowerCamelCase__ : int = JumanppTokenizer(normalize_text=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def A_ ( self : str ) -> Dict: lowerCamelCase__ : Optional[Any] = JumanppTokenizer(trim_whitespace=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def A_ ( self : Any ) -> Any: lowerCamelCase__ : Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def A_ ( self : List[Any] ) -> int: lowerCamelCase__ : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] lowerCamelCase__ : int = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase__ : List[Any] = i lowerCamelCase__ : int = WordpieceTokenizer(vocab=UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def A_ ( self : Tuple ) -> str: lowerCamelCase__ : int = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) lowerCamelCase__ : List[str] = tokenizer.subword_tokenizer lowerCamelCase__ : Any = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(UpperCAmelCase , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) lowerCamelCase__ : Optional[int] = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(UpperCAmelCase , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def A_ ( self : Dict ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) lowerCamelCase__ : int = tokenizer.encode('ありがとう。' , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.encode('どういたしまして。' , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertJapaneseTokenizer UpperCAmelCase__ = False def A_ ( self : Dict ) -> Any: super().setUp() lowerCamelCase__ : List[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] lowerCamelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : List[Any] , **UpperCAmelCase : str ) -> List[str]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **UpperCAmelCase ) def A_ ( self : List[str] , UpperCAmelCase : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : str = 'こんにちは、世界。 \nこんばんは、世界。' lowerCamelCase__ : List[str] = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def A_ ( self : Optional[Any] ) -> List[Any]: pass # TODO add if relevant def A_ ( self : Tuple ) -> Union[str, Any]: pass # TODO add if relevant def A_ ( self : Optional[Any] ) -> Optional[int]: pass # TODO add if relevant def A_ ( self : Tuple ) -> Tuple: lowerCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) lowerCamelCase__ : List[str] = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( UpperCAmelCase , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def A_ ( self : Dict ) -> Any: lowerCamelCase__ : Any = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] lowerCamelCase__ : Optional[int] = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = i lowerCamelCase__ : Optional[int] = CharacterTokenizer(vocab=UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def A_ ( self : Any ) -> str: lowerCamelCase__ : Dict = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) lowerCamelCase__ : List[Any] = tokenizer.encode('ありがとう。' , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tokenizer.encode('どういたしまして。' , add_special_tokens=UpperCAmelCase ) lowerCamelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : List[str] ) -> Dict: lowerCamelCase__ : Union[str, Any] = 'cl-tohoku/bert-base-japanese' lowerCamelCase__ : int = AutoTokenizer.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Tuple ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) lowerCamelCase__ : Optional[Any] = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCAmelCase ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
50
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
1
from __future__ import annotations _UpperCAmelCase : Optional[int] = tuple[int, int, int] _UpperCAmelCase : int = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _UpperCAmelCase : Optional[int] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- _UpperCAmelCase : List[str] = """EGZWVONAHDCLFQMSIPJBYUKXTR""" _UpperCAmelCase : Optional[int] = """FOBHMDKEXQNRAULPGSJVTYICZW""" _UpperCAmelCase : List[Any] = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- _UpperCAmelCase : Union[str, Any] = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- _UpperCAmelCase : List[str] = """RMDJXFUWGISLHVTCQNKYPBEZOA""" _UpperCAmelCase : Any = """SGLCPQWZHKXAREONTFBVIYJUDM""" _UpperCAmelCase : List[str] = """HVSICLTYKQUBXDWAJZOMFGPREN""" _UpperCAmelCase : Tuple = """RZWQHFMVDBKICJLNTUXAGYPSOE""" _UpperCAmelCase : Optional[int] = """LFKIJODBEGAMQPXVUHYSTCZRWN""" _UpperCAmelCase : Tuple = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_UpperCAmelCase ) )) < 3: lowerCamelCase__ : int = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(_UpperCAmelCase ) # Checks if rotor positions are valid lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = rotpos if not 0 < rotorposa <= len(_UpperCAmelCase ): lowerCamelCase__ : List[Any] = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): lowerCamelCase__ : List[Any] = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): lowerCamelCase__ : int = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_UpperCAmelCase ) # Validates string and returns dict lowerCamelCase__ : Optional[int] = _plugboard(_UpperCAmelCase ) return rotpos, rotsel, pbdict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = F"""Plugboard setting isn't type string ({type(_UpperCAmelCase )})""" raise TypeError(_UpperCAmelCase ) elif len(_UpperCAmelCase ) % 2 != 0: lowerCamelCase__ : Dict = F"""Odd number of symbols ({len(_UpperCAmelCase )})""" raise Exception(_UpperCAmelCase ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique lowerCamelCase__ : Dict = set() for i in pbstring: if i not in abc: lowerCamelCase__ : Union[str, Any] = F"""'{i}' not in list of symbols""" raise Exception(_UpperCAmelCase ) elif i in tmppbl: lowerCamelCase__ : Optional[Any] = F"""Duplicate symbol ({i})""" raise Exception(_UpperCAmelCase ) else: tmppbl.add(_UpperCAmelCase ) del tmppbl # Created the dictionary lowerCamelCase__ : Dict = {} for j in range(0 , len(_UpperCAmelCase ) - 1 , 2 ): lowerCamelCase__ : int = pbstring[j + 1] lowerCamelCase__ : Union[str, Any] = pbstring[j] return pb def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (rotora, rotora, rotora) , _UpperCAmelCase = "" , ) -> str: lowerCamelCase__ : List[Any] = text.upper() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = _validator( _UpperCAmelCase , _UpperCAmelCase , plugb.upper() ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = rotor_position lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCamelCase__ : Dict = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCamelCase__ : Tuple = plugboard[symbol] # rotor ra -------------------------- lowerCamelCase__ : Optional[Any] = abc.index(_UpperCAmelCase ) + rotorposa lowerCamelCase__ : int = rotora[index % len(_UpperCAmelCase )] # rotor rb -------------------------- lowerCamelCase__ : Dict = abc.index(_UpperCAmelCase ) + rotorposa lowerCamelCase__ : Optional[Any] = rotora[index % len(_UpperCAmelCase )] # rotor rc -------------------------- lowerCamelCase__ : str = abc.index(_UpperCAmelCase ) + rotorposa lowerCamelCase__ : Optional[Any] = rotora[index % len(_UpperCAmelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCamelCase__ : List[Any] = reflector[symbol] # 2nd rotors lowerCamelCase__ : Union[str, Any] = abc[rotora.index(_UpperCAmelCase ) - rotorposa] lowerCamelCase__ : Tuple = abc[rotora.index(_UpperCAmelCase ) - rotorposa] lowerCamelCase__ : str = abc[rotora.index(_UpperCAmelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCamelCase__ : Dict = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = 0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = 0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = """This is my Python script that emulates the Enigma machine from WWII.""" _UpperCAmelCase : List[Any] = (1, 1, 1) _UpperCAmelCase : List[Any] = """pictures""" _UpperCAmelCase : int = (rotora, rotora, rotora) _UpperCAmelCase : Any = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
50
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
1
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _UpperCAmelCase : Dict = logging.get_logger(__name__) class lowerCAmelCase : UpperCAmelCase__ = None @experimental def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return _map_with_joblib(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = num_proc if num_proc <= len(_UpperCAmelCase ) else len(_UpperCAmelCase ) lowerCamelCase__ : str = [] # We organize the splits ourselve (contiguous splits) for index in range(_UpperCAmelCase ): lowerCamelCase__ : Dict = len(_UpperCAmelCase ) // num_proc lowerCamelCase__ : List[Any] = len(_UpperCAmelCase ) % num_proc lowerCamelCase__ : List[str] = div * index + min(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : str = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(_UpperCAmelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(_UpperCAmelCase )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(_UpperCAmelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) lowerCamelCase__ , lowerCamelCase__ : List[str] = None, None if not disable_tqdm: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = (RLock(),), tqdm.set_lock with Pool(_UpperCAmelCase , initargs=_UpperCAmelCase , initializer=_UpperCAmelCase ) as pool: lowerCamelCase__ : Union[str, Any] = pool.map(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F"""Finished {num_proc} processes""" ) lowerCamelCase__ : List[Any] = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(_UpperCAmelCase )} objects""" ) return mapped def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=_UpperCAmelCase ): return joblib.Parallel()( joblib.delayed(_UpperCAmelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : List[Any] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowerCamelCase__ : List[Any] = None
50
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: lowerCamelCase__ : Union[str, Any] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCamelCase__ : List[Any] = n - k # Calculate C(n,k) for i in range(_UpperCAmelCase ): result *= n - i result //= i + 1 return result def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: return binomial_coefficient(2 * node_count , _UpperCAmelCase ) // (node_count + 1) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCamelCase__ : Dict = 1 for i in range(1 , n + 1 ): result *= i return result def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: return catalan_number(_UpperCAmelCase ) * factorial(_UpperCAmelCase ) if __name__ == "__main__": _UpperCAmelCase : Dict = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
50
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
50
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: # Base Case if curr_ind == len(_UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_UpperCAmelCase ) ): if valid_connection(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Insert current vertex into path as next transition lowerCamelCase__ : List[Any] = next_ver # Validate created path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , curr_ind + 1 ): return True # Backtrack lowerCamelCase__ : List[str] = -1 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = 0 ) -> list[int]: lowerCamelCase__ : Any = [-1] * (len(_UpperCAmelCase ) + 1) # initialize start and end of path with starting index lowerCamelCase__ : Optional[Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , 1 ) else []
50
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: # ===== initialization ===== lowerCamelCase__ : Union[str, Any] = Mock() lowerCamelCase__ : Any = conn, Mock() lowerCamelCase__ : int = iter([1, None] ) lowerCamelCase__ : Optional[int] = lambda _UpperCAmelCase : next(_UpperCAmelCase ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=_UpperCAmelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
50
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __A ( unittest.TestCase ): def _lowercase (self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase (self : str ): UpperCAmelCase_ = 1 UpperCAmelCase_ = 3 UpperCAmelCase_ = (32, 32) UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def _lowercase (self : int ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _lowercase (self : Any ): torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowercase (self : Optional[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(__a ) def _lowercase (self : Any ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=__a , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase_ = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : Optional[int] ): UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowercase (self : str ): UpperCAmelCase_ = self.dummy_cond_unet_upscale UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_ = self.dummy_vae UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase_ = unet.half() UpperCAmelCase_ = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) UpperCAmelCase_ = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase_ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : List[Any] ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _lowercase (self : Tuple ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _lowercase (self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_ = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = "a cat sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
1
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
0
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : Dict = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' lowercase : Union[str, Any] = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' lowercase : Optional[int] = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' return float((preds == labels).mean() ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = simple_accuracy(snake_case__ , snake_case__ ) A : List[Any] = float(fa_score(y_true=snake_case__ , y_pred=snake_case__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Any = float(pearsonr(snake_case__ , snake_case__ )[0] ) A : str = float(spearmanr(snake_case__ , snake_case__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} elif self.config_name == "stsb": return pearson_and_spearman(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
3
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : List[str] = '''dpr''' def __init__( self : List[Any] , UpperCAmelCase__ : Tuple=3_0_5_2_2 , UpperCAmelCase__ : Tuple=7_6_8 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : str=1_2 , UpperCAmelCase__ : Tuple=3_0_7_2 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : Optional[int]=5_1_2 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : Dict=1E-12 , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Union[str, Any]="absolute" , UpperCAmelCase__ : int = 0 , **UpperCAmelCase__ : Union[str, Any] , ) -> List[str]: super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = projection_dim lowerCAmelCase = position_embedding_type
4
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
5
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings A : Optional[Any] = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(a ) class __A( a ): snake_case_ = '''rag''' snake_case_ = True def __init__( self , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=" / " , _snake_case=" // " , _snake_case=5 , _snake_case=300 , _snake_case=768 , _snake_case=8 , _snake_case="wiki_dpr" , _snake_case="train" , _snake_case="compressed" , _snake_case=None , _snake_case=None , _snake_case=False , _snake_case=False , _snake_case=0.0 , _snake_case=True , _snake_case=False , _snake_case=False , _snake_case=False , _snake_case=True , _snake_case=None , **_snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__( bos_token_id=_snake_case , pad_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , forced_eos_token_id=_snake_case , is_encoder_decoder=_snake_case , prefix=_snake_case , vocab_size=_snake_case , **_snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __a = kwargs.pop('''question_encoder''' ) __a = question_encoder_config.pop('''model_type''' ) __a = kwargs.pop('''generator''' ) __a = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig __a = AutoConfig.for_model(_snake_case , **_snake_case ) __a = AutoConfig.for_model(_snake_case , **_snake_case ) __a = reduce_loss __a = label_smoothing __a = exclude_bos_score __a = do_marginalize __a = title_sep __a = doc_sep __a = n_docs __a = max_combined_length __a = dataset __a = dataset_split __a = index_name __a = retrieval_vector_size __a = retrieval_batch_size __a = passages_path __a = index_path __a = use_dummy_dataset __a = output_retrieved __a = do_deduplication __a = use_cache if self.forced_eos_token_id is None: __a = getattr(self.generator , '''forced_eos_token_id''' , _snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , _snake_case , **_snake_case ) -> PretrainedConfig: '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = copy.deepcopy(self.__dict__ ) __a = self.question_encoder.to_dict() __a = self.generator.to_dict() __a = self.__class__.model_type return output
6
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ) -> Tuple: lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCamelCase__ : Optional[Any] = True elif "IPython" in sys.modules: lowerCamelCase__ : Optional[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCamelCase__ : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = PrepareForLaunch(_UpperCAmelCase , distributed_type='TPU' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = PrepareForLaunch(_UpperCAmelCase , distributed_type='MULTI_GPU' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase__ : int = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowerCamelCase__ : Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' )
50
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowercase_ = logging.get_logger(__name__) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = CLIPConfig lowerCamelCase = ['CLIPEncoderLayer'] def __init__( self : int,lowercase_ : CLIPConfig )-> Union[str, Any]: '''simple docstring''' super().__init__(lowercase_ ) A__ = CLIPVisionModelWithProjection(config.vision_config ) A__ = nn.Linear(config.vision_config.projection_dim,1 ) A__ = nn.Linear(config.vision_config.projection_dim,1 ) @torch.no_grad() def snake_case__ ( self : Optional[int],lowercase_ : List[Any],lowercase_ : Dict,lowercase_ : str=0.5,lowercase_ : List[Any]=0.5 )-> List[str]: '''simple docstring''' A__ = self.vision_model(lowercase_ )[0] A__ = self.p_head(lowercase_ ) A__ = nsfw_detected.flatten() A__ = nsfw_detected > p_threshold A__ = nsfw_detected.tolist() if any(lowercase_ ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(lowercase_ ): if nsfw_detected_: A__ = np.zeros(images[idx].shape ) A__ = self.w_head(lowercase_ ) A__ = watermark_detected.flatten() A__ = watermark_detected > w_threshold A__ = watermark_detected.tolist() if any(lowercase_ ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(lowercase_ ): if watermark_detected_: A__ = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
7
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = "xlm-roberta-xl" def __init__( self : str , _UpperCamelCase : Union[str, Any]=2_5_0_8_8_0 , _UpperCamelCase : List[Any]=2_5_6_0 , _UpperCamelCase : Any=3_6 , _UpperCamelCase : Dict=3_2 , _UpperCamelCase : Optional[int]=1_0_2_4_0 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : Union[str, Any]=5_1_4 , _UpperCamelCase : Dict=1 , _UpperCamelCase : int=0.02 , _UpperCamelCase : List[str]=1e-05 , _UpperCamelCase : Dict=1 , _UpperCamelCase : List[str]=0 , _UpperCamelCase : str=2 , _UpperCamelCase : Dict="absolute" , _UpperCamelCase : Optional[Any]=True , _UpperCamelCase : Dict=None , **_UpperCamelCase : List[Any] , ) ->Union[str, Any]: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = classifier_dropout class snake_case_ ( __A ): '''simple docstring''' @property def snake_case__( self : List[str] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
8
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : Any = 10 def __magic_name__( self :Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = [1, 2, 3, 4] __SCREAMING_SNAKE_CASE : str = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase__ , self.block_size , 0 ) , lowerCAmelCase__ ) def __magic_name__( self :int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __SCREAMING_SNAKE_CASE : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCAmelCase__ , self.block_size , 0 ) , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __SCREAMING_SNAKE_CASE : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCAmelCase__ , self.block_size , 0 ) , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = process_story(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [] ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = '''''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = process_story(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , [] ) self.assertEqual(lowerCAmelCase__ , [] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = process_story(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''It was the best of times.'''] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1, 2, 3, 4] ) __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __SCREAMING_SNAKE_CASE : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __magic_name__( self :str ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __magic_name__( self :str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = 101 __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __SCREAMING_SNAKE_CASE : str = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __SCREAMING_SNAKE_CASE : Tuple = compute_token_type_ids(lowerCAmelCase__ , lowerCAmelCase__ ) np.testing.assert_array_equal(lowerCAmelCase__ , lowerCAmelCase__ )
9
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[int] = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Tuple = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : str = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCamelCase__ : Union[str, Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = num_labels lowerCamelCase__ : Dict = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCamelCase__ : List[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCamelCase__ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCamelCase__ : Optional[Any] = [2, 2, 20] lowerCamelCase__ : Optional[int] = [3, 12, 16] lowerCamelCase__ : str = [192, 768, 1024] lowerCamelCase__ : Any = CvtForImageClassification(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : List[str] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lowerCamelCase__ : Optional[int] = OrderedDict() lowerCamelCase__ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCamelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCamelCase__ : str = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCamelCase__ : str = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
50
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __A = logging.get_logger(__name__) def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: Union[str, Any] =R"\w+[.]\d+" lowerCamelCase__: int =re.findall(__a , __a ) for pat in pats: lowerCamelCase__: Optional[int] =key.replace(__a , "_".join(pat.split("." ) ) ) return key def lowerCAmelCase_ ( __a , __a , __a ) -> Any: """simple docstring""" lowerCamelCase__: int =pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase__: Optional[Any] =pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase__: int =pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase__: int =pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__: Optional[Any] =pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase__: List[Any] =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__: Union[str, Any] =pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCamelCase__: int =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__: str =pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__: int =pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( __a , __a , __a=42 ) -> Tuple: """simple docstring""" lowerCamelCase__: int ={k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase__: int =flax_model.init_weights(PRNGKey(__a ) ) lowerCamelCase__: Optional[int] =flatten_dict(__a ) lowerCamelCase__: int ={} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__: List[str] =rename_key(__a ) lowerCamelCase__: str =tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__: List[str] =rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown lowerCamelCase__: Union[str, Any] =jnp.asarray(__a ) return unflatten_dict(__a )
10
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
0
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase__ = float('nan') class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Optional[Any]: _A : List[Any] = sys.stdout _A : str = open(__lowerCamelCase , "a") def __getattr__( self , __lowerCamelCase) -> List[str]: return getattr(self.stdout , __lowerCamelCase) def _lowerCamelCase ( self , __lowerCamelCase) -> str: self.stdout.write(__lowerCamelCase) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __lowerCamelCase , 0 , re.M)) def _UpperCAmelCase (UpperCamelCase__ : str=80 , UpperCamelCase__ : Tuple=False ): _A : Tuple = [] # deal with critical env vars _A : Dict = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: _A : Optional[int] = os.environ.get(UpperCamelCase__ , UpperCamelCase__ ) if val is not None: cmd.append(f"{key}={val}" ) # python executable (not always needed if the script is executable) _A : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(UpperCamelCase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _A : Tuple = [] _A : Dict = "" while len(UpperCamelCase__ ) > 0: current_line += f"{cmd.pop(0 )} " if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase__ ) _A : Union[str, Any] = "" return "\\\n".join(UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): # unwrap multi-line input _A : Union[str, Any] = re.sub(r"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own _A : int = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += f" --output_dir {output_dir}" # ensure we have --overwrite_output_dir _A : int = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) _A : Dict = subprocess.run(UpperCamelCase__ , capture_output=UpperCamelCase__ , text=UpperCamelCase__ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams _A : Tuple = variation.replace(" " , "-" ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stdout.txt" , "w" ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase__ ) / f"log.{prefix}.stderr.txt" , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f"{output_dir}/all_results.json" , "r" , encoding="utf-8" ) as f: _A : List[str] = json.load(UpperCamelCase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any , ): _A : Union[str, Any] = [] _A : Optional[int] = [] _A : Any = f"{id}: {variation:<{longest_variation_len}}" _A : Dict = f"{preamble}: " _A : Union[str, Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase__ ) , desc=UpperCamelCase__ , leave=UpperCamelCase__ ): _A : Optional[Any] = process_run_single( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase__ ): metrics.append(UpperCamelCase__ ) results.append(UpperCamelCase__ ) outcome += "✓" else: outcome += "✘" _A : str = f"\33[2K\r{outcome}" if len(UpperCamelCase__ ) > 0: _A : List[str] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _A : Any = round(mean_metrics[target_metric_key] , 2 ) _A : Tuple = f"{outcome} {mean_target}" if len(UpperCamelCase__ ) > 1: results_str += f" {tuple(round(UpperCamelCase__ , 2 ) for x in results )}" print(UpperCamelCase__ ) _A : Optional[int] = variation return mean_metrics else: print(UpperCamelCase__ ) return {variation_key: variation, target_metric_key: nan} def _UpperCAmelCase (): _A : int = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): _A : Any = pd.DataFrame(UpperCamelCase__ ) _A : List[str] = "variation" _A : List[Any] = "diff_%" _A : int = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _A : int = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase__ ): # as a fallback, use the minimal value as the sentinel _A : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase__ ): _A : Optional[Any] = df.apply( lambda UpperCamelCase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns _A : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] _A : Any = df.reindex(UpperCamelCase__ , axis="columns" ) # reorder cols # capitalize _A : Tuple = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible _A : List[str] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "<br>" ) , axis="columns" ) _A : Union[str, Any] = df.rename(lambda UpperCamelCase__ : c.replace("_" , "\n" ) , axis="columns" ) _A : Optional[int] = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase__ , floatfmt=".2f" )] print("\n\n".join(UpperCamelCase__ ) ) def _UpperCAmelCase (): _A : int = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Base cmd" , ) parser.add_argument( "--variations" , default=UpperCamelCase__ , type=UpperCamelCase__ , nargs="+" , required=UpperCamelCase__ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=UpperCamelCase__ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=UpperCamelCase__ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=UpperCamelCase__ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=UpperCamelCase__ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) _A : int = parser.parse_args() _A : Union[str, Any] = args.output_dir Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) _A : Tuple = get_base_command(UpperCamelCase__ , UpperCamelCase__ ) # split each dimension into its --foo variations _A : Dict = [list(map(str.strip , re.split(r"\|" , UpperCamelCase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _A : Union[str, Any] = list(map(str.strip , map(" ".join , itertools.product(*UpperCamelCase__ ) ) ) ) _A : Union[str, Any] = max(len(UpperCamelCase__ ) for x in variations ) # split wanted keys _A : str = args.report_metric_keys.split() # capture prints into a log file for convenience _A : Optional[int] = f"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt" print(f"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt" ) print(f"and this script's output is also piped into {report_fn}" ) _A : Tuple = Tee(UpperCamelCase__ ) print(f"\n*** Running {len(UpperCamelCase__ )} benchmarks:" ) print(f"Base command: {' '.join(UpperCamelCase__ )}" ) _A : str = "variation" _A : Union[str, Any] = [] for id, variation in enumerate(tqdm(UpperCamelCase__ , desc="Total completion: " , leave=UpperCamelCase__ ) ): _A : Dict = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.repeat_times , UpperCamelCase__ , args.verbose , ) ) process_results(UpperCamelCase__ , args.target_metric_key , UpperCamelCase__ , args.base_variation , UpperCamelCase__ ) if __name__ == "__main__": main()
11
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
0
UpperCAmelCase_ = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
12
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCAmelCase : str = ["""small""", """medium""", """large"""] lowerCAmelCase : Dict = """lm_head.decoder.weight""" lowerCAmelCase : Optional[Any] = """lm_head.weight""" def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = torch.load(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = d.pop(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) lowerCAmelCase : List[Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCAmelCase : Tuple = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') lowerCAmelCase : List[Any] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowerCamelCase : Any = 16 _lowerCamelCase : Any = 32 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ = 16 ) -> Tuple: """simple docstring""" A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( lowercase_ , padding='''longest''' , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) A__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowerCamelCase : Union[str, Any] = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowercase_ ) == "1": A__ = 2 # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['''lr'''] A__ = int(config['''num_epochs'''] ) A__ = int(config['''seed'''] ) A__ = int(config['''batch_size'''] ) A__ = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowercase_ ) def inner_training_loop(lowercase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=lowercase_ ) A__ , A__ = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=100 , num_training_steps=(len(lowercase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**lowercase_ ) A__ = outputs.loss accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**lowercase_ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowercase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" A__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ = parser.parse_args() A__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
14
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): __A = tempfile.mkdtemp() __A = BlipImageProcessor() __A = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) __A = BlipProcessor(A ,A ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Union[str, Any] ,**A : int ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).tokenizer def UpperCamelCase_ ( self : List[str] ,**A : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname ,**A ).image_processor def UpperCamelCase_ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self : int ): __A = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] __A = [Image.fromarray(np.moveaxis(A ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self : List[Any] ): __A = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) __A = self.get_image_processor(do_normalize=A ,padding_value=1.0 ) __A = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=A ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = self.prepare_image_inputs() __A = image_processor(A ,return_tensors="np" ) __A = processor(images=A ,return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = processor(text=A ) __A = tokenizer(A ,return_token_type_ids=A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self : List[Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCamelCase_ ( self : Optional[int] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A = processor.batch_decode(A ) __A = tokenizer.batch_decode(A ) self.assertListEqual(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.get_image_processor() __A = self.get_tokenizer() __A = BlipProcessor(tokenizer=A ,image_processor=A ) __A = "lower newer" __A = self.prepare_image_inputs() __A = processor(text=A ,images=A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["pixel_values", "input_ids", "attention_mask"] )
15
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : '''simple docstring''' def __init__( self : str ,_snake_case : List[Any] ,_snake_case : Optional[int]=3 ,_snake_case : Optional[int]=32 ,_snake_case : Union[str, Any]=3 ,_snake_case : int=10 ,_snake_case : List[str]=[10, 20, 30, 40] ,_snake_case : Any=[1, 1, 2, 1] ,_snake_case : int=True ,_snake_case : Optional[Any]=True ,_snake_case : Union[str, Any]="relu" ,_snake_case : Dict=3 ,_snake_case : Any=None ,) -> str: """simple docstring""" lowercase__ : int = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = embeddings_size lowercase__ : Optional[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : Tuple = is_training lowercase__ : List[Any] = use_labels lowercase__ : Union[str, Any] = hidden_act lowercase__ : Union[str, Any] = num_labels lowercase__ : Tuple = scope lowercase__ : Optional[Any] = len(_snake_case ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Dict = ids_tensor([self.batch_size] ,self.num_labels ) lowercase__ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def UpperCAmelCase ( self : List[str] ,_snake_case : Optional[int] ,_snake_case : int ,_snake_case : Tuple ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = TFResNetModel(config=_snake_case ) lowercase__ : List[str] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def UpperCAmelCase ( self : Optional[int] ,_snake_case : Optional[Any] ,_snake_case : int ,_snake_case : Any ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.num_labels lowercase__ : Union[str, Any] = TFResNetForImageClassification(_snake_case ) lowercase__ : List[str] = model(_snake_case ,labels=_snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Dict = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowerCAmelCase : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase : List[Any] = False lowerCAmelCase : List[Any] = False lowerCAmelCase : int = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = False def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = TFResNetModelTester(self ) lowercase__ : int = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Tuple ) -> Any: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" def check_hidden_states_output(_snake_case : Optional[int] ,_snake_case : List[str] ,_snake_case : Optional[Any] ): lowercase__ : str = model_class(_snake_case ) lowercase__ : Union[str, Any] = model(**self._prepare_for_class(_snake_case ,_snake_case ) ) lowercase__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ : List[Any] = layer_type lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Dict = True check_hidden_states_output(_snake_case ,_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[Any] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCAmelCase ( ) -> Dict: lowercase__ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __A ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase__ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ : Any = self.default_image_processor lowercase__ : int = prepare_img() lowercase__ : Tuple = image_processor(images=_snake_case ,return_tensors='''tf''' ) # forward pass lowercase__ : Dict = model(**_snake_case ) # verify the logits lowercase__ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,_snake_case ) lowercase__ : Any = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,_snake_case ,atol=1e-4 ) )
16
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
0
"""simple docstring""" import sys from collections import defaultdict class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.node_position[vertex] def _lowercase ( self : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : str ): __lowercase = pos def _lowercase ( self : List[str], UpperCAmelCase__ : int, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowercase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowercase = 2 * start + 1 else: __lowercase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowercase ,__lowercase = heap[smallest_child], positions[smallest_child] __lowercase ,__lowercase = ( heap[start], positions[start], ) __lowercase ,__lowercase = temp, tempa __lowercase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child], self.get_position(positions[start] ) ) self.set_position(positions[start], UpperCAmelCase__ ) self.top_to_bottom(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Tuple ): __lowercase = position[index] while index != 0: __lowercase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowercase = heap[parent] __lowercase = position[parent] self.set_position(position[parent], UpperCAmelCase__ ) else: __lowercase = val __lowercase = temp self.set_position(UpperCAmelCase__, UpperCAmelCase__ ) break __lowercase = parent else: __lowercase = val __lowercase = temp self.set_position(UpperCAmelCase__, 0 ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any ): __lowercase = len(UpperCAmelCase__ ) // 2 - 1 for i in range(UpperCAmelCase__, -1, -1 ): self.top_to_bottom(UpperCAmelCase__, UpperCAmelCase__, len(UpperCAmelCase__ ), UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any] ): __lowercase = positions[0] __lowercase = sys.maxsize self.top_to_bottom(UpperCAmelCase__, 0, len(UpperCAmelCase__ ), UpperCAmelCase__ ) return temp def _A ( UpperCamelCase_ : Dict) -> Optional[Any]: '''simple docstring''' __lowercase = Heap() __lowercase = [0] * len(UpperCamelCase_) __lowercase = [-1] * len(UpperCamelCase_) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowercase = [] # Heap of Distance of vertices from their neighboring vertex __lowercase = [] for vertex in range(len(UpperCamelCase_)): distance_tv.append(sys.maxsize) positions.append(UpperCamelCase_) heap.node_position.append(UpperCamelCase_) __lowercase = [] __lowercase = 1 __lowercase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowercase = 0 __lowercase = distance heap.heapify(UpperCamelCase_, UpperCamelCase_) for _ in range(1, len(UpperCamelCase_)): __lowercase = heap.delete_minimum(UpperCamelCase_, UpperCamelCase_) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex)) __lowercase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase_)] ): __lowercase = distance heap.bottom_to_top( UpperCamelCase_, heap.get_position(UpperCamelCase_), UpperCamelCase_, UpperCamelCase_) __lowercase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _a = int(input('Enter number of edges: ').strip()) _a = defaultdict(list) for _ in range(edges_number): _a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
17
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
0
import os def _snake_case ( ): """simple docstring""" with open(os.path.dirname(lowerCAmelCase ) + "/p022_names.txt" ) as file: SCREAMING_SNAKE_CASE_ : List[str] = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE_ : Any = names.replace("\"" , "" ).split("," ) names.sort() SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for i, name in enumerate(lowerCAmelCase ): for letter in name: name_score += ord(lowerCAmelCase ) - 6_4 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE_ : Tuple = 0 return total_score if __name__ == "__main__": print(solution())
18
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionPanoramaPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCamelCase_ = DDIMScheduler() torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase_ = CLIPTextModel(lowercase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase=0 ) -> List[str]: lowerCamelCase_ = torch.manual_seed(lowercase ) lowerCamelCase_ = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionPanoramaPipeline(**lowercase ) lowerCamelCase_ = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = sd_pipe(**lowercase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_( self ) -> int: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionPanoramaPipeline(**lowercase ) lowerCamelCase_ = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = "french fries" lowerCamelCase_ = sd_pipe(**lowercase , negative_prompt=lowercase ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionPanoramaPipeline(**lowercase ) lowerCamelCase_ = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = sd_pipe(**lowercase , view_batch_size=2 ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" ) lowerCamelCase_ = StableDiffusionPanoramaPipeline(**lowercase ) lowerCamelCase_ = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = sd_pipe(**lowercase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , skip_prk_steps=lowercase ) lowerCamelCase_ = StableDiffusionPanoramaPipeline(**lowercase ) lowerCamelCase_ = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) lowerCamelCase_ = self.get_dummy_inputs(lowercase ) lowerCamelCase_ = sd_pipe(**lowercase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase_ = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_( self , lowercase=0 ) -> Any: lowerCamelCase_ = torch.manual_seed(lowercase ) lowerCamelCase_ = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = "stabilityai/stable-diffusion-2-base" lowerCamelCase_ = DDIMScheduler.from_pretrained(lowercase , subfolder="scheduler" ) lowerCamelCase_ = StableDiffusionPanoramaPipeline.from_pretrained(lowercase , scheduler=lowercase , safety_checker=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**lowercase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowerCamelCase_ = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=lowercase ) lowerCamelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**lowercase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) lowerCamelCase_ = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = 0 def callback_fn(lowercase , lowercase , lowercase ) -> None: lowerCamelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCamelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCamelCase_ = latents[0, -3:, -3:, -1] lowerCamelCase_ = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCamelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCamelCase_ = latents[0, -3:, -3:, -1] lowerCamelCase_ = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCamelCase_ = False lowerCamelCase_ = "stabilityai/stable-diffusion-2-base" lowerCamelCase_ = DDIMScheduler.from_pretrained(lowercase , subfolder="scheduler" ) lowerCamelCase_ = StableDiffusionPanoramaPipeline.from_pretrained(lowercase , scheduler=lowercase , safety_checker=lowercase ) lowerCamelCase_ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() pipe(**lowercase , callback=lowercase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def SCREAMING_SNAKE_CASE_( self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = "stabilityai/stable-diffusion-2-base" lowerCamelCase_ = DDIMScheduler.from_pretrained(lowercase , subfolder="scheduler" ) lowerCamelCase_ = StableDiffusionPanoramaPipeline.from_pretrained(lowercase , scheduler=lowercase , safety_checker=lowercase ) lowerCamelCase_ = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**lowercase ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
19
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
20
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: _lowercase : Dict = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : str = StableDiffusionLatentUpscalePipeline lowercase_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } lowercase_ : Dict = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} lowercase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase_ : Dict = frozenset([] ) lowercase_ : Dict = True @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = 1 _lowercase : List[str] = 4 _lowercase : Optional[Any] = (16, 16) _lowercase : List[Any] = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCamelCase) return image def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[Any] = UNetaDConditionModel( act_fn='gelu', attention_head_dim=8, norm_num_groups=lowerCamelCase, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=1_60, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ), in_channels=8, mid_block_type=lowerCamelCase, only_cross_attention=lowerCamelCase, out_channels=5, resnet_time_scale_shift='scale_shift', time_embedding_type='fourier', timestep_post_act='gelu', up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D'), ) _lowercase : Dict = AutoencoderKL( block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) _lowercase : Optional[Any] = EulerDiscreteScheduler(prediction_type='sample') _lowercase : Union[str, Any] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, hidden_act='quick_gelu', projection_dim=5_12, ) _lowercase : Optional[Any] = CLIPTextModel(lowerCamelCase) _lowercase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _lowercase : Optional[int] = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=0) -> Union[str, Any]: """simple docstring""" if str(lowerCamelCase).startswith('mps'): _lowercase : List[Any] = torch.manual_seed(lowerCamelCase) else: _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(lowerCamelCase) _lowercase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = 'cpu' _lowercase : int = self.get_dummy_components() _lowercase : Optional[Any] = self.pipeline_class(**lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = self.get_dummy_inputs(lowerCamelCase) _lowercase : List[Any] = pipe(**lowerCamelCase).images _lowercase : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 2_56, 2_56, 3)) _lowercase : Union[str, Any] = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5]) _lowercase : List[Any] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3) def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3) def UpperCamelCase ( self) -> Any: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def UpperCamelCase ( self) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3) def UpperCamelCase ( self) -> Dict: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3) def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] _lowercase : List[Any] = self.get_dummy_components() _lowercase : Dict = self.pipeline_class(**lowerCamelCase) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCamelCase) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_dummy_inputs(lowerCamelCase) _lowercase : List[Any] = 2 _lowercase : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowercase : int = getattr(lowerCamelCase, scheduler_enum.name) _lowercase : Dict = scheduler_cls.from_config(pipe.scheduler.config) _lowercase : str = pipe(**lowerCamelCase)[0] outputs.append(lowerCamelCase) assert check_same_shape(lowerCamelCase) @require_torch_gpu @slow class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Tuple = torch.manual_seed(33) _lowercase : Optional[Any] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', torch_dtype=torch.floataa) pipe.to('cuda') _lowercase : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa) upscaler.to('cuda') _lowercase : List[str] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' _lowercase : Any = pipe(lowerCamelCase, generator=lowerCamelCase, output_type='latent').images _lowercase : List[Any] = upscaler( prompt=lowerCamelCase, image=lowerCamelCase, num_inference_steps=20, guidance_scale=0, generator=lowerCamelCase, output_type='np', ).images[0] _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy') assert np.abs((expected_image - image).mean()) < 5E-2 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = torch.manual_seed(33) _lowercase : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa) upscaler.to('cuda') _lowercase : Any = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' _lowercase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png') _lowercase : int = upscaler( prompt=lowerCamelCase, image=lowerCamelCase, num_inference_steps=20, guidance_scale=0, generator=lowerCamelCase, output_type='np', ).images[0] _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy') assert np.abs((expected_image - image).max()) < 5E-2
21
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
0
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __SCREAMING_SNAKE_CASE :Union[str, Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.getLogger() def UpperCAmelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCAmelCase = parser.parse_args() return args.f def UpperCAmelCase_ ( __lowercase : Tuple , __lowercase : int="eval" ) -> Tuple: '''simple docstring''' _UpperCAmelCase = os.path.join(__lowercase , f'{split}_results.json' ) if os.path.exists(__lowercase ): with open(__lowercase , "r" ) as f: return json.load(__lowercase ) raise ValueError(f'can\'t find {path}' ) __SCREAMING_SNAKE_CASE :List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A_ ( lowerCAmelCase_ ): def lowercase ( self : List[str] ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(snake_case_ , "argv" , snake_case_ ): run_flax_glue.main() _UpperCAmelCase = get_results(snake_case_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) @slow def lowercase ( self : int ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(snake_case_ , "argv" , snake_case_ ): run_clm_flax.main() _UpperCAmelCase = get_results(snake_case_ ) self.assertLess(result["eval_perplexity"] , 1_0_0 ) @slow def lowercase ( self : str ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(snake_case_ , "argv" , snake_case_ ): run_summarization_flax.main() _UpperCAmelCase = get_results(snake_case_ , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 1_0 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self : List[Any] ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(snake_case_ , "argv" , snake_case_ ): run_mlm_flax.main() _UpperCAmelCase = get_results(snake_case_ ) self.assertLess(result["eval_perplexity"] , 4_2 ) @slow def lowercase ( self : Any ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(snake_case_ , "argv" , snake_case_ ): run_ta_mlm_flax.main() _UpperCAmelCase = get_results(snake_case_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.4_2 ) @slow def lowercase ( self : Tuple ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu _UpperCAmelCase = 7 if get_gpu_count() > 1 else 2 _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(snake_case_ , "argv" , snake_case_ ): run_flax_ner.main() _UpperCAmelCase = get_results(snake_case_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self : Any ): _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = f'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(snake_case_ , "argv" , snake_case_ ): run_qa.main() _UpperCAmelCase = get_results(snake_case_ ) self.assertGreaterEqual(result["eval_f1"] , 3_0 ) self.assertGreaterEqual(result["eval_exact"] , 3_0 )
22
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = self.unet.config.sample_size UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size) UpperCAmelCase : int = self.unet UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase : int = sample_mean.clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
23
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class SCREAMING_SNAKE_CASE__ : def __init__(self : int , a__ : Optional[int] , a__ : List[Any]=13 , a__ : Dict=7 , a__ : str=True , a__ : str=True , a__ : Optional[int]=False , a__ : Optional[int]=True , a__ : Union[str, Any]=99 , a__ : Optional[int]=32 , a__ : Optional[int]=5 , a__ : Optional[Any]=4 , a__ : str=37 , a__ : Union[str, Any]="gelu" , a__ : int=0.1 , a__ : List[Any]=0.1 , a__ : Dict=512 , a__ : Optional[int]=16 , a__ : List[Any]=2 , a__ : str=0.0_2 , a__ : int=3 , a__ : Tuple=4 , a__ : Optional[Any]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def a (self : List[Any] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a (self : str ): """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def a (self : str , a__ : int , a__ : str , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Optional[int] , a__ : Optional[Any] , a__ : List[str] ): """simple docstring""" __snake_case = LlamaModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , attention_mask=a__ ) __snake_case = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a (self : Optional[Any] , a__ : str , a__ : List[Any] , a__ : Dict , a__ : Any , a__ : Tuple , a__ : Optional[int] , a__ : List[str] , a__ : Optional[Any] , a__ : Dict , ): """simple docstring""" __snake_case = True __snake_case = LlamaModel(a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) __snake_case = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , ) __snake_case = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a (self : Any , a__ : Union[str, Any] , a__ : Tuple , a__ : Tuple , a__ : int , a__ : int , a__ : str , a__ : int , a__ : List[Any] , a__ : List[Any] , ): """simple docstring""" __snake_case = LlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a (self : int , a__ : str , a__ : Tuple , a__ : Union[str, Any] , a__ : Optional[int] , a__ : Any , a__ : str , a__ : Optional[int] , a__ : Union[str, Any] , a__ : int , ): """simple docstring""" __snake_case = True __snake_case = True __snake_case = LlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass __snake_case = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , use_cache=a__ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_hidden_states=a__ , )['''hidden_states'''][0] __snake_case = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )['''hidden_states'''][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1E-3 ) ) def a (self : Dict ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () A_ : List[str] = (LlamaForCausalLM,) if is_torch_available() else () A_ : Dict = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) A_ : Any = False A_ : Union[str, Any] = False def a (self : Optional[Any] ): """simple docstring""" __snake_case = LlamaModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : List[str] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict['''input_ids'''] __snake_case = input_ids.ne(1 ).to(a__ ) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = '''single_label_classification''' __snake_case = input_dict['''input_ids'''] __snake_case = input_ids.ne(1 ).to(a__ ) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a (self : List[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = '''multi_label_classification''' __snake_case = input_dict['''input_ids'''] __snake_case = input_ids.ne(1 ).to(a__ ) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case = LlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a (self : Optional[Any] , a__ : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = ids_tensor([1, 10] , config.vocab_size ) __snake_case = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case = LlamaModel(a__ ) original_model.to(a__ ) original_model.eval() __snake_case = original_model(a__ ).last_hidden_state __snake_case = original_model(a__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case = {'''type''': scaling_type, '''factor''': 1_0.0} __snake_case = LlamaModel(a__ ) scaled_model.to(a__ ) scaled_model.eval() __snake_case = scaled_model(a__ ).last_hidden_state __snake_case = scaled_model(a__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a__ , a__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a__ , a__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a__ , a__ , atol=1E-5 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def a (self : Tuple ): """simple docstring""" __snake_case = [1, 306, 4658, 278, 6593, 310, 2834, 338] __snake_case = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) __snake_case = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __snake_case = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def a (self : str ): """simple docstring""" __snake_case = [1, 306, 4658, 278, 6593, 310, 2834, 338] __snake_case = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) __snake_case = model(torch.tensor(a__ ) ) # Expected mean on dim = -1 __snake_case = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def a (self : Any ): """simple docstring""" __snake_case = [1, 306, 4658, 278, 6593, 310, 2834, 338] __snake_case = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) __snake_case = model(torch.tensor(a__ ) ) # Expected mean on dim = -1 __snake_case = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def a (self : Optional[int] ): """simple docstring""" __snake_case = [1, 306, 4658, 278, 6593, 310, 2834, 338] __snake_case = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) __snake_case = model(torch.tensor(a__ ) ) __snake_case = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a__ , atol=1E-2 , rtol=1E-2 ) # fmt: off __snake_case = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a__ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def a (self : List[str] ): """simple docstring""" __snake_case = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' __snake_case = '''Simply put, the theory of relativity states that ''' __snake_case = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) __snake_case = tokenizer.encode(a__ , return_tensors='''pt''' ) __snake_case = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=a__ ) # greedy generation outputs __snake_case = model.generate(a__ , max_new_tokens=64 , top_p=a__ , temperature=1 , do_sample=a__ ) __snake_case = tokenizer.decode(generated_ids[0] , skip_special_tokens=a__ ) self.assertEqual(a__ , a__ )
24
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ : Union[str, Any] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Dict = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def lowerCAmelCase_ ( snake_case_ ): if len(snake_case_ ) < MIN_NUM_TOKENS: return None _A : Tuple = MinHash(num_perm=snake_case_ ) for token in set(snake_case_ ): min_hash.update(token.encode() ) return min_hash def lowerCAmelCase_ ( snake_case_ ): return {t for t in NON_ALPHA.split(snake_case_ ) if len(t.strip() ) > 0} class lowercase : def __init__( self , *, _a = 0.85 , ) -> List[Any]: _A : Any = duplication_jaccard_threshold _A : int = NUM_PERM _A : List[str] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _A : str = defaultdict(_a ) def a__ ( self , _a , _a ) -> None: _A : Any = self._index.query(_a ) if code_key in self._index.keys: print(F'''Duplicate key {code_key}''' ) return self._index.insert(_a , _a ) if len(_a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_a ) break else: self._duplicate_clusters[close_duplicates[0]].add(_a ) def a__ ( self ) -> List[List[Dict]]: _A : List[Any] = [] for base, duplicates in self._duplicate_clusters.items(): _A : Dict = [base] + list(_a ) # reformat the cluster to be a list of dict _A : Tuple = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(_a ) return duplicate_clusters def a__ ( self , _a ) -> None: _A : str = self.get_duplicate_clusters() with open(_a , """w""" ) as f: json.dump(_a , _a ) def lowerCAmelCase_ ( snake_case_ ): _A , _A : Tuple = element _A : Any = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase_ ( snake_case_ ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash,ThreadedIterator(snake_case_,max_queue_size=10000 ),chunksize=100,): if data is not None: yield data def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = DuplicationIndex(duplication_jaccard_threshold=snake_case_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(snake_case_ ) ),max_queue_size=100 ) ): di.add(snake_case_,snake_case_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Any = get_tokens(snake_case_ ) _A : Dict = get_tokens(snake_case_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = [] for elementa in cluster: _A : List[str] = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _A : Union[str, Any] = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(snake_case_,snake_case_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: _A : int = 1 extremes.append(snake_case_ ) return extremes def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): global _shared_dataset _A : Any = dataset _A : List[Any] = [] _A : Optional[int] = partial(_find_cluster_extremes_shared,jaccard_threshold=snake_case_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( snake_case_,snake_case_,),total=len(snake_case_ ),): extremes_list.append(snake_case_ ) return extremes_list def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.85 ): _A : List[Any] = make_duplicate_clusters(snake_case_,snake_case_ ) _A : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _A : List[str] = {} _A : Optional[Any] = find_extremes(snake_case_,snake_case_,snake_case_ ) for extremes in extremes_clusters: for element in extremes: _A : int = element _A : Union[str, Any] = duplicate_indices - set(extreme_dict.keys() ) _A : int = dataset.filter(lambda snake_case_,snake_case_ : idx not in remove_indices,with_indices=snake_case_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _A : int = element["""base_index"""] in extreme_dict if element["is_extreme"]: _A : Any = extreme_dict[element["""base_index"""]]["""copies"""] print(f'''Original dataset size: {len(snake_case_ )}''' ) print(f'''Number of duplicate clusters: {len(snake_case_ )}''' ) print(f'''Files in duplicate cluster: {len(snake_case_ )}''' ) print(f'''Unique files in duplicate cluster: {len(snake_case_ )}''' ) print(f'''Filtered dataset size: {len(snake_case_ )}''' ) return ds_filter, duplicate_clusters
26
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __lowercase : List[str] = datasets.logging.get_logger(__name__) __lowercase : List[str] = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' __lowercase : Dict = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' __lowercase : Optional[int] = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' __lowercase : str = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def __UpperCAmelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) __a : int = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: __a : str = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: __a : List[str] = self.config_name.upper() else: raise KeyError( f"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer __a : Optional[int] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) __a : Optional[int] = score.BleurtScorer(os.path.join(__a , __a ) ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' __a : Union[str, Any] = self.scorer.score(references=__a , candidates=__a ) return {"scores": scores}
27
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
0
'''simple docstring''' from typing import Any import numpy as np def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" return np.array_equal(A__ , matrix.conjugate().T ) def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" UpperCamelCase = v.conjugate().T UpperCamelCase = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def __lowerCamelCase ( ) -> None: """simple docstring""" UpperCamelCase = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) UpperCamelCase = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"""{a} is not hermitian.""" print(rayleigh_quotient(A__ , A__ ) ) UpperCamelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"""{a} is not hermitian.""" assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
28
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ) -> Tuple: lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCamelCase__ : Optional[Any] = True elif "IPython" in sys.modules: lowerCamelCase__ : Optional[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCamelCase__ : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = PrepareForLaunch(_UpperCAmelCase , distributed_type='TPU' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = PrepareForLaunch(_UpperCAmelCase , distributed_type='MULTI_GPU' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase__ : int = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowerCamelCase__ : Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' )
50
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=3 , _UpperCamelCase=3_2 , _UpperCamelCase=3 , _UpperCamelCase=1_0 , _UpperCamelCase=[1_0, 2_0, 3_0, 4_0] , _UpperCamelCase=[1, 1, 2, 1] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase="relu" , _UpperCamelCase=3 , _UpperCamelCase=None , ) -> Union[str, Any]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : int = embeddings_size UpperCAmelCase_ : Optional[int] = hidden_sizes UpperCAmelCase_ : Optional[int] = depths UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Any = len(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values def __UpperCAmelCase ( self ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Any = FlaxRegNetModel(config=_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = model(_UpperCamelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : List[Any] = FlaxRegNetForImageClassification(config=_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ : Any = config_and_inputs UpperCAmelCase_ : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () _snake_case : int = False _snake_case : Optional[Any] = False _snake_case : Optional[int] = False def __UpperCAmelCase ( self ) -> None: UpperCAmelCase_ : List[Any] = FlaxRegNetModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self ) -> str: return def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __UpperCAmelCase ( self ) -> str: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __UpperCAmelCase ( self ) -> Optional[Any]: pass def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_UpperCamelCase ) UpperCAmelCase_ : Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Dict = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> str: def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = model_class(_UpperCamelCase ) UpperCAmelCase_ : str = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) UpperCAmelCase_ : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Tuple = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : str = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Dict = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Dict = model_class(_UpperCamelCase ) @jax.jit def model_jitted(_UpperCamelCase , **_UpperCamelCase ): return model(pixel_values=_UpperCamelCase , **_UpperCamelCase ) with self.subTest('JIT Enabled' ): UpperCAmelCase_ : Optional[int] = model_jitted(**_UpperCamelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCAmelCase_ : int = model_jitted(**_UpperCamelCase ).to_tuple() self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for jitted_output, output in zip(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Tuple = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : Any = image_processor(images=_UpperCamelCase , return_tensors='np' ) UpperCAmelCase_ : int = model(**_UpperCamelCase ) # verify the logits UpperCAmelCase_ : Union[str, Any] = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) UpperCAmelCase_ : Tuple = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) )
29
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
0
def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) if n == 0: return 0 lowercase_ = float('''-inf''' ) for i in range(1 , n + 1 ): lowercase_ = max( snake_case__ , prices[i - 1] + naive_cut_rod_recursive(n - i , snake_case__ ) ) return max_revue def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) lowercase_ = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case__ , snake_case__ , snake_case__ ) def a ( snake_case__: int , snake_case__: list , snake_case__: list ): '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowercase_ = float('''-inf''' ) for i in range(1 , n + 1 ): lowercase_ = max( snake_case__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , snake_case__ , snake_case__ ) , ) lowercase_ = max_revenue return max_rev[n] def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' _enforce_args(snake_case__ , snake_case__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowercase_ = [float('''-inf''' ) for _ in range(n + 1 )] lowercase_ = 0 for i in range(1 , n + 1 ): lowercase_ = max_rev[i] for j in range(1 , i + 1 ): lowercase_ = max(snake_case__ , prices[j - 1] + max_rev[i - j] ) lowercase_ = max_revenue_i return max_rev[n] def a ( snake_case__: int , snake_case__: list ): '''simple docstring''' if n < 0: lowercase_ = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(snake_case__ ) if n > len(snake_case__ ): lowercase_ = ( '''Each integral piece of rod must have a corresponding price. ''' F'''Got n = {n} but length of prices = {len(snake_case__ )}''' ) raise ValueError(snake_case__ ) def a ( ): '''simple docstring''' lowercase_ = [6, 10, 12, 15, 20, 23] lowercase_ = len(snake_case__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowercase_ = 36 lowercase_ = top_down_cut_rod(snake_case__ , snake_case__ ) lowercase_ = bottom_up_cut_rod(snake_case__ , snake_case__ ) lowercase_ = naive_cut_rod_recursive(snake_case__ , snake_case__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
30
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] , A : List[Any] , A : List[str]=3 , A : List[str]=32 , A : Optional[int]=3 , A : str=10 , A : Any=[10, 20, 30, 40] , A : int=[1, 1, 2, 1] , A : int=True , A : Dict=True , A : Optional[int]="relu" , A : Optional[int]=3 , A : Tuple=None , ): _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : List[str] = embeddings_size _UpperCAmelCase : Tuple = hidden_sizes _UpperCAmelCase : Optional[int] = depths _UpperCAmelCase : Tuple = is_training _UpperCAmelCase : str = use_labels _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : Dict = scope _UpperCAmelCase : List[Any] = len(A ) def _A ( self : int ): _UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[Any] = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def _A ( self : str ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _A ( self : Optional[int] , A : Any , A : int , A : str ): _UpperCAmelCase : int = TFRegNetModel(config=A ) _UpperCAmelCase : Optional[int] = model(A , training=A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _A ( self : Union[str, Any] , A : str , A : Optional[Any] , A : Optional[int] ): _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : str = TFRegNetForImageClassification(A ) _UpperCAmelCase : Tuple = model(A , labels=A , training=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : Optional[Any] ): _UpperCAmelCase : int = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = config_and_inputs _UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: int = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __UpperCamelCase: Union[str, Any] = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) __UpperCamelCase: Dict = False __UpperCamelCase: Optional[int] = False __UpperCamelCase: Any = False __UpperCamelCase: Optional[Any] = False __UpperCamelCase: Tuple = False def _A ( self : Any ): _UpperCAmelCase : Any = TFRegNetModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , has_text_modality=A ) def _A ( self : List[Any] ): return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _A ( self : List[Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _A ( self : Optional[Any] ): super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _A ( self : str ): pass def _A ( self : Optional[int] ): _UpperCAmelCase , _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class(A ) _UpperCAmelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] _UpperCAmelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , A ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _A ( self : List[Any] ): def check_hidden_states_output(A : Any , A : Any , A : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = model_class(A ) _UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(A , A ) , training=A ) _UpperCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase : List[str] = layer_type _UpperCAmelCase : Dict = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : int = True check_hidden_states_output(A , A , A ) def _A ( self : Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(A : Optional[int] , A : Union[str, Any] , A : Optional[Any] , A : str={} ): _UpperCAmelCase : Tuple = model(A , return_dict=A , **A ) _UpperCAmelCase : Any = model(A , return_dict=A , **A ).to_tuple() def recursive_check(A : Tuple , A : Tuple ): if isinstance(A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(A , A ): recursive_check(A , A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(A , A ) ) , msg=( "Tuple and dict output are not equal. Difference:" F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(A , A ) for model_class in self.all_model_classes: _UpperCAmelCase : Tuple = model_class(A ) _UpperCAmelCase : Optional[Any] = self._prepare_for_class(A , A ) _UpperCAmelCase : str = self._prepare_for_class(A , A ) check_equivalence(A , A , A ) _UpperCAmelCase : Optional[int] = self._prepare_for_class(A , A , return_labels=A ) _UpperCAmelCase : Optional[int] = self._prepare_for_class(A , A , return_labels=A ) check_equivalence(A , A , A ) _UpperCAmelCase : Optional[Any] = self._prepare_for_class(A , A ) _UpperCAmelCase : Tuple = self._prepare_for_class(A , A ) check_equivalence(A , A , A , {"output_hidden_states": True} ) _UpperCAmelCase : int = self._prepare_for_class(A , A , return_labels=A ) _UpperCAmelCase : Union[str, Any] = self._prepare_for_class(A , A , return_labels=A ) check_equivalence(A , A , A , {"output_hidden_states": True} ) def _A ( self : Tuple ): _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def _A ( self : List[str] ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Any = TFRegNetModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCamelCase_ ( ) -> str: """simple docstring""" _UpperCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self : Optional[int] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _A ( self : List[str] ): _UpperCAmelCase : Dict = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase : Tuple = self.default_image_processor _UpperCAmelCase : int = prepare_img() _UpperCAmelCase : Optional[Any] = image_processor(images=A , return_tensors="tf" ) # forward pass _UpperCAmelCase : Optional[Any] = model(**A , training=A ) # verify the logits _UpperCAmelCase : Union[str, Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , A ) _UpperCAmelCase : Optional[Any] = tf.constant([-0.4_180, -1.5_051, -3.4_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , A , atol=1E-4 )
31
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[int] = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Tuple = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : str = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCamelCase__ : Union[str, Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = num_labels lowerCamelCase__ : Dict = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCamelCase__ : List[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCamelCase__ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCamelCase__ : Optional[Any] = [2, 2, 20] lowerCamelCase__ : Optional[int] = [3, 12, 16] lowerCamelCase__ : str = [192, 768, 1024] lowerCamelCase__ : Any = CvtForImageClassification(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : List[str] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lowerCamelCase__ : Optional[int] = OrderedDict() lowerCamelCase__ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCamelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCamelCase__ : str = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCamelCase__ : str = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
50
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase_ : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : int ) -> None: warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
32
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCAmelCase ( unittest.TestCase ): def A ( self : List[str] , A : Union[str, Any] ) -> int: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): lowercase_ : Tuple = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(A ) def A ( self : int ) -> Optional[Any]: lowercase_ : Optional[Any] = '''sshleifer/tiny-gpt2''' lowercase_ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowercase_ : List[str] = PyTorchBenchmark(A ) lowercase_ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : int ) -> Optional[Any]: lowercase_ : List[Any] = '''sgugger/tiny-distilbert-classification''' lowercase_ : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , only_pretrain_model=A , ) lowercase_ : Tuple = PyTorchBenchmark(A ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : List[Any] ) -> str: lowercase_ : str = '''sshleifer/tiny-gpt2''' lowercase_ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , torchscript=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowercase_ : List[Any] = PyTorchBenchmark(A ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def A ( self : List[Any] ) -> str: lowercase_ : int = '''sshleifer/tiny-gpt2''' lowercase_ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , fpaa=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowercase_ : Any = PyTorchBenchmark(A ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Union[str, Any] ) -> Optional[int]: lowercase_ : Union[str, Any] = '''sshleifer/tiny-gpt2''' lowercase_ : Optional[int] = AutoConfig.from_pretrained(A ) # set architectures equal to `None` lowercase_ : str = None lowercase_ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowercase_ : Any = PyTorchBenchmark(A , configs=[config] ) lowercase_ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Optional[Any] ) -> List[Any]: lowercase_ : Optional[Any] = '''sshleifer/tiny-gpt2''' lowercase_ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowercase_ : List[str] = PyTorchBenchmark(A ) lowercase_ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def A ( self : Optional[Any] ) -> Dict: lowercase_ : Optional[Any] = '''sshleifer/tiny-gpt2''' lowercase_ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A , multi_process=A , ) lowercase_ : int = PyTorchBenchmark(A ) lowercase_ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : int ) -> Optional[Any]: lowercase_ : List[Any] = '''sshleifer/tiny-gpt2''' lowercase_ : Any = AutoConfig.from_pretrained(A ) lowercase_ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowercase_ : Optional[Any] = PyTorchBenchmark(A , configs=[config] ) lowercase_ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : Any ) -> List[Any]: lowercase_ : Union[str, Any] = '''sshleifer/tinier_bart''' lowercase_ : Optional[Any] = AutoConfig.from_pretrained(A ) lowercase_ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowercase_ : Any = PyTorchBenchmark(A , configs=[config] ) lowercase_ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def A ( self : List[str] ) -> Optional[int]: lowercase_ : str = '''sshleifer/tiny-gpt2''' lowercase_ : Union[str, Any] = AutoConfig.from_pretrained(A ) lowercase_ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowercase_ : List[str] = PyTorchBenchmark(A , configs=[config] ) lowercase_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : Optional[Any] ) -> int: lowercase_ : Optional[Any] = '''sshleifer/tinier_bart''' lowercase_ : Optional[Any] = AutoConfig.from_pretrained(A ) lowercase_ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A , ) lowercase_ : str = PyTorchBenchmark(A , configs=[config] ) lowercase_ : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def A ( self : Union[str, Any] ) -> Optional[int]: lowercase_ : List[Any] = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , save_to_csv=A , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(A , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(A , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(A , '''train_time.csv''' ) , env_info_csv_file=os.path.join(A , '''env.csv''' ) , multi_process=A , ) lowercase_ : str = PyTorchBenchmark(A ) benchmark.run() self.assertTrue(Path(os.path.join(A , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(A , '''env.csv''' ) ).exists() ) def A ( self : str ) -> Tuple: lowercase_ : str = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(A : List[Any] ): self.assertTrue(hasattr(A , '''sequential''' ) ) self.assertTrue(hasattr(A , '''cumulative''' ) ) self.assertTrue(hasattr(A , '''current''' ) ) self.assertTrue(hasattr(A , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A , inference=A , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A , '''log.txt''' ) , log_print=A , trace_memory_line_by_line=A , multi_process=A , ) lowercase_ : Optional[int] = PyTorchBenchmark(A ) lowercase_ : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A , '''log.txt''' ) ).exists() )
33
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
0
'''simple docstring''' def snake_case_ (_a : int ): UpperCAmelCase = (1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ (_a : int = 5_0_0_0 ): UpperCAmelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , _a )] for i, pentagonal_i in enumerate(_a ): for j in range(_a , len(_a ) ): UpperCAmelCase = pentagonal_nums[j] UpperCAmelCase = pentagonal_i + pentagonal_j UpperCAmelCase = pentagonal_j - pentagonal_i if is_pentagonal(_a ) and is_pentagonal(_a ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
34
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
0
'''simple docstring''' import operator def __snake_case( _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None ) -> list: snake_case__ : int = operator.lt if reverse else operator.gt snake_case__ : Any = solution or [] if not arr: return solution snake_case__ : int = [arr.pop(0 )] for i, item in enumerate(_lowerCAmelCase ): if _operator(_lowerCAmelCase , sublist[-1] ): sublist.append(_lowerCAmelCase ) arr.pop(_lowerCAmelCase ) # merging sublist into solution list if not solution: solution.extend(_lowerCAmelCase ) else: while sublist: snake_case__ : Optional[int] = sublist.pop(0 ) for i, xx in enumerate(_lowerCAmelCase ): if not _operator(_lowerCAmelCase , _lowerCAmelCase ): solution.insert(_lowerCAmelCase , _lowerCAmelCase ) break else: solution.append(_lowerCAmelCase ) strand_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
35
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _snake_case = ["text", "image", "audio"] def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): inputs.append(create_inputs(_lowerCamelCase ) ) else: raise ValueError(F"Invalid type requested: {input_type}" ) return inputs def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for output in outputs: if isinstance(_lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"Invalid output: {output}" ) return output_types @is_tool_test class UpperCAmelCase_ : def snake_case__ ( self): '''simple docstring''' self.assertTrue(hasattr(self.tool, "inputs")) self.assertTrue(hasattr(self.tool, "outputs")) _lowerCAmelCase : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input, __a): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) _lowerCAmelCase : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = create_inputs(self.tool.inputs) _lowerCAmelCase : Dict = self.tool(*__a) # There is a single output if len(self.tool.outputs) == 1: _lowerCAmelCase : Dict = [outputs] self.assertListEqual(output_types(__a), self.tool.outputs) def snake_case__ ( self): '''simple docstring''' self.assertTrue(hasattr(self.tool, "description")) self.assertTrue(hasattr(self.tool, "default_checkpoint")) self.assertTrue(self.tool.description.startswith("This is a tool that")) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = create_inputs(self.tool.inputs) _lowerCAmelCase : Any = self.tool(*__a) if not isinstance(__a, __a): _lowerCAmelCase : str = [outputs] self.assertEqual(len(__a), len(self.tool.outputs)) for output, output_type in zip(__a, self.tool.outputs): _lowerCAmelCase : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__a, __a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = create_inputs(self.tool.inputs) _lowerCAmelCase : Tuple = [] for _input, input_type in zip(__a, self.tool.inputs): if isinstance(__a, __a): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error _lowerCAmelCase : Dict = self.tool(*__a) if not isinstance(__a, __a): _lowerCAmelCase : Any = [outputs] self.assertEqual(len(__a), len(self.tool.outputs))
36
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
0
'''simple docstring''' from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Tuple = [90, 23, 6, 33, 21, 65, 123, 34423] lowerCAmelCase__ : Optional[int] = math.log(len(UpperCamelCase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , UpperCamelCase , UpperCamelCase , UpperCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
37
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any=13 , __lowerCamelCase : Dict=3 , __lowerCamelCase : int=224 , __lowerCamelCase : Any=30 , __lowerCamelCase : Tuple=400 , __lowerCamelCase : int=True , __lowerCamelCase : List[str]=None , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , __lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , ): UpperCamelCase :List[Any] = size if size is not None else {"""height""": 18, """width""": 18} UpperCamelCase :str = parent UpperCamelCase :Optional[int] = batch_size UpperCamelCase :Dict = num_channels UpperCamelCase :str = image_size UpperCamelCase :Dict = min_resolution UpperCamelCase :str = max_resolution UpperCamelCase :Union[str, Any] = do_resize UpperCamelCase :Optional[Any] = size UpperCamelCase :Any = do_normalize UpperCamelCase :Optional[Any] = image_mean UpperCamelCase :Tuple = image_std def _A ( self : int ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : List[Any] = ViTImageProcessor if is_vision_available() else None def _A ( self : str ): UpperCamelCase :Tuple = EfficientFormerImageProcessorTester(self ) @property def _A ( self : List[str] ): return self.image_proc_tester.prepare_image_processor_dict() def _A ( self : int ): UpperCamelCase :List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) def _A ( self : Optional[int] ): pass def _A ( self : str ): # Initialize image_processor UpperCamelCase :Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase :List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase :List[Any] = image_processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _A ( self : Union[str, Any] ): # Initialize image_processor UpperCamelCase :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase :Dict = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase :Tuple = image_processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _A ( self : List[Any] ): # Initialize image_processor UpperCamelCase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase :List[Any] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched UpperCamelCase :str = image_processor(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
38
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _a = logging.get_logger(__name__) @add_end_docstrings(snake_case__) class __lowerCamelCase ( snake_case__): """simple docstring""" def __init__( self , **UpperCAmelCase ): """simple docstring""" super().__init__(**UpperCAmelCase ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , 'vision' ) self.check_model_type(UpperCAmelCase ) def __call__( self , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" if "text_queries" in kwargs: _UpperCAmelCase = kwargs.pop('text_queries' ) if isinstance(UpperCAmelCase , (str, Image.Image) ): _UpperCAmelCase = {'image': image, 'candidate_labels': candidate_labels} else: _UpperCAmelCase = image _UpperCAmelCase = super().__call__(UpperCAmelCase , **UpperCAmelCase ) return results def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = {} if "threshold" in kwargs: _UpperCAmelCase = kwargs['threshold'] if "top_k" in kwargs: _UpperCAmelCase = kwargs['top_k'] return {}, {}, postprocess_params def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = load_image(inputs['image'] ) _UpperCAmelCase = inputs['candidate_labels'] if isinstance(UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = candidate_labels.split(',' ) _UpperCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCAmelCase ): _UpperCAmelCase = self.tokenizer(UpperCAmelCase , return_tensors=self.framework ) _UpperCAmelCase = self.image_processor(UpperCAmelCase , return_tensors=self.framework ) yield { "is_last": i == len(UpperCAmelCase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = model_inputs.pop('target_size' ) _UpperCAmelCase = model_inputs.pop('candidate_label' ) _UpperCAmelCase = model_inputs.pop('is_last' ) _UpperCAmelCase = self.model(**UpperCAmelCase ) _UpperCAmelCase = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=0.1 , UpperCAmelCase=None ): """simple docstring""" _UpperCAmelCase = [] for model_output in model_outputs: _UpperCAmelCase = model_output['candidate_label'] _UpperCAmelCase = BaseModelOutput(UpperCAmelCase ) _UpperCAmelCase = self.image_processor.post_process_object_detection( outputs=UpperCAmelCase , threshold=UpperCAmelCase , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): _UpperCAmelCase = outputs['scores'][index].item() _UpperCAmelCase = self._get_bounding_box(outputs['boxes'][index][0] ) _UpperCAmelCase = {'score': score, 'label': label, 'box': box} results.append(UpperCAmelCase ) _UpperCAmelCase = sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x["score"] , reverse=UpperCAmelCase ) if top_k: _UpperCAmelCase = results[:top_k] return results def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = box.int().tolist() _UpperCAmelCase = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
39
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[Any] = """lxmert""" UpperCAmelCase : str = {} def __init__( self : int , __UpperCAmelCase : List[str]=30522 , __UpperCAmelCase : Optional[Any]=768 , __UpperCAmelCase : str=12 , __UpperCAmelCase : List[Any]=9500 , __UpperCAmelCase : Dict=1600 , __UpperCAmelCase : Tuple=400 , __UpperCAmelCase : List[str]=3072 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Union[str, Any]=512 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : List[str]=1e-12 , __UpperCAmelCase : Optional[int]=9 , __UpperCAmelCase : List[str]=5 , __UpperCAmelCase : Dict=5 , __UpperCAmelCase : List[str]=2048 , __UpperCAmelCase : List[Any]=4 , __UpperCAmelCase : Tuple=6.67 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Optional[int]=True , **__UpperCAmelCase : str , ): a : Tuple = vocab_size a : Optional[Any] = hidden_size a : List[str] = num_attention_heads a : int = hidden_act a : Dict = intermediate_size a : Optional[Any] = hidden_dropout_prob a : Tuple = attention_probs_dropout_prob a : str = max_position_embeddings a : Optional[int] = type_vocab_size a : str = initializer_range a : Tuple = layer_norm_eps a : Any = num_qa_labels a : str = num_object_labels a : Any = num_attr_labels a : Union[str, Any] = l_layers a : int = x_layers a : str = r_layers a : Dict = visual_feat_dim a : int = visual_pos_dim a : Optional[int] = visual_loss_normalizer a : Any = task_matched a : Optional[int] = task_mask_lm a : Union[str, Any] = task_obj_predict a : List[str] = task_qa a : Any = visual_obj_loss a : Union[str, Any] = visual_attr_loss a : int = visual_feat_loss a : int = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**__UpperCAmelCase)
40
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
0
'''simple docstring''' import re import string import numpy as np import datasets _A : Union[str, Any] =''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' _A : Union[str, Any] =''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' _A : Dict =''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def lowerCamelCase_ ( self: List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def lowerCamelCase_ ( self: str , UpperCamelCase__: List[Any] , UpperCamelCase__: int , UpperCamelCase__: Any=None , UpperCamelCase__: Any=False , UpperCamelCase__: Optional[Any]=False , UpperCamelCase__: List[Any]=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCamelCase__ : Dict = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in predictions] ) lowerCamelCase__ : Union[str, Any] = np.array([re.sub(UpperCamelCase__ , """""" , UpperCamelCase__ ) for x in references] ) else: lowerCamelCase__ : int = np.asarray(UpperCamelCase__ ) lowerCamelCase__ : Tuple = np.asarray(UpperCamelCase__ ) if ignore_case: lowerCamelCase__ : Union[str, Any] = np.char.lower(UpperCamelCase__ ) lowerCamelCase__ : Tuple = np.char.lower(UpperCamelCase__ ) if ignore_punctuation: lowerCamelCase__ : Dict = string.punctuation.maketrans("""""" , """""" , string.punctuation ) lowerCamelCase__ : Union[str, Any] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) lowerCamelCase__ : Any = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) if ignore_numbers: lowerCamelCase__ : int = string.digits.maketrans("""""" , """""" , string.digits ) lowerCamelCase__ : Optional[int] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) lowerCamelCase__ : Dict = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = predictions == references return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
41
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : Union[str, Any] = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowercase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase = 256 class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = ["""melgan"""] def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> None: super().__init__() # From MELGAN __UpperCamelCase :int = math.log(1E-5) # Matches MelGAN training. __UpperCamelCase :int = 4.0 # Largest value for most examples __UpperCamelCase :str = 128 self.register_modules( notes_encoder=__lowercase , continuous_encoder=__lowercase , decoder=__lowercase , scheduler=__lowercase , melgan=__lowercase , ) def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Dict: __UpperCamelCase , __UpperCamelCase :str = output_range if clip: __UpperCamelCase :Union[str, Any] = torch.clip(__lowercase , self.min_value , self.max_value) # Scale to [0, 1]. __UpperCamelCase :Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase__ ( self , __lowercase , __lowercase=(-1.0, 1.0) , __lowercase=False) -> Optional[int]: __UpperCamelCase , __UpperCamelCase :int = input_range __UpperCamelCase :Optional[int] = torch.clip(__lowercase , __lowercase , __lowercase) if clip else outputs # Scale to [0, 1]. __UpperCamelCase :List[str] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> List[Any]: __UpperCamelCase :List[str] = input_tokens > 0 __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.notes_encoder( encoder_input_tokens=__lowercase , encoder_inputs_mask=__lowercase) __UpperCamelCase , __UpperCamelCase :Union[str, Any] = self.continuous_encoder( encoder_inputs=__lowercase , encoder_inputs_mask=__lowercase) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> str: __UpperCamelCase :Optional[int] = noise_time if not torch.is_tensor(__lowercase): __UpperCamelCase :str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device) elif torch.is_tensor(__lowercase) and len(timesteps.shape) == 0: __UpperCamelCase :Dict = timesteps[None].to(input_tokens.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase :List[str] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device) __UpperCamelCase :Tuple = self.decoder( encodings_and_masks=__lowercase , decoder_input_tokens=__lowercase , decoder_noise_time=__lowercase) return logits @torch.no_grad() def __call__( self , __lowercase , __lowercase = None , __lowercase = 100 , __lowercase = True , __lowercase = "numpy" , __lowercase = None , __lowercase = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowercase , __lowercase) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(__lowercase)}.""") __UpperCamelCase :Union[str, Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa) __UpperCamelCase :Union[str, Any] = np.zeros([1, 0, self.n_dims] , np.floataa) __UpperCamelCase :Union[str, Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device) for i, encoder_input_tokens in enumerate(__lowercase): if i == 0: __UpperCamelCase :int = torch.from_numpy(pred_mel[:1].copy()).to( device=self.device , dtype=self.decoder.dtype) # The first chunk has no previous context. __UpperCamelCase :int = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__lowercase , device=self.device) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __UpperCamelCase :Tuple = ones __UpperCamelCase :Optional[Any] = self.scale_features( __lowercase , output_range=[-1.0, 1.0] , clip=__lowercase) __UpperCamelCase :int = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device) , continuous_inputs=__lowercase , continuous_mask=__lowercase , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __UpperCamelCase :int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__lowercase , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__lowercase) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): __UpperCamelCase :Optional[int] = self.decode( encodings_and_masks=__lowercase , input_tokens=__lowercase , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __UpperCamelCase :int = self.scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase).prev_sample __UpperCamelCase :Tuple = self.scale_to_features(__lowercase , input_range=[-1.0, 1.0]) __UpperCamelCase :List[Any] = mel[:1] __UpperCamelCase :Optional[Any] = mel.cpu().float().numpy() __UpperCamelCase :Any = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowercase , __lowercase) logger.info('''Generated segment''' , __lowercase) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''') elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''') if output_type == "numpy": __UpperCamelCase :Optional[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa)) else: __UpperCamelCase :List[str] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__lowercase)
43
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> bool: if not isinstance(_lowerCamelCase ,_lowerCamelCase ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) _lowerCAmelCase : Any = str(_lowerCamelCase ) _lowerCAmelCase : List[Any] = """""".join(sorted(_lowerCamelCase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float = 99 ) -> int: if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) _lowerCAmelCase : int = 0 _lowerCAmelCase : str = 1 while True: if check_bouncy(_lowerCamelCase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
44
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
45
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } SCREAMING_SNAKE_CASE__ = {"allegro/herbert-base-cased": 514} SCREAMING_SNAKE_CASE__ = {} class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = HerbertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase="</s>" , **lowercase , ) -> List[Any]: super().__init__( lowercase , lowercase , tokenizer_file=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , sep_token=lowercase , **lowercase , ) def _snake_case ( self , lowercase , lowercase = None ) -> List[int]: lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1] def _snake_case ( self , lowercase , lowercase = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]: lowerCAmelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
46
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
0
'''simple docstring''' from __future__ import annotations lowerCamelCase : List[str] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _lowerCAmelCase ( _UpperCamelCase : list[list[int]] , _UpperCamelCase : list[int] , _UpperCamelCase : list[int] , _UpperCamelCase : int , _UpperCamelCase : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" _SCREAMING_SNAKE_CASE =[ [0 for col in range(len(grid[0] ) )] for row in range(len(_UpperCamelCase ) ) ] # the reference grid _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =[ [0 for col in range(len(grid[0] ) )] for row in range(len(_UpperCamelCase ) ) ] # the action grid _SCREAMING_SNAKE_CASE =init[0] _SCREAMING_SNAKE_CASE =init[1] _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =g + heuristic[x][y] # cost from starting cell to destination cell _SCREAMING_SNAKE_CASE =[[f, g, x, y]] _SCREAMING_SNAKE_CASE =False # flag that is set when search is complete _SCREAMING_SNAKE_CASE =False # flag set if we can't find expand while not found and not resign: if len(_UpperCamelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() _SCREAMING_SNAKE_CASE =cell.pop() _SCREAMING_SNAKE_CASE =next_cell[2] _SCREAMING_SNAKE_CASE =next_cell[3] _SCREAMING_SNAKE_CASE =next_cell[1] if x == goal[0] and y == goal[1]: _SCREAMING_SNAKE_CASE =True else: for i in range(len(_UpperCamelCase ) ): # to try out different valid actions _SCREAMING_SNAKE_CASE =x + DIRECTIONS[i][0] _SCREAMING_SNAKE_CASE =y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_UpperCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: _SCREAMING_SNAKE_CASE =g + cost _SCREAMING_SNAKE_CASE =ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =i _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =goal[0] _SCREAMING_SNAKE_CASE =goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: _SCREAMING_SNAKE_CASE =x - DIRECTIONS[action[x][y]][0] _SCREAMING_SNAKE_CASE =y - DIRECTIONS[action[x][y]][1] _SCREAMING_SNAKE_CASE =xa _SCREAMING_SNAKE_CASE =ya invpath.append([x, y] ) _SCREAMING_SNAKE_CASE =[] for i in range(len(_UpperCamelCase ) ): path.append(invpath[len(_UpperCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCamelCase : Optional[Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCamelCase : Any = [0, 0] # all coordinates are given in format [y,x] lowerCamelCase : Union[str, Any] = [len(grid) - 1, len(grid[0]) - 1] lowerCamelCase : List[Any] = 1 # the cost map which pushes the path closer to the goal lowerCamelCase : Any = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCamelCase : Optional[Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCamelCase : List[Any] = 9_9 lowerCamelCase , lowerCamelCase : str = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
47
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
0
# Imports import numpy as np class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ) -> List[Any]: self.set_matricies(red=UpperCamelCase__ , green=UpperCamelCase__ , blue=UpperCamelCase__ , red_edge=UpperCamelCase__ , nir=UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ) -> Optional[int]: if red is not None: lowerCamelCase : Any = red if green is not None: lowerCamelCase : List[str] = green if blue is not None: lowerCamelCase : str = blue if red_edge is not None: lowerCamelCase : Tuple = red_edge if nir is not None: lowerCamelCase : List[str] = nir return True def _lowercase ( self , UpperCamelCase__="" , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None ) -> List[str]: self.set_matricies(red=UpperCamelCase__ , green=UpperCamelCase__ , blue=UpperCamelCase__ , red_edge=UpperCamelCase__ , nir=UpperCamelCase__ ) lowerCamelCase : str = { "ARVI2": self.arvaa, "CCCI": self.ccci, "CVI": self.cvi, "GLI": self.gli, "NDVI": self.ndvi, "BNDVI": self.bndvi, "redEdgeNDVI": self.red_edge_ndvi, "GNDVI": self.gndvi, "GBNDVI": self.gbndvi, "GRNDVI": self.grndvi, "RBNDVI": self.rbndvi, "PNDVI": self.pndvi, "ATSAVI": self.atsavi, "BWDRVI": self.bwdrvi, "CIgreen": self.ci_green, "CIrededge": self.ci_rededge, "CI": self.ci, "CTVI": self.ctvi, "GDVI": self.gdvi, "EVI": self.evi, "GEMI": self.gemi, "GOSAVI": self.gosavi, "GSAVI": self.gsavi, "Hue": self.hue, "IVI": self.ivi, "IPVI": self.ipvi, "I": self.i, "RVI": self.rvi, "MRVI": self.mrvi, "MSAVI": self.m_savi, "NormG": self.norm_g, "NormNIR": self.norm_nir, "NormR": self.norm_r, "NGRDI": self.ngrdi, "RI": self.ri, "S": self.s, "IF": self._if, "DVI": self.dvi, "TVI": self.tvi, "NDRE": self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def _lowercase ( self ) -> Optional[Any]: return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def _lowercase ( self ) -> int: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _lowercase ( self ) -> Optional[Any]: return self.nir * (self.red / (self.green**2)) def _lowercase ( self ) -> Any: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _lowercase ( self ) -> List[Any]: return (self.nir - self.red) / (self.nir + self.red) def _lowercase ( self ) -> Any: return (self.nir - self.blue) / (self.nir + self.blue) def _lowercase ( self ) -> Any: return (self.redEdge - self.red) / (self.redEdge + self.red) def _lowercase ( self ) -> List[Any]: return (self.nir - self.green) / (self.nir + self.green) def _lowercase ( self ) -> Optional[Any]: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _lowercase ( self ) -> Dict: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _lowercase ( self ) -> str: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _lowercase ( self ) -> List[str]: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _lowercase ( self , UpperCamelCase__=0.08 , UpperCamelCase__=1.22 , UpperCamelCase__=0.03 ) -> int: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _lowercase ( self ) -> str: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _lowercase ( self ) -> Dict: return (self.nir / self.green) - 1 def _lowercase ( self ) -> List[Any]: return (self.nir / self.redEdge) - 1 def _lowercase ( self ) -> Optional[int]: return (self.red - self.blue) / self.red def _lowercase ( self ) -> Any: lowerCamelCase : Optional[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _lowercase ( self ) -> Optional[int]: return self.nir - self.green def _lowercase ( self ) -> Tuple: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Any = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def _lowercase ( self , UpperCamelCase__=0.16 ) -> Any: return (self.nir - self.green) / (self.nir + self.green + y) def _lowercase ( self , UpperCamelCase__=0.5 ) -> Tuple: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _lowercase ( self ) -> List[Any]: return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def _lowercase ( self , UpperCamelCase__=None , UpperCamelCase__=None ) -> int: return (self.nir - b) / (a * self.red) def _lowercase ( self ) -> Dict: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _lowercase ( self ) -> Union[str, Any]: return (self.red + self.green + self.blue) / 30.5 def _lowercase ( self ) -> int: return self.nir / self.red def _lowercase ( self ) -> List[Any]: return (self.rvi() - 1) / (self.rvi() + 1) def _lowercase ( self ) -> Optional[Any]: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _lowercase ( self ) -> List[Any]: return self.green / (self.nir + self.red + self.green) def _lowercase ( self ) -> int: return self.nir / (self.nir + self.red + self.green) def _lowercase ( self ) -> Tuple: return self.red / (self.nir + self.red + self.green) def _lowercase ( self ) -> Optional[int]: return (self.green - self.red) / (self.green + self.red) def _lowercase ( self ) -> Any: return (self.red - self.green) / (self.red + self.green) def _lowercase ( self ) -> List[str]: lowerCamelCase : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) lowerCamelCase : Union[str, Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _lowercase ( self ) -> int: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _lowercase ( self ) -> Optional[int]: return self.nir / self.red def _lowercase ( self ) -> Optional[Any]: return (self.ndvi() + 0.5) ** (1 / 2) def _lowercase ( self ) -> Dict: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
48
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __snake_case :Dict = '''bart''' __snake_case :Tuple = True @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): if LOAD_DENSE_INDEX: __a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __a = qar_model.eval() else: __a , __a = (None, None) if MODEL_TYPE == "bart": __a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __a = sas_model.eval() else: __a , __a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): if LOAD_DENSE_INDEX: __a = faiss.StandardGpuResources() __a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __a = faiss.IndexFlatIP(128 ) __a = faiss.index_cpu_to_gpu(_UpperCAmelCase , 1 , _UpperCAmelCase ) wikiaab_gpu_index_flat.add(_UpperCAmelCase ) # TODO fix for larger GPU else: __a , __a = (None, None) __a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): __a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __a = elia['''train_eli5'''] __a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_UpperCAmelCase ) return (elia_train, eli5_train_q_index) __snake_case ,__snake_case ,__snake_case :List[str] = load_indexes() __snake_case ,__snake_case ,__snake_case ,__snake_case :Dict = load_models() __snake_case ,__snake_case :Tuple = load_train_data() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=10 ): __a = embed_questions_for_retrieval([question] , _UpperCAmelCase , _UpperCAmelCase ) __a , __a = eli5_train_q_index.search(_UpperCAmelCase , _UpperCAmelCase ) __a = [elia_train[int(_UpperCAmelCase )] for i in I[0]] return nn_examples def __snake_case ( _UpperCAmelCase , _UpperCAmelCase="wiki40b" , _UpperCAmelCase="dense" , _UpperCAmelCase=10 ): if source == "none": __a , __a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a = query_qa_dense_index( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: __a , __a = query_es_index( _UpperCAmelCase , _UpperCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=_UpperCAmelCase , ) __a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __a = '''question: {} context: {}'''.format(_UpperCAmelCase , _UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCAmelCase : None), } ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=256 , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=0.95 , _UpperCAmelCase=0.8 ): with torch.no_grad(): __a = qa_sas_generate( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , num_answers=1 , num_beams=_UpperCAmelCase , min_len=_UpperCAmelCase , max_len=_UpperCAmelCase , do_sample=_UpperCAmelCase , temp=_UpperCAmelCase , top_p=_UpperCAmelCase , top_k=_UpperCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar __snake_case :Dict = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' __snake_case :int = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __snake_case :int = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) __snake_case :Union[str, Any] = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] __snake_case :int = st.sidebar.checkbox('''Demo options''') if demo_options: __snake_case :str = st.sidebar.selectbox( '''''', action_list, index=3, ) __snake_case :Tuple = action_list.index(action_st) __snake_case :Optional[int] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) __snake_case :Dict = show_type == '''Show full text of passages''' else: __snake_case :Dict = 3 __snake_case :str = True __snake_case :Optional[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: __snake_case :List[str] = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) __snake_case :Dict = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) __snake_case :Optional[int] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: __snake_case :Optional[int] = '''wiki40b''' __snake_case :Dict = '''dense''' __snake_case :Dict = '''beam''' __snake_case :int = 2 __snake_case :str = 64 __snake_case :Tuple = 256 __snake_case :int = None __snake_case :List[Any] = None __snake_case :int = st.sidebar.checkbox('''Generation options''') if generate_options: __snake_case :Tuple = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) __snake_case :Tuple = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) __snake_case :Dict = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __snake_case :Dict = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __snake_case :List[str] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __snake_case :Tuple = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) __snake_case :Any = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) __snake_case :Any = None # start main text __snake_case :Dict = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] __snake_case :int = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": __snake_case :Optional[int] = st.text_input('''Enter your question here:''', '''''') else: __snake_case :Optional[int] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": __snake_case ,__snake_case :int = make_support(question, source=wiki_source, method='''dense''', n_results=10) __snake_case ,__snake_case :Optional[int] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) __snake_case :Optional[Any] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __snake_case :Union[str, Any] = support_list[:10] __snake_case :Optional[int] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: __snake_case ,__snake_case :Tuple = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __snake_case ,__snake_case :Optional[int] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): __snake_case :Dict = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) __snake_case :int = res[1].strip() if sec_titles == "": __snake_case :List[Any] = '''[{}]({})'''.format(res[0], wiki_url) else: __snake_case :Optional[int] = sec_titles.split(''' & ''') __snake_case :str = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: __snake_case :str = find_nearest_training(question) __snake_case :str = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) __snake_case :Optional[Any] = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) __snake_case :Tuple = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run snake_case_ : Union[str, Any] = True except (ImportError, AttributeError): snake_case_ : str = object def A (*__A : Tuple , **__A : List[str] ) -> List[str]: """simple docstring""" pass snake_case_ : List[str] = False snake_case_ : Tuple = logging.get_logger("transformers-cli/serving") def A (__A : Namespace ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__A , args.host , args.port , args.workers ) class __snake_case ( a ): UpperCAmelCase__ : dict class __snake_case ( a ): UpperCAmelCase__ : List[str] UpperCAmelCase__ : Optional[List[int]] class __snake_case ( a ): UpperCAmelCase__ : str class __snake_case ( a ): UpperCAmelCase__ : Any class __snake_case ( a ): @staticmethod def lowerCamelCase ( _snake_case : ArgumentParser): """simple docstring""" UpperCAmelCase_ = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''') serve_parser.add_argument( '''--task''' , type=_snake_case , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=_snake_case , default='''localhost''' , help='''Interface the server will listen on.''') serve_parser.add_argument('''--port''' , type=_snake_case , default=8888 , help='''Port the serving will listen to.''') serve_parser.add_argument('''--workers''' , type=_snake_case , default=1 , help='''Number of http workers''') serve_parser.add_argument('''--model''' , type=_snake_case , help='''Model\'s name or path to stored model.''') serve_parser.add_argument('''--config''' , type=_snake_case , help='''Model\'s config name or path to stored model.''') serve_parser.add_argument('''--tokenizer''' , type=_snake_case , help='''Tokenizer name to use.''') serve_parser.add_argument( '''--device''' , type=_snake_case , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=_snake_case) def __init__( self : Tuple , _snake_case : Pipeline , _snake_case : str , _snake_case : int , _snake_case : int): """simple docstring""" UpperCAmelCase_ = pipeline UpperCAmelCase_ = host UpperCAmelCase_ = port UpperCAmelCase_ = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''') else: logger.info(F"""Serving model over {host}:{port}""") UpperCAmelCase_ = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=_snake_case , response_class=_snake_case , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=_snake_case , response_class=_snake_case , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=_snake_case , response_class=_snake_case , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=_snake_case , response_class=_snake_case , methods=['''POST'''] , ), ] , timeout=600 , ) def lowerCamelCase ( self : Tuple): """simple docstring""" run(self._app , host=self.host , port=self.port , workers=self.workers) def lowerCamelCase ( self : List[str]): """simple docstring""" return ServeModelInfoResult(infos=vars(self._pipeline.model.config)) def lowerCamelCase ( self : Tuple , _snake_case : str = Body(_snake_case , embed=_snake_case) , _snake_case : bool = Body(_snake_case , embed=_snake_case)): """simple docstring""" try: UpperCAmelCase_ = self._pipeline.tokenizer.tokenize(_snake_case) if return_ids: UpperCAmelCase_ = self._pipeline.tokenizer.convert_tokens_to_ids(_snake_case) return ServeTokenizeResult(tokens=_snake_case , tokens_ids=_snake_case) else: return ServeTokenizeResult(tokens=_snake_case) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(_snake_case)}) def lowerCamelCase ( self : Tuple , _snake_case : List[int] = Body(_snake_case , embed=_snake_case) , _snake_case : bool = Body(_snake_case , embed=_snake_case) , _snake_case : bool = Body(_snake_case , embed=_snake_case) , ): """simple docstring""" try: UpperCAmelCase_ = self._pipeline.tokenizer.decode(_snake_case , _snake_case , _snake_case) return ServeDeTokenizeResult(model='''''' , text=_snake_case) except Exception as e: raise HTTPException(status_code=500 , detail={'''model''': '''''', '''error''': str(_snake_case)}) async def lowerCamelCase ( self : List[Any] , _snake_case : Optional[int]=Body(_snake_case , embed=_snake_case)): """simple docstring""" if len(_snake_case) == 0: return ServeForwardResult(output=[] , attention=[]) try: # Forward through the model UpperCAmelCase_ = self._pipeline(_snake_case) return ServeForwardResult(output=_snake_case) except Exception as e: raise HTTPException(500 , {'''error''': str(_snake_case)})
51
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ) -> Tuple: lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCamelCase__ : Optional[Any] = True elif "IPython" in sys.modules: lowerCamelCase__ : Optional[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCamelCase__ : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = PrepareForLaunch(_UpperCAmelCase , distributed_type='TPU' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = PrepareForLaunch(_UpperCAmelCase , distributed_type='MULTI_GPU' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase__ : int = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowerCamelCase__ : Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' )
50
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowerCamelCase : Tuple = (720, 1280) # Height, Width __lowerCamelCase : int = (0.4, 0.6) # if height or width lower than this scale, drop it. __lowerCamelCase : int = 1 / 100 __lowerCamelCase : Any = """""" __lowerCamelCase : List[str] = """""" __lowerCamelCase : List[Any] = """""" __lowerCamelCase : Tuple = 250 def A_ ( ) -> None: UpperCamelCase , UpperCamelCase : Tuple = get_dataset(_lowerCAmelCase , _lowerCAmelCase ) for index in range(_lowerCAmelCase ): UpperCamelCase : Union[str, Any] = random.sample(range(len(_lowerCAmelCase ) ) , 4 ) UpperCamelCase , UpperCamelCase , UpperCamelCase : str = update_image_and_anno( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , filter_scale=_lowerCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase : Union[str, Any] = random_chars(32 ) UpperCamelCase : Optional[Any] = path.split(os.sep )[-1].rsplit("." , 1 )[0] UpperCamelCase : Optional[Any] = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , _lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) UpperCamelCase : int = [] for anno in new_annos: UpperCamelCase : Dict = anno[3] - anno[1] UpperCamelCase : Union[str, Any] = anno[4] - anno[2] UpperCamelCase : Optional[int] = anno[1] + width / 2 UpperCamelCase : Tuple = anno[2] + height / 2 UpperCamelCase : Dict = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(_lowerCAmelCase ) with open(F"""{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[list, list]: UpperCamelCase : int = [] UpperCamelCase : Tuple = [] for label_file in glob.glob(os.path.join(_lowerCAmelCase , "*.txt" ) ): UpperCamelCase : Union[str, Any] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_lowerCAmelCase ) as in_file: UpperCamelCase : int = in_file.readlines() UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , F"""{label_name}.jpg""" ) UpperCamelCase : str = [] for obj_list in obj_lists: UpperCamelCase : Optional[int] = obj_list.rstrip("\n" ).split(" " ) UpperCamelCase : Dict = float(obj[1] ) - float(obj[3] ) / 2 UpperCamelCase : List[str] = float(obj[2] ) - float(obj[4] ) / 2 UpperCamelCase : Dict = float(obj[1] ) + float(obj[3] ) / 2 UpperCamelCase : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_lowerCAmelCase ) labels.append(_lowerCAmelCase ) return img_paths, labels def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , ) -> tuple[list, list, str]: UpperCamelCase : str = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) UpperCamelCase : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCamelCase : Dict = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCamelCase : Dict = int(scale_x * output_size[1] ) UpperCamelCase : Tuple = int(scale_y * output_size[0] ) UpperCamelCase : Union[str, Any] = [] UpperCamelCase : int = [] for i, index in enumerate(_lowerCAmelCase ): UpperCamelCase : str = all_img_list[index] path_list.append(_lowerCAmelCase ) UpperCamelCase : Tuple = all_annos[index] UpperCamelCase : Union[str, Any] = cva.imread(_lowerCAmelCase ) if i == 0: # top-left UpperCamelCase : int = cva.resize(_lowerCAmelCase , (divid_point_x, divid_point_y) ) UpperCamelCase : int = img for bbox in img_annos: UpperCamelCase : Any = bbox[1] * scale_x UpperCamelCase : Optional[Any] = bbox[2] * scale_y UpperCamelCase : str = bbox[3] * scale_x UpperCamelCase : Any = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right UpperCamelCase : Any = cva.resize(_lowerCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) UpperCamelCase : str = img for bbox in img_annos: UpperCamelCase : str = scale_x + bbox[1] * (1 - scale_x) UpperCamelCase : Tuple = bbox[2] * scale_y UpperCamelCase : int = scale_x + bbox[3] * (1 - scale_x) UpperCamelCase : str = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left UpperCamelCase : Dict = cva.resize(_lowerCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) UpperCamelCase : Dict = img for bbox in img_annos: UpperCamelCase : str = bbox[1] * scale_x UpperCamelCase : List[str] = scale_y + bbox[2] * (1 - scale_y) UpperCamelCase : Dict = bbox[3] * scale_x UpperCamelCase : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right UpperCamelCase : str = cva.resize( _lowerCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) UpperCamelCase : Optional[int] = img for bbox in img_annos: UpperCamelCase : Dict = scale_x + bbox[1] * (1 - scale_x) UpperCamelCase : Any = scale_y + bbox[2] * (1 - scale_y) UpperCamelCase : int = scale_x + bbox[3] * (1 - scale_x) UpperCamelCase : Union[str, Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: UpperCamelCase : List[str] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def A_ ( _lowerCAmelCase ) -> str: assert number_char > 1, "The number of character should greater than 1" UpperCamelCase : Optional[Any] = ascii_lowercase + digits return "".join(random.choice(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
52
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
0
'''simple docstring''' from __future__ import annotations class snake_case : """simple docstring""" def __init__( self : Optional[int] , __A : list[list[int]] ): __UpperCamelCase = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(__A ) != 0: __UpperCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__A ) != cols: raise error for value in row: if not isinstance(__A , (int, float) ): raise error __UpperCamelCase = rows else: __UpperCamelCase = [] def _lowerCamelCase ( self : int ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCamelCase ( self : str ): return len(self.rows ) @property def _lowerCamelCase ( self : Any ): return len(self.rows[0] ) @property def _lowerCamelCase ( self : Optional[Any] ): return (self.num_rows, self.num_columns) @property def _lowerCamelCase ( self : Dict ): return self.order[0] == self.order[1] def _lowerCamelCase ( self : Any ): __UpperCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Any ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCamelCase ( self : List[str] ): return bool(self.determinant() ) def _lowerCamelCase ( self : Dict , __A : int , __A : int ): __UpperCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__A ).determinant() def _lowerCamelCase ( self : Dict , __A : int , __A : int ): if (row + column) % 2 == 0: return self.get_minor(__A , __A ) return -1 * self.get_minor(__A , __A ) def _lowerCamelCase ( self : List[str] ): return Matrix( [ [self.get_minor(__A , __A ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCamelCase ( self : Union[str, Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self : Optional[Any] ): return str(self.rows ) def __str__( self : Union[str, Any] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(__A ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _lowerCamelCase ( self : List[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in row: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(__A ) else: __UpperCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCamelCase ( self : Optional[Any] , __A : list[int] , __A : int | None = None ): __UpperCamelCase = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(__A , __A ): raise type_error for value in column: if not isinstance(__A , (int, float) ): raise type_error if len(__A ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: __UpperCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __UpperCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __A : object ): if not isinstance(__A , __A ): return NotImplemented return self.rows == other.rows def __ne__( self : Any , __A : object ): return not self == other def __neg__( self : List[Any] ): return self * -1 def __add__( self : List[str] , __A : Matrix ): if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : str , __A : Matrix ): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , __A : Matrix | int | float ): if isinstance(__A , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__A , __A ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(__A , __A ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self : Union[str, Any] , __A : int ): if not isinstance(__A , __A ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) __UpperCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCamelCase ( cls : Tuple , __A : list[int] , __A : list[int] ): return sum(row[i] * column[i] for i in range(len(__A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
53
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
"""simple docstring""" import itertools import math def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = 2 while True: if is_prime(lowerCAmelCase_ ): yield num num += 1 def UpperCAmelCase__ (lowerCAmelCase_ = 1_0001 ): '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase_ ) ) if __name__ == "__main__": print(F"{solution() = }")
54
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[int] = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Tuple = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : str = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCamelCase__ : Union[str, Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = num_labels lowerCamelCase__ : Dict = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCamelCase__ : List[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCamelCase__ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCamelCase__ : Optional[Any] = [2, 2, 20] lowerCamelCase__ : Optional[int] = [3, 12, 16] lowerCamelCase__ : str = [192, 768, 1024] lowerCamelCase__ : Any = CvtForImageClassification(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : List[str] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lowerCamelCase__ : Optional[int] = OrderedDict() lowerCamelCase__ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCamelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCamelCase__ : str = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCamelCase__ : str = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
50
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __snake_case ( ): lowerCamelCase_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=UpperCAmelCase_ ) lowerCamelCase_ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=UpperCAmelCase_ ) env_command_parser(subparsers=UpperCAmelCase_ ) launch_command_parser(subparsers=UpperCAmelCase_ ) tpu_command_parser(subparsers=UpperCAmelCase_ ) test_command_parser(subparsers=UpperCAmelCase_ ) # Let's go lowerCamelCase_ = parser.parse_args() if not hasattr(UpperCAmelCase_ , "func" ): parser.print_help() exit(1 ) # Run args.func(UpperCAmelCase_ ) if __name__ == "__main__": main()
55
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' if not isinstance(__UpperCAmelCase, __UpperCAmelCase ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__UpperCAmelCase ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(__UpperCAmelCase ) == 1: return True snake_case_ = series[1] - series[0] for index in range(len(__UpperCAmelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __magic_name__ ( __UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(__UpperCAmelCase, __UpperCAmelCase ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(__UpperCAmelCase ) == 0: raise ValueError('''Input list must be a non empty list''' ) snake_case_ = 0 for val in series: answer += val return answer / len(__UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
56
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A : Any = logging.get_logger(__name__) A : int = {"vocab_file": "sentencepiece.bpe.model"} A : str = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } A : int = { "moussaKam/mbarthez": 1_0_2_4, "moussaKam/barthez": 1_0_2_4, "moussaKam/barthez-orangesum-title": 1_0_2_4, } A : int = "▁" class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =VOCAB_FILES_NAMES __UpperCAmelCase : int =PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict =["""input_ids""", """attention_mask"""] def __init__( self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a = None , **__a , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) __lowerCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} __lowerCAmelCase = len(self.sp_model ) - 1 __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case ( self , __a , __a = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self , __a , __a = None , __a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def snake_case ( self , __a , __a = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case ( self ): return len(self.sp_model ) def snake_case ( self ): __lowerCAmelCase = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self , __a ): return self.sp_model.encode(__a , out_type=__a ) def snake_case ( self , __a ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(__a ) return spm_id if spm_id else self.unk_token_id def snake_case ( self , __a ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__a ) def snake_case ( self , __a ): __lowerCAmelCase = [] __lowerCAmelCase = "" __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(__a ) __lowerCAmelCase = False out_string += self.sp_model.decode(__a ) return out_string.strip() def __getstate__( self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self , __a ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self , __a , __a = None ): if not os.path.isdir(__a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowerCAmelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
57
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''bloom''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self , A=25_0880 , A=64 , A=2 , A=8 , A=1e-5 , A=0.02 , A=True , A=1 , A=2 , A=False , A=0.0 , A=0.0 , A=1 , A=False , **A , ) -> Tuple: _SCREAMING_SNAKE_CASE = vocab_size # Backward compatibility with n_embed kwarg _SCREAMING_SNAKE_CASE = kwargs.pop("""n_embed""" , A ) _SCREAMING_SNAKE_CASE = hidden_size if n_embed is None else n_embed _SCREAMING_SNAKE_CASE = n_layer _SCREAMING_SNAKE_CASE = n_head _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = pretraining_tp _SCREAMING_SNAKE_CASE = apply_residual_connection_post_layernorm _SCREAMING_SNAKE_CASE = hidden_dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = slow_but_exact super().__init__(bos_token_id=A , eos_token_id=A , **A ) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = version.parse('''1.12''' ) def __init__( self , A , A = "default" , A = None , A = False , ) -> str: super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , """pad_token_id""" , A ): # TODO: how to do that better? _SCREAMING_SNAKE_CASE = 0 @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: _SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(A , direction="""inputs""" , inverted_values_shape=A ) _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_sequence + sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return common_inputs @property def snake_case_( self ) -> int: return self._config.n_layer @property def snake_case_( self ) -> int: return self._config.n_head @property def snake_case_( self ) -> float: return 1e-3 def snake_case_( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: _SCREAMING_SNAKE_CASE = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() _SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _SCREAMING_SNAKE_CASE = seqlen + 2 _SCREAMING_SNAKE_CASE = self._config.hidden_size // self.num_attention_heads _SCREAMING_SNAKE_CASE = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) _SCREAMING_SNAKE_CASE = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) _SCREAMING_SNAKE_CASE = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] _SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""] if self.use_past: _SCREAMING_SNAKE_CASE = ordered_inputs["""attention_mask"""].dtype _SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def snake_case_( self ) -> int: return 13
58
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
0
import argparse import json from tqdm import tqdm def UpperCamelCase ( ): snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=__lowerCamelCase , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=__lowerCamelCase , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=__lowerCamelCase , help="where to store parsed gold_data_path file" , ) snake_case : Tuple = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: snake_case : Tuple = json.load(__lowerCamelCase ) for dpr_record in tqdm(__lowerCamelCase ): snake_case : Dict = dpr_record["question"] snake_case : Dict = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(__lowerCamelCase ) + "\n" ) if __name__ == "__main__": main()
59
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
0
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _snake_case ( _snake_case : Optional[Any] , _snake_case : Any ): lowerCAmelCase : List[str] = [] for part_id in partition_order: lowerCAmelCase : Optional[int] = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(_snake_case ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : Dict = spark.range(100 ).repartition(1 ) lowerCAmelCase : List[Any] = Spark(_snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : List[str] = spark.range(10 ).repartition(2 ) lowerCAmelCase : List[Any] = [1, 0] lowerCAmelCase : Union[str, Any] = _generate_iterable_examples(_snake_case , _snake_case ) # Reverse the partitions. lowerCAmelCase : Dict = _get_expected_row_ids_and_row_dicts_for_partition_order(_snake_case , _snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowerCAmelCase, lowerCAmelCase : Any = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : Any = spark.range(10 ).repartition(1 ) lowerCAmelCase : Optional[int] = SparkExamplesIterable(_snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_snake_case ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : Union[str, Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: lowerCAmelCase : List[Any] = lambda _snake_case : x.reverse() lowerCAmelCase : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_snake_case , [2, 1, 0] ) lowerCAmelCase : Optional[Any] = SparkExamplesIterable(_snake_case ).shuffle_data_sources(_snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_snake_case ): lowerCAmelCase, lowerCAmelCase : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : Dict = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : int = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowerCAmelCase : List[str] = SparkExamplesIterable(_snake_case ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCAmelCase : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(_snake_case , [0, 2] ) for i, (row_id, row_dict) in enumerate(_snake_case ): lowerCAmelCase, lowerCAmelCase : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowerCAmelCase : Tuple = SparkExamplesIterable(_snake_case ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCAmelCase : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(_snake_case , [1, 3] ) for i, (row_id, row_dict) in enumerate(_snake_case ): lowerCAmelCase, lowerCAmelCase : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _snake_case ( ): lowerCAmelCase : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() lowerCAmelCase : List[Any] = spark.range(100 ).repartition(1 ) lowerCAmelCase : List[str] = Spark(_snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
60
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
0
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : int = {"""do_clean_text""": False, """add_prefix_space""": False} def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase_ : Optional[int] = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on UpperCAmelCase_ : List[Any] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 UpperCAmelCase_ : Dict = {"unk_token": "<unk>"} UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(lowercase_ ) ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = "こんにちは、世界。 \nこんばんは、㔺界。😀" UpperCAmelCase_ : Union[str, Any] = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.get_input_output_texts(lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) return text, ids def UpperCamelCase__ ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase__ ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase__ ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.get_tokenizer() # Testing tokenization UpperCAmelCase_ : Tuple = "こんにちは、世界。 こんばんは、㔺界。" UpperCAmelCase_ : Dict = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] UpperCAmelCase_ : int = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing conversion to ids without special tokens UpperCAmelCase_ : int = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing conversion to ids with special tokens UpperCAmelCase_ : Tuple = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase_ : int = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.get_tokenizer() # Testing tokenization UpperCAmelCase_ : Optional[int] = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" UpperCAmelCase_ : Optional[int] = "こんにちは、、、、世界。こんばんは、、、、世界。" UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase_ : List[Any] = "こんにちは、世界。" UpperCAmelCase_ : List[Any] = "こんばんは、㔺界。😀" UpperCAmelCase_ : List[Any] = "こんにちは、世界。こんばんは、世界。😀" UpperCAmelCase_ : Optional[Any] = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase_ : List[str] = tokenizer.encode("" , prefix_text=prefix_text + input_text ) UpperCAmelCase_ : str = tokenizer.encode(lowercase_ , prefix_text=lowercase_ ) UpperCAmelCase_ : List[Any] = tokenizer.decode(lowercase_ ) UpperCAmelCase_ : str = tokenizer.decode(lowercase_ ) UpperCAmelCase_ : List[str] = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase_ : Union[str, Any] = "こんにちは、世界。" UpperCAmelCase_ : Union[str, Any] = "こんばんは、㔺界。😀" UpperCAmelCase_ : List[Any] = len(tokenizer.encode(lowercase_ ) ) - 2 UpperCAmelCase_ : Dict = len(tokenizer.encode(lowercase_ ) ) - 2 UpperCAmelCase_ : Union[str, Any] = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase_ : Any = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase_ : List[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase_ : Dict = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase_ : Optional[Any] = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase_ : str = tokenizer(lowercase_ , prefix_text=lowercase_ ).token_type_ids self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase_ : str = tokenizer.encode("あンいワ" ) UpperCAmelCase_ : List[Any] = tokenizer.encode("" , prefix_text="あンいワ" ) UpperCAmelCase_ : str = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(lowercase_ ) , tokenizer.decode(lowercase_ ) ) self.assertEqual(tokenizer.decode(lowercase_ ) , tokenizer.decode(lowercase_ ) ) self.assertNotEqual(lowercase_ , lowercase_ ) self.assertNotEqual(lowercase_ , lowercase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase_ : Tuple = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] UpperCAmelCase_ : Dict = tokenizer(lowercase_ , padding=lowercase_ ) UpperCAmelCase_ : int = tokenizer.batch_encode_plus(lowercase_ , padding=lowercase_ ) # fmt: off UpperCAmelCase_ : str = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] UpperCAmelCase_ : Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase_ : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowercase_ ) self.assertListEqual(x_token.token_type_ids , lowercase_ ) self.assertListEqual(x_token.attention_mask , lowercase_ ) self.assertListEqual(x_token_a.input_ids , lowercase_ ) self.assertListEqual(x_token_a.token_type_ids , lowercase_ ) self.assertListEqual(x_token_a.attention_mask , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCamelCase__ ( self ): """simple docstring""" # tokenizer has no padding token pass
61
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[str] = len(_UpperCAmelCase ) lowerCamelCase__ : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCamelCase__ : Tuple = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCamelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCamelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: lowerCamelCase__ : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
50
0
_A = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} _A = ['a', 'b', 'c', 'd', 'e'] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =start # add current to visited visited.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __UpperCamelCase =topological_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # if all neighbors visited add current to sort sort.append(SCREAMING_SNAKE_CASE__ ) # if all vertices haven't been visited select a new one to visit if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): for vertice in vertices: if vertice not in visited: __UpperCamelCase =topological_sort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # return sort return sort if __name__ == "__main__": _A = topological_sort('a', [], []) print(sort)
62
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=1024 , UpperCAmelCase : Tuple=768 , **UpperCAmelCase : Optional[int] ) -> Dict: lowerCamelCase__ : Optional[int] = transformerDimSize lowerCamelCase__ : Optional[Any] = imageDimSize super().__init__(**UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = MCLIPConfig def __init__( self : List[Any] , UpperCAmelCase : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ) -> Dict: super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Tuple = XLMRobertaModel(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Tuple: lowerCamelCase__ : Any = self.transformer(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )[0] lowerCamelCase__ : int = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(UpperCAmelCase ), embs
50
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @require_torch def UpperCamelCase__ ( self : str ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " _a = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " _a = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache _a = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__a ) BertModel.from_pretrained(__a ) BertTokenizer.from_pretrained(__a ) pipeline(task="fill-mask" , model=__a ) # baseline - just load from_pretrained with normal network _a = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = "1" _a = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def UpperCamelCase__ ( self : Optional[Any] ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " _a = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " _a = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache _a = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__a ) BertModel.from_pretrained(__a ) BertTokenizer.from_pretrained(__a ) pipeline(task="fill-mask" , model=__a ) # baseline - just load from_pretrained with normal network _a = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def UpperCamelCase__ ( self : List[Any] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " _a = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " _a = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network _a = [sys.executable, "-c", "\n".join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network _a = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = "1" _a = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def UpperCamelCase__ ( self : Optional[Any] ): _a = "\nfrom transformers import pipeline\n " _a = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " _a = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " _a = self.get_env() _a = "1" _a = [sys.executable, "-c", "\n".join([load, mock, run] )] _a = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def UpperCamelCase__ ( self : str ): _a = "\nfrom transformers import AutoModel\n " _a = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network _a = [sys.executable, "-c", "\n".join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = "1" _a = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
63
from itertools import count def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 50 ) -> int: lowerCamelCase__ : Optional[Any] = [1] * min_block_length for n in count(_UpperCAmelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCAmelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 100_0000: break return n if __name__ == "__main__": print(F"""{solution() = }""")
50
0
"""simple docstring""" # using dfs for finding eulerian path traversal def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : int , snake_case__ : List[str]=None ): """simple docstring""" _snake_case : List[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _snake_case , _snake_case : Dict = True, True _snake_case : str = dfs(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return path def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : List[str] = 0 _snake_case : List[str] = -1 for i in range(snake_case__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _snake_case : int = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _snake_case , _snake_case : Dict = check_circuit_or_path(snake_case__ , snake_case__ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return _snake_case : int = 1 if check == 2: _snake_case : Optional[int] = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) _snake_case : Optional[int] = dfs(snake_case__ , snake_case__ , snake_case__ ) print(snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[str] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _snake_case : Dict = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _snake_case : Optional[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _snake_case : List[str] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _snake_case : List[str] = { 1: [], 2: [] # all degree is zero } _snake_case : List[Any] = 10 check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) check_euler(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
64
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
0
from bisect import bisect from itertools import accumulate def lowerCAmelCase_ ( __A, __A, __A, __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = sorted(zip(__A, __A ), key=lambda __A : x[0] / x[1], reverse=__A ) UpperCAmelCase__ , UpperCAmelCase__ = [i[0] for i in r], [i[1] for i in r] UpperCAmelCase__ = list(accumulate(__A ) ) UpperCAmelCase__ = bisect(__A, __A ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
65
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _UpperCAmelCase : int = None _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : List[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off _UpperCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ["""input_ids""", """attention_mask"""] UpperCAmelCase__ = NllbTokenizer UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Any=None , UpperCAmelCase : str="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Optional[Any]="<unk>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : int=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Any=False , **UpperCAmelCase : Optional[int] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : List[Any] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCamelCase__ : Union[str, Any] = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = vocab_file lowerCamelCase__ : Dict = False if not self.vocab_file else True lowerCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) lowerCamelCase__ : str = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase__ : int = src_lang if src_lang is not None else 'eng_Latn' lowerCamelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : int ) -> str: return self._src_lang @src_lang.setter def A_ ( self : List[Any] , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : Dict = [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowerCamelCase__ : Optional[int] = src_lang lowerCamelCase__ : Optional[int] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = tgt_lang_id return inputs def A_ ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Dict , ) -> BatchEncoding: lowerCamelCase__ : Any = src_lang lowerCamelCase__ : int = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A_ ( self : Union[str, Any] ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Any ) -> Union[str, Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : str , UpperCAmelCase : Optional[Any] ) -> None: lowerCamelCase__ : int = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : int = [] lowerCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : int = [self.cur_lang_code] lowerCamelCase__ : Tuple = [self.eos_token_id] lowerCamelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : int , UpperCAmelCase : str ) -> None: lowerCamelCase__ : Union[str, Any] = self.convert_tokens_to_ids(UpperCAmelCase ) if self.legacy_behaviour: lowerCamelCase__ : Dict = [] lowerCamelCase__ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase__ : Any = [self.cur_lang_code] lowerCamelCase__ : Optional[Any] = [self.eos_token_id] lowerCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase__ : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A_ ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowerCamelCase__ : int = os.path.join( UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
50
0
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = MODEL_FOR_MASKED_LM_MAPPING _A : int = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case_ :Optional[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) snake_case_ :str = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser"""}, ] , ) snake_case_ :List[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38_015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25_506, """token_str""": """ accuser""", }, ] , ) snake_case_ :Any = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCAmelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: snake_case_ :List[Any] = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) snake_case_ :Optional[int] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) snake_case_ :Union[str, Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS"""}, ] , ) snake_case_ :str = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2_941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13_606, """token_str""": """ Clara"""}, ] , ) snake_case_ :List[Any] = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(snake_case , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35_676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16_416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def lowerCAmelCase_ ( self: Any ) -> str: snake_case_ :Optional[int] = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() snake_case_ :List[str] = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(snake_case , snake_case ) @slow @require_torch def lowerCAmelCase_ ( self: Dict ) -> Dict: snake_case_ :Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(snake_case ) @slow @require_tf def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: snake_case_ :Any = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(snake_case ) def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: List[Any] ) -> Union[str, Any]: snake_case_ :Optional[Any] = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(snake_case ) , [ {"""sequence""": """My name is John""", """score""": 0.0_0_8, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.0_0_7, """token""": 1_573, """token_str""": """ Chris"""}, ] , ) snake_case_ :List[Any] = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(snake_case ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.2_5_1, """token""": 2_201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.2_1_4, """token""": 12_790, """token_str""": """ Lyon""", }, ] , ) snake_case_ :int = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(snake_case ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.0_0_5, """token""": 3_499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.0_0_0, """token""": 13_606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.0_0_0, """token""": 2_941, """token_str""": """ Te"""}, ] , ) @require_torch def lowerCAmelCase_ ( self: Dict ) -> Optional[int]: snake_case_ :str = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) snake_case_ :Any = None snake_case_ :Tuple = None self.run_pipeline_test(snake_case , [] ) @require_tf def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]: snake_case_ :int = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) snake_case_ :List[str] = None snake_case_ :List[Any] = None self.run_pipeline_test(snake_case , [] ) def lowerCAmelCase_ ( self: List[Any] , snake_case: int , snake_case: Tuple , snake_case: Optional[int] ) -> Any: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) snake_case_ :Union[str, Any] = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) snake_case_ :str = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def lowerCAmelCase_ ( self: Any , snake_case: Optional[Any] , snake_case: Tuple ) -> Union[str, Any]: snake_case_ :Any = fill_masker.tokenizer snake_case_ :List[Any] = fill_masker.model snake_case_ :int = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) snake_case_ :Optional[int] = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) snake_case_ :Union[str, Any] = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( snake_case , [ [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ], [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ], ] , ) with self.assertRaises(snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(snake_case ): fill_masker("""This is""" ) self.run_test_top_k(snake_case , snake_case ) self.run_test_targets(snake_case , snake_case ) self.run_test_top_k_targets(snake_case , snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(snake_case , snake_case ) self.fill_mask_with_multiple_masks(snake_case , snake_case ) def lowerCAmelCase_ ( self: Any , snake_case: int , snake_case: int ) -> int: snake_case_ :List[str] = tokenizer.get_vocab() snake_case_ :Dict = sorted(vocab.keys() )[:2] # Pipeline argument snake_case_ :Any = FillMaskPipeline(model=snake_case , tokenizer=snake_case , targets=snake_case ) snake_case_ :Optional[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) snake_case_ :List[str] = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , snake_case ) snake_case_ :Optional[int] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(snake_case ) ) # Call argument snake_case_ :int = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) snake_case_ :Optional[int] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) snake_case_ :Tuple = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , snake_case ) snake_case_ :Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(snake_case ) ) # Score equivalence snake_case_ :Tuple = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case ) snake_case_ :Any = [top_mask["""token_str"""] for top_mask in outputs] snake_case_ :Union[str, Any] = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case ) == set(snake_case ): snake_case_ :Optional[int] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=snake_case ) snake_case_ :Union[str, Any] = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(snake_case ) , nested_simplify(snake_case ) ) # Raises with invalid with self.assertRaises(snake_case ): snake_case_ :Union[str, Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(snake_case ): snake_case_ :int = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[""""""] ) with self.assertRaises(snake_case ): snake_case_ :Optional[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets="""""" ) def lowerCAmelCase_ ( self: int , snake_case: List[str] , snake_case: List[str] ) -> Union[str, Any]: snake_case_ :Union[str, Any] = FillMaskPipeline(model=snake_case , tokenizer=snake_case , top_k=2 ) snake_case_ :str = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) snake_case_ :Optional[int] = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) snake_case_ :Optional[Any] = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( snake_case , [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ] , ) self.assertEqual(nested_simplify(snake_case ) , nested_simplify(snake_case ) ) def lowerCAmelCase_ ( self: Any , snake_case: List[str] , snake_case: List[Any] ) -> Tuple: snake_case_ :Tuple = tokenizer.get_vocab() snake_case_ :List[str] = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) # top_k=2, ntargets=3 snake_case_ :List[Any] = sorted(vocab.keys() )[:3] snake_case_ :Any = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results snake_case_ :str = [el["""token_str"""] for el in sorted(snake_case , key=lambda snake_case : x["score"] , reverse=snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(snake_case ).issubset(snake_case ): snake_case_ :Dict = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(snake_case ) , nested_simplify(snake_case ) ) def lowerCAmelCase_ ( self: Tuple , snake_case: Optional[int] , snake_case: Dict ) -> Tuple: snake_case_ :List[str] = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) snake_case_ :Dict = tokenizer.get_vocab() # String duplicates + id duplicates snake_case_ :Optional[Any] = sorted(vocab.keys() )[:3] snake_case_ :Union[str, Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] snake_case_ :str = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(snake_case ) , 3 ) def lowerCAmelCase_ ( self: str , snake_case: Optional[int] , snake_case: Dict ) -> int: snake_case_ :Union[str, Any] = FillMaskPipeline(model=snake_case , tokenizer=snake_case ) snake_case_ :Dict = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( snake_case , [ [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ], [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ], [ {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, {"""sequence""": ANY(snake_case ), """score""": ANY(snake_case ), """token""": ANY(snake_case ), """token_str""": ANY(snake_case )}, ], ] , )
66
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
0
'''simple docstring''' import math import sys def __lowerCAmelCase ( UpperCamelCase__ ) -> str: __lowerCamelCase = '''''' try: with open(UpperCamelCase__ , '''rb''' ) as binary_file: __lowerCamelCase = binary_file.read() for dat in data: __lowerCamelCase = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def __lowerCAmelCase ( UpperCamelCase__ ) -> str: __lowerCamelCase = {'''0''': '''0''', '''1''': '''1'''} __lowerCamelCase , __lowerCamelCase = '''''', '''''' __lowerCamelCase = len(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCamelCase = lexicon[curr_string] result += last_match_id __lowerCamelCase = last_match_id + '''0''' if math.loga(UpperCamelCase__ ).is_integer(): __lowerCamelCase = {} for curr_key in list(UpperCamelCase__ ): __lowerCamelCase = lexicon.pop(UpperCamelCase__ ) __lowerCamelCase = new_lex __lowerCamelCase = last_match_id + '''1''' index += 1 __lowerCamelCase = '''''' return result def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> None: __lowerCamelCase = 8 try: with open(UpperCamelCase__ , '''wb''' ) as opened_file: __lowerCamelCase = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase__ , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def __lowerCAmelCase ( UpperCamelCase__ ) -> str: __lowerCamelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 __lowerCamelCase = data_bits[counter:] __lowerCamelCase = data_bits[counter + 1 :] return data_bits def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> None: __lowerCamelCase = read_file_binary(UpperCamelCase__ ) __lowerCamelCase = remove_prefix(UpperCamelCase__ ) __lowerCamelCase = decompress_data(UpperCamelCase__ ) write_file_binary(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
67
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase__ : str = set() lowerCamelCase__ : Any = [] def parse_line(_UpperCAmelCase ): for line in fp: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Any = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_UpperCAmelCase ) > 0: lowerCamelCase__ : str = '\n'.join(_UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_UpperCAmelCase ) buffer.clear() continue else: lowerCamelCase__ : List[str] = line.strip() buffer.append(_UpperCAmelCase ) if from_gh: for filename in os.listdir(_UpperCAmelCase ): lowerCamelCase__ : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) else: try: with zipfile.ZipFile(_UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_UpperCAmelCase ) as fp: parse_line(_UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = set() lowerCamelCase__ : Optional[int] = [os.path.join(_UpperCAmelCase , _UpperCAmelCase ) for p in os.listdir(_UpperCAmelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_UpperCAmelCase , _UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: return values.split(',' ) _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Dict = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _UpperCAmelCase : Union[str, Any] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) _UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
50
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' raise RuntimeError("CUDA out of memory." ) class a__ ( nn.Module ): """simple docstring""" def __init__( self ) -> Dict: '''simple docstring''' super().__init__() A__ = nn.Linear(3 , 4 ) A__ = nn.BatchNormad(4 ) A__ = nn.Linear(4 , 5 ) def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowercase ) ) ) class a__ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase ): nonlocal batch_sizes batch_sizes.append(lowercase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowercase , [128, 64, 32, 16, 8] ) def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase , lowercase ): nonlocal batch_sizes batch_sizes.append(lowercase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga A__ , A__ = mock_training_loop_function("hello" ) self.assertListEqual(lowercase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowercase ): pass with self.assertRaises(lowercase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowercase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(lowercase , lowercase , lowercase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowercase ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(lowercase ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(lowercase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = torch.cuda.memory_allocated() A__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowercase ) A__ = release_memory(lowercase ) self.assertEqual(torch.cuda.memory_allocated() , lowercase )
68
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "gpt_bigcode" SCREAMING_SNAKE_CASE_ = ["past_key_values"] SCREAMING_SNAKE_CASE_ = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, lowerCAmelCase__=5_0257, lowerCAmelCase__=1024, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=None, lowerCAmelCase__="gelu_pytorch_tanh", lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=1e-5, lowerCAmelCase__=0.02, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=5_0256, lowerCAmelCase__=5_0256, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=True, **lowerCAmelCase__, ) -> Any: snake_case_ = vocab_size snake_case_ = n_positions snake_case_ = n_embd snake_case_ = n_layer snake_case_ = n_head snake_case_ = n_inner snake_case_ = activation_function snake_case_ = resid_pdrop snake_case_ = embd_pdrop snake_case_ = attn_pdrop snake_case_ = layer_norm_epsilon snake_case_ = initializer_range snake_case_ = scale_attn_weights snake_case_ = use_cache snake_case_ = attention_softmax_in_fpaa snake_case_ = scale_attention_softmax_in_fpaa snake_case_ = multi_query snake_case_ = bos_token_id snake_case_ = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__)
69
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Optional[Any] = set() # edges = list of graph's edges lowerCamelCase__ : List[str] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase__ , lowerCamelCase__ : str = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> set: lowerCamelCase__ : Union[str, Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
50
0
'''simple docstring''' import math def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase = 0 , lowerCAmelCase = 0 ): """simple docstring""" _lowerCAmelCase = end or len(lowerCAmelCase ) for i in range(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = i _lowerCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _lowerCAmelCase = array[temp_index - 1] temp_index -= 1 _lowerCAmelCase = temp_index_value return array def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): # Max Heap """simple docstring""" _lowerCAmelCase = index _lowerCAmelCase = 2 * index + 1 # Left Node _lowerCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _lowerCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _lowerCAmelCase = right_index if largest != index: _lowerCAmelCase , _lowerCAmelCase = array[largest], array[index] heapify(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = len(lowerCAmelCase ) for i in range(n // 2 , -1 , -1 ): heapify(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for i in range(n - 1 , 0 , -1 ): _lowerCAmelCase , _lowerCAmelCase = array[0], array[i] heapify(lowerCAmelCase , 0 , lowerCAmelCase ) return array def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = low _lowerCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _lowerCAmelCase , _lowerCAmelCase = array[j], array[i] i += 1 def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if len(lowerCAmelCase ) == 0: return array _lowerCAmelCase = 2 * math.ceil(math.loga(len(lowerCAmelCase ) ) ) _lowerCAmelCase = 16 return intro_sort(lowerCAmelCase , 0 , len(lowerCAmelCase ) , lowerCAmelCase , lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(lowerCAmelCase ) max_depth -= 1 _lowerCAmelCase = median_of_a(lowerCAmelCase , lowerCAmelCase , start + ((end - start) // 2) + 1 , end - 1 ) _lowerCAmelCase = partition(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) intro_sort(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = p return insertion_sort(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() A__ : Dict =input('''Enter numbers separated by a comma : ''').strip() A__ : Dict =[float(item) for item in user_input.split(''',''')] print(sort(unsorted))
70
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def A ( a_ ,a_ ) -> Union[str, Any]: __UpperCamelCase : List[Any] =k_size // 2 __UpperCamelCase , __UpperCamelCase : Tuple =mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCamelCase : List[str] =1 / (2 * pi * sigma) * exp(-(square(a_ ) + square(a_ )) / (2 * square(a_ )) ) return g def A ( a_ ,a_ ,a_ ) -> Any: __UpperCamelCase , __UpperCamelCase : Optional[Any] =image.shape[0], image.shape[1] # dst image height and width __UpperCamelCase : List[str] =height - k_size + 1 __UpperCamelCase : Dict =width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCamelCase : Tuple =zeros((dst_height * dst_width, k_size * k_size) ) __UpperCamelCase : Optional[Any] =0 for i, j in product(range(a_ ) ,range(a_ ) ): __UpperCamelCase : Union[str, Any] =ravel(image[i : i + k_size, j : j + k_size] ) __UpperCamelCase : List[Any] =window row += 1 # turn the kernel into shape(k*k, 1) __UpperCamelCase : List[str] =gen_gaussian_kernel(a_ ,a_ ) __UpperCamelCase : Any =ravel(a_ ) # reshape and get the dst image __UpperCamelCase : int =dot(a_ ,a_ ).reshape(a_ ,a_ ).astype(a_ ) return dst if __name__ == "__main__": # read original image A_ :Any = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value A_ :Any = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size A_ :Any = gaussian_filter(gray, 3, sigma=1) A_ :Any = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
71
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[str]: lowerCamelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): lowerCamelCase__ : Optional[Any] = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): lowerCamelCase__ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCamelCase__ : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] lowerCamelCase__ : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: lowerCamelCase__ : str = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCamelCase__ : Dict = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] lowerCamelCase__ : str = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: lowerCamelCase__ : Optional[int] = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 lowerCamelCase__ : List[Any] = key[key.find('block' ) + len('block' )] lowerCamelCase__ : int = key.replace(F"""block{idx}""" , F"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: lowerCamelCase__ : Union[str, Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: lowerCamelCase__ : Dict = key.replace('attn' , 'attention.self' ) if "fc1" in key: lowerCamelCase__ : Dict = key.replace('fc1' , 'dense1' ) if "fc2" in key: lowerCamelCase__ : Any = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: lowerCamelCase__ : Dict = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: lowerCamelCase__ : Tuple = key.replace('linear_fuse.conv' , 'linear_fuse' ) lowerCamelCase__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCamelCase__ : Optional[Any] = key[key.find('linear_c' ) + len('linear_c' )] lowerCamelCase__ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: lowerCamelCase__ : str = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: lowerCamelCase__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: lowerCamelCase__ : List[Any] = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: lowerCamelCase__ : Optional[int] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: lowerCamelCase__ : Union[str, Any] = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: lowerCamelCase__ : List[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: lowerCamelCase__ : str = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): lowerCamelCase__ : Dict = key.replace('module.last_layer_depth' , 'head.head' ) lowerCamelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCamelCase__ : Any = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCamelCase__ : Optional[Any] = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCamelCase__ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowerCamelCase__ : Optional[int] = kv_bias[: config.hidden_sizes[i]] lowerCamelCase__ : Any = kv_weight[ config.hidden_sizes[i] :, : ] lowerCamelCase__ : Dict = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase__ : Tuple = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Optional[int]: lowerCamelCase__ : str = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCamelCase__ : Union[str, Any] = GLPNImageProcessor() # prepare image lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict lowerCamelCase__ : Any = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys lowerCamelCase__ : str = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict lowerCamelCase__ : Dict = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass lowerCamelCase__ : List[str] = model(_UpperCAmelCase ) lowerCamelCase__ : Tuple = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCamelCase__ : List[Any] = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: lowerCamelCase__ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowerCamelCase__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) _UpperCAmelCase : int = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
50
0
"""simple docstring""" from collections import defaultdict def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : Dict = 1 _lowerCamelCase : List[Any] = True for v in tree[start]: if v not in visited: ret += dfs(A_ ) if ret % 2 == 0: cuts.append(A_ ) return ret def snake_case_ ( ): '''simple docstring''' dfs(1 ) if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ = 10, 9 lowerCAmelCase__ = defaultdict(list) lowerCAmelCase__ = {} lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
72
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Union[str, Any] = CycleDiffusionPipeline _UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } _UpperCAmelCase : int = PipelineTesterMixin.required_optional_params - {'''latents'''} _UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) _UpperCAmelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : Optional[int]): torch.manual_seed(0) __lowerCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=3_2 ,) __lowerCamelCase : Optional[int] = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,num_train_timesteps=1_0_0_0 ,clip_sample=SCREAMING_SNAKE_CASE__ ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,) torch.manual_seed(0) __lowerCamelCase : str = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0) __lowerCamelCase : List[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) __lowerCamelCase : int = CLIPTextModel(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __lowerCamelCase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str]=0): __lowerCamelCase : str = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(SCREAMING_SNAKE_CASE__)).to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = image / 2 + 0.5 if str(SCREAMING_SNAKE_CASE__).startswith('mps'): __lowerCamelCase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Dict = self.get_dummy_components() __lowerCamelCase : Dict = CycleDiffusionPipeline(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = pipe(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = output.images __lowerCamelCase : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) __lowerCamelCase : Optional[int] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' ,'This test requires a GPU') def lowerCAmelCase ( self : str): __lowerCamelCase : Any = self.get_dummy_components() for name, module in components.items(): if hasattr(SCREAMING_SNAKE_CASE__ ,'half'): __lowerCamelCase : Any = module.half() __lowerCamelCase : Union[str, Any] = CycleDiffusionPipeline(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = pipe(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = output.images __lowerCamelCase : Any = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) __lowerCamelCase : Optional[int] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @skip_mps def lowerCAmelCase ( self : Dict): return super().test_save_load_local() @unittest.skip('non-deterministic pipeline') def lowerCAmelCase ( self : Optional[Any]): return super().test_inference_batch_single_identical() @skip_mps def lowerCAmelCase ( self : Any): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase ( self : Optional[Any]): return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase ( self : Tuple): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png') __lowerCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy') __lowerCamelCase : Optional[int] = init_image.resize((5_1_2, 5_1_2)) __lowerCamelCase : Optional[int] = 'CompVis/stable-diffusion-v1-4' __lowerCamelCase : Tuple = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ,subfolder='scheduler') __lowerCamelCase : Optional[int] = CycleDiffusionPipeline.from_pretrained( SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ,revision='fp16') pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) pipe.enable_attention_slicing() __lowerCamelCase : Union[str, Any] = 'A black colored car' __lowerCamelCase : Optional[int] = 'A blue colored car' __lowerCamelCase : List[Any] = torch.manual_seed(0) __lowerCamelCase : Union[str, Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ ,source_prompt=SCREAMING_SNAKE_CASE__ ,image=SCREAMING_SNAKE_CASE__ ,num_inference_steps=1_0_0 ,eta=0.1 ,strength=0.85 ,guidance_scale=3 ,source_guidance_scale=1 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np' ,) __lowerCamelCase : List[Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image).max() < 5E-1 def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png') __lowerCamelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy') __lowerCamelCase : List[str] = init_image.resize((5_1_2, 5_1_2)) __lowerCamelCase : int = 'CompVis/stable-diffusion-v1-4' __lowerCamelCase : int = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ,subfolder='scheduler') __lowerCamelCase : Optional[Any] = CycleDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__) pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) pipe.enable_attention_slicing() __lowerCamelCase : str = 'A black colored car' __lowerCamelCase : List[str] = 'A blue colored car' __lowerCamelCase : int = torch.manual_seed(0) __lowerCamelCase : Tuple = pipe( prompt=SCREAMING_SNAKE_CASE__ ,source_prompt=SCREAMING_SNAKE_CASE__ ,image=SCREAMING_SNAKE_CASE__ ,num_inference_steps=1_0_0 ,eta=0.1 ,strength=0.85 ,guidance_scale=3 ,source_guidance_scale=1 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np' ,) __lowerCamelCase : List[Any] = output.images assert np.abs(image - expected_image).max() < 2E-2
73
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=None , _UpperCAmelCase="no" , _UpperCAmelCase="29500" ) -> Tuple: lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): lowerCamelCase__ : Optional[Any] = True elif "IPython" in sys.modules: lowerCamelCase__ : Optional[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: lowerCamelCase__ : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , _UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: lowerCamelCase__ : Optional[Any] = 8 lowerCamelCase__ : List[str] = PrepareForLaunch(_UpperCAmelCase , distributed_type='TPU' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*_UpperCAmelCase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port=_UpperCAmelCase , mixed_precision=_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = PrepareForLaunch(_UpperCAmelCase , distributed_type='MULTI_GPU' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCamelCase__ : int = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=() , _UpperCAmelCase=2 ) -> Optional[Any]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_UpperCAmelCase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): lowerCamelCase__ : Optional[Any] = PrepareForLaunch(_UpperCAmelCase , debug=_UpperCAmelCase ) start_processes(_UpperCAmelCase , args=_UpperCAmelCase , nprocs=_UpperCAmelCase , start_method='fork' )
50
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase = logging.get_logger(__name__) _lowercase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _lowercase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _lowercase = {'''facebook/blenderbot-3B''': 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): A = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) A = bs[:] A = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 A = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__ , snake_case__ ) ) def _snake_case ( snake_case__ : List[Any] ): A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Dict = VOCAB_FILES_NAMES _lowerCamelCase: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : Any ,A_ : List[str] ,A_ : int ,A_ : int="replace" ,A_ : List[str]="<s>" ,A_ : List[Any]="</s>" ,A_ : Optional[Any]="</s>" ,A_ : List[str]="<s>" ,A_ : int="<unk>" ,A_ : str="<pad>" ,A_ : Union[str, Any]="<mask>" ,A_ : int=False ,**A_ : str ,) -> List[str]: A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else bos_token A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else eos_token A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else sep_token A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else cls_token A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else unk_token A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else mask_token super().__init__( errors=A_ ,bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,sep_token=A_ ,cls_token=A_ ,pad_token=A_ ,mask_token=A_ ,add_prefix_space=A_ ,**A_ ,) with open(A_ ,encoding='utf-8' ) as vocab_handle: A = json.load(A_ ) A = {v: k for k, v in self.encoder.items()} A = errors # how to handle errors in decoding A = bytes_to_unicode() A = {v: k for k, v in self.byte_encoder.items()} with open(A_ ,encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[1:-1] A = [tuple(merge.split() ) for merge in bpe_merges] A = dict(zip(A_ ,range(len(A_ ) ) ) ) A = {} A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return len(self.encoder ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def _SCREAMING_SNAKE_CASE ( self : int ,A_ : Union[str, Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] A = tuple(A_ ) A = get_pairs(A_ ) if not pairs: return token while True: A = min(A_ ,key=lambda A_ : self.bpe_ranks.get(A_ ,float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(A_ ): try: A = word.index(A_ ,A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(A_ ) A = new_word if len(A_ ) == 1: break else: A = get_pairs(A_ ) A = ' '.join(A_ ) A = word return word def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : int ) -> Tuple: A = [] for token in re.findall(self.pat ,A_ ): A = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Dict ) -> Union[str, Any]: return self.encoder.get(A_ ,self.encoder.get(self.unk_token ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[Any] ) -> Dict: return self.decoder.get(A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : List[Any] ) -> int: A = ''.join(A_ ) A = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' ,errors=self.errors ) return text def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ ,'w' ,encoding='utf-8' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=A_ ,ensure_ascii=A_ ) + '\n' ) A = 0 with open(A_ ,'w' ,encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[int] ,A_ : Optional[Any]=False ,**A_ : Tuple ) -> List[Any]: A = kwargs.pop('add_prefix_space' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): A = ' ' + text return (text, kwargs) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> str: return token_ids_a + [self.eos_token_id] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : "Conversation" ) -> List[int]: A = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) A = ' '.join(A_ ) A = self.encode(A_ ) if len(A_ ) > self.model_max_length: A = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
74
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): @register_to_config def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]: super().__init__() lowerCamelCase__ : Optional[int] = sample_size # time if time_embedding_type == "fourier": lowerCamelCase__ : Optional[Any] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase ) lowerCamelCase__ : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__ : List[Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase ) lowerCamelCase__ : Dict = block_out_channels[0] if use_timestep_embedding: lowerCamelCase__ : str = block_out_channels[0] * 4 lowerCamelCase__ : List[Any] = TimestepEmbedding( in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , ) lowerCamelCase__ : Any = nn.ModuleList([] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Optional[int] = None # down lowerCamelCase__ : Optional[int] = in_channels for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = output_channel lowerCamelCase__ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Optional[int] = get_down_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Optional[int] = get_mid_block( UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , ) # up lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__ : List[str] = out_channels else: lowerCamelCase__ : Any = block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels ) lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Dict = get_up_block( UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : int = output_channel # out lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCamelCase__ : List[Any] = get_out_block( out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]: lowerCamelCase__ : Optional[Any] = timestep if not torch.is_tensor(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[str] = timesteps[None].to(sample.device ) lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase ) if self.config.use_timestep_embedding: lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase ) else: lowerCamelCase__ : List[str] = timestep_embed[..., None] lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCamelCase__ : str = () for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCamelCase__ : Dict = down_block_res_samples[-1:] lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1] lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase ) # 5. post-process if self.out_block: lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase )
50
0
'''simple docstring''' def a_ ( __snake_case : list , __snake_case : list , __snake_case : int ) -> int: """simple docstring""" if len(__snake_case ) != len(__snake_case ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. lowerCamelCase_ =[p / w for p, w in zip(__snake_case , __snake_case )] # Creating a copy of the list and sorting profit/weight in ascending order lowerCamelCase_ =sorted(__snake_case ) # declaring useful variables lowerCamelCase_ =len(__snake_case ) lowerCamelCase_ =0 lowerCamelCase_ =0 lowerCamelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight lowerCamelCase_ =sorted_profit_by_weight[length - i - 1] lowerCamelCase_ =profit_by_weight.index(__snake_case ) lowerCamelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) a_ : Optional[int] = [int(x) for x in input("""Input profits separated by spaces: """).split()] a_ : List[str] = [int(x) for x in input("""Input weights separated by spaces: """).split()] a_ : int = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
75
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> list[tuple[int, int]]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = position lowerCamelCase__ : Optional[Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase__ : Dict = [] for position in positions: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_UpperCAmelCase ) return permissible_positions def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return not any(elem == 0 for row in board for elem in row ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: if is_complete(_UpperCAmelCase ): return True for position in get_valid_pos(_UpperCAmelCase , len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[int] = position if board[y][x] == 0: lowerCamelCase__ : List[Any] = curr + 1 if open_knight_tour_helper(_UpperCAmelCase , _UpperCAmelCase , curr + 1 ): return True lowerCamelCase__ : Optional[Any] = 0 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[list[int]]: lowerCamelCase__ : Any = [[0 for i in range(_UpperCAmelCase )] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): lowerCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(_UpperCAmelCase , (i, j) , 1 ): return board lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
50
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='git_vision_model' def __init__( self : Dict , a : Optional[Any]=768 , a : Union[str, Any]=3072 , a : Tuple=12 , a : int=12 , a : List[str]=3 , a : str=224 , a : List[str]=16 , a : List[Any]="quick_gelu" , a : Any=1e-5 , a : str=0.0 , a : Optional[int]=0.02 , **a : Optional[int] , ) -> Any: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act @classmethod def __UpperCamelCase ( cls : int , a : Union[str, os.PathLike] , **a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": SCREAMING_SNAKE_CASE : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='git' def __init__( self : Optional[Any] , a : Optional[Any]=None , a : str=3_0522 , a : Dict=768 , a : int=6 , a : Optional[int]=12 , a : List[str]=3072 , a : int="gelu" , a : List[str]=0.1 , a : int=0.1 , a : List[Any]=1024 , a : Union[str, Any]=0.02 , a : Dict=1e-12 , a : Any=0 , a : Any="absolute" , a : List[Any]=True , a : Optional[Any]=False , a : Any=101 , a : Union[str, Any]=102 , a : Optional[Any]=None , **a : Any , ) -> str: """simple docstring""" super().__init__(bos_token_id=a , eos_token_id=a , pad_token_id=a , **a ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) SCREAMING_SNAKE_CASE : Optional[Any] = GitVisionConfig(**a ) SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Any = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = tie_word_embeddings SCREAMING_SNAKE_CASE : Tuple = num_image_with_embedding SCREAMING_SNAKE_CASE : int = bos_token_id SCREAMING_SNAKE_CASE : Any = eos_token_id def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Tuple = self.__class__.model_type return output
76
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : Optional[int] = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Tuple = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple: lowerCamelCase__ : Union[str, Any] = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : str = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: lowerCamelCase__ : Tuple = 'imagenet-1k-id2label.json' lowerCamelCase__ : Union[str, Any] = 1000 lowerCamelCase__ : Optional[Any] = 'huggingface/label-files' lowerCamelCase__ : Any = num_labels lowerCamelCase__ : Dict = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCamelCase__ : int = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : List[str] = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowerCamelCase__ : List[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowerCamelCase__ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCamelCase__ : Optional[Any] = [2, 2, 20] lowerCamelCase__ : Optional[int] = [3, 12, 16] lowerCamelCase__ : str = [192, 768, 1024] lowerCamelCase__ : Any = CvtForImageClassification(_UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : List[str] = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) lowerCamelCase__ : Optional[int] = OrderedDict() lowerCamelCase__ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCamelCase__ : Optional[Any] = list_of_state_dict + cls_token(_UpperCAmelCase ) lowerCamelCase__ : str = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): lowerCamelCase__ : str = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase__ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_84, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase : List[str] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
50
0
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase_ : def __init__( self , a , a , a , a , a , a=0.2 , a=0.2 ) -> Dict: lowercase__ : Any = bp_numa lowercase__ : Optional[int] = bp_numa lowercase__ : Tuple = bp_numa lowercase__ : Optional[Any] = conva_get[:2] lowercase__ : Optional[int] = conva_get[2] lowercase__ : Optional[Any] = size_pa lowercase__ : Union[str, Any] = rate_w lowercase__ : Union[str, Any] = rate_t lowercase__ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__ : Optional[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowercase__ : Any = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__ : int = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__ : int = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self , a ) -> Union[str, Any]: # save model dict with pickle lowercase__ : Optional[Any] = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(a , 'wb' ) as f: pickle.dump(a , a ) print(f"""Model saved: {save_path}""" ) @classmethod def _UpperCAmelCase ( cls , a ) -> Any: # read saved model with open(a , 'rb' ) as f: lowercase__ : Optional[int] = pickle.load(a ) # noqa: S301 lowercase__ : Optional[int] = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase__ : List[Any] = model_dic.get('size_pooling1' ) lowercase__ : Tuple = model_dic.get('num_bp1' ) lowercase__ : int = model_dic.get('num_bp2' ) lowercase__ : int = model_dic.get('num_bp3' ) lowercase__ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase__ : Tuple = model_dic.get('rate_thre' ) # create model instance lowercase__ : Tuple = CNN(a , a , a , a , a , a , a ) # modify model parameter lowercase__ : str = model_dic.get('w_conv1' ) lowercase__ : Optional[int] = model_dic.get('wkj' ) lowercase__ : Tuple = model_dic.get('vji' ) lowercase__ : str = model_dic.get('thre_conv1' ) lowercase__ : Union[str, Any] = model_dic.get('thre_bp2' ) lowercase__ : List[str] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self , a ) -> str: return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self , a ) -> Any: return round(a , 3 ) def _UpperCAmelCase ( self , a , a , a , a , a ) -> List[str]: # convolution process lowercase__ : int = convs[0] lowercase__ : Optional[Any] = convs[1] lowercase__ : int = np.shape(a )[0] # get the data slice of original image data, data_focus lowercase__ : Optional[Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , a ): for j_focus in range(0 , size_data - size_conv + 1 , a ): lowercase__ : Optional[int] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(a ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__ : Union[str, Any] = [] lowercase__ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(a ): lowercase__ : Any = [] for i_focus in range(len(a ) ): lowercase__ : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(a ) ) lowercase__ : Optional[Any] = np.asmatrix(a ).reshape( a , a ) data_featuremap.append(a ) # expanding the data slice to One dimenssion lowercase__ : str = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(a ) ) lowercase__ : int = np.asarray(a ) return focus_list, data_featuremap def _UpperCAmelCase ( self , a , a , a="average_pool" ) -> str: # pooling process lowercase__ : List[str] = len(featuremaps[0] ) lowercase__ : List[str] = int(size_map / size_pooling ) lowercase__ : str = [] for i_map in range(len(a ) ): lowercase__ : List[str] = featuremaps[i_map] lowercase__ : Optional[int] = [] for i_focus in range(0 , a , a ): for j_focus in range(0 , a , a ): lowercase__ : List[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(a ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(a ) ) lowercase__ : List[Any] = np.asmatrix(a ).reshape(a , a ) featuremap_pooled.append(a ) return featuremap_pooled def _UpperCAmelCase ( self , a ) -> List[str]: # expanding three dimension data to one dimension list lowercase__ : Any = [] for i in range(len(a ) ): lowercase__ : Optional[int] = np.shape(data[i] ) lowercase__ : int = data[i].reshape(1 , shapes[0] * shapes[1] ) lowercase__ : str = data_listed.getA().tolist()[0] data_expanded.extend(a ) lowercase__ : int = np.asarray(a ) return data_expanded def _UpperCAmelCase ( self , a ) -> Dict: # expanding matrix to one dimension list lowercase__ : Dict = np.asarray(a ) lowercase__ : Union[str, Any] = np.shape(a ) lowercase__ : Optional[Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self , a , a , a , a , a ) -> List[Any]: lowercase__ : Dict = [] lowercase__ : int = 0 for i_map in range(a ): lowercase__ : str = np.ones((size_map, size_map) ) for i in range(0 , a , a ): for j in range(0 , a , a ): lowercase__ : Optional[Any] = pd_pool[ i_pool ] lowercase__ : Union[str, Any] = i_pool + 1 lowercase__ : List[Any] = np.multiply( a , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(a ) return pd_all def _UpperCAmelCase ( self , a , a , a , a , a , a=bool ) -> str: # model traning print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(a )) ) print((' - - Shape: Teach_Data ', np.shape(a )) ) lowercase__ : int = 0 lowercase__ : List[Any] = [] lowercase__ : Union[str, Any] = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: lowercase__ : List[Any] = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(a ) ): # print('------------Learning Image: %d--------------'%p) lowercase__ : Optional[int] = np.asmatrix(datas_train[p] ) lowercase__ : int = np.asarray(datas_teach[p] ) lowercase__ , lowercase__ : Union[str, Any] = self.convolute( a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : Optional[Any] = self.pooling(a , self.size_poolinga ) lowercase__ : Tuple = np.shape(a ) lowercase__ : List[str] = self._expand(a ) lowercase__ : Optional[int] = data_bp_input lowercase__ : Optional[Any] = np.dot(a , self.vji.T ) - self.thre_bpa lowercase__ : str = self.sig(a ) lowercase__ : Tuple = np.dot(a , self.wkj.T ) - self.thre_bpa lowercase__ : Any = self.sig(a ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__ : int = np.multiply( (data_teach - bp_outa) , np.multiply(a , (1 - bp_outa) ) ) lowercase__ : Any = np.multiply( np.dot(a , self.wkj ) , np.multiply(a , (1 - bp_outa) ) ) lowercase__ : Optional[int] = np.dot(a , self.vji ) lowercase__ : Union[str, Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__ : Any = pd_conva_pooled.T.getA().tolist() lowercase__ : List[str] = self._calculate_gradient_from_pool( a , a , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__ : Optional[int] = self._expand_mat(pd_conva_all[k_conv] ) lowercase__ : Tuple = self.rate_weight * np.dot(a , a ) lowercase__ : Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__ : Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__ : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__ : Tuple = self.thre_bpa - pd_k_all * self.rate_thre lowercase__ : Optional[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__ : Dict = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__ : str = rp + 1 lowercase__ : List[str] = error_count / patterns all_mse.append(a ) def draw_error(): lowercase__ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(a , '+-' ) plt.plot(a , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(a , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self , a ) -> List[Any]: # model predict lowercase__ : Optional[int] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(a )) ) for p in range(len(a ) ): lowercase__ : List[str] = np.asmatrix(datas_test[p] ) lowercase__ , lowercase__ : Tuple = self.convolute( a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : Any = self.pooling(a , self.size_poolinga ) lowercase__ : Union[str, Any] = self._expand(a ) lowercase__ : Optional[Any] = data_bp_input lowercase__ : str = bp_outa * self.vji.T - self.thre_bpa lowercase__ : Optional[Any] = self.sig(a ) lowercase__ : Dict = bp_outa * self.wkj.T - self.thre_bpa lowercase__ : List[str] = self.sig(a ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__ : Optional[int] = [list(map(self.do_round , a ) ) for each in produce_out] return np.asarray(a ) def _UpperCAmelCase ( self , a ) -> List[str]: # return the data of image after convoluting process so we can check it out lowercase__ : Any = np.asmatrix(a ) lowercase__ , lowercase__ : str = self.convolute( a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowercase__ : Tuple = self.pooling(a , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
77
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case_ = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 100_0000 ) -> int: lowerCamelCase__ : int = limit + 1 lowerCamelCase__ : Optional[Any] = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ : List[str] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
50
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = 0 snake_case = False snake_case = 3.0 class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=__UpperCAmelCase ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def lowerCAmelCase ( self : int ): '''simple docstring''' _A = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _A = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _A = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , __UpperCAmelCase ) @require_multi_gpu def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCamelCase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCamelCase_ = torch.nn.Linear(1_00, 2_00) lowerCamelCase_ = accelerator.prepare(model) # Check the values changed in kwargs lowerCamelCase_ = '''''' lowerCamelCase_ = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
79
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : int = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase : int = { """google/realm-cc-news-pretrained-embedder""": 5_12, """google/realm-cc-news-pretrained-encoder""": 5_12, """google/realm-cc-news-pretrained-scorer""": 5_12, """google/realm-cc-news-pretrained-openqa""": 5_12, """google/realm-orqa-nq-openqa""": 5_12, """google/realm-orqa-nq-reader""": 5_12, """google/realm-orqa-wq-openqa""": 5_12, """google/realm-orqa-wq-reader""": 5_12, } _UpperCAmelCase : Any = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = RealmTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Tuple=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Tuple="[PAD]" , UpperCAmelCase : List[Any]="[CLS]" , UpperCAmelCase : Union[str, Any]="[MASK]" , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=None , **UpperCAmelCase : Optional[int] , ) -> str: super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : Optional[int] = getattr(UpperCAmelCase , normalizer_state.pop('type' ) ) lowerCamelCase__ : Optional[Any] = do_lower_case lowerCamelCase__ : str = strip_accents lowerCamelCase__ : Optional[Any] = tokenize_chinese_chars lowerCamelCase__ : int = normalizer_class(**UpperCAmelCase ) lowerCamelCase__ : str = do_lower_case def A_ ( self : Optional[int] , UpperCAmelCase : int , **UpperCAmelCase : int ) -> List[Any]: lowerCamelCase__ : List[Any] = PaddingStrategy.MAX_LENGTH lowerCamelCase__ : Optional[int] = text lowerCamelCase__ : Dict = kwargs.pop('text_pair' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = kwargs.pop('return_tensors' , UpperCAmelCase ) lowerCamelCase__ : List[Any] = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase ): if batch_text_pair is not None: lowerCamelCase__ : Tuple = batch_text_pair[idx] else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Optional[int] = super().__call__(UpperCAmelCase , UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase__ : Any = encoded_candidates.get('input_ids' ) lowerCamelCase__ : Union[str, Any] = encoded_candidates.get('attention_mask' ) lowerCamelCase__ : Tuple = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase ) lowerCamelCase__ : int = {key: item for key, item in output_data.items() if len(UpperCAmelCase ) != 0} return BatchEncoding(UpperCAmelCase , tensor_type=UpperCAmelCase ) def A_ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None ) -> List[str]: lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: lowerCamelCase__ : List[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: lowerCamelCase__ : int = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
50
0
'''simple docstring''' import argparse import os import re a__ : Any = 'src/diffusers' # Pattern that looks at the indentation in a line. a__ : Any = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. a__ : List[Any] = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a__ : Dict = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. a__ : Union[str, Any] = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a__ : Dict = re.compile(R'\[([^\]]+)\]') def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = _re_indent.search(__A ) return "" if search is None else search.groups()[0] def _UpperCamelCase ( __A , __A="" , __A=None , __A=None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(__A ): index += 1 UpperCamelCase__ = ["\n".join(lines[:index] )] else: UpperCamelCase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase__ = [lines[index]] index += 1 while index < len(__A ) and (end_prompt is None or not lines[index].startswith(__A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(__A ) ) if index < len(__A ) - 1: UpperCamelCase__ = [lines[index + 1]] index += 1 else: UpperCamelCase__ = [] else: blocks.append("\n".join(__A ) ) UpperCamelCase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__A ) > 0: blocks.append("\n".join(__A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__A ): blocks.append("\n".join(lines[index:] ) ) return blocks def _UpperCamelCase ( __A ) -> Optional[Any]: '''simple docstring''' def _inner(__A ): return key(__A ).lower().replace("_" , "" ) return _inner def _UpperCamelCase ( __A , __A=None ) -> Optional[Any]: '''simple docstring''' def noop(__A ): return x if key is None: UpperCamelCase__ = noop # Constants are all uppercase, they go first. UpperCamelCase__ = [obj for obj in objects if key(__A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase__ = [obj for obj in objects if key(__A )[0].isupper() and not key(__A ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase__ = [obj for obj in objects if not key(__A )[0].isupper()] UpperCamelCase__ = ignore_underscore(__A ) return sorted(__A , key=__A ) + sorted(__A , key=__A ) + sorted(__A , key=__A ) def _UpperCamelCase ( __A ) -> Optional[int]: '''simple docstring''' def _replace(__A ): UpperCamelCase__ = match.groups()[0] if "," not in imports: return F'''[{imports}]''' UpperCamelCase__ = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(__A )] ) + "]" UpperCamelCase__ = import_statement.split("\n" ) if len(__A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase__ = 2 if lines[1].strip() == "[" else 1 UpperCamelCase__ = [(i, _re_strip_line.search(__A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase__ = sort_objects(__A , key=lambda __A : x[1] ) UpperCamelCase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase__ = _re_bracket_content.sub(_replace , lines[1] ) else: UpperCamelCase__ = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase__ = keys[:-1] UpperCamelCase__ = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(__A )] ) return "\n".join(__A ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase__ = _re_bracket_content.sub(_replace , __A ) return import_statement def _UpperCamelCase ( __A , __A=True ) -> Optional[int]: '''simple docstring''' with open(__A , "r" ) as f: UpperCamelCase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase__ = split_code_in_indented_blocks( __A , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase__ = main_blocks[block_idx] UpperCamelCase__ = block.split("\n" ) # Get to the start of the imports. UpperCamelCase__ = 0 while line_idx < len(__A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase__ = len(__A ) else: line_idx += 1 if line_idx >= len(__A ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase__ = "\n".join(block_lines[line_idx:-1] ) UpperCamelCase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase__ = split_code_in_indented_blocks(__A , indent_level=__A ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase__ = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase__ = [(pattern.search(__A ).groups()[0] if pattern.search(__A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase__ = [(i, key) for i, key in enumerate(__A ) if key is not None] UpperCamelCase__ = [x[0] for x in sorted(__A , key=lambda __A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase__ = 0 UpperCamelCase__ = [] for i in range(len(__A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCamelCase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__A ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase__ = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__A ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(__A , "w" ) as f: f.write("\n".join(__A ) ) def _UpperCamelCase ( __A=True ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = [] for root, _, files in os.walk(__A ): if "__init__.py" in files: UpperCamelCase__ = sort_imports(os.path.join(__A , "__init__.py" ) , check_only=__A ) if result: UpperCamelCase__ = [os.path.join(__A , "__init__.py" )] if len(__A ) > 0: raise ValueError(F'''Would overwrite {len(__A )} files, run `make style`.''' ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
80
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None @dataclass(frozen=__UpperCamelCase ) class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[str]=False , UpperCAmelCase : bool = False , ) -> List[str]: lowerCamelCase__ : int = hans_processors[task]() lowerCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase , 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCamelCase__ : int = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = label_list[2], label_list[1] lowerCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : str = cached_features_file + '.lock' with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) lowerCamelCase__ : int = torch.load(UpperCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) lowerCamelCase__ : str = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info('Training examples: %s' , len(UpperCAmelCase ) ) lowerCamelCase__ : Dict = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info('Saving features into cached file %s' , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.features ) def __getitem__( self : Tuple , UpperCAmelCase : Dict ) -> InputFeatures: return self.features[i] def A_ ( self : int ) -> int: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase : UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 128 , UpperCAmelCase : Any=False , UpperCAmelCase : bool = False , ) -> Union[str, Any]: lowerCamelCase__ : Any = hans_processors[task]() lowerCamelCase__ : Optional[Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCamelCase__ , lowerCamelCase__ : str = label_list[2], label_list[1] lowerCamelCase__ : Optional[int] = label_list lowerCamelCase__ : int = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCamelCase__ : Optional[int] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) , ( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self : Any ) -> Any: return self.dataset def __len__( self : Tuple ) -> int: return len(self.features ) def __getitem__( self : List[str] , UpperCAmelCase : Any ) -> InputFeatures: return self.features[i] def A_ ( self : Dict ) -> str: return self.label_list class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : int , UpperCAmelCase : List[Any] ) -> int: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_train_set.txt' ) ) , 'train' ) def A_ ( self : Any , UpperCAmelCase : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , 'heuristics_evaluation_set.txt' ) ) , 'dev' ) def A_ ( self : Any ) -> List[Any]: return ["contradiction", "entailment", "neutral"] def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] ) -> List[str]: lowerCamelCase__ : List[str] = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCamelCase__ : Tuple = '%s-%s' % (set_type, line[0]) lowerCamelCase__ : str = line[5] lowerCamelCase__ : Dict = line[6] lowerCamelCase__ : int = line[7][2:] if line[7].startswith('ex' ) else line[7] lowerCamelCase__ : Dict = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> Optional[int]: lowerCamelCase__ : int = {label: i for i, label in enumerate(_UpperCAmelCase )} lowerCamelCase__ : List[Any] = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc='convert examples to features' ): if ex_index % 1_0000 == 0: logger.info('Writing example %d' % (ex_index) ) lowerCamelCase__ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) lowerCamelCase__ : List[str] = label_map[example.label] if example.label in label_map else 0 lowerCamelCase__ : Optional[int] = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features _UpperCAmelCase : str = { """hans""": 3, } _UpperCAmelCase : List[Any] = { """hans""": HansProcessor, }
50
0