code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = '''mvp''' _lowercase : Any = ['''past_key_values'''] _lowercase : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowercase=50_267 , _lowercase=1_024 , _lowercase=12 , _lowercase=4_096 , _lowercase=16 , _lowercase=12 , _lowercase=4_096 , _lowercase=16 , _lowercase=0.0 , _lowercase=0.0 , _lowercase="gelu" , _lowercase=1_024 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=0.0 , _lowercase=False , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=True , _lowercase=2 , _lowercase=2 , _lowercase=False , _lowercase=100 , _lowercase=800 , **_lowercase , ): """simple docstring""" _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = classifier_dropout _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase = use_prompt _lowerCAmelCase = prompt_length _lowerCAmelCase = prompt_mid_dim super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , _lowercase ): _lowerCAmelCase = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" )
5
from math import sqrt def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Optional[Any] =0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE ): total += i return total - n def _A ( SCREAMING_SNAKE_CASE : int = 10_000 ): """simple docstring""" a__ : List[Any] =sum( i for i in range(1 , SCREAMING_SNAKE_CASE ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
563
0
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = FileLock(str(tmpdir / """foo.lock""" ) ) SCREAMING_SNAKE_CASE__ = FileLock(str(tmpdir / """foo.lock""" ) ) SCREAMING_SNAKE_CASE__ = 0.01 with locka.acquire(): with pytest.raises(snake_case__ ): SCREAMING_SNAKE_CASE__ = time.time() locka.acquire(snake_case__ ) assert time.time() - _start > timeout def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = """a""" * 10_00 + """.lock""" SCREAMING_SNAKE_CASE__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(snake_case__ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 SCREAMING_SNAKE_CASE__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case__ ): locka.acquire(0 )
616
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase : def __init__( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any]=1_3 , __UpperCAmelCase : Optional[Any]=3_0 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Optional[int]=3_2 , __UpperCAmelCase : Optional[Any]=5 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : int=3_7 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : Optional[Any]=1_0 , __UpperCAmelCase : Dict=0.02 , __UpperCAmelCase : str=3 , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : str=2 , ) -> Tuple: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) SCREAMING_SNAKE_CASE__ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ = num_patches + 2 def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = DeiTModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = DeiTForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = DeiTForMaskedImageModeling(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ = DeiTForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = DeiTForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (A__ ,A__ ,unittest.TestCase ): lowerCamelCase__ : Tuple = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCamelCase__ : Any = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ : Any = False lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : str = False def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = DeiTModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: pass def SCREAMING_SNAKE_CASE ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any=False ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCAmelCase ), *get_values(__UpperCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): SCREAMING_SNAKE_CASE__ = problem_type["""title"""] SCREAMING_SNAKE_CASE__ = problem_type["""num_labels"""] SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE__ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) SCREAMING_SNAKE_CASE__ = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCAmelCase ) as warning_list: SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = DeiTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ = inputs.pixel_values.to(__UpperCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase )
616
1
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline SCREAMING_SNAKE_CASE_ = datasets.utils.logging.get_logger(__name__) @dataclass class a ( datasets.BuilderConfig ): """simple docstring""" __lowerCAmelCase = None __lowerCAmelCase = "utf-8" __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = True # deprecated __lowerCAmelCase = None # deprecated __lowerCAmelCase = 1_0 << 2_0 # 10MB __lowerCAmelCase = None class a ( datasets.ArrowBasedBuilder ): """simple docstring""" __lowerCAmelCase = JsonConfig def lowercase_ ( self ): '''simple docstring''' if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) __UpperCAmelCase: List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __UpperCAmelCase: str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): __UpperCAmelCase: Optional[int] = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase: Optional[int] = [files] __UpperCAmelCase: int = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __UpperCAmelCase: List[Any] = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __UpperCAmelCase: Optional[int] = [files] __UpperCAmelCase: Optional[Any] = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={"""files""": files} ) ) return splits def lowercase_ ( self , snake_case_ ): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): __UpperCAmelCase: List[str] = self.config.features.arrow_schema.field(__SCREAMING_SNAKE_CASE ).type __UpperCAmelCase: str = pa_table.append_column(__SCREAMING_SNAKE_CASE , pa.array([None] * len(__SCREAMING_SNAKE_CASE ) , type=__SCREAMING_SNAKE_CASE ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCAmelCase: Optional[int] = table_cast(__SCREAMING_SNAKE_CASE , self.config.features.arrow_schema ) return pa_table def lowercase_ ( self , snake_case_ ): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__SCREAMING_SNAKE_CASE , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __UpperCAmelCase: Tuple = json.load(__SCREAMING_SNAKE_CASE ) # We keep only the field we are interested in __UpperCAmelCase: List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): __UpperCAmelCase: List[str] = set().union(*[row.keys() for row in dataset] ) __UpperCAmelCase: List[str] = {col: [row.get(__SCREAMING_SNAKE_CASE ) for row in dataset] for col in keys} else: __UpperCAmelCase: int = dataset __UpperCAmelCase: Optional[Any] = pa.Table.from_pydict(__SCREAMING_SNAKE_CASE ) yield file_idx, self._cast_table(__SCREAMING_SNAKE_CASE ) # If the file has one json object per line else: with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __UpperCAmelCase: int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __UpperCAmelCase: str = max(self.config.chunksize // 32 , 16 << 10 ) __UpperCAmelCase: str = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: __UpperCAmelCase: List[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__SCREAMING_SNAKE_CASE ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __UpperCAmelCase: Optional[Any] = batch.decode(self.config.encoding , errors=__SCREAMING_SNAKE_CASE ).encode("""utf-8""" ) try: while True: try: __UpperCAmelCase: Optional[Any] = paj.read_json( io.BytesIO(__SCREAMING_SNAKE_CASE ) , read_options=paj.ReadOptions(block_size=__SCREAMING_SNAKE_CASE ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__SCREAMING_SNAKE_CASE , pa.ArrowInvalid ) and "straddling" not in str(__SCREAMING_SNAKE_CASE ) or block_size > len(__SCREAMING_SNAKE_CASE ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(__SCREAMING_SNAKE_CASE )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __SCREAMING_SNAKE_CASE , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: __UpperCAmelCase: List[Any] = json.load(__SCREAMING_SNAKE_CASE ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # list is the only sequence type supported in JSON try: __UpperCAmelCase: int = set().union(*[row.keys() for row in dataset] ) __UpperCAmelCase: Optional[Any] = {col: [row.get(__SCREAMING_SNAKE_CASE ) for row in dataset] for col in keys} __UpperCAmelCase: List[str] = pa.Table.from_pydict(__SCREAMING_SNAKE_CASE ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__SCREAMING_SNAKE_CASE ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__SCREAMING_SNAKE_CASE ) batch_idx += 1
523
lowercase__ : Union[str, Any] = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
312
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : int = 0 __a : bool = False __a : float = 3.0 class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=__lowerCAmelCase ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def _UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCamelCase_ : int = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase_ : Dict = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase_ : Any = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , __lowerCAmelCase ) @require_multi_gpu def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = ["""torchrun""", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase =DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCamelCase =Accelerator(kwargs_handlers=[ddp_scaler]) UpperCamelCase =torch.nn.Linear(100, 200) UpperCamelCase =accelerator.prepare(model) # Check the values changed in kwargs UpperCamelCase ="" UpperCamelCase =model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
543
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests UpperCamelCase ="https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCamelCase =BASE_URL + "/user" # https://github.com/settings/tokens UpperCamelCase =os.environ.get("USER_TOKEN", "") def snake_case ( a_ : str ) -> dict[Any, Any]: """simple docstring""" UpperCamelCase_ : Tuple = { """Authorization""": f"token {auth_token}", """Accept""": """application/vnd.github.v3+json""", } return requests.get(a_ , headers=a_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
543
1
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _lowercase ( UpperCamelCase__ : Union[str, Any] ): __A : Optional[Any] = model.config __A : List[Any] = DonutSwinConfig( image_size=original_config.input_size, patch_size=4, depths=original_config.encoder_layer, num_heads=[4, 8, 16, 32], window_size=original_config.window_size, embed_dim=128, ) __A : Any = MBartConfig( is_decoder=UpperCamelCase__, is_encoder_decoder=UpperCamelCase__, add_cross_attention=UpperCamelCase__, decoder_layers=original_config.decoder_layer, max_position_embeddings=original_config.max_position_embeddings, vocab_size=len( model.decoder.tokenizer ), scale_embedding=UpperCamelCase__, add_final_layer_norm=UpperCamelCase__, ) return encoder_config, decoder_config def _lowercase ( UpperCamelCase__ : Any ): if "encoder.model" in name: __A : Tuple = name.replace('encoder.model', 'encoder' ) if "decoder.model" in name: __A : Any = name.replace('decoder.model', 'decoder' ) if "patch_embed.proj" in name: __A : Union[str, Any] = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __A : Tuple = name.replace('patch_embed.norm', 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __A : Any = 'encoder.' + name if "attn.proj" in name: __A : Tuple = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name and "mask" not in name: __A : Any = name.replace('attn', 'attention.self' ) if "norm1" in name: __A : Any = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: __A : Union[str, Any] = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: __A : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: __A : Tuple = name.replace('mlp.fc2', 'output.dense' ) if name == "encoder.norm.weight": __A : List[str] = 'encoder.layernorm.weight' if name == "encoder.norm.bias": __A : int = 'encoder.layernorm.bias' return name def _lowercase ( UpperCamelCase__ : int, UpperCamelCase__ : str ): for key in orig_state_dict.copy().keys(): __A : Union[str, Any] = orig_state_dict.pop(UpperCamelCase__ ) if "qkv" in key: __A : str = key.split('.' ) __A : int = int(key_split[3] ) __A : List[str] = int(key_split[5] ) __A : str = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __A : Union[str, Any] = val[:dim, :] __A : Any = val[dim : dim * 2, :] __A : Tuple = val[-dim:, :] else: __A : int = val[:dim] __A : Dict = val[dim : dim * 2] __A : Optional[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __A : Tuple = val return orig_state_dict def _lowercase ( UpperCamelCase__ : Tuple, UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : List[Any]=False ): # load original model __A : List[Any] = DonutModel.from_pretrained(UpperCamelCase__ ).eval() # load HuggingFace model __A ,__A : List[Any] = get_configs(UpperCamelCase__ ) __A : Tuple = DonutSwinModel(UpperCamelCase__ ) __A : Tuple = MBartForCausalLM(UpperCamelCase__ ) __A : Any = VisionEncoderDecoderModel(encoder=UpperCamelCase__, decoder=UpperCamelCase__ ) model.eval() __A : Optional[Any] = original_model.state_dict() __A : Optional[int] = convert_state_dict(UpperCamelCase__, UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify results on scanned document __A : Optional[int] = load_dataset('hf-internal-testing/example-documents' ) __A : List[str] = dataset['test'][0]['image'].convert('RGB' ) __A : Tuple = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__, from_slow=UpperCamelCase__ ) __A : Optional[Any] = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis, size=original_model.config.input_size[::-1] ) __A : str = DonutProcessor(UpperCamelCase__, UpperCamelCase__ ) __A : int = processor(UpperCamelCase__, return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __A : Union[str, Any] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __A : Any = 'When is the coffee break?' __A : Dict = task_prompt.replace('{user_input}', UpperCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __A : Tuple = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __A : str = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __A : Union[str, Any] = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __A : Any = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __A : Tuple = 'hello world' else: raise ValueError('Model name not supported' ) __A : Any = original_model.decoder.tokenizer(UpperCamelCase__, add_special_tokens=UpperCamelCase__, return_tensors='pt' )[ 'input_ids' ] __A : Dict = original_model.encoder.model.patch_embed(UpperCamelCase__ ) __A ,__A : Any = model.encoder.embeddings(UpperCamelCase__ ) assert torch.allclose(UpperCamelCase__, UpperCamelCase__, atol=1E-3 ) # verify encoder hidden states __A : str = original_model.encoder(UpperCamelCase__ ) __A : Optional[int] = model.encoder(UpperCamelCase__ ).last_hidden_state assert torch.allclose(UpperCamelCase__, UpperCamelCase__, atol=1E-2 ) # verify decoder hidden states __A : Optional[Any] = original_model(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ).logits __A : List[Any] = model(UpperCamelCase__, decoder_input_ids=UpperCamelCase__ ).logits assert torch.allclose(UpperCamelCase__, UpperCamelCase__, atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1], commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1], commit_message='Update model' ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) UpperCAmelCase_ : int = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Dict = 'https://openaipublic.azureedge.net/jukebox/models/' UpperCAmelCase_ : Tuple = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def _lowercase ( UpperCamelCase__ : str ): if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: __A : str = key.replace('.model.1.bias', '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: __A : Dict = key.replace('.model.1.weight', '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: __A : Optional[int] = key.replace('.model.3.bias', '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: __A : str = key.replace('.model.3.weight', '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: __A : Tuple = key.replace('conditioner_blocks.0', 'conditioner_blocks' ) if "prime_prior" in key: __A : str = key.replace('prime_prior', 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __A : str = key.replace('.emb.', '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k', '.codebook' ) if "y_emb." in key: return key.replace('y_emb.', 'metadata_embedding.' ) if "x_emb.emb." in key: __A : str = key.replace('0.x_emb.emb', 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln', 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln', '.layer_norm' ) if "_ln" in key: return key.replace('_ln', '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj', 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out', 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out', 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb', 'embed_tokens' ) return key def _lowercase ( UpperCamelCase__ : Any, UpperCamelCase__ : Dict, UpperCamelCase__ : List[Any], UpperCamelCase__ : Optional[Any] ): __A : Union[str, Any] = {} import re __A : List[Any] = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) __A : Dict = re.compile( r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __A : Optional[int] = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) __A : List[str] = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) __A : str = re.compile( r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __A : str = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) __A : Optional[int] = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) __A : Union[str, Any] = re.compile( r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __A : List[Any] = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(UpperCamelCase__ ): __A : Any = re_encoder_block_conv_in.match(UpperCamelCase__ ) __A : int = regex_match.groups() __A : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) __A : Dict = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" __A : int = re_encoder_block_conv_in.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_encoder_block_resnet.fullmatch(UpperCamelCase__ ): __A : Any = re_encoder_block_resnet.match(UpperCamelCase__ ) __A : Any = regex_match.groups() __A : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) __A : str = {'1': 1, '3': 2}[groups[-2]] __A : Optional[int] = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" __A : str = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __A : List[Any] = prefix + resnet_block __A : Union[str, Any] = re_encoder_block_resnet.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_encoder_block_proj_out.fullmatch(UpperCamelCase__ ): __A : List[str] = re_encoder_block_proj_out.match(UpperCamelCase__ ) __A : Optional[int] = regex_match.groups() __A : Any = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" __A : Optional[Any] = re_encoder_block_proj_out.sub(UpperCamelCase__, UpperCamelCase__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(UpperCamelCase__ ): __A : Dict = re_decoder_block_conv_out.match(UpperCamelCase__ ) __A : int = regex_match.groups() __A : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 __A : Optional[Any] = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" __A : Optional[Any] = re_decoder_block_conv_out.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_decoder_block_resnet.fullmatch(UpperCamelCase__ ): __A : List[str] = re_decoder_block_resnet.match(UpperCamelCase__ ) __A : List[str] = regex_match.groups() __A : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 __A : Optional[Any] = {'1': 1, '3': 2}[groups[-2]] __A : int = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" __A : Dict = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __A : Union[str, Any] = prefix + resnet_block __A : Optional[int] = re_decoder_block_resnet.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_decoder_block_proj_in.fullmatch(UpperCamelCase__ ): __A : int = re_decoder_block_proj_in.match(UpperCamelCase__ ) __A : List[str] = regex_match.groups() __A : Tuple = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" __A : Optional[Any] = re_decoder_block_proj_in.sub(UpperCamelCase__, UpperCamelCase__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(UpperCamelCase__ ): __A : Optional[int] = re_prior_cond_conv_out.match(UpperCamelCase__ ) __A : Union[str, Any] = regex_match.groups() __A : Dict = int(groups[1] ) * 2 + int(groups[2] ) - 2 __A : List[str] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" __A : List[str] = re_prior_cond_conv_out.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_prior_cond_resnet.fullmatch(UpperCamelCase__ ): __A : str = re_prior_cond_resnet.match(UpperCamelCase__ ) __A : Dict = regex_match.groups() __A : Dict = int(groups[1] ) * 2 + int(groups[2] ) - 2 __A : Dict = {'1': 1, '3': 2}[groups[-2]] __A : Optional[Any] = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" __A : Optional[int] = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __A : Union[str, Any] = prefix + resnet_block __A : str = re_prior_cond_resnet.sub(UpperCamelCase__, UpperCamelCase__ ) elif re_prior_cond_proj_in.fullmatch(UpperCamelCase__ ): __A : Tuple = re_prior_cond_proj_in.match(UpperCamelCase__ ) __A : Optional[Any] = regex_match.groups() __A : Optional[int] = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" __A : List[Any] = re_prior_cond_proj_in.sub(UpperCamelCase__, UpperCamelCase__ ) # keep original key else: __A : List[Any] = original_key __A : int = replace_key(UpperCamelCase__ ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: __A : Optional[Any] = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) __A : Union[str, Any] = original_key __A : Optional[int] = original_key __A : Optional[Any] = value return new_dict @torch.no_grad() def _lowercase ( UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : Any=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""" ): __A : Any = requests.get(f"""{PREFIX}{file}""", allow_redirects=UpperCamelCase__ ) os.makedirs(f"""{pytorch_dump_folder_path}/""", exist_ok=UpperCamelCase__ ) open(f"""{pytorch_dump_folder_path}/{file.split('/' )[-1]}""", 'wb' ).write(r.content ) __A : str = MODEL_MAPPING[model_name.split('/' )[-1]] __A : Optional[Any] = JukeboxConfig.from_pretrained(UpperCamelCase__ ) __A : Tuple = JukeboxModel(UpperCamelCase__ ) __A : List[Any] = [] __A : int = {} for i, dict_name in enumerate(UpperCamelCase__ ): __A : List[Any] = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}""" )['model'] __A : Dict = {} for k in old_dic.keys(): if k.endswith('.b' ): __A : str = old_dic[k] elif k.endswith('.w' ): __A : int = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __A : Optional[Any] = old_dic[k] else: __A : str = old_dic[k] __A : List[Any] = 'vqvae' if i == 0 else f"""priors.{3 - i}""" __A : Any = fix_jukebox_keys(UpperCamelCase__, model.state_dict(), UpperCamelCase__, UpperCamelCase__ ) weight_dict.append(UpperCamelCase__ ) __A : Union[str, Any] = weight_dict.pop(0 ) model.vqvae.load_state_dict(UpperCamelCase__ ) for i in range(len(UpperCamelCase__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) with open(f"""{pytorch_dump_folder_path}/mapping.json""", 'w' ) as txtfile: json.dump(UpperCamelCase__, UpperCamelCase__ ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) return weight_dict if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
365
1
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A__ : def __init__( self :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any]=2 , SCREAMING_SNAKE_CASE :List[Any]=3_2 , SCREAMING_SNAKE_CASE :str=1_6 , SCREAMING_SNAKE_CASE :Tuple=3 , SCREAMING_SNAKE_CASE :Union[str, Any]=True , SCREAMING_SNAKE_CASE :Tuple=True , SCREAMING_SNAKE_CASE :List[Any]=3_2 , SCREAMING_SNAKE_CASE :Optional[Any]=4 , SCREAMING_SNAKE_CASE :Any=[0, 1, 2, 3] , SCREAMING_SNAKE_CASE :List[Any]=4 , SCREAMING_SNAKE_CASE :Dict=3_7 , SCREAMING_SNAKE_CASE :List[Any]="gelu" , SCREAMING_SNAKE_CASE :Tuple=0.1 , SCREAMING_SNAKE_CASE :Dict=0.1 , SCREAMING_SNAKE_CASE :List[str]=0.02 , SCREAMING_SNAKE_CASE :Union[str, Any]=3 , SCREAMING_SNAKE_CASE :Tuple=[1, 3_8_4, 2_4, 2_4] , SCREAMING_SNAKE_CASE :Any=True , SCREAMING_SNAKE_CASE :List[str]=None , ) -> Optional[int]: '''simple docstring''' _a : Union[str, Any] =parent _a : Tuple =batch_size _a : Union[str, Any] =image_size _a : Optional[int] =patch_size _a : List[Any] =num_channels _a : Tuple =is_training _a : List[str] =use_labels _a : Union[str, Any] =hidden_size _a : Optional[int] =num_hidden_layers _a : Tuple =backbone_out_indices _a : Optional[Any] =num_attention_heads _a : Optional[int] =intermediate_size _a : Tuple =hidden_act _a : Union[str, Any] =hidden_dropout_prob _a : str =attention_probs_dropout_prob _a : str =initializer_range _a : str =num_labels _a : Any =backbone_featmap_shape _a : Optional[int] =scope _a : Any =is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _a : Tuple =(image_size // patch_size) ** 2 _a : str =num_patches + 1 def __UpperCAmelCase ( self :Tuple ) -> int: '''simple docstring''' _a : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str =None if self.use_labels: _a : Union[str, Any] =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a : Dict =self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self :Any ) -> Union[str, Any]: '''simple docstring''' _a : Union[str, Any] ={ """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _a : str =DPTModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() _a : Union[str, Any] =model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[Any] ) -> int: '''simple docstring''' _a : List[str] =self.num_labels _a : str =DPTForDepthEstimation(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() _a : Union[str, Any] =model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Any: '''simple docstring''' _a : Optional[Any] =self.num_labels _a : str =DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() _a : Tuple =model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCAmelCase ( self :Dict ) -> int: '''simple docstring''' _a : List[str] =self.prepare_config_and_inputs() _a , _a , _a : Union[str, Any] =config_and_inputs _a : int ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __UpperCamelCase : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __UpperCamelCase : List[str] = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[str] = False __UpperCamelCase : Optional[Any] = False def __UpperCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' _a : List[str] =DPTModelTester(self ) _a : List[Any] =ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __UpperCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self :List[str] ) -> Dict: '''simple docstring''' _a , _a : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int =model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a : Any =model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCAmelCase ( self :int ) -> Dict: '''simple docstring''' _a , _a : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str =model_class(SCREAMING_SNAKE_CASE ) _a : Any =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[str] =[*signature.parameters.keys()] _a : Optional[int] =["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' _a : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' _a : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' _a : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Any ) -> str: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() _a : Any =True if model_class in get_values(SCREAMING_SNAKE_CASE ): continue _a : Dict =model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() _a : List[Any] =self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) _a : List[str] =model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCAmelCase ( self :Dict ) -> str: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[int] =False _a : Any =True if model_class in get_values(SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue _a : Optional[int] =model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() _a : Any =self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) _a : Optional[int] =model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' _a , _a : int =self.model_tester.prepare_config_and_inputs_for_common() _a : List[str] =_config_zero_init(SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: _a : List[str] =model_class(config=SCREAMING_SNAKE_CASE ) # Skip the check for the backbone _a : Optional[Any] =[] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _a : str =[f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCAmelCase ( self :Optional[int] ) -> Any: '''simple docstring''' pass @slow def __UpperCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _a : List[Any] =DPTModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _a , _a : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[int] ="""add""" with self.assertRaises(SCREAMING_SNAKE_CASE ): _a : Optional[Any] =DPTForDepthEstimation(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: _a : Any =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class A__ ( unittest.TestCase ): def __UpperCAmelCase ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _a : Optional[Any] =DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) _a : Tuple =DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(SCREAMING_SNAKE_CASE ) _a : List[str] =prepare_img() _a : str =image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _a : Union[str, Any] =model(**SCREAMING_SNAKE_CASE ) _a : List[Any] =outputs.predicted_depth # verify the predicted depth _a : str =torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , SCREAMING_SNAKE_CASE ) _a : List[str] =torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
506
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device A__: List[str] = False class A__ ( unittest.TestCase ): pass @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' _a : List[Any] =VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE ) _a : Optional[int] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) _a : int =torch.manual_seed(0 ) _a : Any =pipe( image=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="""numpy""" , ).images _a : Optional[int] =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _a : Tuple =np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
506
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ): snake_case_ = '''backbone.''' if is_semantic else '''''' snake_case_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (F'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (F'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (F'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False ): for i in range(config.num_hidden_layers ): snake_case_ = '''backbone.''' if is_semantic else '''''' # queries, keys and values snake_case_ = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''' ) snake_case_ = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''' ) snake_case_ = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''' ) snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = q_bias snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained snake_case_ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''' ) snake_case_ = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''' ) snake_case_ = gamma_a snake_case_ = gamma_a def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = dct.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val def __SCREAMING_SNAKE_CASE (): snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): snake_case_ = False if '''rvlcdip''' in checkpoint_url else True snake_case_ = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE__ , use_mask_token=SCREAMING_SNAKE_CASE__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 # labels if "rvlcdip" in checkpoint_url: snake_case_ = 16 snake_case_ = '''huggingface/label-files''' snake_case_ = '''rvlcdip-id2label.json''' snake_case_ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys snake_case_ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )['''model'''] snake_case_ = create_rename_keys(SCREAMING_SNAKE_CASE__ , has_lm_head=SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , has_lm_head=SCREAMING_SNAKE_CASE__ ) # load HuggingFace model snake_case_ = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image snake_case_ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE__ ) snake_case_ = prepare_img() snake_case_ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) snake_case_ = encoding['''pixel_values'''] snake_case_ = model(SCREAMING_SNAKE_CASE__ ) snake_case_ = outputs.logits # verify logits snake_case_ = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE__ ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: if has_lm_head: snake_case_ = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: snake_case_ = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=SCREAMING_SNAKE_CASE__ , ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCAmelCase_ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
39
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase : Optional[int] = TaTokenizerFast lowerCAmelCase : Any = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase : Tuple = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
3
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME _SCREAMING_SNAKE_CASE : List[str] = ['''small''', '''medium''', '''large'''] _SCREAMING_SNAKE_CASE : int = '''lm_head.decoder.weight''' _SCREAMING_SNAKE_CASE : Any = '''lm_head.weight''' def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.load(snake_case__ ) SCREAMING_SNAKE_CASE__ = d.pop(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) torch.save(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() for MODEL in DIALOGPT_MODELS: _SCREAMING_SNAKE_CASE : str = os.path.join(args.dialogpt_path, F"{MODEL}_ft.pkl") _SCREAMING_SNAKE_CASE : Union[str, Any] = F"./DialoGPT-{MODEL}" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
700
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) a = Features({"question": Value("string" ), "context": Value("string" )} ) a = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) a = "question" a = "context" a = "answers" @property def lowercase_ ( self : Dict ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
472
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase): __lowercase : Optional[Any] = '''nat''' __lowercase : Optional[int] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=[3, 4, 6, 5] , __SCREAMING_SNAKE_CASE=[2, 4, 8, 16] , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-5 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ) -> Optional[Any]: '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE ) __snake_case = patch_size __snake_case = num_channels __snake_case = embed_dim __snake_case = depths __snake_case = len(__SCREAMING_SNAKE_CASE ) __snake_case = num_heads __snake_case = kernel_size __snake_case = mlp_ratio __snake_case = qkv_bias __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = layer_norm_eps __snake_case = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) __snake_case = layer_scale_init_value __snake_case = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] __snake_case , __snake_case = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
24
"""simple docstring""" import socket def a ( ): '''simple docstring''' UpperCAmelCase_ :Union[str, Any] = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) UpperCAmelCase_ :int = socket.gethostname() UpperCAmelCase_ :List[Any] = 12312 sock.connect((host, port) ) sock.send(b'''Hello server!''' ) with open('''Received_file''', '''wb''' ) as out_file: print('''File opened''' ) print('''Receiving data...''' ) while True: UpperCAmelCase_ :int = sock.recv(1024 ) if not data: break out_file.write(__snake_case ) print('''Successfully received the file''' ) sock.close() print('''Connection closed''' ) if __name__ == "__main__": main()
608
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : Optional[int] = None _a : Optional[jnp.ndarray] = None _a : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def UpperCAmelCase__( cls ) -> str: return cls() @dataclass class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : jnp.ndarray _a : jnp.ndarray _a : KarrasVeSchedulerState class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" @property def UpperCAmelCase__( self ) -> List[Any]: return True @register_to_config def __init__( self , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 100 , lowerCamelCase__ = 1.007 , lowerCamelCase__ = 80 , lowerCamelCase__ = 0.05 , lowerCamelCase__ = 50 , ) -> List[str]: pass def UpperCAmelCase__( self ) -> Dict: return KarrasVeSchedulerState.create() def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = () ) -> KarrasVeSchedulerState: lowercase__ : List[str] = jnp.arange(0 , lowerCamelCase__ )[::-1].copy() lowercase__ : List[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCamelCase__ , schedule=jnp.array(lowerCamelCase__ , dtype=jnp.floataa ) , timesteps=lowerCamelCase__ , ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Tuple[jnp.ndarray, float]: if self.config.s_min <= sigma <= self.config.s_max: lowercase__ : List[Any] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowercase__ : int = 0 # sample eps ~ N(0, S_noise^2 * I) lowercase__ : List[Any] = random.split(lowerCamelCase__ , num=1 ) lowercase__ : Any = self.config.s_noise * random.normal(key=lowerCamelCase__ , shape=sample.shape ) lowercase__ : Tuple = sigma + gamma * sigma lowercase__ : List[str] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: lowercase__ : List[str] = sample_hat + sigma_hat * model_output lowercase__ : List[Any] = (sample_hat - pred_original_sample) / sigma_hat lowercase__ : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , state=lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: lowercase__ : Union[str, Any] = sample_prev + sigma_prev * model_output lowercase__ : Union[str, Any] = (sample_prev - pred_original_sample) / sigma_prev lowercase__ : List[str] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , state=lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: raise NotImplementedError()
712
"""simple docstring""" from scipy.stats import spearmanr import datasets __snake_case = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __snake_case = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __snake_case = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[int]: lowercase__ : List[Any] = spearmanr(lowerCamelCase__ , lowerCamelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
128
0
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a_ = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a_ = { # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.15}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names a_ = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ = 'facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a_ = 'allenai' def lowerCamelCase__ ( _a): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} SCREAMING_SNAKE_CASE : Union[str, Any] = dict((re.sub(r"@@$" , "" , _a), v) if k.endswith("@@") else (re.sub(r"$" , "</w>" , _a), v) for k, v in d.items()) SCREAMING_SNAKE_CASE : Optional[int] = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f"{k}</w>"] SCREAMING_SNAKE_CASE : Optional[int] = d[k] # restore return da def lowerCamelCase__ ( _a , _a): # prep assert os.path.exists(_a) os.makedirs(_a , exist_ok=_a) print(f"Writing results to {pytorch_dump_folder_path}") # handle various types of models SCREAMING_SNAKE_CASE : Dict = basename(_a) SCREAMING_SNAKE_CASE : Union[str, Any] = dirname(_a) SCREAMING_SNAKE_CASE : Optional[int] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE : int = cls.hub_models() SCREAMING_SNAKE_CASE : List[Any] = {"bpe": "fastbpe", "tokenizer": "moses"} SCREAMING_SNAKE_CASE : List[Any] = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"using checkpoint {checkpoint_file}") SCREAMING_SNAKE_CASE : Dict = hub_utils.from_pretrained( _a , _a , _a , archive_map=_a , **_a) SCREAMING_SNAKE_CASE : int = vars(chkpt["args"]["model"]) SCREAMING_SNAKE_CASE : Union[str, Any] = args["source_lang"] SCREAMING_SNAKE_CASE : List[Any] = args["target_lang"] SCREAMING_SNAKE_CASE : Any = dirname(_a) SCREAMING_SNAKE_CASE : Optional[Any] = basename(_a) # dicts SCREAMING_SNAKE_CASE : Tuple = os.path.join(_a , f"dict.{src_lang}.txt") SCREAMING_SNAKE_CASE : Dict = os.path.join(_a , f"dict.{tgt_lang}.txt") SCREAMING_SNAKE_CASE : Dict = Dictionary.load(_a) SCREAMING_SNAKE_CASE : str = rewrite_dict_keys(src_dict.indices) SCREAMING_SNAKE_CASE : int = len(_a) SCREAMING_SNAKE_CASE : Any = os.path.join(_a , "vocab-src.json") print(f"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records") with open(_a , "w" , encoding="utf-8") as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a)) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE : Tuple = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE : Dict = False break SCREAMING_SNAKE_CASE : List[Any] = Dictionary.load(_a) SCREAMING_SNAKE_CASE : Optional[int] = rewrite_dict_keys(tgt_dict.indices) SCREAMING_SNAKE_CASE : Union[str, Any] = len(_a) SCREAMING_SNAKE_CASE : int = os.path.join(_a , "vocab-tgt.json") print(f"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records") with open(_a , "w" , encoding="utf-8") as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a)) # merges_file (bpecodes) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(_a , VOCAB_FILES_NAMES["merges_file"]) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(_a , _a) if os.path.exists(_a): break with open(_a , encoding="utf-8") as fin: SCREAMING_SNAKE_CASE : Optional[Any] = fin.read() SCREAMING_SNAKE_CASE : Dict = re.sub(r" \d+$" , "" , _a , 0 , re.M) # remove frequency number print(f"Generating {merges_file}") with open(_a , "w" , encoding="utf-8") as fout: fout.write(_a) # model config SCREAMING_SNAKE_CASE : Dict = os.path.join(_a , "config.json") # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", f"need to extend tokenizer to support bpe={args['tokenizer']}" SCREAMING_SNAKE_CASE : int = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with SCREAMING_SNAKE_CASE : List[Any] = 5 SCREAMING_SNAKE_CASE : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE : Tuple = best_score_hparams[model_dir]["length_penalty"] else: SCREAMING_SNAKE_CASE : int = 1.0 print(f"Generating {fsmt_model_config_file}") with open(_a , "w" , encoding="utf-8") as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a)) # tokenizer config SCREAMING_SNAKE_CASE : int = os.path.join(_a , _a) SCREAMING_SNAKE_CASE : Dict = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(f"Generating {fsmt_tokenizer_config_file}") with open(_a , "w" , encoding="utf-8") as f: f.write(json.dumps(_a , ensure_ascii=_a , indent=_a)) # model SCREAMING_SNAKE_CASE : Tuple = chkpt["models"][0] SCREAMING_SNAKE_CASE : List[Any] = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE : Any = OrderedDict(("model." + k, v) for k, v in model_state_dict.items()) # remove unneeded keys SCREAMING_SNAKE_CASE : Optional[int] = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(_a , _a) SCREAMING_SNAKE_CASE : Any = FSMTConfig.from_pretrained(_a) SCREAMING_SNAKE_CASE : int = FSMTForConditionalGeneration(_a) # check that it loads ok model_new.load_state_dict(_a , strict=_a) # save SCREAMING_SNAKE_CASE : Tuple = os.path.join(_a , _a) print(f"Generating {pytorch_weights_dump_path}") torch.save(_a , _a) print("Conversion is done!") print("\nLast step is to upload the files to s3") print(f"cd {data_root}") print(f"transformers-cli upload {model_dir}") if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
25
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : Optional[int] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : Tuple = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : int = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_euler" ) SCREAMING_SNAKE_CASE : List[str] = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe([prompt] , generator=a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE : List[Any] = output.images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) SCREAMING_SNAKE_CASE : str = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = sd_pipe( [prompt] , generator=a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=a , ) SCREAMING_SNAKE_CASE : str = output.images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : int = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
25
1
import operator as op def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = [] snake_case__ = lambda __lowerCAmelCase , __lowerCAmelCase : int(x / y ) # noqa: E731 integer division operation snake_case__ = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(__lowerCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__lowerCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " ) else: snake_case__ = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " ) snake_case__ = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " ) stack.append( str(opr[x](int(__lowerCAmelCase ) , int(__lowerCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(__lowerCAmelCase ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": __magic_name__ = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
530
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): _A : Optional[Any] = ReformerTokenizer _A : str = ReformerTokenizerFast _A : List[str] = True _A : Tuple = False _A : str = True def A_ ( self ): super().setUp() snake_case__ = ReformerTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self ): snake_case__ = "<s>" snake_case__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def A_ ( self ): snake_case__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase ) , 10_00 ) def A_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def A_ ( self ): if not self.test_rust_tokenizer: return snake_case__ = self.get_tokenizer() snake_case__ = self.get_rust_tokenizer() snake_case__ = "I was born in 92000, and this is falsé." snake_case__ = tokenizer.tokenize(lowerCamelCase ) snake_case__ = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) snake_case__ = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) snake_case__ = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) snake_case__ = self.get_rust_tokenizer() snake_case__ = tokenizer.encode(lowerCamelCase ) snake_case__ = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def A_ ( self , lowerCamelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) # Simple input snake_case__ = "This is a simple input" snake_case__ = ["This is a simple input 1", "This is a simple input 2"] snake_case__ = ("This is a simple input", "This is a pair") snake_case__ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCamelCase , tokenizer_r.encode , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises(lowerCamelCase , tokenizer_r.encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises( lowerCamelCase , tokenizer_r.batch_encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" , ) # Pair input self.assertRaises(lowerCamelCase , tokenizer_r.encode , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises(lowerCamelCase , tokenizer_r.encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises( lowerCamelCase , tokenizer_r.batch_encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" , ) def A_ ( self ): pass def A_ ( self ): snake_case__ = ReformerTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) snake_case__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [2_85, 46, 10, 1_70, 3_82] , ) snake_case__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case__ = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) snake_case__ = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def A_ ( self ): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def A_ ( self ): snake_case__ = "Hello World!" snake_case__ = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def A_ ( self ): snake_case__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) snake_case__ = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @require_torch @slow def A_ ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence snake_case__ = list(self.big_tokenizer.get_vocab().keys() )[:10] snake_case__ = " ".join(lowerCamelCase ) snake_case__ = self.big_tokenizer.encode_plus(lowerCamelCase , return_tensors="pt" ) snake_case__ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) snake_case__ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) snake_case__ = encoded_sequence["input_ids"].shape snake_case__ = ReformerModel(lowerCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase ) model(**lowerCamelCase ) @slow def A_ ( self ): # fmt: off snake_case__ = {"input_ids": [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 snake_case__ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=lowerCamelCase , sequences=lowerCamelCase , )
530
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : int , a : Tuple , a : Union[str, Any]=7 , a : Optional[Any]=3 , a : Tuple=1_8 , a : str=3_0 , a : Dict=4_0_0 , a : List[Any]=True , a : Dict=3_2 , a : List[str]=True , ): '''simple docstring''' lowercase_ : List[str] = parent lowercase_ : Tuple = batch_size lowercase_ : str = num_channels lowercase_ : Dict = image_size lowercase_ : Any = min_resolution lowercase_ : List[str] = max_resolution lowercase_ : Any = do_resize lowercase_ : Optional[Any] = size_divisor lowercase_ : List[Any] = do_rescale def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: int = GLPNImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : List[Any] = GLPNImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size_divisor" ) ) self.assertTrue(hasattr(a , "resample" ) ) self.assertTrue(hasattr(a , "do_rescale" ) ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' pass def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase_ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) lowercase_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
620
'''simple docstring''' import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = ort.SessionOptions() lowercase_ : Optional[int] = False return options def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) lowercase_ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lowercase_ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default lowercase_ : List[Any] = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) lowercase_ : List[str] = "A red cat sitting on a park bench" lowercase_ : int = np.random.RandomState(0 ) lowercase_ : int = pipe( prompt=a , image=a , mask_image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=a , output_type="np" , ) lowercase_ : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-2
620
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__(self : List[str] , a__ : Dict[str, int] , a__ : List[str] , a__ : int = None , a__ : int = None ): """simple docstring""" super().__init__() __snake_case = pad_token_id __snake_case = max_length __snake_case = vocab __snake_case = merges __snake_case = BytePairTokenizer(a__ , a__ , sequence_length=a__ ) @classmethod def a (cls : str , a__ : GPTaTokenizer , *a__ : List[str] , **a__ : Union[str, Any] ): """simple docstring""" __snake_case = [''' '''.join(a__ ) for m in tokenizer.bpe_ranks.keys()] __snake_case = tokenizer.get_vocab() return cls(a__ , a__ , *a__ , **a__ ) @classmethod def a (cls : Union[str, Any] , a__ : Union[str, os.PathLike] , *a__ : List[Any] , **a__ : Tuple ): """simple docstring""" __snake_case = GPTaTokenizer.from_pretrained(a__ , *a__ , **a__ ) return cls.from_tokenizer(a__ , *a__ , **a__ ) @classmethod def a (cls : Dict , a__ : Dict ): """simple docstring""" return cls(**a__ ) def a (self : str ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a (self : Optional[Any] , a__ : int , a__ : int = None ): """simple docstring""" __snake_case = self.tf_tokenizer(a__ ) __snake_case = tf.ones_like(a__ ) if self.pad_token_id is not None: # pad the tokens up to max length __snake_case = max_length if max_length is not None else self.max_length if max_length is not None: __snake_case , __snake_case = pad_model_inputs( a__ , max_seq_length=a__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
388
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = 'new-model' if is_tf_available(): class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Optional[Any] = NewModelConfig @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def a (self : Union[str, Any] ): """simple docstring""" __snake_case = '''bert-base-cased''' __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : Union[str, Any] ): """simple docstring""" __snake_case = '''bert-base-cased''' __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForPreTraining.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : int ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForCausalLM.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForCausalLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : int ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : str ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForMaskedLM.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForMaskedLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : Union[str, Any] ): """simple docstring""" for model_name in ["bert-base-uncased"]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForSequenceClassification.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : str ): """simple docstring""" for model_name in ["bert-base-uncased"]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForQuestionAnswering.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow @require_tensorflow_probability def a (self : List[str] ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForTableQuestionAnswering.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForTableQuestionAnswering.from_pretrained( a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) def a (self : Optional[int] ): """simple docstring""" __snake_case = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_4410 ) def a (self : List[Any] ): """simple docstring""" __snake_case = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_4410 ) def a (self : List[str] ): """simple docstring""" __snake_case = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(a__ , a__ ) __snake_case = copy.deepcopy(model.config ) __snake_case = ['''FunnelBaseModel'''] __snake_case = TFAutoModel.from_config(a__ ) self.assertIsInstance(a__ , a__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a__ ) __snake_case = TFAutoModel.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def a (self : str ): """simple docstring""" try: AutoConfig.register('''new-model''' , a__ ) __snake_case = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(a__ ): auto_class.register(a__ , a__ ) auto_class.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): auto_class.register(a__ , a__ ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case = BertModelTester(self ).get_config() __snake_case = NewModelConfig(**tiny_config.to_dict() ) __snake_case = auto_class.from_config(a__ ) self.assertIsInstance(a__ , a__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a__ ) __snake_case = auto_class.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a (self : Tuple ): """simple docstring""" with self.assertRaisesRegex( a__ , '''bert-base is not a local folder and is not a valid model identifier''' ): __snake_case = TFAutoModel.from_pretrained('''bert-base''' ) def a (self : Dict ): """simple docstring""" with self.assertRaisesRegex( a__ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __snake_case = TFAutoModel.from_pretrained(a__ , revision='''aaaaaa''' ) def a (self : Tuple ): """simple docstring""" with self.assertRaisesRegex( a__ , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def a (self : int ): """simple docstring""" with self.assertRaisesRegex(a__ , '''Use `from_pt=True` to load this model''' ): __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def a (self : List[str] ): """simple docstring""" __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __snake_case = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: __snake_case = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
388
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = ['image_processor', 'tokenizer'] __magic_name__ = 'BlipImageProcessor' __magic_name__ = 'AutoTokenizer' def __init__( self , snake_case_ , snake_case_ , snake_case_ ): super().__init__(snake_case_ , snake_case_ ) # add QFormer tokenizer _A = qformer_tokenizer def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _A = BatchFeature() if text is not None: _A = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) encoding.update(snake_case_ ) _A = self.qformer_tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) _A = qformer_text_encoding.pop('input_ids' ) _A = qformer_text_encoding.pop('attention_mask' ) if images is not None: _A = self.image_processor(snake_case_ , return_tensors=snake_case_ ) encoding.update(snake_case_ ) return encoding def lowerCAmelCase__ ( self , *snake_case_ , **snake_case_ ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowerCAmelCase__ ( self , *snake_case_ , **snake_case_ ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCAmelCase__ ( self ): _A = self.tokenizer.model_input_names _A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCAmelCase__ ( self , snake_case_ , **snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(F"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _A = os.path.join(snake_case_ , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(snake_case_ ) return super().save_pretrained(snake_case_ , **snake_case_ ) @classmethod def lowerCAmelCase__ ( cls , snake_case_ , **snake_case_ ): _A = AutoTokenizer.from_pretrained(snake_case_ , subfolder='qformer_tokenizer' ) _A = cls._get_arguments_from_pretrained(snake_case_ , **snake_case_ ) args.append(snake_case_ ) return cls(*snake_case_ )
27
from math import sqrt def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Optional[Any] =0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE ): total += i return total - n def _A ( SCREAMING_SNAKE_CASE : int = 10_000 ): """simple docstring""" a__ : List[Any] =sum( i for i in range(1 , SCREAMING_SNAKE_CASE ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
563
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :Optional[int] = """trocr""" __magic_name__ :Any = ["""past_key_values"""] __magic_name__ :Tuple = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self , __UpperCAmelCase=5_0_2_6_5 , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_6 , __UpperCAmelCase=4_0_9_6 , __UpperCAmelCase="gelu" , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :List[Any] = vocab_size lowerCAmelCase__ :Optional[Any] = d_model lowerCAmelCase__ :Optional[Any] = decoder_layers lowerCAmelCase__ :Tuple = decoder_attention_heads lowerCAmelCase__ :Union[str, Any] = decoder_ffn_dim lowerCAmelCase__ :Tuple = activation_function lowerCAmelCase__ :str = max_position_embeddings lowerCAmelCase__ :Optional[Any] = dropout lowerCAmelCase__ :Optional[int] = attention_dropout lowerCAmelCase__ :List[str] = activation_dropout lowerCAmelCase__ :Tuple = init_std lowerCAmelCase__ :Optional[int] = decoder_layerdrop lowerCAmelCase__ :Tuple = use_cache lowerCAmelCase__ :List[Any] = scale_embedding lowerCAmelCase__ :Optional[Any] = use_learned_position_embeddings lowerCAmelCase__ :Optional[Any] = layernorm_embedding super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
560
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __A = 3 def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" print('Generating primitive root of p' ) while True: lowerCAmelCase__ :Dict = random.randrange(3 , _SCREAMING_SNAKE_CASE ) if pow(_SCREAMING_SNAKE_CASE , 2 , _SCREAMING_SNAKE_CASE ) == 1: continue if pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) == 1: continue return g def __A (_SCREAMING_SNAKE_CASE ) ->tuple[tuple[int, int, int, int], tuple[int, int]]: """simple docstring""" print('Generating prime p...' ) lowerCAmelCase__ :Dict = rabin_miller.generate_large_prime(_SCREAMING_SNAKE_CASE ) # select large prime number. lowerCAmelCase__ :Tuple = primitive_root(_SCREAMING_SNAKE_CASE ) # one primitive root on modulo p. lowerCAmelCase__ :List[Any] = random.randrange(3 , _SCREAMING_SNAKE_CASE ) # private_key -> have to be greater than 2 for safety. lowerCAmelCase__ :int = cryptomath.find_mod_inverse(pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = (key_size, e_a, e_a, p) lowerCAmelCase__ :List[str] = (key_size, d) return public_key, private_key def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->None: """simple docstring""" if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print('\nWARNING:' ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowerCAmelCase__ , lowerCAmelCase__ :Dict = generate_key(_SCREAMING_SNAKE_CASE ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , 'w' ) as fo: fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , 'w' ) as fo: fo.write(F"{private_key[0]},{private_key[1]}" ) def __A () ->None: """simple docstring""" print('Making key files...' ) make_key_files('elgamal' , 2048 ) print('Key files generation successful' ) if __name__ == "__main__": main()
560
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =["image_processor", "tokenizer"] _lowerCamelCase ="CLIPImageProcessor" _lowerCamelCase =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Tuple , a__ : List[Any]=None , a__ : str=None , **a__ : Tuple ): UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a__ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a__ , a__ ) def __call__( self : Optional[Any] , a__ : Optional[int]=None , a__ : List[str]=None , a__ : int=None , **a__ : Tuple ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if images is not None: UpperCAmelCase = self.image_processor(a__ , return_tensors=a__ , **a__ ) if text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def __snake_case ( self : List[str] , *a__ : Union[str, Any] , **a__ : Optional[int] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def __snake_case ( self : int , *a__ : Optional[int] , **a__ : int ): return self.tokenizer.decode(*a__ , **a__ ) @property def __snake_case ( self : str ): UpperCAmelCase = self.tokenizer.model_input_names UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __snake_case ( self : Optional[int] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a__ , ) return self.image_processor_class @property def __snake_case ( self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a__ , ) return self.image_processor
51
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableUnCLIPPipeline _lowerCamelCase =TEXT_TO_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowerCamelCase =False def __snake_case ( self : str ): UpperCAmelCase = 32 UpperCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=a__ , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=a__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=a__ ) UpperCAmelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a__ , layers_per_block=1 , upcast_attention=a__ , use_linear_projection=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=a__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL() UpperCAmelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __snake_case ( self : str , a__ : Dict , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : List[Any] ): UpperCAmelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=a__ ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ): UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = pipe('''anime turle''' , generator=a__ , output_type='''np''' ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ ) def __snake_case ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
51
1
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __UpperCAmelCase = {'''UserAgent''': UserAgent().random} def lowercase__ ( lowerCAmelCase__ : int ) -> dict: '''simple docstring''' a__ : Optional[Any] = script.contents[0] a__ : Tuple = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __UpperCAmelCase : def __init__( self : Optional[Any] , a_ : Tuple ) -> Tuple: '''simple docstring''' a__ : Tuple = F"https://www.instagram.com/{username}/" a__ : List[str] = self.get_json() def UpperCAmelCase ( self : Optional[int] ) -> dict: '''simple docstring''' a__ : Optional[Any] = requests.get(self.url , headers=a_ ).text a__ : int = BeautifulSoup(a_ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' return F"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[Any] ) -> str: '''simple docstring''' return F"{self.fullname} ({self.username}) is {self.biography}" @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["username"] @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def UpperCAmelCase ( self : Optional[Any] ) -> str: '''simple docstring''' return self.user_data["biography"] @property def UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def UpperCAmelCase ( self : Tuple ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def UpperCAmelCase ( self : Tuple ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def UpperCAmelCase ( self : str ) -> bool: '''simple docstring''' return self.user_data["is_private"] def lowercase__ ( lowerCAmelCase__ : str = "github" ) -> None: '''simple docstring''' import os if os.environ.get("CI" ): return # test failing on GitHub Actions a__ : Tuple = InstagramUser(lowerCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowerCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = InstagramUser('''github''') print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
251
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( lowerCAmelCase__ : nn.ModuleList , lowerCAmelCase__ : nn.ModuleList , lowerCAmelCase__ : List[int] ) -> None: '''simple docstring''' a__ : Optional[int] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ), F"{len(lowerCAmelCase__ )} != {len(lowerCAmelCase__ )}" dest_layers.load_state_dict(layers_to_copy.state_dict() ) __UpperCAmelCase = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __UpperCAmelCase = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def lowercase__ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ) -> int: '''simple docstring''' try: a__ : List[Any] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first" F" {n_student}" ) return list(range(lowerCAmelCase__ ) ) def lowercase__ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] ) -> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}" ) elif n_teacher == n_student: return list(range(lowerCAmelCase__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def lowercase__ ( lowerCAmelCase__ : Union[str, PreTrainedModel] , lowerCAmelCase__ : Union[str, Path] = "student" , lowerCAmelCase__ : Union[int, None] = None , lowerCAmelCase__ : Union[int, None] = None , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : Dict , ) -> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' a__ : int = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): AutoTokenizer.from_pretrained(lowerCAmelCase__ ).save_pretrained(lowerCAmelCase__ ) # purely for convenience a__ : int = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ).eval() else: assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ), F"teacher must be a model or string got type {type(lowerCAmelCase__ )}" a__ : Any = teacher.config.to_diff_dict() try: a__ , a__ : List[str] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: a__ : Union[str, Any] = teacher_e if d is None: a__ : Optional[int] = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): a__ , a__ : Optional[int] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: a__ , a__ : Dict = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: a__ : int = teacher_e if d is None: a__ : Tuple = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase__ ) # Copy weights a__ : Optional[int] = teacher.config_class(**lowerCAmelCase__ ) a__ : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. a__ : Tuple = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save a__ , a__ : int = list(range(lowerCAmelCase__ ) ), list(range(lowerCAmelCase__ ) ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to" F" {save_path}" ) student.save_pretrained(lowerCAmelCase__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: a__ : List[int] = pick_layers_to_copy(lowerCAmelCase__ , lowerCAmelCase__ ) if d_layers_to_copy is None: a__ : List[int] = pick_layers_to_copy(lowerCAmelCase__ , lowerCAmelCase__ ) try: if hasattr( lowerCAmelCase__ , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase__ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase__ ) logger.info( F"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}" ) a__ : Optional[Any] = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
251
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class A_ ( unittest.TestCase ): def __init__( self : Dict , snake_case_ : List[str] , snake_case_ : List[str]=1_3 , snake_case_ : Optional[int]=3_0 , snake_case_ : str=2 , snake_case_ : Optional[Any]=3 , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]=True , snake_case_ : List[Any]=3_2 , snake_case_ : Any=5 , snake_case_ : List[Any]=4 , snake_case_ : Optional[Any]=3_7 , snake_case_ : int="gelu" , snake_case_ : Optional[Any]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Optional[int]=1_0 , snake_case_ : Any=0.0_2 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def lowercase ( self : Any ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase ( self : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] ): _UpperCAmelCase = FlaxViTModel(config=snake_case_ ) _UpperCAmelCase = model(snake_case_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase = (self.patch_size, self.patch_size) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase ( self : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : str ): _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FlaxViTForImageClassification(config=snake_case_ ) _UpperCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FlaxViTForImageClassification(snake_case_ ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(snake_case_ ) def lowercase ( self : Dict ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase ( self : Any ): _UpperCAmelCase = FlaxViTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def lowercase ( self : Optional[int] ): self.config_tester.run_common_tests() def lowercase ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) def lowercase ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowercase ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ ) _UpperCAmelCase = model_class(snake_case_ ) @jax.jit def model_jitted(snake_case_ : List[Any] , **snake_case_ : Dict ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest("JIT Enabled" ): _UpperCAmelCase = model_jitted(**snake_case_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase ( self : str ): for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained("google/vit-base-patch16-224" ) _UpperCAmelCase = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(snake_case_ )
236
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __SCREAMING_SNAKE_CASE :int = logging.getLogger(__name__) torch.set_grad_enabled(False) __SCREAMING_SNAKE_CASE :Optional[int] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def UpperCAmelCase_ ( __lowercase : str , __lowercase : Union[str, Any]=100 , __lowercase : Dict=" " ) -> List[str]: '''simple docstring''' _UpperCAmelCase = text.split(__lowercase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowercase ) , __lowercase )] def UpperCAmelCase_ ( __lowercase : dict ) -> dict: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowercase ): titles.append(title if title is not None else "" ) texts.append(__lowercase ) return {"title": titles, "text": texts} def UpperCAmelCase_ ( __lowercase : dict , __lowercase : DPRContextEncoder , __lowercase : DPRContextEncoderTokenizerFast ) -> dict: '''simple docstring''' _UpperCAmelCase = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowercase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase = ctx_encoder(input_ids.to(device=__lowercase ) , return_dict=__lowercase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase_ ( __lowercase : "RagExampleArguments" , __lowercase : "ProcessingArguments" , __lowercase : "IndexHnswArguments" , ) -> Any: '''simple docstring''' logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase = dataset.map(__lowercase , batched=__lowercase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowercase ) _UpperCAmelCase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase = dataset.map( partial(__lowercase , ctx_encoder=__lowercase , ctx_tokenizer=__lowercase ) , batched=__lowercase , batch_size=processing_args.batch_size , features=__lowercase , ) # And finally save your dataset _UpperCAmelCase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowercase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowercase ) # And save the index _UpperCAmelCase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowercase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A_ : _lowerCamelCase : str = field( default=str(Path(lowerCAmelCase_ ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) _lowerCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) _lowerCamelCase : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) _lowerCamelCase : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) _lowerCamelCase : Optional[str] = field( default=str(Path(lowerCAmelCase_ ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class A_ : _lowerCamelCase : Optional[int] = field( default=lowerCAmelCase_ , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) _lowerCamelCase : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class A_ : _lowerCamelCase : int = field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) _lowerCamelCase : int = field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __SCREAMING_SNAKE_CASE :Tuple = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Tuple = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE :Optional[int] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
236
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
490
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase_ = 25_00_04 UpperCAmelCase_ = 25_00_20 @require_sentencepiece @require_tokenizers class __lowercase ( __magic_name__ , unittest.TestCase ): _a = MBartaaTokenizer _a = MBartaaTokenizerFast _a = True _a = True def UpperCamelCase__ ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing __a = MBartaaTokenizer(UpperCamelCase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ) -> Dict: __a = '<s>' __a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase ) , UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ ( self ) -> List[str]: __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCamelCase ) , 1054 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = MBartaaTokenizer(UpperCamelCase , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=UpperCamelCase ) __a = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCamelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCamelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __a = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a = tokenizer.convert_ids_to_tokens(UpperCamelCase ) self.assertListEqual( UpperCamelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def UpperCamelCase__ ( self ) -> Dict: # fmt: off __a = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def UpperCamelCase__ ( self ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __a = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __a = self.rust_tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __a = self.tokenizer_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCamelCase ) __a = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(UpperCamelCase , UpperCamelCase ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCamelCase ) __a = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase ) # Save tokenizer rust, legacy_format=True __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCamelCase , legacy_format=UpperCamelCase ) __a = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase , UpperCamelCase ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCamelCase ) __a = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) # Save tokenizer rust, legacy_format=False __a = tempfile.mkdtemp() __a = tokenizer_r.save_pretrained(UpperCamelCase , legacy_format=UpperCamelCase ) __a = tokenizer_p.save_pretrained(UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a = tokenizer_r.from_pretrained(UpperCamelCase ) __a = tokenizer_p.from_pretrained(UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase , UpperCamelCase ) ) shutil.rmtree(UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): _a = """facebook/mbart-large-50-one-to-many-mmt""" _a = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] _a = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] _a = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def UpperCamelCase__ ( cls ) -> Optional[int]: __a = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) __a = 1 return cls def UpperCamelCase__ ( self ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def UpperCamelCase__ ( self ) -> int: __a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) def UpperCamelCase__ ( self ) -> int: self.assertIn(UpperCamelCase , self.tokenizer.all_special_ids ) __a = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] __a = self.tokenizer.decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) __a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase ) def UpperCamelCase__ ( self ) -> int: __a = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , UpperCamelCase ) __a = 10 __a = self.tokenizer(UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase ).input_ids[0] self.assertEqual(ids[0] , UpperCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) def UpperCamelCase__ ( self ) -> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def UpperCamelCase__ ( self ) -> Optional[int]: __a = tempfile.mkdtemp() __a = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase ) __a = MBartaaTokenizer.from_pretrained(UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase ) @require_torch def UpperCamelCase__ ( self ) -> Optional[Any]: __a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , return_tensors='pt' ) __a = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase__ ( self ) -> int: __a = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __a = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCamelCase__ ( self ) -> Optional[int]: __a = self.tokenizer(self.src_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=3 , return_tensors='pt' ) __a = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=10 , return_tensors='pt' ) __a = targets['input_ids'] __a = shift_tokens_right(UpperCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase__ ( self ) -> Dict: __a = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(UpperCamelCase ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
490
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : int = VideoToVideoSDPipeline A_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} A_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} A_ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} A_ : Dict = False # No `output_type`. A_ : str = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) A = CLIPTextModel(__UpperCamelCase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=0 ) -> Optional[int]: # 3 frames A = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): A = torch.manual_seed(__UpperCamelCase ) else: A = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def __UpperCamelCase ( self : Optional[int] ) -> str: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = VideoToVideoSDPipeline(**__UpperCamelCase ) A = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) A = self.get_dummy_inputs(__UpperCamelCase ) A = 'np' A = sd_pipe(**__UpperCamelCase ).frames A = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) A = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self : int ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCamelCase , expected_max_diff=5e-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __UpperCamelCase ( self : Optional[int] ) -> Any: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __UpperCamelCase ( self : str ) -> Any: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: pass def __UpperCamelCase ( self : Any ) -> Any: return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Dict: A = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames A = torch.Generator(device='cpu' ).manual_seed(0 ) A = torch.randn((1, 10, 3, 1_024, 576) , generator=__UpperCamelCase ) A = video.to('cuda' ) A = 'Spiderman is surfing' A = pipe(__UpperCamelCase , video=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=3 , output_type='pt' ).frames A = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
106
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a__ ( A__, A__, A__, A__, A__=True, A__="pt" ): SCREAMING_SNAKE_CASE_ : Tuple = {'add_prefix_space': True} if isinstance(A__, A__ ) and not line.startswith(' ' ) else {} SCREAMING_SNAKE_CASE_ : Dict = padding_side return tokenizer( [line], max_length=A__, padding='max_length' if pad_to_max_length else None, truncation=A__, return_tensors=A__, add_special_tokens=A__, **A__, ) def a__ ( A__, A__, A__=None, ): SCREAMING_SNAKE_CASE_ : int = input_ids.ne(A__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="train" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="" , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCAmelCase__ ).joinpath(type_path + '.source' ) SCREAMING_SNAKE_CASE_ : Optional[int] = Path(lowerCAmelCase__ ).joinpath(type_path + '.target' ) SCREAMING_SNAKE_CASE_ : int = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE_ : int = max_source_length SCREAMING_SNAKE_CASE_ : Dict = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' SCREAMING_SNAKE_CASE_ : Any = tokenizer SCREAMING_SNAKE_CASE_ : List[str] = prefix if n_obs is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE_ : Optional[Any] = src_lang SCREAMING_SNAKE_CASE_ : List[Any] = tgt_lang def __len__( self ): """simple docstring""" return len(self.src_lens ) def __getitem__( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE_ : List[str] = self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase__ ).rstrip('\n' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = linecache.getline(str(self.tgt_file ) , lowerCAmelCase__ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE_ : Any = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer ) SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer SCREAMING_SNAKE_CASE_ : Dict = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_source_length , 'right' ) SCREAMING_SNAKE_CASE_ : Tuple = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_target_length , 'right' ) SCREAMING_SNAKE_CASE_ : List[str] = source_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ : Dict = target_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ : str = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ ): """simple docstring""" return [len(lowerCAmelCase__ ) for x in Path(lowerCAmelCase__ ).open().readlines()] def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.stack([x['input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ : int = torch.stack([x['attention_mask'] for x in batch] ) SCREAMING_SNAKE_CASE_ : List[str] = torch.stack([x['decoder_input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ : Dict = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ : List[Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCAmelCase__ : Tuple =getLogger(__name__) def a__ ( A__ ): return list(itertools.chain.from_iterable(A__ ) ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = get_git_info() save_json(A__, os.path.join(A__, 'git_log.json' ) ) def a__ ( A__, A__, A__=4, **A__ ): with open(A__, 'w' ) as f: json.dump(A__, A__, indent=A__, **A__ ) def a__ ( A__ ): with open(A__ ) as f: return json.load(A__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ : List[str] = git.Repo(search_parent_directories=A__ ) SCREAMING_SNAKE_CASE_ : Any = { 'repo_id': str(A__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def a__ ( A__, A__ ): return list(map(A__, A__ ) ) def a__ ( A__, A__ ): with open(A__, 'wb' ) as f: return pickle.dump(A__, A__ ) def a__ ( A__ ): def remove_articles(A__ ): return re.sub(r'\b(a|an|the)\b', ' ', A__ ) def white_space_fix(A__ ): return " ".join(text.split() ) def remove_punc(A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = normalize_answer(A__ ).split() SCREAMING_SNAKE_CASE_ : List[str] = normalize_answer(A__ ).split() SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(A__ ) & Counter(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE_ : List[Any] = 1.0 * num_same / len(A__ ) SCREAMING_SNAKE_CASE_ : int = 1.0 * num_same / len(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = (2 * precision * recall) / (precision + recall) return fa def a__ ( A__, A__ ): return normalize_answer(A__ ) == normalize_answer(A__ ) def a__ ( A__, A__ ): assert len(A__ ) == len(A__ ) SCREAMING_SNAKE_CASE_ : Any = 0 for hypo, pred in zip(A__, A__ ): em += exact_match_score(A__, A__ ) if len(A__ ) > 0: em /= len(A__ ) return {"em": em} def a__ ( A__ ): return model_prefix.startswith('rag' ) def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE_ : List[Any] = 'dropout_rate' for p in extra_params: if getattr(A__, A__, A__ ): if not hasattr(A__, A__ ) and not hasattr(A__, equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(A__ ) ) delattr(A__, A__ ) continue SCREAMING_SNAKE_CASE_ : Any = p if hasattr(A__, A__ ) else equivalent_param[p] setattr(A__, A__, getattr(A__, A__ ) ) delattr(A__, A__ ) return hparams, config
101
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ : Optional[Any] = logging.get_logger(__name__) A__ : List[Any] = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } A__ : Optional[Any] = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } A__ : int = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def a__ ( ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) UpperCAmelCase__ : List[str] = bs[:] UpperCAmelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ : Optional[Any] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def a__ ( lowerCAmelCase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = set() UpperCAmelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : List[Any] = char return pairs class _lowercase ( lowerCAmelCase_ ): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ['input_ids', 'attention_mask'] def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="replace" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase=False , **__UpperCamelCase , )-> Optional[Any]: UpperCAmelCase__ : Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token UpperCAmelCase__ : Optional[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token UpperCAmelCase__ : int = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token UpperCAmelCase__ : Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token UpperCAmelCase__ : Tuple = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token UpperCAmelCase__ : str = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Union[str, Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) with open(__UpperCamelCase , encoding="utf-8" ) as vocab_handle: UpperCAmelCase__ : Dict = json.load(__UpperCamelCase ) UpperCAmelCase__ : Any = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : Optional[int] = errors # how to handle errors in decoding UpperCAmelCase__ : Dict = bytes_to_unicode() UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCamelCase , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : str = merges_handle.read().split("\n" )[1:-1] UpperCAmelCase__ : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ : str = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) UpperCAmelCase__ : int = {} UpperCAmelCase__ : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ : List[Any] = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase__ ( self )-> Optional[Any]: return len(self.encoder ) def lowerCAmelCase__ ( self )-> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = get_pairs(__UpperCamelCase ) if not pairs: return token while True: UpperCAmelCase__ : str = min(__UpperCamelCase , key=lambda __UpperCamelCase : self.bpe_ranks.get(__UpperCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ : List[str] = bigram UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : List[str] = 0 while i < len(__UpperCamelCase ): try: UpperCAmelCase__ : Dict = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Tuple = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : List[Any] = tuple(__UpperCamelCase ) UpperCAmelCase__ : int = new_word if len(__UpperCamelCase ) == 1: break else: UpperCAmelCase__ : Any = get_pairs(__UpperCamelCase ) UpperCAmelCase__ : Dict = " ".join(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = word return word def lowerCAmelCase__ ( self , __UpperCamelCase )-> Any: UpperCAmelCase__ : Any = [] for token in re.findall(self.pat , __UpperCamelCase ): UpperCAmelCase__ : Dict = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCamelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase__ ( self , __UpperCamelCase )-> int: return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Tuple: return self.decoder.get(__UpperCamelCase ) def lowerCAmelCase__ ( self , __UpperCamelCase )-> Optional[Any]: UpperCAmelCase__ : List[str] = "".join(__UpperCamelCase ) UpperCAmelCase__ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ : Tuple = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : List[str] = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + "\n" ) UpperCAmelCase__ : Dict = 0 with open(__UpperCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase__ : str = token_index writer.write(" ".join(__UpperCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> List[int]: UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase )-> Optional[int]: UpperCAmelCase__ : str = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCamelCase ) > 0 and not text[0].isspace()): UpperCAmelCase__ : Optional[int] = " " + text return (text, kwargs) def lowerCAmelCase__ ( self , __UpperCamelCase , __UpperCamelCase = None )-> List[Any]: return token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self , __UpperCamelCase )-> List[int]: UpperCAmelCase__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) UpperCAmelCase__ : Any = " ".join(__UpperCamelCase ) UpperCAmelCase__ : int = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: UpperCAmelCase__ : List[str] = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
716
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a__ ( lowerCAmelCase : List[str] ): '''simple docstring''' def wrapper(*lowerCAmelCase : Any , **lowerCAmelCase : Tuple ): UpperCAmelCase__ : Optional[int] = timeit.default_timer() UpperCAmelCase__ : int = func(*lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase__ : List[Any] = timeit.default_timer() - starttime return delta UpperCAmelCase__ : int = func.__name__ return wrapper def a__ ( lowerCAmelCase : dict , lowerCAmelCase : Optional[int]=100 , lowerCAmelCase : List[str]=None ): '''simple docstring''' UpperCAmelCase__ : str = [] UpperCAmelCase__ : Optional[Any] = seq_shapes or {} for i in range(lowerCAmelCase ): UpperCAmelCase__ : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCAmelCase , _ArrayXD ): UpperCAmelCase__ : List[str] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCAmelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Dict = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase__ : str = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCAmelCase , datasets.Sequence ): while isinstance(lowerCAmelCase , datasets.Sequence ): UpperCAmelCase__ : List[str] = v.feature UpperCAmelCase__ : Optional[int] = seq_shapes[k] UpperCAmelCase__ : Optional[int] = np.random.rand(*lowerCAmelCase ).astype(v.dtype ) UpperCAmelCase__ : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def a__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=100 , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' UpperCAmelCase__ : int = generate_examples(lowerCAmelCase , num_examples=lowerCAmelCase , seq_shapes=lowerCAmelCase ) with ArrowWriter(features=lowerCAmelCase , path=lowerCAmelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(lowerCAmelCase ) writer.write(lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Optional[int] = datasets.Dataset.from_file(filename=lowerCAmelCase , info=datasets.DatasetInfo(features=lowerCAmelCase ) ) return dataset
660
0
'''simple docstring''' from typing import Any def UpperCamelCase ( lowercase_ : list ) -> list[Any]: '''simple docstring''' if not input_list: return [] lowercase =[input_list.count(lowercase_ ) for value in input_list] lowercase =max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
72
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device SCREAMING_SNAKE_CASE_ = False class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" pass @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __magic_name__ ( self ) -> List[Any]: __a : Any = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __a : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a : Optional[Any] = torch.manual_seed(0 ) __a : Any = pipe( image=_A , generator=_A , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __a : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a : Tuple = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
597
0
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = False ) ->bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis a_ = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] a_ = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(UpperCAmelCase , 1 ): if n < _p: # then we have our last prime to check a_ = primes[:idx] break a_ , a_ = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: a_ = False for r in range(UpperCAmelCase ): a_ = pow(UpperCAmelCase , d * 2**r , UpperCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): a_ = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCamelCase ( ) ->None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838_201 ) assert miller_rabin(838_207 ) # 1_373_653 assert not miller_rabin(17_316_001 ) assert miller_rabin(17_316_017 ) # 25_326_001 assert not miller_rabin(3_078_386_641 ) assert miller_rabin(3_078_386_653 ) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801 ) assert miller_rabin(1_713_045_574_819 ) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307 ) assert miller_rabin(2_779_799_728_327 ) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441 ) assert miller_rabin(113_850_023_909_527 ) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351 ) assert miller_rabin(1_275_041_018_848_804_391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867 ) assert miller_rabin(79_666_464_458_507_787_791_951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333 ) assert miller_rabin(552_840_677_446_647_897_660_359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
210
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase = 50 ) ->int: """simple docstring""" a_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
210
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _lowerCamelCase : str = '''facebook/wmt19-en-de''' _lowerCamelCase : str = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _lowerCamelCase : Dict = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _lowerCamelCase : int = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test _lowerCamelCase : Dict = tokenizer(['''Making tiny model'''], return_tensors='''pt''') _lowerCamelCase : Optional[int] = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save _lowerCamelCase : Optional[Any] = '''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
686
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Tuple = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
686
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class __magic_name__ : """simple docstring""" lowerCAmelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCAmelCase : bool = field(default=__a , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class __magic_name__ : """simple docstring""" lowerCAmelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) lowerCAmelCase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCAmelCase : bool = field( default=__a , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase: List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: Union[str, Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) _UpperCamelCase: str = import_module('''tasks''' ) try: _UpperCamelCase: Optional[Any] = getattr(lowercase , model_args.task_type ) _UpperCamelCase: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task _UpperCamelCase: Dict = token_classification_task.get_labels(data_args.labels ) _UpperCamelCase: Dict[int, str] = dict(enumerate(lowercase ) ) _UpperCamelCase: Tuple = len(lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase: List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , idalabel=lowercase , labelaid={label: i for i, label in enumerate(lowercase )} , cache_dir=model_args.cache_dir , ) _UpperCamelCase: Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) _UpperCamelCase: str = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , ) # Get datasets _UpperCamelCase: str = ( TokenClassificationDataset( token_classification_task=lowercase , data_dir=data_args.data_dir , tokenizer=lowercase , labels=lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _UpperCamelCase: Any = ( TokenClassificationDataset( token_classification_task=lowercase , data_dir=data_args.data_dir , tokenizer=lowercase , labels=lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowercase: np.ndarray , lowercase: np.ndarray ) -> Tuple[List[int], List[int]]: _UpperCamelCase: Union[str, Any] = np.argmax(lowercase , axis=2 ) _UpperCamelCase , _UpperCamelCase: int = preds.shape _UpperCamelCase: Union[str, Any] = [[] for _ in range(lowercase )] _UpperCamelCase: Dict = [[] for _ in range(lowercase )] for i in range(lowercase ): for j in range(lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowercase: EvalPrediction ) -> Dict: _UpperCamelCase , _UpperCamelCase: Dict = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowercase , lowercase ), "precision": precision_score(lowercase , lowercase ), "recall": recall_score(lowercase , lowercase ), "f1": fa_score(lowercase , lowercase ), } # Data collator _UpperCamelCase: Optional[Any] = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _UpperCamelCase: List[Any] = Trainer( model=lowercase , args=lowercase , train_dataset=lowercase , eval_dataset=lowercase , compute_metrics=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase: Tuple = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase: Optional[Any] = trainer.evaluate() _UpperCamelCase: Union[str, Any] = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , lowercase , lowercase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowercase ) # Predict if training_args.do_predict: _UpperCamelCase: List[str] = TokenClassificationDataset( token_classification_task=lowercase , data_dir=data_args.data_dir , tokenizer=lowercase , labels=lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: Union[str, Any] = trainer.predict(lowercase ) _UpperCamelCase , _UpperCamelCase: Optional[int] = align_predictions(lowercase , lowercase ) _UpperCamelCase: List[Any] = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(lowercase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , lowercase , lowercase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions _UpperCamelCase: Any = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(lowercase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(lowercase , lowercase , lowercase ) return results def lowerCAmelCase_ ( lowercase: Dict ) -> Tuple: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
264
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') UpperCAmelCase_ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) UpperCAmelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __magic_name__ : """simple docstring""" lowerCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) lowerCAmelCase : Optional[str] = field(default=__a , metadata={'''help''': '''A folder containing the training data.'''} ) lowerCAmelCase : Optional[str] = field(default=__a , metadata={'''help''': '''A folder containing the validation data.'''} ) lowerCAmelCase : Optional[float] = field( default=0.1_5 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowerCAmelCase : int = field(default=3_2 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) lowerCAmelCase : float = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) lowerCAmelCase : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase : Optional[int] = field( default=__a , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: Dict = {} if self.train_dir is not None: _UpperCamelCase: Tuple = self.train_dir if self.validation_dir is not None: _UpperCamelCase: Dict = self.validation_dir _UpperCamelCase: Any = data_files if data_files else None @dataclass class __magic_name__ : """simple docstring""" lowerCAmelCase : str = field( default=__a , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__a )} , ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCAmelCase : Optional[str] = field( default=__a , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) lowerCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase : str = field(default=__a , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCAmelCase : bool = field( default=__a , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCAmelCase : Optional[int] = field( default=__a , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) lowerCAmelCase : Optional[int] = field( default=__a , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) lowerCAmelCase : Optional[int] = field( default=__a , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class __magic_name__ : """simple docstring""" def __init__( self : Any , _lowercase : str=192 , _lowercase : Optional[Any]=32 , _lowercase : str=4 , _lowercase : Union[str, Any]=0.6 ): """simple docstring""" _UpperCamelCase: Optional[int] = input_size _UpperCamelCase: int = mask_patch_size _UpperCamelCase: Tuple = model_patch_size _UpperCamelCase: List[str] = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) _UpperCamelCase: str = self.input_size // self.mask_patch_size _UpperCamelCase: Optional[Any] = self.mask_patch_size // self.model_patch_size _UpperCamelCase: Dict = self.rand_size**2 _UpperCamelCase: int = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Tuple ): """simple docstring""" _UpperCamelCase: Union[str, Any] = np.random.permutation(self.token_count )[: self.mask_count] _UpperCamelCase: int = np.zeros(self.token_count , dtype=_lowercase ) _UpperCamelCase: Optional[Any] = 1 _UpperCamelCase: List[Any] = mask.reshape((self.rand_size, self.rand_size) ) _UpperCamelCase: Tuple = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def lowerCAmelCase_ ( lowercase: Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase: Optional[int] = torch.stack([example['''pixel_values'''] for example in examples] ) _UpperCamelCase: List[str] = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase: Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase: Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , lowercase , lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase: Union[str, Any] = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCamelCase: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase: Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. _UpperCamelCase: Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCamelCase: Union[str, Any] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase ) and data_args.train_val_split > 0.0: _UpperCamelCase: Any = ds['''train'''].train_test_split(data_args.train_val_split ) _UpperCamelCase: Dict = split['''train'''] _UpperCamelCase: Any = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase: Tuple = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: _UpperCamelCase: Tuple = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowercase ) elif model_args.model_name_or_path: _UpperCamelCase: str = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase ) else: _UpperCamelCase: Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowercase , '''decoder_type''' ): _UpperCamelCase: str = '''simmim''' # adapt config _UpperCamelCase: Tuple = model_args.image_size if model_args.image_size is not None else config.image_size _UpperCamelCase: Union[str, Any] = model_args.patch_size if model_args.patch_size is not None else config.patch_size _UpperCamelCase: List[str] = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: _UpperCamelCase: Dict = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase ) elif model_args.model_name_or_path: _UpperCamelCase: int = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase ) else: _UpperCamelCase: Dict = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } _UpperCamelCase: Tuple = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: _UpperCamelCase: Optional[int] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) _UpperCamelCase: Any = AutoModelForMaskedImageModeling.from_config(lowercase ) if training_args.do_train: _UpperCamelCase: Tuple = ds['''train'''].column_names else: _UpperCamelCase: Tuple = ds['''validation'''].column_names if data_args.image_column_name is not None: _UpperCamelCase: Optional[Any] = data_args.image_column_name elif "image" in column_names: _UpperCamelCase: Optional[int] = '''image''' elif "img" in column_names: _UpperCamelCase: Optional[Any] = '''img''' else: _UpperCamelCase: Union[str, Any] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py _UpperCamelCase: Dict = Compose( [ Lambda(lambda lowercase : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator _UpperCamelCase: Tuple = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowercase: Dict ): _UpperCamelCase: Optional[Any] = [transforms(lowercase ) for image in examples[image_column_name]] _UpperCamelCase: Optional[int] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: _UpperCamelCase: Tuple = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: _UpperCamelCase: Union[str, Any] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase ) # Initialize our trainer _UpperCamelCase: Union[str, Any] = Trainer( model=lowercase , args=lowercase , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: _UpperCamelCase: int = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase: int = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase: List[str] = last_checkpoint _UpperCamelCase: int = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCamelCase: Any = trainer.evaluate() trainer.log_metrics('''eval''' , lowercase ) trainer.save_metrics('''eval''' , lowercase ) # Write model card and (optionally) push to hub _UpperCamelCase: Union[str, Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) if __name__ == "__main__": main()
264
1
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[Any] = tmp_path / '''cache''' __lowercase : Any = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase : Optional[Any] = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Union[str, Any] = tmp_path / '''cache''' __lowercase : Union[str, Any] = {'''text''': '''string'''} __lowercase : Union[str, Any] = features.copy() if features else default_expected_features __lowercase : Optional[Any] = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase : Optional[int] = TextDatasetReader(__UpperCamelCase , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[Any] = tmp_path / '''cache''' __lowercase : List[str] = {'''text''': '''string'''} __lowercase : Tuple = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase , split=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if issubclass(__UpperCamelCase , __UpperCamelCase ): __lowercase : Union[str, Any] = text_path elif issubclass(__UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[int] = [text_path] __lowercase : Optional[Any] = tmp_path / '''cache''' __lowercase : Dict = {'''text''': '''string'''} __lowercase : List[Any] = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_dataset(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=("train",) ): assert isinstance(__UpperCamelCase , __UpperCamelCase ) for split in splits: __lowercase : Any = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : Optional[int] = tmp_path / '''cache''' __lowercase : List[str] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase : Tuple = TextDatasetReader({'''train''': text_path} , cache_dir=__UpperCamelCase , keep_in_memory=__UpperCamelCase ).read() _check_text_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __lowercase : List[Any] = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __lowercase : Tuple = {'''text''': '''string'''} __lowercase : Optional[Any] = features.copy() if features else default_expected_features __lowercase : List[Any] = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase : int = TextDatasetReader({'''train''': text_path} , features=__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_datasetdict(__UpperCamelCase , __UpperCamelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if split: __lowercase : Optional[int] = {split: text_path} else: __lowercase : Any = '''train''' __lowercase : Tuple = {'''train''': text_path, '''test''': text_path} __lowercase : List[Any] = tmp_path / '''cache''' __lowercase : Any = {'''text''': '''string'''} __lowercase : Union[str, Any] = TextDatasetReader(__UpperCamelCase , cache_dir=__UpperCamelCase ).read() _check_text_datasetdict(__UpperCamelCase , __UpperCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
76
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): # noqa: E741 while r - l > 1: __lowercase : int = (l + r) // 2 if v[m] >= key: __lowercase : Any = m else: __lowercase : List[Any] = m # noqa: E741 return r def __UpperCAmelCase ( __UpperCamelCase ): if len(__UpperCamelCase ) == 0: return 0 __lowercase : List[str] = [0] * len(__UpperCamelCase ) __lowercase : Any = 1 __lowercase : Dict = v[0] for i in range(1 , len(__UpperCamelCase ) ): if v[i] < tail[0]: __lowercase : Tuple = v[i] elif v[i] > tail[length - 1]: __lowercase : Optional[Any] = v[i] length += 1 else: __lowercase : Dict = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
76
1
import math def __lowercase ( _A , _A ) -> float: if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_A ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
718
def __lowercase ( _A ) -> str: SCREAMING_SNAKE_CASE : Optional[Any] = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __lowercase ( _A ) -> dict[str, str]: SCREAMING_SNAKE_CASE : int = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key SCREAMING_SNAKE_CASE : List[str] = remove_duplicates(key.upper() ) SCREAMING_SNAKE_CASE : Dict = len(_A ) # First fill cipher with key characters SCREAMING_SNAKE_CASE : int = {alphabet[i]: char for i, char in enumerate(_A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_A ) , 26 ): SCREAMING_SNAKE_CASE : List[Any] = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 SCREAMING_SNAKE_CASE : str = alphabet[i - offset] SCREAMING_SNAKE_CASE : List[Any] = char return cipher_alphabet def __lowercase ( _A , _A ) -> str: return "".join(cipher_map.get(_A , _A ) for ch in message.upper() ) def __lowercase ( _A , _A ) -> str: SCREAMING_SNAKE_CASE : Optional[int] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_A , _A ) for ch in message.upper() ) def __lowercase ( ) -> None: SCREAMING_SNAKE_CASE : List[Any] = input("""Enter message to encode or decode: """ ).strip() SCREAMING_SNAKE_CASE : str = input("""Enter keyword: """ ).strip() SCREAMING_SNAKE_CASE : Dict = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: SCREAMING_SNAKE_CASE : int = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) SCREAMING_SNAKE_CASE : Optional[int] = create_cipher_map(_A ) print(func(_A , _A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
446
0
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A_ ( __lowercase , __lowercase=() , __lowercase=None , __lowercase="no" , __lowercase="29500" ): UpperCamelCase_ : Dict =False UpperCamelCase_ : int =False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): UpperCamelCase_ : Optional[int] =True elif "IPython" in sys.modules: UpperCamelCase_ : List[str] ='google.colab' in str(sys.modules['IPython'].get_ipython() ) try: UpperCamelCase_ : str =PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , __lowercase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: UpperCamelCase_ : Any =8 UpperCamelCase_ : List[str] =PrepareForLaunch(__lowercase , distributed_type='TPU' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__lowercase , args=__lowercase , nprocs=__lowercase , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*__lowercase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowercase , master_addr='127.0.01' , master_port=__lowercase , mixed_precision=__lowercase ): UpperCamelCase_ : Any =PrepareForLaunch(__lowercase , distributed_type='MULTI_GPU' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__lowercase , args=__lowercase , nprocs=__lowercase , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase_ : str ='1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*__lowercase ) def A_ ( __lowercase , __lowercase=() , __lowercase=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowercase , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): UpperCamelCase_ : Optional[Any] =PrepareForLaunch(__lowercase , debug=__lowercase ) start_processes(__lowercase , args=__lowercase , nprocs=__lowercase , start_method='fork' )
357
"""simple docstring""" from collections.abc import Callable class a__ : def __init__( self :Tuple , _lowerCamelCase :Callable | None = None ): '''simple docstring''' UpperCamelCase_ : list =[] # Stores indexes of each item for supporting updates and deletion. UpperCamelCase_ : dict ={} # Stores current size of heap. UpperCamelCase_ : Any =0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCamelCase_ : List[str] =key or (lambda _lowerCamelCase : x) def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : List[str] =int(2 * i + 1 ) return left if 0 < left < self.size else None def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =int(2 * i + 2 ) return right if 0 < right < self.size else None def lowerCamelCase_ ( self :Dict , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ : Optional[int] =( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] =self.arr[j], self.arr[i] def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def lowerCamelCase_ ( self :Any , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : int =self._left(_lowerCamelCase ) UpperCamelCase_ : List[Any] =self._right(_lowerCamelCase ) UpperCamelCase_ : Optional[Any] =i if left is not None and not self._cmp(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ : Optional[int] =left if right is not None and not self._cmp(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ : List[Any] =right return valid_parent def lowerCamelCase_ ( self :Any , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Dict =self._parent(_lowerCamelCase ) while parent is not None and not self._cmp(_lowerCamelCase , _lowerCamelCase ): self._swap(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ : Dict =parent, self._parent(_lowerCamelCase ) def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =self._get_valid_parent(_lowerCamelCase ) while valid_parent != index: self._swap(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ : int =valid_parent, self._get_valid_parent(_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' if item not in self.pos_map: return UpperCamelCase_ : List[Any] =self.pos_map[item] UpperCamelCase_ : int =[item, self.key(_lowerCamelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_lowerCamelCase ) self._heapify_down(_lowerCamelCase ) def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int ): '''simple docstring''' if item not in self.pos_map: return UpperCamelCase_ : Any =self.pos_map[item] del self.pos_map[item] UpperCamelCase_ : Dict =self.arr[self.size - 1] UpperCamelCase_ : Optional[int] =index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_lowerCamelCase ) self._heapify_down(_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Optional[int] =len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_lowerCamelCase )] ) else: UpperCamelCase_ : str =[item, self.key(_lowerCamelCase )] UpperCamelCase_ : Optional[int] =self.size self.size += 1 self._heapify_up(self.size - 1 ) def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' return self.arr[0] if self.size else None def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : int =self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
357
1
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->float: A__ : Optional[Any] = 0.00 A__ : int = 0 for resistor in resistors: if resistor <= 0: A__ : List[str] = f'Resistor at index {index} has a negative or zero value!' raise ValueError(_SCREAMING_SNAKE_CASE ) first_sum += 1 / float(_SCREAMING_SNAKE_CASE ) index += 1 return 1 / first_sum def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->float: A__ : Dict = 0.00 A__ : int = 0 for resistor in resistors: sum_r += resistor if resistor < 0: A__ : Optional[int] = f'Resistor at index {index} has a negative value!' raise ValueError(_SCREAMING_SNAKE_CASE ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def _UpperCamelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : List[Any] = self.dummy_uncond_unet A__ : Dict = ScoreSdeVeScheduler() A__ : str = ScoreSdeVePipeline(unet=snake_case , scheduler=snake_case ) sde_ve.to(snake_case ) sde_ve.set_progress_bar_config(disable=snake_case ) A__ : Optional[int] = torch.manual_seed(0 ) A__ : Any = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=snake_case ).images A__ : List[str] = torch.manual_seed(0 ) A__ : int = sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=snake_case , return_dict=snake_case )[ 0 ] A__ : int = image[0, -3:, -3:, -1] A__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Union[str, Any] = """google/ncsnpp-church-256""" A__ : Tuple = UNetaDModel.from_pretrained(snake_case ) A__ : int = ScoreSdeVeScheduler.from_pretrained(snake_case ) A__ : List[Any] = ScoreSdeVePipeline(unet=snake_case , scheduler=snake_case ) sde_ve.to(snake_case ) sde_ve.set_progress_bar_config(disable=snake_case ) A__ : Dict = torch.manual_seed(0 ) A__ : Optional[int] = sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=snake_case ).images A__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A__ : Dict = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
498
0
import os import numpy import onnx def lowercase ( __A : str , __A : List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = a.name snake_case : int = b.name snake_case : Tuple = """""" snake_case : Any = """""" snake_case : Optional[int] = a == b snake_case : Any = name_a snake_case : str = name_b return res def lowercase ( __A : Optional[int] , __A : List[Any] , __A : List[Any] ) -> int: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__A , __A ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __A , __A ) _graph_replace_input_with(node_proto.attribute[1].g , __A , __A ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __A , __A ) def lowercase ( __A : Tuple , __A : Tuple , __A : List[str] ) -> Optional[Any]: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(__A , __A , __A ) def lowercase ( __A : Dict , __A : Any , __A : Union[str, Any] ) -> Dict: '''simple docstring''' snake_case : Dict = list(model.graph.initializer ) snake_case : Optional[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i snake_case : Optional[int] = inits[i].name snake_case : str = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __A , __A ) def lowercase ( __A : Tuple ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = os.path.dirname(__A ) snake_case : Union[str, Any] = os.path.basename(__A ) snake_case : Dict = onnx.load(os.path.join(__A , __A ) ) snake_case : Optional[Any] = list(model.graph.initializer ) snake_case : Optional[Any] = set() snake_case : Optional[int] = {} snake_case : Optional[int] = [] snake_case : List[str] = 0 for i in range(len(__A ) ): if i in dup_set: continue for j in range(i + 1 , len(__A ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__A ) dup_set.add(__A ) snake_case : Optional[Any] = inits[j].data_type snake_case : Any = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , __A ) total_reduced_size += mem_size snake_case : Tuple = inits[i].name snake_case : Optional[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(__A ) else: snake_case : int = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) snake_case : Union[str, Any] = sorted(__A ) _remove_dup_initializers_from_model(__A , __A , __A ) snake_case : List[str] = """optimized_""" + model_file_name snake_case : List[Any] = os.path.join(__A , __A ) onnx.save(__A , __A ) return new_model
36
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A_ ( __a , unittest.TestCase ): _A :Tuple = KandinskyVaaInpaintPipeline _A :Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _A :Optional[int] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _A :Optional[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _A :Union[str, Any] = False @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return 1_00 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): torch.manual_seed(0 ) lowercase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase = UNetaDConditionModel(**snake_case__ ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): torch.manual_seed(0 ) lowercase = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=snake_case__ , ) lowercase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any]=0 ): lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowercase = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask lowercase = np.ones((64, 64) , dtype=np.floataa ) lowercase = 0 if str(snake_case__ ).startswith("""mps""" ): lowercase = torch.manual_seed(snake_case__ ) else: lowercase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = """cpu""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**snake_case__ ) lowercase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowercase = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def SCREAMING_SNAKE_CASE__ ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase = np.ones((7_68, 7_68) , dtype=np.floataa ) lowercase = 0 lowercase = """a hat""" lowercase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowercase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) lowercase = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase , lowercase = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) lowercase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
428
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : Dict = '''ctrl''' __magic_name__ : List[str] = ['''past_key_values'''] __magic_name__ : Optional[Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowerCamelCase__=246_534 , lowerCamelCase__=256 , lowerCamelCase__=1_280 , lowerCamelCase__=8_192 , lowerCamelCase__=48 , lowerCamelCase__=16 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1E-6 , lowerCamelCase__=0.02 , lowerCamelCase__=True , **lowerCamelCase__ , ) -> List[str]: '''simple docstring''' snake_case__ : Dict = vocab_size snake_case__ : Union[str, Any] = n_positions snake_case__ : Optional[Any] = n_embd snake_case__ : str = n_layer snake_case__ : Tuple = n_head snake_case__ : Union[str, Any] = dff snake_case__ : str = resid_pdrop snake_case__ : Optional[Any] = embd_pdrop snake_case__ : Tuple = layer_norm_epsilon snake_case__ : List[Any] = initializer_range snake_case__ : Tuple = use_cache super().__init__(**lowerCamelCase__)
150
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowercase = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
150
1
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : str ) -> bool: """simple docstring""" A__ = len(UpperCAmelCase_ ) A__ = len(UpperCAmelCase_ ) A__ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] A__ = True for i in range(UpperCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: A__ = True if a[i].islower(): A__ = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
104
from __future__ import annotations from collections.abc import Iterator class lowerCamelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None class lowerCamelCase_ : '''simple docstring''' def __init__( self : int , _lowerCAmelCase : Node ): SCREAMING_SNAKE_CASE_ = tree def lowerCAmelCase_ ( self : Union[str, Any] , _lowerCAmelCase : Node | None ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
31
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Tuple = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ :Any = emb.weight.shape UpperCAmelCase__ :List[str] = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Any = emb.weight.data return lin_layer def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCAmelCase__ :List[Any] = {} for old_key in state_dict.keys(): UpperCAmelCase__ :List[str] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase__ :Dict = key.replace('moe_layer.experts.0' , f"""ffn.experts.expert_{expert_idx}""" ) else: UpperCAmelCase__ :List[Any] = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: UpperCAmelCase__ :Optional[Any] = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: UpperCAmelCase__ :Union[str, Any] = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: UpperCAmelCase__ :Dict = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: UpperCAmelCase__ :List[str] = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: UpperCAmelCase__ :Optional[int] = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: UpperCAmelCase__ :Optional[Any] = key.replace('final_layer_norm' , 'ff_layer_norm' ) UpperCAmelCase__ :List[Any] = state_dict[old_key] return new_dict def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = WEIGHTS_NAME ): """simple docstring""" UpperCAmelCase__ :int = [] UpperCAmelCase__ :List[str] = 0 os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) for expert in range(SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :Tuple = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :Dict = torch.load(SCREAMING_SNAKE_CASE )['model'] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[Any] = rename_fairseq_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :List[str] = os.path.join( SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , f"""-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(SCREAMING_SNAKE_CASE )[0]].dtype ) # Add the last block UpperCAmelCase__ :Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , f"""-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) UpperCAmelCase__ :Union[str, Any] = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Any = rename_fairseq_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :str = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(SCREAMING_SNAKE_CASE ) == 1: UpperCAmelCase__ :int = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Otherwise, let's build the index UpperCAmelCase__ :int = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :Optional[int] = weights_name.replace('.bin' , f"""-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin""" ) UpperCAmelCase__ :Tuple = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) for key in shard: UpperCAmelCase__ :Optional[int] = shard_file # Add the metadata UpperCAmelCase__ :Union[str, Any] = {'total_size': total_size} UpperCAmelCase__ :List[str] = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 'w' , encoding='utf-8' ) as f: UpperCAmelCase__ :Tuple = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '\n' f.write(SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __snake_case : Tuple = parser.parse_args() __snake_case , __snake_case : Tuple = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __snake_case : int = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __snake_case : int = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
433
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : '''simple docstring''' def __init__( self , A , A=13 , A=7 , A=True , A=True , A=True , A=True , A=99 , A=24 , A=2 , A=6 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=5_12 , A=16 , A=2 , A=0.02 , A=3 , A=None , A=10_00 , ) ->Any: UpperCAmelCase__ :Tuple = parent UpperCAmelCase__ :List[str] = batch_size UpperCAmelCase__ :Optional[int] = seq_length UpperCAmelCase__ :str = is_training UpperCAmelCase__ :Tuple = use_input_mask UpperCAmelCase__ :Optional[int] = use_token_type_ids UpperCAmelCase__ :int = use_labels UpperCAmelCase__ :Tuple = vocab_size UpperCAmelCase__ :int = hidden_size UpperCAmelCase__ :Any = num_hidden_layers UpperCAmelCase__ :List[Any] = num_attention_heads UpperCAmelCase__ :Tuple = intermediate_size UpperCAmelCase__ :List[str] = hidden_act UpperCAmelCase__ :Any = hidden_dropout_prob UpperCAmelCase__ :Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ :List[str] = max_position_embeddings UpperCAmelCase__ :str = type_vocab_size UpperCAmelCase__ :int = type_sequence_label_size UpperCAmelCase__ :int = initializer_range UpperCAmelCase__ :str = num_labels UpperCAmelCase__ :Tuple = scope UpperCAmelCase__ :int = range_bbox def A__ ( self ) ->Union[str, Any]: UpperCAmelCase__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase__ :List[Any] = bbox[i, j, 3] UpperCAmelCase__ :Union[str, Any] = bbox[i, j, 1] UpperCAmelCase__ :str = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase__ :Any = bbox[i, j, 2] UpperCAmelCase__ :Dict = bbox[i, j, 0] UpperCAmelCase__ :Optional[Any] = t UpperCAmelCase__ :int = None if self.use_input_mask: UpperCAmelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCAmelCase__ :int = None if self.use_token_type_ids: UpperCAmelCase__ :Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ :List[str] = None UpperCAmelCase__ :List[str] = None if self.use_labels: UpperCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ :List[str] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A__ ( self ) ->Optional[int]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A__ ( self , A , A , A , A , A , A , A , ) ->Any: UpperCAmelCase__ :Any = LiltModel(config=A ) model.to(A ) model.eval() UpperCAmelCase__ :Tuple = model(A , bbox=A , attention_mask=A , token_type_ids=A ) UpperCAmelCase__ :List[str] = model(A , bbox=A , token_type_ids=A ) UpperCAmelCase__ :int = model(A , bbox=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , A , A , A , A , A , A , A , ) ->Dict: UpperCAmelCase__ :List[str] = self.num_labels UpperCAmelCase__ :Optional[Any] = LiltForTokenClassification(config=A ) model.to(A ) model.eval() UpperCAmelCase__ :Tuple = model( A , bbox=A , attention_mask=A , token_type_ids=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , A , A , A , A , A , A , A , ) ->Union[str, Any]: UpperCAmelCase__ :str = LiltForQuestionAnswering(config=A ) model.to(A ) model.eval() UpperCAmelCase__ :str = model( A , bbox=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self ) ->Dict: UpperCAmelCase__ :List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) :Dict = config_and_inputs UpperCAmelCase__ :Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase): '''simple docstring''' __a : Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __a : Optional[Any] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __a : Optional[Any] = False __a : int = False def A__ ( self , A , A , A , A , A ) ->str: return True def A__ ( self ) ->List[Any]: UpperCAmelCase__ :Dict = LiltModelTester(self ) UpperCAmelCase__ :Optional[int] = ConfigTester(self , config_class=A , hidden_size=37 ) def A__ ( self ) ->Optional[Any]: self.config_tester.run_common_tests() def A__ ( self ) ->List[str]: UpperCAmelCase__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A__ ( self ) ->Optional[int]: UpperCAmelCase__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ :Optional[int] = type self.model_tester.create_and_check_model(*A ) def A__ ( self ) ->Any: UpperCAmelCase__ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def A__ ( self ) ->Optional[int]: UpperCAmelCase__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def A__ ( self ) ->int: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ :Union[str, Any] = LiltModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_torch @slow class UpperCamelCase__ ( unittest.TestCase): '''simple docstring''' def A__ ( self ) ->int: UpperCAmelCase__ :int = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(A ) UpperCAmelCase__ :List[Any] = torch.tensor([[1, 2]] , device=A ) UpperCAmelCase__ :Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=A ) # forward pass with torch.no_grad(): UpperCAmelCase__ :Union[str, Any] = model(input_ids=A , bbox=A ) UpperCAmelCase__ :Tuple = torch.Size([1, 2, 7_68] ) UpperCAmelCase__ :Any = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=A , ) self.assertTrue(outputs.last_hidden_state.shape , A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , A , atol=1e-3 ) )
433
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = "sew-d" def __init__( self, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=("p2c", "c2p"), SCREAMING_SNAKE_CASE_="layer_norm", SCREAMING_SNAKE_CASE_="gelu_python", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-7, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_="group", SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), SCREAMING_SNAKE_CASE_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), SCREAMING_SNAKE_CASE_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=128, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.05, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_="mean", SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=256, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=2, **SCREAMING_SNAKE_CASE_, ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_, pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = hidden_size UpperCamelCase : int = feat_extract_norm UpperCamelCase : Any = feat_extract_activation UpperCamelCase : List[str] = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = conv_bias UpperCamelCase : List[Any] = num_conv_pos_embeddings UpperCamelCase : Tuple = num_conv_pos_embedding_groups UpperCamelCase : Dict = len(self.conv_dim ) UpperCamelCase : List[str] = num_hidden_layers UpperCamelCase : List[str] = intermediate_size UpperCamelCase : List[Any] = squeeze_factor UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : Optional[Any] = position_buckets UpperCamelCase : Optional[int] = share_att_key UpperCamelCase : List[str] = relative_attention UpperCamelCase : List[str] = norm_rel_ebd UpperCamelCase : List[Any] = list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : int = num_attention_heads UpperCamelCase : Tuple = hidden_dropout UpperCamelCase : Optional[int] = attention_dropout UpperCamelCase : Dict = activation_dropout UpperCamelCase : Union[str, Any] = feat_proj_dropout UpperCamelCase : Tuple = final_dropout UpperCamelCase : Union[str, Any] = layer_norm_eps UpperCamelCase : Tuple = feature_layer_norm_eps UpperCamelCase : Dict = initializer_range UpperCamelCase : Optional[Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase : List[Any] = apply_spec_augment UpperCamelCase : str = mask_time_prob UpperCamelCase : Union[str, Any] = mask_time_length UpperCamelCase : Tuple = mask_time_min_masks UpperCamelCase : List[Any] = mask_feature_prob UpperCamelCase : List[Any] = mask_feature_length UpperCamelCase : Dict = mask_feature_min_masks # ctc loss UpperCamelCase : int = ctc_loss_reduction UpperCamelCase : Tuple = ctc_zero_infinity # sequence classification UpperCamelCase : str = use_weighted_layer_sum UpperCamelCase : Optional[Any] = classifier_proj_size @property def snake_case_ ( self ) -> List[str]: return functools.reduce(operator.mul, self.conv_stride, 1 )
40
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase : int = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class a__ : _A = PegasusConfig _A = {} _A = "gelu" def __init__( self : Any , A_ : int , A_ : Any=13 , A_ : Union[str, Any]=7 , A_ : List[str]=True , A_ : Dict=False , A_ : Any=99 , A_ : Optional[int]=32 , A_ : Tuple=5 , A_ : Optional[Any]=4 , A_ : Tuple=37 , A_ : str=0.1 , A_ : str=0.1 , A_ : Any=20 , A_ : List[str]=2 , A_ : List[Any]=1 , A_ : str=0 , ) -> int: """simple docstring""" lowerCamelCase_: int = parent lowerCamelCase_: Any = batch_size lowerCamelCase_: Optional[Any] = seq_length lowerCamelCase_: Optional[Any] = is_training lowerCamelCase_: str = use_labels lowerCamelCase_: Union[str, Any] = vocab_size lowerCamelCase_: Optional[int] = hidden_size lowerCamelCase_: Dict = num_hidden_layers lowerCamelCase_: Optional[int] = num_attention_heads lowerCamelCase_: List[Any] = intermediate_size lowerCamelCase_: Optional[int] = hidden_dropout_prob lowerCamelCase_: Union[str, Any] = attention_probs_dropout_prob lowerCamelCase_: Optional[int] = max_position_embeddings lowerCamelCase_: Union[str, Any] = eos_token_id lowerCamelCase_: Tuple = pad_token_id lowerCamelCase_: List[Any] = bos_token_id def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_: int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCamelCase_: int = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_: List[str] = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_: Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase_: Any = prepare_pegasus_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def lowerCAmelCase ( self : str , A_ : Tuple , A_ : Optional[int] , A_ : Dict ) -> str: """simple docstring""" lowerCamelCase_: Any = 20 lowerCamelCase_: Union[str, Any] = model_class_name(A_ ) lowerCamelCase_: List[Any] = model.encode(inputs_dict["""input_ids"""] ) lowerCamelCase_ , lowerCamelCase_: Optional[Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase_: Any = model.init_cache(decoder_input_ids.shape[0] , A_ , A_ ) lowerCamelCase_: Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCamelCase_: Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase_: Tuple = model.decode( decoder_input_ids[:, :-1] , A_ , decoder_attention_mask=A_ , past_key_values=A_ , decoder_position_ids=A_ , ) lowerCamelCase_: Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCamelCase_: Any = model.decode( decoder_input_ids[:, -1:] , A_ , decoder_attention_mask=A_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A_ , ) lowerCamelCase_: Dict = model.decode(A_ , A_ ) lowerCamelCase_: int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowerCAmelCase ( self : int , A_ : Union[str, Any] , A_ : List[str] , A_ : int ) -> List[Any]: """simple docstring""" lowerCamelCase_: List[str] = 20 lowerCamelCase_: Optional[int] = model_class_name(A_ ) lowerCamelCase_: int = model.encode(inputs_dict["""input_ids"""] ) lowerCamelCase_ , lowerCamelCase_: int = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase_: List[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase_: Optional[int] = model.init_cache(decoder_input_ids.shape[0] , A_ , A_ ) lowerCamelCase_: int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase_: Optional[int] = model.decode( decoder_input_ids[:, :-1] , A_ , decoder_attention_mask=A_ , past_key_values=A_ , decoder_position_ids=A_ , ) lowerCamelCase_: List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCamelCase_: Any = model.decode( decoder_input_ids[:, -1:] , A_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A_ , decoder_position_ids=A_ , ) lowerCamelCase_: Optional[int] = model.decode(A_ , A_ , decoder_attention_mask=A_ ) lowerCamelCase_: List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if attention_mask is None: lowerCamelCase_: Optional[int] = np.not_equal(_UpperCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCamelCase_: Dict = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class a__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _A = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _A = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _A = True _A = False _A = False _A = False def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" lowerCamelCase_: Union[str, Any] = FlaxPegasusModelTester(self ) lowerCamelCase_: int = ConfigTester(self , config_class=A_ ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A_ , A_ , A_ ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ , lowerCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A_ , A_ , A_ ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_: Tuple = self._prepare_for_class(A_ , A_ ) lowerCamelCase_: List[str] = model_class(A_ ) @jax.jit def encode_jitted(A_ : Optional[int] , A_ : List[str]=None , **A_ : int ): return model.encode(input_ids=A_ , attention_mask=A_ ) with self.subTest("""JIT Enabled""" ): lowerCamelCase_: Optional[int] = encode_jitted(**A_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase_: Dict = encode_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_: Dict = model_class(A_ ) lowerCamelCase_: Optional[int] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) lowerCamelCase_: Union[str, Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(A_ : Optional[Any] , A_ : List[Any] , A_ : Tuple ): return model.decode( decoder_input_ids=A_ , decoder_attention_mask=A_ , encoder_outputs=A_ , ) with self.subTest("""JIT Enabled""" ): lowerCamelCase_: List[str] = decode_jitted(**A_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase_: Any = decode_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase_: str = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=A_ ) lowerCamelCase_: str = np.ones((1, 1) ) lowerCamelCase_: Dict = model(A_ ) self.assertIsNotNone(A_ ) @slow def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_: Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) lowerCamelCase_: str = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) lowerCamelCase_: List[str] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowerCamelCase_: Dict = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowerCamelCase_: Dict = tokenizer(A_ , return_tensors="""np""" , truncation=A_ , max_length=5_12 , padding=A_ ) lowerCamelCase_: int = model.generate(**A_ , num_beams=2 ).sequences lowerCamelCase_: Optional[int] = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) assert tgt_text == decoded
423
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : Optional[Any] = 'xlm' _UpperCamelCase : Optional[Any] = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self , snake_case=30145 , snake_case=2048 , snake_case=12 , snake_case=16 , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=False , snake_case=False , snake_case=False , snake_case=1 , snake_case=True , snake_case=512 , snake_case=2048**-0.5 , snake_case=1E-1_2 , snake_case=0.02 , snake_case=0 , snake_case=1 , snake_case=2 , snake_case=3 , snake_case=5 , snake_case=True , snake_case="first" , snake_case=True , snake_case=None , snake_case=True , snake_case=0.1 , snake_case=5 , snake_case=5 , snake_case=0 , snake_case=0 , snake_case=2 , snake_case=0 , **snake_case , ): '''simple docstring''' UpperCamelCase__ = vocab_size UpperCamelCase__ = emb_dim UpperCamelCase__ = n_layers UpperCamelCase__ = n_heads UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = gelu_activation UpperCamelCase__ = sinusoidal_embeddings UpperCamelCase__ = causal UpperCamelCase__ = asm UpperCamelCase__ = n_langs UpperCamelCase__ = use_lang_emb UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = bos_index UpperCamelCase__ = eos_index UpperCamelCase__ = pad_index UpperCamelCase__ = unk_index UpperCamelCase__ = mask_index UpperCamelCase__ = is_encoder UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = embed_init_std UpperCamelCase__ = init_std UpperCamelCase__ = summary_type UpperCamelCase__ = summary_use_proj UpperCamelCase__ = summary_activation UpperCamelCase__ = summary_proj_to_labels UpperCamelCase__ = summary_first_dropout UpperCamelCase__ = start_n_top UpperCamelCase__ = end_n_top UpperCamelCase__ = mask_token_id UpperCamelCase__ = lang_id if "n_words" in kwargs: UpperCamelCase__ = kwargs["n_words"] super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , **snake_case ) class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
185
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : Any = 'ibert' def __init__( self , snake_case=30522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=1 , snake_case=0 , snake_case=2 , snake_case="absolute" , snake_case=False , snake_case="none" , **snake_case , ): '''simple docstring''' super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = position_embedding_type UpperCamelCase__ = quant_mode UpperCamelCase__ = force_dequant class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
185
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__=1_0 ) -> Any: UpperCamelCase_: Optional[int] = [] for _ in range(UpperCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def snake_case (UpperCAmelCase__ , UpperCAmelCase__=1_0 ) -> str: UpperCamelCase_: Optional[int] = [] for step in range(UpperCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_: int = os.path.join(UpperCAmelCase__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , UpperCAmelCase__ ) UpperCamelCase_: Optional[Any] = torch.load(UpperCAmelCase__ ) scheduler.load_state_dict(UpperCAmelCase__ ) return lrs @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ): self.assertAlmostEqual(_lowerCamelCase , _lowerCamelCase , delta=_lowerCamelCase ) def _a ( self ): UpperCamelCase_: str = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowerCamelCase ) UpperCamelCase_: List[str] = torch.tensor([0.4, 0.2, -0.5] ) UpperCamelCase_: int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCamelCase_: Optional[Any] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): UpperCamelCase_: str = criterion(_lowerCamelCase , _lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def _a ( self ): UpperCamelCase_: Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowerCamelCase ) UpperCamelCase_: Any = torch.tensor([0.4, 0.2, -0.5] ) UpperCamelCase_: Dict = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCamelCase_: List[Any] = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_lowerCamelCase , weight_decay=0.0 , relative_step=_lowerCamelCase , scale_parameter=_lowerCamelCase , warmup_init=_lowerCamelCase , ) for _ in range(1_0_0_0 ): UpperCamelCase_: Dict = criterion(_lowerCamelCase , _lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Any =nn.Linear(50 , 50 ) if is_torch_available() else None a : Dict =AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None a : Union[str, Any] =10 def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ): self.assertAlmostEqual(_lowerCamelCase , _lowerCamelCase , delta=_lowerCamelCase , msg=_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Union[str, Any] = {'num_warmup_steps': 2, 'num_training_steps': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) UpperCamelCase_: Tuple = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = data UpperCamelCase_: Optional[int] = scheduler_func(self.optimizer , **_lowerCamelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) UpperCamelCase_: List[Any] = unwrap_schedule(_lowerCamelCase , self.num_steps ) self.assertListAlmostEqual( _lowerCamelCase , _lowerCamelCase , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) UpperCamelCase_: Optional[Any] = scheduler_func(self.optimizer , **_lowerCamelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_lowerCamelCase ) # wrap to test picklability of the schedule UpperCamelCase_: List[Any] = unwrap_and_save_reload_schedule(_lowerCamelCase , self.num_steps ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase ): UpperCamelCase_: Any = fn def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): return self.fn(*_lowerCamelCase , **_lowerCamelCase ) @classmethod def _a ( self , _lowerCamelCase ): UpperCamelCase_: int = list(map(self , scheduler.lr_lambdas ) )
57
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
57
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets UpperCamelCase__ : Dict = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ UpperCamelCase__ : Optional[int] = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ UpperCamelCase__ : List[str] = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def A_( A ): def remove_articles(A ): UpperCAmelCase_ = re.compile(R"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(A , """ """ , A ) def white_space_fix(A ): return " ".join(text.split() ) def remove_punc(A ): UpperCAmelCase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A ) ) ) ) def A_( A , A ): return int(normalize_answer(A ) == normalize_answer(A ) ) def A_( A , A ): UpperCAmelCase_ = [any(compute_exact(A , A ) for ref in refs ) for pred, refs in zip(A , A )] return (sum(A ) / len(A )) * 100 def A_( A , A , A , A ): UpperCAmelCase_ = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase_ = Counter(A ) UpperCAmelCase_ = Counter(A ) UpperCAmelCase_ = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase_ = scount * numref UpperCAmelCase_ = Counter(A ) UpperCAmelCase_ = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase_ = ccount * numref # KEEP UpperCAmelCase_ = sgramcounter_rep & cgramcounter_rep UpperCAmelCase_ = keepgramcounter_rep & rgramcounter UpperCAmelCase_ = sgramcounter_rep & rgramcounter UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 if len(A ) > 0: UpperCAmelCase_ = keeptmpscorea / len(A ) if len(A ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase_ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase_ = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase_ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase_ = sgramcounter_rep - cgramcounter_rep UpperCAmelCase_ = delgramcounter_rep - rgramcounter UpperCAmelCase_ = sgramcounter_rep - rgramcounter UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ = 1 if len(A ) > 0: UpperCAmelCase_ = deltmpscorea / len(A ) # ADDITION UpperCAmelCase_ = set(A ) - set(A ) UpperCAmelCase_ = set(A ) & set(A ) UpperCAmelCase_ = set(A ) - set(A ) UpperCAmelCase_ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ = 1 UpperCAmelCase_ = 1 if len(A ) > 0: UpperCAmelCase_ = addtmpscore / len(A ) if len(A ) > 0: UpperCAmelCase_ = addtmpscore / len(A ) UpperCAmelCase_ = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase_ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_( A , A , A ): UpperCAmelCase_ = len(A ) UpperCAmelCase_ = ssent.split(""" """ ) UpperCAmelCase_ = csent.split(""" """ ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rsent in rsents: UpperCAmelCase_ = rsent.split(""" """ ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] ragramslist.append(A ) for i in range(0 , len(A ) - 1 ): if i < len(A ) - 1: UpperCAmelCase_ = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(A ) if i < len(A ) - 2: UpperCAmelCase_ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(A ) if i < len(A ) - 3: UpperCAmelCase_ = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(A ) ragramslist.append(A ) ragramslist.append(A ) ragramslist.append(A ) for i in range(0 , len(A ) - 1 ): if i < len(A ) - 1: UpperCAmelCase_ = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(A ) if i < len(A ) - 2: UpperCAmelCase_ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(A ) if i < len(A ) - 3: UpperCAmelCase_ = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(A ) for i in range(0 , len(A ) - 1 ): if i < len(A ) - 1: UpperCAmelCase_ = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(A ) if i < len(A ) - 2: UpperCAmelCase_ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(A ) if i < len(A ) - 3: UpperCAmelCase_ = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(A ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = SARIngram(A , A , A , A ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = SARIngram(A , A , A , A ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = SARIngram(A , A , A , A ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = SARIngram(A , A , A , A ) UpperCAmelCase_ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase_ = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase_ = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase_ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_( A , A = True , A = "13a" , A = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCAmelCase_ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase_ = sacrebleu.metrics.bleu._get_tokenizer(A )()(A ) else: UpperCAmelCase_ = sacrebleu.TOKENIZERS[tokenizer]()(A ) elif tokenizer == "moses": UpperCAmelCase_ = sacremoses.MosesTokenizer().tokenize(A , return_str=A , escape=A ) elif tokenizer == "penn": UpperCAmelCase_ = sacremoses.MosesTokenizer().penn_tokenize(A , return_str=A ) else: UpperCAmelCase_ = sentence if not return_str: UpperCAmelCase_ = normalized_sent.split() return normalized_sent def A_( A , A , A ): if not (len(A ) == len(A ) == len(A )): raise ValueError("""Sources length must match predictions and references lengths.""" ) UpperCAmelCase_ = 0 for src, pred, refs in zip(A , A , A ): sari_score += SARIsent(normalize(A ) , normalize(A ) , [normalize(A ) for sent in refs] ) UpperCAmelCase_ = sari_score / len(A ) return 100 * sari_score def A_( A , A , A="exp" , A=None , A=False , A=False , A=False , ): UpperCAmelCase_ = len(references[0] ) if any(len(A ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) UpperCAmelCase_ = [[refs[i] for refs in references] for i in range(A )] UpperCAmelCase_ = sacrebleu.corpus_bleu( A , A , smooth_method=A , smooth_value=A , force=A , lowercase=A , use_effective_order=A , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowercase : str , __lowercase : List[str] , __lowercase : List[str] ): '''simple docstring''' UpperCAmelCase_ = {} result.update({"""sari""": compute_sari(sources=__lowercase , predictions=__lowercase , references=__lowercase )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=__lowercase , references=__lowercase )} ) result.update({"""exact""": compute_em(predictions=__lowercase , references=__lowercase )} ) return result
704
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCAmelCase_ = { """do_resize""": True, """size""": {"""height""": 2_24, """width""": 2_24}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], """do_convert_rgb""": True, } UpperCAmelCase_ = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , **__lowercase : Optional[Any] ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__lowercase : Optional[Any] ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def SCREAMING_SNAKE_CASE ( self : int , **__lowercase : int ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = ChineseCLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) UpperCAmelCase_ = ChineseCLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' UpperCAmelCase_ = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) UpperCAmelCase_ = self.get_image_processor(do_normalize=__lowercase ) UpperCAmelCase_ = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=__lowercase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = ChineseCLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(__lowercase , return_tensors="""np""" ) UpperCAmelCase_ = processor(images=__lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = ChineseCLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase_ = """Alexandra,T-shirt的价格是15便士。""" UpperCAmelCase_ = processor(text=__lowercase ) UpperCAmelCase_ = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = ChineseCLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase_ = """Alexandra,T-shirt的价格是15便士。""" UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = ChineseCLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(__lowercase ) UpperCAmelCase_ = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = ChineseCLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) UpperCAmelCase_ = """Alexandra,T-shirt的价格是15便士。""" UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
486
0
import numpy as np def lowerCAmelCase ( UpperCamelCase__ : np.array ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
202
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__ ) class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase_ : ClassVar[Features] = Features({'''audio''': Audio()} ) UpperCAmelCase_ : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) UpperCAmelCase_ : str = "audio" UpperCAmelCase_ : str = "transcription" def a_ ( self , __lowerCAmelCase): """simple docstring""" if self.audio_column not in features: raise ValueError(f"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , __lowerCAmelCase): raise ValueError(f"Column {self.audio_column} is not an Audio type.") lowerCAmelCase = copy.deepcopy(self) lowerCAmelCase = self.input_schema.copy() lowerCAmelCase = features[self.audio_column] lowerCAmelCase = input_schema return task_template @property def a_ ( self): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
370
0
import warnings from .generation import TFGenerationMixin class _A ( UpperCAmelCase_ ): warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , UpperCAmelCase_ , )
709
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _A ( UpperCAmelCase_ ): def __init__( self : Optional[Any] , lowerCamelCase__ : NestedDataStructureLike[PathLike] , lowerCamelCase__ : Optional[NamedSplit] = None , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Any , ): """simple docstring""" super().__init__( lowerCamelCase__ , split=lowerCamelCase__ , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , streaming=lowerCamelCase__ , num_proc=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : Dict = path_or_paths if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else {self.split: path_or_paths} __UpperCamelCase : int = Text( cache_dir=lowerCamelCase__ , data_files=lowerCamelCase__ , features=lowerCamelCase__ , **lowerCamelCase__ , ) def a ( self : Optional[int] ): """simple docstring""" if self.streaming: __UpperCamelCase : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase : Any = None __UpperCamelCase : int = None __UpperCamelCase : int = None __UpperCamelCase : Optional[Any] = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , num_proc=self.num_proc , ) __UpperCamelCase : Tuple = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset
515
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __snake_case = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } __snake_case = { """squeezebert/squeezebert-uncased""": 5_12, """squeezebert/squeezebert-mnli""": 5_12, """squeezebert/squeezebert-mnli-headless""": 5_12, } __snake_case = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : str =VOCAB_FILES_NAMES UpperCamelCase_ : int =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] =PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict =SqueezeBertTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase :Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): UpperCamelCase :Tuple = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('''type''' ) ) UpperCamelCase :Any = do_lower_case UpperCamelCase :Tuple = strip_accents UpperCamelCase :int = tokenize_chinese_chars UpperCamelCase :Tuple = normalizer_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = do_lower_case def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: UpperCamelCase :str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase :List[Any] = [self.sep_token_id] UpperCamelCase :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: UpperCamelCase :Union[str, Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
658
def _A ( SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Union[str, Any] = hex_num.strip() if not hex_num: raise ValueError('''No value was passed to the function''' ) UpperCamelCase :str = hex_num[0] == '''-''' if is_negative: UpperCamelCase :Union[str, Any] = hex_num[1:] try: UpperCamelCase :Optional[Any] = int(SCREAMING_SNAKE_CASE__ , 16 ) except ValueError: raise ValueError('''Invalid value was passed to the function''' ) UpperCamelCase :Dict = '''''' while int_num > 0: UpperCamelCase :Tuple = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('''-''' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": SCREAMING_SNAKE_CASE = pd.read_csv('sample_data.csv', header=None) SCREAMING_SNAKE_CASE = df.shape[:1][0] # If you're using some other dataset input the target column SCREAMING_SNAKE_CASE = df.iloc[:, 1:2] SCREAMING_SNAKE_CASE = actual_data.values.reshape(len_data, 1) SCREAMING_SNAKE_CASE = MinMaxScaler().fit_transform(actual_data) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = len_data - periods * look_back SCREAMING_SNAKE_CASE = actual_data[:division] SCREAMING_SNAKE_CASE = actual_data[division - look_back :] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) SCREAMING_SNAKE_CASE = np.array(train_x) SCREAMING_SNAKE_CASE = np.array(test_x) SCREAMING_SNAKE_CASE = np.array([list(i.ravel()) for i in train_y]) SCREAMING_SNAKE_CASE = np.array([list(i.ravel()) for i in test_y]) SCREAMING_SNAKE_CASE = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') SCREAMING_SNAKE_CASE = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) SCREAMING_SNAKE_CASE = model.predict(x_test)
186
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets SCREAMING_SNAKE_CASE = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' SCREAMING_SNAKE_CASE = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' SCREAMING_SNAKE_CASE = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def snake_case__ ( self) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string'''), '''references''': datasets.Value('''string'''), }) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def snake_case__ ( self , _A , _A) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = 0.0 for i, j in zip(_A , _A): n_correct += 1.0 if math_equivalence.is_equiv(_A , _A) else 0.0 _UpperCAmelCase : Tuple = n_correct / len(_A) return { "accuracy": accuracy, }
186
1
import random def _A (UpperCamelCase : list , UpperCamelCase : Union[str, Any] ) ->tuple: '''simple docstring''' lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : Union[str, Any] = [], [], [] for element in data: if element < pivot: less.append(UpperCamelCase ) elif element > pivot: greater.append(UpperCamelCase ) else: equal.append(UpperCamelCase ) return less, equal, greater def _A (UpperCamelCase : list , UpperCamelCase : int ) ->Optional[int]: '''simple docstring''' if index >= len(UpperCamelCase ) or index < 0: return None lowerCamelCase__ : List[str] = items[random.randint(0 , len(UpperCamelCase ) - 1 )] lowerCamelCase__ : Dict = 0 lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : str = _partition(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : List[str] = len(UpperCamelCase ) lowerCamelCase__ : Any = len(UpperCamelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCamelCase , UpperCamelCase ) # must be in larger else: return quick_select(UpperCamelCase , index - (m + count) )
157
from copy import deepcopy class __A : def __init__(self , __magic_name__ = None , __magic_name__ = None ): if arr is None and size is not None: lowerCamelCase__ : int = size lowerCamelCase__ : Union[str, Any] = [0] * size elif arr is not None: self.init(__magic_name__ ) else: raise ValueError("""Either arr or size must be specified""" ) def _snake_case (self , __magic_name__ ): lowerCamelCase__ : str = len(__magic_name__ ) lowerCamelCase__ : Union[str, Any] = deepcopy(__magic_name__ ) for i in range(1 , self.size ): lowerCamelCase__ : List[Any] = self.next_(__magic_name__ ) if j < self.size: self.tree[j] += self.tree[i] def _snake_case (self ): lowerCamelCase__ : List[str] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): lowerCamelCase__ : List[str] = self.next_(__magic_name__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _snake_case (__magic_name__ ): return index + (index & (-index)) @staticmethod def _snake_case (__magic_name__ ): return index - (index & (-index)) def _snake_case (self , __magic_name__ , __magic_name__ ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowerCamelCase__ : int = self.next_(__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ ): self.add(__magic_name__ , value - self.get(__magic_name__ ) ) def _snake_case (self , __magic_name__ ): if right == 0: return 0 lowerCamelCase__ : Optional[int] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowerCamelCase__ : Dict = self.prev(__magic_name__ ) return result def _snake_case (self , __magic_name__ , __magic_name__ ): return self.prefix(__magic_name__ ) - self.prefix(__magic_name__ ) def _snake_case (self , __magic_name__ ): return self.query(__magic_name__ , index + 1 ) def _snake_case (self , __magic_name__ ): value -= self.tree[0] if value < 0: return -1 lowerCamelCase__ : Dict = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowerCamelCase__ : int = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
157
1
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline UpperCAmelCase: Dict = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") UpperCAmelCase: Optional[int] = parser.parse_args() UpperCAmelCase: List[str] = """cpu""" UpperCAmelCase: Optional[int] = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" UpperCAmelCase: Any = """path-to-your-trained-model""" UpperCAmelCase: Any = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: UpperCAmelCase: str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) UpperCAmelCase: Optional[Any] = pipe.to(device) # to channels last UpperCAmelCase: Any = pipe.unet.to(memory_format=torch.channels_last) UpperCAmelCase: Optional[Any] = pipe.vae.to(memory_format=torch.channels_last) UpperCAmelCase: Dict = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: UpperCAmelCase: Optional[int] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex UpperCAmelCase: Any = torch.randn(2, 4, 64, 64) UpperCAmelCase: str = torch.rand(1) * 999 UpperCAmelCase: Tuple = torch.randn(2, 77, 768) UpperCAmelCase: str = (sample, timestep, encoder_hidden_status) try: UpperCAmelCase: Dict = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: UpperCAmelCase: Dict = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) UpperCAmelCase: Union[str, Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) UpperCAmelCase: Optional[int] = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: UpperCAmelCase: Optional[Any] = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute UpperCAmelCase: Union[str, Any] = 666 UpperCAmelCase: List[Any] = torch.Generator(device).manual_seed(seed) UpperCAmelCase: Any = {"""generator""": generator} if args.steps is not None: UpperCAmelCase: Union[str, Any] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): UpperCAmelCase: Optional[int] = pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
600
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase: List[Any] = logging.get_logger(__name__) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = "upernet" def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=[1, 2, 3, 6] ,UpperCAmelCase_=True ,UpperCAmelCase_=0.4 ,UpperCAmelCase_=3_84 ,UpperCAmelCase_=2_56 ,UpperCAmelCase_=1 ,UpperCAmelCase_=False ,UpperCAmelCase_=2_55 ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _lowercase : List[str] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[int] = backbone_config.get("""model_type""" ) _lowercase : List[Any] = CONFIG_MAPPING[backbone_model_type] _lowercase : str = config_class.from_dict(UpperCAmelCase_ ) _lowercase : Union[str, Any] = backbone_config _lowercase : Dict = hidden_size _lowercase : int = initializer_range _lowercase : Tuple = pool_scales _lowercase : Dict = use_auxiliary_head _lowercase : Optional[Any] = auxiliary_loss_weight _lowercase : List[str] = auxiliary_in_channels _lowercase : List[str] = auxiliary_channels _lowercase : Optional[int] = auxiliary_num_convs _lowercase : List[Any] = auxiliary_concat_input _lowercase : List[Any] = loss_ignore_index def lowerCamelCase__ ( self ): _lowercase : int = copy.deepcopy(self.__dict__ ) _lowercase : List[Any] = self.backbone_config.to_dict() _lowercase : int = self.__class__.model_type return output
600
1
'''simple docstring''' def A ( UpperCamelCase_ : int ) -> str: '''simple docstring''' lowerCAmelCase__ = int(UpperCamelCase_ ) if decimal in (0, 1): # Exit cases for the recursion return str(UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = divmod(UpperCamelCase_ , 2 ) return binary_recursive(UpperCamelCase_ ) + str(UpperCamelCase_ ) def A ( UpperCamelCase_ : str ) -> str: '''simple docstring''' lowerCAmelCase__ = str(UpperCamelCase_ ).strip() if not number: raise ValueError("No input value was provided" ) lowerCAmelCase__ = "-" if number.startswith("-" ) else "" lowerCAmelCase__ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return F"""{negative}0b{binary_recursive(int(UpperCamelCase_ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
48
from random import randint, random def a__ ( snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : int = 5 , ): _UpperCAmelCase : Optional[int] = [[-1] * number_of_cells] # Create a highway without any car _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Dict = max(snake_case__ , 0 ) while i < number_of_cells: _UpperCAmelCase : int = ( randint(0 , snake_case__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def a__ ( snake_case__ : list , snake_case__ : int ): _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : int = highway_now[car_index + 1 :] for cell in range(len(snake_case__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(snake_case__ , -1 ) def a__ ( snake_case__ : list , snake_case__ : float , snake_case__ : int ): _UpperCAmelCase : Optional[Any] = len(snake_case__ ) # Beforce calculations, the highway is empty _UpperCAmelCase : Dict = [-1] * number_of_cells for car_index in range(snake_case__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _UpperCAmelCase : Dict = min(highway_now[car_index] + 1 , snake_case__ ) # Number of empty cell before the next car _UpperCAmelCase : List[str] = get_distance(snake_case__ , snake_case__ ) - 1 # We can't have the car causing an accident _UpperCAmelCase : List[str] = min(next_highway[car_index] , snake_case__ ) if random() < probability: # Randomly, a driver will slow down _UpperCAmelCase : Dict = max(next_highway[car_index] - 1 , 0 ) return next_highway def a__ ( snake_case__ : list , snake_case__ : int , snake_case__ : float , snake_case__ : int ): _UpperCAmelCase : Union[str, Any] = len(highway[0] ) for i in range(snake_case__ ): _UpperCAmelCase : Tuple = update(highway[i] , snake_case__ , snake_case__ ) _UpperCAmelCase : int = [-1] * number_of_cells for car_index in range(snake_case__ ): _UpperCAmelCase : List[Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _UpperCAmelCase : Optional[Any] = (car_index + speed) % number_of_cells # Commit the change of position _UpperCAmelCase : Optional[Any] = speed highway.append(snake_case__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
643
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[int] , UpperCamelCase : str , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str] , UpperCamelCase : Any=True , UpperCamelCase : Optional[int]="pt" ) -> int: """simple docstring""" a_ = {"""add_prefix_space""": True} if isinstance(UpperCamelCase , UpperCamelCase ) and not line.startswith(""" """ ) else {} a_ = padding_side return tokenizer( [line] , max_length=UpperCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=UpperCamelCase , return_tensors=UpperCamelCase , add_special_tokens=UpperCamelCase , **UpperCamelCase , ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Tuple , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[Any]=None , ) -> Any: """simple docstring""" a_ = input_ids.ne(UpperCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="train" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="" , ): super().__init__() a_ = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + """.source""" ) a_ = Path(_SCREAMING_SNAKE_CASE ).joinpath(type_path + """.target""" ) a_ = self.get_char_lens(self.src_file ) a_ = max_source_length a_ = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" a_ = tokenizer a_ = prefix if n_obs is not None: a_ = self.src_lens[:n_obs] a_ = src_lang a_ = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self , _SCREAMING_SNAKE_CASE ): a_ = index + 1 # linecache starts at 1 a_ = self.prefix + linecache.getline(str(self.src_file ) , _SCREAMING_SNAKE_CASE ).rstrip("""\n""" ) a_ = linecache.getline(str(self.tgt_file ) , _SCREAMING_SNAKE_CASE ).rstrip("""\n""" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right a_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer ) a_ = self.tokenizer.generator if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer a_ = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_source_length , """right""" ) a_ = encode_line(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.max_target_length , """right""" ) a_ = source_inputs["""input_ids"""].squeeze() a_ = target_inputs["""input_ids"""].squeeze() a_ = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __magic_name__ ( _SCREAMING_SNAKE_CASE ): return [len(_SCREAMING_SNAKE_CASE ) for x in Path(_SCREAMING_SNAKE_CASE ).open().readlines()] def __magic_name__ ( self , _SCREAMING_SNAKE_CASE ): a_ = torch.stack([x["""input_ids"""] for x in batch] ) a_ = torch.stack([x["""attention_mask"""] for x in batch] ) a_ = torch.stack([x["""decoder_input_ids"""] for x in batch] ) a_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) a_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ) else self.tokenizer.pad_token_id ) a_ = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ , a_ = trim_batch(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) a_ = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch _A = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[List] ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(UpperCamelCase ) ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : str ) -> None: """simple docstring""" a_ = get_git_info() save_json(UpperCamelCase , os.path.join(UpperCamelCase , """git_log.json""" ) ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int , UpperCamelCase : List[str] , UpperCamelCase : Any=4 , **UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" with open(UpperCamelCase , """w""" ) as f: json.dump(UpperCamelCase , UpperCamelCase , indent=UpperCamelCase , **UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase ) as f: return json.load(UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" a_ = git.Repo(search_parent_directories=UpperCamelCase ) a_ = { """repo_id""": str(UpperCamelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Callable , UpperCamelCase : Iterable ) -> List: """simple docstring""" return list(map(UpperCamelCase , UpperCamelCase ) ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] ) -> Tuple: """simple docstring""" with open(UpperCamelCase , """wb""" ) as f: return pickle.dump(UpperCamelCase , UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] ) -> Any: """simple docstring""" def remove_articles(UpperCamelCase : Union[str, Any] ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , UpperCamelCase ) def white_space_fix(UpperCamelCase : Tuple ): return " ".join(text.split() ) def remove_punc(UpperCamelCase : Optional[int] ): a_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[Any] , UpperCamelCase : str ) -> Optional[Any]: """simple docstring""" a_ = normalize_answer(UpperCamelCase ).split() a_ = normalize_answer(UpperCamelCase ).split() a_ = Counter(UpperCamelCase ) & Counter(UpperCamelCase ) a_ = sum(common.values() ) if num_same == 0: return 0 a_ = 1.0 * num_same / len(UpperCamelCase ) a_ = 1.0 * num_same / len(UpperCamelCase ) a_ = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] ) -> Any: """simple docstring""" return normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] , UpperCamelCase : List[str] ) -> Dict: """simple docstring""" assert len(UpperCamelCase ) == len(UpperCamelCase ) a_ = 0 for hypo, pred in zip(UpperCamelCase , UpperCamelCase ): em += exact_match_score(UpperCamelCase , UpperCamelCase ) if len(UpperCamelCase ) > 0: em /= len(UpperCamelCase ) return {"em": em} def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" return model_prefix.startswith("""rag""" ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Any , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ) -> List[str]: """simple docstring""" a_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead a_ = """dropout_rate""" for p in extra_params: if getattr(UpperCamelCase , UpperCamelCase , UpperCamelCase ): if not hasattr(UpperCamelCase , UpperCamelCase ) and not hasattr(UpperCamelCase , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(UpperCamelCase ) ) delattr(UpperCamelCase , UpperCamelCase ) continue a_ = p if hasattr(UpperCamelCase , UpperCamelCase ) else equivalent_param[p] setattr(UpperCamelCase , UpperCamelCase , getattr(UpperCamelCase , UpperCamelCase ) ) delattr(UpperCamelCase , UpperCamelCase ) return hparams, config
403
def __SCREAMING_SNAKE_CASE ( UpperCamelCase : list[int] , UpperCamelCase : list[int] ) -> tuple[float, float]: """simple docstring""" if not len(UpperCamelCase ) == len(UpperCamelCase ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients a_ , a_ , a_ = equationa a_ , a_ , a_ = equationa # Calculate the determinants of the matrices a_ = aa * ba - aa * ba a_ = ca * ba - ca * ba a_ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: a_ = determinant_x / determinant a_ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
403
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class lowerCAmelCase_ : def __init__( self : List[Any] , _A : Optional[int] , ): _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = 32 _UpperCamelCase = 2 _UpperCamelCase = 4 _UpperCamelCase = 37 _UpperCamelCase = '''gelu''' _UpperCamelCase = 0.1 _UpperCamelCase = 0.1 _UpperCamelCase = 512 _UpperCamelCase = 16 _UpperCamelCase = 2 _UpperCamelCase = 0.02 _UpperCamelCase = 3 _UpperCamelCase = 4 _UpperCamelCase = None def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Optional[Any] ): ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = self.prepare_config_and_inputs() _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase_ ( self : List[str] , _A : List[str] , _A : Dict , _A : List[Any] , _A : Optional[Any] , _A : int , _A : Dict ): _UpperCamelCase = TFEsmModel(config=_A ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase = model(_A ) _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(_A ) _UpperCamelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : List[str] , _A : List[Any] , _A : Optional[Any] , _A : Optional[int] , _A : Tuple , _A : Dict , _A : Tuple , _A : Tuple , _A : List[Any] , ): _UpperCamelCase = True _UpperCamelCase = TFEsmModel(config=_A ) _UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } _UpperCamelCase = model(_A ) _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(_A , encoder_hidden_states=_A ) # Also check the case where encoder outputs are not passed _UpperCamelCase = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : int , _A : List[Any] , _A : str , _A : Optional[Any] , _A : Optional[int] , _A : Optional[Any] , _A : Tuple ): _UpperCamelCase = TFEsmForMaskedLM(config=_A ) _UpperCamelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : List[Any] , _A : List[str] , _A : List[str] , _A : Any , _A : Dict , _A : str , _A : Any ): _UpperCamelCase = self.num_labels _UpperCamelCase = TFEsmForTokenClassification(config=_A ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[Any] ): _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : str ): _UpperCamelCase = TFEsmModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Any ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_A ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def UpperCamelCase_ ( self : List[Any] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFEsmModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def UpperCamelCase_ ( self : List[Any] ): pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def UpperCamelCase_ ( self : int ): pass def UpperCamelCase_ ( self : str ): _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(_A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _UpperCamelCase = model.get_bias() assert isinstance(_A , _A ) for k, v in name.items(): assert isinstance(_A , tf.Variable ) else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) _UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCamelCase = model(_A )[0] _UpperCamelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _A ) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) _UpperCamelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _UpperCamelCase = model(_A )[0] # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
10
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase__ : Optional[List[str]] = None lowercase__ : List[Any] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase__ : int = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : bool = True _snake_case : Optional[str] = None # Automatically constructed _snake_case : ClassVar[str] = "PIL.Image.Image" _snake_case : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) _snake_case : str = field(default='Image' , init=__magic_name__ , repr=__magic_name__ ) def __call__( self : Any ) -> str: '''simple docstring''' return self.pa_type def snake_case__ ( self : Dict , lowerCAmelCase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = np.array(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase__ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase__ ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def snake_case__ ( self : Tuple , lowerCAmelCase__ : dict , lowerCAmelCase__ : Dict=None ) -> "PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: _UpperCamelCase = {} _UpperCamelCase , _UpperCamelCase = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(lowerCAmelCase__ ): _UpperCamelCase = PIL.Image.open(lowerCAmelCase__ ) else: _UpperCamelCase = path.split('''::''' )[-1] try: _UpperCamelCase = string_to_dict(lowerCAmelCase__ , config.HUB_DATASETS_URL )['''repo_id'''] _UpperCamelCase = token_per_repo_id.get(lowerCAmelCase__ ) except ValueError: _UpperCamelCase = None with xopen(lowerCAmelCase__ , '''rb''' , use_auth_token=lowerCAmelCase__ ) as f: _UpperCamelCase = BytesIO(f.read() ) _UpperCamelCase = PIL.Image.open(bytes_ ) else: _UpperCamelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def snake_case__ ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def snake_case__ ( self : int , lowerCAmelCase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): _UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() ) _UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) _UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: _UpperCamelCase = storage.field('''bytes''' ) else: _UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: _UpperCamelCase = storage.field('''path''' ) else: _UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) _UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _UpperCamelCase = pa.array( [encode_np_array(np.array(lowerCAmelCase__ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) _UpperCamelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase__ , self.pa_type ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : pa.StructArray ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase__ : Optional[Any] ): with xopen(lowerCAmelCase__ , '''rb''' ) as f: _UpperCamelCase = f.read() return bytes_ _UpperCamelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _UpperCamelCase = pa.array( [os.path.basename(lowerCAmelCase__ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) _UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase__ , self.pa_type ) def a__ ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _UpperCamelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def a__ ( lowercase : "PIL.Image.Image" ) -> bytes: """simple docstring""" _UpperCamelCase = BytesIO() if image.format in list_image_compression_formats(): _UpperCamelCase = image.format else: _UpperCamelCase = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(lowercase, format=lowercase ) return buffer.getvalue() def a__ ( lowercase : "PIL.Image.Image" ) -> dict: """simple docstring""" if hasattr(lowercase, '''filename''' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase )} def a__ ( lowercase : np.ndarray ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) _UpperCamelCase = array.dtype _UpperCamelCase = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER _UpperCamelCase = dtype.kind _UpperCamelCase = dtype.itemsize _UpperCamelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _UpperCamelCase = np.dtype('''|u1''' ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _UpperCamelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _UpperCamelCase = dtype_byteorder + dtype_kind + str(lowercase ) _UpperCamelCase = np.dtype(lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) _UpperCamelCase = PIL.Image.fromarray(array.astype(lowercase ) ) return {"path": None, "bytes": image_to_bytes(lowercase )} def a__ ( lowercase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if objs: _UpperCamelCase , _UpperCamelCase = first_non_null_value(lowercase ) if isinstance(lowercase, lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase, np.ndarray ): _UpperCamelCase = no_op_if_value_is_null(lowercase ) return [obj_to_image_dict_func(lowercase ) for obj in objs] elif isinstance(lowercase, PIL.Image.Image ): _UpperCamelCase = no_op_if_value_is_null(lowercase ) return [obj_to_image_dict_func(lowercase ) for obj in objs] else: return objs else: return objs
98
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowercase ( a , a ): lowercase__ : Tuple = """pixel_values""" lowercase__ : Union[str, Any] = False lowercase__ : Dict = TimmBackboneConfig def __init__( self : Dict , _UpperCamelCase : Tuple , **_UpperCamelCase : int ) -> Optional[Any]: '''simple docstring''' requires_backends(self , "timm" ) super().__init__(_UpperCamelCase ) SCREAMING_SNAKE_CASE = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(F"backbone {config.backbone} is not supported by timm." ) if hasattr(_UpperCamelCase , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , "use_pretrained_backbone" , _UpperCamelCase ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. SCREAMING_SNAKE_CASE = config.out_indices if getattr(_UpperCamelCase , "out_indices" , _UpperCamelCase ) is not None else (-1,) SCREAMING_SNAKE_CASE = timm.create_model( config.backbone , pretrained=_UpperCamelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=_UpperCamelCase , **_UpperCamelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. SCREAMING_SNAKE_CASE = self._backbone.return_layers SCREAMING_SNAKE_CASE = {layer["module"]: str(_UpperCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(_UpperCamelCase ) @classmethod def __snake_case( cls : int , _UpperCamelCase : Dict , *_UpperCamelCase : List[str] , **_UpperCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig SCREAMING_SNAKE_CASE = kwargs.pop("config" , TimmBackboneConfig() ) SCREAMING_SNAKE_CASE = kwargs.pop("use_timm_backbone" , _UpperCamelCase ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) SCREAMING_SNAKE_CASE = kwargs.pop("num_channels" , config.num_channels ) SCREAMING_SNAKE_CASE = kwargs.pop("features_only" , config.features_only ) SCREAMING_SNAKE_CASE = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) SCREAMING_SNAKE_CASE = kwargs.pop("out_indices" , config.out_indices ) SCREAMING_SNAKE_CASE = TimmBackboneConfig( backbone=_UpperCamelCase , num_channels=_UpperCamelCase , features_only=_UpperCamelCase , use_pretrained_backbone=_UpperCamelCase , out_indices=_UpperCamelCase , ) return super()._from_config(_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : List[Any] , _UpperCamelCase : int ) -> Optional[Any]: '''simple docstring''' pass def __snake_case( self : Dict , _UpperCamelCase : List[str] , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : str=None , **_UpperCamelCase : List[Any] ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone SCREAMING_SNAKE_CASE = self._all_layers SCREAMING_SNAKE_CASE = self._backbone(_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = self._return_layers SCREAMING_SNAKE_CASE = tuple(hidden_states[i] for i in self.out_indices ) else: SCREAMING_SNAKE_CASE = self._backbone(_UpperCamelCase , **_UpperCamelCase ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = tuple(_UpperCamelCase ) SCREAMING_SNAKE_CASE = tuple(_UpperCamelCase ) if hidden_states is not None else None if not return_dict: SCREAMING_SNAKE_CASE = (feature_maps,) if output_hidden_states: SCREAMING_SNAKE_CASE = output + (hidden_states,) return output return BackboneOutput(feature_maps=_UpperCamelCase , hidden_states=_UpperCamelCase , attentions=_UpperCamelCase )
647
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowercase ( unittest.TestCase ): def __snake_case( self : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) SCREAMING_SNAKE_CASE = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) SCREAMING_SNAKE_CASE = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : List[Any] ) -> int: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(F"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def __snake_case( self : int ) -> int: '''simple docstring''' print(F"Found {torch.cuda.device_count()} devices, using 2 devices only" ) SCREAMING_SNAKE_CASE = ["torchrun", F"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": _lowerCamelCase : str = Accelerator() _lowerCamelCase : List[str] = (accelerator.state.process_index + 2, 10) _lowerCamelCase : str = torch.randint(0, 10, shape).to(accelerator.device) _lowerCamelCase : Optional[Any] = '''''' _lowerCamelCase : str = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCamelCase : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCamelCase : int = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
647
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class snake_case__ ( SCREAMING_SNAKE_CASE_): '''simple docstring''' def __init__( self , *a__ , **a__ ) -> Dict: '''simple docstring''' warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , a__ , ) super().__init__(*a__ , **a__ )
455
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class A_(unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ): _lowerCamelCase : Any = 'laion/clap-htsat-unfused' _lowerCamelCase : Optional[Any] = tempfile.mkdtemp() def _lowerCAmelCase ( self , **A ): return RobertaTokenizer.from_pretrained(self.checkpoint , **A ) def _lowerCAmelCase ( self , **A ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : Union[str, Any] = self.get_feature_extractor() _lowerCamelCase : List[str] = ClapProcessor(tokenizer=A , feature_extractor=A ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : str = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : Tuple = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCamelCase : str = self.get_feature_extractor(do_normalize=A , padding_value=1.0 ) _lowerCamelCase : List[Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Optional[int] = self.get_feature_extractor() _lowerCamelCase : Optional[int] = self.get_tokenizer() _lowerCamelCase : Any = ClapProcessor(tokenizer=A , feature_extractor=A ) _lowerCamelCase : int = floats_list((3, 1000) ) _lowerCamelCase : str = feature_extractor(A , return_tensors='np' ) _lowerCamelCase : List[str] = processor(audios=A , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self ): _lowerCamelCase : Any = self.get_feature_extractor() _lowerCamelCase : str = self.get_tokenizer() _lowerCamelCase : List[Any] = ClapProcessor(tokenizer=A , feature_extractor=A ) _lowerCamelCase : List[str] = 'This is a test string' _lowerCamelCase : Any = processor(text=A ) _lowerCamelCase : Optional[int] = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self ): _lowerCamelCase : int = self.get_feature_extractor() _lowerCamelCase : Union[str, Any] = self.get_tokenizer() _lowerCamelCase : Optional[int] = ClapProcessor(tokenizer=A , feature_extractor=A ) _lowerCamelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase : int = processor.batch_decode(A ) _lowerCamelCase : int = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def _lowerCAmelCase ( self ): _lowerCamelCase : Union[str, Any] = self.get_feature_extractor() _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : int = ClapProcessor(tokenizer=A , feature_extractor=A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
437
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase = TextDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ ).read() _check_text_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} lowerCamelCase = features.copy() if features else default_expected_features lowerCamelCase = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase = TextDatasetReader(UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_text_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} lowerCamelCase = TextDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , split=UpperCAmelCase__ ).read() _check_text_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase = text_path elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCamelCase = [text_path] lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} lowerCamelCase = TextDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_text_dataset(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=("train",) ): """simple docstring""" assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for split in splits: lowerCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase = TextDatasetReader({"train": text_path} , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ ).read() _check_text_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCamelCase = {"text": "string"} lowerCamelCase = features.copy() if features else default_expected_features lowerCamelCase = ( Features({feature: Value(UpperCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase = TextDatasetReader({"train": text_path} , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_text_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if split: lowerCamelCase = {split: text_path} else: lowerCamelCase = "train" lowerCamelCase = {"train": text_path, "test": text_path} lowerCamelCase = tmp_path / "cache" lowerCamelCase = {"text": "string"} lowerCamelCase = TextDatasetReader(UpperCAmelCase__ , cache_dir=UpperCAmelCase__ ).read() _check_text_datasetdict(UpperCAmelCase__ , UpperCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
710
from math import pi def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
484
0
'''simple docstring''' def UpperCamelCase ( lowercase_ : Dict ) -> List[str]: # noqa: E741 '''simple docstring''' lowercase =len(lowercase_ ) lowercase =0 lowercase =[0] * n lowercase =[False] * n lowercase =[False] * n def dfs(lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Optional[int] ): if parent == root: out_edge_count += 1 lowercase =True lowercase =at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase =dfs(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase =min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase =True # AP found via cycle if at == low[to]: lowercase =True else: lowercase =min(low[at] , lowercase_ ) return out_edge_count for i in range(lowercase_ ): if not visited[i]: lowercase =0 lowercase =dfs(lowercase_ , lowercase_ , -1 , lowercase_ ) lowercase =out_edge_count > 1 for x in range(len(lowercase_ ) ): if is_art[x] is True: print(lowercase_ ) # Adjacency list of graph _UpperCAmelCase : Any = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
72
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _UpperCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , *snake_case_ , **snake_case_ ): warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
72
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = DanceDiffusionPipeline __UpperCAmelCase : Dict = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __UpperCAmelCase : int = PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } __UpperCAmelCase : Dict = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : str = False def __snake_case ( self : str ) -> str: torch.manual_seed(0 ) __snake_case : Tuple = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowerCamelCase , use_timestep_embedding=lowerCamelCase , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) __snake_case : Optional[int] = IPNDMScheduler() __snake_case : str = { "unet": unet, "scheduler": scheduler, } return components def __snake_case ( self : List[str] , lowerCamelCase : Dict , lowerCamelCase : int=0 ) -> Optional[Any]: if str(lowerCamelCase ).startswith("mps" ): __snake_case : str = torch.manual_seed(lowerCamelCase ) else: __snake_case : Union[str, Any] = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : List[str] = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def __snake_case ( self : Union[str, Any] ) -> Tuple: __snake_case : Any = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case : Dict = self.get_dummy_components() __snake_case : Tuple = DanceDiffusionPipeline(**lowerCamelCase ) __snake_case : List[Any] = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : Union[str, Any] = self.get_dummy_inputs(lowerCamelCase ) __snake_case : str = pipe(**lowerCamelCase ) __snake_case : List[Any] = output.audios __snake_case : Dict = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __snake_case : Dict = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __snake_case ( self : Dict ) -> Optional[int]: return super().test_save_load_local() @skip_mps def __snake_case ( self : int ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __snake_case ( self : Optional[Any] ) -> Optional[Any]: return super().test_save_load_optional_components() @skip_mps def __snake_case ( self : Dict ) -> str: return super().test_attention_slicing_forward_pass() def __snake_case ( self : Union[str, Any] ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Union[str, Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] ) -> List[str]: __snake_case : int = torch_device __snake_case : Dict = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) __snake_case : Optional[int] = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : Tuple = pipe(generator=lowerCamelCase , num_inference_steps=100 , audio_length_in_s=4.0_96 ) __snake_case : Union[str, Any] = output.audios __snake_case : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __snake_case : Tuple = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self : int ) -> str: __snake_case : int = torch_device __snake_case : Optional[int] = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) __snake_case : Tuple = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : List[Any] = torch.manual_seed(0 ) __snake_case : Optional[int] = pipe(generator=lowerCamelCase , num_inference_steps=100 , audio_length_in_s=4.0_96 ) __snake_case : Optional[int] = output.audios __snake_case : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __snake_case : Optional[int] = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
203
import unittest from transformers import DonutProcessor _snake_case : Dict = "naver-clova-ix/donut-base" class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Dict ) -> int: __snake_case : Any = DonutProcessor.from_pretrained(lowerCamelCase ) def __snake_case ( self : str ) -> List[Any]: __snake_case : Union[str, Any] = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } __snake_case : Union[str, Any] = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) __snake_case : Tuple = self.processor.tokenajson(lowerCamelCase ) self.assertDictEqual(lowerCamelCase , lowerCamelCase )
203
1
from manim import * class SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" def __A ( self: List[str] ) -> Optional[int]: _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _A = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _A = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _A = Text('''CPU''' , font_size=24 ) _A = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _A = Text('''GPU''' , font_size=24 ) _A = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _A = Text('''Model''' , font_size=24 ) _A = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) _A = [] _A = [] for i, rect in enumerate(lowerCamelCase__ ): _A = fill.copy().set_fill(lowerCamelCase__ , opacity=0.8 ) target.move_to(lowerCamelCase__ ) model_arr.append(lowerCamelCase__ ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCamelCase__ ) self.add(*lowerCamelCase__ , *lowerCamelCase__ ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _A = VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _A = VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) _A = Text('''Disk''' , font_size=24 ) _A = Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) disk.move_to([-4, -1.25, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) _A = MarkupText( f"""<span fgcolor=\'{BLUE}\'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowerCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase__ ) _A = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ ) ) _A = Square(0.3 ) input.set_fill(lowerCamelCase__ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowerCamelCase__ , buff=0.5 ) self.play(Write(lowerCamelCase__ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowerCamelCase__ , buff=0.02 ) self.play(MoveToTarget(lowerCamelCase__ ) ) self.play(FadeOut(lowerCamelCase__ ) ) _A = Arrow(start=lowerCamelCase__ , end=lowerCamelCase__ , color=lowerCamelCase__ , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowerCamelCase__ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=3 ) ) _A = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(lowerCamelCase__ ) , Circumscribe(model_arr[0] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase__ , **lowerCamelCase__ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase__ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(lowerCamelCase__ , run_time=0.5 ) , MoveToTarget(lowerCamelCase__ , run_time=0.5 ) , FadeIn(lowerCamelCase__ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowerCamelCase__ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **lowerCamelCase__ ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase__ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase__ , **lowerCamelCase__ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase__ , **lowerCamelCase__ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase__ , **lowerCamelCase__ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(lowerCamelCase__ ) , FadeOut(lowerCamelCase__ , run_time=0.5 ) , ) _A = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=3 ) , MoveToTarget(lowerCamelCase__ ) ) self.wait()
484
from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : Any = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: int = 'openai-gpt' SCREAMING_SNAKE_CASE: List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowerCamelCase__=40_478 , lowerCamelCase__=512 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1E-5 , lowerCamelCase__=0.0_2 , lowerCamelCase__="cls_index" , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=0.1 , **lowerCamelCase__ , ): lowerCAmelCase_: Union[str, Any] = vocab_size lowerCAmelCase_: List[Any] = n_positions lowerCAmelCase_: Tuple = n_embd lowerCAmelCase_: Optional[int] = n_layer lowerCAmelCase_: Optional[int] = n_head lowerCAmelCase_: int = afn lowerCAmelCase_: str = resid_pdrop lowerCAmelCase_: Optional[int] = embd_pdrop lowerCAmelCase_: Optional[int] = attn_pdrop lowerCAmelCase_: Dict = layer_norm_epsilon lowerCAmelCase_: List[Any] = initializer_range lowerCAmelCase_: Union[str, Any] = summary_type lowerCAmelCase_: Any = summary_use_proj lowerCAmelCase_: Dict = summary_activation lowerCAmelCase_: Dict = summary_first_dropout lowerCAmelCase_: List[Any] = summary_proj_to_labels super().__init__(**lowerCamelCase__ )
613
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = (DEISMultistepScheduler,) __lowerCamelCase = (("num_inference_steps", 25),) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**snake_case__ ) return config def UpperCAmelCase_ ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' lowercase__ : Tuple= dict(self.forward_default_kwargs ) lowercase__ : str= kwargs.pop("num_inference_steps" , snake_case__ ) lowercase__ : Optional[Any]= self.dummy_sample lowercase__ : Tuple= 0.1 * sample lowercase__ : str= [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase__ : List[Any]= self.get_scheduler_config(**snake_case__ ) lowercase__ : List[Any]= scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowercase__ : Any= dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowercase__ : Union[str, Any]= scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowercase__ : int= dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__, lowercase__ : Optional[Any]= sample, sample for t in range(snake_case__ , time_step + scheduler.config.solver_order + 1 ): lowercase__ : str= scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowercase__ : Union[str, Any]= new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self ): '''simple docstring''' pass def UpperCAmelCase_ ( self , snake_case__=0 , **snake_case__ ): '''simple docstring''' lowercase__ : Dict= dict(self.forward_default_kwargs ) lowercase__ : Dict= kwargs.pop("num_inference_steps" , snake_case__ ) lowercase__ : str= self.dummy_sample lowercase__ : Tuple= 0.1 * sample lowercase__ : Optional[Any]= [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase__ : List[Any]= self.get_scheduler_config() lowercase__ : Dict= scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ : Optional[Any]= dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowercase__ : Tuple= scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) lowercase__ : Dict= dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__ : Union[str, Any]= scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowercase__ : Union[str, Any]= new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self , snake_case__=None , **snake_case__ ): '''simple docstring''' if scheduler is None: lowercase__ : str= self.scheduler_classes[0] lowercase__ : int= self.get_scheduler_config(**snake_case__ ) lowercase__ : Dict= scheduler_class(**snake_case__ ) lowercase__ : int= self.scheduler_classes[0] lowercase__ : List[Any]= self.get_scheduler_config(**snake_case__ ) lowercase__ : List[Any]= scheduler_class(**snake_case__ ) lowercase__ : Any= 10 lowercase__ : Any= self.dummy_model() lowercase__ : int= self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : List[str]= model(snake_case__ , snake_case__ ) lowercase__ : int= scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= dict(self.forward_default_kwargs ) lowercase__ : int= kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: lowercase__ : Dict= self.get_scheduler_config() lowercase__ : Optional[int]= scheduler_class(**snake_case__ ) lowercase__ : Any= self.dummy_sample lowercase__ : List[str]= 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): lowercase__ : Any= num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ : Any= [residual + 0.2, residual + 0.15, residual + 0.10] lowercase__ : Union[str, Any]= dummy_past_residuals[: scheduler.config.solver_order] lowercase__ : int= scheduler.timesteps[5] lowercase__ : int= scheduler.timesteps[6] lowercase__ : Union[str, Any]= scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowercase__ : Dict= scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self ): '''simple docstring''' # make sure that iterating over schedulers with same config names gives same results # for defaults lowercase__ : Union[str, Any]= DEISMultistepScheduler(**self.get_scheduler_config() ) lowercase__ : Any= self.full_loop(scheduler=snake_case__ ) lowercase__ : Dict= torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 lowercase__ : Tuple= DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase__ : List[str]= DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase__ : Optional[int]= UniPCMultistepScheduler.from_config(scheduler.config ) lowercase__ : Optional[int]= DEISMultistepScheduler.from_config(scheduler.config ) lowercase__ : Dict= self.full_loop(scheduler=snake_case__ ) lowercase__ : List[Any]= torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 def UpperCAmelCase_ ( self ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' self.check_over_configs(thresholding=snake_case__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , algorithm_type="deis" , solver_order=snake_case__ , solver_type=snake_case__ , ) def UpperCAmelCase_ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) lowercase__ : int= self.full_loop( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) assert not torch.isnan(snake_case__ ).any(), "Samples have nan numbers" def UpperCAmelCase_ ( self ): '''simple docstring''' self.check_over_configs(lower_order_final=snake_case__ ) self.check_over_configs(lower_order_final=snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=snake_case__ , time_step=0 ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= self.full_loop() lowercase__ : Union[str, Any]= torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.2_39_16 ) < 1e-3 def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= self.full_loop(prediction_type="v_prediction" ) lowercase__ : List[Any]= torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.0_91 ) < 1e-3 def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= self.scheduler_classes[0] lowercase__ : Tuple= self.get_scheduler_config(thresholding=snake_case__ , dynamic_thresholding_ratio=0 ) lowercase__ : Optional[int]= scheduler_class(**snake_case__ ) lowercase__ : Tuple= 10 lowercase__ : Dict= self.dummy_model() lowercase__ : Optional[Any]= self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : Union[str, Any]= model(snake_case__ , snake_case__ ) lowercase__ : Tuple= scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample assert sample.dtype == torch.floataa
85
"""simple docstring""" from __future__ import annotations def lowercase__(A ) ->list[int]: # This function is recursive """simple docstring""" lowercase__ : int= len(A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ : str= array[0] lowercase__ : Optional[Any]= False lowercase__ : Any= 1 lowercase__ : list[int]= [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ : Union[str, Any]= True lowercase__ : List[str]= [element for element in array[i:] if element >= array[i]] lowercase__ : Union[str, Any]= longest_subsequence(A ) if len(A ) > len(A ): lowercase__ : List[str]= temp_array else: i += 1 lowercase__ : List[str]= [element for element in array[1:] if element >= pivot] lowercase__ : List[str]= [pivot, *longest_subsequence(A )] if len(A ) > len(A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
85
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: _UpperCAmelCase =RemBertConfig.from_json_file(UpperCamelCase_ ) print("Building PyTorch model from configuration: {}".format(str(UpperCamelCase_ ) ) ) _UpperCAmelCase =RemBertModel(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model print("Save PyTorch model to {}".format(UpperCamelCase_ ) ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case__ : Tuple = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
408
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase__ : str = sys.version_info >= (3, 10) def A ( UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class A : snake_case__ :int snake_case__ :float snake_case__ :str snake_case__ :bool @dataclass class A : snake_case__ :int = 42 snake_case__ :str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :Optional[bool] = None class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = 'titi' snake_case__ :Optional[int] = 'toto' class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Union[str, Any] = 'titi' snake_case__ :str = 'toto' snake_case__ :int = 42 @dataclass class A : snake_case__ :BasicEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.foo ) @dataclass class A : snake_case__ :MixedTypeEnum = "toto" def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = MixedTypeEnum(self.foo ) @dataclass class A : snake_case__ :Optional[int] = None snake_case__ :Optional[float] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :Optional[str] = None snake_case__ :Optional[List[str]] = list_field(default=[] ) snake_case__ :Optional[List[int]] = list_field(default=[] ) @dataclass class A : snake_case__ :List[int] = list_field(default=[] ) snake_case__ :List[int] = list_field(default=[1, 2, 3] ) snake_case__ :List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case__ :List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class A : snake_case__ :List[int] = field() snake_case__ :str = field() snake_case__ :BasicEnum = field() def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = BasicEnum(self.required_enum ) @dataclass class A : snake_case__ :int snake_case__ :"BasicEnum" = field() snake_case__ :"Optional[bool]" = None snake_case__ :"str" = field(default='toto' , metadata={'help': 'help message'} ) snake_case__ :"List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class A : snake_case__ :bool = False snake_case__ :bool = True snake_case__ :bool | None = None @dataclass class A : snake_case__ :int | None = None snake_case__ :float | None = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'help message'} ) snake_case__ :str | None = None snake_case__ :list[str] | None = list_field(default=[] ) snake_case__ :list[int] | None = list_field(default=[] ) class A ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ): """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} lowerCAmelCase__ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((lowerCAmelCase__) ,) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) lowerCAmelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) lowerCAmelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) lowerCAmelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" @dataclass class A : snake_case__ :Literal["titi", "toto", 42] = "toto" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowerCAmelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowerCAmelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) lowerCAmelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) lowerCAmelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } lowerCAmelCase__ = parser.parse_dict(__magic_name__ )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) lowerCAmelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowerCAmelCase__ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
48
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , A_ : List[Any] , A_ : Any=7 , A_ : Optional[int]=3 , A_ : List[Any]=30 , A_ : Tuple=400 , A_ : str=True , A_ : Any=None , A_ : List[Any]=True , A_ : int=[0.5, 0.5, 0.5] , A_ : str=[0.5, 0.5, 0.5] , A_ : Union[str, Any]=True , A_ : Optional[int]=1 / 255 , A_ : List[Any]=True , ) -> Dict: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __snake_case = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_pad def lowercase ( self : Tuple ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase ( self : List[Any] , A_ : str , A_ : Union[str, Any]=False ) -> List[str]: if not batched: __snake_case = image_inputs[0] if isinstance(A_ , Image.Image ): __snake_case , __snake_case = image.size else: __snake_case , __snake_case = image.shape[1], image.shape[2] if w < h: __snake_case = int(self.size['''shortest_edge'''] * h / w ) __snake_case = self.size['''shortest_edge'''] elif w > h: __snake_case = self.size['''shortest_edge'''] __snake_case = int(self.size['''shortest_edge'''] * w / h ) else: __snake_case = self.size['''shortest_edge'''] __snake_case = self.size['''shortest_edge'''] else: __snake_case = [] for image in image_inputs: __snake_case , __snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case = max(A_ , key=lambda A_ : item[0] )[0] __snake_case = max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Dict = DetaImageProcessor if is_vision_available() else None def lowercase ( self : Any ) -> int: __snake_case = DetaImageProcessingTester(self ) @property def lowercase ( self : Dict ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self : Union[str, Any] ) -> str: __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''do_rescale''' ) ) self.assertTrue(hasattr(A_ , '''do_pad''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) def lowercase ( self : Optional[Any] ) -> List[str]: __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , A_ ) def lowercase ( self : List[Any] ) -> List[Any]: pass def lowercase ( self : List[Any] ) -> List[Any]: # Initialize image_processing __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __snake_case , __snake_case = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case , __snake_case = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) __snake_case = image_processing(A_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase ( self : List[Any] ) -> Any: # Initialize image_processing __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __snake_case , __snake_case = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case = image_processing(A_ , return_tensors='''pt''' ).pixel_values __snake_case , __snake_case = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase ( self : List[str] ) -> Any: # Initialize image_processing __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __snake_case , __snake_case = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case = image_processing(A_ , return_tensors='''pt''' ).pixel_values __snake_case , __snake_case = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase ( self : List[Any] ) -> int: # prepare image and target __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __snake_case = json.loads(f.read() ) __snake_case = {'''image_id''': 39_769, '''annotations''': target} # encode them __snake_case = DetaImageProcessor() __snake_case = image_processing(images=A_ , annotations=A_ , return_tensors='''pt''' ) # verify pixel values __snake_case = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) __snake_case = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area __snake_case = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes __snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) __snake_case = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id __snake_case = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd __snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels __snake_case = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify orig_size __snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size __snake_case = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) ) @slow def lowercase ( self : Optional[Any] ) -> str: # prepare image, target and masks_path __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __snake_case = json.loads(f.read() ) __snake_case = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} __snake_case = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __snake_case = DetaImageProcessor(format='''coco_panoptic''' ) __snake_case = image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='''pt''' ) # verify pixel values __snake_case = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , A_ ) __snake_case = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area __snake_case = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A_ ) ) # verify boxes __snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A_ ) __snake_case = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A_ , atol=1E-3 ) ) # verify image_id __snake_case = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A_ ) ) # verify is_crowd __snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A_ ) ) # verify class_labels __snake_case = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A_ ) ) # verify masks __snake_case = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A_ ) # verify orig_size __snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A_ ) ) # verify size __snake_case = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A_ ) )
93
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _A ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[Any] ) -> Optional[Any]: __snake_case = tempfile.mkdtemp() __snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __snake_case = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } __snake_case = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A_ , A_ ) def lowercase ( self : str , **A_ : str ) -> Dict: return BertTokenizer.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Optional[int] , **A_ : Optional[int] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Tuple , **A_ : Any ) -> Any: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Optional[Any] ) -> int: shutil.rmtree(self.tmpdirname ) def lowercase ( self : Dict ) -> Dict: __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self : Tuple ) -> Any: __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = self.get_image_processor() __snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) __snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) __snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) __snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def lowercase ( self : int ) -> Union[str, Any]: __snake_case = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) __snake_case = self.get_image_processor(do_normalize=A_ ) __snake_case = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def lowercase ( self : Optional[int] ) -> int: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(A_ , return_tensors='''np''' ) __snake_case = processor(images=A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase ( self : str ) -> str: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = '''Alexandra,T-shirt的价格是15便士。''' __snake_case = processor(text=A_ ) __snake_case = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : Optional[int] ) -> Dict: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = '''Alexandra,T-shirt的价格是15便士。''' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def lowercase ( self : str ) -> int: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case = processor.batch_decode(A_ ) __snake_case = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def lowercase ( self : int ) -> Optional[Any]: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = '''Alexandra,T-shirt的价格是15便士。''' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
93
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[Any] = "lilt" def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=0 , _lowerCAmelCase="absolute" , _lowerCAmelCase=None , _lowerCAmelCase=4 , _lowerCAmelCase=1024 , **_lowerCAmelCase , ) -> Dict: super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = classifier_dropout _lowerCAmelCase = channel_shrink_ratio _lowerCAmelCase = max_ad_position_embeddings
18
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def A ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A ( self ) -> int: a_ : Any = 1 a_ : str = 3 a_ : Dict = (3_2, 3_2) a_ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE ) return image @property def A ( self ) -> Tuple: torch.manual_seed(0 ) a_ : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def A ( self ) -> Any: torch.manual_seed(0 ) a_ : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A ( self ) -> List[Any]: torch.manual_seed(0 ) a_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE ) @property def A ( self ) -> Optional[int]: def extract(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> Union[str, Any]: a_ : Optional[int] = torch.ones([0] ) def A ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: self.pixel_values.to(_SCREAMING_SNAKE_CASE ) return self return Out() return extract def A ( self ) -> Optional[Any]: a_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = self.dummy_cond_unet a_ : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) a_ : List[str] = self.dummy_vae a_ : List[str] = self.dummy_text_encoder a_ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk a_ : Union[str, Any] = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : Optional[Any] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Tuple = "A painting of a squirrel eating a burger" a_ : List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Union[str, Any] = sd_pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) a_ : List[str] = output.images a_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Dict = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_SCREAMING_SNAKE_CASE , )[0] a_ : List[str] = image[0, -3:, -3:, -1] a_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : Union[str, Any] = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> Optional[Any]: a_ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator a_ : List[str] = self.dummy_cond_unet a_ : int = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) a_ : Any = self.dummy_vae a_ : int = self.dummy_text_encoder a_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk a_ : str = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : List[str] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Dict = "A painting of a squirrel eating a burger" a_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Union[str, Any] = sd_pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) a_ : Union[str, Any] = output.images a_ : Union[str, Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Optional[int] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_SCREAMING_SNAKE_CASE , )[0] a_ : Any = image[0, -3:, -3:, -1] a_ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> List[str]: a_ : Tuple = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(pipe.scheduler , _SCREAMING_SNAKE_CASE ) assert pipe.safety_checker is None a_ : List[Any] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) # sanity check that the pipeline still works assert pipe.safety_checker is None a_ : Optional[int] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A ( self ) -> Union[str, Any]: a_ : Tuple = self.dummy_cond_unet a_ : int = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) a_ : Tuple = self.dummy_vae a_ : Optional[Any] = self.dummy_text_encoder a_ : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 a_ : Union[str, Any] = unet.half() a_ : Optional[Any] = vae.half() a_ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk a_ : Tuple = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : Optional[int] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : int = "A painting of a squirrel eating a burger" a_ : Tuple = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def A ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self ) -> Optional[Any]: a_ : List[Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a_ : List[str] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : str = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) a_ : Optional[int] = 4_0_0_3_6_6_0_3_4_6 a_ : Optional[int] = 7 # without safety guidance (sld_guidance_scale = 0) a_ : Tuple = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) a_ : Any = output.images a_ : Any = image[0, -3:, -3:, -1] a_ : List[str] = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) a_ : List[str] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : List[str] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : List[str] = output.images a_ : Union[str, Any] = image[0, -3:, -3:, -1] a_ : List[Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> Dict: a_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a_ : Dict = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Tuple = "padme amidala taking a bath artwork, safe for work, no nudity" a_ : List[Any] = 2_7_3_4_9_7_1_7_5_5 a_ : Tuple = 7 a_ : Dict = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Dict = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) a_ : str = output.images a_ : Optional[Any] = image[0, -3:, -3:, -1] a_ : Optional[int] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 a_ : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : str = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : str = output.images a_ : Optional[Any] = image[0, -3:, -3:, -1] a_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> int: a_ : Optional[Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) a_ : Dict = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Tuple = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) a_ : List[str] = 1_0_4_4_3_5_5_2_3_4 a_ : Dict = 1_2 a_ : List[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Tuple = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) a_ : Any = output.images a_ : List[str] = image[0, -3:, -3:, -1] a_ : Tuple = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 a_ : Optional[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Optional[int] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : int = output.images a_ : Union[str, Any] = image[0, -3:, -3:, -1] a_ : Tuple = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
473
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''YolosFeatureExtractor'''] __lowercase = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
701
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return 1 if input_a == input_a else 0 def lowerCamelCase ( ): '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
452
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = UnCLIPImageVariationPipeline UpperCAmelCase__ = IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''guidance_scale'''} UpperCAmelCase__ = IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ = [ '''generator''', '''return_dict''', '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] UpperCAmelCase__ = False @property def SCREAMING_SNAKE_CASE ( self : Any) ->Tuple: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' return self.time_input_dim @property def SCREAMING_SNAKE_CASE ( self : Any) ->Any: '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' return 100 @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') return tokenizer @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' torch.manual_seed(0) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' torch.manual_seed(0) A__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' torch.manual_seed(0) A__ = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } A__ = UnCLIPTextProjModel(**UpperCAmelCase__) return model @property def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' torch.manual_seed(0) A__ = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } A__ = UNetaDConditionModel(**UpperCAmelCase__) return model @property def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' torch.manual_seed(0) A__ = UNetaDModel(**self.dummy_super_res_kwargs) return model @property def SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]: '''simple docstring''' torch.manual_seed(1) A__ = UNetaDModel(**self.dummy_super_res_kwargs) return model def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' A__ = self.dummy_decoder A__ = self.dummy_text_proj A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_super_res_first A__ = self.dummy_super_res_last A__ = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_000 , ) A__ = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_000 , ) A__ = CLIPImageProcessor(crop_size=32 , size=32) A__ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : Dict=True) ->Tuple: '''simple docstring''' A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__)).to(UpperCAmelCase__) if str(UpperCAmelCase__).startswith('''mps'''): A__ = torch.manual_seed(UpperCAmelCase__) else: A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(UpperCAmelCase__) if pil_image: A__ = input_image * 0.5 + 0.5 A__ = input_image.clamp(0 , 1) A__ = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() A__ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase__)[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' A__ = '''cpu''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) A__ = pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = self.get_dummy_inputs(UpperCAmelCase__ , pil_image=UpperCAmelCase__) A__ = pipe(**UpperCAmelCase__) A__ = output.images A__ = self.get_dummy_inputs(UpperCAmelCase__ , pil_image=UpperCAmelCase__) A__ = pipe( **UpperCAmelCase__ , return_dict=UpperCAmelCase__ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->str: '''simple docstring''' A__ = '''cpu''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) A__ = pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = self.get_dummy_inputs(UpperCAmelCase__ , pil_image=UpperCAmelCase__) A__ = pipe(**UpperCAmelCase__) A__ = output.images A__ = self.get_dummy_inputs(UpperCAmelCase__ , pil_image=UpperCAmelCase__) A__ = pipe( **UpperCAmelCase__ , return_dict=UpperCAmelCase__ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' A__ = '''cpu''' A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) A__ = pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = self.get_dummy_inputs(UpperCAmelCase__ , pil_image=UpperCAmelCase__) A__ = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] A__ = pipe(**UpperCAmelCase__) A__ = output.images A__ = self.get_dummy_inputs(UpperCAmelCase__ , pil_image=UpperCAmelCase__) A__ = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] A__ = pipe( **UpperCAmelCase__ , return_dict=UpperCAmelCase__ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) A__ = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Any: '''simple docstring''' A__ = torch.device('''cpu''') class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = 1 A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__) A__ = pipe.to(UpperCAmelCase__) pipe.set_progress_bar_config(disable=UpperCAmelCase__) A__ = torch.Generator(device=UpperCAmelCase__).manual_seed(0) A__ = pipe.decoder.dtype A__ = 1 A__ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) A__ = pipe.prepare_latents( UpperCAmelCase__ , dtype=UpperCAmelCase__ , device=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , scheduler=DummyScheduler()) A__ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) A__ = pipe.prepare_latents( UpperCAmelCase__ , dtype=UpperCAmelCase__ , device=UpperCAmelCase__ , generator=UpperCAmelCase__ , latents=UpperCAmelCase__ , scheduler=DummyScheduler()) A__ = self.get_dummy_inputs(UpperCAmelCase__ , pil_image=UpperCAmelCase__) A__ = pipe( **UpperCAmelCase__ , decoder_latents=UpperCAmelCase__ , super_res_latents=UpperCAmelCase__).images A__ = self.get_dummy_inputs(UpperCAmelCase__ , pil_image=UpperCAmelCase__) # Don't pass image, instead pass embedding A__ = pipeline_inputs.pop('''image''') A__ = pipe.image_encoder(UpperCAmelCase__).image_embeds A__ = pipe( **UpperCAmelCase__ , decoder_latents=UpperCAmelCase__ , super_res_latents=UpperCAmelCase__ , image_embeddings=UpperCAmelCase__ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a).max() < 1e-4 @skip_mps def SCREAMING_SNAKE_CASE ( self : Tuple) ->int: '''simple docstring''' A__ = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor A__ = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=UpperCAmelCase__ , expected_max_diff=UpperCAmelCase__) @skip_mps def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = torch_device == '''cpu''' A__ = True A__ = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=UpperCAmelCase__ , relax_max_difference=UpperCAmelCase__ , additional_params_copy_to_batched_inputs=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes A__ = [2, 3] self._test_inference_batch_consistent( batch_sizes=UpperCAmelCase__ , additional_params_copy_to_batched_inputs=UpperCAmelCase__ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=UpperCAmelCase__) @skip_mps def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->int: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Any) ->Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''') A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''') A__ = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa) A__ = pipeline.to(UpperCAmelCase__) pipeline.set_progress_bar_config(disable=UpperCAmelCase__) A__ = torch.Generator(device='''cpu''').manual_seed(0) A__ = pipeline( UpperCAmelCase__ , generator=UpperCAmelCase__ , output_type='''np''' , ) A__ = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ , 15)
87
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase__ ( a__ ) ->int: '''simple docstring''' _UpperCamelCase = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$" , a__ ).groups()[0] class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , lowercase_ : int , lowercase_ : Dict=None , lowercase_ : Optional[Any]=None) -> List[str]: """simple docstring""" _UpperCamelCase = file_names _UpperCamelCase = image_transform _UpperCamelCase = label_to_id def __len__( self : int) -> Optional[int]: """simple docstring""" return len(self.file_names) def __getitem__( self : int , lowercase_ : int) -> str: """simple docstring""" _UpperCamelCase = self.file_names[idx] _UpperCamelCase = PIL.Image.open(lowercase_) _UpperCamelCase = raw_image.convert("RGB") if self.image_transform is not None: _UpperCamelCase = self.image_transform(lowercase_) _UpperCamelCase = extract_label(lowercase_) if self.label_to_id is not None: _UpperCamelCase = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase__ ( a__ , a__ ) ->List[Any]: '''simple docstring''' if args.with_tracking: _UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: _UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase = config["lr"] _UpperCamelCase = int(config["num_epochs"] ) _UpperCamelCase = int(config["seed"] ) _UpperCamelCase = int(config["batch_size"] ) _UpperCamelCase = config["image_size"] if not isinstance(a__ , (list, tuple) ): _UpperCamelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , "isdigit" ): if args.checkpointing_steps == "epoch": _UpperCamelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _UpperCamelCase = int(args.checkpointing_steps ) else: raise ValueError( f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: _UpperCamelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _UpperCamelCase = os.path.split(a__ )[-1].split("." )[0] accelerator.init_trackers(a__ , a__ ) # Grab all the image filenames _UpperCamelCase = [os.path.join(args.data_dir , a__ ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences _UpperCamelCase = [extract_label(a__ ) for fname in file_names] _UpperCamelCase = list(set(a__ ) ) id_to_label.sort() _UpperCamelCase = {lbl: i for i, lbl in enumerate(a__ )} # Set the seed before splitting the data. np.random.seed(a__ ) torch.manual_seed(a__ ) torch.cuda.manual_seed_all(a__ ) # Split our filenames between train and validation _UpperCamelCase = np.random.permutation(len(a__ ) ) _UpperCamelCase = int(0.8 * len(a__ ) ) _UpperCamelCase = random_perm[:cut] _UpperCamelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop _UpperCamelCase = Compose([RandomResizedCrop(a__ , scale=(0.5, 1.0) ), ToTensor()] ) _UpperCamelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=a__ , label_to_id=a__ ) # For evaluation, we use a deterministic Resize _UpperCamelCase = Compose([Resize(a__ ), ToTensor()] ) _UpperCamelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=a__ , label_to_id=a__ ) # Instantiate dataloaders. _UpperCamelCase = DataLoader(a__ , shuffle=a__ , batch_size=a__ , num_workers=4 ) _UpperCamelCase = DataLoader(a__ , shuffle=a__ , batch_size=a__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase = create_model("resnet50d" , pretrained=a__ , num_classes=len(a__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _UpperCamelCase = False for param in model.get_classifier().parameters(): _UpperCamelCase = True # We normalize the batches of images to be a bit faster. _UpperCamelCase = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) _UpperCamelCase = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _UpperCamelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _UpperCamelCase = OneCycleLR(optimizer=a__ , max_lr=a__ , epochs=a__ , steps_per_epoch=len(a__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = accelerator.prepare( a__ , a__ , a__ , a__ , a__ ) # We need to keep track of how many total steps we have iterated over _UpperCamelCase = 0 # We also need to keep track of the starting epoch so files are named properly _UpperCamelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) _UpperCamelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _UpperCamelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _UpperCamelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _UpperCamelCase = os.path.splitext(a__ )[0] if "epoch" in training_difference: _UpperCamelCase = int(training_difference.replace("epoch_" , "" ) ) + 1 _UpperCamelCase = None else: _UpperCamelCase = int(training_difference.replace("step_" , "" ) ) _UpperCamelCase = resume_step // len(a__ ) resume_step -= starting_epoch * len(a__ ) # Now we train the model for epoch in range(a__ , a__ ): model.train() if args.with_tracking: _UpperCamelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _UpperCamelCase = accelerator.skip_first_batches(a__ , a__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _UpperCamelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} _UpperCamelCase = (batch["image"] - mean) / std _UpperCamelCase = model(a__ ) _UpperCamelCase = torch.nn.functional.cross_entropy(a__ , batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(a__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(a__ , a__ ): _UpperCamelCase = f'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _UpperCamelCase = os.path.join(args.output_dir , a__ ) accelerator.save_state(a__ ) model.eval() _UpperCamelCase = 0 _UpperCamelCase = 0 for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. _UpperCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} _UpperCamelCase = (batch["image"] - mean) / std with torch.no_grad(): _UpperCamelCase = model(a__ ) _UpperCamelCase = outputs.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["label"]) ) _UpperCamelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _UpperCamelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}: {100 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(a__ ), "epoch": epoch, } , step=a__ , ) if checkpointing_steps == "epoch": _UpperCamelCase = f'epoch_{epoch}' if args.output_dir is not None: _UpperCamelCase = os.path.join(args.output_dir , a__ ) accelerator.save_state(a__ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase__ ( ) ->Any: '''simple docstring''' _UpperCamelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir" , required=a__ , help="The data folder on disk." ) parser.add_argument("--fp16" , action="store_true" , help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision" , type=a__ , default=a__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps" , type=a__ , default=a__ , help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch." , ) parser.add_argument( "--output_dir" , type=a__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=a__ , default=a__ , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=a__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(a__ , a__ ) if __name__ == "__main__": main()
547
0
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __SCREAMING_SNAKE_CASE :Union[str, Any] = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' __SCREAMING_SNAKE_CASE :Optional[Any] = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' __SCREAMING_SNAKE_CASE :Any = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def UpperCAmelCase_ ( __lowercase : str , __lowercase : Any ) -> List[str]: '''simple docstring''' return float((preds == labels).mean() ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = simple_accuracy(__lowercase , __lowercase ) _UpperCAmelCase = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : Dict ) -> Dict: '''simple docstring''' _UpperCAmelCase = np.array(__lowercase ) _UpperCAmelCase = np.array(__lowercase ) _UpperCAmelCase = en_sentvecs.shape[0] # mean centering _UpperCAmelCase = en_sentvecs - np.mean(__lowercase , axis=0 ) _UpperCAmelCase = in_sentvecs - np.mean(__lowercase , axis=0 ) _UpperCAmelCase = cdist(__lowercase , __lowercase , "cosine" ) _UpperCAmelCase = np.array(range(__lowercase ) ) _UpperCAmelCase = sim.argsort(axis=1 )[:, :10] _UpperCAmelCase = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowercase ( self : Optional[int] ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def lowercase ( self : Dict , snake_case_ : Any , snake_case_ : int ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(snake_case_ , snake_case_ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(snake_case_ , snake_case_ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(snake_case_ , snake_case_ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
719
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCAmelCase_ ( __lowercase : List[str] ) -> int: '''simple docstring''' _UpperCAmelCase = SwinvaConfig() _UpperCAmelCase = swinva_name.split("_" ) _UpperCAmelCase = name_split[1] if "to" in name_split[3]: _UpperCAmelCase = int(name_split[3][-3:] ) else: _UpperCAmelCase = int(name_split[3] ) if "to" in name_split[2]: _UpperCAmelCase = int(name_split[2][-2:] ) else: _UpperCAmelCase = int(name_split[2][6:] ) if model_size == "tiny": _UpperCAmelCase = 96 _UpperCAmelCase = (2, 2, 6, 2) _UpperCAmelCase = (3, 6, 12, 24) elif model_size == "small": _UpperCAmelCase = 96 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (3, 6, 12, 24) elif model_size == "base": _UpperCAmelCase = 128 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (4, 8, 16, 32) else: _UpperCAmelCase = 192 _UpperCAmelCase = (2, 2, 18, 2) _UpperCAmelCase = (6, 12, 24, 48) if "to" in swinva_name: _UpperCAmelCase = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _UpperCAmelCase = 2_1841 _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = "imagenet-22k-id2label.json" _UpperCAmelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} else: _UpperCAmelCase = 1000 _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = "imagenet-1k-id2label.json" _UpperCAmelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = img_size _UpperCAmelCase = num_classes _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size return config def UpperCAmelCase_ ( __lowercase : str ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name: _UpperCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _UpperCAmelCase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: _UpperCAmelCase = "encoder." + name if "attn.proj" in name: _UpperCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: _UpperCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: _UpperCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: _UpperCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: _UpperCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: _UpperCAmelCase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: _UpperCAmelCase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: _UpperCAmelCase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: _UpperCAmelCase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": _UpperCAmelCase = "layernorm.weight" if name == "norm.bias": _UpperCAmelCase = "layernorm.bias" if "head" in name: _UpperCAmelCase = name.replace("head" , "classifier" ) else: _UpperCAmelCase = "swinv2." + name return name def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase = orig_state_dict.pop(__lowercase ) if "mask" in key: continue elif "qkv" in key: _UpperCAmelCase = key.split("." ) _UpperCAmelCase = int(key_split[1] ) _UpperCAmelCase = int(key_split[3] ) _UpperCAmelCase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[dim : dim * 2, :] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[:dim] _UpperCAmelCase = val[ dim : dim * 2 ] _UpperCAmelCase = val[-dim:] else: _UpperCAmelCase = val return orig_state_dict def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = timm.create_model(__lowercase , pretrained=__lowercase ) timm_model.eval() _UpperCAmelCase = get_swinva_config(__lowercase ) _UpperCAmelCase = SwinvaForImageClassification(__lowercase ) model.eval() _UpperCAmelCase = convert_state_dict(timm_model.state_dict() , __lowercase ) model.load_state_dict(__lowercase ) _UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) _UpperCAmelCase = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) _UpperCAmelCase = image_processor(images=__lowercase , return_tensors="pt" ) _UpperCAmelCase = timm_model(inputs["pixel_values"] ) _UpperCAmelCase = model(**__lowercase ).logits assert torch.allclose(__lowercase , __lowercase , atol=1E-3 ) print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowercase ) model.push_to_hub( repo_path_or_name=Path(__lowercase , __lowercase ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
119
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
418
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int = 4_000_000 ) -> int: __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = b, a + b return sum(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
504
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Tuple ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() ,encoding='utf-8' ,check=lowerCamelCase__ ,) assert hasattr(self ,'env' ) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Dict ): UpperCAmelCase__ = f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings UpperCAmelCase__ = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=lowerCamelCase__ ,instance_count=lowerCamelCase__ ,instance_type=self.instance_type ,debugger_hook_config=lowerCamelCase__ ,hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=lowerCamelCase__ ,py_version='py36' ,) def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : Dict ): TrainingJobAnalytics(lowerCamelCase__ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Optional[int] ): # create estimator UpperCAmelCase__ = self.create_estimator(lowerCamelCase__ ) # run training estimator.fit() # result dataframe UpperCAmelCase__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) UpperCAmelCase__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' ,999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' ,'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,lowerCamelCase__ )
708
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def a_ ( lowerCamelCase = 2_0_0_0_0_0_0 ): UpperCAmelCase__ = [0] UpperCAmelCase__ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target UpperCAmelCase__ = 0 # the area corresponding to the grid that gives the product closest to target UpperCAmelCase__ = 0 # an estimate of b, using the quadratic formula UpperCAmelCase__ = 42 # the largest integer less than b_estimate UpperCAmelCase__ = 42 # the largest integer less than b_estimate UpperCAmelCase__ = 42 # the triangle number corresponding to b_floor UpperCAmelCase__ = 42 # the triangle number corresponding to b_ceil UpperCAmelCase__ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): UpperCAmelCase__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 UpperCAmelCase__ = floor(lowerCamelCase ) UpperCAmelCase__ = ceil(lowerCamelCase ) UpperCAmelCase__ = triangle_numbers[b_floor] UpperCAmelCase__ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase__ = triangle_b_first_guess * triangle_a UpperCAmelCase__ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): UpperCAmelCase__ = triangle_b_second_guess * triangle_a UpperCAmelCase__ = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
632
0
"""simple docstring""" import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCamelCase_ ( a_ ): def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """tf_padding""" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """depth_multiplier""" ) ) class UpperCamelCase_ : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=3 , snake_case__=32 , snake_case__=0.25 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=12_80 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=True , snake_case__=True , snake_case__=10 , snake_case__=None , ) -> List[str]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = depth_multiplier UpperCAmelCase = depth_divisible_by UpperCAmelCase = min_depth UpperCAmelCase = expand_ratio UpperCAmelCase = tf_padding UpperCAmelCase = output_stride UpperCAmelCase = first_layer_is_expansion UpperCAmelCase = finegrained_output UpperCAmelCase = hidden_act UpperCAmelCase = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCAmelCase = classifier_dropout_prob UpperCAmelCase = use_labels UpperCAmelCase = is_training UpperCAmelCase = num_labels UpperCAmelCase = initializer_range UpperCAmelCase = scope def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: """simple docstring""" UpperCAmelCase = MobileNetVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = MobileNetVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> str: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = MobileNetVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( a_ , a_ , unittest.TestCase ): _A : Union[str, Any] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) _A : Union[str, Any] = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) _A : Union[str, Any] = False _A : int = False _A : Tuple = False _A : List[str] = False def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = MobileNetVaModelTester(self ) UpperCAmelCase = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_UpperCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): UpperCAmelCase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = 16 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = MobileNetVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(_UpperCAmelCase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase = torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) UpperCAmelCase = model.to(_UpperCAmelCase ) UpperCAmelCase = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**_UpperCAmelCase ) UpperCAmelCase = outputs.logits # verify the logits UpperCAmelCase = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]], [[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
673
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase = Features({'''image''': Image()} ) UpperCamelCase = Features({'''labels''': ClassLabel} ) UpperCamelCase = "image" UpperCamelCase = "labels" def lowercase__ ( self : str , _UpperCAmelCase : str ) -> Dict: '''simple docstring''' if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _UpperCAmelCase ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) UpperCAmelCase_ = copy.deepcopy(self ) UpperCAmelCase_ = self.label_schema.copy() UpperCAmelCase_ = features[self.label_column] UpperCAmelCase_ = label_schema return task_template @property def lowercase__ ( self : List[str] ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
82
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase : List[Any] = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
158
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __snake_case ( UpperCamelCase , UpperCamelCase=0.9_99 , UpperCamelCase="cosine" , ) -> Dict: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) a__ = [] for i in range(UpperCamelCase ): a__ = i / num_diffusion_timesteps a__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase ) / alpha_bar_fn(UpperCamelCase ) , UpperCamelCase ) ) return torch.tensor(UpperCamelCase , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' snake_case__ : int = [e.name for e in KarrasDiffusionSchedulers] snake_case__ : List[str] = 2 @register_to_config def __init__( self :Any , __magic_name__ :int = 1000 , __magic_name__ :float = 0.00_085 , __magic_name__ :float = 0.012 , __magic_name__ :str = "linear" , __magic_name__ :Optional[Union[np.ndarray, List[float]]] = None , __magic_name__ :str = "epsilon" , __magic_name__ :str = "linspace" , __magic_name__ :int = 0 , ) -> Optional[Any]: '''simple docstring''' if trained_betas is not None: a__ = torch.tensor(__magic_name__ , dtype=torch.floataa ) elif beta_schedule == "linear": a__ = torch.linspace(__magic_name__ , __magic_name__ , __magic_name__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __magic_name__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__ = betas_for_alpha_bar(__magic_name__ ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) a__ = 1.0 - self.betas a__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__magic_name__ , __magic_name__ , __magic_name__ ) def _UpperCamelCase ( self :int , __magic_name__ :int , __magic_name__ :Tuple=None ) -> Dict: '''simple docstring''' if schedule_timesteps is None: a__ = self.timesteps a__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: a__ = 1 if len(__magic_name__ ) > 1 else 0 else: a__ = timestep.cpu().item() if torch.is_tensor(__magic_name__ ) else timestep a__ = self._index_counter[timestep_int] return indices[pos].item() @property def _UpperCamelCase ( self :str ) -> Tuple: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _UpperCamelCase ( self :str , __magic_name__ :torch.FloatTensor , __magic_name__ :Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: '''simple docstring''' a__ = self.index_for_timestep(__magic_name__ ) if self.state_in_first_order: a__ = self.sigmas[step_index] else: a__ = self.sigmas_interpol[step_index] a__ = sample / ((sigma**2 + 1) ** 0.5) return sample def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :int , __magic_name__ :Union[str, torch.device] = None , __magic_name__ :Optional[int] = None , ) -> int: '''simple docstring''' a__ = num_inference_steps a__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a__ = np.linspace(0 , num_train_timesteps - 1 , __magic_name__ , dtype=__magic_name__ )[::-1].copy() elif self.config.timestep_spacing == "leading": a__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__ = (np.arange(0 , __magic_name__ ) * step_ratio).round()[::-1].copy().astype(__magic_name__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a__ = (np.arange(__magic_name__ , 0 , -step_ratio )).round().copy().astype(__magic_name__ ) timesteps -= 1 else: raise ValueError( F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) a__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) a__ = torch.from_numpy(np.log(__magic_name__ ) ).to(__magic_name__ ) a__ = np.interp(__magic_name__ , np.arange(0 , len(__magic_name__ ) ) , __magic_name__ ) a__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) a__ = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ ) # interpolate sigmas a__ = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() a__ = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) a__ = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__magic_name__ ).startswith('''mps''' ): # mps does not support float64 a__ = torch.from_numpy(__magic_name__ ).to(__magic_name__ , dtype=torch.floataa ) else: a__ = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) # interpolate timesteps a__ = self.sigma_to_t(__magic_name__ ).to(__magic_name__ , dtype=timesteps.dtype ) a__ = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() a__ = torch.cat([timesteps[:1], interleaved_timesteps] ) a__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a__ = defaultdict(__magic_name__ ) def _UpperCamelCase ( self :Dict , __magic_name__ :str ) -> Union[str, Any]: '''simple docstring''' a__ = sigma.log() # get distribution a__ = log_sigma - self.log_sigmas[:, None] # get sigmas range a__ = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) a__ = low_idx + 1 a__ = self.log_sigmas[low_idx] a__ = self.log_sigmas[high_idx] # interpolate sigmas a__ = (low - log_sigma) / (low - high) a__ = w.clamp(0 , 1 ) # transform interpolation to time range a__ = (1 - w) * low_idx + w * high_idx a__ = t.view(sigma.shape ) return t @property def _UpperCamelCase ( self :List[Any] ) -> int: '''simple docstring''' return self.sample is None def _UpperCamelCase ( self :Dict , __magic_name__ :Union[torch.FloatTensor, np.ndarray] , __magic_name__ :Union[float, torch.FloatTensor] , __magic_name__ :Union[torch.FloatTensor, np.ndarray] , __magic_name__ :bool = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' a__ = self.index_for_timestep(__magic_name__ ) # advance index counter by 1 a__ = timestep.cpu().item() if torch.is_tensor(__magic_name__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a__ = self.sigmas[step_index] a__ = self.sigmas_interpol[step_index + 1] a__ = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method a__ = self.sigmas[step_index - 1] a__ = self.sigmas_interpol[step_index] a__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a__ = 0 a__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a__ = sigma_hat if self.state_in_first_order else sigma_interpol a__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a__ = sigma_hat if self.state_in_first_order else sigma_interpol a__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a__ = sigma_interpol - sigma_hat # store for 2nd order step a__ = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order a__ = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep a__ = sigma_next - sigma_hat a__ = self.sample a__ = None a__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__magic_name__ ) def _UpperCamelCase ( self :Dict , __magic_name__ :torch.FloatTensor , __magic_name__ :torch.FloatTensor , __magic_name__ :torch.FloatTensor , ) -> torch.FloatTensor: '''simple docstring''' a__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__magic_name__ ): # mps does not support float64 a__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) a__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: a__ = self.timesteps.to(original_samples.device ) a__ = timesteps.to(original_samples.device ) a__ = [self.index_for_timestep(__magic_name__ , __magic_name__ ) for t in timesteps] a__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): a__ = sigma.unsqueeze(-1 ) a__ = original_samples + noise * sigma return noisy_samples def __len__( self :Any ) -> str: '''simple docstring''' return self.config.num_train_timesteps
158
1
"""simple docstring""" from typing import List import numpy as np def A ( __snake_case: dict ) -> int: """simple docstring""" __magic_name__ = {key: len(__snake_case ) for key, value in gen_kwargs.items() if isinstance(__snake_case , __snake_case )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) __magic_name__ = max(lists_lengths.values() , default=0 ) return max(1 , __snake_case ) def A ( __snake_case: int , __snake_case: int ) -> List[range]: """simple docstring""" __magic_name__ = [] for group_idx in range(__snake_case ): __magic_name__ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break __magic_name__ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 __magic_name__ = range(__snake_case , start + num_shards_to_add ) shards_indices_per_group.append(__snake_case ) return shards_indices_per_group def A ( __snake_case: dict , __snake_case: int ) -> List[dict]: """simple docstring""" __magic_name__ = _number_of_shards_in_gen_kwargs(__snake_case ) if num_shards == 1: return [dict(__snake_case )] else: __magic_name__ = _distribute_shards(num_shards=__snake_case , max_num_jobs=__snake_case ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__snake_case , __snake_case ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__snake_case ) ) ] def A ( __snake_case: List[dict] ) -> dict: """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __snake_case ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def A ( __snake_case: np.random.Generator , __snake_case: dict ) -> dict: """simple docstring""" __magic_name__ = {len(__snake_case ) for value in gen_kwargs.values() if isinstance(__snake_case , __snake_case )} __magic_name__ = {} for size in list_sizes: __magic_name__ = list(range(__snake_case ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes __magic_name__ = dict(__snake_case ) for key, value in shuffled_kwargs.items(): if isinstance(__snake_case , __snake_case ): __magic_name__ = [value[i] for i in indices_per_size[len(__snake_case )]] return shuffled_kwargs
545
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: snake_case : Tuple = None snake_case : Tuple = logging.get_logger(__name__) snake_case : List[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case : Dict = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } snake_case : int = { """google/bigbird-roberta-base""": 4_0_9_6, """google/bigbird-roberta-large""": 4_0_9_6, """google/bigbird-base-trivia-itc""": 4_0_9_6, } snake_case : List[str] = """▁""" class UpperCamelCase__ ( a_): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = BigBirdTokenizer __UpperCAmelCase = ["""input_ids""", """attention_mask"""] __UpperCAmelCase = [] def __init__( self : Optional[int] , UpperCamelCase_ : int=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Tuple="<s>" , UpperCamelCase_ : int="</s>" , UpperCamelCase_ : Union[str, Any]="<pad>" , UpperCamelCase_ : Optional[Any]="[SEP]" , UpperCamelCase_ : int="[MASK]" , UpperCamelCase_ : Tuple="[CLS]" , **UpperCamelCase_ : Optional[Any] , ): '''simple docstring''' __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else bos_token __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else eos_token __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else unk_token __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else pad_token __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cls_token __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) __magic_name__ = vocab_file __magic_name__ = False if not self.vocab_file else True def a__ ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] def a__ ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' __magic_name__ = [self.sep_token_id] __magic_name__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __magic_name__ = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
545
1
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase_ : Dict = numpy.array([0, 0]) lowerCAmelCase_ : int = numpy.array([0.5, 0.8_660_254]) lowerCAmelCase_ : Union[str, Any] = numpy.array([1, 0]) lowerCAmelCase_ : Tuple = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase ( A : list[numpy.ndarray] , A : int ): SCREAMING_SNAKE_CASE : int = initial_vectors for _ in range(A ): SCREAMING_SNAKE_CASE : Dict = iteration_step(A ) return vectors def UpperCAmelCase ( A : list[numpy.ndarray] ): SCREAMING_SNAKE_CASE : List[str] = [] for i, start_vector in enumerate(vectors[:-1] ): SCREAMING_SNAKE_CASE : Any = vectors[i + 1] new_vectors.append(A ) SCREAMING_SNAKE_CASE : str = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase ( A : numpy.ndarray , A : float ): SCREAMING_SNAKE_CASE : List[str] = numpy.radians(A ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = numpy.cos(A ), numpy.sin(A ) SCREAMING_SNAKE_CASE : Tuple = numpy.array(((c, -s), (s, c)) ) return numpy.dot(A , A ) def UpperCAmelCase ( A : list[numpy.ndarray] ): SCREAMING_SNAKE_CASE : Any = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = zip(*A ) plt.plot(A , A ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : List[str] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
464
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ : Tuple = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
464
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' print('Making key files...' ) make_key_files('rsa' , 10_24 ) print('Key files generation successful.' ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' print('Generating prime p...' ) lowerCamelCase_ = rabinMiller.generate_large_prime(lowercase ) print('Generating prime q...' ) lowerCamelCase_ = rabinMiller.generate_large_prime(lowercase ) lowerCamelCase_ = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: lowerCamelCase_ = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowercase , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) lowerCamelCase_ = cryptoMath.find_mod_inverse(lowercase , (p - 1) * (q - 1) ) lowerCamelCase_ = (n, e) lowerCamelCase_ = (n, d) return (public_key, private_key) def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : int ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowerCamelCase_ , lowerCamelCase_ = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
70
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = BertTokenizer UpperCamelCase = BertTokenizerFast UpperCamelCase = True UpperCamelCase = True UpperCamelCase = filter_non_english def a__ ( self : List[Any] ) -> int: """simple docstring""" super().setUp() lowerCamelCase_ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : Tuple , A_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(A_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) # With lower casing lowerCamelCase_ = self.get_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = self.get_rust_tokenizer(do_lower_case=A_ ) lowerCamelCase_ = 'UNwant\u00E9d,running' lowerCamelCase_ = tokenizer.tokenize(A_ ) lowerCamelCase_ = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = tokenizer.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = tokenizer.encode(A_ ) lowerCamelCase_ = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def a__ ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Tuple ) -> str: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> List[str]: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ = BasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = BasicTokenizer() lowerCamelCase_ = 'a\n\'ll !!to?\'d of, can\'t.' lowerCamelCase_ = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(A_ ) , A_ ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCamelCase_ = {} for i, token in enumerate(A_ ): lowerCamelCase_ = i lowerCamelCase_ = WordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : List[Any] ) -> int: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def a__ ( self : Any ) -> int: """simple docstring""" lowerCamelCase_ = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__ ( self : str ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase_ = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = ['的', '人', '有'] lowerCamelCase_ = ''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(A_ , **A_ ) lowerCamelCase_ = tokenizer_r.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_p.encode(A_ , add_special_tokens=A_ ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(A_ ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ )
70
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _a ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=13 , lowercase_=3 , lowercase_=224 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , ) -> int: lowerCAmelCase : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Dict = min_resolution lowerCAmelCase : List[Any] = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Optional[Any] = size lowerCAmelCase : Optional[int] = do_normalize lowerCAmelCase : int = image_mean lowerCAmelCase : List[str] = image_std def _snake_case ( self ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): _UpperCamelCase: str = ViTImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Tuple: lowerCAmelCase : Any = EfficientFormerImageProcessorTester(self ) @property def _snake_case ( self ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def _snake_case ( self ) -> int: lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowercase_ , """image_std""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Optional[Any]: # Initialize image_processor lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input lowerCAmelCase : int = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _snake_case ( self ) -> Dict: # Initialize image_processor lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Dict = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _snake_case ( self ) -> Optional[Any]: # Initialize image_processor lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Tuple = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowerCAmelCase : Tuple = image_processor(lowercase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
711
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) lowerCAmelCase : Optional[int] ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _a ( snake_case_ ): _UpperCamelCase: Tuple = "transfo-xl" _UpperCamelCase: str = ["mems"] _UpperCamelCase: Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , lowercase_=267735 , lowercase_=[20000, 40000, 200000] , lowercase_=1024 , lowercase_=1024 , lowercase_=16 , lowercase_=64 , lowercase_=4096 , lowercase_=4 , lowercase_=False , lowercase_=18 , lowercase_=1600 , lowercase_=1000 , lowercase_=True , lowercase_=True , lowercase_=0 , lowercase_=-1 , lowercase_=True , lowercase_=0.1 , lowercase_=0.0 , lowercase_=True , lowercase_="normal" , lowercase_=0.0_1 , lowercase_=0.0_1 , lowercase_=0.0_2 , lowercase_=1e-5 , lowercase_=0 , **lowercase_ , ) -> Optional[int]: lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Union[str, Any] = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: lowerCAmelCase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[str] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : List[Any] = d_embed lowerCAmelCase : Union[str, Any] = d_head lowerCAmelCase : List[Any] = d_inner lowerCAmelCase : Optional[int] = div_val lowerCAmelCase : List[Any] = pre_lnorm lowerCAmelCase : Dict = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Any = mem_len lowerCAmelCase : Union[str, Any] = same_length lowerCAmelCase : List[Any] = attn_type lowerCAmelCase : int = clamp_len lowerCAmelCase : List[str] = sample_softmax lowerCAmelCase : Optional[int] = adaptive lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = dropatt lowerCAmelCase : List[str] = untie_r lowerCAmelCase : List[str] = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : str = proj_init_std lowerCAmelCase : str = init_std lowerCAmelCase : Optional[int] = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def _snake_case ( self ) -> Optional[Any]: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _snake_case ( self , lowercase_ ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
693
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''deit''' def __init__( self ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=1_2 ,lowerCamelCase_=1_2 ,lowerCamelCase_=3_0_7_2 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.0 ,lowerCamelCase_=0.02 ,lowerCamelCase_=1E-12 ,lowerCamelCase_=2_2_4 ,lowerCamelCase_=1_6 ,lowerCamelCase_=3 ,lowerCamelCase_=True ,lowerCamelCase_=1_6 ,**lowerCamelCase_ ,) -> Dict: super().__init__(**lowerCamelCase_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = encoder_stride class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase__ ( self ) -> float: return 1E-4
617
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''text''': Value('''string''' )} ) _lowerCamelCase = Features({'''summary''': Value('''string''' )} ) _lowerCamelCase = "text" _lowerCamelCase = "summary" @property def UpperCamelCase__ ( self ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
617
1
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __UpperCamelCase : def __init__( self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int]=13 , _lowerCAmelCase : Optional[Any]=7 , _lowerCAmelCase : str=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=99 , _lowerCAmelCase : List[str]=32 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : List[str]=37 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : str=512 , _lowerCAmelCase : str=16 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : Union[str, Any]=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : Optional[int]=None , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def _a ( self : str ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self : int ) -> Any: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , use_stable_embedding=snake_case__ , ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = OpenLlamaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model(snake_case__ , attention_mask=snake_case__ ) __lowercase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , ) -> str: """simple docstring""" __lowercase = True __lowercase = OpenLlamaModel(snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , ) __lowercase = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , ) __lowercase = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , ) -> Union[str, Any]: """simple docstring""" __lowercase = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str , ) -> Union[str, Any]: """simple docstring""" __lowercase = True __lowercase = True __lowercase = OpenLlamaForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() # first forward pass __lowercase = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , use_cache=snake_case__ , ) __lowercase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , output_hidden_states=snake_case__ , )["""hidden_states"""][0] __lowercase = model( snake_case__ , attention_mask=snake_case__ , encoder_hidden_states=snake_case__ , encoder_attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )["""hidden_states"""][0] # select random slice __lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def _a ( self : Tuple ) -> int: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( __a , __a , __a , unittest.TestCase ): __snake_case :Dict = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __snake_case :Optional[int] = (OpenLlamaForCausalLM,) if is_torch_available() else () __snake_case :Union[str, Any] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __snake_case :Union[str, Any] = False __snake_case :Optional[int] = False def _a ( self : int ) -> Dict: """simple docstring""" __lowercase = OpenLlamaModelTester(self ) __lowercase = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _a ( self : Tuple ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : str ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*snake_case__ ) def _a ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = input_dict["""input_ids"""] __lowercase = input_ids.ne(1 ).to(snake_case__ ) __lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = """single_label_classification""" __lowercase = input_dict["""input_ids"""] __lowercase = input_ids.ne(1 ).to(snake_case__ ) __lowercase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = 3 __lowercase = """multi_label_classification""" __lowercase = input_dict["""input_ids"""] __lowercase = input_ids.ne(1 ).to(snake_case__ ) __lowercase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowercase = OpenLlamaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowercase = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def _a ( self : int ) -> List[str]: """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _a ( self : Union[str, Any] , _lowerCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ids_tensor([1, 10] , config.vocab_size ) __lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = OpenLlamaModel(snake_case__ ) original_model.to(snake_case__ ) original_model.eval() __lowercase = original_model(snake_case__ ).last_hidden_state __lowercase = original_model(snake_case__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowercase = {"""type""": scaling_type, """factor""": 10.0} __lowercase = OpenLlamaModel(snake_case__ ) scaled_model.to(snake_case__ ) scaled_model.eval() __lowercase = scaled_model(snake_case__ ).last_hidden_state __lowercase = scaled_model(snake_case__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1e-5 ) )
705
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __UpperCamelCase : def __init__( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : int = 13 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : int = 3 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 128 , _lowerCAmelCase : Optional[int]=[16, 32, 64, 128] , _lowerCAmelCase : int = 7 , _lowerCAmelCase : int = 4 , _lowerCAmelCase : int = 37 , _lowerCAmelCase : str = "gelu" , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : int = 10 , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 128 , _lowerCAmelCase : List[int] = [2, 2, 2, 2] , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = 2 , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = encoder_stride __lowercase = num_attention_outputs __lowercase = embed_dim __lowercase = embed_dim + 1 __lowercase = resolution __lowercase = depths __lowercase = hidden_sizes __lowercase = dim __lowercase = mlp_expansion_ratio def _a ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def _a ( self : Optional[Any] ) -> str: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = TFEfficientFormerModel(config=_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.type_sequence_label_size __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = TFEfficientFormerForImageClassification(_lowerCAmelCase ) __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __snake_case :Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __snake_case :Any = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __snake_case :int = False __snake_case :Optional[int] = False __snake_case :int = False __snake_case :Any = False __snake_case :Any = False def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerModelTester(self ) __lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _a ( self : Optional[int] ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _a ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _a ( self : int ) -> str: """simple docstring""" pass def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_lowerCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Dict: """simple docstring""" def check_hidden_states_output(_lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] ): __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) if hasattr(self.model_tester , """encoder_seq_length""" ): __lowercase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1: __lowercase = seq_length * self.model_tester.chunk_length else: __lowercase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __lowercase = outputs.decoder_hidden_states self.asseretIsInstance(_lowerCAmelCase , (list, tuple) ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """decoder_seq_length""" , _lowerCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" __lowercase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self : int ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _a ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFEfficientFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def _a ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , """seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """encoder_seq_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """key_length""" , _lowerCAmelCase ) __lowercase = getattr(self.model_tester , """chunk_length""" , _lowerCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ): __lowercase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_lowerCAmelCase ) __lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def _a ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __lowercase = model_class(_lowerCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __lowercase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowerCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __lowercase = model(_lowerCAmelCase ) self.assertTrue(outputs_dict is not None ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Optional[Any] ) -> Any: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def _a ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __lowercase = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
53
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
18
import argparse import copy def lowerCamelCase ( a_ ) -> Optional[int]: lowerCAmelCase_ = {} with open(a_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: lowerCAmelCase_ = [] _list.append([line.split()[1], line.split()[2]] ) lowerCAmelCase_ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: lowerCAmelCase_ = [] _list.append([line.split()[0], line.split()[2]] ) lowerCAmelCase_ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCamelCase ( a_ , a_ ) -> Dict: with open(a_ ) as f: lowerCAmelCase_ = f.read(1 ) lowerCAmelCase_ = start_node lowerCAmelCase_ = [] lowerCAmelCase_ = start_node lowerCAmelCase_ = 0 while visiting not in first_solution: lowerCAmelCase_ = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(a_ ) and k[0] not in first_solution: lowerCAmelCase_ = k[1] lowerCAmelCase_ = k[0] first_solution.append(a_ ) lowerCAmelCase_ = distance_of_first_solution + int(a_ ) lowerCAmelCase_ = best_node first_solution.append(a_ ) lowerCAmelCase_ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 lowerCAmelCase_ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def lowerCamelCase ( a_ , a_ ) -> str: lowerCAmelCase_ = [] for n in solution[1:-1]: lowerCAmelCase_ = solution.index(a_ ) for kn in solution[1:-1]: lowerCAmelCase_ = solution.index(a_ ) if n == kn: continue lowerCAmelCase_ = copy.deepcopy(a_ ) lowerCAmelCase_ = kn lowerCAmelCase_ = n lowerCAmelCase_ = 0 for k in _tmp[:-1]: lowerCAmelCase_ = _tmp[_tmp.index(a_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: lowerCAmelCase_ = distance + int(i[1] ) _tmp.append(a_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) lowerCAmelCase_ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda a_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCamelCase ( a_ , a_ , a_ , a_ , a_ ) -> Optional[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = first_solution lowerCAmelCase_ = [] lowerCAmelCase_ = distance_of_first_solution lowerCAmelCase_ = solution while count <= iters: lowerCAmelCase_ = find_neighborhood(a_ , a_ ) lowerCAmelCase_ = 0 lowerCAmelCase_ = neighborhood[index_of_best_solution] lowerCAmelCase_ = len(a_ ) - 1 lowerCAmelCase_ = False while not found: lowerCAmelCase_ = 0 while i < len(a_ ): if best_solution[i] != solution[i]: lowerCAmelCase_ = best_solution[i] lowerCAmelCase_ = solution[i] break lowerCAmelCase_ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) lowerCAmelCase_ = True lowerCAmelCase_ = best_solution[:-1] lowerCAmelCase_ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: lowerCAmelCase_ = cost lowerCAmelCase_ = solution else: lowerCAmelCase_ = index_of_best_solution + 1 lowerCAmelCase_ = neighborhood[index_of_best_solution] if len(a_ ) >= size: tabu_list.pop(0 ) lowerCAmelCase_ = count + 1 return best_solution_ever, best_cost def lowerCamelCase ( a_=None ) -> Optional[int]: lowerCAmelCase_ = generate_neighbours(args.File ) lowerCAmelCase_ , lowerCAmelCase_ = generate_first_solution( args.File , a_ ) lowerCAmelCase_ , lowerCAmelCase_ = tabu_search( a_ , a_ , a_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
318
0
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowercase_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class __UpperCamelCase (_UpperCAmelCase ): __A = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self , **_lowerCAmelCase ) -> Optional[int]: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase = deprecated_arg[3:] lowercase = not kwargs.pop(_lowerCAmelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase = kwargs.pop("""tpu_name""" , self.tpu_name ) lowercase = kwargs.pop("""device_idx""" , self.device_idx ) lowercase = kwargs.pop("""eager_mode""" , self.eager_mode ) lowercase = kwargs.pop("""use_xla""" , self.use_xla ) super().__init__(**_lowerCAmelCase ) __A = field( default=_UpperCAmelCase , metadata={'''help''': '''Name of TPU'''} , ) __A = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) __A = field(default=_UpperCAmelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) __A = field( default=_UpperCAmelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def _a ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) lowercase = None if self.tpu: try: if self.tpu_name: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowercase = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowercase = None return tpu @cached_property def _a ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowercase = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , """GPU""" ) lowercase = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , """GPU""" ) # disable GPU lowercase = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def _a ( self ) -> bool: '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_tpu is not None @property def _a ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["""tf"""] ) return self._setup_strategy @property def _a ( self ) -> Tuple: '''simple docstring''' requires_backends(self , ["""tf"""] ) return tf.config.list_physical_devices("""GPU""" ) @property def _a ( self ) -> int: '''simple docstring''' requires_backends(self , ["""tf"""] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _a ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
711
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square(lowercase_ : int , lowercase_ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase = update_area_of_max_square(lowercase_ , col + 1 ) lowercase = update_area_of_max_square(row + 1 , col + 1 ) lowercase = update_area_of_max_square(row + 1 , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) return sub_problem_sol else: return 0 lowercase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): def update_area_of_max_square_using_dp_array( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase = update_area_of_max_square_using_dp_array(lowercase_ , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowercase_ ) lowercase = update_area_of_max_square_using_dp_array(row + 1 , lowercase_ , lowercase_ ) if mat[row][col]: lowercase = 1 + min([right, diagonal, down] ) lowercase = max(largest_square_area[0] , lowercase_ ) lowercase = sub_problem_sol return sub_problem_sol else: return 0 lowercase = [0] lowercase = [[-1] * cols for _ in range(lowercase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowercase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = dp_array[row][col + 1] lowercase = dp_array[row + 1][col + 1] lowercase = dp_array[row + 1][col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(dp_array[row][col] , lowercase_ ) else: lowercase = 0 return largest_square_area def SCREAMING_SNAKE_CASE ( lowercase_ : int , lowercase_ : int , lowercase_ : list[list[int]] ): lowercase = [0] * (cols + 1) lowercase = [0] * (cols + 1) lowercase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase = current_row[col + 1] lowercase = next_row[col + 1] lowercase = next_row[col] if mat[row][col] == 1: lowercase = 1 + min(lowercase_ , lowercase_ , lowercase_ ) lowercase = max(current_row[col] , lowercase_ ) else: lowercase = 0 lowercase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
653
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __snake_case : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , UpperCamelCase_=1000 , ) -> Union[str, Any]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope snake_case__ = range_bbox def _snake_case ( self ) -> Optional[int]: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment snake_case__ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case__ = bbox[i, j, 3] snake_case__ = bbox[i, j, 1] snake_case__ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case__ = bbox[i, j, 2] snake_case__ = bbox[i, j, 0] snake_case__ = t snake_case__ = tf.convert_to_tensor(UpperCamelCase_ ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: snake_case__ = TFLayoutLMModel(config=UpperCamelCase_ ) snake_case__ = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) snake_case__ = model(UpperCamelCase_ , UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) snake_case__ = model(UpperCamelCase_ , UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: snake_case__ = TFLayoutLMForMaskedLM(config=UpperCamelCase_ ) snake_case__ = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: snake_case__ = self.num_labels snake_case__ = TFLayoutLMForSequenceClassification(config=UpperCamelCase_ ) snake_case__ = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: snake_case__ = self.num_labels snake_case__ = TFLayoutLMForTokenClassification(config=UpperCamelCase_ ) snake_case__ = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: snake_case__ = TFLayoutLMForQuestionAnswering(config=UpperCamelCase_ ) snake_case__ = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ) -> Tuple: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class __snake_case ( __magic_name__ , __magic_name__ , unittest.TestCase ): __lowerCAmelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __lowerCAmelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = 10 def _snake_case ( self ) -> Tuple: snake_case__ = TFLayoutLMModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _snake_case ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Dict: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _snake_case ( self ) -> Union[str, Any]: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def _snake_case ( self ) -> Optional[int]: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def _snake_case ( self ) -> Union[str, Any]: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) def _snake_case ( self ) -> Any: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) @slow def _snake_case ( self ) -> List[str]: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = TFLayoutLMModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def _snake_case ( self ) -> int: pass def __lowerCamelCase ( ) ->List[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off snake_case__ = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 snake_case__ = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 snake_case__ = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 snake_case__ = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) snake_case__ = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __snake_case ( unittest.TestCase ): @slow def _snake_case ( self ) -> Optional[Any]: snake_case__ = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = prepare_layoutlm_batch_inputs() # forward pass snake_case__ = model(input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) # test the sequence output on [0, :3, :3] snake_case__ = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1E-3 ) ) # test the pooled output on [1, :3] snake_case__ = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , UpperCamelCase_ , atol=1E-3 ) ) @slow def _snake_case ( self ) -> Optional[Any]: # initialize model with randomly initialized sequence classification head snake_case__ = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = prepare_layoutlm_batch_inputs() # forward pass snake_case__ = model( input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar snake_case__ = outputs.loss snake_case__ = (2,) self.assertEqual(loss.shape , UpperCamelCase_ ) # test the shape of the logits snake_case__ = outputs.logits snake_case__ = (2, 2) self.assertEqual(logits.shape , UpperCamelCase_ ) @slow def _snake_case ( self ) -> Optional[int]: # initialize model with randomly initialized token classification head snake_case__ = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = prepare_layoutlm_batch_inputs() # forward pass snake_case__ = model( input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) # test the shape of the logits snake_case__ = outputs.logits snake_case__ = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , UpperCamelCase_ ) @slow def _snake_case ( self ) -> Dict: # initialize model with randomly initialized token classification head snake_case__ = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = prepare_layoutlm_batch_inputs() # forward pass snake_case__ = model(input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) # test the shape of the logits snake_case__ = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , UpperCamelCase_ ) self.assertEqual(outputs.end_logits.shape , UpperCamelCase_ )
368
'''simple docstring''' import os def __lowerCamelCase ( UpperCAmelCase_ = "input.txt" ) ->int: with open(os.path.join(os.path.dirname(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) as input_file: snake_case__ = [ [int(UpperCAmelCase_ ) for element in line.split(',' )] for line in input_file.readlines() ] snake_case__ = len(UpperCAmelCase_ ) snake_case__ = len(matrix[0] ) snake_case__ = [[-1 for _ in range(UpperCAmelCase_ )] for _ in range(UpperCAmelCase_ )] for i in range(UpperCAmelCase_ ): snake_case__ = matrix[i][0] for j in range(1 , UpperCAmelCase_ ): for i in range(UpperCAmelCase_ ): snake_case__ = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCAmelCase_ ): snake_case__ = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): snake_case__ = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
368
1
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class snake_case ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case__ = '' snake_case__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case__ = None # compression type in fsspec. ex: "gzip" snake_case__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] ,lowerCamelCase__ : Any = "" ,lowerCamelCase__ : Tuple = None ,lowerCamelCase__ : Optional[int] = None ,**lowerCamelCase__ : str ): super().__init__(self ,**_a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase__ = fsspec.open( _a ,mode='rb' ,protocol=_a ,compression=self.compression ,client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) UpperCAmelCase__ = os.path.basename(self.file.path.split('::' )[0] ) UpperCAmelCase__ = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) UpperCAmelCase__ = None @classmethod def __lowerCAmelCase ( cls : Tuple ,lowerCamelCase__ : Union[str, Any] ): # compressed file paths are always relative to the archive root return super()._strip_protocol(_a ).lstrip('/' ) def __lowerCAmelCase ( self : Optional[Any] ): if self.dir_cache is None: UpperCAmelCase__ = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} UpperCAmelCase__ = {f['name']: f} def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : str ): return self.file.open().read() def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict = "rb" ,lowerCamelCase__ : int=None ,lowerCamelCase__ : int=True ,lowerCamelCase__ : List[str]=None ,**lowerCamelCase__ : List[Any] ,): UpperCAmelCase__ = self._strip_protocol(_a ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class snake_case ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case__ = 'bz2' snake_case__ = 'bz2' snake_case__ = '.bz2' class snake_case ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case__ = 'gzip' snake_case__ = 'gzip' snake_case__ = '.gz' class snake_case ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case__ = 'lz4' snake_case__ = 'lz4' snake_case__ = '.lz4' class snake_case ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case__ = 'xz' snake_case__ = 'xz' snake_case__ = '.xz' class snake_case ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case__ = 'zstd' snake_case__ = 'zstd' snake_case__ = '.zst' def __init__( self : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Dict = "rb" ,lowerCamelCase__ : List[str] = None ,lowerCamelCase__ : List[Any] = None ,lowerCamelCase__ : str = DEFAULT_BLOCK_SIZE ,**lowerCamelCase__ : List[Any] ,): super().__init__( fo=_a ,mode=_a ,target_protocol=_a ,target_options=_a ,block_size=_a ,**_a ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase__ = self.file.__enter__ class snake_case : """simple docstring""" def __init__( self : List[str] ,lowerCamelCase__ : Optional[int] ): UpperCAmelCase__ = file_ def __enter__( self : List[str] ): self._file.__enter__() return self def __exit__( self : Dict ,*lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : Union[str, Any] ): self._file.__exit__(*_a ,**_a ) def __iter__( self : Any ): return iter(self._file ) def __lowerCAmelCase ( self : Any ): return next(self._file ) def __getattr__( self : str ,lowerCamelCase__ : Optional[Any] ): return getattr(self._file ,_a ) def fixed_enter(*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Tuple ): return WrappedFile(_enter(*_a ,**_a ) ) UpperCAmelCase__ = fixed_enter
721
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class snake_case ( ctypes.Structure ): """simple docstring""" snake_case__ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ): if os.name == "nt": UpperCAmelCase__ = CursorInfo() UpperCAmelCase__ = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) UpperCAmelCase__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ): if os.name == "nt": UpperCAmelCase__ = CursorInfo() UpperCAmelCase__ = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) UpperCAmelCase__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowerCamelCase , ctypes.byref(lowerCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ): try: hide_cursor() yield finally: show_cursor()
632
0
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowerCamelCase__ : str = "scheduler_config.json" class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 1 UpperCamelCase = 2 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = 5 UpperCamelCase = 6 UpperCamelCase = 7 UpperCamelCase = 8 UpperCamelCase = 9 UpperCamelCase = 10 UpperCamelCase = 11 UpperCamelCase = 12 UpperCamelCase = 13 UpperCamelCase = 14 @dataclass class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = 42 class lowercase__: '''simple docstring''' UpperCamelCase = SCHEDULER_CONFIG_NAME UpperCamelCase = [] UpperCamelCase = True @classmethod def __lowerCAmelCase ( cls :Dict , lowerCamelCase_ :Dict[str, Any] = None , lowerCamelCase_ :Optional[str] = None , lowerCamelCase_ :Dict=False , **lowerCamelCase_ :Tuple , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = cls.load_config( pretrained_model_name_or_path=lowerCamelCase_ , subfolder=lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ , return_commit_hash=lowerCamelCase_ , **lowerCamelCase_ , ) return cls.from_config(lowerCamelCase_ , return_unused_kwargs=lowerCamelCase_ , **lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :Union[str, os.PathLike] , lowerCamelCase_ :bool = False , **lowerCamelCase_ :Any ) -> Optional[int]: '''simple docstring''' self.save_config(save_directory=lowerCamelCase_ , push_to_hub=lowerCamelCase_ , **lowerCamelCase_ ) @property def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' return self._get_compatibles() @classmethod def __lowerCAmelCase ( cls :Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = list(set([cls.__name__] + cls._compatibles ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(__name__.split('''.''' )[0] ) SCREAMING_SNAKE_CASE : List[Any] = [ getattr(lowerCamelCase_ , lowerCamelCase_ ) for c in compatible_classes_str if hasattr(lowerCamelCase_ , lowerCamelCase_ ) ] return compatible_classes
698
"""simple docstring""" import qiskit def __A ( a_ : int , a_ : int )-> qiskit.result.counts.Counts: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a_ , a_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : int = qiskit.execute(a_ , a_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a_ ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
698
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __lowerCamelCase = logging.get_logger(__name__) class _lowercase ( __UpperCAmelCase ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ): warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
713
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): _lowerCamelCase = FunnelTokenizer _lowerCamelCase = FunnelTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def lowerCAmelCase__ ( self ): super().setUp() __magic_name__ = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): __magic_name__ = '''UNwant\u00E9d,running''' __magic_name__ = '''unwanted, running''' return input_text, output_text def lowerCAmelCase__ ( self ): __magic_name__ = self.tokenizer_class(self.vocab_file ) __magic_name__ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: __magic_name__ = tokenizer('''UNwant\u00E9d,running''' ) __magic_name__ = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __magic_name__ = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
190
0
from pathlib import Path import fire def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowercase__ : Tuple = Path(lowerCAmelCase__ ) lowercase__ : Any = Path(lowerCAmelCase__ ) dest_dir.mkdir(exist_ok=lowerCAmelCase__ ) for path in src_dir.iterdir(): lowercase__ : Any = [x.rstrip() for x in list(path.open().readlines() )][:n] lowercase__ : Tuple = dest_dir.joinpath(path.name ) print(lowerCAmelCase__ ) dest_path.open("w" ).write("\n".join(lowerCAmelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
397
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((a__) , (a__)) : List[Any] = extended_euclid(lowerCAmelCase__ , a % b ) a__ : str = a // b return (y, x - k * y) def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' ((a__) , (a__)) : Tuple = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[str] = na * na a__ : Union[str, Any] = ra * x * na + ra * y * na return (n % m + m) % m def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' ((a__) , (a__)) : Optional[Any] = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: a__ : Optional[int] = (b % n + n) % n return b def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' a__ , a__ : List[Any] = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Dict = na * na a__ : Any = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
642
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def A ( snake_case__ , snake_case__ , snake_case__=10_24 , snake_case__=10_24 , snake_case__=False , **snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE__ = SeqaSeqDataset(snake_case__ , snake_case__ , snake_case__ , snake_case__ , type_path="""train""" , **snake_case__ ) SCREAMING_SNAKE_CASE__ = tok.pad_token_id def get_lens(snake_case__ ): SCREAMING_SNAKE_CASE__ = tqdm( DataLoader(snake_case__ , batch_size=5_12 , num_workers=8 , shuffle=snake_case__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) SCREAMING_SNAKE_CASE__ = [] for batch in dl: SCREAMING_SNAKE_CASE__ = batch["""input_ids"""].ne(snake_case__ ).sum(1 ).tolist() SCREAMING_SNAKE_CASE__ = batch["""labels"""].ne(snake_case__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(snake_case__ , snake_case__ ): max_lens.append(max(snake_case__ , snake_case__ ) ) else: max_lens.extend(snake_case__ ) return max_lens SCREAMING_SNAKE_CASE__ = get_lens(snake_case__ ) SCREAMING_SNAKE_CASE__ = SeqaSeqDataset(snake_case__ , snake_case__ , snake_case__ , snake_case__ , type_path="""val""" , **snake_case__ ) SCREAMING_SNAKE_CASE__ = get_lens(snake_case__ ) pickle_save(snake_case__ , train_ds.len_file ) pickle_save(snake_case__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
616
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase : def __init__( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int=2 , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Dict=1_0 , __UpperCAmelCase : str=3 , __UpperCAmelCase : List[str]=3_2 * 8 , __UpperCAmelCase : List[Any]=3_2 * 8 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : Tuple=6_4 , ) -> Tuple: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_auxiliary_loss SCREAMING_SNAKE_CASE__ = num_queries SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = min_size SCREAMING_SNAKE_CASE__ = max_size SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = hidden_dim SCREAMING_SNAKE_CASE__ = hidden_dim def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__UpperCAmelCase ) > 0.5 ).float() SCREAMING_SNAKE_CASE__ = (torch.rand((self.batch_size, self.num_labels) , device=__UpperCAmelCase ) > 0.5).long() SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) SCREAMING_SNAKE_CASE__ = self.num_queries SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = [1, 1, 1, 1] SCREAMING_SNAKE_CASE__ = self.num_channels SCREAMING_SNAKE_CASE__ = 6_4 SCREAMING_SNAKE_CASE__ = 1_2_8 SCREAMING_SNAKE_CASE__ = self.hidden_dim SCREAMING_SNAKE_CASE__ = self.hidden_dim SCREAMING_SNAKE_CASE__ = self.hidden_dim return config def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = output.encoder_hidden_states SCREAMING_SNAKE_CASE__ = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__UpperCAmelCase ) , config.decoder_layers ) def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any]=False ) -> Tuple: with torch.no_grad(): SCREAMING_SNAKE_CASE__ = MaskaFormerModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(pixel_values=__UpperCAmelCase , pixel_mask=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = MaskaFormerForUniversalSegmentation(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() def comm_check_on_output(__UpperCAmelCase : Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(pixel_values=__UpperCAmelCase , pixel_mask=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model( pixel_values=__UpperCAmelCase , pixel_mask=__UpperCAmelCase , mask_labels=__UpperCAmelCase , class_labels=__UpperCAmelCase ) comm_check_on_output(__UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase (A__ ,A__ ,unittest.TestCase ): lowerCamelCase__ : Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase__ : Any = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} lowerCamelCase__ : Tuple = False lowerCamelCase__ : Dict = False lowerCamelCase__ : Dict = False lowerCamelCase__ : str = False def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = MaskaFormerModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__UpperCAmelCase , **__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__UpperCAmelCase ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: pass def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE__ = MaskaFormerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE__ = { """pixel_values""": torch.randn((2, 3, *size) , device=__UpperCAmelCase ), """mask_labels""": torch.randn((2, 1_0, *size) , device=__UpperCAmelCase ), """class_labels""": torch.zeros(2 , 1_0 , device=__UpperCAmelCase ).long(), } SCREAMING_SNAKE_CASE__ = self.model_tester.get_config() SCREAMING_SNAKE_CASE__ = MaskaFormerForUniversalSegmentation(__UpperCAmelCase ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__UpperCAmelCase , **__UpperCAmelCase , output_hidden_states=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase , output_attentions=__UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE__ = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , mask_labels=__UpperCAmelCase , class_labels=__UpperCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model_class(__UpperCAmelCase ).to(__UpperCAmelCase ) model.train() SCREAMING_SNAKE_CASE__ = model(__UpperCAmelCase , mask_labels=__UpperCAmelCase , class_labels=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) A_ : Optional[Any] = 1E-4 def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class lowerCamelCase (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: return "facebook/mask2former-swin-small-coco-instance" @cached_property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__UpperCAmelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(__UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__UpperCAmelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ) # masks_queries_logits SCREAMING_SNAKE_CASE__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) SCREAMING_SNAKE_CASE__ = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] SCREAMING_SNAKE_CASE__ = torch.tensor(__UpperCAmelCase ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) # class_queries_logits SCREAMING_SNAKE_CASE__ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE__ = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __UpperCAmelCase , atol=__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: SCREAMING_SNAKE_CASE__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE__ = inputs["""pixel_values"""].to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [el.to(__UpperCAmelCase ) for el in inputs["""mask_labels"""]] SCREAMING_SNAKE_CASE__ = [el.to(__UpperCAmelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
616
1
class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a=None , _a=None ) -> List[str]: _a : List[Any] = data _a : List[str] = previous _a : Union[str, Any] = next_node def __str__( self ) -> str: return F"""{self.data}""" def __lowercase ( self ) -> int: return self.data def __lowercase ( self ) -> Union[str, Any]: return self.next def __lowercase ( self ) -> str: return self.previous class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a ) -> str: _a : int = head def __iter__( self ) -> List[Any]: return self def __lowercase ( self ) -> Optional[int]: if not self.current: raise StopIteration else: _a : Optional[int] = self.current.get_data() _a : Dict = self.current.get_next() return value class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> str: _a : Tuple = None # First node in list _a : List[str] = None # Last node in list def __str__( self ) -> List[str]: _a : Optional[int] = self.head _a : int = [] while current is not None: nodes.append(current.get_data() ) _a : Optional[Any] = current.get_next() return " ".join(str(_a ) for node in nodes ) def __contains__( self , _a ) -> Union[str, Any]: _a : Optional[Any] = self.head while current: if current.get_data() == value: return True _a : Optional[Any] = current.get_next() return False def __iter__( self ) -> Dict: return LinkedListIterator(self.head ) def __lowercase ( self ) -> Any: if self.head: return self.head.get_data() return None def __lowercase ( self ) -> Tuple: if self.tail: return self.tail.get_data() return None def __lowercase ( self , _a ) -> None: if self.head is None: _a : str = node _a : Tuple = node else: self.insert_before_node(self.head , _a ) def __lowercase ( self , _a ) -> None: if self.head is None: self.set_head(_a ) else: self.insert_after_node(self.tail , _a ) def __lowercase ( self , _a ) -> None: _a : str = Node(_a ) if self.head is None: self.set_head(_a ) else: self.set_tail(_a ) def __lowercase ( self , _a , _a ) -> None: _a : List[str] = node _a : str = node.previous if node.get_previous() is None: _a : Optional[int] = node_to_insert else: _a : List[str] = node_to_insert _a : List[str] = node_to_insert def __lowercase ( self , _a , _a ) -> None: _a : Union[str, Any] = node _a : List[str] = node.next if node.get_next() is None: _a : Any = node_to_insert else: _a : List[str] = node_to_insert _a : Union[str, Any] = node_to_insert def __lowercase ( self , _a , _a ) -> None: _a : List[Any] = 1 _a : Any = Node(_a ) _a : Any = self.head while node: if current_position == position: self.insert_before_node(_a , _a ) return current_position += 1 _a : Tuple = node.next self.insert_after_node(self.tail , _a ) def __lowercase ( self , _a ) -> Node: _a : Optional[Any] = self.head while node: if node.get_data() == item: return node _a : Any = node.get_next() raise Exception('''Node not found''' ) def __lowercase ( self , _a ) -> Union[str, Any]: if (node := self.get_node(_a )) is not None: if node == self.head: _a : Optional[Any] = self.head.get_next() if node == self.tail: _a : Any = self.tail.get_previous() self.remove_node_pointers(_a ) @staticmethod def __lowercase ( _a ) -> None: if node.get_next(): _a : Optional[int] = node.previous if node.get_previous(): _a : List[Any] = node.next _a : Optional[int] = None _a : Tuple = None def __lowercase ( self ) -> str: return self.head is None def __UpperCAmelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
14
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCamelCase( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCamelCase( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) lowerCamelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowerCamelCase_ = DDPMScheduler() lowerCamelCase_ = AudioDiffusionPipeline(vqvae=SCREAMING_SNAKE_CASE_ , unet=self.dummy_unet , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , steps=4 , return_dict=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowerCamelCase_ = DDIMScheduler() lowerCamelCase_ = self.dummy_vqvae_and_unet lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(raw_audio=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , start_step=5 , steps=10 ) lowerCamelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowerCamelCase_ = self.dummy_unet_condition lowerCamelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) np.random.seed(0 ) lowerCamelCase_ = torch.rand((1, 1, 10) ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ , encoding=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = torch_device lowerCamelCase_ = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) lowerCamelCase_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(42 ) lowerCamelCase_ = pipe(generator=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.audios[0] lowerCamelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowerCamelCase_ = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] lowerCamelCase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
42
0
from datetime import datetime import requests def lowerCamelCase_ ( UpperCamelCase_ ): _a : Optional[int] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' _a : Optional[int] = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(UpperCamelCase_ ).content if __name__ == "__main__": __UpperCAmelCase : Any = input('Enter Video/IGTV url: ').strip() __UpperCAmelCase : Any = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
249
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __UpperCAmelCase : Dict = logging.getLogger(__name__) __UpperCAmelCase : Dict = 50 # max width of layer names __UpperCAmelCase : List[Any] = 70 # max width of quantizer names def lowerCamelCase_ ( UpperCamelCase_ ): _a : Union[str, Any] = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=UpperCamelCase_ , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=UpperCamelCase_ , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=UpperCamelCase_ , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=UpperCamelCase_ , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=UpperCamelCase_ , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=UpperCamelCase_ , type=UpperCamelCase_ , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=UpperCamelCase_ , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def lowerCamelCase_ ( UpperCamelCase_ ): if args.calibrator == "max": _a : List[str] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) _a : List[str] = '''histogram''' elif args.calibrator == "mse": _a : str = '''histogram''' else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) _a : Dict = QuantDescriptor(num_bits=args.aprec , calib_method=UpperCamelCase_ ) _a : List[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(UpperCamelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_=False ): logger.info('''Configuring Model for Quantization''' ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(UpperCamelCase_ , ['''embeddings'''] , which='''weight''' , _disabled=UpperCamelCase_ ) if args.quant_disable: set_quantizer_by_name(UpperCamelCase_ , [''''''] , _disabled=UpperCamelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(UpperCamelCase_ , args.quant_disable_keyword , _disabled=UpperCamelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(UpperCamelCase_ , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=UpperCamelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(UpperCamelCase_ , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=UpperCamelCase_ ) if args.recalibrate_weights: recalibrate_weights(UpperCamelCase_ ) if args.fuse_qkv: fuse_qkv(UpperCamelCase_ , UpperCamelCase_ ) if args.clip_gelu: clip_gelu(UpperCamelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ ): logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): def fusea(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): for mod in [qq, qk, qv]: if not hasattr(UpperCamelCase_ , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return _a : List[Any] = qq._amax.detach().item() _a : Any = qk._amax.detach().item() _a : Tuple = qv._amax.detach().item() _a : str = max(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) qq._amax.fill_(UpperCamelCase_ ) qk._amax.fill_(UpperCamelCase_ ) qv._amax.fill_(UpperCamelCase_ ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): _a : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=UpperCamelCase_ ) _a : Union[str, Any] = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def lowerCamelCase_ ( UpperCamelCase_ ): for name, mod in model.named_modules(): if hasattr(UpperCamelCase_ , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: _a : str = mod.weight.shape[0] _a : Any = mod._weight_quantizer._amax.detach() _a : Optional[int] = torch.ones(UpperCamelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def lowerCamelCase_ ( UpperCamelCase_ ): for name, mod in model.named_modules(): if hasattr(UpperCamelCase_ , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _a : List[str] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _a : Union[str, Any] = set(range(len(mod.weight.size() ) ) ) - axis_set _a : Optional[int] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=UpperCamelCase_ , keepdims=UpperCamelCase_ ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) _a : List[Any] = amax def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_=25 , UpperCamelCase_=180 , UpperCamelCase_=None ): if ignore is None: _a : Any = [] elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _a : int = [ignore] _a : Any = 0 for name, mod in model.named_modules(): if not hasattr(UpperCamelCase_ , '''weight''' ): continue _a : str = max(UpperCamelCase_ , len(UpperCamelCase_ ) ) for name, mod in model.named_modules(): _a : Any = getattr(UpperCamelCase_ , '''_input_quantizer''' , UpperCamelCase_ ) _a : int = getattr(UpperCamelCase_ , '''_weight_quantizer''' , UpperCamelCase_ ) if not hasattr(UpperCamelCase_ , '''weight''' ): continue if type(UpperCamelCase_ ) in ignore: continue if [True for s in ignore if type(UpperCamelCase_ ) is str and s in name]: continue _a : Any = f"""Act:{input_q.extra_repr()}""" _a : List[str] = f"""Wgt:{weight_q.extra_repr()}""" _a : Optional[Any] = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(UpperCamelCase_ ) <= line_width: logger.info(UpperCamelCase_ ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{" ":{name_width}} {wgt_str}""" ) def lowerCamelCase_ ( UpperCamelCase_ ): _a : List[Any] = 0 for name, mod in model.named_modules(): if isinstance(UpperCamelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): _a : List[str] = getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if quantizer_mod is not None: assert hasattr(UpperCamelCase_ , UpperCamelCase_ ) setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: logger.warning(f"""{name} has no {quantizer}""" ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="both" , **UpperCamelCase_ ): _a : List[Any] = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(UpperCamelCase_ , UpperCamelCase_ , '''_input_quantizer''' , UpperCamelCase_ , UpperCamelCase_ ) if which in ["weight", "both"]: set_quantizer(UpperCamelCase_ , UpperCamelCase_ , '''_weight_quantizer''' , UpperCamelCase_ , UpperCamelCase_ ) logger.info(UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ): for name, mod in model.named_modules(): if hasattr(UpperCamelCase_ , '''_input_quantizer''' ) or hasattr(UpperCamelCase_ , '''_weight_quantizer''' ): for n in names: if re.search(UpperCamelCase_ , UpperCamelCase_ ): set_quantizers(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(UpperCamelCase_ , UpperCamelCase_ ): _a : List[Any] = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) logger.info(UpperCamelCase_ )
249
1
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowercase : Tuple = NewType('DataClass', Any) lowercase : Tuple = NewType('DataClassType', Any) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Optional[Any] = {str(snake_case__ ): choice for choice in choices} return lambda snake_case__ : str_to_choice.get(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( *, snake_case__ = None , snake_case__ = None , snake_case__ = dataclasses.MISSING , snake_case__ = dataclasses.MISSING , snake_case__ = None , **snake_case__ , ): '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A : Optional[int] = {} if aliases is not None: A : Dict = aliases if help is not None: A : str = help return dataclasses.field(metadata=snake_case__ , default=snake_case__ , default_factory=snake_case__ , **snake_case__ ) class A ( __snake_case ): __magic_name__ = 42 def __init__( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if "formatter_class" not in kwargs: A : int = ArgumentDefaultsHelpFormatter super().__init__(**SCREAMING_SNAKE_CASE ) if dataclasses.is_dataclass(SCREAMING_SNAKE_CASE ): A : Tuple = [dataclass_types] A : Optional[Any] = list(SCREAMING_SNAKE_CASE ) for dtype in self.dataclass_types: self._add_dataclass_arguments(SCREAMING_SNAKE_CASE ) @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : Union[str, Any] = F'--{field.name}' A : int = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , SCREAMING_SNAKE_CASE ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) A : str = kwargs.pop('''aliases''' , [] ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Union[str, Any] = [aliases] A : int = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(SCREAMING_SNAKE_CASE , '''UnionType''' ) and isinstance(SCREAMING_SNAKE_CASE , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(SCREAMING_SNAKE_CASE ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F' Problem encountered in field \'{field.name}\'.' ) if type(SCREAMING_SNAKE_CASE ) not in field.type.__args__: # filter `str` in Union A : Dict = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A : List[str] = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A : Dict = ( field.type.__args__[0] if isinstance(SCREAMING_SNAKE_CASE , field.type.__args__[1] ) else field.type.__args__[1] ) A : Dict = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A : List[Any] = {} if origin_type is Literal or (isinstance(field.type , SCREAMING_SNAKE_CASE ) and issubclass(field.type , SCREAMING_SNAKE_CASE )): if origin_type is Literal: A : int = field.type.__args__ else: A : str = [x.value for x in field.type] A : List[str] = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: A : List[str] = field.default else: A : List[str] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A : Tuple = copy(SCREAMING_SNAKE_CASE ) # Hack because type=bool in argparse does not behave as we want. A : Optional[Any] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A : Tuple = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A : List[str] = default # This tells argparse we accept 0 or 1 value after --field_name A : List[str] = '''?''' # This is the value that will get picked if we do --field_name (without value) A : Tuple = True elif isclass(SCREAMING_SNAKE_CASE ) and issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Dict = field.type.__args__[0] A : str = '''+''' if field.default_factory is not dataclasses.MISSING: A : Any = field.default_factory() elif field.default is dataclasses.MISSING: A : Optional[int] = True else: A : Any = field.type if field.default is not dataclasses.MISSING: A : Optional[int] = field.default elif field.default_factory is not dataclasses.MISSING: A : List[Any] = field.default_factory() else: A : Optional[int] = True parser.add_argument(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A : List[Any] = False parser.add_argument(F'--no_{field.name}' , action='''store_false''' , dest=field.name , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if hasattr(SCREAMING_SNAKE_CASE , '''_argument_group_name''' ): A : Optional[int] = self.add_argument_group(dtype._argument_group_name ) else: A : int = self try: A : Dict[str, type] = get_type_hints(SCREAMING_SNAKE_CASE ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(SCREAMING_SNAKE_CASE ): A : List[str] = '''.'''.join(map(SCREAMING_SNAKE_CASE , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(SCREAMING_SNAKE_CASE ): if not field.init: continue A : List[str] = type_hints[field.name] self._parse_dataclass_field(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ) -> Tuple[DataClass, ...]: """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A : Optional[Any] = [] if args_filename: args_files.append(Path(SCREAMING_SNAKE_CASE ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A : List[str] = ArgumentParser() args_file_parser.add_argument(SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) A, A : List[Any] = args_file_parser.parse_known_args(args=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = vars(SCREAMING_SNAKE_CASE ).get(args_file_flag.lstrip('''-''' ) , SCREAMING_SNAKE_CASE ) if cmd_args_file_paths: args_files.extend([Path(SCREAMING_SNAKE_CASE ) for p in cmd_args_file_paths] ) A : Tuple = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A : Tuple = file_args + args if args is not None else file_args + sys.argv[1:] A, A : List[str] = self.parse_known_args(args=SCREAMING_SNAKE_CASE ) A : Union[str, Any] = [] for dtype in self.dataclass_types: A : Union[str, Any] = {f.name for f in dataclasses.fields(SCREAMING_SNAKE_CASE ) if f.init} A : Dict = {k: v for k, v in vars(SCREAMING_SNAKE_CASE ).items() if k in keys} for k in keys: delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[Any] = dtype(**SCREAMING_SNAKE_CASE ) outputs.append(SCREAMING_SNAKE_CASE ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(SCREAMING_SNAKE_CASE ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> Tuple[DataClass, ...]: """simple docstring""" A : Optional[Any] = set(args.keys() ) A : List[str] = [] for dtype in self.dataclass_types: A : List[str] = {f.name for f in dataclasses.fields(SCREAMING_SNAKE_CASE ) if f.init} A : Tuple = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A : Optional[int] = dtype(**SCREAMING_SNAKE_CASE ) outputs.append(SCREAMING_SNAKE_CASE ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(SCREAMING_SNAKE_CASE )}' ) return tuple(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> Tuple[DataClass, ...]: """simple docstring""" with open(Path(SCREAMING_SNAKE_CASE ) , encoding='''utf-8''' ) as open_json_file: A : Dict = json.loads(open_json_file.read() ) A : Tuple = self.parse_dict(SCREAMING_SNAKE_CASE , allow_extra_keys=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> Tuple[DataClass, ...]: """simple docstring""" A : Optional[int] = self.parse_dict(yaml.safe_load(Path(SCREAMING_SNAKE_CASE ).read_text() ) , allow_extra_keys=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE )
634
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : int = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class A ( __snake_case ): __magic_name__ = '''deta''' __magic_name__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=900 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=2048 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=1024 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu" , SCREAMING_SNAKE_CASE=256 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE="sine" , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=300 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.25 , **SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A : Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : List[Any] = backbone_config.pop('''model_type''' ) A : List[Any] = CONFIG_MAPPING[backbone_model_type] A : Optional[int] = config_class.from_dict(SCREAMING_SNAKE_CASE ) A : str = backbone_config A : Optional[int] = num_queries A : Dict = max_position_embeddings A : Optional[Any] = d_model A : Optional[Any] = encoder_ffn_dim A : List[str] = encoder_layers A : Tuple = encoder_attention_heads A : Optional[Any] = decoder_ffn_dim A : Optional[int] = decoder_layers A : List[str] = decoder_attention_heads A : Union[str, Any] = dropout A : str = attention_dropout A : Any = activation_dropout A : Optional[int] = activation_function A : Tuple = init_std A : Any = init_xavier_std A : Optional[Any] = encoder_layerdrop A : int = auxiliary_loss A : Dict = position_embedding_type # deformable attributes A : str = num_feature_levels A : Optional[int] = encoder_n_points A : Any = decoder_n_points A : Tuple = two_stage A : Dict = two_stage_num_proposals A : List[str] = with_box_refine A : List[str] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher A : Dict = class_cost A : Optional[int] = bbox_cost A : Optional[Any] = giou_cost # Loss coefficients A : int = mask_loss_coefficient A : int = dice_loss_coefficient A : Tuple = bbox_loss_coefficient A : int = giou_loss_coefficient A : Dict = eos_coefficient A : Optional[Any] = focal_alpha super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def __lowerCAmelCase ( self ) -> int: """simple docstring""" return self.d_model def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Any = copy.deepcopy(self.__dict__ ) A : Dict = self.backbone_config.to_dict() A : List[Any] = self.__class__.model_type return output
634
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCamelCase = 'http://www.mocksite.com/file1.txt' UpperCamelCase = '"text": ["foo", "foo"]' UpperCamelCase = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class _A : lowercase_ : Any = 200 lowercase_ : Dict = {'''Content-Length''': '''100'''} lowercase_ : Tuple = {} def a ( self : str , **lowerCamelCase__ : Optional[Any] ): """simple docstring""" return [bytes(lowerCamelCase__ , """utf-8""" )] def __lowerCamelCase ( *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : Optional[int] ) -> str: return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> List[Any]: import requests monkeypatch.setattr(__lowerCAmelCase , """request""" , __lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = URL if issubclass(__lowerCAmelCase , __lowerCAmelCase ): __UpperCamelCase : int = url elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): __UpperCamelCase : Tuple = [url] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): __UpperCamelCase : List[Any] = {"""train""": url} __UpperCamelCase : str = """dummy""" __UpperCamelCase : int = """downloads""" __UpperCamelCase : List[Any] = tmp_path __UpperCamelCase : str = DownloadConfig( cache_dir=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , use_etag=__lowerCAmelCase , ) __UpperCamelCase : List[Any] = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) __UpperCamelCase : Tuple = dl_manager.download(__lowerCAmelCase ) __UpperCamelCase : Dict = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __UpperCamelCase : Tuple = [downloaded_paths] __UpperCamelCase : int = [urls] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in downloaded_paths.keys() __UpperCamelCase : Dict = downloaded_paths.values() __UpperCamelCase : Tuple = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCAmelCase , __lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __UpperCamelCase : Tuple = Path(__lowerCAmelCase ) __UpperCamelCase : Optional[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __UpperCamelCase : Dict = downloaded_path.read_text() assert content == CONTENT __UpperCamelCase : Optional[Any] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() __UpperCamelCase : List[Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict ) -> Tuple: __UpperCamelCase : Optional[int] = str(__lowerCAmelCase ) if issubclass(__lowerCAmelCase , __lowerCAmelCase ): __UpperCamelCase : List[str] = filename elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): __UpperCamelCase : List[str] = [filename] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): __UpperCamelCase : List[str] = {"""train""": filename} __UpperCamelCase : Optional[Any] = """dummy""" __UpperCamelCase : Tuple = xz_file.parent __UpperCamelCase : Optional[int] = """extracted""" __UpperCamelCase : Dict = DownloadConfig( cache_dir=__lowerCAmelCase , use_etag=__lowerCAmelCase , ) __UpperCamelCase : List[str] = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) __UpperCamelCase : int = dl_manager.extract(__lowerCAmelCase ) __UpperCamelCase : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __UpperCamelCase : Tuple = [extracted_paths] __UpperCamelCase : List[str] = [paths] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in extracted_paths.keys() __UpperCamelCase : Tuple = extracted_paths.values() __UpperCamelCase : Any = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCAmelCase , __lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __UpperCamelCase : Dict = Path(__lowerCAmelCase ) __UpperCamelCase : Dict = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCAmelCase , etag=__lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __UpperCamelCase : int = extracted_path.read_text() __UpperCamelCase : Tuple = text_file.read_text() assert extracted_file_content == expected_file_content def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] ) -> str: assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(__lowerCAmelCase , start=1 ): __UpperCamelCase : Dict = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ) -> List[str]: __UpperCamelCase : List[Any] = request.getfixturevalue(__lowerCAmelCase ) __UpperCamelCase : Dict = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ) -> Dict: __UpperCamelCase : Optional[Any] = request.getfixturevalue(__lowerCAmelCase ) __UpperCamelCase : Dict = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> str: __UpperCamelCase : Optional[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCAmelCase ) , start=1 ): assert os.path.basename(__lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
515
def __lowerCamelCase ( __lowerCAmelCase : list ) -> list: __UpperCamelCase : Dict = len(__lowerCAmelCase ) for i in range(1 , __lowerCAmelCase ): __UpperCamelCase : Dict = collection[i] __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : Dict = i - 1 while low <= high: __UpperCamelCase : int = (low + high) // 2 if val < collection[mid]: __UpperCamelCase : str = mid - 1 else: __UpperCamelCase : str = mid + 1 for j in range(__lowerCAmelCase , __lowerCAmelCase , -1 ): __UpperCamelCase : str = collection[j - 1] __UpperCamelCase : int = val return collection if __name__ == "__main__": UpperCamelCase = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
515
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = field(default=A__ , metadata={"help": "Whether to use SortishSampler or not."} ) snake_case_ = field( default=A__ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) snake_case_ = field( default=A__ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) snake_case_ = field( default=A__ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) snake_case_ = field( default=A__ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def lowerCAmelCase ( self : Optional[Any] )-> Dict: snake_case = super().to_dict() for k, v in d.items(): if isinstance(__snake_case , __snake_case ): snake_case = v.to_dict() return d
369
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger() def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : str , __lowerCAmelCase : LevitConfig , __lowerCAmelCase : Path , __lowerCAmelCase : bool = True ) -> int: print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": snake_case = timm.create_model("""levit_128s""" , pretrained=__lowerCAmelCase ) else: snake_case = timm.create_model("""levit_128""" , pretrained=__lowerCAmelCase ) if hidden_sizes == 1_92: snake_case = timm.create_model("""levit_192""" , pretrained=__lowerCAmelCase ) if hidden_sizes == 2_56: snake_case = timm.create_model("""levit_256""" , pretrained=__lowerCAmelCase ) if hidden_sizes == 3_84: snake_case = timm.create_model("""levit_384""" , pretrained=__lowerCAmelCase ) from_model.eval() snake_case = LevitForImageClassificationWithTeacher(__lowerCAmelCase ).eval() snake_case = OrderedDict() snake_case = from_model.state_dict() snake_case = list(from_model.state_dict().keys() ) snake_case = list(our_model.state_dict().keys() ) print(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for i in range(len(__lowerCAmelCase ) ): snake_case = weights[og_keys[i]] our_model.load_state_dict(__lowerCAmelCase ) snake_case = torch.randn((2, 3, 2_24, 2_24) ) snake_case = from_model(__lowerCAmelCase ) snake_case = our_model(__lowerCAmelCase ).logits assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ), "The model logits don't match the original one." snake_case = name print(__lowerCAmelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) snake_case = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def __lowerCamelCase ( __lowerCAmelCase : Path , __lowerCAmelCase : str = None , __lowerCAmelCase : bool = True ) -> List[Any]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = (1, num_labels) snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) snake_case = { """levit-128S""": 1_28, """levit-128""": 1_28, """levit-192""": 1_92, """levit-256""": 2_56, """levit-384""": 3_84, } snake_case = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
369
1
"""simple docstring""" from __future__ import annotations def A ( snake_case :int ) -> int: __UpperCamelCase = 2 __UpperCamelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case__ ) if n > 1: factors.append(snake_case__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> int: return int(input_a == input_a == 0 ) def A ( ) -> None: print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(f'| 0 | 0 | {nor_gate(0 , 0 )} |' ) print(f'| 0 | 1 | {nor_gate(0 , 1 )} |' ) print(f'| 1 | 0 | {nor_gate(1 , 0 )} |' ) print(f'| 1 | 1 | {nor_gate(1 , 1 )} |' ) if __name__ == "__main__": import doctest doctest.testmod() main()
293
0
def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ): lowerCAmelCase_ : Any = len(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = [] for i in range(len(__UpperCamelCase ) - pat_len + 1 ): lowerCAmelCase_ : str = True for j in range(__UpperCamelCase ): if s[i + j] != pattern[j]: lowerCAmelCase_ : List[Any] = False break if match_found: position.append(__UpperCamelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
171
from string import ascii_uppercase A__ : Union[str, Any] = {char: i for i, char in enumerate(ascii_uppercase)} A__ : Any = dict(enumerate(ascii_uppercase)) def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ): lowerCAmelCase_ : int = len(__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = 0 while True: if x == i: lowerCAmelCase_ : Optional[int] = 0 if len(__UpperCamelCase ) == len(__UpperCamelCase ): break key += key[i] i += 1 return key def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ): lowerCAmelCase_ : Optional[Any] = '''''' lowerCAmelCase_ : int = 0 for letter in message: if letter == " ": cipher_text += " " else: lowerCAmelCase_ : Tuple = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ): lowerCAmelCase_ : Tuple = '''''' lowerCAmelCase_ : Any = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: lowerCAmelCase_ : Optional[int] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def UpperCamelCase( ): lowerCAmelCase_ : Tuple = '''THE GERMAN ATTACK''' lowerCAmelCase_ : Dict = '''SECRET''' lowerCAmelCase_ : Union[str, Any] = generate_key(__UpperCamelCase ,__UpperCamelCase ) lowerCAmelCase_ : int = cipher_text(__UpperCamelCase ,__UpperCamelCase ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(__UpperCamelCase ,__UpperCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
171
1
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class lowercase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : int=1 , snake_case__ : Dict=False , **snake_case__ : List[str] ): super().__init__(**snake_case__ ) lowerCamelCase_ : Optional[int] =vocab_size lowerCamelCase_ : Any =d_embed lowerCamelCase_ : Dict =d_proj lowerCamelCase_ : Optional[int] =cutoffs + [vocab_size] lowerCamelCase_ : Union[str, Any] =[0] + self.cutoffs lowerCamelCase_ : Any =div_val lowerCamelCase_ : List[Any] =self.cutoffs[0] lowerCamelCase_ : Union[str, Any] =len(self.cutoffs ) - 1 lowerCamelCase_ : List[str] =self.shortlist_size + self.n_clusters lowerCamelCase_ : int =keep_order lowerCamelCase_ : Optional[Any] =[] lowerCamelCase_ : List[Any] =[] def UpperCAmelCase__ ( self : Any , snake_case__ : List[str] ): if self.n_clusters > 0: lowerCamelCase_ : Dict =self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=snake_case__ , name="cluster_weight" ) lowerCamelCase_ : Optional[Any] =self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=snake_case__ , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCamelCase_ : Any =self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=snake_case__ , name=F"""out_projs_._{i}""" , ) self.out_projs.append(snake_case__ ) else: self.out_projs.append(snake_case__ ) lowerCamelCase_ : Tuple =self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=snake_case__ , name=F"""out_layers_._{i}_._weight""" , ) lowerCamelCase_ : Dict =self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=snake_case__ , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCamelCase_ : Any =self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCamelCase_ : List[str] =self.d_embed // (self.div_val**i) lowerCamelCase_ : List[Any] =self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=snake_case__ , name=F"""out_projs_._{i}""" ) self.out_projs.append(snake_case__ ) lowerCamelCase_ : Dict =self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=snake_case__ , name=F"""out_layers_._{i}_._weight""" , ) lowerCamelCase_ : int =self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=snake_case__ , name=F"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(snake_case__ ) @staticmethod def UpperCAmelCase__ ( snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Any=None ): lowerCamelCase_ : List[Any] =x if proj is not None: lowerCamelCase_ : Tuple =tf.einsum("ibd,ed->ibe" , snake_case__ , snake_case__ ) return tf.einsum("ibd,nd->ibn" , snake_case__ , snake_case__ ) + b @staticmethod def UpperCAmelCase__ ( snake_case__ : int , snake_case__ : Tuple ): lowerCamelCase_ : int =shape_list(snake_case__ ) lowerCamelCase_ : Optional[Any] =tf.range(lp_size[0] , dtype=target.dtype ) lowerCamelCase_ : Union[str, Any] =tf.stack([r, target] , 1 ) return tf.gather_nd(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Dict=True , snake_case__ : Tuple=False ): lowerCamelCase_ : Optional[Any] =0 if self.n_clusters == 0: lowerCamelCase_ : Optional[Any] =self._logit(snake_case__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCamelCase_ : Dict =tf.nn.sparse_softmax_cross_entropy_with_logits(labels=snake_case__ , logits=snake_case__ ) lowerCamelCase_ : Tuple =tf.nn.log_softmax(snake_case__ , axis=-1 ) else: lowerCamelCase_ : Tuple =shape_list(snake_case__ ) lowerCamelCase_ : Union[str, Any] =[] lowerCamelCase_ : Tuple =tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCamelCase_ : Dict =self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCamelCase_ : Dict =(target >= l_idx) & (target < r_idx) lowerCamelCase_ : List[str] =tf.where(snake_case__ ) lowerCamelCase_ : List[Any] =tf.boolean_mask(snake_case__ , snake_case__ ) - l_idx if self.div_val == 1: lowerCamelCase_ : List[Any] =self.out_layers[0][0][l_idx:r_idx] lowerCamelCase_ : Union[str, Any] =self.out_layers[0][1][l_idx:r_idx] else: lowerCamelCase_ : Any =self.out_layers[i][0] lowerCamelCase_ : Union[str, Any] =self.out_layers[i][1] if i == 0: lowerCamelCase_ : int =tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCamelCase_ : str =tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCamelCase_ : Tuple =self._logit(snake_case__ , snake_case__ , snake_case__ , self.out_projs[0] ) lowerCamelCase_ : Dict =tf.nn.log_softmax(snake_case__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCamelCase_ : Union[str, Any] =tf.boolean_mask(snake_case__ , snake_case__ ) lowerCamelCase_ : Union[str, Any] =self._gather_logprob(snake_case__ , snake_case__ ) else: lowerCamelCase_ : Dict =self._logit(snake_case__ , snake_case__ , snake_case__ , self.out_projs[i] ) lowerCamelCase_ : List[Any] =tf.nn.log_softmax(snake_case__ ) lowerCamelCase_ : Tuple =self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCamelCase_ : Any =head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(snake_case__ ) if target is not None: lowerCamelCase_ : Optional[Any] =tf.boolean_mask(snake_case__ , snake_case__ ) lowerCamelCase_ : Union[str, Any] =tf.boolean_mask(snake_case__ , snake_case__ ) lowerCamelCase_ : Optional[int] =self._gather_logprob(snake_case__ , snake_case__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(snake_case__ , -cur_logprob , shape_list(snake_case__ ) ) lowerCamelCase_ : Optional[Any] =tf.concat(snake_case__ , axis=-1 ) if target is not None: if return_mean: lowerCamelCase_ : str =tf.reduce_mean(snake_case__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(snake_case__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(snake_case__ , name=self.name , aggregation="mean" if return_mean else "" ) return out
714
"""simple docstring""" import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig A__ : Optional[Any] = logging.get_logger(__name__) A__ : Tuple = 'T5Config' def _snake_case ( lowerCamelCase__ : jnp.array , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> jnp.ndarray: lowerCamelCase_ : Optional[Any] =jnp.zeros_like(lowerCamelCase__ ) lowerCamelCase_ : Dict =shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) lowerCamelCase_ : Union[str, Any] =shifted_input_ids.at[:, 0].set(lowerCamelCase__ ) lowerCamelCase_ : Optional[int] =jnp.where(shifted_input_ids == -100 , lowerCamelCase__ , lowerCamelCase__ ) return shifted_input_ids class lowercase__ ( snake_case__ ): _UpperCAmelCase :Dict = "mt5" _UpperCAmelCase :Tuple = MTaConfig class lowercase__ ( snake_case__ ): _UpperCAmelCase :Any = "mt5" _UpperCAmelCase :Optional[int] = MTaConfig class lowercase__ ( snake_case__ ): _UpperCAmelCase :Any = "mt5" _UpperCAmelCase :Tuple = MTaConfig
244
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def __snake_case ( _UpperCamelCase ) -> Union[str, Any]: assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def __snake_case ( ) -> int: assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def __snake_case ( ) -> int: _a = '''mock-s3-bucket''' _a = f"s3://{mock_bucket}" _a = extract_path_from_uri(_UpperCamelCase ) assert dataset_path.startswith('''s3://''' ) is False _a = '''./local/path''' _a = extract_path_from_uri(_UpperCamelCase ) assert dataset_path == new_dataset_path def __snake_case ( _UpperCamelCase ) -> str: _a = is_remote_filesystem(_UpperCamelCase ) assert is_remote is True _a = fsspec.filesystem('''file''' ) _a = is_remote_filesystem(_UpperCamelCase ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , _UpperCamelCase ) def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: _a = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} _a = input_paths[compression_fs_class.protocol] if input_path is None: _a = f"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_UpperCamelCase ) _a = fsspec.filesystem(compression_fs_class.protocol , fo=_UpperCamelCase ) assert isinstance(_UpperCamelCase , _UpperCamelCase ) _a = os.path.basename(_UpperCamelCase ) _a = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(_UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f, open(_UpperCamelCase , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: _a = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} _a = compressed_file_paths[protocol] _a = '''dataset.jsonl''' _a = f"{protocol}://{member_file_path}::{compressed_file_path}" _a , *_a = fsspec.get_fs_token_paths(_UpperCamelCase ) assert fs.isfile(_UpperCamelCase ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: _a = hf_api.dataset_info(_UpperCamelCase , token=_UpperCamelCase ) _a = HfFileSystem(repo_info=_UpperCamelCase , token=_UpperCamelCase ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(_UpperCamelCase ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def __snake_case ( ) -> int: _a = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_UpperCamelCase , _UpperCamelCase , clobber=_UpperCamelCase ) with pytest.warns(_UpperCamelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_UpperCamelCase ) == 1 assert ( str(warning_info[0].message ) == f"A filesystem protocol was already set for {protocol} and will be overwritten." )
487
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __snake_case ( ) -> Any: _a , _a = 9, 14 # noqa: F841 _a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _a = defaultdict(_UpperCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _a = mst(_UpperCamelCase ) _a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _a = tuple(answer[:2] ) _a = tuple(edge[::-1] ) assert edge in result or reverse in result
487
1
from numpy import exp, pi, sqrt def UpperCamelCase_ ( __a , __a = 0.0 , __a = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
151
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a , __a , __a ) -> Tuple: a__ : Union[str, Any] = os.path.abspath(__a ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model a__ : str = tf.train.list_variables(__a ) a__ : Tuple = [] a__ : Any = [] a__ : List[str] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") a__ : Optional[Any] = full_name.split("/" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' a__ : Tuple = name[1:] # figure out how many levels deep the name is a__ : Tuple = 0 for _name in name: if _name.startswith("layer_with_weights" ): depth += 1 else: break layer_depth.append(__a ) # read data a__ : str = tf.train.load_variable(__a , __a ) names.append("/".join(__a ) ) arrays.append(__a ) logger.info(f'''Read a total of {len(__a ):,} layers''' ) # Sanity check if len(set(__a ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(__a ) )})''' ) a__ : int = list(set(__a ) )[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP" " heads." ) # convert layers logger.info("Converting weights..." ) for full_name, array in zip(__a , __a ): a__ : str = full_name.split("/" ) a__ : str = model a__ : List[Any] = [] for i, m_name in enumerate(__a ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights" ): a__ : int = int(m_name.split("-" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"] ) a__ : int = getattr(__a , "embeddings" ) a__ : Optional[Any] = getattr(__a , "LayerNorm" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4 )] ) a__ : str = getattr(__a , "encoder" ) a__ : str = getattr(__a , "layer" ) a__ : List[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"] ) a__ : Any = getattr(__a , "pooler" ) a__ : List[str] = getattr(__a , "dense" ) elif m_name == "embeddings": trace.append("embeddings" ) a__ : List[Any] = getattr(__a , "embeddings" ) if layer_num == 0: trace.append("word_embeddings" ) a__ : Optional[Any] = getattr(__a , "word_embeddings" ) elif layer_num == 1: trace.append("position_embeddings" ) a__ : int = getattr(__a , "position_embeddings" ) elif layer_num == 2: trace.append("token_type_embeddings" ) a__ : Tuple = getattr(__a , "token_type_embeddings" ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append("weight" ) a__ : Dict = getattr(__a , "weight" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"] ) a__ : str = getattr(__a , "attention" ) a__ : str = getattr(__a , "self" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"] ) a__ : Tuple = getattr(__a , "attention" ) a__ : Any = getattr(__a , "output" ) a__ : Tuple = getattr(__a , "LayerNorm" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"] ) a__ : Optional[Any] = getattr(__a , "attention" ) a__ : Tuple = getattr(__a , "output" ) a__ : Dict = getattr(__a , "dense" ) elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"] ) a__ : Any = getattr(__a , "output" ) a__ : List[Any] = getattr(__a , "dense" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"] ) a__ : Any = getattr(__a , "output" ) a__ : Optional[int] = getattr(__a , "LayerNorm" ) elif m_name == "_key_dense": # attention key trace.append("key" ) a__ : int = getattr(__a , "key" ) elif m_name == "_query_dense": # attention query trace.append("query" ) a__ : Optional[Any] = getattr(__a , "query" ) elif m_name == "_value_dense": # attention value trace.append("value" ) a__ : Dict = getattr(__a , "value" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"] ) a__ : Union[str, Any] = getattr(__a , "intermediate" ) a__ : List[Any] = getattr(__a , "dense" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("output" ) a__ : int = getattr(__a , "output" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias" ) a__ : List[Any] = getattr(__a , "bias" ) elif m_name in ["kernel", "gamma"]: trace.append("weight" ) a__ : Optional[int] = getattr(__a , "weight" ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary a__ : List[str] = ".".join(__a ) if re.match(R"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , __a ) or re.match( R"(\S+)\.attention\.output\.dense\.weight" , __a ): a__ : List[Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: a__ : List[str] = array.transpose() if pointer.shape == array.shape: a__ : Dict = torch.from_numpy(__a ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def UpperCamelCase_ ( __a , __a , __a ) -> Optional[int]: # Instantiate model logger.info(f'''Loading model based on config from {config_path}...''' ) a__ : Union[str, Any] = BertConfig.from_json_file(__a ) a__ : Optional[int] = BertModel(__a ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(__a , __a , __a ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) UpperCamelCase : int = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
151
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __A : Dict = random.Random() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__=1.0 , UpperCamelCase__=None , UpperCamelCase__=None ) -> Any: '''simple docstring''' if rng is None: UpperCAmelCase = global_rng UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A_ (unittest.TestCase ): def __init__( self , _A , _A=7 , _A=4_0_0 , _A=2_0_0_0 , _A=1 , _A=0.0 , _A=1_6_0_0_0 , _A=True , _A=True , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = min_seq_length UpperCAmelCase = max_seq_length UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase = feature_size UpperCAmelCase = padding_value UpperCAmelCase = sampling_rate UpperCAmelCase = return_attention_mask UpperCAmelCase = do_normalize def _lowercase ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase ( self , _A=False , _A=False ): '''simple docstring''' def _flatten(_A ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(_A ) for x in speech_inputs] return speech_inputs class A_ (a_ , unittest.TestCase ): UpperCAmelCase__ = WavaVecaFeatureExtractor def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = WavaVecaFeatureExtractionTester(self ) def _lowercase ( self , _A ): '''simple docstring''' self.assertTrue(np.all(np.mean(_A , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_A , axis=0 ) - 1 ) < 1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test batched UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCAmelCase = np.asarray(_A ) UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): UpperCAmelCase = feat_extract(_A , padding=_A , max_length=_A , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) UpperCAmelCase = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(_A , _A ): UpperCAmelCase = feat_extract(_A , max_length=_A , padding=_A ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding='''max_length''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=1_0_0_0 , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = feat_extract( _A , truncation=_A , max_length=2_0_0_0 , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def _lowercase ( self ): '''simple docstring''' import torch UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _lowercase ( self ): '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCAmelCase = WavaVecaConfig.from_pretrained(_A ) UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_A ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
130
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: __A : int = None __A : int = logging.get_logger(__name__) __A : Any = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A : List[str] = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } __A : Any = { "xlnet-base-cased": None, "xlnet-large-cased": None, } __A : List[str] = "▁" # Segments (not really needed) __A : Tuple = 0 __A : str = 1 __A : Any = 2 __A : Dict = 3 __A : Any = 4 class A_ (a_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = '''left''' UpperCAmelCase__ = XLNetTokenizer def __init__( self , _A=None , _A=None , _A=False , _A=True , _A=False , _A="<s>" , _A="</s>" , _A="<unk>" , _A="<sep>" , _A="<pad>" , _A="<cls>" , _A="<mask>" , _A=["<eop>", "<eod>"] , **_A , ): '''simple docstring''' UpperCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( vocab_file=_A , tokenizer_file=_A , do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , additional_special_tokens=_A , **_A , ) UpperCAmelCase = 3 UpperCAmelCase = do_lower_case UpperCAmelCase = remove_space UpperCAmelCase = keep_accents UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self , _A , _A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
130
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowercase_ ( *_UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase=True , _UpperCamelCase=2 ): '''simple docstring''' from .. import __version__ __lowercase = take_from __lowercase = () if not isinstance(args[0] , _UpperCamelCase ): __lowercase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_UpperCamelCase ).base_version ) >= version.parse(_UpperCamelCase ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) __lowercase = None if isinstance(_UpperCamelCase , _UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_UpperCamelCase ),) __lowercase = F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(_UpperCamelCase , _UpperCamelCase ): values += (getattr(_UpperCamelCase , _UpperCamelCase ),) __lowercase = F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: __lowercase = F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: __lowercase = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , _UpperCamelCase , stacklevel=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) > 0: __lowercase = inspect.getouterframes(inspect.currentframe() )[1] __lowercase = call_frame.filename __lowercase = call_frame.lineno __lowercase = call_frame.function __lowercase , __lowercase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(_UpperCamelCase ) == 0: return elif len(_UpperCamelCase ) == 1: return values[0] return values
702
from itertools import count def lowercase_ ( _UpperCamelCase = 50 ): '''simple docstring''' __lowercase = [1] * min_block_length for n in count(_UpperCamelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'''{solution() = }''')
527
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _lowerCamelCase =logging.getLogger(__name__) _lowerCamelCase =5_0 # max width of layer names _lowerCamelCase =7_0 # max width of quantizer names def _a ( lowerCamelCase ): lowerCamelCase : Optional[int] = parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""", type=lowerCamelCase, default=8, help="""weight precision""" ) group.add_argument("""--aprec""", type=lowerCamelCase, default=8, help="""activation precision""" ) group.add_argument("""--quant-per-tensor""", action="""store_true""", help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""", action="""store_true""", help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""", action="""store_true""", help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""", type=lowerCamelCase, nargs="""+""", help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""", type=lowerCamelCase, help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""", type=lowerCamelCase, help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""", default="""max""", help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""", default=lowerCamelCase, type=lowerCamelCase, help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""", action="""store_true""", help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""", metavar="""N""", type=lowerCamelCase, help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""", action="""store_true""", help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ), ) def _a ( lowerCamelCase ): if args.calibrator == "max": lowerCamelCase : Union[str, Any] = """max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) lowerCamelCase : Optional[Any] = """histogram""" elif args.calibrator == "mse": lowerCamelCase : Optional[Any] = """histogram""" else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) lowerCamelCase : Optional[int] = QuantDescriptor(num_bits=args.aprec, calib_method=lowerCamelCase ) lowerCamelCase : List[Any] = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCamelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCamelCase ) def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=False ): logger.info("""Configuring Model for Quantization""" ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCamelCase, ["""embeddings"""], which="""weight""", _disabled=lowerCamelCase ) if args.quant_disable: set_quantizer_by_name(lowerCamelCase, [""""""], _disabled=lowerCamelCase ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCamelCase, args.quant_disable_keyword, _disabled=lowerCamelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCamelCase, [R"""layer.\d+.""" + args.quant_disable_layer_module], _disabled=lowerCamelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCamelCase, [R"""layer.\d+.""" + args.quant_enable_layer_module], _disabled=lowerCamelCase ) if args.recalibrate_weights: recalibrate_weights(lowerCamelCase ) if args.fuse_qkv: fuse_qkv(lowerCamelCase, lowerCamelCase ) if args.clip_gelu: clip_gelu(lowerCamelCase, args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCamelCase ) def _a ( lowerCamelCase ): logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _a ( lowerCamelCase, lowerCamelCase ): logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator, calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""", percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCamelCase ) def _a ( lowerCamelCase, lowerCamelCase ): def fusea(lowerCamelCase, lowerCamelCase, lowerCamelCase ): for mod in [qq, qk, qv]: if not hasattr(lowerCamelCase, """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return lowerCamelCase : Optional[int] = qq._amax.detach().item() lowerCamelCase : Union[str, Any] = qk._amax.detach().item() lowerCamelCase : Tuple = qv._amax.detach().item() lowerCamelCase : int = max(lowerCamelCase, lowerCamelCase, lowerCamelCase ) qq._amax.fill_(lowerCamelCase ) qk._amax.fill_(lowerCamelCase ) qv._amax.fill_(lowerCamelCase ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer ) def _a ( lowerCamelCase, lowerCamelCase ): for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): lowerCamelCase : List[Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCamelCase ) lowerCamelCase : List[str] = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _a ( lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase, """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: lowerCamelCase : Dict = mod.weight.shape[0] lowerCamelCase : Tuple = mod._weight_quantizer._amax.detach() lowerCamelCase : Tuple = torch.ones(lowerCamelCase, dtype=amax.dtype, device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _a ( lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase, """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer, """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCamelCase : List[Any] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCamelCase : str = set(range(len(mod.weight.size() ) ) ) - axis_set lowerCamelCase : Optional[Any] = pytorch_quantization.utils.reduce_amax(mod.weight, axis=lowerCamelCase, keepdims=lowerCamelCase ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) lowerCamelCase : Optional[int] = amax def _a ( lowerCamelCase, lowerCamelCase=25, lowerCamelCase=180, lowerCamelCase=None ): if ignore is None: lowerCamelCase : Union[str, Any] = [] elif not isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase : Dict = [ignore] lowerCamelCase : Any = 0 for name, mod in model.named_modules(): if not hasattr(lowerCamelCase, """weight""" ): continue lowerCamelCase : str = max(lowerCamelCase, len(lowerCamelCase ) ) for name, mod in model.named_modules(): lowerCamelCase : Optional[Any] = getattr(lowerCamelCase, """_input_quantizer""", lowerCamelCase ) lowerCamelCase : Union[str, Any] = getattr(lowerCamelCase, """_weight_quantizer""", lowerCamelCase ) if not hasattr(lowerCamelCase, """weight""" ): continue if type(lowerCamelCase ) in ignore: continue if [True for s in ignore if type(lowerCamelCase ) is str and s in name]: continue lowerCamelCase : str = F'''Act:{input_q.extra_repr()}''' lowerCamelCase : List[str] = F'''Wgt:{weight_q.extra_repr()}''' lowerCamelCase : Union[str, Any] = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCamelCase ) <= line_width: logger.info(lowerCamelCase ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _a ( lowerCamelCase ): lowerCamelCase : Optional[Any] = 0 for name, mod in model.named_modules(): if isinstance(lowerCamelCase, pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowerCamelCase : Dict = getattr(lowerCamelCase, lowerCamelCase, lowerCamelCase ) if quantizer_mod is not None: assert hasattr(lowerCamelCase, lowerCamelCase ) setattr(lowerCamelCase, lowerCamelCase, lowerCamelCase ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase="both", **lowerCamelCase ): lowerCamelCase : int = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCamelCase, lowerCamelCase, """_input_quantizer""", lowerCamelCase, lowerCamelCase ) if which in ["weight", "both"]: set_quantizer(lowerCamelCase, lowerCamelCase, """_weight_quantizer""", lowerCamelCase, lowerCamelCase ) logger.info(lowerCamelCase ) def _a ( lowerCamelCase, lowerCamelCase, **lowerCamelCase ): for name, mod in model.named_modules(): if hasattr(lowerCamelCase, """_input_quantizer""" ) or hasattr(lowerCamelCase, """_weight_quantizer""" ): for n in names: if re.search(lowerCamelCase, lowerCamelCase ): set_quantizers(lowerCamelCase, lowerCamelCase, **lowerCamelCase ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(lowerCamelCase, lowerCamelCase ): lowerCamelCase : str = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(lowerCamelCase, lowerCamelCase, lowerCamelCase ) logger.info(lowerCamelCase )
681
import pytest _lowerCamelCase ="""__dummy_dataset1__""" _lowerCamelCase =""" import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def _a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowerCamelCase : Union[str, Any] = dataset_loading_script_name lowerCamelCase : Dict = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase ) lowerCamelCase : str = script_dir / F'''{script_name}.py''' with open(lowerCamelCase, """w""" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase )
681
1
def _SCREAMING_SNAKE_CASE ( snake_case ) -> bool: if p < 2: raise ValueError("""p should not be less than 2!""" ) elif p == 2: return True _UpperCAmelCase = 4 _UpperCAmelCase = (1 << p) - 1 for _ in range(p - 2 ): _UpperCAmelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
711
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _A ( __lowercase ): __a = 42 class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , _SCREAMING_SNAKE_CASE=(64,) , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE="silu" , _SCREAMING_SNAKE_CASE=True , ): super().__init__() _UpperCAmelCase = layers_per_block _UpperCAmelCase = torch.nn.Convad( _SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCAmelCase = None _UpperCAmelCase = nn.ModuleList([] ) # down _UpperCAmelCase = block_out_channels[0] for i, down_block_type in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = output_channel _UpperCAmelCase = block_out_channels[i] _UpperCAmelCase = i == len(_SCREAMING_SNAKE_CASE ) - 1 _UpperCAmelCase = get_down_block( _SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_SCREAMING_SNAKE_CASE , resnet_groups=_SCREAMING_SNAKE_CASE , attention_head_dim=_SCREAMING_SNAKE_CASE , temb_channels=_SCREAMING_SNAKE_CASE , ) self.down_blocks.append(_SCREAMING_SNAKE_CASE ) # mid _UpperCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=_SCREAMING_SNAKE_CASE , temb_channels=_SCREAMING_SNAKE_CASE , ) # out _UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_SCREAMING_SNAKE_CASE , eps=1e-6 ) _UpperCAmelCase = nn.SiLU() _UpperCAmelCase = 2 * out_channels if double_z else out_channels _UpperCAmelCase = nn.Convad(block_out_channels[-1] , _SCREAMING_SNAKE_CASE , 3 , padding=1 ) _UpperCAmelCase = False def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = x _UpperCAmelCase = self.conv_in(_SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(_SCREAMING_SNAKE_CASE ): def custom_forward(*_SCREAMING_SNAKE_CASE ): return module(*_SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: _UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , use_reentrant=_SCREAMING_SNAKE_CASE ) # middle _UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _SCREAMING_SNAKE_CASE , use_reentrant=_SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: _UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # middle _UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: _UpperCAmelCase = down_block(_SCREAMING_SNAKE_CASE ) # middle _UpperCAmelCase = self.mid_block(_SCREAMING_SNAKE_CASE ) # post-process _UpperCAmelCase = self.conv_norm_out(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.conv_act(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.conv_out(_SCREAMING_SNAKE_CASE ) return sample class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , _SCREAMING_SNAKE_CASE=(64,) , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE="silu" , _SCREAMING_SNAKE_CASE="group" , ): super().__init__() _UpperCAmelCase = layers_per_block _UpperCAmelCase = nn.Convad( _SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCAmelCase = None _UpperCAmelCase = nn.ModuleList([] ) _UpperCAmelCase = in_channels if norm_type == """spatial""" else None # mid _UpperCAmelCase = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_SCREAMING_SNAKE_CASE , temb_channels=_SCREAMING_SNAKE_CASE , ) # up _UpperCAmelCase = list(reversed(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = output_channel _UpperCAmelCase = reversed_block_out_channels[i] _UpperCAmelCase = i == len(_SCREAMING_SNAKE_CASE ) - 1 _UpperCAmelCase = get_up_block( _SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , prev_output_channel=_SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_SCREAMING_SNAKE_CASE , resnet_groups=_SCREAMING_SNAKE_CASE , attention_head_dim=_SCREAMING_SNAKE_CASE , temb_channels=_SCREAMING_SNAKE_CASE , resnet_time_scale_shift=_SCREAMING_SNAKE_CASE , ) self.up_blocks.append(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = output_channel # out if norm_type == "spatial": _UpperCAmelCase = SpatialNorm(block_out_channels[0] , _SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_SCREAMING_SNAKE_CASE , eps=1e-6 ) _UpperCAmelCase = nn.SiLU() _UpperCAmelCase = nn.Convad(block_out_channels[0] , _SCREAMING_SNAKE_CASE , 3 , padding=1 ) _UpperCAmelCase = False def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): _UpperCAmelCase = z _UpperCAmelCase = self.conv_in(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_SCREAMING_SNAKE_CASE ): def custom_forward(*_SCREAMING_SNAKE_CASE ): return module(*_SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle _UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , use_reentrant=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = sample.to(_SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: _UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , use_reentrant=_SCREAMING_SNAKE_CASE ) else: # middle _UpperCAmelCase = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = sample.to(_SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: _UpperCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # middle _UpperCAmelCase = self.mid_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = sample.to(_SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: _UpperCAmelCase = up_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: _UpperCAmelCase = self.conv_norm_out(_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = self.conv_norm_out(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.conv_act(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.conv_out(_SCREAMING_SNAKE_CASE ) return sample class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="random" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True ): super().__init__() _UpperCAmelCase = n_e _UpperCAmelCase = vq_embed_dim _UpperCAmelCase = beta _UpperCAmelCase = legacy _UpperCAmelCase = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCAmelCase = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) _UpperCAmelCase = self.used.shape[0] _UpperCAmelCase = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCAmelCase = self.re_embed _UpperCAmelCase = self.re_embed + 1 print( F"Remapping {self.n_e} indices to {self.re_embed} indices. " F"Using {self.unknown_index} for unknown indices." ) else: _UpperCAmelCase = n_e _UpperCAmelCase = sane_index_shape def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = inds.shape assert len(_SCREAMING_SNAKE_CASE ) > 1 _UpperCAmelCase = inds.reshape(ishape[0] , -1 ) _UpperCAmelCase = self.used.to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = (inds[:, :, None] == used[None, None, ...]).long() _UpperCAmelCase = match.argmax(-1 ) _UpperCAmelCase = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCAmelCase = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCAmelCase = self.unknown_index return new.reshape(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = inds.shape assert len(_SCREAMING_SNAKE_CASE ) > 1 _UpperCAmelCase = inds.reshape(ishape[0] , -1 ) _UpperCAmelCase = self.used.to(_SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token _UpperCAmelCase = 0 # simply set to zero _UpperCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _SCREAMING_SNAKE_CASE ) return back.reshape(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): # reshape z -> (batch, height, width, channel) and flatten _UpperCAmelCase = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCAmelCase = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCAmelCase = torch.argmin(torch.cdist(_SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 ) _UpperCAmelCase = self.embedding(_SCREAMING_SNAKE_CASE ).view(z.shape ) _UpperCAmelCase = None _UpperCAmelCase = None # compute loss for embedding if not self.legacy: _UpperCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCAmelCase = z + (z_q - z).detach() # reshape back to match original input shape _UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCAmelCase = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCAmelCase = self.remap_to_used(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCAmelCase = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCAmelCase = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCAmelCase = self.unmap_to_all(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCAmelCase = self.embedding(_SCREAMING_SNAKE_CASE ) if shape is not None: _UpperCAmelCase = z_q.view(_SCREAMING_SNAKE_CASE ) # reshape back to match original input shape _UpperCAmelCase = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _A ( __lowercase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): _UpperCAmelCase = parameters _UpperCAmelCase , _UpperCAmelCase = torch.chunk(_SCREAMING_SNAKE_CASE , 2 , dim=1 ) _UpperCAmelCase = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCAmelCase = deterministic _UpperCAmelCase = torch.exp(0.5 * self.logvar ) _UpperCAmelCase = torch.exp(self.logvar ) if self.deterministic: _UpperCAmelCase = _UpperCAmelCase = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = None ): # make sure sample is on the same device as the parameters and has same dtype _UpperCAmelCase = randn_tensor( self.mean.shape , generator=_SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCAmelCase = self.mean + self.std * sample return x def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) _UpperCAmelCase = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): return self.mean
175
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowercase: str = '''sshleifer/bart-tiny-random''' _lowercase: Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' @require_torch class lowerCamelCase__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return AutoConfig.from_pretrained(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ): _lowerCAmelCase , *_lowerCAmelCase = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): _lowerCAmelCase , *_lowerCAmelCase = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase , *_lowerCAmelCase = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=lowercase__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def SCREAMING_SNAKE_CASE__ ( self : str ): _lowerCAmelCase , *_lowerCAmelCase = create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): with self.assertRaises(lowercase__ ): create_student_by_copying_alternating_layers(lowercase__ , tempfile.mkdtemp() , e=lowercase__ , d=lowercase__ )
192
import re def _lowerCamelCase ( snake_case ): if len(re.findall('[ATCG]' , snake_case ) ) != len(snake_case ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
192
1
'''simple docstring''' import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def lowercase_ ( __A : str=None ) -> List[str]: """simple docstring""" if subparsers is not None: lowercase : Optional[int] =subparsers.add_parser('''tpu-config''' , description=_description ) else: lowercase : List[Any] =argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments lowercase : Dict =parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=__A , default=__A , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=__A , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=__A , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) lowercase : Any =parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=__A , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=__A ) return parser def lowercase_ ( __A : Dict ) -> List[str]: """simple docstring""" lowercase : List[str] =None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__A ): lowercase : List[Any] =load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: lowercase : Any =defaults.command_file if not args.command and defaults.commands is not None: lowercase : List[Any] =defaults.commands if not args.tpu_name: lowercase : Dict =defaults.tpu_name if not args.tpu_zone: lowercase : Dict =defaults.tpu_zone if args.accelerate_version == "dev": lowercase : str ='''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": lowercase : int ='''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , __A ): lowercase : Any =F'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: lowercase : List[str] =[f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __A ): lowercase : Union[str, Any] =[line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate lowercase : Tuple =['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F'pip install {args.accelerate_version}'] new_cmd += args.command lowercase : Dict ='''; '''.join(__A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess lowercase : int =['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'Running {" ".join(__A )}' ) return subprocess.run(__A ) print('''Successfully setup pod.''' ) def lowercase_ ( ) -> Any: """simple docstring""" lowercase : str =tpu_command_parser() lowercase : Any =parser.parse_args() tpu_command_launcher(__A )
703
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase_ ( __A ): """simple docstring""" @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Any =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[int] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Any =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Tuple ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : List[str] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : Tuple =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Optional[Any] ='''1''' lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : str =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowercase : Optional[Any] =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowercase : Optional[int] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowercase : Optional[Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(UpperCAmelCase ) BertModel.from_pretrained(UpperCAmelCase ) BertTokenizer.from_pretrained(UpperCAmelCase ) pipeline(task='''fill-mask''' , model=UpperCAmelCase ) # baseline - just load from_pretrained with normal network lowercase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowercase : str =self.get_env() lowercase : Any =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Any ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowercase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network lowercase : Tuple =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : Any ='''1''' lowercase : Optional[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =''' from transformers import pipeline ''' lowercase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowercase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowercase : Tuple =self.get_env() lowercase : Optional[int] ='''1''' lowercase : Union[str, Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowercase : Dict =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def A__ ( self : int ) -> Optional[int]: '''simple docstring''' lowercase : List[str] =''' from transformers import AutoModel ''' lowercase : Dict =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowercase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowercase : Optional[Any] =self.get_env() lowercase : int =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase : List[str] ='''1''' lowercase : List[Any] =subprocess.run(UpperCAmelCase , env=UpperCAmelCase , check=UpperCAmelCase , capture_output=UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
8
0
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowercase__ : int = logging.get_logger(__name__) lowercase__ : Any = 'T5Config' def a__ ( lowercase : jnp.array, lowercase : int, lowercase : int ) -> jnp.ndarray: """simple docstring""" _UpperCamelCase = jnp.zeros_like(lowercase ) _UpperCamelCase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _UpperCamelCase = shifted_input_ids.at[:, 0].set(lowercase ) _UpperCamelCase = jnp.where(shifted_input_ids == -100, lowercase, lowercase ) return shifted_input_ids class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[Any] = 'mt5' _snake_case : Union[str, Any] = MTaConfig class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Tuple = 'mt5' _snake_case : int = MTaConfig class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = 'mt5' _snake_case : Optional[Any] = MTaConfig
98
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class A ( A_ ): def __init__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): super().__init__( features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= Generator( cache_dir=lowerCAmelCase , features=lowerCAmelCase , generator=lowerCAmelCase , gen_kwargs=lowerCAmelCase , **lowerCAmelCase , ) def _A (self ): # Build iterable dataset if self.streaming: __lowercase= self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: __lowercase= None __lowercase= None __lowercase= None __lowercase= None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) __lowercase= self.builder.as_dataset( split='train' , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset
230
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : Optional[int] =logging.get_logger(__name__) @dataclass class lowerCAmelCase_ ( A_ ): '''simple docstring''' A_ : Optional[Any] = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **lowerCamelCase ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: a__ = deprecated_arg[3:] setattr(self , lowerCamelCase , not kwargs.pop(lowerCamelCase ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) a__ = kwargs.pop("""torchscript""" , self.torchscript ) a__ = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) a__ = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowerCamelCase ) A_ : bool = field(default=A_ ,metadata={'help': 'Trace the models using torchscript'} ) A_ : bool = field(default=A_ ,metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) A_ : str = field( default='O1' ,metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } ,) @cached_property def _A ( self ): '''simple docstring''' requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: a__ = torch.device("""cpu""" ) a__ = 0 elif is_torch_tpu_available(): a__ = xm.xla_device() a__ = 0 else: a__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) a__ = torch.cuda.device_count() return device, n_gpu @property def _A ( self ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def _A ( self ): '''simple docstring''' requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _A ( self ): '''simple docstring''' requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def _A ( self ): '''simple docstring''' requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def _A ( self ): '''simple docstring''' return self.n_gpu > 0
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : List[str] ={"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int =["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =[ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
412
0
from math import pi def lowercase ( __A : int , __A : int ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
36
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) set_seed(7_7_0) UpperCAmelCase = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } UpperCAmelCase = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } UpperCAmelCase = os.path.dirname(os.path.abspath(__file__)) UpperCAmelCase = os.path.join(os.path.expanduser("~"), ".cache") UpperCAmelCase = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int , lowerCAmelCase_: List[str]=False ): snake_case_ : Union[str, Any] = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase_ , REMOTE_MODEL_PATHS[key]["file_name"] ) def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: str , lowerCAmelCase_: List[str] ): os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) hf_hub_download(repo_id=lowerCAmelCase_ , filename=lowerCAmelCase_ , local_dir=lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Any , lowerCAmelCase_: Dict , lowerCAmelCase_: List[str]=False , lowerCAmelCase_: Dict="text" ): if model_type == "text": snake_case_ : int = BarkSemanticModel snake_case_ : str = BarkSemanticConfig snake_case_ : Optional[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": snake_case_ : str = BarkCoarseModel snake_case_ : Optional[int] = BarkCoarseConfig snake_case_ : Any = BarkCoarseGenerationConfig elif model_type == "fine": snake_case_ : Optional[int] = BarkFineModel snake_case_ : Tuple = BarkFineConfig snake_case_ : List[str] = BarkFineGenerationConfig else: raise NotImplementedError() snake_case_ : Optional[Any] = f"{model_type}_small" if use_small else model_type snake_case_ : Any = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase_ ): logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info["repo_id"] , model_info["file_name"] ) snake_case_ : Any = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ ) # this is a hack snake_case_ : Union[str, Any] = checkpoint["model_args"] if "input_vocab_size" not in model_args: snake_case_ : str = model_args["vocab_size"] snake_case_ : Union[str, Any] = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments snake_case_ : Union[str, Any] = model_args.pop("n_head" ) snake_case_ : int = model_args.pop("n_embd" ) snake_case_ : Any = model_args.pop("n_layer" ) snake_case_ : List[str] = ConfigClass(**checkpoint["model_args"] ) snake_case_ : Optional[Any] = ModelClass(config=lowerCAmelCase_ ) snake_case_ : Tuple = GenerationConfigClass() snake_case_ : List[str] = model_generation_config snake_case_ : Optional[int] = checkpoint["model"] # fixup checkpoint snake_case_ : Optional[int] = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase_ ): # replace part of the key with corresponding layer name in HF implementation snake_case_ : Tuple = k[len(lowerCAmelCase_ ) :] for old_layer_name in new_layer_name_dict: snake_case_ : int = new_k.replace(lowerCAmelCase_ , new_layer_name_dict[old_layer_name] ) snake_case_ : int = state_dict.pop(lowerCAmelCase_ ) snake_case_ : Optional[int] = set(state_dict.keys() ) - set(model.state_dict().keys() ) snake_case_ : str = {k for k in extra_keys if not k.endswith(".attn.bias" )} snake_case_ : Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) snake_case_ : List[Any] = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(lowerCAmelCase_ ) != 0: raise ValueError(f"extra keys found: {extra_keys}" ) if len(lowerCAmelCase_ ) != 0: raise ValueError(f"missing keys: {missing_keys}" ) model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) snake_case_ : str = model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) snake_case_ : Union[str, Any] = checkpoint["best_val_loss"].item() logger.info(f"model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowerCAmelCase_ , 3 )} loss" ) model.eval() model.to(lowerCAmelCase_ ) del checkpoint, state_dict return model def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: List[Any] , lowerCAmelCase_: str=False , lowerCAmelCase_: int="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() snake_case_ : int = "cpu" # do conversion on cpu snake_case_ : Optional[Any] = _get_ckpt_path(lowerCAmelCase_ , use_small=lowerCAmelCase_ ) snake_case_ : Tuple = _load_model(lowerCAmelCase_ , lowerCAmelCase_ , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) # load bark initial model snake_case_ : int = _bark_load_model(lowerCAmelCase_ , "cpu" , model_type=lowerCAmelCase_ , use_small=lowerCAmelCase_ ) if model_type == "text": snake_case_ : Union[str, Any] = bark_model["model"] if model.num_parameters(exclude_embeddings=lowerCAmelCase_ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model snake_case_ : Optional[Any] = 5 snake_case_ : Optional[int] = 1_0 if model_type in ["text", "coarse"]: snake_case_ : Optional[Any] = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) snake_case_ : str = bark_model(lowerCAmelCase_ )[0] snake_case_ : Tuple = model(lowerCAmelCase_ ) # take last logits snake_case_ : List[str] = output_new_model_total.logits[:, [-1], :] else: snake_case_ : Optional[int] = 3 snake_case_ : str = 8 snake_case_ : List[str] = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) snake_case_ : Any = model(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Union[str, Any] = bark_model(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Optional[int] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("initial and new outputs are not equal" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Tuple , lowerCAmelCase_: List[str] , lowerCAmelCase_: Any , lowerCAmelCase_: List[Any] , lowerCAmelCase_: int , lowerCAmelCase_: Optional[Any] , ): snake_case_ : Optional[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Optional[Any] = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase_ , "config.json" ) ) snake_case_ : List[Any] = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase_ , "config.json" ) ) snake_case_ : List[str] = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase_ , "config.json" ) ) snake_case_ : List[Any] = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) snake_case_ : List[str] = BarkSemanticModel.from_pretrained(lowerCAmelCase_ ) snake_case_ : Optional[Any] = BarkCoarseModel.from_pretrained(lowerCAmelCase_ ) snake_case_ : Tuple = BarkFineModel.from_pretrained(lowerCAmelCase_ ) snake_case_ : Union[str, Any] = EncodecModel.from_pretrained("facebook/encodec_24khz" ) snake_case_ : Tuple = BarkConfig.from_sub_model_configs( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) snake_case_ : Optional[int] = BarkModel(lowerCAmelCase_ ) snake_case_ : int = semantic snake_case_ : List[str] = coarseAcoustic snake_case_ : str = fineAcoustic snake_case_ : Optional[Any] = codec snake_case_ : Any = bark_generation_config Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) bark.save_pretrained(lowerCAmelCase_ , repo_id=lowerCAmelCase_ , push_to_hub=lowerCAmelCase_ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") UpperCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
666
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : str = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _snake_case ( A_ ): _A = '''vit_msn''' def __init__( self ,UpperCamelCase=768 ,UpperCamelCase=12 ,UpperCamelCase=12 ,UpperCamelCase=3_072 ,UpperCamelCase="gelu" ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,UpperCamelCase=0.02 ,UpperCamelCase=1E-06 ,UpperCamelCase=224 ,UpperCamelCase=16 ,UpperCamelCase=3 ,UpperCamelCase=True ,**UpperCamelCase ,) -> Optional[Any]: super().__init__(**UpperCamelCase ) snake_case__ :Optional[int] = hidden_size snake_case__ :Any = num_hidden_layers snake_case__ :Dict = num_attention_heads snake_case__ :List[str] = intermediate_size snake_case__ :Tuple = hidden_act snake_case__ :Optional[int] = hidden_dropout_prob snake_case__ :List[Any] = attention_probs_dropout_prob snake_case__ :Dict = initializer_range snake_case__ :str = layer_norm_eps snake_case__ :Union[str, Any] = image_size snake_case__ :str = patch_size snake_case__ :List[str] = num_channels snake_case__ :List[Any] = qkv_bias
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _snake_case = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": _snake_case = 'hopper-medium-v2' _snake_case = gym.make(env_name) _snake_case = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) _snake_case = env.reset() _snake_case = 0 _snake_case = 0 _snake_case = 1_000 _snake_case = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _snake_case = pipeline(obs, planning_horizon=32) # execute action in environment _snake_case , _snake_case , _snake_case , _snake_case = env.step(denorm_actions) _snake_case = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) _snake_case = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
245
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } _snake_case = { 'google/realm-cc-news-pretrained-embedder': 512, 'google/realm-cc-news-pretrained-encoder': 512, 'google/realm-cc-news-pretrained-scorer': 512, 'google/realm-cc-news-pretrained-openqa': 512, 'google/realm-orqa-nq-openqa': 512, 'google/realm-orqa-nq-reader': 512, 'google/realm-orqa-wq-openqa': 512, 'google/realm-orqa-wq-reader': 512, } _snake_case = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[Any] = RealmTokenizer def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase="[UNK]" , _UpperCamelCase="[SEP]" , _UpperCamelCase="[PAD]" , _UpperCamelCase="[CLS]" , _UpperCamelCase="[MASK]" , _UpperCamelCase=True , _UpperCamelCase=None , **_UpperCamelCase , ): """simple docstring""" super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) _lowercase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars ): _lowercase : Any = getattr(_UpperCamelCase , normalizer_state.pop("type" ) ) _lowercase : Optional[int] = do_lower_case _lowercase : List[str] = strip_accents _lowercase : List[Any] = tokenize_chinese_chars _lowercase : Optional[int] = normalizer_class(**_UpperCamelCase ) _lowercase : Optional[Any] = do_lower_case def _lowerCamelCase ( self , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" _lowercase : Optional[Any] = PaddingStrategy.MAX_LENGTH _lowercase : Tuple = text _lowercase : int = kwargs.pop("text_pair" , _UpperCamelCase ) _lowercase : Union[str, Any] = kwargs.pop("return_tensors" , _UpperCamelCase ) _lowercase : Optional[int] = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(_UpperCamelCase ): if batch_text_pair is not None: _lowercase : List[str] = batch_text_pair[idx] else: _lowercase : Dict = None _lowercase : List[str] = super().__call__(_UpperCamelCase , _UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase ) _lowercase : Any = encoded_candidates.get("input_ids" ) _lowercase : Optional[Any] = encoded_candidates.get("attention_mask" ) _lowercase : Union[str, Any] = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(_UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_UpperCamelCase ) _lowercase : int = {key: item for key, item in output_data.items() if len(_UpperCamelCase ) != 0} return BatchEncoding(_UpperCamelCase , tensor_type=_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" _lowercase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" _lowercase : Dict = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase = None ): """simple docstring""" _lowercase : List[str] = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
245
1
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _A : Union[str, Any] =object() # For specifying empty leaf dict `{}` _A : Optional[int] =object() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> str: lowerCamelCase__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(UpperCamelCase ) - len(UpperCamelCase ) + 1 ): lowerCamelCase__ : List[Any] = [x.match(UpperCamelCase ) for x, y in zip(UpperCamelCase , ks[i:] )] if matches and all(UpperCamelCase ): return True return False def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Union[str, Any]: def replace(UpperCamelCase , UpperCamelCase ): for rule, replacement in rules: if _match(UpperCamelCase , UpperCamelCase ): return replacement return val return replace def SCREAMING_SNAKE_CASE_ () -> int: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , UpperCamelCase )), (("transformer", "wte", "embedding"), P("""mp""" , UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCamelCase , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCamelCase , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> List[str]: lowerCamelCase__ : Optional[int] = _get_partition_rules() lowerCamelCase__ : Tuple = _replacement_rules(UpperCamelCase ) lowerCamelCase__ : str = {k: _unmatched for k in flatten_dict(UpperCamelCase )} lowerCamelCase__ : Tuple = {k: replace(UpperCamelCase , UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCamelCase ) )
631
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _A : Dict ='''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
631
1