code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , __lowercase = 13 , __lowercase = 64 , __lowercase = 2 , __lowercase = 3 , __lowercase = 3 , __lowercase = True , __lowercase = True , __lowercase = 128 , __lowercase=[16, 32, 64, 128] , __lowercase = 7 , __lowercase = 4 , __lowercase = 37 , __lowercase = "gelu" , __lowercase = 0.1 , __lowercase = 0.1 , __lowercase = 10 , __lowercase = 0.02 , __lowercase = 2 , __lowercase = 1 , __lowercase = 128 , __lowercase = [2, 2, 2, 2] , __lowercase = 2 , __lowercase = 2 , ) -> int: __UpperCamelCase :int = parent __UpperCamelCase :Any = batch_size __UpperCamelCase :Union[str, Any] = image_size __UpperCamelCase :str = patch_size __UpperCamelCase :List[Any] = num_channels __UpperCamelCase :List[Any] = is_training __UpperCamelCase :Optional[Any] = use_labels __UpperCamelCase :Any = hidden_size __UpperCamelCase :Tuple = num_hidden_layers __UpperCamelCase :Dict = num_attention_heads __UpperCamelCase :List[Any] = intermediate_size __UpperCamelCase :int = hidden_act __UpperCamelCase :Any = hidden_dropout_prob __UpperCamelCase :Optional[Any] = attention_probs_dropout_prob __UpperCamelCase :Dict = type_sequence_label_size __UpperCamelCase :Dict = initializer_range __UpperCamelCase :List[str] = encoder_stride __UpperCamelCase :Any = num_attention_outputs __UpperCamelCase :str = embed_dim __UpperCamelCase :str = embed_dim + 1 __UpperCamelCase :Dict = resolution __UpperCamelCase :Optional[Any] = depths __UpperCamelCase :List[str] = hidden_sizes __UpperCamelCase :str = dim __UpperCamelCase :str = mlp_expansion_ratio def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCamelCase :List[Any] = None if self.use_labels: __UpperCamelCase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self) -> Optional[int]: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> int: __UpperCamelCase :Optional[Any] = TFEfficientFormerModel(config=A_) __UpperCamelCase :Any = model(A_ , training=A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :Dict = self.type_sequence_label_size __UpperCamelCase :Optional[Any] = TFEfficientFormerForImageClassification(A_) __UpperCamelCase :Union[str, Any] = model(A_ , labels=A_ , training=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __UpperCamelCase :Optional[Any] = 1 __UpperCamelCase :Any = TFEfficientFormerForImageClassification(A_) __UpperCamelCase :List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __UpperCamelCase :Any = model(A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[Any] = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = config_and_inputs __UpperCamelCase :Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' a__ : Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a__ : Optional[int] = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a__ : Any = False a__ : Tuple = False a__ : List[Any] = False a__ : List[str] = False a__ : List[str] = False def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Optional[Any] = TFEfficientFormerModelTester(self) __UpperCamelCase :Optional[int] = ConfigTester( self , config_class=A_ , has_text_modality=A_ , hidden_size=37) def UpperCamelCase__ ( self) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def UpperCamelCase__ ( self) -> List[Any]: pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def UpperCamelCase__ ( self) -> int: pass def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase , __UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase :List[Any] = model_class(A_) __UpperCamelCase :Tuple = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase :List[str] = [*signature.parameters.keys()] __UpperCamelCase :Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_) def UpperCamelCase__ ( self) -> Optional[int]: def check_hidden_states_output(__lowercase , __lowercase , __lowercase): __UpperCamelCase :Union[str, Any] = model_class(A_) __UpperCamelCase :Any = model(**self._prepare_for_class(A_ , A_) , training=A_) __UpperCamelCase :Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase :List[str] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(A_) , A_) if hasattr(self.model_tester , '''encoder_seq_length'''): __UpperCamelCase :Union[str, Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: __UpperCamelCase :List[Any] = seq_length * self.model_tester.chunk_length else: __UpperCamelCase :List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __UpperCamelCase :Dict = outputs.decoder_hidden_states self.asseretIsInstance(A_ , (list, tuple)) self.assertEqual(len(A_) , A_) __UpperCamelCase :str = getattr(self.model_tester , '''seq_length''' , A_) __UpperCamelCase :int = getattr(self.model_tester , '''decoder_seq_length''' , A_) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) __UpperCamelCase , __UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase :Optional[Any] = True check_hidden_states_output(A_ , A_ , A_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase :List[str] = True check_hidden_states_output(A_ , A_ , A_) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase=False) -> int: __UpperCamelCase :List[str] = super()._prepare_for_class(A_ , A_ , return_labels=A_) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_) @slow def UpperCamelCase__ ( self) -> Any: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Optional[int] = TFEfficientFormerModel.from_pretrained(A_) self.assertIsNotNone(A_) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase , __UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase :int = True __UpperCamelCase :List[Any] = getattr(self.model_tester , '''seq_length''' , A_) __UpperCamelCase :Optional[int] = getattr(self.model_tester , '''encoder_seq_length''' , A_) __UpperCamelCase :Optional[int] = getattr(self.model_tester , '''key_length''' , A_) __UpperCamelCase :Optional[int] = getattr(self.model_tester , '''chunk_length''' , A_) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): __UpperCamelCase :Dict = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __UpperCamelCase :List[Any] = True __UpperCamelCase :List[str] = False __UpperCamelCase :int = True __UpperCamelCase :List[str] = model_class(A_) __UpperCamelCase :Optional[Any] = model(**self._prepare_for_class(A_ , A_) , training=A_) __UpperCamelCase :str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCamelCase :str = True __UpperCamelCase :str = model_class(A_) __UpperCamelCase :Union[str, Any] = model(**self._prepare_for_class(A_ , A_) , training=A_) __UpperCamelCase :Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase , __UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __UpperCamelCase :List[str] = model_class(A_) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __UpperCamelCase :List[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=A_) for key, val in model.input_signature.items() if key in model.dummy_inputs } __UpperCamelCase :Optional[int] = model(A_) self.assertTrue(outputs_dict is not None) def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self) -> Optional[int]: return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Optional[Any] = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') __UpperCamelCase :Optional[Any] = self.default_image_processor __UpperCamelCase :Union[str, Any] = prepare_img() __UpperCamelCase :Any = image_processor(images=A_ , return_tensors='''tf''') # forward pass __UpperCamelCase :List[str] = model(**A_ , training=A_) # verify the logits __UpperCamelCase :str = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , A_) __UpperCamelCase :List[Any] = tf.constant([-0.05_55, 0.48_25, -0.08_52]) self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1E-4)) @slow def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Optional[int] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') __UpperCamelCase :Optional[Any] = self.default_image_processor __UpperCamelCase :List[Any] = prepare_img() __UpperCamelCase :Optional[Any] = image_processor(images=A_ , return_tensors='''tf''') # forward pass __UpperCamelCase :int = model(**A_ , training=A_) # verify the logits __UpperCamelCase :Tuple = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , A_) __UpperCamelCase :Any = tf.constant([-0.13_12, 0.43_53, -1.04_99]) self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1E-4))
167
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def a__ ( a = "isbn/0140328726" ) -> dict: A_ : Optional[Any] = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: A_ : Any = f"""{olid} is not a valid Open Library olid""" raise ValueError(lowerCAmelCase__ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def a__ ( a ) -> dict: A_ : Dict = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } A_ : Optional[int] = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A_ : Optional[int] = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] A_ : Any = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): A_ : Any = ''', '''.join(lowerCAmelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowerCAmelCase = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(F'\nSearching Open Library for ISBN: {isbn}...\n') try: _lowerCAmelCase = summarize_book(get_openlibrary_data(F'isbn/{isbn}')) print('\n'.join(F'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'Sorry, there are no results for ISBN: {isbn}.')
721
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ): """simple docstring""" A_ : str = 10 def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[Any] = [1, 2, 3, 4] A_ : Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__magic_name__ , self.block_size , 0 ) , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A_ : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__magic_name__ , self.block_size , 0 ) , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A_ : Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__magic_name__ , self.block_size , 0 ) , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[Any] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' A_ , A_ : Optional[Any] = process_story(__magic_name__ ) self.assertEqual(__magic_name__ , [] ) def UpperCAmelCase ( self ): """simple docstring""" A_ : int = '''''' A_ , A_ : Union[str, Any] = process_story(__magic_name__ ) self.assertEqual(__magic_name__ , [] ) self.assertEqual(__magic_name__ , [] ) def UpperCAmelCase ( self ): """simple docstring""" A_ : int = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) A_ , A_ : Optional[int] = process_story(__magic_name__ ) A_ : List[str] = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(__magic_name__ , __magic_name__ ) A_ : Union[str, Any] = ['''It was the best of times.'''] self.assertEqual(__magic_name__ , __magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" A_ : List[str] = torch.tensor([1, 2, 3, 4] ) A_ : Any = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__magic_name__ , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Any = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A_ : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__magic_name__ , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ): """simple docstring""" A_ : Optional[int] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A_ : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__magic_name__ , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase ( self ): """simple docstring""" A_ : int = 101 A_ : List[str] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A_ : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A_ : Optional[Any] = compute_token_type_ids(__magic_name__ , __magic_name__ ) np.testing.assert_array_equal(__magic_name__ , __magic_name__ )
236
0
'''simple docstring''' # using dfs for finding eulerian path traversal def _SCREAMING_SNAKE_CASE (A , A , A , A=None ) -> Union[str, Any]: """simple docstring""" lowercase__ = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowercase__ ,lowercase__ = True, True lowercase__ = dfs(A , A , A , A ) return path def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = -1 for i in range(A ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowercase__ = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[int]: """simple docstring""" lowercase__ = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowercase__ ,lowercase__ = check_circuit_or_path(A , A ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return lowercase__ = 1 if check == 2: lowercase__ = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) lowercase__ = dfs(A , A , A ) print(A ) def _SCREAMING_SNAKE_CASE () -> str: """simple docstring""" lowercase__ = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowercase__ = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowercase__ = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowercase__ = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowercase__ = { 1: [], 2: [] # all degree is zero } lowercase__ = 10 check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) check_euler(A , A ) if __name__ == "__main__": main()
460
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def _SCREAMING_SNAKE_CASE (A ) -> Dict: """simple docstring""" lowercase__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) lowercase__ = json.loads(open(A ).read() ) if not params: raise ValueError( f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith('''.pt''' ): lowercase__ = args.output + '''.pt''' lowercase__ = OrderedDict() with tf.device('''/CPU:0''' ): lowercase__ = tf.train.load_checkpoint(args.tf_model_dir ) lowercase__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase__ = reader.get_tensor(A ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): lowercase__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): lowercase__ = 8 lowercase__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/moe''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/softmlp/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): lowercase__ = key_name[-9:-7] for i in range(16 ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) lowercase__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/mlp''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/p1/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.endswith('''/p2/kernel''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.endswith('''/p2/bias''' ): lowercase__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/ln''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.feed_forward.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/att''' ): lowercase__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): lowercase__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase__ = state[:, 0, :, :] lowercase__ = state[:, 1, :, :] lowercase__ = state[:, 2, :, :] lowercase__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player lowercase__ = torch.tensor(A ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player lowercase__ = torch.tensor(A ) lowercase__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player lowercase__ = torch.tensor(A ) elif key_name.endswith('''/o/kernel''' ): lowercase__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player lowercase__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/an''' ): lowercase__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.bias''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif key_name.endswith('''/g''' ): lowercase__ = '''model.blocks.%d.self_attn.norm.weight''' % player lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): lowercase__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] lowercase__ = '''model.%s.weight''' % nlayer lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(A ) if key_name.startswith('''model/wte''' ): lowercase__ = '''lm_head.weight''' lowercase__ = vnp.copy() # same in embedded lowercase__ = torch.tensor(A ) elif key_name.startswith('''model/wob''' ): lowercase__ = '''final_logits_bias''' lowercase__ = vnp.copy() # same in embedded lowercase__ = state.reshape((1, -1) ) lowercase__ = torch.tensor(A ) elif key_name == "model/dense/kernel": lowercase__ = '''model.last_project.weight''' lowercase__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase__ = torch.tensor(A ) elif key_name == "model/dense_1/bias": lowercase__ = '''model.last_project.bias''' lowercase__ = vnp.copy() # same because it is one dimensional lowercase__ = torch.tensor(A ) torch.save(A , args.output ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') lowerCamelCase : Dict = parser.parse_args() convert_tf_gptsan_to_pt(args)
460
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def a__ ( *_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Union[Dict, Any]] = None , _SCREAMING_SNAKE_CASE : str=True , _SCREAMING_SNAKE_CASE : Any=2 ) -> str: """simple docstring""" from .. import __version__ UpperCAmelCase_ : Tuple = take_from UpperCAmelCase_ : str = () if not isinstance(args[0] , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(_SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(_SCREAMING_SNAKE_CASE ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) UpperCAmelCase_ : int = None if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_SCREAMING_SNAKE_CASE ),) UpperCAmelCase_ : int = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): values += (getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ),) UpperCAmelCase_ : Union[str, Any] = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: UpperCAmelCase_ : Dict = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: UpperCAmelCase_ : Dict = warning + " " if standard_warn else "" warnings.warn(warning + message , _SCREAMING_SNAKE_CASE , stacklevel=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) > 0: UpperCAmelCase_ : Dict = inspect.getouterframes(inspect.currentframe() )[1] UpperCAmelCase_ : Optional[Any] = call_frame.filename UpperCAmelCase_ : Dict = call_frame.lineno UpperCAmelCase_ : Tuple = call_frame.function UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(_SCREAMING_SNAKE_CASE ) == 0: return elif len(_SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
702
'''simple docstring''' from math import factorial _lowerCamelCase = {str(d): factorial(d) for d in range(10)} def a__ ( _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(_SCREAMING_SNAKE_CASE ) ) def a__ ( ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _SCREAMING_SNAKE_CASE ) if sum_of_digit_factorial(_SCREAMING_SNAKE_CASE ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
323
0
"""simple docstring""" from __future__ import annotations def A_ ( snake_case__ ) -> bool: _UpperCamelCase :List[str] = str(snake_case_ ) return len(snake_case_ ) == 9 and set(snake_case_ ) == set('''123456789''' ) def A_ ( ) -> int | None: for base_num in range(99_99 , 49_99 , -1 ): _UpperCamelCase :Tuple = 10_00_02 * base_num if is_9_pandigital(snake_case_ ): return candidate for base_num in range(3_33 , 99 , -1 ): _UpperCamelCase :int = 1_00_20_03 * base_num if is_9_pandigital(snake_case_ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
355
import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, **snake_case_ ) -> Union[str, Any]: A__ : Optional[Any] =[x.strip() for x in open(snake_case_ ).readlines()] A__ : List[Any] =[x.strip() for x in open(snake_case_ ).readlines()][: len(snake_case_ )] A__ : Tuple =calculate_rouge(snake_case_, snake_case_, **snake_case_ ) if save_path is not None: save_json(snake_case_, snake_case_, indent=snake_case_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
416
0
from collections import Counter from timeit import timeit def __UpperCAmelCase ( a_ = "" , ): return sum(c % 2 for c in Counter(input_str.replace(' ' , '').lower()).values()) < 2 def __UpperCAmelCase ( a_ = ""): if len(a_) == 0: return True snake_case_ = input_str.replace(' ' , '').lower() # character_freq_dict: Stores the frequency of every character in the input string snake_case_ = {} for character in lower_case_input_str: snake_case_ = character_freq_dict.get(a_ , 0) + 1 snake_case_ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __UpperCAmelCase ( a_ = ""): print('\nFor string = ' , a_ , ':') print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(a_) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(a_) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": lowercase = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) lowercase = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
607
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowercase = get_tests_dir("fixtures") class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down snake_case_ = mock.Mock() snake_case_ = 5_00 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=a ) as mock_head: snake_case_ = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 snake_case_ = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def _UpperCamelCase ( self ) -> Optional[int]: with self.assertRaises(a ): # config is in subfolder, the following should not work without specifying the subfolder snake_case_ = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) snake_case_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(a ) @is_staging_test class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @classmethod def _UpperCamelCase ( cls ) -> int: snake_case_ = TOKEN HfFolder.save_token(a ) @classmethod def _UpperCamelCase ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def _UpperCamelCase ( self ) -> Dict: snake_case_ = ViTImageProcessor.from_pretrained(a ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a , repo_id='test-image-processor' , push_to_hub=a , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) def _UpperCamelCase ( self ) -> int: snake_case_ = ViTImageProcessor.from_pretrained(a ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a , repo_id='valid_org/test-image-processor-org' , push_to_hub=a , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) def _UpperCamelCase ( self ) -> int: CustomImageProcessor.register_for_auto_class() snake_case_ = CustomImageProcessor.from_pretrained(a ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) snake_case_ = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=a ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
607
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) __snake_case : str = b * b - 4 * a * c __snake_case : Optional[Any] = (-b + sqrt(_lowerCamelCase )) / (2 * a) __snake_case : Dict = (-b - sqrt(_lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Tuple: """simple docstring""" __snake_case , __snake_case : Dict = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
26
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a = logging.get_logger(__name__) a = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class UpperCAmelCase_ (snake_case__ , snake_case__ ): """simple docstring""" lowerCamelCase : Dict = 'focalnet' def __init__( self: Optional[int] , _UpperCAmelCase: Tuple=224 , _UpperCAmelCase: List[Any]=4 , _UpperCAmelCase: int=3 , _UpperCAmelCase: List[str]=96 , _UpperCAmelCase: List[Any]=False , _UpperCAmelCase: int=[192, 384, 768, 768] , _UpperCAmelCase: Dict=[2, 2, 6, 2] , _UpperCAmelCase: List[Any]=[2, 2, 2, 2] , _UpperCAmelCase: Optional[Any]=[3, 3, 3, 3] , _UpperCAmelCase: List[str]="gelu" , _UpperCAmelCase: int=4.0 , _UpperCAmelCase: List[str]=0.0 , _UpperCAmelCase: Tuple=0.1 , _UpperCAmelCase: List[Any]=False , _UpperCAmelCase: Optional[int]=1e-4 , _UpperCAmelCase: Union[str, Any]=False , _UpperCAmelCase: Union[str, Any]=False , _UpperCAmelCase: int=False , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: str=1e-5 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: Dict=None , _UpperCAmelCase: Optional[Any]=None , **_UpperCAmelCase: Optional[Any] , ): super().__init__(**_UpperCAmelCase ) _lowerCAmelCase :int = image_size _lowerCAmelCase :List[str] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :str = embed_dim _lowerCAmelCase :Optional[int] = use_conv_embed _lowerCAmelCase :Dict = hidden_sizes _lowerCAmelCase :Optional[int] = depths _lowerCAmelCase :List[Any] = focal_levels _lowerCAmelCase :Union[str, Any] = focal_windows _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :int = mlp_ratio _lowerCAmelCase :Optional[int] = hidden_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = use_layerscale _lowerCAmelCase :List[Any] = layerscale_value _lowerCAmelCase :List[Any] = use_post_layernorm _lowerCAmelCase :int = use_post_layernorm_in_modulation _lowerCAmelCase :str = normalize_modulator _lowerCAmelCase :Optional[int] = initializer_range _lowerCAmelCase :Optional[int] = layer_norm_eps _lowerCAmelCase :Dict = encoder_stride _lowerCAmelCase :str = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] _lowerCAmelCase , _lowerCAmelCase :List[Any] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
382
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""MobileViTFeatureExtractor"""] a = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
382
1
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowercase_ = logging.get_logger("""transformers.models.speecht5""") lowercase_ = { """speech_encoder_prenet.layer_norm""": """speecht5.encoder.prenet.feature_projection.layer_norm""", """speech_encoder_prenet.post_extract_proj""": """speecht5.encoder.prenet.feature_projection.projection""", """speech_encoder_prenet.pos_conv.0""": """speecht5.encoder.prenet.pos_conv_embed.conv""", """speech_encoder_prenet.mask_emb""": """speecht5.encoder.prenet.masked_spec_embed""", } lowercase_ = { """text_encoder_prenet.encoder_prenet.0""": """speecht5.encoder.prenet.embed_tokens""", """text_encoder_prenet.encoder_prenet.1.alpha""": """speecht5.encoder.prenet.encode_positions.alpha""", } lowercase_ = { """speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0""": """speecht5.decoder.prenet.layers.0""", """speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0""": """speecht5.decoder.prenet.layers.1""", """speech_decoder_prenet.decoder_prenet.0.1""": """speecht5.decoder.prenet.final_layer""", """speech_decoder_prenet.decoder_prenet.1.alpha""": """speecht5.decoder.prenet.encode_positions.alpha""", """speech_decoder_prenet.spkembs_layer.0""": """speecht5.decoder.prenet.speaker_embeds_layer""", } lowercase_ = { """speech_decoder_postnet.feat_out""": """speech_decoder_postnet.feat_out""", """speech_decoder_postnet.prob_out""": """speech_decoder_postnet.prob_out""", """speech_decoder_postnet.postnet.postnet.0.0""": """speech_decoder_postnet.layers.0.conv""", """speech_decoder_postnet.postnet.postnet.0.1""": """speech_decoder_postnet.layers.0.batch_norm""", """speech_decoder_postnet.postnet.postnet.1.0""": """speech_decoder_postnet.layers.1.conv""", """speech_decoder_postnet.postnet.postnet.1.1""": """speech_decoder_postnet.layers.1.batch_norm""", """speech_decoder_postnet.postnet.postnet.2.0""": """speech_decoder_postnet.layers.2.conv""", """speech_decoder_postnet.postnet.postnet.2.1""": """speech_decoder_postnet.layers.2.batch_norm""", """speech_decoder_postnet.postnet.postnet.3.0""": """speech_decoder_postnet.layers.3.conv""", """speech_decoder_postnet.postnet.postnet.3.1""": """speech_decoder_postnet.layers.3.batch_norm""", """speech_decoder_postnet.postnet.postnet.4.0""": """speech_decoder_postnet.layers.4.conv""", """speech_decoder_postnet.postnet.postnet.4.1""": """speech_decoder_postnet.layers.4.batch_norm""", } lowercase_ = { """text_decoder_prenet.embed_tokens""": """speecht5.decoder.prenet.embed_tokens""", } lowercase_ = { """text_decoder_postnet.output_projection""": """text_decoder_postnet.lm_head""", } lowercase_ = { """encoder.layers.*.self_attn.k_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj""", """encoder.layers.*.self_attn.v_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj""", """encoder.layers.*.self_attn.q_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj""", """encoder.layers.*.self_attn.out_proj""": """speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj""", """encoder.layers.*.self_attn_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.layer_norm""", """encoder.layers.*.fc1""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense""", """encoder.layers.*.fc2""": """speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense""", """encoder.layers.*.final_layer_norm""": """speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """speecht5.encoder.wrapped_encoder.layer_norm""", """encoder.pos_emb.pe_k""": """speecht5.encoder.wrapped_encoder.embed_positions.pe_k""", } lowercase_ = { """decoder.layers.*.self_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj""", """decoder.layers.*.self_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj""", """decoder.layers.*.self_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj""", """decoder.layers.*.self_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj""", """decoder.layers.*.self_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm""", """decoder.layers.*.encoder_attn.k_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj""", """decoder.layers.*.encoder_attn.v_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj""", """decoder.layers.*.encoder_attn.q_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj""", """decoder.layers.*.encoder_attn.out_proj""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj""", """decoder.layers.*.encoder_attn_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm""", """decoder.layers.*.fc1""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense""", """decoder.layers.*.fc2""": """speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense""", """decoder.layers.*.final_layer_norm""": """speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm""", } lowercase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowercase_ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowercase_ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowercase_ = [] lowercase_ = [ """encoder.version""", """encoder.layers.*.norm_k.weight""", """encoder.layers.*.norm_k.bias""", """decoder.version""", """decoder.layers.*.norm_k.weight""", """decoder.layers.*.norm_k.bias""", """decoder.pos_emb.pe_k""", """speech_encoder_prenet.embed_positions._float_tensor""", """text_decoder_prenet.embed_positions._float_tensor""", ] lowercase_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """speech_decoder_prenet.*""", """speech_decoder_postnet.*""", ] lowercase_ = IGNORE_KEYS + [ """encoder.proj""", """speech_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] lowercase_ = IGNORE_KEYS + [ """encoder.proj""", """text_encoder_prenet.*""", """text_decoder_prenet.*""", """text_decoder_postnet.*""", ] def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for attribute in key.split("." ): lowercase__ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase__ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).shape else: lowercase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value elif weight_type == "running_mean": lowercase__ = value elif weight_type == "running_var": lowercase__ = value elif weight_type == "num_batches_tracked": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase__ = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = [] if task == "s2t": lowercase__ = hf_model.speechta.encoder.prenet.feature_encoder lowercase__ = MAPPING_S2T lowercase__ = IGNORE_KEYS_S2T elif task == "t2s": lowercase__ = None lowercase__ = MAPPING_T2S lowercase__ = IGNORE_KEYS_T2S elif task == "s2s": lowercase__ = hf_model.speechta.encoder.prenet.feature_encoder lowercase__ = MAPPING_S2S lowercase__ = IGNORE_KEYS_S2S else: raise ValueError(f'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): logger.info(f'''{name} was ignored''' ) continue lowercase__ = False if "conv_layers" in name: load_conv_layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == "group" , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase__ = key.split(".*." ) if prefix in name and suffix in name: lowercase__ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(_SCREAMING_SNAKE_CASE )[0].split("." )[-2] lowercase__ = mapped_key.replace("*" , _SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: lowercase__ = '''weight''' elif "running_mean" in name: lowercase__ = '''running_mean''' elif "running_var" in name: lowercase__ = '''running_var''' elif "num_batches_tracked" in name: lowercase__ = '''num_batches_tracked''' else: lowercase__ = None set_recursively(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(_SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = full_name.split("conv_layers." )[-1] lowercase__ = name.split("." ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ): if config_path is not None: lowercase__ = SpeechTaConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) else: lowercase__ = SpeechTaConfig() if task == "s2t": lowercase__ = config.max_text_positions lowercase__ = SpeechTaForSpeechToText(_SCREAMING_SNAKE_CASE ) elif task == "t2s": lowercase__ = 1876 lowercase__ = 600 lowercase__ = config.max_speech_positions lowercase__ = SpeechTaForTextToSpeech(_SCREAMING_SNAKE_CASE ) elif task == "s2s": lowercase__ = 1876 lowercase__ = config.max_speech_positions lowercase__ = SpeechTaForSpeechToSpeech(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Unknown task name: {task}''' ) if vocab_path: lowercase__ = SpeechTaTokenizer(_SCREAMING_SNAKE_CASE , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowercase__ = AddedToken("<mask>" , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) lowercase__ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) lowercase__ = SpeechTaFeatureExtractor() lowercase__ = SpeechTaProcessor(tokenizer=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) lowercase__ = torch.load(_SCREAMING_SNAKE_CASE ) recursively_load_weights(fairseq_checkpoint["model"] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) lowercase_ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
413
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class a__ ( _lowercase ): __magic_name__ : List[str] = "donut-swin" __magic_name__ : Optional[int] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self : str, __UpperCAmelCase : Union[str, Any]=224, __UpperCAmelCase : Any=4, __UpperCAmelCase : Optional[Any]=3, __UpperCAmelCase : Union[str, Any]=96, __UpperCAmelCase : Dict=[2, 2, 6, 2], __UpperCAmelCase : int=[3, 6, 12, 24], __UpperCAmelCase : Optional[int]=7, __UpperCAmelCase : Optional[Any]=4.0, __UpperCAmelCase : List[Any]=True, __UpperCAmelCase : int=0.0, __UpperCAmelCase : Union[str, Any]=0.0, __UpperCAmelCase : Dict=0.1, __UpperCAmelCase : int="gelu", __UpperCAmelCase : Tuple=False, __UpperCAmelCase : Tuple=0.02, __UpperCAmelCase : str=1e-5, **__UpperCAmelCase : List[str], ) -> Tuple: """simple docstring""" super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Any = embed_dim SCREAMING_SNAKE_CASE : List[Any] = depths SCREAMING_SNAKE_CASE : Dict = len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = num_heads SCREAMING_SNAKE_CASE : List[Any] = window_size SCREAMING_SNAKE_CASE : Tuple = mlp_ratio SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : List[str] = use_absolute_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : Union[str, Any] = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
507
0
import os def SCREAMING_SNAKE_CASE ( ) -> List[Any]: lowerCamelCase__ : int = os.path.dirname(os.path.realpath(_UpperCAmelCase ) ) lowerCamelCase__ : Any = os.path.join(_UpperCAmelCase , 'triangle.txt' ) with open(_UpperCAmelCase ) as f: lowerCamelCase__ : Dict = f.readlines() lowerCamelCase__ : Optional[int] = [] for line in triangle: lowerCamelCase__ : Any = [] for number in line.strip().split(' ' ): numbers_from_line.append(int(_UpperCAmelCase ) ) a.append(_UpperCAmelCase ) for i in range(1 , len(_UpperCAmelCase ) ): for j in range(len(a[i] ) ): lowerCamelCase__ : List[str] = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCamelCase__ : List[str] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_UpperCAmelCase , _UpperCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
702
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 @flax_register_to_config class lowerCAmelCase ( nn.Module, __UpperCamelCase, __UpperCamelCase ): UpperCAmelCase__ = 32 UpperCAmelCase__ = 4 UpperCAmelCase__ = 4 UpperCAmelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCAmelCase__ = False UpperCAmelCase__ = (3_20, 6_40, 12_80, 12_80) UpperCAmelCase__ = 2 UpperCAmelCase__ = 8 UpperCAmelCase__ = None UpperCAmelCase__ = 12_80 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = False UpperCAmelCase__ = jnp.floataa UpperCAmelCase__ = True UpperCAmelCase__ = 0 UpperCAmelCase__ = False def A_ ( self : Tuple , UpperCAmelCase : jax.random.KeyArray ) -> FrozenDict: # init input tensors lowerCamelCase__ : int = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase__ : List[str] = jnp.zeros(UpperCAmelCase , dtype=jnp.floataa ) lowerCamelCase__ : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase__ : Dict = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = jax.random.split(UpperCAmelCase ) lowerCamelCase__ : Dict = {'params': params_rng, 'dropout': dropout_rng} return self.init(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )["params"] def A_ ( self : Tuple ) -> Optional[int]: lowerCamelCase__ : Any = self.block_out_channels lowerCamelCase__ : int = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase__ : Tuple = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase__ : Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase__ : Optional[int] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase__ : int = FlaxTimestepEmbedding(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Optional[int] = self.only_cross_attention if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Dict = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase__ : Dict = output_channel lowerCamelCase__ : Optional[int] = block_out_channels[i] lowerCamelCase__ : List[Any] = i == len(UpperCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase__ : Tuple = FlaxCrossAttnDownBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase__ : str = FlaxDownBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCAmelCase ) lowerCamelCase__ : List[Any] = down_blocks # mid lowerCamelCase__ : Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCamelCase__ : Any = [] lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Any = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : int = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowerCamelCase__ : str = output_channel lowerCamelCase__ : int = reversed_block_out_channels[i] lowerCamelCase__ : int = reversed_block_out_channels[min(i + 1 , len(UpperCAmelCase ) - 1 )] lowerCamelCase__ : Optional[Any] = i == len(UpperCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCamelCase__ : Tuple = FlaxCrossAttnUpBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase__ : Optional[Any] = FlaxUpBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Tuple = up_blocks # out lowerCamelCase__ : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(UpperCAmelCase , jnp.ndarray ): lowerCamelCase__ : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[Any] = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase__ : Any = jnp.expand_dims(UpperCAmelCase , 0 ) lowerCamelCase__ : List[str] = self.time_proj(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_embedding(UpperCAmelCase ) # 2. pre-process lowerCamelCase__ : Dict = jnp.transpose(UpperCAmelCase , (0, 2, 3, 1) ) lowerCamelCase__ : Optional[Any] = self.conv_in(UpperCAmelCase ) # 3. down lowerCamelCase__ : Any = (sample,) for down_block in self.down_blocks: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = down_block(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , deterministic=not train ) else: lowerCamelCase__ , lowerCamelCase__ : Any = down_block(UpperCAmelCase , UpperCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCamelCase__ : Union[str, Any] = () for down_block_res_sample, down_block_additional_residual in zip( UpperCAmelCase , UpperCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCamelCase__ : str = new_down_block_res_samples # 4. mid lowerCamelCase__ : List[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCamelCase__ : str = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCamelCase__ : List[str] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[Any] = up_block( UpperCAmelCase , temb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , deterministic=not train , ) else: lowerCamelCase__ : int = up_block(UpperCAmelCase , temb=UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , deterministic=not train ) # 6. post-process lowerCamelCase__ : str = self.conv_norm_out(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = nn.silu(UpperCAmelCase ) lowerCamelCase__ : Any = self.conv_out(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = jnp.transpose(UpperCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=UpperCAmelCase )
188
0
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BeautifulSoup(requests.get(lowercase , params=lowercase ).content , "html.parser" ) SCREAMING_SNAKE_CASE : Union[str, Any] = soup.find("div" , attrs={"class": "gs_ri"} ) SCREAMING_SNAKE_CASE : str = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": snake_case = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2_018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
62
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def A ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A ( self ) -> int: a_ : Any = 1 a_ : str = 3 a_ : Dict = (3_2, 3_2) a_ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE ) return image @property def A ( self ) -> Tuple: torch.manual_seed(0 ) a_ : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def A ( self ) -> Any: torch.manual_seed(0 ) a_ : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A ( self ) -> List[Any]: torch.manual_seed(0 ) a_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE ) @property def A ( self ) -> Optional[int]: def extract(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> Union[str, Any]: a_ : Optional[int] = torch.ones([0] ) def A ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: self.pixel_values.to(_SCREAMING_SNAKE_CASE ) return self return Out() return extract def A ( self ) -> Optional[Any]: a_ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator a_ : Union[str, Any] = self.dummy_cond_unet a_ : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) a_ : List[str] = self.dummy_vae a_ : List[str] = self.dummy_text_encoder a_ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk a_ : Union[str, Any] = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : Optional[Any] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Tuple = "A painting of a squirrel eating a burger" a_ : List[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Union[str, Any] = sd_pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) a_ : List[str] = output.images a_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Dict = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_SCREAMING_SNAKE_CASE , )[0] a_ : List[str] = image[0, -3:, -3:, -1] a_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : Union[str, Any] = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> Optional[Any]: a_ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator a_ : List[str] = self.dummy_cond_unet a_ : int = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) a_ : Any = self.dummy_vae a_ : int = self.dummy_text_encoder a_ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk a_ : str = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : List[str] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Dict = "A painting of a squirrel eating a burger" a_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Union[str, Any] = sd_pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) a_ : Union[str, Any] = output.images a_ : Union[str, Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) a_ : Optional[int] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_SCREAMING_SNAKE_CASE , )[0] a_ : Any = image[0, -3:, -3:, -1] a_ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> List[str]: a_ : Tuple = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(pipe.scheduler , _SCREAMING_SNAKE_CASE ) assert pipe.safety_checker is None a_ : List[Any] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) # sanity check that the pipeline still works assert pipe.safety_checker is None a_ : Optional[int] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A ( self ) -> Union[str, Any]: a_ : Tuple = self.dummy_cond_unet a_ : int = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) a_ : Tuple = self.dummy_vae a_ : Optional[Any] = self.dummy_text_encoder a_ : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 a_ : Union[str, Any] = unet.half() a_ : Optional[Any] = vae.half() a_ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk a_ : Tuple = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) a_ : Optional[int] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : int = "A painting of a squirrel eating a burger" a_ : Tuple = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def A ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self ) -> Optional[Any]: a_ : List[Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a_ : List[str] = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : str = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) a_ : Optional[int] = 4_0_0_3_6_6_0_3_4_6 a_ : Optional[int] = 7 # without safety guidance (sld_guidance_scale = 0) a_ : Tuple = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) a_ : Any = output.images a_ : Any = image[0, -3:, -3:, -1] a_ : List[str] = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) a_ : List[str] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : List[str] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : List[str] = output.images a_ : Union[str, Any] = image[0, -3:, -3:, -1] a_ : List[Any] = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> Dict: a_ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) a_ : Dict = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Tuple = "padme amidala taking a bath artwork, safe for work, no nudity" a_ : List[Any] = 2_7_3_4_9_7_1_7_5_5 a_ : Tuple = 7 a_ : Dict = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Dict = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) a_ : str = output.images a_ : Optional[Any] = image[0, -3:, -3:, -1] a_ : Optional[int] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 a_ : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : str = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : str = output.images a_ : Optional[Any] = image[0, -3:, -3:, -1] a_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self ) -> int: a_ : Optional[Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) a_ : Dict = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) a_ : Tuple = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) a_ : List[str] = 1_0_4_4_3_5_5_2_3_4 a_ : Dict = 1_2 a_ : List[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Tuple = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) a_ : Any = output.images a_ : List[str] = image[0, -3:, -3:, -1] a_ : Tuple = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 a_ : Optional[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) a_ : Optional[int] = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) a_ : int = output.images a_ : Union[str, Any] = image[0, -3:, -3:, -1] a_ : Tuple = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
473
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = LayoutLMTokenizer __SCREAMING_SNAKE_CASE = LayoutLMTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def A ( self : Dict ): """simple docstring""" super().setUp() __snake_case = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def A ( self : Optional[Any] , **a_ : Union[str, Any] ): """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **a_ ) def A ( self : Any , a_ : Any ): """simple docstring""" __snake_case = "UNwant\u00E9d,running" __snake_case = "unwanted, running" return input_text, output_text def A ( self : List[Any] ): """simple docstring""" __snake_case = self.tokenizer_class(self.vocab_file ) __snake_case = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [7, 4, 5, 10, 8, 9] ) def A ( self : int ): """simple docstring""" pass
680
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
1
"""simple docstring""" import string import numpy def snake_case ( _a: int , _a: int )-> int: '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , _a ) class _a : a_ : str = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) a_ : int = numpy.vectorize(lambda SCREAMING_SNAKE_CASE_ : x % 36 ) a_ : Optional[int] = numpy.vectorize(SCREAMING_SNAKE_CASE_ ) def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : numpy.ndarray ): lowerCamelCase__ = self.modulus(SCREAMING_SNAKE_CASE__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowerCamelCase__ = encrypt_key.shape[0] def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): return self.key_string.index(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : str , SCREAMING_SNAKE_CASE__ : int ): return self.key_string[round(SCREAMING_SNAKE_CASE__ )] def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCamelCase__ = det % len(self.key_string ) lowerCamelCase__ = len(self.key_string ) if greatest_common_divisor(SCREAMING_SNAKE_CASE__ , len(self.key_string ) ) != 1: lowerCamelCase__ = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = [char for char in text.upper() if char in self.key_string] lowerCamelCase__ = chars[-1] while len(SCREAMING_SNAKE_CASE__ ) % self.break_key != 0: chars.append(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.process_text(text.upper() ) lowerCamelCase__ = '' for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) - self.break_key + 1 , self.break_key ): lowerCamelCase__ = text[i : i + self.break_key] lowerCamelCase__ = [self.replace_letters(SCREAMING_SNAKE_CASE__ ) for char in batch] lowerCamelCase__ = numpy.array([vec] ).T lowerCamelCase__ = self.modulus(self.encrypt_key.dot(SCREAMING_SNAKE_CASE__ ) ).T.tolist()[ 0 ] lowerCamelCase__ = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def _UpperCamelCase ( self : Any ): lowerCamelCase__ = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCamelCase__ = det % len(self.key_string ) lowerCamelCase__ = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowerCamelCase__ = i break lowerCamelCase__ = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.make_decrypt_key() lowerCamelCase__ = self.process_text(text.upper() ) lowerCamelCase__ = '' for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) - self.break_key + 1 , self.break_key ): lowerCamelCase__ = text[i : i + self.break_key] lowerCamelCase__ = [self.replace_letters(SCREAMING_SNAKE_CASE__ ) for char in batch] lowerCamelCase__ = numpy.array([vec] ).T lowerCamelCase__ = self.modulus(decrypt_key.dot(SCREAMING_SNAKE_CASE__ ) ).T.tolist()[0] lowerCamelCase__ = ''.join( self.replace_digits(SCREAMING_SNAKE_CASE__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def snake_case ( )-> None: '''simple docstring''' lowerCamelCase__ = int(input('Enter the order of the encryption key: ' ) ) lowerCamelCase__ = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(_a ): lowerCamelCase__ = [int(_a ) for x in input().split()] hill_matrix.append(_a ) lowerCamelCase__ = HillCipher(numpy.array(_a ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) lowerCamelCase__ = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": lowerCamelCase__ = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(_a ) ) elif option == "2": lowerCamelCase__ = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(_a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
510
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _snake_case = ["text", "image", "audio"] def snake_case ( _a: List[str] )-> List[str]: '''simple docstring''' lowerCamelCase__ = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_a , _a ): inputs.append(create_inputs(_a ) ) else: raise ValueError(F'Invalid type requested: {input_type}' ) return inputs def snake_case ( _a: List )-> Tuple: '''simple docstring''' lowerCamelCase__ = [] for output in outputs: if isinstance(_a , (str, AgentText) ): output_types.append('text' ) elif isinstance(_a , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(_a , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F'Invalid output: {output}' ) return output_types @is_tool_test class _a : def _UpperCamelCase ( self : List[str] ): self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) lowerCamelCase__ = self.tool.inputs for _input in inputs: if isinstance(_input , SCREAMING_SNAKE_CASE__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCamelCase__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = create_inputs(self.tool.inputs ) lowerCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE__ ) # There is a single output if len(self.tool.outputs ) == 1: lowerCamelCase__ = [outputs] self.assertListEqual(output_types(SCREAMING_SNAKE_CASE__ ) , self.tool.outputs ) def _UpperCamelCase ( self : str ): self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def _UpperCamelCase ( self : str ): lowerCamelCase__ = create_inputs(self.tool.inputs ) lowerCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(self.tool.outputs ) ) for output, output_type in zip(SCREAMING_SNAKE_CASE__ , self.tool.outputs ): lowerCamelCase__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( self : Optional[Any] ): lowerCamelCase__ = create_inputs(self.tool.inputs ) lowerCamelCase__ = [] for _input, input_type in zip(SCREAMING_SNAKE_CASE__ , self.tool.inputs ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCamelCase__ = self.tool(*SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = [outputs] self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(self.tool.outputs ) )
510
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowercase__ ), 'Tatoeba directory does not exist.' ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): UpperCAmelCase_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCAmelCase ) @slow def A__ ( self ): self.resolver.convert_models(["heb-eng"] ) @slow def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.resolver.write_model_card("opus-mt-he-en" , dry_run=lowerCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
713
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor class lowerCamelCase ( lowercase__, lowercase__ ): '''simple docstring''' @register_to_config def __init__( self , lowerCAmelCase = 32 , lowerCAmelCase = 64 , lowerCAmelCase = 20 , lowerCAmelCase = 768 , lowerCAmelCase=77 , lowerCAmelCase=4 , lowerCAmelCase = 0.0 , lowerCAmelCase = "silu" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "linear" , lowerCAmelCase = "prd" , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , ): super().__init__() UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = attention_head_dim UpperCAmelCase_ = num_attention_heads * attention_head_dim UpperCAmelCase_ = additional_embeddings UpperCAmelCase_ = time_embed_dim or inner_dim UpperCAmelCase_ = embedding_proj_dim or embedding_dim UpperCAmelCase_ = clip_embed_dim or embedding_dim UpperCAmelCase_ = Timesteps(lowerCAmelCase , lowerCAmelCase , 0 ) UpperCAmelCase_ = TimestepEmbedding(lowerCAmelCase , lowerCAmelCase , out_dim=lowerCAmelCase , act_fn=lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if embedding_proj_norm_type is None: UpperCAmelCase_ = None elif embedding_proj_norm_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) if encoder_hid_proj_type is None: UpperCAmelCase_ = None elif encoder_hid_proj_type == "linear": UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCAmelCase ) ) if added_emb_type == "prd": UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , 1 , lowerCAmelCase ) ) elif added_emb_type is None: UpperCAmelCase_ = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase_ = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dropout=lowerCAmelCase , activation_fn="gelu" , attention_bias=lowerCAmelCase , ) for d in range(lowerCAmelCase ) ] ) if norm_in_type == "layer": UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) elif norm_in_type is None: UpperCAmelCase_ = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase_ = nn.LayerNorm(lowerCAmelCase ) UpperCAmelCase_ = nn.Linear(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase_ = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , lowerCAmelCase , persistent=lowerCAmelCase ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) UpperCAmelCase_ = nn.Parameter(torch.zeros(1 , lowerCAmelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def A__ ( self ): UpperCAmelCase_ = {} def fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): UpperCAmelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return processors def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , "set_processor" ): if not isinstance(lowerCAmelCase , lowerCAmelCase ): module.set_processor(lowerCAmelCase ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , lowerCAmelCase , lowerCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def A__ ( self ): self.set_attn_processor(AttnProcessor() ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = True , ): UpperCAmelCase_ = hidden_states.shape[0] UpperCAmelCase_ = timestep if not torch.is_tensor(lowerCAmelCase ): UpperCAmelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCAmelCase ) and len(timesteps.shape ) == 0: UpperCAmelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ = timesteps * torch.ones(lowerCAmelCase , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase_ = self.time_proj(lowerCAmelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase_ = timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase_ = self.time_embedding(lowerCAmelCase ) if self.embedding_proj_norm is not None: UpperCAmelCase_ = self.embedding_proj_norm(lowerCAmelCase ) UpperCAmelCase_ = self.embedding_proj(lowerCAmelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase_ = self.encoder_hidden_states_proj(lowerCAmelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) UpperCAmelCase_ = self.proj_in(lowerCAmelCase ) UpperCAmelCase_ = self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase_ = [] UpperCAmelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCAmelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase_ = hidden_states[:, None, :] UpperCAmelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCAmelCase , -1 , -1 ) additional_embeds.append(lowerCAmelCase ) UpperCAmelCase_ = torch.cat( lowerCAmelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase_ = F.pad( lowerCAmelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase_ = hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 UpperCAmelCase_ = F.pad(lowerCAmelCase , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase_ = self.norm_in(lowerCAmelCase ) for block in self.transformer_blocks: UpperCAmelCase_ = block(lowerCAmelCase , attention_mask=lowerCAmelCase ) UpperCAmelCase_ = self.norm_out(lowerCAmelCase ) if self.prd_embedding is not None: UpperCAmelCase_ = hidden_states[:, -1] else: UpperCAmelCase_ = hidden_states[:, additional_embeddings_len:] UpperCAmelCase_ = self.proj_to_clip_embeddings(lowerCAmelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCAmelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
23
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class __A ( A ): '''simple docstring''' __lowerCamelCase : Tuple = 'levit' def __init__(self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.02 , **A , ) -> Any: """simple docstring""" super().__init__(**A ) _a = image_size _a = num_channels _a = kernel_size _a = stride _a = padding _a = hidden_sizes _a = num_attention_heads _a = depths _a = key_dim _a = drop_path_rate _a = patch_size _a = attention_ratio _a = mlp_ratio _a = initializer_range _a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A ( A ): '''simple docstring''' __lowerCamelCase : str = version.parse('1.11' ) @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a__ (self ) -> float: """simple docstring""" return 1E-4
11
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 10 lowercase_ = 256 def lowerCAmelCase (__A): """simple docstring""" if len(__A) < MIN_NUM_TOKENS: return None _a = MinHash(num_perm=__A) for token in set(__A): min_hash.update(token.encode()) return min_hash def lowerCAmelCase (__A): """simple docstring""" return {t for t in NON_ALPHA.split(__A) if len(t.strip()) > 0} class __A : '''simple docstring''' def __init__(self , *, A = 0.85 , ) -> Optional[int]: """simple docstring""" _a = duplication_jaccard_threshold _a = NUM_PERM _a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _a = defaultdict(A ) def a__ (self , A , A ) -> None: """simple docstring""" _a = self._index.query(A ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(A , A ) if len(A ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(A ) break else: self._duplicate_clusters[close_duplicates[0]].add(A ) def a__ (self ) -> List[List[Dict]]: """simple docstring""" _a = [] for base, duplicates in self._duplicate_clusters.items(): _a = [base] + list(A ) # reformat the cluster to be a list of dict _a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(A ) return duplicate_clusters def a__ (self , A ) -> None: """simple docstring""" _a = self.get_duplicate_clusters() with open(A , '''w''' ) as f: json.dump(A , A ) def lowerCAmelCase (__A): """simple docstring""" _a , _a = element _a = get_min_hash([t for t in NON_ALPHA.split(data['''content''']) if len(t.strip()) > 0]) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCAmelCase (__A): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(__A , max_queue_size=10_000) , chunksize=100 , ): if data is not None: yield data def lowerCAmelCase (__A , __A): """simple docstring""" _a = DuplicationIndex(duplication_jaccard_threshold=__A) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(__A)) , max_queue_size=100)): di.add(__A , __A) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCAmelCase (__A , __A): """simple docstring""" _a = get_tokens(__A) _a = get_tokens(__A) return len(tokensa & tokensa) / len(tokensa | tokensa) lowercase_ = None def lowerCAmelCase (__A , __A): """simple docstring""" _a = [] for elementa in cluster: _a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: _a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(__A , __A) >= jaccard_threshold: elementa["copies"] += 1 break else: _a = 1 extremes.append(__A) return extremes def lowerCAmelCase (__A , __A , __A): """simple docstring""" global _shared_dataset _a = dataset _a = [] _a = partial(_find_cluster_extremes_shared , jaccard_threshold=__A) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( __A , __A , ) , total=len(__A) , ): extremes_list.append(__A) return extremes_list def lowerCAmelCase (__A , __A = 0.85): """simple docstring""" _a = make_duplicate_clusters(__A , __A) _a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} _a = {} _a = find_extremes(__A , __A , __A) for extremes in extremes_clusters: for element in extremes: _a = element _a = duplicate_indices - set(extreme_dict.keys()) _a = dataset.filter(lambda __A , __A: idx not in remove_indices , with_indices=__A) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _a = element['''base_index'''] in extreme_dict if element["is_extreme"]: _a = extreme_dict[element['''base_index''']]['''copies'''] print(F'''Original dataset size: {len(__A)}''') print(F'''Number of duplicate clusters: {len(__A)}''') print(F'''Files in duplicate cluster: {len(__A)}''') print(F'''Unique files in duplicate cluster: {len(__A)}''') print(F'''Filtered dataset size: {len(__A)}''') return ds_filter, duplicate_clusters
11
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __A : str = logging.getLogger(__name__) torch.set_grad_enabled(False) __A : Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" def UpperCamelCase_ ( A__ : str , A__ : int=1_00 , A__ : List[Any]=" " ): '''simple docstring''' lowerCAmelCase_ : List[Any] = text.split(A__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(A__ ) , A__ )] def UpperCamelCase_ ( A__ : dict ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(A__ ): titles.append(title if title is not None else """""" ) texts.append(A__ ) return {"title": titles, "text": texts} def UpperCamelCase_ ( A__ : dict , A__ : DPRContextEncoder , A__ : DPRContextEncoderTokenizerFast ): '''simple docstring''' lowerCAmelCase_ : Any = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=A__ , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] lowerCAmelCase_ : Optional[Any] = ctx_encoder(input_ids.to(device=A__ ) , return_dict=A__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCamelCase_ ( A__ : "RagExampleArguments" , A__ : "ProcessingArguments" , A__ : "IndexHnswArguments" , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase_ : Optional[int] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase_ : str = dataset.map(A__ , batched=A__ , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase_ : Any = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=A__ ) lowerCAmelCase_ : Optional[Any] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase_ : Optional[Any] = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase_ : str = dataset.map( partial(A__ , ctx_encoder=A__ , ctx_tokenizer=A__ ) , batched=A__ , batch_size=processing_args.batch_size , features=A__ , ) # And finally save your dataset lowerCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(A__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase_ : Optional[Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=A__ ) # And save the index lowerCAmelCase_ : Optional[int] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(A__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __snake_case : """simple docstring""" lowercase = field( default=str(Path(_SCREAMING_SNAKE_CASE).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv') ,metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} ,) lowercase = field( default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} ,) lowercase = field( default='facebook/rag-sequence-nq' ,metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} ,) lowercase = field( default='facebook/dpr-ctx_encoder-multiset-base' ,metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } ,) lowercase = field( default=str(Path(_SCREAMING_SNAKE_CASE).parent / 'test_run' / 'dummy-kb') ,metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} ,) @dataclass class __snake_case : """simple docstring""" lowercase = field( default=_SCREAMING_SNAKE_CASE ,metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } ,) lowercase = field( default=16 ,metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } ,) @dataclass class __snake_case : """simple docstring""" lowercase = field( default=7_68 ,metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} ,) lowercase = field( default=1_28 ,metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __A : Optional[int] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __A : Dict = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __A : Optional[Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
701
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : Dict = "http://www.mocksite.com/file1.txt" __A : List[str] = "\"text\": [\"foo\", \"foo\"]" __A : int = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class __snake_case : """simple docstring""" lowercase = 2_00 lowercase = {'Content-Length': '100'} lowercase = {} def __lowercase ( self : Union[str, Any] , **lowerCamelCase : Optional[int] ) -> str: return [bytes(lowerCamelCase , """utf-8""" )] def UpperCamelCase_ ( *A__ : List[str] , **A__ : Union[str, Any] ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def UpperCamelCase_ ( A__ : List[Any] , A__ : List[Any] , A__ : str ): '''simple docstring''' import requests monkeypatch.setattr(A__ , """request""" , A__ ) lowerCAmelCase_ : Tuple = URL if issubclass(A__ , A__ ): lowerCAmelCase_ : Optional[Any] = url elif issubclass(A__ , A__ ): lowerCAmelCase_ : Dict = [url] elif issubclass(A__ , A__ ): lowerCAmelCase_ : Tuple = {"""train""": url} lowerCAmelCase_ : List[Any] = """dummy""" lowerCAmelCase_ : str = """downloads""" lowerCAmelCase_ : Dict = tmp_path lowerCAmelCase_ : Any = DownloadConfig( cache_dir=os.path.join(A__ , A__ ) , use_etag=A__ , ) lowerCAmelCase_ : List[Any] = DownloadManager(dataset_name=A__ , download_config=A__ ) lowerCAmelCase_ : int = dl_manager.download(A__ ) lowerCAmelCase_ : Any = urls for downloaded_paths in [downloaded_paths]: if isinstance(A__ , A__ ): lowerCAmelCase_ : str = [downloaded_paths] lowerCAmelCase_ : Any = [urls] elif isinstance(A__ , A__ ): assert "train" in downloaded_paths.keys() lowerCAmelCase_ : Union[str, Any] = downloaded_paths.values() lowerCAmelCase_ : Optional[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(A__ , A__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCAmelCase_ : Tuple = Path(A__ ) lowerCAmelCase_ : List[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCAmelCase_ : Optional[Any] = downloaded_path.read_text() assert content == CONTENT lowerCAmelCase_ : Tuple = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowerCAmelCase_ : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : List[Any] , A__ : List[str] ): '''simple docstring''' lowerCAmelCase_ : int = str(A__ ) if issubclass(A__ , A__ ): lowerCAmelCase_ : int = filename elif issubclass(A__ , A__ ): lowerCAmelCase_ : List[str] = [filename] elif issubclass(A__ , A__ ): lowerCAmelCase_ : Union[str, Any] = {"""train""": filename} lowerCAmelCase_ : Optional[int] = """dummy""" lowerCAmelCase_ : str = xz_file.parent lowerCAmelCase_ : List[str] = """extracted""" lowerCAmelCase_ : Union[str, Any] = DownloadConfig( cache_dir=A__ , use_etag=A__ , ) lowerCAmelCase_ : str = DownloadManager(dataset_name=A__ , download_config=A__ ) lowerCAmelCase_ : Union[str, Any] = dl_manager.extract(A__ ) lowerCAmelCase_ : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(A__ , A__ ): lowerCAmelCase_ : List[str] = [extracted_paths] lowerCAmelCase_ : Union[str, Any] = [paths] elif isinstance(A__ , A__ ): assert "train" in extracted_paths.keys() lowerCAmelCase_ : Union[str, Any] = extracted_paths.values() lowerCAmelCase_ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(A__ , A__ ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCAmelCase_ : int = Path(A__ ) lowerCAmelCase_ : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(A__ , etag=A__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCAmelCase_ : Any = extracted_path.read_text() lowerCAmelCase_ : Optional[Any] = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCamelCase_ ( A__ : Dict , A__ : Any ): '''simple docstring''' assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(A__ , start=1 ): lowerCAmelCase_ : int = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def UpperCamelCase_ ( A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : List[str] = request.getfixturevalue(A__ ) lowerCAmelCase_ : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): _test_jsonl(A__ , A__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def UpperCamelCase_ ( A__ : str , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Tuple = request.getfixturevalue(A__ ) lowerCAmelCase_ : str = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): _test_jsonl(A__ , A__ ) assert num_tar == 1 assert num_jsonl == 2 def UpperCamelCase_ ( A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(A__ ) , start=1 ): assert os.path.basename(A__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
398
0
def __a ( lowerCAmelCase_ : int = 10_00 ) -> int: '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_= 1, 1 UpperCAmelCase_= 2 while True: UpperCAmelCase_= 0 UpperCAmelCase_= fa + fa UpperCAmelCase_, UpperCAmelCase_= fa, f index += 1 for _ in str(lowerCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
593
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
593
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowercase = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase ( A_ , A_ , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , )-> Optional[Any]: '''simple docstring''' if attention_mask is None: a : Any = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: a : List[str] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: a : str = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _A : """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Dict=13 , __UpperCAmelCase : List[Any]=7 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : int=99 , __UpperCAmelCase : Tuple=16 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : List[Any]=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Union[str, Any]=1 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : int=0.02 , ): a : str = parent a : Optional[Any] = batch_size a : Union[str, Any] = seq_length a : int = is_training a : str = use_labels a : Optional[Any] = vocab_size a : Tuple = hidden_size a : Any = num_hidden_layers a : Optional[Any] = num_attention_heads a : Optional[Any] = intermediate_size a : Optional[Any] = hidden_act a : int = hidden_dropout_prob a : str = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : Optional[int] = eos_token_id a : Optional[int] = pad_token_id a : str = bos_token_id a : Tuple = initializer_range def __snake_case ( self : List[Any]): a : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) a : Dict = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) a : List[Any] = shift_tokens_right(__UpperCamelCase , 1 , 2) a : str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__UpperCamelCase , ) a : List[str] = prepare_blenderbot_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) return config, inputs_dict def __snake_case ( self : str): a , a : str = self.prepare_config_and_inputs() return config, inputs_dict def __snake_case ( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple): a : int = 20 a : List[str] = model_class_name(__UpperCamelCase) a : int = model.encode(inputs_dict["input_ids"]) a , a : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) a : int = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase) a : Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4") a : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a : Any = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) a : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") a : Any = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , ) a : List[str] = model.decode(__UpperCamelCase , __UpperCamelCase) a : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''') def __snake_case ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any): a : Any = 20 a : Any = model_class_name(__UpperCamelCase) a : Optional[int] = model.encode(inputs_dict["input_ids"]) a , a : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) a : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) a : List[Any] = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase) a : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) a : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4") a : str = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) a : Union[str, Any] = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase) a : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''') @require_flax class _A ( unittest.TestCase ): """simple docstring""" UpperCAmelCase : int = 9_9 def __snake_case ( self : Any): a : str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) a : int = input_ids.shape[0] a : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __snake_case ( self : Tuple): a , a , a : int = self._get_config_and_data() a : Tuple = FlaxBlenderbotForConditionalGeneration(__UpperCamelCase) a : str = lm_model(input_ids=__UpperCamelCase) a : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , __UpperCamelCase) def __snake_case ( self : List[str]): a : int = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) a : List[Any] = FlaxBlenderbotForConditionalGeneration(__UpperCamelCase) a : Optional[int] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) a : Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) a : int = lm_model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase) a : List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , __UpperCamelCase) def __snake_case ( self : Any): a : Dict = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) a : Optional[int] = shift_tokens_right(__UpperCamelCase , 1 , 2) a : Optional[int] = np.equal(__UpperCamelCase , 1).astype(np.floataa).sum() a : str = np.equal(__UpperCamelCase , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(__UpperCamelCase , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class _A ( _a ,unittest.TestCase ,_a ): """simple docstring""" UpperCAmelCase : List[Any] = True UpperCAmelCase : int = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCAmelCase : Optional[int] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __snake_case ( self : Union[str, Any]): a : Optional[Any] = FlaxBlenderbotModelTester(self) def __snake_case ( self : int): a , a : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) def __snake_case ( self : List[str]): a , a : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) def __snake_case ( self : Optional[int]): a , a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): a : List[Any] = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase) a : str = model_class(__UpperCamelCase) @jax.jit def encode_jitted(__UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Tuple): return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase) with self.subTest("JIT Enabled"): a : Optional[int] = encode_jitted(**__UpperCamelCase).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): a : str = encode_jitted(**__UpperCamelCase).to_tuple() self.assertEqual(len(__UpperCamelCase) , len(__UpperCamelCase)) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase): self.assertEqual(jitted_output.shape , output.shape) def __snake_case ( self : int): a , a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): a : Optional[int] = model_class(__UpperCamelCase) a : Union[str, Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"]) a : Union[str, Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : int): return model.decode( decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , ) with self.subTest("JIT Enabled"): a : List[Any] = decode_jitted(**__UpperCamelCase).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): a : Optional[Any] = decode_jitted(**__UpperCamelCase).to_tuple() self.assertEqual(len(__UpperCamelCase) , len(__UpperCamelCase)) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase): self.assertEqual(jitted_output.shape , output.shape) @slow def __snake_case ( self : Optional[int]): for model_class_name in self.all_model_classes: a : Tuple = model_class_name.from_pretrained("facebook/blenderbot-400M-distill") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids a : Dict = np.ones((1, 1)) * model.config.eos_token_id a : Tuple = model(__UpperCamelCase) self.assertIsNotNone(__UpperCamelCase) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU.") @slow def __snake_case ( self : Optional[Any]): a : str = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} a : Dict = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} a : int = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=__UpperCamelCase) a : List[Any] = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B") a : Optional[Any] = ["Sam"] a : Tuple = tokenizer(__UpperCamelCase , return_tensors="jax") a : List[Any] = model.generate(**__UpperCamelCase , **__UpperCamelCase) a : Tuple = "Sam is a great name. It means \"sun\" in Gaelic." a : Optional[int] = tokenizer.batch_decode(__UpperCamelCase , **__UpperCamelCase) assert generated_txt[0].strip() == tgt_text
715
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __lowercase = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ __lowercase = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ __lowercase = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ __lowercase = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ __lowercase = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): """simple docstring""" def __snake_case ( self : Dict): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string")), "references": datasets.Value("string"), }) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def __snake_case ( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any]=[1, 10, 100] , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : Tuple=3.0): if os.getenv("HF_ALLOW_CODE_EVAL" , 0) != "1": raise ValueError(_WARNING) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows.") with ThreadPoolExecutor(max_workers=__UpperCAmelCase) as executor: a : Tuple = [] a : Any = Counter() a : List[Any] = 0 a : int = defaultdict(__UpperCAmelCase) for task_id, (candidates, test_case) in enumerate(zip(__UpperCAmelCase , __UpperCAmelCase)): for candidate in candidates: a : List[Any] = candidate + "\n" + test_case a : Optional[Any] = (test_program, timeout, task_id, completion_id[task_id]) a : Union[str, Any] = executor.submit(__UpperCAmelCase , *__UpperCAmelCase) futures.append(__UpperCAmelCase) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__UpperCAmelCase): a : Dict = future.result() results[result["task_id"]].append((result["completion_id"], result)) a , a : List[Any] = [], [] for result in results.values(): result.sort() a : Union[str, Any] = [r[1]["passed"] for r in result] total.append(len(__UpperCAmelCase)) correct.append(sum(__UpperCAmelCase)) a : Any = np.array(__UpperCAmelCase) a : Optional[Any] = np.array(__UpperCAmelCase) a : List[str] = k a : Union[str, Any] = {f'''pass@{k}''': estimate_pass_at_k(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowercase ( A_ , A_ , A_ )-> Dict: '''simple docstring''' def estimator(A_ , A_ , A_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A_ , A_ ): a : Dict = itertools.repeat(A_ , len(A_ ) ) else: assert len(A_ ) == len(A_ ) a : int = iter(A_ ) return np.array([estimator(int(A_ ) , int(A_ ) , A_ ) for n, c in zip(A_ , A_ )] )
135
0
'''simple docstring''' def lowercase__ ( __lowercase : str ) -> int: """simple docstring""" assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(__lowercase ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , __lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
399
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowercase__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
0
from __future__ import annotations def a__ ( snake_case , snake_case ): """simple docstring""" # Checks if the entire collection has been sorted if len(snake_case ) <= 1 or n <= 1: return insert_next(snake_case , n - 1 ) rec_insertion_sort(snake_case , n - 1 ) def a__ ( snake_case , snake_case ): """simple docstring""" # Checks order between adjacent elements if index >= len(snake_case ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __SCREAMING_SNAKE_CASE : Optional[int] = ( collection[index], collection[index - 1], ) insert_next(snake_case , index + 1 ) if __name__ == "__main__": lowercase_ = input("""Enter integers separated by spaces: """) lowercase_ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
718
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowercase_ = float("""nan""") class __UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = sys.stdout __SCREAMING_SNAKE_CASE : int = open(_A , '''a''' ) def __getattr__( self : int , _A : str ): """simple docstring""" return getattr(self.stdout , _A ) def UpperCAmelCase__ ( self : Dict , _A : Any ): """simple docstring""" self.stdout.write(_A ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , _A , 0 , re.M ) ) def a__ ( snake_case=80 , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] # deal with critical env vars __SCREAMING_SNAKE_CASE : List[Any] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: __SCREAMING_SNAKE_CASE : Any = os.environ.get(snake_case , snake_case ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __SCREAMING_SNAKE_CASE : Optional[int] = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(snake_case ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __SCREAMING_SNAKE_CASE : Tuple = [] __SCREAMING_SNAKE_CASE : List[Any] = '''''' while len(snake_case ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(snake_case ) == 0 or len(snake_case ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = '''''' return "\\\n".join(snake_case ) def a__ ( snake_case , snake_case ): """simple docstring""" # unwrap multi-line input __SCREAMING_SNAKE_CASE : Dict = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own __SCREAMING_SNAKE_CASE : Any = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __SCREAMING_SNAKE_CASE : Any = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = subprocess.run(snake_case , capture_output=snake_case , text=snake_case ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams __SCREAMING_SNAKE_CASE : Optional[int] = variation.replace(''' ''' , '''-''' ) with open(Path(snake_case ) / F'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(snake_case ) / F'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : Any = json.load(snake_case ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : str = F'''{id}: {variation:<{longest_variation_len}}''' __SCREAMING_SNAKE_CASE : Optional[int] = F'''{preamble}: ''' __SCREAMING_SNAKE_CASE : Optional[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case ) , desc=snake_case , leave=snake_case ): __SCREAMING_SNAKE_CASE : str = process_run_single( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : List[str] = single_run_metrics[target_metric_key] if not math.isnan(snake_case ): metrics.append(snake_case ) results.append(snake_case ) outcome += "✓" else: outcome += "✘" __SCREAMING_SNAKE_CASE : str = F'''\33[2K\r{outcome}''' if len(snake_case ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __SCREAMING_SNAKE_CASE : Optional[Any] = round(mean_metrics[target_metric_key] , 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{outcome} {mean_target}''' if len(snake_case ) > 1: results_str += F''' {tuple(round(snake_case , 2 ) for x in results )}''' print(snake_case ) __SCREAMING_SNAKE_CASE : Tuple = variation return mean_metrics else: print(snake_case ) return {variation_key: variation, target_metric_key: nan} def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = pd.DataFrame(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = '''variation''' __SCREAMING_SNAKE_CASE : Union[str, Any] = '''diff_%''' __SCREAMING_SNAKE_CASE : str = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __SCREAMING_SNAKE_CASE : List[str] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case ): # as a fallback, use the minimal value as the sentinel __SCREAMING_SNAKE_CASE : Optional[Any] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case ): __SCREAMING_SNAKE_CASE : Optional[Any] = df.apply( lambda snake_case : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns __SCREAMING_SNAKE_CASE : List[Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] __SCREAMING_SNAKE_CASE : Union[str, Any] = df.reindex(snake_case , axis='''columns''' ) # reorder cols # capitalize __SCREAMING_SNAKE_CASE : str = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible __SCREAMING_SNAKE_CASE : Any = df.rename(lambda snake_case : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) __SCREAMING_SNAKE_CASE : int = df.rename(lambda snake_case : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) __SCREAMING_SNAKE_CASE : int = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case , floatfmt='''.2f''' )] print('''\n\n'''.join(snake_case ) ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=snake_case , type=snake_case , required=snake_case , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=snake_case , type=snake_case , nargs='''+''' , required=snake_case , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=snake_case , type=snake_case , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=snake_case , type=snake_case , required=snake_case , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=snake_case , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=snake_case , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=snake_case , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=snake_case , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() __SCREAMING_SNAKE_CASE : str = args.output_dir Path(snake_case ).mkdir(exist_ok=snake_case ) __SCREAMING_SNAKE_CASE : int = get_base_command(snake_case , snake_case ) # split each dimension into its --foo variations __SCREAMING_SNAKE_CASE : Optional[Any] = [list(map(str.strip , re.split(R'''\|''' , snake_case ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __SCREAMING_SNAKE_CASE : Union[str, Any] = list(map(str.strip , map(''' '''.join , itertools.product(*snake_case ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = max(len(snake_case ) for x in variations ) # split wanted keys __SCREAMING_SNAKE_CASE : List[Any] = args.report_metric_keys.split() # capture prints into a log file for convenience __SCREAMING_SNAKE_CASE : Any = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __SCREAMING_SNAKE_CASE : str = Tee(snake_case ) print(F'''\n*** Running {len(snake_case )} benchmarks:''' ) print(F'''Base command: {" ".join(snake_case )}''' ) __SCREAMING_SNAKE_CASE : str = '''variation''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for id, variation in enumerate(tqdm(snake_case , desc='''Total completion: ''' , leave=snake_case ) ): __SCREAMING_SNAKE_CASE : int = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case , snake_case , snake_case , snake_case , args.target_metric_key , snake_case , args.repeat_times , snake_case , args.verbose , ) ) process_results(snake_case , args.target_metric_key , snake_case , args.base_variation , snake_case ) if __name__ == "__main__": main()
131
0
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def a (lowerCAmelCase__ ): __a = VideoMAEConfig() set_architecture_configs(lowerCAmelCase__ , lowerCAmelCase__ ) if "finetuned" not in model_name: __a = False if "finetuned" in model_name: __a = """huggingface/label-files""" if "kinetics" in model_name: __a = 400 __a = """kinetics400-id2label.json""" elif "ssv2" in model_name: __a = 174 __a = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __a = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) __a = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def a (lowerCAmelCase__ , lowerCAmelCase__ ): if "small" in model_name: __a = 384 __a = 1_536 __a = 12 __a = 16 __a = 12 __a = 3 __a = 192 __a = 768 elif "large" in model_name: __a = 1_024 __a = 4_096 __a = 24 __a = 16 __a = 12 __a = 8 __a = 512 __a = 2_048 elif "huge" in model_name: __a = 1_280 __a = 5_120 __a = 32 __a = 16 __a = 12 __a = 8 __a = 640 __a = 2_560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def a (lowerCAmelCase__ ): if "encoder." in name: __a = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __a = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __a = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __a = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __a = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __a = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __a = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __a = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __a = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __a = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __a = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __a = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __a = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __a = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __a = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __a = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __a = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __a = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __a = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __a = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __a = name.replace("""head""" , """classifier""" ) return name def a (lowerCAmelCase__ , lowerCAmelCase__ ): for key in orig_state_dict.copy().keys(): __a = orig_state_dict.pop(lowerCAmelCase__ ) if key.startswith("""encoder.""" ): __a = key.replace("""encoder.""" , """""" ) if "qkv" in key: __a = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __a = config.decoder_hidden_size __a = int(key_split[2] ) __a = """decoder.decoder_layers.""" if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = config.hidden_size __a = int(key_split[1] ) __a = """videomae.encoder.layer.""" if "weight" in key: __a = val[:dim, :] __a = val[dim : dim * 2, :] __a = val[-dim:, :] else: __a = val return orig_state_dict def a (): __a = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __a = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = get_videomae_config(lowerCAmelCase__ ) if "finetuned" in model_name: __a = VideoMAEForVideoClassification(lowerCAmelCase__ ) else: __a = VideoMAEForPreTraining(lowerCAmelCase__ ) # download original checkpoint, hosted on Google Drive __a = """pytorch_model.bin""" gdown.cached_download(lowerCAmelCase__ , lowerCAmelCase__ , quiet=lowerCAmelCase__ ) __a = torch.load(lowerCAmelCase__ , map_location="""cpu""" ) if "model" in files: __a = files["""model"""] else: __a = files["""module"""] __a = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # verify model on basic input __a = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __a = prepare_video() __a = image_processor(lowerCAmelCase__ , return_tensors="""pt""" ) if "finetuned" not in model_name: __a = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __a = torch.load(lowerCAmelCase__ ) __a = model(**lowerCAmelCase__ ) __a = outputs.logits __a = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one __a = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": __a = torch.Size([1, 400] ) __a = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": __a = torch.Size([1, 1_408, 1_536] ) __a = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": __a = torch.Size([1, 174] ) __a = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __a = outputs.loss assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCAmelCase__ , organization="""nielsr""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
99
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""CLIPFeatureExtractor"""] lowerCAmelCase_ = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
411
0
from PIL import Image def __lowerCAmelCase ( UpperCamelCase ) -> Image: lowerCAmelCase__ : Any = image.size lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Optional[Any] = image.load() for i in range(UpperCamelCase ): for j in range(UpperCamelCase ): lowerCAmelCase__ : Optional[int] = pixels[j, i] mean += pixel mean //= width * height for j in range(UpperCamelCase ): for i in range(UpperCamelCase ): lowerCAmelCase__ : List[Any] = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCAmelCase_ = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
704
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
470
0
def a__ ( lowercase__ = 1_0 , lowercase__ = 2_2 ): '''simple docstring''' UpperCAmelCase_ =range(1 , lowercase__ ) UpperCAmelCase_ =range(1 , lowercase__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f"""{solution(10, 22) = }""")
54
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase : Any = logging.getLogger(__name__) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=3_0522, type=int) lowercase : str = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: lowercase : int = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowercase : List[Any] = Counter() for tk_ids in data: counter.update(tk_ids) lowercase : int = [0] * args.vocab_size for k, v in counter.items(): lowercase : List[Any] = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
116
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __UpperCAmelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): def __init__( self , __A = 101 ) -> Any: lowerCAmelCase_ :Any = length def __len__( self ) -> Tuple: return self.length def __getitem__( self , __A ) -> int: return i class _SCREAMING_SNAKE_CASE : def __call__( self , __A ) -> Optional[Any]: return {"input_ids": torch.tensor(_a ), "labels": torch.tensor(_a )} class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self ) -> Optional[int]: super().__init__() # Add some (unused) params otherwise DDP will complain. lowerCAmelCase_ :int = nn.Linear(120 , 80 ) def __lowerCAmelCase ( self , __A , __A=None ) -> Any: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): @require_torch_neuroncore def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :List[str] = f"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowerCAmelCase_ :Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ :Dict = f"""--output_dir {output_dir}""".split() lowerCAmelCase_ :str = ["""torchrun"""] + distributed_args + args execute_subprocess_async(_a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): @require_torch_multi_gpu def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :List[Any] = f"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() lowerCAmelCase_ :Optional[Any] = self.get_auto_remove_tmp_dir() lowerCAmelCase_ :Optional[int] = f"""--output_dir {output_dir}""".split() lowerCAmelCase_ :int = ["""torchrun"""] + distributed_args + args execute_subprocess_async(_a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __UpperCAmelCase = HfArgumentParser((TrainingArguments,)) __UpperCAmelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: __UpperCAmelCase = DummyDataset(dataset_length) def _snake_case ( lowercase__ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ :Tuple = list(range(len(__lowerCAmelCase ) ) ) lowerCAmelCase_ :Tuple = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} __UpperCAmelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __UpperCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __UpperCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __UpperCAmelCase = 2 __UpperCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __UpperCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __UpperCAmelCase = None
712
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _snake_case ( ) -> Dict: '''simple docstring''' lowerCAmelCase_ :Optional[int] = HfArgumentParser(lowercase__ ) lowerCAmelCase_ :List[Any] = parser.parse_args_into_dataclasses()[0] lowerCAmelCase_ :Any = TensorFlowBenchmark(args=lowercase__ ) try: lowerCAmelCase_ :str = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase_ :List[Any] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" lowerCAmelCase_ :Dict = """ """.join(str(lowercase__ ).split(""" """ )[:-1] ) lowerCAmelCase_ :List[Any] = """""" lowerCAmelCase_ :Dict = eval(str(lowercase__ ).split(""" """ )[-1] ) lowerCAmelCase_ :List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase__ ) if len(lowercase__ ) > 0: lowerCAmelCase_ :List[str] = full_error_msg + begin_error_msg + str(lowercase__ ) raise ValueError(lowercase__ ) benchmark.run() if __name__ == "__main__": main()
256
0
from __future__ import annotations __UpperCamelCase : Optional[Any] = list[list[int]] # assigning initial values to the grid __UpperCamelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __UpperCamelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def snake_case ( lowerCamelCase ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def snake_case ( lowerCamelCase ): '''simple docstring''' if location := find_empty_location(lowerCamelCase ): __lowercase , __lowercase = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __lowercase = digit if sudoku(lowerCamelCase ) is not None: return grid __lowercase = 0 return None def snake_case ( lowerCamelCase ): '''simple docstring''' for row in grid: for cell in row: print(lowerCamelCase , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") __UpperCamelCase : Optional[Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
80
from __future__ import annotations from decimal import Decimal from numpy import array def lowercase ( SCREAMING_SNAKE_CASE ) -> list[list[float]]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(SCREAMING_SNAKE_CASE ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix SCREAMING_SNAKE_CASE_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements SCREAMING_SNAKE_CASE_ = [[0.0, 0.0], [0.0, 0.0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = matrix[1][1], matrix[0][0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(SCREAMING_SNAKE_CASE ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(SCREAMING_SNAKE_CASE ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule SCREAMING_SNAKE_CASE_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix SCREAMING_SNAKE_CASE_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] SCREAMING_SNAKE_CASE_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) SCREAMING_SNAKE_CASE_ = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): SCREAMING_SNAKE_CASE_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix SCREAMING_SNAKE_CASE_ = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE ) # Calculate the inverse of the matrix return [[float(d(SCREAMING_SNAKE_CASE ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
205
0
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class a_ ( _UpperCAmelCase ): a : List[Any] = '' a : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self : Tuple , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[str] = None , **__UpperCamelCase : Any , ) ->Any: '''simple docstring''' super().__init__(self , **__UpperCamelCase ) _UpperCAmelCase = repo_info _UpperCAmelCase = token _UpperCAmelCase = None def _snake_case ( self : List[str] ) ->List[str]: '''simple docstring''' if self.dir_cache is None: _UpperCAmelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _UpperCAmelCase = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : str = "rb" , **__UpperCamelCase : Any , ) ->List[str]: '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) _UpperCAmelCase = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def _snake_case ( self : int , __UpperCamelCase : int , **__UpperCamelCase : Dict ) ->Tuple: '''simple docstring''' self._get_dirs() _UpperCAmelCase = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def _snake_case ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=False , **__UpperCamelCase : List[str] ) ->Optional[Any]: '''simple docstring''' self._get_dirs() _UpperCAmelCase = PurePosixPath(path.strip("""/""" ) ) _UpperCAmelCase = {} for p, f in self.dir_cache.items(): _UpperCAmelCase = PurePosixPath(p.strip("""/""" ) ) _UpperCAmelCase = p.parent if root == path: _UpperCAmelCase = f _UpperCAmelCase = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
19
"""simple docstring""" import re from filelock import FileLock try: import nltk a : str = True except (ImportError, ModuleNotFoundError): a : List[str] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _UpperCamelCase ( _A ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
19
1
"""simple docstring""" import requests __lowerCamelCase = '' # <-- Put your OpenWeatherMap appid here! __lowerCamelCase = 'https://api.openweathermap.org/data/2.5/' def a ( __UpperCAmelCase : str = "Chicago" , __UpperCAmelCase : str = APPID ) -> dict: return requests.get(URL_BASE + """weather""" , params=locals() ).json() def a ( __UpperCAmelCase : str = "Kolkata, India" , __UpperCAmelCase : str = APPID ) -> dict: return requests.get(URL_BASE + """forecast""" , params=locals() ).json() def a ( __UpperCAmelCase : float = 55.68 , __UpperCAmelCase : float = 12.57 , __UpperCAmelCase : str = APPID ) -> dict: return requests.get(URL_BASE + """onecall""" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __lowerCamelCase = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
96
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "openai/whisper-base" UpperCAmelCase__ = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCAmelCase__ = "transcriber" UpperCAmelCase__ = WhisperProcessor UpperCAmelCase__ = WhisperForConditionalGeneration UpperCAmelCase__ = ["audio"] UpperCAmelCase__ = ["text"] def lowerCamelCase__ ( self : Dict , __snake_case : List[str] ) -> Dict: return self.pre_processor(__snake_case , return_tensors="""pt""" ).input_features def lowerCamelCase__ ( self : int , __snake_case : Union[str, Any] ) -> List[str]: return self.model.generate(inputs=__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : List[Any] ) -> Any: return self.pre_processor.batch_decode(__snake_case , skip_special_tokens=__snake_case )[0]
96
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowercase__ (unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[int] ): snake_case__ : List[Any] = tempfile.mkdtemp() snake_case__ : Any = BlipImageProcessor() snake_case__ : List[str] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) snake_case__ : int = BlipaProcessor(__a , __a ) processor.save_pretrained(self.tmpdirname ) def lowercase ( self : Any , **__a : str ): return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).tokenizer def lowercase ( self : Any , **__a : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor def lowercase ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def lowercase ( self : str ): snake_case__ : Any = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case__ : int = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self : Union[str, Any] ): snake_case__ : Tuple = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case__ : Union[str, Any] = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) snake_case__ : List[Any] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def lowercase ( self : Tuple ): snake_case__ : Any = self.get_image_processor() snake_case__ : Dict = self.get_tokenizer() snake_case__ : int = BlipaProcessor(tokenizer=__a , image_processor=__a ) snake_case__ : Optional[int] = self.prepare_image_inputs() snake_case__ : List[str] = image_processor(__a , return_tensors="""np""" ) snake_case__ : List[Any] = processor(images=__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self : Optional[Any] ): snake_case__ : str = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Any = BlipaProcessor(tokenizer=__a , image_processor=__a ) snake_case__ : Any = """lower newer""" snake_case__ : Optional[Any] = processor(text=__a ) snake_case__ : Any = tokenizer(__a , return_token_type_ids=__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : Tuple ): snake_case__ : List[str] = self.get_image_processor() snake_case__ : List[str] = self.get_tokenizer() snake_case__ : int = BlipaProcessor(tokenizer=__a , image_processor=__a ) snake_case__ : Any = """lower newer""" snake_case__ : List[str] = self.prepare_image_inputs() snake_case__ : Optional[int] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowercase ( self : List[Any] ): snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : str = self.get_tokenizer() snake_case__ : int = BlipaProcessor(tokenizer=__a , image_processor=__a ) snake_case__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : str = processor.batch_decode(__a ) snake_case__ : int = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def lowercase ( self : str ): snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : Union[str, Any] = self.get_tokenizer() snake_case__ : List[Any] = BlipaProcessor(tokenizer=__a , image_processor=__a ) snake_case__ : List[Any] = """lower newer""" snake_case__ : List[str] = self.prepare_image_inputs() snake_case__ : Optional[int] = processor(text=__a , images=__a ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
127
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_: int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_: Union[str, Any] = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys lowercase_: Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
127
1
"""simple docstring""" import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase ( unittest.TestCase ): def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() UpperCAmelCase__ : Tuple = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Optional[Any] = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } UpperCAmelCase__ : int = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16_000, """return_attention_mask""": False, """do_normalize""": True, } UpperCAmelCase__ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname ,A ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.feature_extraction_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) # load decoder from hub UpperCAmelCase__ : int = """hf-internal-testing/ngram-beam-search-decoder""" def __lowercase ( self : str ,**A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.add_kwargs_tokens_map.copy() kwargs.update(A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : List[str] ,**A : Dict ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : Any ,**A : List[Any] ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name ,**A ) def __lowercase ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : str = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() ,feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor ,A ) # decoder self.assertEqual(processor.decoder._alphabet.labels ,decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set ,decoder.model_container[decoder._model_key]._unigram_set ,) self.assertIsInstance(processor.decoder ,A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname ,alpha=5.0 ,beta=3.0 ,score_boundary=-7.0 ,unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha ,5.0 ) self.assertEqual(processor.language_model.beta ,3.0 ) self.assertEqual(processor.language_model.score_boundary ,-7.0 ) self.assertEqual(processor.language_model.unk_score_offset ,3 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(A ,"""include""" ): WavaVecaProcessorWithLM( tokenizer=A ,feature_extractor=self.get_feature_extractor() ,decoder=self.get_decoder() ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : str = floats_list((3, 1_000) ) UpperCAmelCase__ : Optional[Any] = feature_extractor(A ,return_tensors="""np""" ) UpperCAmelCase__ : List[Any] = processor(A ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[int] = self.get_decoder() UpperCAmelCase__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : List[Any] = """This is a test string""" UpperCAmelCase__ : int = processor(text=A ) UpperCAmelCase__ : Dict = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def __lowercase ( self : Tuple ,A : List[Any]=(2, 10, 16) ,A : Dict=77 ): '''simple docstring''' np.random.seed(A ) return np.random.rand(*A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Dict = self._get_dummy_logits(shape=(10, 16) ,seed=13 ) UpperCAmelCase__ : Tuple = processor.decode(A ) UpperCAmelCase__ : Union[str, Any] = decoder.decode_beams(A )[0] self.assertEqual(decoded_decoder[0] ,decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" ,decoded_processor.text ) self.assertEqual(decoded_decoder[-2] ,decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] ,decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def __lowercase ( self : List[str] ,A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : List[Any] = self.get_decoder() UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : List[str] = processor.batch_decode(A ) else: with get_context(A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(A ,A ) UpperCAmelCase__ : Optional[Any] = list(A ) with get_context("""fork""" ).Pool() as p: UpperCAmelCase__ : Union[str, Any] = decoder.decode_beams_batch(A ,A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(A ,decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] ,decoded_processor.text ) self.assertListEqual(A ,decoded_processor.logit_score ) self.assertListEqual(A ,decoded_processor.lm_score ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : List[Any] = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Any = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : List[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( A ,beam_width=A ,beam_prune_logp=A ,token_min_logp=A ,) UpperCAmelCase__ : List[str] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(A ) with get_context("""fork""" ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( A ,A ,beam_width=A ,beam_prune_logp=A ,token_min_logp=A ,) UpperCAmelCase__ : List[Any] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Any = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : List[str] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(A ,A ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] ,A ) self.assertTrue(np.array_equal(A ,decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] ,A ,atol=1e-3 ) ) self.assertTrue(np.array_equal(A ,decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] ,A ,atol=1e-3 ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : str = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : Tuple = 2.0 UpperCAmelCase__ : str = 5.0 UpperCAmelCase__ : Union[str, Any] = -2_0.0 UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : str = processor.batch_decode( A ,alpha=A ,beta=A ,unk_score_offset=A ,lm_score_boundary=A ,) UpperCAmelCase__ : Any = decoded_processor_out.text UpperCAmelCase__ : Union[str, Any] = list(A ) decoder.reset_params( alpha=A ,beta=A ,unk_score_offset=A ,lm_score_boundary=A ,) with get_context("""fork""" ).Pool() as pool: UpperCAmelCase__ : List[Any] = decoder.decode_beams_batch( A ,A ,) UpperCAmelCase__ : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(A ,A ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] ,A ) UpperCAmelCase__ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha ,2.0 ) self.assertEqual(lm_model.beta ,5.0 ) self.assertEqual(lm_model.unk_score_offset ,-2_0.0 ) self.assertEqual(lm_model.score_boundary ,A ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : str = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Any = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() UpperCAmelCase__ : Optional[int] = os.listdir(A ) UpperCAmelCase__ : List[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(A ,A ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(A ) UpperCAmelCase__ : Tuple = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() UpperCAmelCase__ : Tuple = os.listdir(A ) UpperCAmelCase__ : Dict = os.listdir(A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(A ,A ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Dict = floats_list((3, 1_000) ) UpperCAmelCase__ : List[str] = processor_wavaveca(A ,return_tensors="""np""" ) UpperCAmelCase__ : Dict = processor_auto(A ,return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() ,input_auto[key].sum() ,delta=1e-2 ) UpperCAmelCase__ : List[str] = self._get_dummy_logits() UpperCAmelCase__ : Tuple = processor_wavaveca.batch_decode(A ) UpperCAmelCase__ : List[str] = processor_auto.batch_decode(A ) self.assertListEqual(decoded_wavaveca.text ,decoded_auto.text ) def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : List[Any] = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=A ,feature_extractor=A ,decoder=A ) self.assertListEqual( processor.model_input_names ,feature_extractor.model_input_names ,msg="""`processor` and `feature_extractor` model input names do not match""" ,) @staticmethod def __lowercase ( A : Optional[Any] ,A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [d[key] for d in offsets] return retrieved_list def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : Dict = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(A ,output_word_offsets=A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(A ,A ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] ,"""word""" ) ) ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""word""" ) ,["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""start_offset""" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] ,"""end_offset""" ) ,[1, 3, 5] ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCAmelCase__ : int = self._get_dummy_logits() UpperCAmelCase__ : Any = processor.batch_decode(A ,output_word_offsets=A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) ,4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(A ,A ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(A ,"""word""" ) ) for o in outputs["""word_offsets"""]] ,outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""word""" ) ,["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""start_offset""" ) ,[0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] ,"""end_offset""" ) ,[1, 3, 5] ) @slow @require_torch @require_torchaudio def __lowercase ( self : Tuple ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset("""common_voice""" ,"""en""" ,split="""train""" ,streaming=A ) UpperCAmelCase__ : Tuple = ds.cast_column("""audio""" ,datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : Tuple = iter(A ) UpperCAmelCase__ : Optional[int] = next(A ) UpperCAmelCase__ : List[Any] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) UpperCAmelCase__ : Tuple = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : Tuple = processor(sample["""audio"""]["""array"""] ,return_tensors="""pt""" ).input_values with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(A ).logits.cpu().numpy() UpperCAmelCase__ : Any = processor.decode(logits[0] ,output_word_offsets=A ) UpperCAmelCase__ : str = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Union[str, Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] UpperCAmelCase__ : Dict = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(A ,"""word""" ) ) ,A ) self.assertEqual(""" """.join(self.get_from_offsets(A ,"""word""" ) ) ,output.text ) # output times UpperCAmelCase__ : str = torch.tensor(self.get_from_offsets(A ,"""start_time""" ) ) UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(A ,"""end_time""" ) ) # fmt: off UpperCAmelCase__ : Union[str, Any] = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[Any] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(A ,A ,atol=0.0_1 ) ) self.assertTrue(torch.allclose(A ,A ,atol=0.0_1 ) )
65
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') __UpperCAmelCase = {'target_lang': 'fi', 'source_lang': 'en'} __UpperCAmelCase = '>>zh<<' __UpperCAmelCase = 'Helsinki-NLP/' if is_torch_available(): __UpperCAmelCase = 'pt' elif is_tf_available(): __UpperCAmelCase = 'tf' else: __UpperCAmelCase = 'jax' @require_sentencepiece class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = MarianTokenizer snake_case_ = False snake_case_ = True def __lowercase ( self : Optional[int] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : Optional[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] UpperCAmelCase__ : int = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Optional[int] = Path(self.tmpdirname ) save_json(A ,save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(A ,save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(A ,save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(A ,save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) UpperCAmelCase__ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : List[Any] ,**A : List[Any] ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : Union[str, Any] ,A : Tuple ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = """</s>""" UpperCAmelCase__ : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) ,A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) ,A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""</s>""" ) self.assertEqual(vocab_keys[1] ,"""<unk>""" ) self.assertEqual(vocab_keys[-1] ,"""<pad>""" ) self.assertEqual(len(A ) ,9 ) def __lowercase ( self : Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,9 ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" ) UpperCAmelCase__ : List[str] = en_de_tokenizer(["""I am a small frog"""] ,return_tensors=A ) self.assertIsInstance(A ,A ) UpperCAmelCase__ : str = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(A ,batch.input_ids[0] ) UpperCAmelCase__ : Optional[Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(A ) UpperCAmelCase__ : Tuple = [x.name for x in Path(A ).glob("""*""" )] self.assertIn("""source.spm""" ,A ) MarianTokenizer.from_pretrained(A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = tok( ["""I am a small frog""" * 1_000, """I am a small frog"""] ,padding=A ,truncation=A ,return_tensors=A ) self.assertIsInstance(A ,A ) self.assertEqual(batch.input_ids.shape ,(2, 512) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] ,padding=A ,return_tensors=A ) self.assertIsInstance(A ,A ) self.assertEqual(batch_smaller.input_ids.shape ,(2, 10) ) @slow def __lowercase ( self : Dict ): '''simple docstring''' # fmt: off UpperCAmelCase__ : Optional[int] = {"""input_ids""": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A ,model_name="""Helsinki-NLP/opus-mt-en-de""" ,revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" ,decode_kwargs={"""use_source_tokenizer""": True} ,) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) UpperCAmelCase__ : Any = """Tämä on testi""" UpperCAmelCase__ : int = """This is a test""" UpperCAmelCase__ : List[str] = [76, 7, 2_047, 2] UpperCAmelCase__ : Optional[Any] = [69, 12, 11, 940, 2] UpperCAmelCase__ : List[str] = tokenizer(A ).input_ids self.assertListEqual(A ,A ) UpperCAmelCase__ : Optional[int] = tokenizer(text_target=A ).input_ids self.assertListEqual(A ,A ) UpperCAmelCase__ : int = tokenizer.decode(A ,skip_special_tokens=A ) self.assertEqual(A ,A )
65
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCamelCase_ = 4 lowerCamelCase_ = 3 class UpperCamelCase_ (__A ): pass def snake_case ( A__ ): for shard in shards: for i in range(A__ ): yield {"i": i, "shard": shard} def snake_case ( ): UpperCAmelCase_ : Any = int(os.environ["RANK"] ) UpperCAmelCase_ : Dict = int(os.environ["WORLD_SIZE"] ) UpperCAmelCase_ : str = ArgumentParser() parser.add_argument("--streaming" ,type=A__ ) parser.add_argument("--local_rank" ,type=A__ ) parser.add_argument("--num_workers" ,type=A__ ,default=0 ) UpperCAmelCase_ : str = parser.parse_args() UpperCAmelCase_ : Optional[int] = args.streaming UpperCAmelCase_ : str = args.num_workers UpperCAmelCase_ : Optional[int] = {"shards": [F"""shard_{shard_idx}""" for shard_idx in range(A__ )]} UpperCAmelCase_ : int = IterableDataset.from_generator(A__ ,gen_kwargs=A__ ) if not streaming: UpperCAmelCase_ : Optional[Any] = Dataset.from_list(list(A__ ) ) UpperCAmelCase_ : Tuple = split_dataset_by_node(A__ ,rank=A__ ,world_size=A__ ) UpperCAmelCase_ : int = torch.utils.data.DataLoader(A__ ,num_workers=A__ ) UpperCAmelCase_ : List[str] = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase_ : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase_ : Any = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
463
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def snake_case ( A__ ): return np.dot(A__ ,A__ ) class UpperCamelCase_ : def __init__( self : int , *, lowerCAmelCase_ : float = np.inf , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : float = 0.0 , ) -> None: UpperCAmelCase_ : List[str] = regularization UpperCAmelCase_ : Tuple = gamma if kernel == "linear": UpperCAmelCase_ : List[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) UpperCAmelCase_ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCAmelCase_ : Tuple = f"""Unknown kernel: {kernel}""" raise ValueError(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : ndarray , lowerCAmelCase_ : ndarray ) -> float: return np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : ndarray , lowerCAmelCase_ : ndarray ) -> float: return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : list[ndarray] , lowerCAmelCase_ : ndarray ) -> None: UpperCAmelCase_ : int = observations UpperCAmelCase_ : Optional[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCAmelCase_) , ) : Optional[int] = np.shape(lowerCAmelCase_ ) def to_minimize(lowerCAmelCase_ : ndarray ) -> float: UpperCAmelCase_ : int = 0 ((UpperCAmelCase_) , ) : str = np.shape(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(lowerCAmelCase_ ) UpperCAmelCase_ : int = LinearConstraint(lowerCAmelCase_ , 0 , 0 ) UpperCAmelCase_ : Dict = Bounds(0 , self.regularization ) UpperCAmelCase_ : Optional[Any] = minimize( lowerCAmelCase_ , np.ones(lowerCAmelCase_ ) , bounds=lowerCAmelCase_ , constraints=[ly_contraint] ).x UpperCAmelCase_ : Optional[Any] = l_star # calculating mean offset of separation plane to points UpperCAmelCase_ : Optional[int] = 0 for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) UpperCAmelCase_ : str = s / n def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : ndarray ) -> int: UpperCAmelCase_ : List[Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , lowerCAmelCase_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
463
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Optional[int] = logging.getLogger(__name__) class UpperCAmelCase_ : def __init__( self ): """simple docstring""" A_ = False def __UpperCAmelCase ( self ,__snake_case ,__snake_case ,__snake_case ,__snake_case ): """simple docstring""" if not self.initialized: A_ = RagRetriever( lowerCamelCase_ ,question_encoder_tokenizer=lowerCamelCase_ ,generator_tokenizer=lowerCamelCase_ ,index=lowerCamelCase_ ,init_retrieval=lowerCamelCase_ ,) A_ = True def __UpperCAmelCase ( self ): """simple docstring""" self.retriever.index.init_index() def __UpperCAmelCase ( self ,__snake_case ,__snake_case ): """simple docstring""" A_ = self.retriever._main_retrieve(lowerCamelCase_ ,lowerCamelCase_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase_ ( _UpperCamelCase ): def __init__( self ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case=None ): """simple docstring""" if index is not None and index.is_initialized() and len(lowerCamelCase_ ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( lowerCamelCase_ ,question_encoder_tokenizer=lowerCamelCase_ ,generator_tokenizer=lowerCamelCase_ ,index=lowerCamelCase_ ,init_retrieval=lowerCamelCase_ ,) A_ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for worker in self.retrieval_workers ] ) def __UpperCAmelCase ( self ): """simple docstring""" logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __UpperCAmelCase ( self ,__snake_case ,__snake_case ): """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A_ = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] A_ = ray.get(random_worker.retrieve.remote(lowerCamelCase_ ,lowerCamelCase_ ) ) else: A_ = self._main_retrieve(lowerCamelCase_ ,lowerCamelCase_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCamelCase_ ) @classmethod def __UpperCAmelCase ( cls ,__snake_case ,__snake_case=None ,**__snake_case ): """simple docstring""" return super(lowerCamelCase_ ,cls ).get_tokenizers(lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) @classmethod def __UpperCAmelCase ( cls ,__snake_case ,__snake_case ,__snake_case=None ,**__snake_case ): """simple docstring""" A_ = kwargs.pop('''config''' ,lowerCamelCase_ ) or RagConfig.from_pretrained(lowerCamelCase_ ,**lowerCamelCase_ ) A_ = RagTokenizer.from_pretrained(lowerCamelCase_ ,config=lowerCamelCase_ ) A_ = rag_tokenizer.question_encoder A_ = rag_tokenizer.generator if indexed_dataset is not None: A_ = 'custom' A_ = CustomHFIndex(config.retrieval_vector_size ,lowerCamelCase_ ) else: A_ = cls._build_index(lowerCamelCase_ ) return cls( lowerCamelCase_ ,question_encoder_tokenizer=lowerCamelCase_ ,generator_tokenizer=lowerCamelCase_ ,retrieval_workers=lowerCamelCase_ ,index=lowerCamelCase_ ,)
188
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( _lowercase : list[float] , _lowercase : Tuple ) -> int: '''simple docstring''' print(f"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(_lowercase ): print(f"""{i}\t\t{d}""" ) def SCREAMING_SNAKE_CASE__ ( _lowercase : list[dict[str, int]] , _lowercase : list[float] , _lowercase : int ) -> Any: '''simple docstring''' for j in range(_lowercase ): lowercase__ , lowercase__ , lowercase__ : Dict = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def SCREAMING_SNAKE_CASE__ ( _lowercase : list[dict[str, int]] , _lowercase : int , _lowercase : int , _lowercase : int ) -> list[float]: '''simple docstring''' lowercase__ : Dict = [float('inf' )] * vertex_count lowercase__ : Dict = 0.0 for _ in range(vertex_count - 1 ): for j in range(_lowercase ): lowercase__ , lowercase__ , lowercase__ : int = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: lowercase__ : str = distance[u] + w lowercase__ : str = check_negative_cycle(_lowercase , _lowercase , _lowercase ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase: Optional[int] = int(input("""Enter number of vertices: """).strip()) __UpperCamelCase: Union[str, Any] = int(input("""Enter number of edges: """).strip()) __UpperCamelCase: list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase: List[str] = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) __UpperCamelCase: List[Any] = {"""src""": src, """dst""": dest, """weight""": weight} __UpperCamelCase: Optional[int] = int(input("""\nEnter shortest path source:""").strip()) __UpperCamelCase: Dict = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
266
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __snake_case = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __snake_case = { "facebook/mbart-large-en-ro": 1_024, "facebook/mbart-large-cc25": 1_024, } # fmt: off __snake_case = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase ( __snake_case ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ["""input_ids""", """attention_mask"""] lowercase = MBartTokenizer lowercase = [] lowercase = [] def __init__( self : Optional[int] , __magic_name__ : str=None , __magic_name__ : Optional[int]=None , __magic_name__ : Dict="<s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : List[str]="</s>" , __magic_name__ : Optional[int]="<s>" , __magic_name__ : int="<unk>" , __magic_name__ : str="<pad>" , __magic_name__ : List[str]="<mask>" , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Dict=None , **__magic_name__ : Tuple , ): """simple docstring""" UpperCamelCase = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token super().__init__( vocab_file=__magic_name__ , tokenizer_file=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True UpperCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) UpperCamelCase = { lang_code: self.convert_tokens_to_ids(__magic_name__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase = src_lang if src_lang is not None else """en_XX""" UpperCamelCase = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase_ ( self : List[str] , __magic_name__ : str ): """simple docstring""" UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase_ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase_ ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : int , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Tuple ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCamelCase = src_lang UpperCamelCase = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) UpperCamelCase = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase = tgt_lang_id return inputs def lowerCamelCase_ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : int , ): """simple docstring""" UpperCamelCase = src_lang UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase_ ( self : Any ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase_ ( self : int , __magic_name__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code] UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self : Tuple , __magic_name__ : str ): """simple docstring""" UpperCamelCase = self.convert_tokens_to_ids(__magic_name__ ) UpperCamelCase = [] UpperCamelCase = [self.eos_token_id, self.cur_lang_code] UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase_ ( self : Any , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__magic_name__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return UpperCamelCase = os.path.join( __magic_name__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file , __magic_name__ ) return (out_vocab_file,)
719
import math import unittest def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase_ ( self : Any ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with self.assertRaises(__magic_name__ ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
181
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Tuple =logging.get_logger(__name__) __snake_case :str ={ 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : List[Any] = 'markuplm' def __init__( self : Optional[Any] , __UpperCamelCase : List[str]=30_522 , __UpperCamelCase : Tuple=768 , __UpperCamelCase : Union[str, Any]=12 , __UpperCamelCase : Any=12 , __UpperCamelCase : Optional[int]=3_072 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Any=512 , __UpperCamelCase : int=2 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : Optional[int]=1e-12 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Optional[Any]=256 , __UpperCamelCase : int=1_024 , __UpperCamelCase : Union[str, Any]=216 , __UpperCamelCase : Optional[Any]=1_001 , __UpperCamelCase : Any=32 , __UpperCamelCase : Union[str, Any]=50 , __UpperCamelCase : Tuple="absolute" , __UpperCamelCase : int=True , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Optional[Any] , ) -> Tuple: super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache A = classifier_dropout # additional properties A = max_depth A = max_xpath_tag_unit_embeddings A = max_xpath_subs_unit_embeddings A = tag_pad_id A = subs_pad_id A = xpath_unit_hidden_size
106
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class _lowerCAmelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[str] =field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) SCREAMING_SNAKE_CASE_ : Optional[str] =field( default=__magic_name__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE_ : Optional[str] =field( default=__magic_name__ , metadata={"help": "The column name of the images in the files."} ) SCREAMING_SNAKE_CASE_ : Optional[str] =field(default=__magic_name__ , metadata={"help": "A folder containing the training data."} ) SCREAMING_SNAKE_CASE_ : Optional[str] =field(default=__magic_name__ , metadata={"help": "A folder containing the validation data."} ) SCREAMING_SNAKE_CASE_ : Optional[float] =field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) SCREAMING_SNAKE_CASE_ : Optional[int] =field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] =field( default=__magic_name__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def __lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = {} if self.train_dir is not None: UpperCamelCase = self.train_dir if self.validation_dir is not None: UpperCamelCase = self.validation_dir UpperCamelCase = data_files if data_files else None @dataclass class _lowerCAmelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : str =field( default=__magic_name__ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] =field( default=__magic_name__ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) SCREAMING_SNAKE_CASE_ : Optional[str] =field( default=__magic_name__ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] =field( default=__magic_name__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) SCREAMING_SNAKE_CASE_ : str =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) SCREAMING_SNAKE_CASE_ : str =field(default=__magic_name__ , metadata={"help": "Name or path of preprocessor config."} ) SCREAMING_SNAKE_CASE_ : bool =field( default=__magic_name__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) SCREAMING_SNAKE_CASE_ : float =field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) SCREAMING_SNAKE_CASE_ : bool =field( default=__magic_name__ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : float =field( default=1E-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCamelCase = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def __lowerCamelCase ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _lowercase , _lowercase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase = training_args.get_process_log_level() logger.setLevel(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _lowercase ) and data_args.train_val_split > 0.0: UpperCamelCase = ds['train'].train_test_split(data_args.train_val_split ) UpperCamelCase = split['train'] UpperCamelCase = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **_lowercase ) elif model_args.model_name_or_path: UpperCamelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_lowercase ) else: UpperCamelCase = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_lowercase ) elif model_args.model_name_or_path: UpperCamelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_lowercase ) else: UpperCamelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) UpperCamelCase = ViTMAEForPreTraining(_lowercase ) if training_args.do_train: UpperCamelCase = ds['train'].column_names else: UpperCamelCase = ds['validation'].column_names if data_args.image_column_name is not None: UpperCamelCase = data_args.image_column_name elif "image" in column_names: UpperCamelCase = 'image' elif "img" in column_names: UpperCamelCase = 'img' else: UpperCamelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase = image_processor.size['shortest_edge'] else: UpperCamelCase = (image_processor.size['height'], image_processor.size['width']) UpperCamelCase = Compose( [ Lambda(lambda _lowercase : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_lowercase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_lowercase ): UpperCamelCase = [transforms(_lowercase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: UpperCamelCase = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: UpperCamelCase = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_lowercase ) # Compute absolute learning rate UpperCamelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase = Trainer( model=_lowercase , args=_lowercase , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_lowercase , data_collator=_lowercase , ) # Training if training_args.do_train: UpperCamelCase = None if training_args.resume_from_checkpoint is not None: UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase = last_checkpoint UpperCamelCase = trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase = trainer.evaluate() trainer.log_metrics('eval' , _lowercase ) trainer.save_metrics('eval' , _lowercase ) # Write model card and (optionally) push to hub UpperCamelCase = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) def __lowerCamelCase ( _lowercase ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
282
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _lowerCamelCase : List[str] = logging.get_logger(__name__) @dataclass class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[Any] = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : Union[str, Any] , **_lowerCamelCase : Optional[int] ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A_ : Optional[Any] = deprecated_arg[3:] A_ : List[str] = not kwargs.pop(_lowerCamelCase ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no-{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) A_ : Dict = kwargs.pop('''tpu_name''' , self.tpu_name ) A_ : Dict = kwargs.pop('''device_idx''' , self.device_idx ) A_ : List[Any] = kwargs.pop('''eager_mode''' , self.eager_mode ) A_ : Tuple = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**_lowerCamelCase ) __lowerCAmelCase : str = field( default=__UpperCAmelCase , metadata={"""help""": """Name of TPU"""} , ) __lowerCAmelCase : int = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) __lowerCAmelCase : bool = field(default=__UpperCAmelCase , metadata={"""help""": """Benchmark models in eager model."""}) __lowerCAmelCase : bool = field( default=__UpperCAmelCase , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def a_ ( self : Optional[Any] ): """simple docstring""" requires_backends(self , ['''tf'''] ) A_ : Optional[Any] = None if self.tpu: try: if self.tpu_name: A_ : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: A_ : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: A_ : int = None return tpu @cached_property def a_ ( self : str ): """simple docstring""" requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) A_ : Optional[Any] = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) A_ : Any = tf.distribute.OneDeviceStrategy(device=F"""/gpu:{self.device_idx}""" ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU A_ : Dict = tf.distribute.OneDeviceStrategy(device=F"""/cpu:{self.device_idx}""" ) return strategy @property def a_ ( self : List[Any] ): """simple docstring""" requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def a_ ( self : List[Any] ): """simple docstring""" requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def a_ ( self : Optional[int] ): """simple docstring""" requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def a_ ( self : Tuple ): """simple docstring""" requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def a_ ( self : List[str] ): """simple docstring""" return self.n_gpu > 0
710
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) _lowerCamelCase : Optional[Any] = parser.parse_args() _lowerCamelCase : Optional[Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
361
0
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
474
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _A ( ): """simple docstring""" __lowercase =os.path.dirname(os.path.realpath(_lowerCAmelCase ) ) __lowercase =os.path.join(_lowerCAmelCase , 'words.txt' ) __lowercase ='' with open(_lowerCAmelCase ) as f: __lowercase =f.readline() __lowercase =[word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] __lowercase =[ word for word in [sum(ord(_lowerCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
474
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ = 1_6 UpperCAmelCase_ = 3_2 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 1_6 )->Tuple: _lowerCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowerCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_SCREAMING_SNAKE_CASE : List[Any] ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_SCREAMING_SNAKE_CASE : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase = 1_6 elif accelerator.mixed_precision != "no": _lowerCAmelCase = 8 else: _lowerCAmelCase = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowerCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[int] )->Optional[Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _SCREAMING_SNAKE_CASE ) == "1": _lowerCAmelCase = 2 # Initialize accelerator _lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase = config['''lr'''] _lowerCAmelCase = int(config['''num_epochs'''] ) _lowerCAmelCase = int(config['''seed'''] ) _lowerCAmelCase = int(config['''batch_size'''] ) _lowerCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_SCREAMING_SNAKE_CASE ) def inner_training_loop(_SCREAMING_SNAKE_CASE : int ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate scheduler _lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=1_0_0 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = outputs.loss accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) _lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , _SCREAMING_SNAKE_CASE ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase__ ( )->int: _lowerCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Optional[Any] )->Any: # noqa: E741 _lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = 0 _lowerCAmelCase = [0] * n _lowerCAmelCase = [False] * n _lowerCAmelCase = [False] * n def dfs(_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ): if parent == root: out_edge_count += 1 _lowerCAmelCase = True _lowerCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase = True # AP found via cycle if at == low[to]: _lowerCAmelCase = True else: _lowerCAmelCase = min(low[at] , _SCREAMING_SNAKE_CASE ) return out_edge_count for i in range(_SCREAMING_SNAKE_CASE ): if not visited[i]: _lowerCAmelCase = 0 _lowerCAmelCase = dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 , _SCREAMING_SNAKE_CASE ) _lowerCAmelCase = out_edge_count > 1 for x in range(len(_SCREAMING_SNAKE_CASE ) ): if is_art[x] is True: print(_SCREAMING_SNAKE_CASE ) # Adjacency list of graph UpperCAmelCase_ = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
664
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=1_8 , lowercase=3_0 , lowercase=4_0_0 , lowercase=True , lowercase=None , lowercase=True , ): """simple docstring""" A_ : List[str] = size if size is not None else {'height': 1_8, 'width': 1_8} A_ : str = parent A_ : Any = batch_size A_ : Union[str, Any] = num_channels A_ : int = image_size A_ : str = min_resolution A_ : List[Any] = max_resolution A_ : Tuple = do_resize A_ : Union[str, Any] = size A_ : List[Any] = apply_ocr def lowerCAmelCase_ ( self ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'do_resize' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , 'apply_ocr' ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) A_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def lowerCAmelCase_ ( self ): """simple docstring""" pass def lowerCAmelCase_ ( self ): """simple docstring""" A_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input A_ : Any = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(encoding.boxes , SCREAMING_SNAKE_CASE__ ) # Test batched A_ : Dict = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input A_ : Dict = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A_ : int = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input A_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A_ : Optional[Any] = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = LayoutLMvaImageProcessor() from datasets import load_dataset A_ : Optional[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) A_ : Dict = Image.open(ds[0]['file'] ).convert('RGB' ) A_ : Dict = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 A_ : Tuple = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 A_ : str = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(encoding.boxes , SCREAMING_SNAKE_CASE__ ) # with apply_OCR = False A_ : Optional[Any] = LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE__ ) A_ : List[str] = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
558
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : Any ) -> int: lowerCAmelCase__ = "ZinengTang/tvlt-base" lowerCAmelCase__ = tempfile.mkdtemp() def a ( self : List[Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: return TvltImageProcessor.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE__ ) def a ( self : int , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Any: shutil.rmtree(self.tmpdirname ) def a ( self : Any ) -> Union[str, Any]: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> List[Any]: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = np.ones([12_000] ) lowerCAmelCase__ = feature_extractor(SCREAMING_SNAKE_CASE__ , return_tensors="np" ) lowerCAmelCase__ = processor(audio=SCREAMING_SNAKE_CASE__ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Dict ) -> str: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = np.ones([3, 224, 224] ) lowerCAmelCase__ = image_processor(SCREAMING_SNAKE_CASE__ , return_tensors="np" ) lowerCAmelCase__ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : int ) -> Any: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = np.ones([12_000] ) lowerCAmelCase__ = np.ones([3, 224, 224] ) lowerCAmelCase__ = processor(audio=SCREAMING_SNAKE_CASE__ , images=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE__ ): processor() def a ( self : Tuple ) -> Optional[Any]: lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_feature_extractor() lowerCAmelCase__ = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
61
0
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1, len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] A__ : List[str] = grid[0] for row_n in range(1, len(__lowerCAmelCase ) ): A__ : Optional[Any] = grid[row_n] A__ : Optional[Any] = fill_row(__lowerCAmelCase, __lowerCAmelCase ) A__ : Tuple = grid[row_n] return grid[-1][-1] def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict ) ->list: current_row[0] += row_above[0] for cell_n in range(1, len(__lowerCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1], row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" from timeit import timeit def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->int: if number < 0: raise ValueError("""the value of input must not be negative""" ) A__ : Optional[int] = 0 while number: number &= number - 1 result += 1 return result def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->int: if number < 0: raise ValueError("""the value of input must not be negative""" ) A__ : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _lowerCAmelCase ( ) ->None: def do_benchmark(UpperCAmelCase__ : int ) -> None: A__ : Optional[int] = """import __main__ as z""" print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(UpperCAmelCase__ ) = }' ) A__ : Any = timeit("""z.get_set_bits_count_using_modulo_operator(25)""", setup=UpperCAmelCase__ ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(UpperCAmelCase__ ) = }' ) A__ : List[str] = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""", setup=UpperCAmelCase__, ) print(f'timeit() runs in {timing} seconds' ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(UpperCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
498
0
'''simple docstring''' from __future__ import annotations UpperCamelCase__ : Optional[int] = 10 def lowerCAmelCase_ ( _lowerCamelCase: list[int] ): __SCREAMING_SNAKE_CASE : Any = 1 __SCREAMING_SNAKE_CASE : str = max(_lowerCamelCase ) while placement <= max_digit: # declare and initialize empty buckets __SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(_lowerCamelCase )] # split list_of_ints between the buckets for i in list_of_ints: __SCREAMING_SNAKE_CASE : Union[str, Any] = int((i / placement) % RADIX ) buckets[tmp].append(_lowerCamelCase ) # put each buckets' contents into list_of_ints __SCREAMING_SNAKE_CASE : List[str] = 0 for b in range(_lowerCamelCase ): for i in buckets[b]: __SCREAMING_SNAKE_CASE : str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
578
'''simple docstring''' import math def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Dict = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: float = 1 / 1_23_45 ): __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : List[str] = 3 while True: __SCREAMING_SNAKE_CASE : int = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) total_partitions += 1 if check_partition_perfect(_lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCamelCase ) integer += 1 if __name__ == "__main__": print(f"{solution() = }")
578
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( snake_case_ : float , snake_case_ : float ) -> float: if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(snake_case_ ) * abs(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
220
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __UpperCAmelCase = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __UpperCAmelCase = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE : Any = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : List[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[Any] = numpy_to_pil(snake_case_ ) return images def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[Any] ) -> Any: if images.ndim == 3: SCREAMING_SNAKE_CASE : Optional[Any] = images[None, ...] SCREAMING_SNAKE_CASE : Optional[int] = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE : List[str] = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: SCREAMING_SNAKE_CASE : List[Any] = [Image.fromarray(snake_case_ ) for image in images] return pil_images
220
1
from math import factorial def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 100 ) -> int: return sum(int(_snake_case ) for x in str(factorial(_snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
2
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCAmelCase = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
409
0
'''simple docstring''' import string from math import logaa def _lowerCAmelCase( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> int: lowerCAmelCase__ = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) lowerCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _lowerCAmelCase( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> tuple[int, int]: lowerCAmelCase__ = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase__ = corpus_without_punctuation.split("""\n""" ) lowerCAmelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCAmelCase_ )) def _lowerCAmelCase( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=False ) -> float: if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def _lowerCAmelCase( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> float: return round(tf * idf , 3 )
211
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=_A ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__( self : List[str] , *__A : int , **__A : Optional[Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : List[Any] , *__A : Dict , **__A : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : Any , *__A : Any , **__A : List[str] ) -> Any: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=_A ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__( self : int , *__A : Tuple , **__A : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : Optional[Any] , *__A : int , **__A : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : int , *__A : List[Any] , **__A : List[str] ) -> int: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=_A ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__( self : Dict , *__A : str , **__A : List[str] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : List[str] , *__A : str , **__A : Any ) -> Any: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : Any , *__A : Any , **__A : Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) class lowerCamelCase__ ( metaclass=_A ): '''simple docstring''' A__ = ['''flax''', '''transformers'''] def __init__( self : Tuple , *__A : Any , **__A : Any ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : str , *__A : str , **__A : str ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def lowercase__ ( cls : List[str] , *__A : Tuple , **__A : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ["""flax""", """transformers"""] )
211
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( __lowercase , unittest.TestCase ): _snake_case =KandinskyVaaImgaImgPipeline _snake_case =['''image_embeds''', '''negative_image_embeds''', '''image'''] _snake_case =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] _snake_case =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case =False @property def lowerCAmelCase__ ( self: List[Any] ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Any ) -> Optional[int]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self: Optional[Any] ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: int ) -> str: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ ={ "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ =UNetaDConditionModel(**_lowerCAmelCase ) return model @property def lowerCAmelCase__ ( self: Any ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ =VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =self.dummy_unet UpperCAmelCase_ =self.dummy_movq UpperCAmelCase_ ={ "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase_ =DDIMScheduler(**_lowerCAmelCase ) UpperCAmelCase_ ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self: int , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any]=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowerCAmelCase ) # create init_image UpperCAmelCase_ =floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) UpperCAmelCase_ =image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ =Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowerCAmelCase ).startswith("mps" ): UpperCAmelCase_ =torch.manual_seed(_lowerCAmelCase ) else: UpperCAmelCase_ =torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) UpperCAmelCase_ ={ "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ ="cpu" UpperCAmelCase_ =self.get_dummy_components() UpperCAmelCase_ =self.pipeline_class(**_lowerCAmelCase ) UpperCAmelCase_ =pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) UpperCAmelCase_ =output.images UpperCAmelCase_ =pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] UpperCAmelCase_ =image[0, -3:, -3:, -1] UpperCAmelCase_ =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ =np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def lowerCAmelCase__ ( self: List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase_ ="A red cartoon frog, 4k" UpperCAmelCase_ =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) UpperCAmelCase_ =KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ =pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ =pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ =pipeline( image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCAmelCase_ =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
54
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( __A : Union[str, Any] , __A : Any , __A : Dict ) -> Tuple: '''simple docstring''' # Initialise PyTorch model SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_json_file(__A ) print(F"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE : List[Any] = BertForPreTraining(__A ) # Load weights from tf checkpoint load_tf_weights_in_bert(__A , __A , __A ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A_ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
265
0
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel _UpperCAmelCase : Tuple = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def UpperCamelCase ( lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' return torch.atana(lowerCamelCase__ , lowerCamelCase__ ) / math.pi * 2 def UpperCamelCase ( lowercase_ : int ) -> List[Any]: '''simple docstring''' lowercase =torch.sin(t * math.pi / 2 ) ** 2 lowercase =(1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCamelCase__ , lowerCamelCase__ ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): pass class __magic_name__ ( nn.Module ): def __init__( self , snake_case_ ): super().__init__() lowercase =DiffusionAttnUnetaD(snake_case_ , n_attn_layers=4 ) lowercase =deepcopy(self.diffusion ) lowercase =torch.quasirandom.SobolEngine(1 , scramble=snake_case_ ) def UpperCamelCase ( lowercase_ : List[str] ) -> int: '''simple docstring''' lowercase =MODELS_MAP[model_name]['''url'''] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' _UpperCAmelCase : int = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } _UpperCAmelCase : List[Any] = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } _UpperCAmelCase : Tuple = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } _UpperCAmelCase : str = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } _UpperCAmelCase : str = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } _UpperCAmelCase : int = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def UpperCamelCase ( lowercase_ : List[Any] ) -> Any: '''simple docstring''' if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def UpperCamelCase ( lowercase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(lowerCamelCase__ ) and not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return name.replace(lowerCamelCase__ , lowerCamelCase__ ) elif name.startswith(lowerCamelCase__ ): return [name.replace(lowerCamelCase__ , lowerCamelCase__ ) for v in value] raise ValueError(f'Attn error with {name}' ) def UpperCamelCase ( lowercase_ : Union[str, Any] , lowercase_ : str=1_3 ) -> Any: '''simple docstring''' lowercase =input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) lowercase =0 if string.startswith('''net.3.''' ): depth += 1 lowercase =string[6:] elif string.startswith('''net.''' ): lowercase =string[4:] while string.startswith('''main.7.''' ): depth += 1 lowercase =string[7:] if string.startswith('''main.''' ): lowercase =string[5:] # mid block if string[:2].isdigit(): lowercase =string[:2] lowercase =string[2:] else: lowercase =string[0] lowercase =string[1:] if depth == max_depth: lowercase =MID_NUM_TO_LAYER[layer_num] lowercase ='''mid_block''' elif depth > 0 and int(lowerCamelCase__ ) < 7: lowercase =DOWN_NUM_TO_LAYER[layer_num] lowercase =f'down_blocks.{depth}' elif depth > 0 and int(lowerCamelCase__ ) > 7: lowercase =UP_NUM_TO_LAYER[layer_num] lowercase =f'up_blocks.{max_depth - depth - 1}' elif depth == 0: lowercase =DEPTH_0_TO_LAYER[layer_num] lowercase =f'up_blocks.{max_depth - 1}' if int(lowerCamelCase__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) lowercase =string_left[1:] if "resnets" in new_layer: lowercase =convert_resconv_naming(lowerCamelCase__ ) elif "attentions" in new_layer: lowercase =convert_attn_naming(lowerCamelCase__ ) lowercase =new_string_left if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase =prefix + '''.''' + new_layer + '''.''' + string_left else: lowercase =[prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def UpperCamelCase ( lowercase_ : Tuple ) -> Optional[Any]: '''simple docstring''' lowercase ={} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue lowercase =rename(lowerCamelCase__ ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase =transform_conv_attns(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: lowercase =v return new_state_dict def UpperCamelCase ( lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' if len(lowerCamelCase__ ) == 1: if len(v.shape ) == 3: # weight lowercase =v[:, :, 0] else: # bias lowercase =v else: # qkv matrices lowercase =v.shape[0] lowercase =trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowercase =v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowercase =v[i * single_shape : (i + 1) * single_shape] return new_state_dict def UpperCamelCase ( lowercase_ : List[str] ) -> str: '''simple docstring''' lowercase =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowercase =args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' lowercase =download(lowerCamelCase__ ) lowercase =MODELS_MAP[model_name]['''sample_rate'''] lowercase =MODELS_MAP[model_name]['''sample_size'''] lowercase =Object() lowercase =sample_size lowercase =sample_rate lowercase =0 lowercase =UNetaDModel(sample_size=lowerCamelCase__ , sample_rate=lowerCamelCase__ ) lowercase =diffusers_model.state_dict() lowercase =DiffusionUncond(lowerCamelCase__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCamelCase__ )['''state_dict'''] ) lowercase =orig_model.diffusion_ema.eval() lowercase =orig_model.state_dict() lowercase =rename_orig_weights(lowerCamelCase__ ) lowercase =set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowercase =set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCamelCase__ ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith('''kernel''' ) for k in list(lowerCamelCase__ ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": lowercase =value.squeeze() lowercase =value diffusers_model.load_state_dict(lowerCamelCase__ ) lowercase =1_0_0 lowercase =3_3 lowercase =IPNDMScheduler(num_train_timesteps=lowerCamelCase__ ) lowercase =torch.manual_seed(lowerCamelCase__ ) lowercase =torch.randn([1, 2, config.sample_size] , generator=lowerCamelCase__ ).to(lowerCamelCase__ ) lowercase =torch.linspace(1 , 0 , steps + 1 , device=lowerCamelCase__ )[:-1] lowercase =get_crash_schedule(lowerCamelCase__ ) lowercase =DanceDiffusionPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) lowercase =torch.manual_seed(3_3 ) lowercase =pipe(num_inference_steps=lowerCamelCase__ , generator=lowerCamelCase__ ).audios lowercase =sampling.iplms_sample(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , {} ) lowercase =generated.clamp(-1 , 1 ) lowercase =(generated - audio).abs().sum() lowercase =(generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , lowerCamelCase__ ) print('''Diff max''' , lowerCamelCase__ ) assert diff_max < 1E-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') _UpperCAmelCase : List[str] = parser.parse_args() main(args)
721
'''simple docstring''' from __future__ import annotations _UpperCAmelCase : str = 10 def UpperCamelCase ( lowercase_ : list[int] ) -> list[int]: '''simple docstring''' lowercase =1 lowercase =max(lowercase_ ) while placement <= max_digit: # declare and initialize empty buckets lowercase =[[] for _ in range(lowercase_ )] # split list_of_ints between the buckets for i in list_of_ints: lowercase =int((i / placement) % RADIX ) buckets[tmp].append(lowercase_ ) # put each buckets' contents into list_of_ints lowercase =0 for b in range(lowercase_ ): for i in buckets[b]: lowercase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
145
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __magic_name__ : List[Any] = logging.get_logger(__name__) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE__ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Tuple = ['''pixel_values'''] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) _snake_case = size if size is not None else {"shortest_edge": 224} _snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _snake_case = crop_size if crop_size is not None else {"height": 224, "width": 224} _snake_case = get_size_dict(lowerCamelCase , param_name="crop_size" ) _snake_case = do_resize _snake_case = size _snake_case = do_center_crop _snake_case = crop_size _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = None , **lowerCamelCase , ): _snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" in size: _snake_case = get_resize_output_image_size(lowerCamelCase , size["shortest_edge"] , default_to_square=lowerCamelCase ) elif "height" in size and "width" in size: _snake_case = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): _snake_case = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCamelCase , size=(size["height"], size["width"]) , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ): return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _snake_case = to_numpy_array(lowerCamelCase ) if do_resize: _snake_case = self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) if do_center_crop: _snake_case = self.center_crop(lowerCamelCase , size=lowerCamelCase ) if do_rescale: _snake_case = self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) if do_normalize: _snake_case = self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) _snake_case = to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) return image def UpperCamelCase( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ): _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCamelCase , param_name="crop_size" ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _snake_case = make_batched(lowerCamelCase ) _snake_case = [ [ self._preprocess_image( image=lowerCamelCase , do_resize=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , do_center_crop=lowerCamelCase , crop_size=lowerCamelCase , do_rescale=lowerCamelCase , rescale_factor=lowerCamelCase , do_normalize=lowerCamelCase , image_mean=lowerCamelCase , image_std=lowerCamelCase , data_format=lowerCamelCase , ) for img in video ] for video in videos ] _snake_case = {"pixel_values": videos} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
672
'''simple docstring''' import numpy as np def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
672
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean a__ : Tuple = 0 a__ : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a__ : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right a__ : List[str] = tuple[int, int] class lowercase : """simple docstring""" def __init__( self : Optional[Any] , a_ : int , a_ : int , a_ : int , a_ : int , a_ : int , a_ : Node | None , ): """simple docstring""" lowerCamelCase__ = pos_x lowerCamelCase__ = pos_y lowerCamelCase__ = (pos_y, pos_x) lowerCamelCase__ = goal_x lowerCamelCase__ = goal_y lowerCamelCase__ = g_cost lowerCamelCase__ = parent lowerCamelCase__ = self.calculate_heuristic() lowerCamelCase__ = self.g_cost + self.h_cost def _UpperCamelCase ( self : str ): """simple docstring""" lowerCamelCase__ = self.pos_x - self.goal_x lowerCamelCase__ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(a_ ) + abs(a_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : str , a_ : Node ): """simple docstring""" return self.f_cost < other.f_cost class lowercase : """simple docstring""" def __init__( self : List[Any] , a_ : TPosition , a_ : TPosition ): """simple docstring""" lowerCamelCase__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , a_ ) lowerCamelCase__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , a_ ) lowerCamelCase__ = [self.start] lowerCamelCase__ = [] lowerCamelCase__ = False def _UpperCamelCase ( self : int ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCamelCase__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(a_ ) self.closed_nodes.append(a_ ) lowerCamelCase__ = self.get_successors(a_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(a_ ) else: # retrieve the best current path lowerCamelCase__ = self.open_nodes.pop(self.open_nodes.index(a_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(a_ ) else: self.open_nodes.append(a_ ) return [self.start.pos] def _UpperCamelCase ( self : Tuple , a_ : Node ): """simple docstring""" lowerCamelCase__ = [] for action in delta: lowerCamelCase__ = parent.pos_x + action[1] lowerCamelCase__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(a_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( a_ , a_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , a_ , ) ) return successors def _UpperCamelCase ( self : Tuple , a_ : Node | None ): """simple docstring""" lowerCamelCase__ = node lowerCamelCase__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCamelCase__ = current_node.parent path.reverse() return path class lowercase : """simple docstring""" def __init__( self : Union[str, Any] , a_ : TPosition , a_ : TPosition ): """simple docstring""" lowerCamelCase__ = AStar(a_ , a_ ) lowerCamelCase__ = AStar(a_ , a_ ) lowerCamelCase__ = False def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowerCamelCase__ = self.fwd_astar.open_nodes.pop(0 ) lowerCamelCase__ = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( a_ , a_ ) self.fwd_astar.closed_nodes.append(a_ ) self.bwd_astar.closed_nodes.append(a_ ) lowerCamelCase__ = current_bwd_node lowerCamelCase__ = current_fwd_node lowerCamelCase__ = { self.fwd_astar: self.fwd_astar.get_successors(a_ ), self.bwd_astar: self.bwd_astar.get_successors(a_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(a_ ) else: # retrieve the best current path lowerCamelCase__ = astar.open_nodes.pop( astar.open_nodes.index(a_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(a_ ) else: astar.open_nodes.append(a_ ) return [self.fwd_astar.start.pos] def _UpperCamelCase ( self : List[Any] , a_ : Node , a_ : Node ): """simple docstring""" lowerCamelCase__ = self.fwd_astar.retrace_path(a_ ) lowerCamelCase__ = self.bwd_astar.retrace_path(a_ ) bwd_path.pop() bwd_path.reverse() lowerCamelCase__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] a__ : Optional[int] = (0, 0) a__ : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a__ : int = time.time() a__ : Dict = AStar(init, goal) a__ : Optional[Any] = a_star.search() a__ : Optional[int] = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') a__ : Union[str, Any] = time.time() a__ : Optional[Any] = BidirectionalAStar(init, goal) a__ : Any = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
235
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor a__ : int = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def snake_case (UpperCamelCase : Optional[int] ): '''simple docstring''' if isinstance(UpperCamelCase , torch.Tensor ): return image elif isinstance(UpperCamelCase , PIL.Image.Image ): lowerCamelCase__ = [image] lowerCamelCase__ = [trans(img.convert("""RGB""" ) ) for img in image] lowerCamelCase__ = torch.stack(UpperCamelCase ) return image class lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[int] , a_ : Optional[int] , a_ : List[Any] ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM lowerCamelCase__ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a_ , scheduler=a_ ) def _UpperCamelCase ( self : Any , a_ : str ): """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _UpperCamelCase ( self : Union[str, Any] , a_ : str , a_ : int , a_ : List[str] ): """simple docstring""" lowerCamelCase__ = min(int(num_inference_steps * strength ) , a_ ) lowerCamelCase__ = max(num_inference_steps - init_timestep , 0 ) lowerCamelCase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCamelCase ( self : List[str] , a_ : Dict , a_ : Dict , a_ : Optional[Any] , a_ : str , a_ : int , a_ : List[Any]=None ): """simple docstring""" if not isinstance(a_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a_ )}''' ) lowerCamelCase__ = image.to(device=a_ , dtype=a_ ) if isinstance(a_ , a_ ) and len(a_ ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(a_ )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ = init_latents.shape lowerCamelCase__ = randn_tensor(a_ , generator=a_ , device=a_ , dtype=a_ ) # get latents print("""add noise to latents at timestep""" , a_ ) lowerCamelCase__ = self.scheduler.add_noise(a_ , a_ , a_ ) lowerCamelCase__ = init_latents return latents @torch.no_grad() def __call__( self : Union[str, Any] , a_ : Union[torch.FloatTensor, PIL.Image.Image] = None , a_ : float = 0.8 , a_ : int = 1 , a_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a_ : float = 0.0 , a_ : int = 50 , a_ : Optional[bool] = None , a_ : Optional[str] = "pil" , a_ : bool = True , ): """simple docstring""" self.check_inputs(a_ ) # 2. Preprocess image lowerCamelCase__ = preprocess(a_ ) # 3. set timesteps self.scheduler.set_timesteps(a_ , device=self.device ) lowerCamelCase__ , lowerCamelCase__ = self.get_timesteps(a_ , a_ , self.device ) lowerCamelCase__ = timesteps[:1].repeat(a_ ) # 4. Prepare latent variables lowerCamelCase__ = self.prepare_latents(a_ , a_ , a_ , self.unet.dtype , self.device , a_ ) lowerCamelCase__ = latents # 5. Denoising loop for t in self.progress_bar(a_ ): # 1. predict noise model_output lowerCamelCase__ = self.unet(a_ , a_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowerCamelCase__ = self.scheduler.step( a_ , a_ , a_ , eta=a_ , use_clipped_model_output=a_ , generator=a_ , ).prev_sample lowerCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase__ = self.numpy_to_pil(a_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=a_ )
235
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( ): return [ a * b * (1_0_0_0 - a - b) for a in range(1 , 9_9_9 ) for b in range(__snake_case , 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'''{solution() = }''')
107
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = [0] * len(_SCREAMING_SNAKE_CASE ) lowercase__ = [] lowercase__ = [1] * len(_SCREAMING_SNAKE_CASE ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(_SCREAMING_SNAKE_CASE ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_SCREAMING_SNAKE_CASE ) print(max(_SCREAMING_SNAKE_CASE ) ) # Adjacency list of Graph lowercase_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
235
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A : List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE( __A ): snake_case_ : str = ["""pixel_values"""] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 255 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> None: """simple docstring""" super().__init__(**lowerCamelCase__ ) __lowercase = size if size is not None else {"""shortest_edge""": 256} __lowercase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __lowercase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase = get_size_dict(lowerCamelCase__ ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __lowercase = get_resize_output_image_size(lowerCamelCase__ , size=size["""shortest_edge"""] , default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(lowerCamelCase__ ) return center_crop(lowerCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ ) -> np.ndarray: """simple docstring""" return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> np.ndarray: """simple docstring""" return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ) -> List[str]: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(lowerCamelCase__ ) __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] __lowercase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] __lowercase = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
719
'''simple docstring''' from statistics import mean, stdev def snake_case_ ( a__ : list ,a__ : int = 3 ): """simple docstring""" __lowercase = min(a__ ) __lowercase = max(a__ ) # normalize data return [round((x - x_min) / (x_max - x_min) ,a__ ) for x in data] def snake_case_ ( a__ : list ,a__ : int = 3 ): """simple docstring""" __lowercase = mean(a__ ) __lowercase = stdev(a__ ) # standardize data return [round((x - mu) / (sigma) ,a__ ) for x in data]
163
0
def lowerCAmelCase_ ( _lowercase : list , _lowercase : int , _lowercase : int = 0 , _lowercase : int = 0) -> int: """simple docstring""" a__ : str = right or len(_lowercase) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowercase , _lowercase , left + 1 , right - 1) if __name__ == "__main__": import doctest doctest.testmod()
136
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ (A__ , A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Optional[Any] = StableDiffusionXLImgaImgPipeline __lowerCAmelCase :Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __lowerCAmelCase :Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} __lowerCAmelCase :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase :Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase :Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" torch.manual_seed(0 ) a__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=__lowercase , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) a__ : List[Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) a__ : Tuple = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) a__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=3_2 , ) a__ : Optional[int] = CLIPTextModel(__lowercase ) a__ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__lowercase ) a__ : Union[str, Any] = CLIPTextModelWithProjection(__lowercase ) a__ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__lowercase ) a__ : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=0 ) -> Tuple: """simple docstring""" a__ : Any = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__lowercase ) ).to(__lowercase ) a__ : Union[str, Any] = image / 2 + 0.5 if str(__lowercase ).startswith("""mps""" ): a__ : Dict = torch.manual_seed(__lowercase ) else: a__ : List[str] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) a__ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator a__ : Any = self.get_dummy_components() a__ : List[Any] = StableDiffusionXLImgaImgPipeline(**__lowercase ) a__ : List[Any] = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) a__ : Dict = self.get_dummy_inputs(__lowercase ) a__ : str = sd_pipe(**__lowercase ).images a__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) a__ : Union[str, Any] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Union[str, Any] = self.get_dummy_components() a__ : List[str] = StableDiffusionXLImgaImgPipeline(**__lowercase ) a__ : Optional[int] = sd_pipe.to(__lowercase ) a__ : int = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) # forward without prompt embeds a__ : Any = self.get_dummy_inputs(__lowercase ) a__ : Optional[int] = 3 * ["""this is a negative prompt"""] a__ : List[str] = negative_prompt a__ : Any = 3 * [inputs["""prompt"""]] a__ : Union[str, Any] = sd_pipe(**__lowercase ) a__ : Dict = output.images[0, -3:, -3:, -1] # forward with prompt embeds a__ : Optional[Any] = self.get_dummy_inputs(__lowercase ) a__ : Dict = 3 * ["""this is a negative prompt"""] a__ : int = 3 * [inputs.pop("""prompt""" )] ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) : List[Any] = sd_pipe.encode_prompt(__lowercase , negative_prompt=__lowercase ) a__ : Any = sd_pipe( **__lowercase , prompt_embeds=__lowercase , negative_prompt_embeds=__lowercase , pooled_prompt_embeds=__lowercase , negative_pooled_prompt_embeds=__lowercase , ) a__ : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=0 ) -> List[str]: """simple docstring""" a__ : List[Any] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) a__ : List[Any] = np.random.RandomState(__lowercase ).standard_normal((1, 4, 6_4, 6_4) ) a__ : Dict = torch.from_numpy(__lowercase ).to(device=__lowercase , dtype=__lowercase ) a__ : List[Any] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : Optional[int] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) a__ : Any = self.get_inputs(__lowercase ) a__ : List[str] = pipe(**__lowercase ).images a__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Any = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
136
1
'''simple docstring''' import math def __a ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ) -> List[Any]: '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__lowerCamelCase ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ : Optional[Any] = "Enter the base and the power separated by a comma: " lowerCAmelCase_ , lowerCAmelCase_ : Any = map(int, input(prompt).split(",")) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ : str = res(xa, ya) lowerCAmelCase_ : List[Any] = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
461
'''simple docstring''' from __future__ import annotations def __a ( __lowerCamelCase : int | str ) -> bool: '''simple docstring''' lowercase_ = str(__lowerCamelCase ) return n == n[::-1] def __a ( __lowerCamelCase : int = 1_000_000 ) -> Optional[int]: '''simple docstring''' lowercase_ = 0 for i in range(1 , __lowerCamelCase ): if is_palindrome(__lowerCamelCase ) and is_palindrome(bin(__lowerCamelCase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
461
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class UpperCamelCase_ ( __UpperCamelCase ): '''simple docstring''' UpperCamelCase_ = 'mgp-str' def __init__( self , UpperCamelCase=[32, 1_28] , UpperCamelCase=4 , UpperCamelCase=3 , UpperCamelCase=27 , UpperCamelCase=38 , UpperCamelCase=5_02_57 , UpperCamelCase=3_05_22 , UpperCamelCase=7_68 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=4.0 , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=1E-5 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=False , UpperCamelCase=0.02 , **UpperCamelCase , ) -> Optional[Any]: super().__init__(**__snake_case) UpperCamelCase__ : str = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : Optional[int] = num_channels UpperCamelCase__ : Union[str, Any] = max_token_length UpperCamelCase__ : str = num_character_labels UpperCamelCase__ : Tuple = num_bpe_labels UpperCamelCase__ : int = num_wordpiece_labels UpperCamelCase__ : List[Any] = hidden_size UpperCamelCase__ : str = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : str = mlp_ratio UpperCamelCase__ : Any = distilled UpperCamelCase__ : Optional[int] = layer_norm_eps UpperCamelCase__ : List[str] = drop_rate UpperCamelCase__ : Dict = qkv_bias UpperCamelCase__ : Union[str, Any] = attn_drop_rate UpperCamelCase__ : Any = drop_path_rate UpperCamelCase__ : Union[str, Any] = output_aa_attentions UpperCamelCase__ : List[str] = initializer_range
410
__UpperCAmelCase : int = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def lowerCamelCase_ ( UpperCamelCase_ ): _a : Optional[Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __UpperCAmelCase : list[bool | None] = [None] * 10_000_000 __UpperCAmelCase : List[Any] = True __UpperCAmelCase : List[Any] = False def lowerCamelCase_ ( UpperCamelCase_ ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _a : Optional[Any] = chain(next_number(UpperCamelCase_ ) ) _a : Dict = number_chain while number < 1000_0000: _a : Any = number_chain number *= 10 return number_chain def lowerCamelCase_ ( UpperCamelCase_ = 1000_0000 ): for i in range(1 , UpperCamelCase_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
471
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class snake_case : def __init__( self : str , a_ : List[str] , a_ : Tuple=13 , a_ : Dict=30 , a_ : Optional[int]=2 , a_ : Tuple=3 , a_ : Dict=True , a_ : int=True , a_ : Optional[Any]=32 , a_ : List[str]=5 , a_ : Any=4 , a_ : Dict=37 , a_ : Dict="gelu" , a_ : int=0.1 , a_ : Optional[Any]=0.1 , a_ : Any=10 , a_ : List[str]=0.02 , a_ : Any=3 , a_ : List[str]=None , a_ : Optional[int]=2 , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = parent SCREAMING_SNAKE_CASE__ : int = batch_size SCREAMING_SNAKE_CASE__ : int = image_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_channels SCREAMING_SNAKE_CASE__ : int = is_training SCREAMING_SNAKE_CASE__ : List[Any] = use_labels SCREAMING_SNAKE_CASE__ : str = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = scope SCREAMING_SNAKE_CASE__ : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) SCREAMING_SNAKE_CASE__ : Optional[int] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_patches + 2 def __lowercase( self : Optional[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowercase( self : Optional[Any] )-> Tuple: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowercase( self : List[str] , a_ : List[str] , a_ : Optional[Any] , a_ : str )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = DeiTModel(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase( self : List[Any] , a_ : List[str] , a_ : List[str] , a_ : List[Any] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = DeiTForMaskedImageModeling(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ : Optional[int] = 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = DeiTForMaskedImageModeling(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : int = model(a_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowercase( self : List[str] , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Tuple )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.type_sequence_label_size SCREAMING_SNAKE_CASE__ : Tuple = DeiTForImageClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE__ : Any = 1 SCREAMING_SNAKE_CASE__ : int = DeiTForImageClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase( self : int )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase_ = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False def __lowercase( self : List[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = DeiTModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def __lowercase( self : Optional[Any] )-> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def __lowercase( self : List[Any] )-> Dict: """simple docstring""" pass def __lowercase( self : str )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def __lowercase( self : str )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = model_class(a_ ) SCREAMING_SNAKE_CASE__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a_ ) def __lowercase( self : List[Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def __lowercase( self : List[Any] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a_ ) def __lowercase( self : str )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) def __lowercase( self : str , a_ : str , a_ : Tuple , a_ : Union[str, Any]=False )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowercase( self : Optional[Any] )-> Any: """simple docstring""" if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE__ : Tuple = model_class(a_ ) model.to(a_ ) model.train() SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(a_ , a_ , return_labels=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**a_ ).loss loss.backward() def __lowercase( self : Optional[int] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Tuple = True for model_class in self.all_model_classes: if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(a_ ) model.gradient_checkpointing_enable() model.to(a_ ) model.train() SCREAMING_SNAKE_CASE__ : Optional[int] = self._prepare_for_class(a_ , a_ , return_labels=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(**a_ ).loss loss.backward() def __lowercase( self : Optional[Any] )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[str] = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a_ ), *get_values(a_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type['title']}''' ): SCREAMING_SNAKE_CASE__ : int = problem_type['title'] SCREAMING_SNAKE_CASE__ : Tuple = problem_type['num_labels'] SCREAMING_SNAKE_CASE__ : str = model_class(a_ ) model.to(a_ ) model.train() SCREAMING_SNAKE_CASE__ : Optional[int] = self._prepare_for_class(a_ , a_ , return_labels=a_ ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) SCREAMING_SNAKE_CASE__ : Any = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a_ ) as warning_list: SCREAMING_SNAKE_CASE__ : str = model(**a_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __lowercase( self : Optional[Any] )-> Optional[int]: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = DeiTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def _a ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case ( unittest.TestCase ): @cached_property def __lowercase( self : int )-> Dict: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def __lowercase( self : Any )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : List[Any] = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(images=a_ , return_tensors='pt' ).to(a_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**a_ ) # verify the logits SCREAMING_SNAKE_CASE__ : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __lowercase( self : Tuple )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' ) SCREAMING_SNAKE_CASE__ : Dict = self.default_image_processor SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE__ : Optional[int] = image_processor(images=a_ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : str = inputs.pixel_values.to(a_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ )
636
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _a ( lowercase__ : int ): '''simple docstring''' if is_torch_version('<' , '2.0.0' ) or not hasattr(lowercase__ , '_dynamo' ): return False return isinstance(lowercase__ , torch._dynamo.eval_frame.OptimizedModule ) def _a ( lowercase__ : Optional[Any] , lowercase__ : bool = True ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) SCREAMING_SNAKE_CASE__ : Dict = is_compiled_module(lowercase__ ) if is_compiled: SCREAMING_SNAKE_CASE__ : Tuple = model SCREAMING_SNAKE_CASE__ : int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : Any = model.module if not keep_fpaa_wrapper: SCREAMING_SNAKE_CASE__ : List[Any] = getattr(lowercase__ , 'forward' ) SCREAMING_SNAKE_CASE__ : str = model.__dict__.pop('_original_forward' , lowercase__ ) if original_forward is not None: while hasattr(lowercase__ , '__wrapped__' ): SCREAMING_SNAKE_CASE__ : Dict = forward.__wrapped__ if forward == original_forward: break SCREAMING_SNAKE_CASE__ : Dict = forward if getattr(lowercase__ , '_converted_to_transformer_engine' , lowercase__ ): convert_model(lowercase__ , to_transformer_engine=lowercase__ ) if is_compiled: SCREAMING_SNAKE_CASE__ : List[Any] = model SCREAMING_SNAKE_CASE__ : Optional[Any] = compiled_model return model def _a ( ): '''simple docstring''' PartialState().wait_for_everyone() def _a ( lowercase__ : str , lowercase__ : Optional[Any] ): '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(lowercase__ , lowercase__ ) elif PartialState().local_process_index == 0: torch.save(lowercase__ , lowercase__ ) @contextmanager def _a ( **lowercase__ : str ): '''simple docstring''' for key, value in kwargs.items(): SCREAMING_SNAKE_CASE__ : int = str(lowercase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _a ( lowercase__ : Optional[Any] ): '''simple docstring''' if not hasattr(lowercase__ , '__qualname__' ) and not hasattr(lowercase__ , '__name__' ): SCREAMING_SNAKE_CASE__ : Any = getattr(lowercase__ , '__class__' , lowercase__ ) if hasattr(lowercase__ , '__qualname__' ): return obj.__qualname__ if hasattr(lowercase__ , '__name__' ): return obj.__name__ return str(lowercase__ ) def _a ( lowercase__ : List[str] , lowercase__ : List[Any] ): '''simple docstring''' for key, value in source.items(): if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : List[str] = destination.setdefault(lowercase__ , {} ) merge_dicts(lowercase__ , lowercase__ ) else: SCREAMING_SNAKE_CASE__ : List[Any] = value return destination def _a ( lowercase__ : int = None ): '''simple docstring''' if port is None: SCREAMING_SNAKE_CASE__ : int = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
636
1
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , ) -> List[str]: '''simple docstring''' lowercase , lowercase = grid.shape lowercase = [-1, 1, 0, 0] lowercase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase = [(0, source)], set() lowercase = np.full((rows, cols) , np.inf ) lowercase = 0 lowercase = np.empty((rows, cols) , dtype=lowerCAmelCase__ ) lowercase = None while queue: ((lowercase) , (lowercase)) = heappop(lowerCAmelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase = predecessors[x, y] path.append(lowerCAmelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowerCAmelCase__ ) ): lowercase , lowercase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowerCAmelCase__ , (dist + 1, (nx, ny)) ) lowercase = dist + 1 lowercase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
359
def __lowerCAmelCase ( A , A ): UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __lowerCAmelCase ( A , A , A ): UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
162
0
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __lowercase = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_80_00, "sample_size": 13_10_72, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, } def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return torch.atana(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) / math.pi * 2 def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ) -> int: lowerCAmelCase_ : List[Any] =torch.sin(t * math.pi / 2 ) ** 2 lowerCAmelCase_ : List[str] =(1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" pass class _snake_case ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str ): super().__init__() lowerCAmelCase_ : int =DiffusionAttnUnetaD(__UpperCamelCase , n_attn_layers=4 ) lowerCAmelCase_ : Tuple =deepcopy(self.diffusion ) lowerCAmelCase_ : Optional[Any] =torch.quasirandom.SobolEngine(1 , scramble=__UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ) -> str: lowerCAmelCase_ : List[Any] =MODELS_MAP[model_name]['''url'''] os.system(f'wget {url} ./' ) return f'./{model_name}.ckpt' __lowercase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __lowercase = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __lowercase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __lowercase = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __lowercase = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __lowercase = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(f'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ) -> int: for key, value in ATTN_MAP.items(): if name.startswith(_SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return name.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif name.startswith(_SCREAMING_SNAKE_CASE ): return [name.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for v in value] raise ValueError(f'Attn error with {name}' ) def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 ) -> List[Any]: lowerCAmelCase_ : Optional[Any] =input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) lowerCAmelCase_ : Tuple =0 if string.startswith('''net.3.''' ): depth += 1 lowerCAmelCase_ : Optional[int] =string[6:] elif string.startswith('''net.''' ): lowerCAmelCase_ : Any =string[4:] while string.startswith('''main.7.''' ): depth += 1 lowerCAmelCase_ : Any =string[7:] if string.startswith('''main.''' ): lowerCAmelCase_ : List[str] =string[5:] # mid block if string[:2].isdigit(): lowerCAmelCase_ : Any =string[:2] lowerCAmelCase_ : str =string[2:] else: lowerCAmelCase_ : Any =string[0] lowerCAmelCase_ : Union[str, Any] =string[1:] if depth == max_depth: lowerCAmelCase_ : str =MID_NUM_TO_LAYER[layer_num] lowerCAmelCase_ : Union[str, Any] ='''mid_block''' elif depth > 0 and int(_SCREAMING_SNAKE_CASE ) < 7: lowerCAmelCase_ : Any =DOWN_NUM_TO_LAYER[layer_num] lowerCAmelCase_ : List[str] =f'down_blocks.{depth}' elif depth > 0 and int(_SCREAMING_SNAKE_CASE ) > 7: lowerCAmelCase_ : List[str] =UP_NUM_TO_LAYER[layer_num] lowerCAmelCase_ : str =f'up_blocks.{max_depth - depth - 1}' elif depth == 0: lowerCAmelCase_ : Optional[int] =DEPTH_0_TO_LAYER[layer_num] lowerCAmelCase_ : int =f'up_blocks.{max_depth - 1}' if int(_SCREAMING_SNAKE_CASE ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(f'Naming error with {input_string} and string_left: {string_left}.' ) lowerCAmelCase_ : Union[str, Any] =string_left[1:] if "resnets" in new_layer: lowerCAmelCase_ : Optional[int] =convert_resconv_naming(_SCREAMING_SNAKE_CASE ) elif "attentions" in new_layer: lowerCAmelCase_ : Dict =convert_attn_naming(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Optional[Any] =new_string_left if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : Dict =prefix + '''.''' + new_layer + '''.''' + string_left else: lowerCAmelCase_ : Optional[int] =[prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowerCAmelCase_ : Union[str, Any] ={} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue lowerCAmelCase_ : int =rename(_SCREAMING_SNAKE_CASE ) # check if we need to transform from Conv => Linear for attention if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : Any =transform_conv_attns(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowerCAmelCase_ : Union[str, Any] =v return new_state_dict def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if len(_SCREAMING_SNAKE_CASE ) == 1: if len(v.shape ) == 3: # weight lowerCAmelCase_ : Union[str, Any] =v[:, :, 0] else: # bias lowerCAmelCase_ : List[Any] =v else: # qkv matrices lowerCAmelCase_ : Tuple =v.shape[0] lowerCAmelCase_ : str =trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowerCAmelCase_ : Dict =v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowerCAmelCase_ : List[Any] =v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ) -> List[Any]: lowerCAmelCase_ : Optional[int] =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowerCAmelCase_ : List[str] =args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'Make sure to provide one of the official model names {MODELS_MAP.keys()}' lowerCAmelCase_ : List[Any] =download(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Optional[int] =MODELS_MAP[model_name]['''sample_rate'''] lowerCAmelCase_ : str =MODELS_MAP[model_name]['''sample_size'''] lowerCAmelCase_ : Tuple =Object() lowerCAmelCase_ : List[str] =sample_size lowerCAmelCase_ : Optional[int] =sample_rate lowerCAmelCase_ : Optional[Any] =0 lowerCAmelCase_ : List[Any] =UNetaDModel(sample_size=_SCREAMING_SNAKE_CASE , sample_rate=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : str =diffusers_model.state_dict() lowerCAmelCase_ : int =DiffusionUncond(_SCREAMING_SNAKE_CASE ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_SCREAMING_SNAKE_CASE )['''state_dict'''] ) lowerCAmelCase_ : List[Any] =orig_model.diffusion_ema.eval() lowerCAmelCase_ : Optional[int] =orig_model.state_dict() lowerCAmelCase_ : Dict =rename_orig_weights(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Optional[int] =set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowerCAmelCase_ : Any =set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_SCREAMING_SNAKE_CASE ) == 0, f'Problem with {renamed_minus_diffusers}' assert all(k.endswith('''kernel''' ) for k in list(_SCREAMING_SNAKE_CASE ) ), f'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": lowerCAmelCase_ : List[Any] =value.squeeze() lowerCAmelCase_ : Union[str, Any] =value diffusers_model.load_state_dict(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Tuple =100 lowerCAmelCase_ : List[str] =33 lowerCAmelCase_ : Dict =IPNDMScheduler(num_train_timesteps=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : str =torch.manual_seed(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Optional[int] =torch.randn([1, 2, config.sample_size] , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : List[str] =torch.linspace(1 , 0 , steps + 1 , device=_SCREAMING_SNAKE_CASE )[:-1] lowerCAmelCase_ : Optional[Any] =get_crash_schedule(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : str =DanceDiffusionPipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Dict =torch.manual_seed(33 ) lowerCAmelCase_ : Tuple =pipe(num_inference_steps=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).audios lowerCAmelCase_ : str =sampling.iplms_sample(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {} ) lowerCAmelCase_ : int =generated.clamp(-1 , 1 ) lowerCAmelCase_ : List[str] =(generated - audio).abs().sum() lowerCAmelCase_ : Optional[int] =(generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , _SCREAMING_SNAKE_CASE ) print('''Diff max''' , _SCREAMING_SNAKE_CASE ) assert diff_max < 1e-3, f'Diff max: {diff_max} is too much :-/' print(f'Conversion for {model_name} successful!' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') __lowercase = parser.parse_args() main(args)
707
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''MobileNetV2FeatureExtractor'''] __lowercase = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
305
0
from copy import deepcopy class __A: def __init__( self , _snake_case = None , _snake_case = None ) -> None: '''simple docstring''' if arr is None and size is not None: __a = size __a = [0] * size elif arr is not None: self.init(_snake_case ) else: raise ValueError('''Either arr or size must be specified''' ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> None: '''simple docstring''' __a = len(_snake_case ) __a = deepcopy(_snake_case ) for i in range(1 , self.size ): __a = self.next_(_snake_case ) if j < self.size: self.tree[j] += self.tree[i] def SCREAMING_SNAKE_CASE_ ( self ) -> list[int]: '''simple docstring''' __a = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): __a = self.next_(_snake_case ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def SCREAMING_SNAKE_CASE_ ( _snake_case ) -> int: '''simple docstring''' return index + (index & (-index)) @staticmethod def SCREAMING_SNAKE_CASE_ ( _snake_case ) -> int: '''simple docstring''' return index - (index & (-index)) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> None: '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value __a = self.next_(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> None: '''simple docstring''' self.add(_snake_case , value - self.get(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' if right == 0: return 0 __a = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] __a = self.prev(_snake_case ) return result def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case ) -> int: '''simple docstring''' return self.prefix(_snake_case ) - self.prefix(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' return self.query(_snake_case , index + 1 ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' value -= self.tree[0] if value < 0: return -1 __a = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 __a = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
219
def __lowerCAmelCase ( a__ , a__ ) -> None: __a = len(a__ ) print('''The following activities are selected:''' ) # The first activity is always selected __a = 0 print(a__ , end=''',''' ) # Consider rest of the activities for j in range(a__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(a__ , end=''',''' ) __a = j if __name__ == "__main__": import doctest doctest.testmod() A : Tuple = [1, 3, 0, 5, 8, 5] A : Dict = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
219
1
'''simple docstring''' __lowerCamelCase : str = 8.314_4598 def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example __lowerCamelCase : Optional[Any] = 300 __lowerCamelCase : Tuple = 28 __lowerCamelCase : str = rms_speed_of_molecule(temperature, molar_mass) print(f"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
708
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __lowerCamelCase : Any = open # noqa: we just need to have a builtin inside this module to test it properly
459
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowerCAmelCase__ ( a__: Union[str, Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = SwinConfig(image_size=1_9_2 ) if "base" in model_name: _UpperCAmelCase = 6 _UpperCAmelCase = 1_2_8 _UpperCAmelCase = (2, 2, 1_8, 2) _UpperCAmelCase = (4, 8, 1_6, 3_2) elif "large" in model_name: _UpperCAmelCase = 1_2 _UpperCAmelCase = 1_9_2 _UpperCAmelCase = (2, 2, 1_8, 2) _UpperCAmelCase = (6, 1_2, 2_4, 4_8) else: raise ValueError('Model not supported, only supports base and large variants' ) _UpperCAmelCase = window_size _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads return config def lowerCAmelCase__ ( a__: Any ) -> str: '''simple docstring''' if "encoder.mask_token" in name: _UpperCAmelCase = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: _UpperCAmelCase = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: _UpperCAmelCase = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: _UpperCAmelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _UpperCAmelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: _UpperCAmelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _UpperCAmelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _UpperCAmelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _UpperCAmelCase = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": _UpperCAmelCase = 'layernorm.weight' if name == "encoder.norm.bias": _UpperCAmelCase = 'layernorm.bias' if "decoder" in name: pass else: _UpperCAmelCase = 'swin.' + name return name def lowerCAmelCase__ ( a__: Any , a__: Optional[Any] ) -> Tuple: '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase = orig_state_dict.pop(A__ ) if "attn_mask" in key: pass elif "qkv" in key: _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = int(key_split[2] ) _UpperCAmelCase = int(key_split[4] ) _UpperCAmelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase = val[:dim, :] _UpperCAmelCase = val[ dim : dim * 2, : ] _UpperCAmelCase = val[-dim:, :] else: _UpperCAmelCase = val[ :dim ] _UpperCAmelCase = val[ dim : dim * 2 ] _UpperCAmelCase = val[ -dim: ] else: _UpperCAmelCase = val return orig_state_dict def lowerCAmelCase__ ( a__: Tuple , a__: str , a__: Tuple , a__: List[str] ) -> str: '''simple docstring''' _UpperCAmelCase = torch.load(A__ , map_location='cpu' )['model'] _UpperCAmelCase = get_swin_config(A__ ) _UpperCAmelCase = SwinForMaskedImageModeling(A__ ) model.eval() _UpperCAmelCase = convert_state_dict(A__ , A__ ) model.load_state_dict(A__ ) _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = ViTImageProcessor(size={'height': 1_9_2, 'width': 1_9_2} ) _UpperCAmelCase = Image.open(requests.get(A__ , stream=A__ ).raw ) _UpperCAmelCase = image_processor(images=A__ , return_tensors='pt' ) with torch.no_grad(): _UpperCAmelCase = model(**A__ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A__ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ :Optional[int] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
618
from sklearn.metrics import matthews_corrcoef import datasets a__ : Any = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" a__ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" a__ : str = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any]=None) -> Any: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(lowerCAmelCase , lowerCAmelCase , sample_weight=lowerCAmelCase)), }
622
0
'''simple docstring''' def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" _enforce_args(__UpperCAmelCase , __UpperCAmelCase ) if n == 0: return 0 lowerCamelCase_ : Optional[Any] = float('''-inf''' ) for i in range(1 , n + 1 ): lowerCamelCase_ : Any = max( __UpperCAmelCase , prices[i - 1] + naive_cut_rod_recursive(n - i , __UpperCAmelCase ) ) return max_revue def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" _enforce_args(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCamelCase_ : Optional[int] = float('''-inf''' ) for i in range(1 , n + 1 ): lowerCamelCase_ : int = max( __UpperCAmelCase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __UpperCAmelCase , __UpperCAmelCase ) , ) lowerCamelCase_ : Dict = max_revenue return max_rev[n] def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" _enforce_args(__UpperCAmelCase , __UpperCAmelCase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCamelCase_ : Optional[Any] = [float('''-inf''' ) for _ in range(n + 1 )] lowerCamelCase_ : Optional[int] = 0 for i in range(1 , n + 1 ): lowerCamelCase_ : Optional[int] = max_rev[i] for j in range(1 , i + 1 ): lowerCamelCase_ : int = max(__UpperCAmelCase , prices[j - 1] + max_rev[i - j] ) lowerCamelCase_ : Dict = max_revenue_i return max_rev[n] def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if n < 0: lowerCamelCase_ : Any = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__UpperCAmelCase ) if n > len(__UpperCAmelCase ): lowerCamelCase_ : Optional[int] = ( '''Each integral piece of rod must have a corresponding price. ''' F"""Got n = {n} but length of prices = {len(__UpperCAmelCase )}""" ) raise ValueError(__UpperCAmelCase ) def __snake_case (): """simple docstring""" lowerCamelCase_ : Dict = [6, 10, 12, 15, 20, 23] lowerCamelCase_ : Tuple = len(__UpperCAmelCase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCamelCase_ : Any = 36 lowerCamelCase_ : Dict = top_down_cut_rod(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = bottom_up_cut_rod(__UpperCAmelCase , __UpperCAmelCase ) lowerCamelCase_ : Dict = naive_cut_rod_recursive(__UpperCAmelCase , __UpperCAmelCase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
418
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCamelCase : Union[str, Any] = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def __snake_case (__UpperCAmelCase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def __snake_case (__UpperCAmelCase ): """simple docstring""" from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCamelCase_ : Tuple = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase , id=__UpperCAmelCase )
418
1
import os def lowerCamelCase__ ( __A :str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(__A ) ,__A ) ) as input_file: __snake_case = [ [int(__A ) for element in line.split(""",""" )] for line in input_file.readlines() ] __snake_case = len(__A ) __snake_case = len(matrix[0] ) __snake_case = [[-1 for _ in range(__A )] for _ in range(__A )] for i in range(__A ): __snake_case = matrix[i][0] for j in range(1 ,__A ): for i in range(__A ): __snake_case = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 ,__A ): __snake_case = min( minimal_path_sums[i][j] ,minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 ,-1 ,-1 ): __snake_case = min( minimal_path_sums[i][j] ,minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
268
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCamelCase__ = re.compile(r'''\s+''') def lowerCamelCase__ ( __A :int ): """simple docstring""" return {"hash": hashlib.mda(re.sub(__A ,"""""" ,example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def lowerCamelCase__ ( __A :Any ): """simple docstring""" __snake_case = [len(__A ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(__A ), "line_max": max(__A )} def lowerCamelCase__ ( __A :Any ): """simple docstring""" __snake_case = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def lowerCamelCase__ ( __A :str ,__A :int ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def lowerCamelCase__ ( __A :Optional[int] ,__A :int=5 ): """simple docstring""" __snake_case = ["""auto-generated""", """autogenerated""", """automatically generated"""] __snake_case = example["""content"""].splitlines() for _, line in zip(range(__A ) ,__A ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase__ ( __A :int ,__A :int=5 ,__A :str=0.05 ): """simple docstring""" __snake_case = ["""unit tests""", """test file""", """configuration file"""] __snake_case = example["""content"""].splitlines() __snake_case = 0 __snake_case = 0 # first test for _, line in zip(range(__A ) ,__A ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __snake_case = example["""content"""].count("""\n""" ) __snake_case = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase__ ( __A :Dict ): """simple docstring""" __snake_case = ["""def """, """class """, """for """, """while """] __snake_case = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase__ ( __A :Dict ,__A :List[str]=4 ): """simple docstring""" __snake_case = example["""content"""].splitlines() __snake_case = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase__ ( __A :str ): """simple docstring""" __snake_case = tokenizer(example["""content"""] ,truncation=__A )["""input_ids"""] __snake_case = len(example["""content"""] ) / len(__A ) return {"ratio": ratio} def lowerCamelCase__ ( __A :Optional[Any] ): """simple docstring""" __snake_case = {} results.update(get_hash(__A ) ) results.update(line_stats(__A ) ) results.update(alpha_stats(__A ) ) results.update(char_token_ratio(__A ) ) results.update(is_autogenerated(__A ) ) results.update(is_config_or_test(__A ) ) results.update(has_no_keywords(__A ) ) results.update(has_few_assignments(__A ) ) return results def lowerCamelCase__ ( __A :int ,__A :str ,__A :Dict ): """simple docstring""" if not check_uniques(__A ,__A ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase__ ( __A :str ): """simple docstring""" with open(__A ,"""rb""" ) as f_in: with gzip.open(str(__A ) + """.gz""" ,"""wb""" ,compresslevel=6 ) as f_out: shutil.copyfileobj(__A ,__A ) os.unlink(__A ) # Settings UpperCamelCase__ = HfArgumentParser(PreprocessingArguments) UpperCamelCase__ = parser.parse_args() if args.num_workers is None: UpperCamelCase__ = multiprocessing.cpu_count() UpperCamelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCamelCase__ = time.time() UpperCamelCase__ = load_dataset(args.dataset_name, split='''train''') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing UpperCamelCase__ = time.time() UpperCamelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes UpperCamelCase__ = set(ds.unique('''hash''')) UpperCamelCase__ = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics UpperCamelCase__ = time.time() UpperCamelCase__ = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCamelCase__ = time.time() UpperCamelCase__ ,UpperCamelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file UpperCamelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) UpperCamelCase__ = output_dir / '''data''' data_dir.mkdir(exist_ok=True) UpperCamelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCamelCase__ = str(data_dir / F'file-{file_number+1:012}.json') UpperCamelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
268
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _UpperCAmelCase : List[Any] =logging.get_logger(__name__) _UpperCAmelCase : List[str] ={"""vocab_file""": """spiece.model"""} _UpperCAmelCase : List[Any] ={ """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase=False , __lowercase=True , __lowercase=False , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<unk>" , __lowercase="<sep>" , __lowercase="<pad>" , __lowercase="<cls>" , __lowercase="<mask>" , __lowercase=["<eop>", "<eod>"] , __lowercase = None , **__lowercase , ) -> None: lowerCAmelCase_ : str = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token lowerCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , additional_special_tokens=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) lowerCAmelCase_ : str = 3 lowerCAmelCase_ : Tuple = do_lower_case lowerCAmelCase_ : Any = remove_space lowerCAmelCase_ : Optional[int] = keep_accents lowerCAmelCase_ : Any = vocab_file lowerCAmelCase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) lowerCAmelCase_ : Optional[int] = jieba lowerCAmelCase_ : Any = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowercase_ ( self ) -> List[Any]: return len(self.sp_model ) def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : Tuple = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = self.__dict__.copy() lowerCAmelCase_ : List[str] = None return state def __setstate__( self , __lowercase ) -> Tuple: lowerCAmelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , __lowercase ) -> Optional[int]: if self.remove_space: lowerCAmelCase_ : str = ''' '''.join(inputs.strip().split() ) else: lowerCAmelCase_ : Optional[Any] = inputs lowerCAmelCase_ : Dict = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: lowerCAmelCase_ : List[Any] = unicodedata.normalize('''NFKD''' , __lowercase ) lowerCAmelCase_ : List[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(__lowercase )] ) if self.do_lower_case: lowerCAmelCase_ : Dict = outputs.lower() return outputs def lowercase_ ( self , __lowercase ) -> List[str]: lowerCAmelCase_ : List[str] = self.preprocess_text(__lowercase ) lowerCAmelCase_ : Optional[Any] = self.sp_model.encode(__lowercase , out_type=__lowercase ) lowerCAmelCase_ : List[str] = [] for piece in pieces: if len(__lowercase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowerCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowercase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase_ : Optional[int] = cur_pieces[1:] else: lowerCAmelCase_ : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowercase ) else: new_pieces.append(__lowercase ) return new_pieces def lowercase_ ( self , __lowercase ) -> int: return self.sp_model.PieceToId(__lowercase ) def lowercase_ ( self , __lowercase ) -> int: return self.sp_model.IdToPiece(__lowercase ) def lowercase_ ( self , __lowercase ) -> Tuple: lowerCAmelCase_ : Any = ''''''.join(__lowercase ).replace(__lowercase , ''' ''' ).strip() return out_string def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: lowerCAmelCase_ : List[Any] = [self.sep_token_id] lowerCAmelCase_ : str = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self , __lowercase , __lowercase = None , __lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is not None: return ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) + [1, 1] return ([0] * len(__lowercase )) + [1, 1] def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: lowerCAmelCase_ : Optional[int] = [self.sep_token_id] lowerCAmelCase_ : str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self , __lowercase , __lowercase = None ) -> Tuple[str]: if not os.path.isdir(__lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase_ : Any = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , '''wb''' ) as fi: lowerCAmelCase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,) def lowercase_ ( self , *__lowercase , **__lowercase ) -> Optional[Any]: lowerCAmelCase_ : Tuple = super()._decode(*__lowercase , **__lowercase ) lowerCAmelCase_ : Any = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
702
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _UpperCAmelCase : Dict =None _UpperCAmelCase : Tuple =logging.get_logger(__name__) _UpperCAmelCase : Any ={"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Any ={ """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } _UpperCAmelCase : Dict ={ """xlnet-base-cased""": None, """xlnet-large-cased""": None, } _UpperCAmelCase : Tuple ="""▁""" # Segments (not really needed) _UpperCAmelCase : str =0 _UpperCAmelCase : List[str] =1 _UpperCAmelCase : int =2 _UpperCAmelCase : Any =3 _UpperCAmelCase : List[Any] =4 class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Any = """left""" SCREAMING_SNAKE_CASE__ : List[Any] = XLNetTokenizer def __init__( self , __lowercase=None , __lowercase=None , __lowercase=False , __lowercase=True , __lowercase=False , __lowercase="<s>" , __lowercase="</s>" , __lowercase="<unk>" , __lowercase="<sep>" , __lowercase="<pad>" , __lowercase="<cls>" , __lowercase="<mask>" , __lowercase=["<eop>", "<eod>"] , **__lowercase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( vocab_file=__lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , remove_space=__lowercase , keep_accents=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , additional_special_tokens=__lowercase , **__lowercase , ) lowerCAmelCase_ : List[Any] = 3 lowerCAmelCase_ : Dict = do_lower_case lowerCAmelCase_ : Dict = remove_space lowerCAmelCase_ : List[str] = keep_accents lowerCAmelCase_ : List[str] = vocab_file lowerCAmelCase_ : str = False if not self.vocab_file else True def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: lowerCAmelCase_ : Tuple = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self , __lowercase , __lowercase = None ) -> List[int]: lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self , __lowercase , __lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase_ : str = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ): copyfile(self.vocab_file , __lowercase ) return (out_vocab_file,)
619
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __magic_name__ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors UpperCamelCase = load_file(lowercase_ ) UpperCamelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: UpperCamelCase = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) UpperCamelCase = pipeline.text_encoder else: UpperCamelCase = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) UpperCamelCase = pipeline.unet # find the target layer UpperCamelCase = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: UpperCamelCase = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: UpperCamelCase = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: UpperCamelCase = layer_infos.pop(0 ) UpperCamelCase = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up" ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace("lora_up" , "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: UpperCamelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) UpperCamelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: UpperCamelCase = state_dict[pair_keys[0]].to(torch.floataa ) UpperCamelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": __a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( """--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format.""" ) parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors""" ) parser.add_argument( """--lora_prefix_text_encoder""", default="""lora_te""", type=str, help="""The prefix of text encoder weight in safetensors""", ) parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""") parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""" ) parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") __a : List[Any] = parser.parse_args() __a : Optional[Any] = args.base_model_path __a : List[str] = args.checkpoint_path __a : Any = args.dump_path __a : Optional[Any] = args.lora_prefix_unet __a : List[str] = args.lora_prefix_text_encoder __a : int = args.alpha __a : Optional[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __a : Dict = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
606
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _UpperCAmelCase ( A , A=7 ): '''simple docstring''' UpperCAmelCase__ =None if token is not None: UpperCAmelCase__ ={"Accept": "application/vnd.github+json", "Authorization": F"""Bearer {token}"""} # The id of a workflow (not of a workflow run) UpperCAmelCase__ ="636036" UpperCAmelCase__ =F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" UpperCAmelCase__ =requests.get(A , headers=A ).json() return result["workflow_runs"] def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =get_daily_ci_runs(A ) UpperCAmelCase__ =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": UpperCAmelCase__ =workflow_run["id"] break return workflow_run_id def _UpperCAmelCase ( A , A , A ): '''simple docstring''' UpperCAmelCase__ =get_last_daily_ci_runs(A ) if workflow_run_id is not None: UpperCAmelCase__ =get_artifacts_links(worflow_run_id=A , token=A ) for artifact_name in artifact_names: if artifact_name in artifacts_links: UpperCAmelCase__ =artifacts_links[artifact_name] download_artifact( artifact_name=A , artifact_url=A , output_dir=A , token=A ) def _UpperCAmelCase ( A , A , A ): '''simple docstring''' get_last_daily_ci_artifacts(A , A , A ) UpperCAmelCase__ ={} for artifact_name in artifact_names: UpperCAmelCase__ =os.path.join(A , F"""{artifact_name}.zip""" ) if os.path.isfile(A ): UpperCAmelCase__ ={} with zipfile.ZipFile(A ) as z: for filename in z.namelist(): if not os.path.isdir(A ): # read the file with z.open(A ) as f: UpperCAmelCase__ =f.read().decode("UTF-8" ) return results
625
0
def __lowerCAmelCase ( __magic_name__ ): if len(__magic_name__ ) < 2: return collection def circle_sort_util(__magic_name__ , __magic_name__ , __magic_name__ ) -> bool: _lowercase: int = False if low == high: return swapped _lowercase: str = low _lowercase: Optional[int] = high while left < right: if collection[left] > collection[right]: _lowercase , _lowercase: int = ( collection[right], collection[left], ) _lowercase: Optional[int] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _lowercase , _lowercase: List[Any] = ( collection[right + 1], collection[left], ) _lowercase: Optional[Any] = True _lowercase: List[Any] = low + int((high - low) / 2 ) _lowercase: str = circle_sort_util(__magic_name__ , __magic_name__ , __magic_name__ ) _lowercase: Union[str, Any] = circle_sort_util(__magic_name__ , mid + 1 , __magic_name__ ) return swapped or left_swap or right_swap _lowercase: Optional[int] = True while is_not_sorted is True: _lowercase: Optional[int] = circle_sort_util(__magic_name__ , 0 , len(__magic_name__ ) - 1 ) return collection if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = input('Enter numbers separated by a comma:\n').strip() _SCREAMING_SNAKE_CASE : Any = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
206
_SCREAMING_SNAKE_CASE : dict[tuple[int, int, int], int] = {} def __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowercase: Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowercase: Tuple = _calculate(days - 1 , __magic_name__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowercase: Dict = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowercase: Tuple = _calculate(days - 1 , __magic_name__ , 0 ) _lowercase: List[str] = state_late + state_absent + state_ontime _lowercase: Optional[int] = prizestrings return prizestrings def __lowerCAmelCase ( __magic_name__ = 3_0 ): return _calculate(__magic_name__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
206
1
def __a ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE : int = [0] * len(__snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : str = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__snake_case ) ): if indegree[i] == 0: queue.append(__snake_case ) while queue: SCREAMING_SNAKE_CASE : Union[str, Any] = queue.pop(0 ) cnt += 1 topo.append(__snake_case ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(__snake_case ) if cnt != len(__snake_case ): print('Cycle exists' ) else: print(__snake_case ) # Adjacency List of Graph _lowerCamelCase : str = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
352
def _A ( __snake_case :bytes ) -> str: """simple docstring""" return "".join([hex(__snake_case )[2:].zfill(2 ).upper() for byte in list(__snake_case )] ) def _A ( __snake_case :str ) -> bytes: """simple docstring""" if (len(__snake_case ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__snake_case ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
693
0
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase=3 , lowerCamelCase=32 , lowerCamelCase=3 , lowerCamelCase=10 , lowerCamelCase=[8, 16, 32, 64] , lowerCamelCase=[1, 1, 2, 1] , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase="relu" , lowerCamelCase=3 , lowerCamelCase=None , lowerCamelCase=["stage2", "stage3", "stage4"] , lowerCamelCase=[2, 3, 4] , lowerCamelCase=1 , ): _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = embeddings_size _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = hidden_act _snake_case = num_labels _snake_case = scope _snake_case = len(lowerCamelCase ) _snake_case = out_features _snake_case = out_indices _snake_case = num_groups def UpperCamelCase( self ): _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ): return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = BitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _snake_case = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = self.num_labels _snake_case = BitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _snake_case = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = BitBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _snake_case = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case = None _snake_case = BitBackbone(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _snake_case = model(lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase( self ): _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : int = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Dict = False def UpperCamelCase( self ): _snake_case = BitModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def UpperCamelCase( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase( self ): return @unittest.skip(reason="Bit does not output attentions" ) def UpperCamelCase( self ): pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def UpperCamelCase( self ): pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCamelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def UpperCamelCase( self ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def UpperCamelCase( self ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase ) def UpperCamelCase( self ): _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(config=lowerCamelCase ) for name, module in model.named_modules(): if isinstance(lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def UpperCamelCase( self ): def check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ): _snake_case = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _snake_case = layer_type _snake_case = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def UpperCamelCase( self ): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = BitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def snake_case_ ( ): '''simple docstring''' _snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase( self ): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase( self ): _snake_case = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): _snake_case = model(**lowerCamelCase ) # verify the logits _snake_case = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) _snake_case = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : str = (BitBackbone,) if is_torch_available() else () UpperCAmelCase__ : Any = BitConfig UpperCAmelCase__ : Optional[Any] = False def UpperCamelCase( self ): _snake_case = BitModelTester(self )
368
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __magic_name__ : List[str] = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) requires_backends(SCREAMING_SNAKE_CASE__ , "sklearn" ) return (preds == labels).mean() def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) requires_backends(SCREAMING_SNAKE_CASE__ , "sklearn" ) _snake_case = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case = fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) requires_backends(SCREAMING_SNAKE_CASE__ , "sklearn" ) _snake_case = pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] _snake_case = spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) requires_backends(SCREAMING_SNAKE_CASE__ , "sklearn" ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ), f'''Predictions and labels have mismatched lengths {len(SCREAMING_SNAKE_CASE__ )} and {len(SCREAMING_SNAKE_CASE__ )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "mrpc": return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif task_name == "sts-b": return pearson_and_spearman(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif task_name == "qqp": return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "qnli": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "rte": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "wnli": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} elif task_name == "hans": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} else: raise KeyError(SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) requires_backends(SCREAMING_SNAKE_CASE__ , "sklearn" ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError(f'''Predictions and labels have mismatched lengths {len(SCREAMING_SNAKE_CASE__ )} and {len(SCREAMING_SNAKE_CASE__ )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} else: raise KeyError(SCREAMING_SNAKE_CASE__ )
368
1
A : Optional[Any] = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def UpperCamelCase ( __magic_name__ : int ) -> int: """simple docstring""" lowercase__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution A : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 A : List[str] = True A : Union[str, Any] = False def UpperCamelCase ( __magic_name__ : int ) -> bool: """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowercase__ = chain(next_number(__magic_name__ ) ) lowercase__ = number_chain while number < 1000_0000: lowercase__ = number_chain number *= 10 return number_chain def UpperCamelCase ( __magic_name__ : int = 1000_0000 ) -> int: """simple docstring""" for i in range(1 , __magic_name__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
15
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict ="roberta" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple=5_02_65 , SCREAMING_SNAKE_CASE__ : List[str]=7_68 , SCREAMING_SNAKE_CASE__ : List[str]=12 , SCREAMING_SNAKE_CASE__ : Any=12 , SCREAMING_SNAKE_CASE__ : Tuple=30_72 , SCREAMING_SNAKE_CASE__ : str="gelu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : int=5_12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-12 , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : Any="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def __lowerCAmelCase ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
282
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = """speech_to_text_2""" a__ : List[Any] = ["""past_key_values"""] a__ : Optional[int] = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __lowercase=10_000 , __lowercase=6 , __lowercase=2_048 , __lowercase=4 , __lowercase=0.0 , __lowercase=True , __lowercase="relu" , __lowercase=256 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.02 , __lowercase=2 , __lowercase=True , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase=1_024 , **__lowercase , ) -> List[str]: __UpperCamelCase :Optional[int] = vocab_size __UpperCamelCase :Dict = d_model __UpperCamelCase :List[str] = decoder_ffn_dim __UpperCamelCase :Union[str, Any] = decoder_layers __UpperCamelCase :List[Any] = decoder_attention_heads __UpperCamelCase :List[Any] = dropout __UpperCamelCase :Optional[int] = attention_dropout __UpperCamelCase :Any = activation_dropout __UpperCamelCase :Tuple = activation_function __UpperCamelCase :Optional[int] = init_std __UpperCamelCase :Optional[int] = decoder_layerdrop __UpperCamelCase :List[Any] = use_cache __UpperCamelCase :List[str] = decoder_layers __UpperCamelCase :List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase :Dict = max_target_positions super().__init__( pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , decoder_start_token_id=__lowercase , **__lowercase , )
452
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowercase = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
452
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : List[str] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __UpperCamelCase : Union[str, Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def a_ ( _A , _A , _A ) -> Optional[Any]: """simple docstring""" snake_case__ = state_dict.pop(_A ) snake_case__ = val def a_ ( _A ) -> Any: """simple docstring""" snake_case__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case__ = value else: snake_case__ = value return new_state_dict def a_ ( _A , _A=False ) -> Any: """simple docstring""" snake_case__ = '' if is_panoptic: snake_case__ = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[:256, :] snake_case__ = in_proj_bias[:256] snake_case__ = in_proj_weight[256:512, :] snake_case__ = in_proj_bias[256:512] snake_case__ = in_proj_weight[-256:, :] snake_case__ = in_proj_bias[-256:] def a_ ( ) -> Dict: """simple docstring""" snake_case__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def a_ ( _A , _A ) -> Any: """simple docstring""" snake_case__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ = 'resnet101' if "dc5" in model_name: snake_case__ = True snake_case__ = 'panoptic' in model_name if is_panoptic: snake_case__ = 250 else: snake_case__ = 91 snake_case__ = 'huggingface/label-files' snake_case__ = 'coco-detection-id2label.json' snake_case__ = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) snake_case__ = {int(_A ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} # load image processor snake_case__ = 'coco_panoptic' if is_panoptic else 'coco_detection' snake_case__ = ConditionalDetrImageProcessor(format=_A ) # prepare image snake_case__ = prepare_img() snake_case__ = image_processor(images=_A , return_tensors='pt' ) snake_case__ = encoding['pixel_values'] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub snake_case__ = torch.hub.load('DeppMeng/ConditionalDETR' , _A , pretrained=_A ).eval() snake_case__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ = 'conditional_detr.' + src rename_key(_A , _A , _A ) snake_case__ = rename_backbone_keys(_A ) # query, key and value matrices need special treatment read_in_q_k_v(_A , is_panoptic=_A ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case__ = state_dict.pop(_A ) snake_case__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ = state_dict.pop(_A ) snake_case__ = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case__ = state_dict.pop(_A ) snake_case__ = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case__ = state_dict.pop(_A ) snake_case__ = val # finally, create HuggingFace model and load state dict snake_case__ = ConditionalDetrForSegmentation(_A ) if is_panoptic else ConditionalDetrForObjectDetection(_A ) model.load_state_dict(_A ) model.eval() model.push_to_hub(repo_id=_A , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case__ = conditional_detr(_A ) snake_case__ = model(_A ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
328
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
328
1
"""simple docstring""" from ....utils import logging _A = logging.get_logger(__name__) class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _snake_case : Optional[int] , _snake_case : Dict=None , _snake_case : Optional[Any]=2048 ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = config.__dict__ SCREAMING_SNAKE_CASE__ = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE__ = num_labels
538
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self : Dict , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : Optional[Any]=0.0 , _snake_case : Optional[int] = None , _snake_case : str = "geglu" , _snake_case : Optional[int] = None , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = False , _snake_case : bool = True , _snake_case : str = "layer_norm" , _snake_case : bool = False , ) -> Union[str, Any]: super().__init__() SCREAMING_SNAKE_CASE__ = only_cross_attention SCREAMING_SNAKE_CASE__ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" SCREAMING_SNAKE_CASE__ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: SCREAMING_SNAKE_CASE__ = AdaLayerNorm(_snake_case , _snake_case ) elif self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE__ = AdaLayerNormZero(_snake_case , _snake_case ) else: SCREAMING_SNAKE_CASE__ = nn.LayerNorm(_snake_case , elementwise_affine=_snake_case ) SCREAMING_SNAKE_CASE__ = Attention( query_dim=_snake_case , heads=_snake_case , dim_head=_snake_case , dropout=_snake_case , bias=_snake_case , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_snake_case , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. SCREAMING_SNAKE_CASE__ = ( AdaLayerNorm(_snake_case , _snake_case ) if self.use_ada_layer_norm else nn.LayerNorm(_snake_case , elementwise_affine=_snake_case ) ) SCREAMING_SNAKE_CASE__ = Attention( query_dim=_snake_case , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_snake_case , dim_head=_snake_case , dropout=_snake_case , bias=_snake_case , upcast_attention=_snake_case , ) # is self-attn if encoder_hidden_states is none else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # 3. Feed-forward SCREAMING_SNAKE_CASE__ = nn.LayerNorm(_snake_case , elementwise_affine=_snake_case ) SCREAMING_SNAKE_CASE__ = FeedForward(_snake_case , dropout=_snake_case , activation_fn=_snake_case , final_dropout=_snake_case ) # let chunk size default to None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = 0 def lowerCAmelCase_ ( self : Tuple , _snake_case : Optional[int] , _snake_case : int ) -> List[str]: # Sets chunk feed-forward SCREAMING_SNAKE_CASE__ = chunk_size SCREAMING_SNAKE_CASE__ = dim def lowerCAmelCase_ ( self : Optional[Any] , _snake_case : torch.FloatTensor , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[torch.LongTensor] = None , _snake_case : Dict[str, Any] = None , _snake_case : Optional[torch.LongTensor] = None , ) -> Union[str, Any]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: SCREAMING_SNAKE_CASE__ = self.norma(_snake_case , _snake_case ) elif self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.norma( _snake_case , _snake_case , _snake_case , hidden_dtype=hidden_states.dtype ) else: SCREAMING_SNAKE_CASE__ = self.norma(_snake_case ) SCREAMING_SNAKE_CASE__ = cross_attention_kwargs if cross_attention_kwargs is not None else {} SCREAMING_SNAKE_CASE__ = self.attna( _snake_case , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_snake_case , **_snake_case , ) if self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE__ = gate_msa.unsqueeze(1 ) * attn_output SCREAMING_SNAKE_CASE__ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: SCREAMING_SNAKE_CASE__ = ( self.norma(_snake_case , _snake_case ) if self.use_ada_layer_norm else self.norma(_snake_case ) ) SCREAMING_SNAKE_CASE__ = self.attna( _snake_case , encoder_hidden_states=_snake_case , attention_mask=_snake_case , **_snake_case , ) SCREAMING_SNAKE_CASE__ = attn_output + hidden_states # 3. Feed-forward SCREAMING_SNAKE_CASE__ = self.norma(_snake_case ) if self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE__ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) SCREAMING_SNAKE_CASE__ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size SCREAMING_SNAKE_CASE__ = torch.cat( [self.ff(_snake_case ) for hid_slice in norm_hidden_states.chunk(_snake_case , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: SCREAMING_SNAKE_CASE__ = self.ff(_snake_case ) if self.use_ada_layer_norm_zero: SCREAMING_SNAKE_CASE__ = gate_mlp.unsqueeze(1 ) * ff_output SCREAMING_SNAKE_CASE__ = ff_output + hidden_states return hidden_states class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self : List[str] , _snake_case : int , _snake_case : Optional[int] = None , _snake_case : int = 4 , _snake_case : float = 0.0 , _snake_case : str = "geglu" , _snake_case : bool = False , ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = int(dim * mult ) SCREAMING_SNAKE_CASE__ = dim_out if dim_out is not None else dim if activation_fn == "gelu": SCREAMING_SNAKE_CASE__ = GELU(_snake_case , _snake_case ) if activation_fn == "gelu-approximate": SCREAMING_SNAKE_CASE__ = GELU(_snake_case , _snake_case , approximate="tanh" ) elif activation_fn == "geglu": SCREAMING_SNAKE_CASE__ = GEGLU(_snake_case , _snake_case ) elif activation_fn == "geglu-approximate": SCREAMING_SNAKE_CASE__ = ApproximateGELU(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE__ = nn.ModuleList([] ) # project in self.net.append(_snake_case ) # project dropout self.net.append(nn.Dropout(_snake_case ) ) # project out self.net.append(nn.Linear(_snake_case , _snake_case ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_snake_case ) ) def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : List[str] ) -> str: for module in self.net: SCREAMING_SNAKE_CASE__ = module(_snake_case ) return hidden_states class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self : str , _snake_case : int , _snake_case : int , _snake_case : str = "none" ) -> Dict: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE__ = approximate def lowerCAmelCase_ ( self : Tuple , _snake_case : Optional[Any] ) -> Tuple: if gate.device.type != "mps": return F.gelu(_snake_case , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.proj(_snake_case ) SCREAMING_SNAKE_CASE__ = self.gelu(_snake_case ) return hidden_states class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , _snake_case : int , _snake_case : int ) -> Optional[int]: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(_snake_case , dim_out * 2 ) def lowerCAmelCase_ ( self : Optional[Any] , _snake_case : Optional[Any] ) -> Optional[Any]: if gate.device.type != "mps": return F.gelu(_snake_case ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowerCAmelCase_ ( self : Tuple , _snake_case : Tuple ) -> Any: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.proj(_snake_case ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_snake_case ) class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self : int , _snake_case : int , _snake_case : int ) -> List[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(_snake_case , _snake_case ) def lowerCAmelCase_ ( self : Optional[int] , _snake_case : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.proj(_snake_case ) return x * torch.sigmoid(1.702 * x ) class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , _snake_case : Dict , _snake_case : Any ) -> Optional[int]: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Embedding(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE__ = nn.SiLU() SCREAMING_SNAKE_CASE__ = nn.Linear(_snake_case , embedding_dim * 2 ) SCREAMING_SNAKE_CASE__ = nn.LayerNorm(_snake_case , elementwise_affine=_snake_case ) def lowerCAmelCase_ ( self : int , _snake_case : int , _snake_case : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = self.linear(self.silu(self.emb(_snake_case ) ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = torch.chunk(_snake_case , 2 ) SCREAMING_SNAKE_CASE__ = self.norm(_snake_case ) * (1 + scale) + shift return x class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , _snake_case : Dict , _snake_case : Tuple ) -> Any: super().__init__() SCREAMING_SNAKE_CASE__ = CombinedTimestepLabelEmbeddings(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE__ = nn.SiLU() SCREAMING_SNAKE_CASE__ = nn.Linear(_snake_case , 6 * embedding_dim , bias=_snake_case ) SCREAMING_SNAKE_CASE__ = nn.LayerNorm(_snake_case , elementwise_affine=_snake_case , eps=1e-6 ) def lowerCAmelCase_ ( self : Dict , _snake_case : int , _snake_case : List[Any] , _snake_case : Any , _snake_case : str=None ) -> str: SCREAMING_SNAKE_CASE__ = self.linear(self.silu(self.emb(_snake_case , _snake_case , hidden_dtype=_snake_case ) ) ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = emb.chunk(6 , dim=1 ) SCREAMING_SNAKE_CASE__ = self.norm(_snake_case ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCamelCase (nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : Optional[str] = None , _snake_case : float = 1e-5 ) -> Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = num_groups SCREAMING_SNAKE_CASE__ = eps if act_fn is None: SCREAMING_SNAKE_CASE__ = None else: SCREAMING_SNAKE_CASE__ = get_activation(_snake_case ) SCREAMING_SNAKE_CASE__ = nn.Linear(_snake_case , out_dim * 2 ) def lowerCAmelCase_ ( self : Optional[Any] , _snake_case : Any , _snake_case : Optional[Any] ) -> Optional[int]: if self.act: SCREAMING_SNAKE_CASE__ = self.act(_snake_case ) SCREAMING_SNAKE_CASE__ = self.linear(_snake_case ) SCREAMING_SNAKE_CASE__ = emb[:, :, None, None] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = emb.chunk(2 , dim=1 ) SCREAMING_SNAKE_CASE__ = F.group_norm(_snake_case , self.num_groups , eps=self.eps ) SCREAMING_SNAKE_CASE__ = x * (1 + scale) + shift return x
538
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = CodeGenTokenizer UpperCAmelCase__ = CodeGenTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = {'''add_prefix_space''': True} UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Any) ->Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] A__ = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__)))) A__ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A__ = {'''unk_token''': '''<unk>'''} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(UpperCAmelCase__) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : Any , **UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple , **UpperCAmelCase__ : List[str]) ->Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : Tuple) ->Optional[Any]: '''simple docstring''' A__ = '''lower newer''' A__ = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' A__ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) A__ = '''lower newer''' A__ = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A__ = tokenizer.tokenize(UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) A__ = tokens + [tokenizer.unk_token] A__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase__) A__ = '''lower newer''' # Testing tokenization A__ = tokenizer.tokenize(UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__) A__ = rust_tokenizer.tokenize(UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) # Testing conversion to ids without special tokens A__ = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__) A__ = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) # Testing conversion to ids with special tokens A__ = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase__) A__ = tokenizer.encode(UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__) A__ = rust_tokenizer.encode(UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) # Testing the unknown token A__ = tokens + [rust_tokenizer.unk_token] A__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *UpperCAmelCase__ : Dict , **UpperCAmelCase__ : Dict) ->Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Tuple=15) ->Any: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): A__ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__) # Simple input A__ = '''This is a simple input''' A__ = ['''This is a simple input 1''', '''This is a simple input 2'''] A__ = ('''This is a simple input''', '''This is a pair''') A__ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''') # Simple input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''') # Simple input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''') # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''') # Pair input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) def SCREAMING_SNAKE_CASE ( self : str) ->Dict: '''simple docstring''' A__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''') # Simple input A__ = '''This is a simple input''' A__ = ['''This is a simple input looooooooong''', '''This is a simple input'''] A__ = ('''This is a simple input''', '''This is a pair''') A__ = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] A__ = tokenizer.pad_token_id A__ = tokenizer(UpperCAmelCase__ , padding='''max_length''' , max_length=30 , return_tensors='''np''') A__ = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , truncate=UpperCAmelCase__ , return_tensors='''np''') A__ = tokenizer(*UpperCAmelCase__ , padding='''max_length''' , max_length=60 , return_tensors='''np''') A__ = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , truncate=UpperCAmelCase__ , return_tensors='''np''') # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30) self.assertTrue(pad_token_id in out_s['''input_ids''']) self.assertTrue(0 in out_s['''attention_mask''']) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0]) self.assertFalse(0 in out_sa['''attention_mask'''][0]) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1]) self.assertTrue(0 in out_sa['''attention_mask'''][1]) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60) self.assertTrue(pad_token_id in out_p['''input_ids''']) self.assertTrue(0 in out_p['''attention_mask''']) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0]) self.assertFalse(0 in out_pa['''attention_mask'''][0]) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1]) self.assertTrue(0 in out_pa['''attention_mask'''][1]) def SCREAMING_SNAKE_CASE ( self : str) ->str: '''simple docstring''' A__ = '''$$$''' A__ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCAmelCase__ , add_bos_token=UpperCAmelCase__) A__ = '''This is a simple input''' A__ = ['''This is a simple input 1''', '''This is a simple input 2'''] A__ = tokenizer.bos_token_id A__ = tokenizer(UpperCAmelCase__) A__ = tokenizer(UpperCAmelCase__) self.assertEqual(out_s.input_ids[0] , UpperCAmelCase__) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids)) A__ = tokenizer.decode(out_s.input_ids) A__ = tokenizer.batch_decode(out_sa.input_ids) self.assertEqual(decode_s.split()[0] , UpperCAmelCase__) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa)) @slow def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: '''simple docstring''' A__ = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''') A__ = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' A__ = '''\nif len_a > len_b: result = a\nelse: result = b''' A__ = tokenizer.encode(UpperCAmelCase__) A__ = ['''^#''', re.escape('''<|endoftext|>'''), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] A__ = tokenizer.decode(UpperCAmelCase__ , truncate_before_pattern=UpperCAmelCase__) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->str: '''simple docstring''' pass
87
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _lowerCamelCase : int = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ = set() A__ = [] def parse_line(lowercase_ ): for line in fp: if isinstance(lowercase_ , lowercase_ ): A__ = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(lowercase_ ) > 0: A__ = '''\n'''.join(lowercase_ ) # Only keep the warnings specified in `targets` if any(f""": {x}: """ in warning for x in targets ): selected_warnings.add(lowercase_ ) buffer.clear() continue else: A__ = line.strip() buffer.append(lowercase_ ) if from_gh: for filename in os.listdir(lowercase_ ): A__ = os.path.join(lowercase_ , lowercase_ ) if not os.path.isdir(lowercase_ ): # read the file if filename != "warnings.txt": continue with open(lowercase_ ) as fp: parse_line(lowercase_ ) else: try: with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file if filename != "warnings.txt": continue with z.open(lowercase_ ) as fp: parse_line(lowercase_ ) except Exception: logger.warning( f"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = set() A__ = [os.path.join(lowercase_ , lowercase_ ) for p in os.listdir(lowercase_ ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowercase_ , lowercase_ ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" return values.split(''',''' ) _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _lowerCamelCase : List[Any] = parser.parse_args() _lowerCamelCase : List[str] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _lowerCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _lowerCamelCase : Any = extract_warnings(args.output_dir, args.targets) _lowerCamelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
87
1
"""simple docstring""" import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase): """simple docstring""" _A : List[Any] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _A : List[str] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __UpperCamelCase (self , lowercase__ , lowercase__ , lowercase__ ): snake_case_ : str = AudioClassificationPipeline(model=lowercase__ , feature_extractor=lowercase__ ) # test with a raw waveform snake_case_ : Union[str, Any] = np.zeros((3_40_00,) ) snake_case_ : List[Any] = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def __UpperCamelCase (self , lowercase__ , lowercase__ ): snake_case_ , snake_case_ : int = examples snake_case_ : Dict = audio_classifier(lowercase__ ) # by default a model is initialized with num_labels=2 self.assertEqual( lowercase__ , [ {"""score""": ANY(lowercase__ ), """label""": ANY(lowercase__ )}, {"""score""": ANY(lowercase__ ), """label""": ANY(lowercase__ )}, ] , ) snake_case_ : List[str] = audio_classifier(lowercase__ , top_k=1 ) self.assertEqual( lowercase__ , [ {"""score""": ANY(lowercase__ ), """label""": ANY(lowercase__ )}, ] , ) self.run_torchaudio(lowercase__ ) @require_torchaudio def __UpperCamelCase (self , lowercase__ ): import datasets # test with a local file snake_case_ : Optional[int] = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) snake_case_ : Union[str, Any] = dataset[0]["""audio"""]["""array"""] snake_case_ : Union[str, Any] = audio_classifier(lowercase__ ) self.assertEqual( lowercase__ , [ {"""score""": ANY(lowercase__ ), """label""": ANY(lowercase__ )}, {"""score""": ANY(lowercase__ ), """label""": ANY(lowercase__ )}, ] , ) @require_torch def __UpperCamelCase (self ): snake_case_ : List[str] = """anton-l/wav2vec2-random-tiny-classifier""" snake_case_ : List[str] = pipeline("""audio-classification""" , model=lowercase__ ) snake_case_ : Dict = np.ones((80_00,) ) snake_case_ : Tuple = audio_classifier(lowercase__ , top_k=4 ) snake_case_ : Dict = [ {"""score""": 0.0842, """label""": """no"""}, {"""score""": 0.0838, """label""": """up"""}, {"""score""": 0.0837, """label""": """go"""}, {"""score""": 0.0834, """label""": """right"""}, ] snake_case_ : str = [ {"""score""": 0.0845, """label""": """stop"""}, {"""score""": 0.0844, """label""": """on"""}, {"""score""": 0.0841, """label""": """right"""}, {"""score""": 0.0834, """label""": """left"""}, ] self.assertIn(nested_simplify(lowercase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) snake_case_ : Union[str, Any] = {"""array""": np.ones((80_00,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} snake_case_ : Tuple = audio_classifier(lowercase__ , top_k=4 ) self.assertIn(nested_simplify(lowercase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __UpperCamelCase (self ): import datasets snake_case_ : Union[str, Any] = """superb/wav2vec2-base-superb-ks""" snake_case_ : List[Any] = pipeline("""audio-classification""" , model=lowercase__ ) snake_case_ : Optional[int] = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) snake_case_ : str = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) snake_case_ : Dict = audio_classifier(lowercase__ , top_k=4 ) self.assertEqual( nested_simplify(lowercase__ , decimals=3 ) , [ {"""score""": 0.981, """label""": """go"""}, {"""score""": 0.007, """label""": """up"""}, {"""score""": 0.006, """label""": """_unknown_"""}, {"""score""": 0.001, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def __UpperCamelCase (self ): pass
48
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : bool = False ): """simple docstring""" snake_case_ : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(SCREAMING_SNAKE_CASE__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if random.random() < probability: graph[i].append(SCREAMING_SNAKE_CASE__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(SCREAMING_SNAKE_CASE__ ) return graph def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" return { i: [j for j in range(SCREAMING_SNAKE_CASE__ ) if i != j] for i in range(SCREAMING_SNAKE_CASE__ ) } if __name__ == "__main__": import doctest doctest.testmod()
48
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : List[str] = StableDiffusionInstructPixaPixPipeline UpperCamelCase_ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} UpperCamelCase_ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase_ : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCAmelCase__ = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCAmelCase__ = CLIPTextModel(snake_case__ ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Union[str, Any]=0 ): lowerCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(snake_case__ ) ).convert("""RGB""" ) if str(snake_case__ ).startswith("""mps""" ): lowerCAmelCase__ = torch.manual_seed(snake_case__ ) else: lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case__ ) lowerCAmelCase__ = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase__ = sd_pipe(**snake_case__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case__ ) lowerCAmelCase__ = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase__ = """french fries""" lowerCAmelCase__ = sd_pipe(**snake_case__ , negative_prompt=snake_case__ ) lowerCAmelCase__ = output.images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case__ ) lowerCAmelCase__ = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase__ = [inputs["""prompt"""]] * 2 lowerCAmelCase__ = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 lowerCAmelCase__ = torch.from_numpy(snake_case__ ).unsqueeze(0 ).to(snake_case__ ) lowerCAmelCase__ = image / 2 + 0.5 lowerCAmelCase__ = image.permute(0 , 3 , 1 , 2 ) lowerCAmelCase__ = image.repeat(2 , 1 , 1 , 1 ) lowerCAmelCase__ = sd_pipe(**snake_case__ ).images lowerCAmelCase__ = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowerCAmelCase__ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case__ ) lowerCAmelCase__ = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase__ = sd_pipe(**snake_case__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = [round(snake_case__ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(snake_case__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline(**snake_case__ ) lowerCAmelCase__ = VaeImageProcessor(do_resize=snake_case__ , do_normalize=snake_case__ ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs_by_type(snake_case__ , input_image_type="""pt""" ) )[0] lowerCAmelCase__ = components["""vae"""] lowerCAmelCase__ = self.get_dummy_inputs_by_type(snake_case__ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowerCAmelCase__ = vae.encode(inputs[image_param] ).latent_dist.mode() lowerCAmelCase__ = pipe(**snake_case__ )[0] lowerCAmelCase__ = np.abs(out - out_latents_inputs ).max() self.assertLess(snake_case__ , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : int=0 ): lowerCAmelCase__ = torch.manual_seed(snake_case__ ) lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) lowerCAmelCase__ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = self.get_inputs() lowerCAmelCase__ = pipe(**snake_case__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=snake_case__ ) lowerCAmelCase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = self.get_inputs() lowerCAmelCase__ = pipe(**snake_case__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=snake_case__ ) lowerCAmelCase__ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = self.get_inputs() lowerCAmelCase__ = pipe(**snake_case__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = 0 def callback_fn(snake_case__ : int , snake_case__ : int , snake_case__ : torch.FloatTensor ) -> None: lowerCAmelCase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCAmelCase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowerCAmelCase__ = latents[0, -3:, -3:, -1] lowerCAmelCase__ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowerCAmelCase__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowerCAmelCase__ = latents[0, -3:, -3:, -1] lowerCAmelCase__ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowerCAmelCase__ = False lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=snake_case__ , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = self.get_inputs() pipe(**snake_case__ , callback=snake_case__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _SCREAMING_SNAKE_CASE ( self : int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=snake_case__ , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = self.get_inputs() lowerCAmelCase__ = pipe(**snake_case__ ) lowerCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase__ = inputs["""image"""].resize((504, 504) ) lowerCAmelCase__ = """timbrooks/instruct-pix2pix""" lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase__ = pipe(**snake_case__ ) lowerCAmelCase__ = output.images[0] lowerCAmelCase__ = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) lowerCAmelCase__ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
644
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return abs(lowerCamelCase__ ) if a == 0 else greatest_common_divisor(b % a , lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. lowerCAmelCase__ , lowerCAmelCase__ = y, x % y return abs(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" try: lowerCAmelCase__ = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) lowerCAmelCase__ = int(nums[0] ) lowerCAmelCase__ = int(nums[1] ) print( f"""greatest_common_divisor({num_a}, {num_a}) = """ f"""{greatest_common_divisor(lowerCamelCase__ , lowerCamelCase__ )}""" ) print(f"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowerCamelCase__ , lowerCamelCase__ )}""" ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
644
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class a ( unittest.TestCase ): def __init__( self : List[str], SCREAMING_SNAKE_CASE_ : str, SCREAMING_SNAKE_CASE_ : str=7, SCREAMING_SNAKE_CASE_ : List[str]=3, SCREAMING_SNAKE_CASE_ : Optional[int]=30, SCREAMING_SNAKE_CASE_ : str=4_00, SCREAMING_SNAKE_CASE_ : Optional[Any]=True, SCREAMING_SNAKE_CASE_ : Optional[Any]=None, SCREAMING_SNAKE_CASE_ : Any=True, SCREAMING_SNAKE_CASE_ : Optional[Any]=1 / 2_55, SCREAMING_SNAKE_CASE_ : str=True, SCREAMING_SNAKE_CASE_ : str=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_ : str=[0.5, 0.5, 0.5], SCREAMING_SNAKE_CASE_ : Optional[int]=True, ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case : Optional[Any] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} snake_case : int = parent snake_case : int = batch_size snake_case : Optional[Any] = num_channels snake_case : Union[str, Any] = min_resolution snake_case : str = max_resolution snake_case : Dict = do_resize snake_case : Any = size snake_case : List[str] = do_rescale snake_case : Optional[int] = rescale_factor snake_case : Optional[int] = do_normalize snake_case : Any = image_mean snake_case : Dict = image_std snake_case : List[Any] = do_pad def __snake_case ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __snake_case ( self : Tuple, SCREAMING_SNAKE_CASE_ : Dict, SCREAMING_SNAKE_CASE_ : Optional[Any]=False ): if not batched: snake_case : Dict = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE_, Image.Image ): snake_case, snake_case : Dict = image.size else: snake_case, snake_case : Dict = image.shape[1], image.shape[2] if w < h: snake_case : List[Any] = int(self.size['''shortest_edge'''] * h / w ) snake_case : List[Any] = self.size['''shortest_edge'''] elif w > h: snake_case : List[str] = self.size['''shortest_edge'''] snake_case : List[str] = int(self.size['''shortest_edge'''] * w / h ) else: snake_case : Union[str, Any] = self.size['''shortest_edge'''] snake_case : Optional[Any] = self.size['''shortest_edge'''] else: snake_case : Dict = [] for image in image_inputs: snake_case, snake_case : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case : Tuple = max(SCREAMING_SNAKE_CASE_, key=lambda SCREAMING_SNAKE_CASE_ : item[0] )[0] snake_case : Optional[int] = max(SCREAMING_SNAKE_CASE_, key=lambda SCREAMING_SNAKE_CASE_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a ( __magic_name__ ,unittest.TestCase ): _snake_case = DetrImageProcessor if is_vision_available() else None def __snake_case ( self : int ): snake_case : Optional[int] = DetrImageProcessingTester(self ) @property def __snake_case ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Tuple ): snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, '''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, '''image_std''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, '''do_rescale''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, '''rescale_factor''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, '''size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, '''do_pad''' ) ) def __snake_case ( self : int ): snake_case : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad, SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE_ ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad, SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Optional[int] ): pass def __snake_case ( self : Dict ): # Initialize image_processing snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, Image.Image ) # Test not batched input snake_case : Optional[Any] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values snake_case, snake_case : int = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched snake_case, snake_case : List[str] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_, batched=SCREAMING_SNAKE_CASE_ ) snake_case : str = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def __snake_case ( self : List[str] ): # Initialize image_processing snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=SCREAMING_SNAKE_CASE_, numpify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, np.ndarray ) # Test not batched input snake_case : int = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values snake_case, snake_case : Dict = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched snake_case : List[str] = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='''pt''' ).pixel_values snake_case, snake_case : Dict = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_, batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def __snake_case ( self : Dict ): # Initialize image_processing snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : str = prepare_image_inputs(self.image_processor_tester, equal_resolution=SCREAMING_SNAKE_CASE_, torchify=SCREAMING_SNAKE_CASE_ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_, torch.Tensor ) # Test not batched input snake_case : int = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values snake_case, snake_case : Optional[Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched snake_case : List[str] = image_processing(SCREAMING_SNAKE_CASE_, return_tensors='''pt''' ).pixel_values snake_case, snake_case : int = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_, batched=SCREAMING_SNAKE_CASE_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def __snake_case ( self : Any ): # prepare image and target snake_case : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''', '''r''' ) as f: snake_case : Union[str, Any] = json.loads(f.read() ) snake_case : List[str] = {'''image_id''': 3_97_69, '''annotations''': target} # encode them snake_case : Tuple = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) snake_case : int = image_processing(images=SCREAMING_SNAKE_CASE_, annotations=SCREAMING_SNAKE_CASE_, return_tensors='''pt''' ) # verify pixel values snake_case : Dict = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape, SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) # verify area snake_case : List[Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], SCREAMING_SNAKE_CASE_ ) ) # verify boxes snake_case : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, SCREAMING_SNAKE_CASE_ ) snake_case : Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # verify image_id snake_case : str = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], SCREAMING_SNAKE_CASE_ ) ) # verify is_crowd snake_case : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], SCREAMING_SNAKE_CASE_ ) ) # verify class_labels snake_case : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], SCREAMING_SNAKE_CASE_ ) ) # verify orig_size snake_case : Union[str, Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], SCREAMING_SNAKE_CASE_ ) ) # verify size snake_case : Tuple = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], SCREAMING_SNAKE_CASE_ ) ) @slow def __snake_case ( self : Union[str, Any] ): # prepare image, target and masks_path snake_case : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''', '''r''' ) as f: snake_case : str = json.loads(f.read() ) snake_case : Optional[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} snake_case : Optional[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them snake_case : Tuple = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) snake_case : List[str] = image_processing(images=SCREAMING_SNAKE_CASE_, annotations=SCREAMING_SNAKE_CASE_, masks_path=SCREAMING_SNAKE_CASE_, return_tensors='''pt''' ) # verify pixel values snake_case : str = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape, SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) # verify area snake_case : List[Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], SCREAMING_SNAKE_CASE_ ) ) # verify boxes snake_case : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, SCREAMING_SNAKE_CASE_ ) snake_case : Any = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], SCREAMING_SNAKE_CASE_, atol=1e-3 ) ) # verify image_id snake_case : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], SCREAMING_SNAKE_CASE_ ) ) # verify is_crowd snake_case : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], SCREAMING_SNAKE_CASE_ ) ) # verify class_labels snake_case : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], SCREAMING_SNAKE_CASE_ ) ) # verify masks snake_case : Any = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item(), SCREAMING_SNAKE_CASE_ ) # verify orig_size snake_case : Optional[int] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], SCREAMING_SNAKE_CASE_ ) ) # verify size snake_case : Dict = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], SCREAMING_SNAKE_CASE_ ) )
555
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
555
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __A = logging.get_logger(__name__) @dataclass class _snake_case : def __init__( self : Union[str, Any] , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[str]=False , UpperCAmelCase : int=6.0 , UpperCAmelCase : Any=None , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple="fp4" , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Optional[Any] , ): __lowerCamelCase : str = load_in_abit __lowerCamelCase : Union[str, Any] = load_in_abit __lowerCamelCase : Optional[Any] = llm_inta_threshold __lowerCamelCase : str = llm_inta_skip_modules __lowerCamelCase : Union[str, Any] = llm_inta_enable_fpaa_cpu_offload __lowerCamelCase : Dict = llm_inta_has_fpaa_weight __lowerCamelCase : str = bnb_abit_quant_type __lowerCamelCase : Union[str, Any] = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __lowerCamelCase : int = torch.floataa elif isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase : Any = getattr(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , torch.dtype ): __lowerCamelCase : List[Any] = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def lowerCamelCase__ ( self : str ): if not isinstance(self.llm_inta_threshold , UpperCAmelCase ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , UpperCAmelCase ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , UpperCAmelCase ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , UpperCAmelCase ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , UpperCAmelCase ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , UpperCAmelCase ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def lowerCamelCase__ ( self : Any ): return self.load_in_abit or self.load_in_abit def lowerCamelCase__ ( self : Optional[int] ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowerCamelCase__ ( cls : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ): __lowerCamelCase : List[Any] = cls(**UpperCAmelCase ) __lowerCamelCase : int = [] for key, value in kwargs.items(): if hasattr(UpperCAmelCase , UpperCAmelCase ): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) to_remove.append(UpperCAmelCase ) for key in to_remove: kwargs.pop(UpperCAmelCase , UpperCAmelCase ) if return_unused_kwargs: return config, kwargs else: return config def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : Dict ): with open(UpperCAmelCase , "w" , encoding="utf-8" ) as writer: __lowerCamelCase : Optional[int] = self.to_dict() __lowerCamelCase : Optional[Any] = json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + """\n""" writer.write(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) __lowerCamelCase : int = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : Optional[Any] ): return F"""{self.__class__.__name__} {self.to_json_string()}""" def lowerCamelCase__ ( self : str , UpperCAmelCase : List[str] = True ): if use_diff is True: __lowerCamelCase : Optional[Any] = self.to_diff_dict() else: __lowerCamelCase : Tuple = self.to_dict() return json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + "\n" def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : str = self.to_dict() # get the default config dict __lowerCamelCase : Optional[int] = BitsAndBytesConfig().to_dict() __lowerCamelCase : Optional[int] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __lowerCamelCase : List[Any] = value return serializable_config_dict
646
# Lint as: python3 import itertools import os import re _lowercase = re.compile(r'''([A-Z]+)([A-Z][a-z])''') _lowercase = re.compile(r'''([a-z\d])([A-Z])''') _lowercase = re.compile(r'''(?<!_)_(?!_)''') _lowercase = re.compile(r'''(_{2,})''') _lowercase = r'''^\w+(\.\w+)*$''' _lowercase = r'''<>:/\|?*''' def _A (UpperCamelCase : str ) ->str: '''simple docstring''' lowerCamelCase__ : List[str] = _uppercase_uppercase_re.sub(r"""\1_\2""" , UpperCamelCase ) lowerCamelCase__ : Optional[int] = _lowercase_uppercase_re.sub(r"""\1_\2""" , UpperCamelCase ) return name.lower() def _A (UpperCamelCase : Union[str, Any] ) ->int: '''simple docstring''' lowerCamelCase__ : Optional[int] = _single_underscore_re.split(UpperCamelCase ) lowerCamelCase__ : int = [_multiple_underscores_re.split(UpperCamelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCamelCase ) if n != """""" ) def _A (UpperCamelCase : Any ) ->Optional[Any]: '''simple docstring''' if os.path.basename(UpperCamelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) return camelcase_to_snakecase(UpperCamelCase ) def _A (UpperCamelCase : int , UpperCamelCase : Dict ) ->List[Any]: '''simple docstring''' if os.path.basename(UpperCamelCase ) != name: raise ValueError(f"Should be a dataset name, not a path: {name}" ) if not re.match(_split_re , UpperCamelCase ): raise ValueError(f"Split name should match '{_split_re}'' but got '{split}'." ) return f"{filename_prefix_for_name(UpperCamelCase )}-{split}" def _A (UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Optional[int]=None ) ->List[Any]: '''simple docstring''' lowerCamelCase__ : Any = filename_prefix_for_split(UpperCamelCase , UpperCamelCase ) if filetype_suffix: prefix += f".{filetype_suffix}" lowerCamelCase__ : List[Any] = os.path.join(UpperCamelCase , UpperCamelCase ) return f"{filepath}*" def _A (UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int]=None , UpperCamelCase : Dict=None ) ->Optional[int]: '''simple docstring''' lowerCamelCase__ : List[Any] = filename_prefix_for_split(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Tuple = os.path.join(UpperCamelCase , UpperCamelCase ) if shard_lengths: lowerCamelCase__ : Optional[int] = len(UpperCamelCase ) lowerCamelCase__ : List[Any] = [f"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(UpperCamelCase )] if filetype_suffix: lowerCamelCase__ : Tuple = [filename + f".{filetype_suffix}" for filename in filenames] return filenames else: lowerCamelCase__ : List[str] = prefix if filetype_suffix: filename += f".{filetype_suffix}" return [filename]
157
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __a ( __lowerCamelCase : int ) -> bool: '''simple docstring''' lowercase_ = int(number**0.5 ) return number == sq * sq def __a ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ) -> tuple[int, int]: '''simple docstring''' lowercase_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowercase_ = x_den * y_den * z_den lowercase_ = gcd(__lowerCamelCase , __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __a ( __lowerCamelCase : int = 35 ) -> int: '''simple docstring''' lowercase_ = set() lowercase_ = 42 lowercase_ = Fraction(0 ) lowercase_ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowercase_ = x_num * y_den + x_den * y_num lowercase_ = x_den * y_den lowercase_ = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase_ = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 lowercase_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowercase_ = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): lowercase_ = int(sqrt(__lowerCamelCase ) ) lowercase_ = int(sqrt(__lowerCamelCase ) ) lowercase_ = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase_ = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 lowercase_ = x_num * y_num lowercase_ = x_den * y_num + x_num * y_den lowercase_ = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase_ = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 lowercase_ = x_num * x_num * y_num * y_num lowercase_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): lowercase_ = int(sqrt(__lowerCamelCase ) ) lowercase_ = int(sqrt(__lowerCamelCase ) ) lowercase_ = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase_ = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase , __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'''{solution() = }''')
461
'''simple docstring''' from __future__ import annotations def __a ( __lowerCamelCase : int | str ) -> bool: '''simple docstring''' lowercase_ = str(__lowerCamelCase ) return n == n[::-1] def __a ( __lowerCamelCase : int = 1_000_000 ) -> Optional[int]: '''simple docstring''' lowercase_ = 0 for i in range(1 , __lowerCamelCase ): if is_palindrome(__lowerCamelCase ) and is_palindrome(bin(__lowerCamelCase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
461
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __a: Optional[int] = logging.get_logger(__name__) __a: Any = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] __a: Union[str, Any] = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _SCREAMING_SNAKE_CASE ( __snake_case ) -> Tuple: _UpperCAmelCase = torch.load(__snake_case , map_location="""cpu""" ) return sd def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case=rename_keys_prefix ) -> str: _UpperCAmelCase = OrderedDict() _UpperCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _UpperCAmelCase = key for name_pair in rename_keys_prefix: _UpperCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) _UpperCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _UpperCAmelCase = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Any: assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: _UpperCAmelCase = """pretraining""" if "vcr" in checkpoint_path: _UpperCAmelCase = {"""visual_embedding_dim""": 5_1_2} elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {"""visual_embedding_dim""": 2_0_4_8} elif "vqa" in checkpoint_path: _UpperCAmelCase = {"""visual_embedding_dim""": 2_0_4_8} elif "nlvr" in checkpoint_path: _UpperCAmelCase = {"""visual_embedding_dim""": 1_0_2_4} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: _UpperCAmelCase = {"""visual_embedding_dim""": 5_1_2} _UpperCAmelCase = """multichoice""" elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase = {"""visual_embedding_dim""": 2_0_4_8} _UpperCAmelCase = """vqa_advanced""" elif "vqa" in checkpoint_path: _UpperCAmelCase = {"""visual_embedding_dim""": 2_0_4_8, """num_labels""": 3_1_2_9} _UpperCAmelCase = """vqa""" elif "nlvr" in checkpoint_path: _UpperCAmelCase = { """visual_embedding_dim""": 1_0_2_4, """num_labels""": 2, } _UpperCAmelCase = """nlvr""" _UpperCAmelCase = VisualBertConfig(**__snake_case ) # Load State Dict _UpperCAmelCase = load_state_dict(__snake_case ) _UpperCAmelCase = get_new_dict(__snake_case , __snake_case ) if model_type == "pretraining": _UpperCAmelCase = VisualBertForPreTraining(__snake_case ) elif model_type == "vqa": _UpperCAmelCase = VisualBertForQuestionAnswering(__snake_case ) elif model_type == "nlvr": _UpperCAmelCase = VisualBertForVisualReasoning(__snake_case ) elif model_type == "multichoice": _UpperCAmelCase = VisualBertForMultipleChoice(__snake_case ) model.load_state_dict(__snake_case ) # Save Checkpoints Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) if __name__ == "__main__": __a: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') __a: Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
108
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : Tuple = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
623
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _UpperCAmelCase ( _snake_case , _snake_case , unittest.TestCase): __lowercase : Dict = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) __lowercase : Optional[Any] = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) __lowercase : Union[str, Any] = False __lowercase : Optional[int] = False def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_=False ): _snake_case : Union[str, Any] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): _snake_case : Any = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _UpperCAmelCase ( _snake_case): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_12 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ): _snake_case : Optional[Any] = parent _snake_case : List[Any] = batch_size _snake_case : Optional[int] = seq_length _snake_case : Dict = is_training _snake_case : Union[str, Any] = use_input_mask _snake_case : List[Any] = use_token_type_ids _snake_case : int = use_labels _snake_case : Dict = vocab_size _snake_case : Tuple = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Dict = hidden_act _snake_case : Tuple = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : str = max_position_embeddings _snake_case : str = type_vocab_size _snake_case : Any = type_sequence_label_size _snake_case : Optional[int] = initializer_range _snake_case : List[Any] = num_labels _snake_case : Optional[int] = num_choices _snake_case : Optional[int] = scope _snake_case : Any = embedding_size def lowerCamelCase__ ( self ): _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : Optional[Any] = None if self.use_input_mask: _snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : List[str] = None if self.use_token_type_ids: _snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : Dict = None _snake_case : Tuple = None _snake_case : str = None if self.use_labels: _snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Tuple = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Dict = TFMobileBertModel(config=snake_case_ ) _snake_case : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _snake_case : Optional[int] = model(snake_case_ ) _snake_case : Union[str, Any] = [input_ids, input_mask] _snake_case : Optional[Any] = model(snake_case_ ) _snake_case : Dict = model(snake_case_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _snake_case : List[Any] = TFMobileBertForMaskedLM(config=snake_case_ ) _snake_case : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _snake_case : List[str] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Union[str, Any] = TFMobileBertForNextSentencePrediction(config=snake_case_ ) _snake_case : Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _snake_case : Tuple = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _snake_case : str = TFMobileBertForPreTraining(config=snake_case_ ) _snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _snake_case : List[Any] = model(snake_case_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _snake_case : str = self.num_labels _snake_case : str = TFMobileBertForSequenceClassification(config=snake_case_ ) _snake_case : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _snake_case : Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Any = self.num_choices _snake_case : Tuple = TFMobileBertForMultipleChoice(config=snake_case_ ) _snake_case : List[Any] = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _snake_case : List[str] = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _snake_case : Tuple = tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) _snake_case : int = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _snake_case : Optional[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _snake_case : Union[str, Any] = self.num_labels _snake_case : Optional[int] = TFMobileBertForTokenClassification(config=snake_case_ ) _snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _snake_case : List[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): _snake_case : int = TFMobileBertForQuestionAnswering(config=snake_case_ ) _snake_case : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _snake_case : Union[str, Any] = model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self ): _snake_case : Optional[Any] = self.prepare_config_and_inputs() ( _snake_case ) : Tuple = config_and_inputs _snake_case : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def lowerCamelCase__ ( self ): _snake_case : int = TFMobileBertModelTest.TFMobileBertModelTester(self ) _snake_case : Optional[Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case_ ) def lowerCamelCase__ ( self ): _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case_ ) def lowerCamelCase__ ( self ): _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case_ ) def lowerCamelCase__ ( self ): _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case_ ) def lowerCamelCase__ ( self ): _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case_ ) def lowerCamelCase__ ( self ): _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case_ ) def lowerCamelCase__ ( self ): _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case_ ) def lowerCamelCase__ ( self ): _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case_ ) @slow def lowerCamelCase__ ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _snake_case : str = TFMobileBertModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_tf class _UpperCAmelCase ( unittest.TestCase): @slow def lowerCamelCase__ ( self ): _snake_case : Any = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) _snake_case : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) _snake_case : Union[str, Any] = model(snake_case_ )[0] _snake_case : int = [1, 6, 3_05_22] self.assertEqual(output.shape , snake_case_ ) _snake_case : Optional[Any] = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case_ , atol=1E-4 )
716
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
0
import numpy as np from transformers import Pipeline def _lowerCAmelCase ( UpperCamelCase__: Optional[Any] ) -> Optional[int]: """simple docstring""" A = np.max(UpperCamelCase__ , axis=-1 , keepdims=UpperCamelCase__ ) A = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCamelCase__ ) class _UpperCamelCase ( __snake_case ): """simple docstring""" def _UpperCAmelCase ( self , **a__ ) -> Union[str, Any]: A = {} if "second_text" in kwargs: A = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def _UpperCAmelCase ( self , a__ , a__=None ) -> str: return self.tokenizer(a__ , text_pair=a__ , return_tensors=self.framework ) def _UpperCAmelCase ( self , a__ ) -> Tuple: return self.model(**a__ ) def _UpperCAmelCase ( self , a__ ) -> Optional[int]: A = model_outputs.logits[0].numpy() A = softmax(a__ ) A = np.argmax(a__ ) A = self.model.config.idalabel[best_class] A = probabilities[best_class].item() A = logits.tolist() return {"label": label, "score": score, "logits": logits}
641
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _lowerCAmelCase ( UpperCamelCase__: List[Any]=None ) -> Union[str, Any]: """simple docstring""" if subparsers is not None: A = subparsers.add_parser("""test""" ) else: A = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=UpperCamelCase__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] ) -> Any: """simple docstring""" A = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: A = script_name else: A = f'--config_file={args.config_file} {script_name}' A = ["""accelerate-launch"""] + test_args.split() A = execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" A = test_command_parser() A = parser.parse_args() test_command(UpperCamelCase__ ) if __name__ == "__main__": main()
641
1
import math def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] = 100 ) -> int: _snake_case : Union[str, Any] = sum(i * i for i in range(1 , n + 1 ) ) _snake_case : Union[str, Any] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
710
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a__ = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a__ = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names a__ = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a__ = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a__ = """allenai""" def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _snake_case : Union[str, Any] = dict((re.sub(R"""@@$""" , """""" , SCREAMING_SNAKE_CASE__ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , SCREAMING_SNAKE_CASE__ ), v) for k, v in d.items() ) _snake_case : int = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] _snake_case : Tuple = d[k] # restore return da def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ) -> str: # prep assert os.path.exists(SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _snake_case : Optional[Any] = basename(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = dirname(SCREAMING_SNAKE_CASE__ ) _snake_case : int = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel _snake_case : List[str] = cls.hub_models() _snake_case : Tuple = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} _snake_case : Dict = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) _snake_case : List[Any] = hub_utils.from_pretrained( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , archive_map=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = vars(chkpt["""args"""]["""model"""] ) _snake_case : Union[str, Any] = args["""source_lang"""] _snake_case : Tuple = args["""target_lang"""] _snake_case : Any = dirname(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = basename(SCREAMING_SNAKE_CASE__ ) # dicts _snake_case : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dict.{src_lang}.txt''' ) _snake_case : Any = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dict.{tgt_lang}.txt''' ) _snake_case : List[Any] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = rewrite_dict_keys(src_dict.indices ) _snake_case : Dict = len(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab-src.json""" ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab _snake_case : str = True for k in src_vocab.keys(): if not k.islower(): _snake_case : Any = False break _snake_case : Union[str, Any] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) _snake_case : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab-tgt.json""" ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # merges_file (bpecodes) _snake_case : str = os.path.join(SCREAMING_SNAKE_CASE__ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" _snake_case : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): break with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as fin: _snake_case : Dict = fin.read() _snake_case : Optional[Any] = re.sub(R""" \d+$""" , """""" , SCREAMING_SNAKE_CASE__ , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as fout: fout.write(SCREAMING_SNAKE_CASE__ ) # model config _snake_case : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}''' _snake_case : Optional[int] = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.0_2, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with _snake_case : Tuple = 5 _snake_case : int = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: _snake_case : List[str] = best_score_hparams[model_dir]["""length_penalty"""] else: _snake_case : Optional[Any] = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # tokenizer config _snake_case : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : str = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1_024, """do_lower_case""": do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # model _snake_case : Optional[Any] = chkpt["""models"""][0] _snake_case : List[str] = model.state_dict() # rename keys to start with 'model.' _snake_case : Any = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys _snake_case : Union[str, Any] = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = FSMTConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = FSMTForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # check that it loads ok model_new.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) # save _snake_case : int = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a__ = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
198
0
from sklearn.metrics import fa_score import datasets SCREAMING_SNAKE_CASE__ : Dict = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' SCREAMING_SNAKE_CASE__ : Tuple = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' SCREAMING_SNAKE_CASE__ : int = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): def __lowercase( self : Union[str, Any] )-> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'] , ) def __lowercase( self : List[str] , a_ : Tuple , a_ : List[Any] , a_ : Union[str, Any]=None , a_ : str=1 , a_ : List[Any]="binary" , a_ : Union[str, Any]=None )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = fa_score( __UpperCamelCase , __UpperCamelCase , labels=__UpperCamelCase , pos_label=__UpperCamelCase , average=__UpperCamelCase , sample_weight=__UpperCamelCase ) return {"f1": float(__UpperCamelCase ) if score.size == 1 else score}
85
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : int = 2_00_00_00 ) -> int: _lowercase = [0 for i in range(n + 1 )] _lowercase = 1 _lowercase = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , SCREAMING_SNAKE_CASE_ ): _lowercase = 1 _lowercase = 0 for i in range(SCREAMING_SNAKE_CASE_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'{solution() = }')
287
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class snake_case_ ( unittest.TestCase ): def __init__( self : int , _snake_case : Any , _snake_case : Optional[Any]=7 , _snake_case : Dict=3 , _snake_case : int=30 , _snake_case : int=400 , _snake_case : List[str]=True , _snake_case : Tuple=None , _snake_case : List[Any]=True , _snake_case : Tuple=[0.5, 0.5, 0.5] , _snake_case : int=[0.5, 0.5, 0.5] , _snake_case : str=True , _snake_case : Tuple=1 / 255 , _snake_case : Union[str, Any]=True , )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __lowerCAmelCase : Any = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : Optional[int] = num_channels __lowerCAmelCase : Tuple = min_resolution __lowerCAmelCase : Optional[Any] = max_resolution __lowerCAmelCase : str = do_resize __lowerCAmelCase : Tuple = size __lowerCAmelCase : str = do_normalize __lowerCAmelCase : Any = image_mean __lowerCAmelCase : Tuple = image_std __lowerCAmelCase : Optional[Any] = do_rescale __lowerCAmelCase : Optional[Any] = rescale_factor __lowerCAmelCase : List[Any] = do_pad def UpperCAmelCase__ ( self : Union[str, Any] )->List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self : Dict , _snake_case : Union[str, Any] , _snake_case : List[Any]=False )->int: '''simple docstring''' if not batched: __lowerCAmelCase : List[str] = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase : List[str] = image.size else: __lowerCAmelCase , __lowerCAmelCase : Tuple = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase : Dict = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase : Dict = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase : Optional[int] = self.size["""shortest_edge"""] __lowerCAmelCase : Optional[int] = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase : List[Any] = self.size["""shortest_edge"""] __lowerCAmelCase : Dict = self.size["""shortest_edge"""] else: __lowerCAmelCase : Union[str, Any] = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase : int = max(snake_case_ , key=lambda _snake_case : item[0] )[0] __lowerCAmelCase : List[str] = max(snake_case_ , key=lambda _snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case_ ( _a ,unittest.TestCase ): A_ = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Dict )->Dict: '''simple docstring''' __lowerCAmelCase : Dict = ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : List[Any] )->Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Tuple )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) def UpperCAmelCase__ ( self : Union[str, Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , snake_case_ ) __lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case_ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , snake_case_ ) def UpperCAmelCase__ ( self : Union[str, Any] )->Dict: '''simple docstring''' pass def UpperCAmelCase__ ( self : Tuple )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase : str = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase : Any = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Any )->int: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase : Any = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase : Any = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : List[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase : Any = self.image_processor_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase : List[Any] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase : int = self.image_processor_tester.get_expected_values(snake_case_ , batched=snake_case_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self : List[Any] )->int: '''simple docstring''' __lowerCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __lowerCAmelCase : Union[str, Any] = json.loads(f.read() ) __lowerCAmelCase : Tuple = {"""image_id""": 39769, """annotations""": target} # encode them __lowerCAmelCase : Dict = ConditionalDetrImageProcessor.from_pretrained("""microsoft/conditional-detr-resnet-50""" ) __lowerCAmelCase : Dict = image_processing(images=snake_case_ , annotations=snake_case_ , return_tensors="""pt""" ) # verify pixel values __lowerCAmelCase : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , snake_case_ ) __lowerCAmelCase : List[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , snake_case_ , atol=1E-4 ) ) # verify area __lowerCAmelCase : str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , snake_case_ ) ) # verify boxes __lowerCAmelCase : int = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , snake_case_ ) __lowerCAmelCase : Union[str, Any] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , snake_case_ , atol=1E-3 ) ) # verify image_id __lowerCAmelCase : Dict = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , snake_case_ ) ) # verify is_crowd __lowerCAmelCase : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , snake_case_ ) ) # verify class_labels __lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , snake_case_ ) ) # verify orig_size __lowerCAmelCase : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , snake_case_ ) ) # verify size __lowerCAmelCase : List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , snake_case_ ) ) @slow def UpperCAmelCase__ ( self : str )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __lowerCAmelCase : Any = json.loads(f.read() ) __lowerCAmelCase : Tuple = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} __lowerCAmelCase : List[Any] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __lowerCAmelCase : Optional[int] = ConditionalDetrImageProcessor(format="""coco_panoptic""" ) __lowerCAmelCase : str = image_processing(images=snake_case_ , annotations=snake_case_ , masks_path=snake_case_ , return_tensors="""pt""" ) # verify pixel values __lowerCAmelCase : Dict = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , snake_case_ ) __lowerCAmelCase : Dict = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , snake_case_ , atol=1E-4 ) ) # verify area __lowerCAmelCase : Dict = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , snake_case_ ) ) # verify boxes __lowerCAmelCase : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , snake_case_ ) __lowerCAmelCase : List[str] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , snake_case_ , atol=1E-3 ) ) # verify image_id __lowerCAmelCase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , snake_case_ ) ) # verify is_crowd __lowerCAmelCase : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , snake_case_ ) ) # verify class_labels __lowerCAmelCase : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , snake_case_ ) ) # verify masks __lowerCAmelCase : Optional[Any] = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , snake_case_ ) # verify orig_size __lowerCAmelCase : List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , snake_case_ ) ) # verify size __lowerCAmelCase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , snake_case_ ) )
720
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} _UpperCAmelCase = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } _UpperCAmelCase = { 'facebook/xglm-564M': 2048, } class snake_case_ ( __lowercase ): A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , _snake_case : Dict , _snake_case : List[Any]="<s>" , _snake_case : int="</s>" , _snake_case : List[str]="</s>" , _snake_case : Dict="<s>" , _snake_case : Tuple="<unk>" , _snake_case : List[str]="<pad>" , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : List[str] , )->None: '''simple docstring''' __lowerCAmelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __lowerCAmelCase : Tuple = 7 __lowerCAmelCase : Any = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] __lowerCAmelCase : Tuple = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __lowerCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) __lowerCAmelCase : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase : Optional[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase : str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} __lowerCAmelCase : Union[str, Any] = len(self.sp_model ) __lowerCAmelCase : List[Any] = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) __lowerCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple )->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.__dict__.copy() __lowerCAmelCase : Tuple = None __lowerCAmelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , _snake_case : List[Any] )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase : Tuple = {} __lowerCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __lowerCAmelCase : str = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False )->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase__ ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None )->List[int]: '''simple docstring''' __lowerCAmelCase : int = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ ( self : Optional[int] )->Dict: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ ( self : Dict )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : List[Any] , _snake_case : str )->List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCAmelCase__ ( self : List[Any] , _snake_case : Union[str, Any] )->Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase : Union[str, Any] = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Optional[int] )->Tuple: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Any )->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = """""".join(_snake_case ).replace(_snake_case , """ """ ).strip() return out_string def UpperCAmelCase__ ( self : List[str] , _snake_case : str , _snake_case : Optional[str] = None )->Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __lowerCAmelCase : int = os.path.join( _snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , """wb""" ) as fi: __lowerCAmelCase : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
240
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
76
"""simple docstring""" import csv import tweepy # Twitter API credentials __A = """""" __A = """""" __A = """""" __A = """""" def __A (_SCREAMING_SNAKE_CASE ) ->None: """simple docstring""" lowerCAmelCase__ :Any = tweepy.OAuthHandler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auth.set_access_token(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = tweepy.API(_SCREAMING_SNAKE_CASE ) # initialize a list to hold all the tweepy Tweets lowerCAmelCase__ :Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowerCAmelCase__ :Optional[Any] = api.user_timeline(screen_name=_SCREAMING_SNAKE_CASE , count=200 ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # save the id of the oldest tweet less one lowerCAmelCase__ :Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_SCREAMING_SNAKE_CASE ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates lowerCAmelCase__ :Union[str, Any] = api.user_timeline( screen_name=_SCREAMING_SNAKE_CASE , count=200 , max_id=_SCREAMING_SNAKE_CASE ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # update the id of the oldest tweet less one lowerCAmelCase__ :Tuple = alltweets[-1].id - 1 print(F"...{len(_SCREAMING_SNAKE_CASE )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv lowerCAmelCase__ :Optional[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , 'w' ) as f: lowerCAmelCase__ :List[str] = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
93
0
def snake_case__ ( ): A : Any = 0 for i in range(1 , 1001 ): total += i**i return str(lowerCamelCase_ )[-10:] if __name__ == "__main__": print(solution())
423
def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): return x if y == 0 else greatest_common_divisor(lowerCamelCase_ , x % y ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ ): return (x * y) // greatest_common_divisor(lowerCamelCase_ , lowerCamelCase_ ) def snake_case__ ( lowerCamelCase_ = 20 ): A : Optional[Any] = 1 for i in range(1 , n + 1 ): A : Dict = lcm(lowerCamelCase_ , lowerCamelCase_ ) return g if __name__ == "__main__": print(F"{solution() = }")
423
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Any ={ """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] =[ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __lowercase : Dict =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
0
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :list[int] ): if len(__lowerCamelCase ) == 0: return array _lowerCAmelCase , _lowerCAmelCase = min(__lowerCamelCase ), max(__lowerCamelCase ) # Compute the variables _lowerCAmelCase = _max - _min + 1 _lowerCAmelCase , _lowerCAmelCase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _lowerCAmelCase = i - _min _lowerCAmelCase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _lowerCAmelCase = 0 for i in range(__lowerCamelCase ): while holes_repeat[i] > 0: _lowerCAmelCase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input("""Enter numbers separated by comma:\n""") _lowercase = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
716
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :list[int] ): if len(__lowerCamelCase ) == 0: return array _lowerCAmelCase , _lowerCAmelCase = min(__lowerCamelCase ), max(__lowerCamelCase ) # Compute the variables _lowerCAmelCase = _max - _min + 1 _lowerCAmelCase , _lowerCAmelCase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _lowerCAmelCase = i - _min _lowerCAmelCase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _lowerCAmelCase = 0 for i in range(__lowerCamelCase ): while holes_repeat[i] > 0: _lowerCAmelCase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input("""Enter numbers separated by comma:\n""") _lowercase = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
162
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __A : def __init__( self : Dict ) -> Optional[Any]: __magic_name__: Dict = {} def lowerCamelCase__ ( self : str , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any]=1 ) -> Optional[Any]: if self.graph.get(_a ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __magic_name__: List[Any] = [[w, v]] if not self.graph.get(_a ): __magic_name__: Optional[int] = [] def lowerCamelCase__ ( self : Tuple ) -> List[Any]: return list(self.graph ) def lowerCamelCase__ ( self : str , __snake_case : Tuple , __snake_case : List[Any] ) -> Dict: if self.graph.get(_a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_a ) def lowerCamelCase__ ( self : Tuple , __snake_case : List[str]=-2 , __snake_case : str=-1 ) -> Dict: if s == d: return [] __magic_name__: Dict = [] __magic_name__: Dict = [] if s == -2: __magic_name__: List[Any] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) __magic_name__: Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __magic_name__: List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __magic_name__: List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_a ) != 0: __magic_name__: Optional[int] = stack[len(_a ) - 1] else: __magic_name__: Dict = ss # check if se have reached the starting point if len(_a ) == 0: return visited def lowerCamelCase__ ( self : str , __snake_case : Optional[Any]=-1 ) -> Optional[Any]: if c == -1: __magic_name__: Optional[int] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(_a ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): __magic_name__: Dict = floor(random() * c ) + 1 if n != i: self.add_pair(_a , _a , 1 ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Any=-2 ) -> Tuple: __magic_name__: Dict = deque() __magic_name__: Optional[Any] = [] if s == -2: __magic_name__: Any = list(self.graph )[0] d.append(_a ) visited.append(_a ) while d: __magic_name__: Tuple = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase__ ( self : Tuple , __snake_case : Optional[Any] ) -> List[Any]: __magic_name__: Dict = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCamelCase__ ( self : int , __snake_case : Optional[int] ) -> Tuple: return len(self.graph[u] ) def lowerCamelCase__ ( self : str , __snake_case : Optional[Any]=-2 ) -> int: __magic_name__: int = [] __magic_name__: Union[str, Any] = [] if s == -2: __magic_name__: Optional[Any] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) __magic_name__: str = s __magic_name__: Union[str, Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __magic_name__: str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __magic_name__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_a ) != 0: __magic_name__: Tuple = stack[len(_a ) - 1] else: __magic_name__: List[str] = ss # check if se have reached the starting point if len(_a ) == 0: return sorted_nodes def lowerCamelCase__ ( self : str ) -> Dict: __magic_name__: List[Any] = [] __magic_name__: List[Any] = [] __magic_name__: Optional[Any] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) __magic_name__: Union[str, Any] = -2 __magic_name__: Union[str, Any] = [] __magic_name__: List[Any] = s __magic_name__: Optional[Any] = False __magic_name__: Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __magic_name__: List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __magic_name__: str = len(_a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __magic_name__: Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __magic_name__: Optional[Any] = True if len(_a ) != 0: __magic_name__: Optional[int] = stack[len(_a ) - 1] else: __magic_name__: int = False indirect_parents.append(_a ) __magic_name__: str = s __magic_name__: Optional[Any] = ss # check if se have reached the starting point if len(_a ) == 0: return list(_a ) def lowerCamelCase__ ( self : Dict ) -> int: __magic_name__: List[Any] = [] __magic_name__: Optional[Any] = [] __magic_name__: Optional[Any] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) __magic_name__: Any = -2 __magic_name__: Any = [] __magic_name__: Optional[Any] = s __magic_name__: Optional[int] = False __magic_name__: str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __magic_name__: Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __magic_name__: int = len(_a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __magic_name__: Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() __magic_name__: int = True if len(_a ) != 0: __magic_name__: List[str] = stack[len(_a ) - 1] else: __magic_name__: str = False indirect_parents.append(_a ) __magic_name__: Union[str, Any] = s __magic_name__: List[str] = ss # check if se have reached the starting point if len(_a ) == 0: return False def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Optional[Any]=-2 , __snake_case : Optional[int]=-1 ) -> Optional[int]: __magic_name__: Optional[Any] = time() self.dfs(_a , _a ) __magic_name__: List[str] = time() return end - begin def lowerCamelCase__ ( self : List[Any] , __snake_case : int=-2 ) -> str: __magic_name__: List[str] = time() self.bfs(_a ) __magic_name__: Optional[Any] = time() return end - begin class __A : def __init__( self : int ) -> Union[str, Any]: __magic_name__: List[Any] = {} def lowerCamelCase__ ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Optional[int]=1 ) -> List[str]: if self.graph.get(_a ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __magic_name__: str = [[w, v]] # add the other way if self.graph.get(_a ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __magic_name__: str = [[w, u]] def lowerCamelCase__ ( self : Optional[int] , __snake_case : Any , __snake_case : Optional[Any] ) -> Optional[int]: if self.graph.get(_a ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_a ) # the other way round if self.graph.get(_a ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_a ) def lowerCamelCase__ ( self : int , __snake_case : List[str]=-2 , __snake_case : Tuple=-1 ) -> Dict: if s == d: return [] __magic_name__: Optional[Any] = [] __magic_name__: Any = [] if s == -2: __magic_name__: Any = list(self.graph )[0] stack.append(_a ) visited.append(_a ) __magic_name__: List[str] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __magic_name__: List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_a ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __magic_name__: Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_a ) != 0: __magic_name__: Optional[Any] = stack[len(_a ) - 1] else: __magic_name__: List[Any] = ss # check if se have reached the starting point if len(_a ) == 0: return visited def lowerCamelCase__ ( self : Any , __snake_case : Dict=-1 ) -> Any: if c == -1: __magic_name__: List[str] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(_a ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): __magic_name__: Dict = floor(random() * c ) + 1 if n != i: self.add_pair(_a , _a , 1 ) def lowerCamelCase__ ( self : Tuple , __snake_case : Any=-2 ) -> List[str]: __magic_name__: Union[str, Any] = deque() __magic_name__: Union[str, Any] = [] if s == -2: __magic_name__: Optional[Any] = list(self.graph )[0] d.append(_a ) visited.append(_a ) while d: __magic_name__: Dict = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCamelCase__ ( self : int , __snake_case : Tuple ) -> Union[str, Any]: return len(self.graph[u] ) def lowerCamelCase__ ( self : Optional[int] ) -> int: __magic_name__: List[Any] = [] __magic_name__: Any = [] __magic_name__: List[str] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) __magic_name__: List[Any] = -2 __magic_name__: Any = [] __magic_name__: Union[str, Any] = s __magic_name__: Optional[int] = False __magic_name__: Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __magic_name__: str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __magic_name__: Optional[int] = len(_a ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __magic_name__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __magic_name__: Any = True if len(_a ) != 0: __magic_name__: Dict = stack[len(_a ) - 1] else: __magic_name__: Tuple = False indirect_parents.append(_a ) __magic_name__: Optional[Any] = s __magic_name__: str = ss # check if se have reached the starting point if len(_a ) == 0: return list(_a ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: __magic_name__: Any = [] __magic_name__: Optional[Any] = [] __magic_name__: Optional[Any] = list(self.graph )[0] stack.append(_a ) visited.append(_a ) __magic_name__: List[Any] = -2 __magic_name__: List[str] = [] __magic_name__: Union[str, Any] = s __magic_name__: List[Any] = False __magic_name__: str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __magic_name__: str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __magic_name__: Union[str, Any] = len(_a ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __magic_name__: Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __magic_name__: int = True if len(_a ) != 0: __magic_name__: Union[str, Any] = stack[len(_a ) - 1] else: __magic_name__: List[Any] = False indirect_parents.append(_a ) __magic_name__: Optional[Any] = s __magic_name__: Optional[int] = ss # check if se have reached the starting point if len(_a ) == 0: return False def lowerCamelCase__ ( self : List[str] ) -> List[Any]: return list(self.graph ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : Optional[int]=-2 , __snake_case : Tuple=-1 ) -> Optional[int]: __magic_name__: Union[str, Any] = time() self.dfs(_a , _a ) __magic_name__: Dict = time() return end - begin def lowerCamelCase__ ( self : Dict , __snake_case : Dict=-2 ) -> Any: __magic_name__: Optional[Any] = time() self.bfs(_a ) __magic_name__: Any = time() return end - begin
96
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a :str = 637_8137.0 a :Optional[Any] = 635_6752.31_4245 a :List[Any] = 6_378_137 def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: SCREAMING_SNAKE_CASE__ : Dict = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude SCREAMING_SNAKE_CASE__ : Dict = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE__ : Dict = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius SCREAMING_SNAKE_CASE__ : Tuple = haversine_distance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values SCREAMING_SNAKE_CASE__ : List[str] = (b_lata + b_lata) / 2 SCREAMING_SNAKE_CASE__ : Dict = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) SCREAMING_SNAKE_CASE__ : Tuple = (sin(__lowerCAmelCase ) ** 2) * (cos(__lowerCAmelCase ) ** 2) SCREAMING_SNAKE_CASE__ : str = cos(sigma / 2 ) ** 2 SCREAMING_SNAKE_CASE__ : List[str] = (sigma - sin(__lowerCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) SCREAMING_SNAKE_CASE__ : int = (cos(__lowerCAmelCase ) ** 2) * (sin(__lowerCAmelCase ) ** 2) SCREAMING_SNAKE_CASE__ : int = sin(sigma / 2 ) ** 2 SCREAMING_SNAKE_CASE__ : Optional[Any] = (sigma + sin(__lowerCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCamelCase : Union[str, Any] =False class __snake_case( unittest.TestCase ): '''simple docstring''' def _a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self ): '''simple docstring''' return 12 @property def _a ( self ): '''simple docstring''' return 12 @property def _a ( self ): '''simple docstring''' return 32 @property def _a ( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Any = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def _a ( self ): '''simple docstring''' __A : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _a ( self ): '''simple docstring''' torch.manual_seed(0 ) __A : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__lowerCamelCase ) @property def _a ( self ): '''simple docstring''' torch.manual_seed(0 ) __A : Union[str, Any] = 12 __A : List[Any] = 12 __A : Any = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } __A : Any = TransformeraDModel(**__lowerCamelCase ) return model def _a ( self ): '''simple docstring''' __A : Optional[int] = 'cpu' __A : Union[str, Any] = self.dummy_vqvae __A : Any = self.dummy_text_encoder __A : int = self.dummy_tokenizer __A : int = self.dummy_transformer __A : int = VQDiffusionScheduler(self.num_embed ) __A : int = LearnedClassifierFreeSamplingEmbeddings(learnable=__lowerCamelCase ) __A : Any = VQDiffusionPipeline( vqvae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , transformer=__lowerCamelCase , scheduler=__lowerCamelCase , learned_classifier_free_sampling_embeddings=__lowerCamelCase , ) __A : Union[str, Any] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : int = 'teddy bear playing in the pool' __A : Any = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : Any = pipe([prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type='np' ) __A : Dict = output.images __A : Dict = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : Dict = pipe( [prompt] , generator=__lowerCamelCase , output_type='np' , return_dict=__lowerCamelCase , num_inference_steps=2 )[0] __A : List[Any] = image[0, -3:, -3:, -1] __A : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __A : Optional[int] = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self ): '''simple docstring''' __A : Union[str, Any] = 'cpu' __A : int = self.dummy_vqvae __A : Optional[Any] = self.dummy_text_encoder __A : Union[str, Any] = self.dummy_tokenizer __A : Dict = self.dummy_transformer __A : Optional[Any] = VQDiffusionScheduler(self.num_embed ) __A : Any = LearnedClassifierFreeSamplingEmbeddings( learnable=__lowerCamelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __A : int = VQDiffusionPipeline( vqvae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , transformer=__lowerCamelCase , scheduler=__lowerCamelCase , learned_classifier_free_sampling_embeddings=__lowerCamelCase , ) __A : Tuple = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __A : Union[str, Any] = 'teddy bear playing in the pool' __A : Optional[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : Optional[Any] = pipe([prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type='np' ) __A : Any = output.images __A : Union[str, Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : Optional[Any] = pipe( [prompt] , generator=__lowerCamelCase , output_type='np' , return_dict=__lowerCamelCase , num_inference_steps=2 )[0] __A : str = image[0, -3:, -3:, -1] __A : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __A : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __snake_case( unittest.TestCase ): '''simple docstring''' def _a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): '''simple docstring''' __A : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) __A : Optional[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) __A : Dict = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __A : Any = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) __A : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=__lowerCamelCase , output_type='np' , ) __A : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
716
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Dict =logging.get_logger(__name__) lowerCamelCase : Any ='''https://openaipublic.azureedge.net/jukebox/models/''' lowerCamelCase : Optional[int] ={ '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def _lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: __A : List[Any] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: __A : Tuple = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: __A : List[str] = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: __A : int = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: __A : Optional[Any] = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: __A : Optional[Any] = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __A : Tuple = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: __A : Dict = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def _lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: '''simple docstring''' __A : Optional[Any] = {} import re __A : Optional[int] = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) __A : Dict = re.compile( r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __A : Union[str, Any] = re.compile(r'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) __A : Any = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) __A : int = re.compile( r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __A : Optional[Any] = re.compile(r'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) __A : Optional[Any] = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) __A : Optional[Any] = re.compile( r'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __A : Any = re.compile(r'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_SCREAMING_SNAKE_CASE ): __A : str = re_encoder_block_conv_in.match(_SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = regex_match.groups() __A : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) __A : Optional[int] = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' __A : str = re_encoder_block_conv_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): __A : int = re_encoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) __A : Dict = regex_match.groups() __A : Tuple = int(groups[2] ) * 2 + int(groups[3] ) __A : List[Any] = {'1': 1, '3': 2}[groups[-2]] __A : Optional[int] = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' __A : List[str] = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __A : List[str] = prefix + resnet_block __A : Optional[int] = re_encoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_encoder_block_proj_out.fullmatch(_SCREAMING_SNAKE_CASE ): __A : List[Any] = re_encoder_block_proj_out.match(_SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = regex_match.groups() __A : str = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' __A : Union[str, Any] = re_encoder_block_proj_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): __A : Optional[int] = re_decoder_block_conv_out.match(_SCREAMING_SNAKE_CASE ) __A : Optional[Any] = regex_match.groups() __A : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) - 2 __A : int = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' __A : Tuple = re_decoder_block_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): __A : Optional[int] = re_decoder_block_resnet.match(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = regex_match.groups() __A : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 __A : Optional[int] = {'1': 1, '3': 2}[groups[-2]] __A : List[Any] = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' __A : str = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __A : Optional[Any] = prefix + resnet_block __A : List[Any] = re_decoder_block_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_decoder_block_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): __A : Optional[int] = re_decoder_block_proj_in.match(_SCREAMING_SNAKE_CASE ) __A : str = regex_match.groups() __A : str = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' __A : int = re_decoder_block_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_SCREAMING_SNAKE_CASE ): __A : Tuple = re_prior_cond_conv_out.match(_SCREAMING_SNAKE_CASE ) __A : List[Any] = regex_match.groups() __A : Any = int(groups[1] ) * 2 + int(groups[2] ) - 2 __A : List[str] = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' __A : Tuple = re_prior_cond_conv_out.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_resnet.fullmatch(_SCREAMING_SNAKE_CASE ): __A : Any = re_prior_cond_resnet.match(_SCREAMING_SNAKE_CASE ) __A : Optional[int] = regex_match.groups() __A : Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 __A : Any = {'1': 1, '3': 2}[groups[-2]] __A : Any = F'conditioner_blocks.upsampler.upsample_block.{block_index}.' __A : List[Any] = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __A : Tuple = prefix + resnet_block __A : List[Any] = re_prior_cond_resnet.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif re_prior_cond_proj_in.fullmatch(_SCREAMING_SNAKE_CASE ): __A : Optional[Any] = re_prior_cond_proj_in.match(_SCREAMING_SNAKE_CASE ) __A : Optional[Any] = regex_match.groups() __A : int = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}' __A : Optional[Any] = re_prior_cond_proj_in.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # keep original key else: __A : List[Any] = original_key __A : List[Any] = replace_key(_SCREAMING_SNAKE_CASE ) if F'{key_prefix}.{key}' not in model_state_dict or key is None: print(F'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape: __A : Optional[int] = model_state_dict[F'{key_prefix}.{key}'] print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) __A : Optional[Any] = original_key __A : Union[str, Any] = original_key __A : Optional[int] = value return new_dict @torch.no_grad() def _lowercase ( _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : Any=None ) -> Any: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): __A : int = requests.get(F'{PREFIX}{file}' , allow_redirects=_SCREAMING_SNAKE_CASE ) os.makedirs(F'{pytorch_dump_folder_path}/' , exist_ok=_SCREAMING_SNAKE_CASE ) open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , 'wb' ).write(r.content ) __A : List[str] = MODEL_MAPPING[model_name.split('/' )[-1]] __A : Optional[int] = JukeboxConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __A : int = JukeboxModel(_SCREAMING_SNAKE_CASE ) __A : int = [] __A : Tuple = {} for i, dict_name in enumerate(_SCREAMING_SNAKE_CASE ): __A : List[Any] = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['model'] __A : Union[str, Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): __A : Any = old_dic[k] elif k.endswith('.w' ): __A : int = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __A : Dict = old_dic[k] else: __A : str = old_dic[k] __A : Dict = 'vqvae' if i == 0 else F'priors.{3 - i}' __A : Dict = fix_jukebox_keys(_SCREAMING_SNAKE_CASE , model.state_dict() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) weight_dict.append(_SCREAMING_SNAKE_CASE ) __A : str = weight_dict.pop(0 ) model.vqvae.load_state_dict(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(F'{pytorch_dump_folder_path}/mapping.json' , 'w' ) as txtfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) return weight_dict if __name__ == "__main__": lowerCamelCase : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) lowerCamelCase : List[Any] =parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
237
0
'''simple docstring''' def A_ ( _lowerCamelCase : list ): if len(__A ) < 2: return collection def circle_sort_util(_lowerCamelCase : list , _lowerCamelCase : int , _lowerCamelCase : int ) -> bool: _lowerCAmelCase = False if low == high: return swapped _lowerCAmelCase = low _lowerCAmelCase = high while left < right: if collection[left] > collection[right]: _lowerCAmelCase = ( collection[right], collection[left], ) _lowerCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _lowerCAmelCase = ( collection[right + 1], collection[left], ) _lowerCAmelCase = True _lowerCAmelCase = low + int((high - low) / 2 ) _lowerCAmelCase = circle_sort_util(__A , __A , __A ) _lowerCAmelCase = circle_sort_util(__A , mid + 1 , __A ) return swapped or left_swap or right_swap _lowerCAmelCase = True while is_not_sorted is True: _lowerCAmelCase = circle_sort_util(__A , 0 , len(__A ) - 1 ) return collection if __name__ == "__main__": snake_case = input('''Enter numbers separated by a comma:\n''').strip() snake_case = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
309
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = "switch_transformers" _SCREAMING_SNAKE_CASE : int = ["past_key_values"] _SCREAMING_SNAKE_CASE : Optional[Any] = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _A=32128 , _A=768 , _A=64 , _A=2048 , _A=64 , _A=12 , _A=3 , _A=12 , _A=3 , _A=12 , _A=8 , _A=False , _A=0.01 , _A="float32" , _A=False , _A=32 , _A=128 , _A=0.1 , _A=1e-6 , _A=0.001 , _A=0.001 , _A=1.0 , _A="relu" , _A=True , _A=False , _A=True , _A=0 , _A=1 , **_A , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Tuple = d_model _UpperCAmelCase : Dict = d_kv _UpperCAmelCase : str = d_ff _UpperCAmelCase : int = num_sparse_encoder_layers _UpperCAmelCase : Dict = num_layers _UpperCAmelCase : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _UpperCAmelCase : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _UpperCAmelCase : int = self.num_layers // self.num_sparse_encoder_layers else: _UpperCAmelCase : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _UpperCAmelCase : Optional[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _UpperCAmelCase : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers _UpperCAmelCase : Any = num_heads _UpperCAmelCase : List[Any] = num_experts _UpperCAmelCase : List[str] = expert_capacity _UpperCAmelCase : List[str] = router_bias _UpperCAmelCase : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''') _UpperCAmelCase : List[str] = router_dtype _UpperCAmelCase : Any = router_ignore_padding_tokens _UpperCAmelCase : Optional[Any] = relative_attention_num_buckets _UpperCAmelCase : Optional[int] = relative_attention_max_distance _UpperCAmelCase : List[Any] = dropout_rate _UpperCAmelCase : Optional[int] = layer_norm_epsilon _UpperCAmelCase : Union[str, Any] = initializer_factor _UpperCAmelCase : int = feed_forward_proj _UpperCAmelCase : List[str] = use_cache _UpperCAmelCase : Optional[int] = add_router_probs _UpperCAmelCase : Optional[int] = router_z_loss_coef _UpperCAmelCase : List[str] = router_aux_loss_coef _UpperCAmelCase : Union[str, Any] = self.feed_forward_proj.split('''-''') _UpperCAmelCase : int = act_info[-1] _UpperCAmelCase : int = act_info[0] == '''gated''' if len(_A) > 1 and act_info[0] != "gated" or len(_A) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') # for backwards compatibility if feed_forward_proj == "gated-gelu": _UpperCAmelCase : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , **_A , )
485
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __A ( lowerCamelCase_ ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def __A ( lowerCamelCase_ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : List[str] = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = set() for token in tokens: SCREAMING_SNAKE_CASE : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = list(_lowerCamelCase ) return word_list def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Union[str, Any] = bert_tokens SCREAMING_SNAKE_CASE : List[Any] = 0, len(_lowerCamelCase ) while start < end: SCREAMING_SNAKE_CASE : str = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : List[Any] = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : List[Any] = """##""" + bert_word[j] SCREAMING_SNAKE_CASE : List[Any] = start + i SCREAMING_SNAKE_CASE : int = False break if single_word: start += 1 return bert_word def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(0 , len(_lowerCamelCase ) , 1_00 ): SCREAMING_SNAKE_CASE : Tuple = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=["""cws"""] ).cws SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(_lowerCamelCase ) , 1_00 ): SCREAMING_SNAKE_CASE : Optional[int] = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = [] for id in input_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def __A ( lowerCamelCase_ ): """simple docstring""" with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE : Tuple = f.readlines() SCREAMING_SNAKE_CASE : List[Any] = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[Any] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : Dict = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : Optional[int] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE : int = [json.dumps(_lowerCamelCase ) + """\n""" for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) __UpperCAmelCase = parser.parse_args() main(args)
719
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} __UpperCAmelCase = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), }, """tokenizer_file""": { """google/bigbird-roberta-base""": ( """https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json""" ), """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json""" ), }, } __UpperCAmelCase = { """google/bigbird-roberta-base""": 4096, """google/bigbird-roberta-large""": 4096, """google/bigbird-base-trivia-itc""": 4096, } __UpperCAmelCase = """▁""" class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = BigBirdTokenizer SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = [] def __init__( self : Any , lowerCamelCase_ : str=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict="<unk>" , lowerCamelCase_ : int="<s>" , lowerCamelCase_ : Optional[Any]="</s>" , lowerCamelCase_ : Dict="<pad>" , lowerCamelCase_ : Tuple="[SEP]" , lowerCamelCase_ : Dict="[MASK]" , lowerCamelCase_ : Union[str, Any]="[CLS]" , **lowerCamelCase_ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token SCREAMING_SNAKE_CASE : int = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token SCREAMING_SNAKE_CASE : Any = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : int = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : List[Any] = vocab_file SCREAMING_SNAKE_CASE : Optional[Any] = False if not self.vocab_file else True def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : str , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : Tuple = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
79
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any]=False ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class in get_values(UpperCAmelCase ): lowercase : Union[str, Any] =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : str=32 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Any=37 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : Optional[Any]=16 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[str]=None , ) -> int: '''simple docstring''' lowercase : Dict =parent lowercase : Optional[int] =batch_size lowercase : Optional[Any] =seq_length lowercase : Tuple =is_training lowercase : Dict =use_input_mask lowercase : Any =use_token_type_ids lowercase : int =use_labels lowercase : int =vocab_size lowercase : Dict =hidden_size lowercase : Tuple =num_hidden_layers lowercase : Optional[int] =num_attention_heads lowercase : Dict =intermediate_size lowercase : Tuple =hidden_act lowercase : str =hidden_dropout_prob lowercase : Optional[Any] =attention_probs_dropout_prob lowercase : Any =max_position_embeddings lowercase : List[Any] =type_vocab_size lowercase : List[str] =type_sequence_label_size lowercase : int =initializer_range lowercase : int =num_labels lowercase : Optional[int] =num_choices lowercase : int =scope lowercase : List[str] =embedding_size def A__ ( self : Any ) -> List[Any]: '''simple docstring''' lowercase : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : int =None if self.use_input_mask: lowercase : Optional[int] =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : List[Any] =None if self.use_token_type_ids: lowercase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : int =None lowercase : Optional[Any] =None lowercase : Optional[Any] =None if self.use_labels: lowercase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Dict =ids_tensor([self.batch_size] , self.num_choices ) lowercase : Dict =MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' lowercase : int =TFMobileBertModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : List[Any] =model(UpperCAmelCase ) lowercase : Optional[Any] =[input_ids, input_mask] lowercase : Union[str, Any] =model(UpperCAmelCase ) lowercase : List[Any] =model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Dict ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =TFMobileBertForMaskedLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Any =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ) -> Optional[int]: '''simple docstring''' lowercase : Dict =TFMobileBertForNextSentencePrediction(config=UpperCAmelCase ) lowercase : Union[str, Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Optional[int] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A__ ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ) -> Dict: '''simple docstring''' lowercase : Dict =TFMobileBertForPreTraining(config=UpperCAmelCase ) lowercase : Dict ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A__ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ) -> str: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Tuple =TFMobileBertForSequenceClassification(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : int =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.num_choices lowercase : Tuple =TFMobileBertForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Optional[int] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Dict =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Optional[int] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' lowercase : Dict =self.num_labels lowercase : List[str] =TFMobileBertForTokenClassification(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : int =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =TFMobileBertForQuestionAnswering(config=UpperCAmelCase ) lowercase : int ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' lowercase : int =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : List[str] =config_and_inputs lowercase : Optional[int] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase : str =TFMobileBertModelTest.TFMobileBertModelTester(self ) lowercase : Any =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : List[str] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : Tuple ) -> str: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCAmelCase ) def A__ ( self : Tuple ) -> int: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : int ) -> int: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCAmelCase ) def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCAmelCase ) def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : Any ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: lowercase : Any =TFMobileBertModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Any ) -> Dict: '''simple docstring''' lowercase : Any =TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : Dict =model(UpperCAmelCase )[0] lowercase : Optional[int] =[1, 6, 3_0522] self.assertEqual(output.shape , UpperCAmelCase ) lowercase : Dict =tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 )
94
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : Optional[Any] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """vivit""" def __init__( self : int , __UpperCamelCase : Union[str, Any]=2_2_4 , __UpperCamelCase : Any=3_2 , __UpperCamelCase : str=[2, 1_6, 1_6] , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : int=7_6_8 , __UpperCamelCase : List[str]=1_2 , __UpperCamelCase : str=1_2 , __UpperCamelCase : Optional[Any]=3_0_7_2 , __UpperCamelCase : Optional[Any]="gelu_fast" , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : List[str]=1e-06 , __UpperCamelCase : Union[str, Any]=True , **__UpperCamelCase : Any , )->Optional[int]: _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = num_frames _UpperCAmelCase = tubelet_size _UpperCAmelCase = num_channels _UpperCAmelCase = qkv_bias super().__init__(**__UpperCamelCase )
602
0
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def lowercase__( A ): # picklable for multiprocessing return x.sum() def lowercase__( A ): # picklable for multiprocessing return i + 1 @dataclass class snake_case__ : _lowerCAmelCase =42 _lowerCAmelCase =42 class snake_case__ ( UpperCamelCase_ ): def UpperCAmelCase__ ( self : Any ): snake_case__ : List[Any] = {} snake_case__ : List[Any] = [] snake_case__ : Union[str, Any] = 1 snake_case__ : Union[str, Any] = [1, 2] snake_case__ : Dict = {'a': 1, 'b': 2} snake_case__ : Any = {'a': [1, 2], 'b': [3, 4]} snake_case__ : Union[str, Any] = {'a': {'1': 1}, 'b': 2} snake_case__ : Union[str, Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} snake_case__ : List[str] = {} snake_case__ : List[Any] = [] snake_case__ : Any = 2 snake_case__ : List[Any] = [2, 3] snake_case__ : Optional[Any] = {'a': 2, 'b': 3} snake_case__ : Optional[Any] = {'a': [2, 3], 'b': [4, 5]} snake_case__ : Union[str, Any] = {'a': {'1': 2}, 'b': 3} snake_case__ : Any = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) snake_case__ : Union[str, Any] = 2 self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) snake_case__ : List[str] = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} snake_case__ : Any = {'a': 2, 'b': 0, 'c': 2} snake_case__ : List[Any] = { 'a': np.eye(2 ).astype(_lowerCamelCase ), 'b': np.zeros(3 ).astype(_lowerCamelCase ), 'c': np.ones(2 ).astype(_lowerCamelCase ), } self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase , num_proc=_lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowerCamelCase ): # can't pickle a local lambda map_nested(lambda _lowerCamelCase : x + 1 , _lowerCamelCase , num_proc=_lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): snake_case__ : Any = {'a': 1, 'b': 2} snake_case__ : Optional[Any] = {'a': 3, 'b': 4} snake_case__ : List[str] = {'a': 5, 'b': 6} snake_case__ : Optional[int] = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) , _lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): class snake_case__ : _lowerCAmelCase ='bar' snake_case__ : Tuple = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(_lowerCamelCase , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (1_6, 1_6, 1_6), (1_6, 1_7, 1_6), (1_7, 1_6, 1_6), ] , ) def lowercase__( A , A , A ): with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: snake_case__ : Optional[Any] = {f'''{i}''': i for i in range(A )} snake_case__ : List[Any] = map_nested(lambda A : x + 1_0 , A , num_proc=A , parallel_min_length=1_6 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class snake_case__ ( UpperCamelCase_ ): @require_tf def UpperCAmelCase__ ( self : Dict ): import tensorflow as tf from tensorflow.keras import layers snake_case__ : List[str] = layers.Dense(2 ) def gen_random_output(): snake_case__ : Optional[Any] = tf.random.uniform((1, 3) ) return model(_lowerCamelCase ).numpy() with temp_seed(4_2 , set_tensorflow=_lowerCamelCase ): snake_case__ : List[Any] = gen_random_output() with temp_seed(4_2 , set_tensorflow=_lowerCamelCase ): snake_case__ : Union[str, Any] = gen_random_output() snake_case__ : Dict = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def UpperCAmelCase__ ( self : Dict ): import torch def gen_random_output(): snake_case__ : List[Any] = torch.nn.Linear(3 , 2 ) snake_case__ : Any = torch.rand(1 , 3 ) return model(_lowerCamelCase ).detach().numpy() with temp_seed(4_2 , set_pytorch=_lowerCamelCase ): snake_case__ : str = gen_random_output() with temp_seed(4_2 , set_pytorch=_lowerCamelCase ): snake_case__ : Dict = gen_random_output() snake_case__ : str = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def UpperCAmelCase__ ( self : str ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): snake_case__ : int = gen_random_output() with temp_seed(4_2 ): snake_case__ : int = gen_random_output() snake_case__ : Dict = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def lowercase__( A ): snake_case__ : Any = NestedDataStructure(A ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def lowercase__( A , A ): snake_case__ : Union[str, Any] = NestedDataStructure(A ).flatten() assert output == expected_output def lowercase__( ): snake_case__ : Tuple = A(x=1 , y='foobar' ) snake_case__ : Optional[int] = {'x': 1, 'y': 'foobar'} assert asdict(A ) == expected_output snake_case__ : Dict = {'a': {'b': A(x=1_0 , y='foo' )}, 'c': [A(x=2_0 , y='bar' )]} snake_case__ : str = {'a': {'b': {'x': 1_0, 'y': 'foo'}}, 'c': [{'x': 2_0, 'y': 'bar'}]} assert asdict(A ) == expected_output with pytest.raises(A ): asdict([1, A(x=1_0 , y='foo' )] ) def lowercase__( A ): return text.split() def lowercase__( A ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def lowercase__( ): with Pool(2 ) as pool: snake_case__ : Tuple = list(iflatmap_unordered(A , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 1_0 ) ) assert out.count('hello' ) == 1_0 assert out.count('there' ) == 1_0 assert len(A ) == 2_0 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: snake_case__ : Optional[Any] = list(iflatmap_unordered(A , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 1_0 ) ) assert out.count('hello' ) == 1_0 assert out.count('there' ) == 1_0 assert len(A ) == 2_0 # check that we get items as fast as possible with Pool(2 ) as pool: snake_case__ : List[Any] = [] for yield_time, content in iflatmap_unordered( A , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(A ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(A ) == 4
711
import sys from collections import defaultdict class snake_case__ : def __init__( self : List[Any] ): snake_case__ : Dict = [] def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : Tuple ): return self.node_position[vertex] def UpperCAmelCase__ ( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : str ): snake_case__ : Union[str, Any] = pos def UpperCAmelCase__ ( self : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case__ : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case__ : Optional[int] = 2 * start + 1 else: snake_case__ : str = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case__ , snake_case__ : int = heap[smallest_child], positions[smallest_child] snake_case__ , snake_case__ : str = ( heap[start], positions[start], ) snake_case__ , snake_case__ : int = temp, tempa snake_case__ : int = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _lowerCamelCase ) self.top_to_bottom(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] ): snake_case__ : Optional[Any] = position[index] while index != 0: snake_case__ : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case__ : Optional[Any] = heap[parent] snake_case__ : Dict = position[parent] self.set_position(position[parent] , _lowerCamelCase ) else: snake_case__ : Tuple = val snake_case__ : Optional[Any] = temp self.set_position(_lowerCamelCase , _lowerCamelCase ) break snake_case__ : Optional[int] = parent else: snake_case__ : List[str] = val snake_case__ : List[Any] = temp self.set_position(_lowerCamelCase , 0 ) def UpperCAmelCase__ ( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Dict ): snake_case__ : int = len(_lowerCamelCase ) // 2 - 1 for i in range(_lowerCamelCase , -1 , -1 ): self.top_to_bottom(_lowerCamelCase , _lowerCamelCase , len(_lowerCamelCase ) , _lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ): snake_case__ : Any = positions[0] snake_case__ : List[str] = sys.maxsize self.top_to_bottom(_lowerCamelCase , 0 , len(_lowerCamelCase ) , _lowerCamelCase ) return temp def lowercase__( A ): snake_case__ : int = Heap() snake_case__ : Optional[int] = [0] * len(A ) snake_case__ : Any = [-1] * len(A ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case__ : Union[str, Any] = [] # Heap of Distance of vertices from their neighboring vertex snake_case__ : Dict = [] for vertex in range(len(A ) ): distance_tv.append(sys.maxsize ) positions.append(A ) heap.node_position.append(A ) snake_case__ : Tuple = [] snake_case__ : int = 1 snake_case__ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case__ : Optional[int] = 0 snake_case__ : Optional[int] = distance heap.heapify(A , A ) for _ in range(1 , len(A ) ): snake_case__ : Tuple = heap.delete_minimum(A , A ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case__ : List[str] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(A )] ): snake_case__ : Any = distance heap.bottom_to_top( A , heap.get_position(A ) , A , A ) snake_case__ : Union[str, Any] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCamelCase : Union[str, Any] = int(input('Enter number of edges: ').strip()) lowerCamelCase : str = defaultdict(list) for _ in range(edges_number): lowerCamelCase : Any = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class snake_case_ ( UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" snake_case__ = 'convnextv2' def __init__(self: Tuple , __UpperCAmelCase: Tuple=3 , __UpperCAmelCase: Dict=4 , __UpperCAmelCase: Union[str, Any]=4 , __UpperCAmelCase: Any=None , __UpperCAmelCase: str=None , __UpperCAmelCase: List[Any]="gelu" , __UpperCAmelCase: List[str]=0.02 , __UpperCAmelCase: List[str]=1E-12 , __UpperCAmelCase: Tuple=0.0 , __UpperCAmelCase: Optional[Any]=224 , __UpperCAmelCase: str=None , __UpperCAmelCase: Optional[Any]=None , **__UpperCAmelCase: Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __a : Tuple = num_channels __a : Optional[int] = patch_size __a : str = num_stages __a : Optional[int] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : Optional[Any] = [3, 3, 9, 3] if depths is None else depths __a : List[str] = hidden_act __a : List[Any] = initializer_range __a : Optional[int] = layer_norm_eps __a : Optional[Any] = drop_path_rate __a : Tuple = image_size __a : str = ["stem"] + [f'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
351
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowerCAmelCase_ ( *__A ) -> Dict: '''simple docstring''' if not isinstance(__A, __A ): UpperCAmelCase__ = list(__A ) for i in range(len(__A ) ): UpperCAmelCase__ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(__A, __A ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowerCAmelCase_ ( __A = None, __A = 128 ) -> str: '''simple docstring''' if function is None: return functools.partial(__A, starting_batch_size=__A ) UpperCAmelCase__ = starting_batch_size def decorator(*__A, **__A ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() UpperCAmelCase__ = list(inspect.signature(__A ).parameters.keys() ) # Guard against user error if len(__A ) < (len(__A ) + 1): UpperCAmelCase__ = ", ".join([f"""{arg}={value}""" for arg, value in zip(params[1:], args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(__A, *__A, **__A ) except Exception as e: if should_reduce_batch_size(__A ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
486
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() a_ :Any = logging.get_logger(__name__) def lowercase_ (A : str ): snake_case__ : Tuple = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) snake_case__ : Dict = MaskFormerConfig(backbone_config=A ) snake_case__ : List[Any] = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok snake_case__ : Optional[Any] = 8_4_7 snake_case__ : Tuple = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok snake_case__ : int = 1_5_0 snake_case__ : int = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok snake_case__ : int = 1_7_1 snake_case__ : Any = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO snake_case__ : Dict = 1_3_3 snake_case__ : str = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok snake_case__ : str = 1_9 snake_case__ : Union[str, Any] = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok snake_case__ : str = 6_5 snake_case__ : int = 'mapillary-vistas-id2label.json' snake_case__ : Dict = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) snake_case__ : Tuple = {int(A ): v for k, v in idalabel.items()} return config def lowercase_ (A : List[str] ): snake_case__ : str = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def lowercase_ (A : Optional[Any] , A : Tuple , A : int ): snake_case__ : List[str] = dct.pop(A ) snake_case__ : Optional[int] = val def lowercase_ (A : List[Any] , A : List[str] ): snake_case__ : Any = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case__ : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case__ : List[str] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) snake_case__ : Dict = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[:dim, :] snake_case__ : Union[str, Any] = in_proj_bias[: dim] snake_case__ : int = in_proj_weight[ dim : dim * 2, : ] snake_case__ : Optional[Any] = in_proj_bias[ dim : dim * 2 ] snake_case__ : Optional[int] = in_proj_weight[ -dim :, : ] snake_case__ : Dict = in_proj_bias[-dim :] # fmt: on def lowercase_ (A : List[Any] , A : int ): # fmt: off snake_case__ : Union[str, Any] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case__ : Dict = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) snake_case__ : Tuple = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : List[str] = in_proj_weight[: hidden_size, :] snake_case__ : Optional[Any] = in_proj_bias[:config.hidden_size] snake_case__ : Union[str, Any] = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case__ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ : str = in_proj_weight[-hidden_size :, :] snake_case__ : List[str] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case__ : Dict = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) snake_case__ : Optional[int] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Tuple = in_proj_weight[: hidden_size, :] snake_case__ : str = in_proj_bias[:config.hidden_size] snake_case__ : Dict = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case__ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ : int = in_proj_weight[-hidden_size :, :] snake_case__ : Union[str, Any] = in_proj_bias[-hidden_size :] # fmt: on def lowercase_ (): snake_case__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : int = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowercase_ (A : str , A : str , A : str , A : bool = False ): snake_case__ : Optional[int] = get_maskformer_config(A ) # load original state_dict with open(A , 'rb' ) as f: snake_case__ : Tuple = pickle.load(A ) snake_case__ : Union[str, Any] = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys snake_case__ : Union[str, Any] = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_swin_q_k_v(A , config.backbone_config ) read_in_decoder_q_k_v(A , A ) # update to torch tensors for key, value in state_dict.items(): snake_case__ : Any = torch.from_numpy(A ) # load 🤗 model snake_case__ : Union[str, Any] = MaskFormerForInstanceSegmentation(A ) model.eval() for name, param in model.named_parameters(): print(A , param.shape ) snake_case__ , snake_case__ : Union[str, Any] = model.load_state_dict(A , strict=A ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(A ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results snake_case__ : Dict = prepare_img() if "vistas" in model_name: snake_case__ : Optional[Any] = 6_5 elif "cityscapes" in model_name: snake_case__ : Optional[Any] = 6_5_5_3_5 else: snake_case__ : Optional[Any] = 2_5_5 snake_case__ : List[Any] = True if 'ade' in model_name else False snake_case__ : Any = MaskFormerImageProcessor(ignore_index=A , reduce_labels=A ) snake_case__ : Dict = image_processor(A , return_tensors='pt' ) snake_case__ : Dict = model(**A ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": snake_case__ : str = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , A , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a_ :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a_ :List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
243
def lowercase_ (A : Optional[int]=2_8_1_2_3 ): snake_case__ : Any = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i snake_case__ : Dict = set() snake_case__ : Optional[Any] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(A ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
243
1
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowerCamelCase ( UpperCAmelCase_ : Any, UpperCAmelCase_ : Any, UpperCAmelCase_ : List[Any], UpperCAmelCase_ : List[str] ) -> int: """simple docstring""" A__ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] A__ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } A__ = F"""{src_lang}-{tgt_lang}""" A__ = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=UpperCAmelCase_, exist_ok=UpperCAmelCase_ ) A__ = os.path.join(UpperCAmelCase_, "README.md" ) print(F"""Generating {path}""" ) with open(UpperCAmelCase_, "w", encoding="utf-8" ) as f: f.write(UpperCAmelCase_ ) # make sure we are under the root of the project UpperCamelCase = Path(__file__).resolve().parent.parent.parent UpperCamelCase = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
104
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): def __init__( self : Dict , __a : List[str] ) -> Tuple: super().__init__() __UpperCAmelCase = model __UpperCAmelCase = 2 __UpperCAmelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def snake_case__ ( self : int ) -> int: pass def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str ): """simple docstring""" # load longformer model from model identifier __UpperCAmelCase = LongformerModel.from_pretrained(UpperCamelCase__ ) __UpperCAmelCase = LightningModel(UpperCamelCase__ ) __UpperCAmelCase = torch.load(UpperCamelCase__ , map_location=torch.device('''cpu''' ) ) lightning_model.load_state_dict(ckpt['''state_dict'''] ) # init longformer question answering model __UpperCAmelCase = LongformerForQuestionAnswering.from_pretrained(UpperCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(UpperCamelCase__ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
262
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __a ( A_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = RoFormerTokenizer UpperCAmelCase__ : Optional[Any] = RoFormerTokenizerFast UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : Tuple = True def __snake_case ( self ): super().setUp() def __snake_case ( self , **UpperCamelCase__ ): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = """永和服装饰品有限公司,今天天气非常好""" SCREAMING_SNAKE_CASE_ : Optional[int] = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = self.get_chinese_input_output_texts() SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , output_text.split() ) SCREAMING_SNAKE_CASE_ : str = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Any = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_chinese_input_output_texts() SCREAMING_SNAKE_CASE_ : Tuple = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , output_text.split() ) SCREAMING_SNAKE_CASE_ : Dict = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : str = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def __snake_case ( self ): pass def __snake_case ( self ): pass def __snake_case ( self ): pass
708
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __a ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : Tuple = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } SCREAMING_SNAKE_CASE_ : str = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[int] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ : int = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : List[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = image_processor(UpperCamelCase__ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Dict = processor(images=UpperCamelCase__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = processor(text=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer(UpperCamelCase__ , padding='max_length' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : List[str] = processor.batch_decode(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = 'lower newer' SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : List[Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
97
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : List[Any] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class lowerCamelCase__( snake_case_ ): UpperCamelCase : Any = "markuplm" def __init__( self , __UpperCAmelCase=3_0_5_2_2 , __UpperCAmelCase=7_6_8 , __UpperCAmelCase=1_2 , __UpperCAmelCase=1_2 , __UpperCAmelCase=3_0_7_2 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=2_5_6 , __UpperCAmelCase=1_0_2_4 , __UpperCAmelCase=2_1_6 , __UpperCAmelCase=1_0_0_1 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5_0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ): """simple docstring""" super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout # additional properties __lowercase = max_depth __lowercase = max_xpath_tag_unit_embeddings __lowercase = max_xpath_subs_unit_embeddings __lowercase = tag_pad_id __lowercase = subs_pad_id __lowercase = xpath_unit_hidden_size
566
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule snake_case : Optional[Any] = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
566
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __lowerCamelCase ( __a :str = "laptop" ) -> DataFrame: """simple docstring""" A__ = F'https://www.amazon.in/laptop/s?k={product}' A__ = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } A__ = BeautifulSoup(requests.get(__a , headers=__a ).text ) # Initialize a Pandas dataframe with the column titles A__ = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: A__ = item.ha.text A__ = """https://www.amazon.in/""" + item.ha.a["""href"""] A__ = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: A__ = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: A__ = """Not available""" try: A__ = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: A__ = """""" try: A__ = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_0_0 ) except ValueError: A__ = float("""nan""" ) except AttributeError: pass A__ = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A__ = """ """ A__ = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": A : str = '''headphones''' get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
247
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Any = 1_6 A : List[Any] = 3_2 def __lowerCamelCase ( __a :Accelerator , __a :int = 1_6 ) -> str: """simple docstring""" A__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__a :Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( __a , batched=__a , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__a :Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 1_6 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( __a , padding="""longest""" , max_length=__a , pad_to_multiple_of=__a , return_tensors="""pt""" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__a , collate_fn=__a , batch_size=__a ) A__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Optional[Any] = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( __a :List[Any] , __a :Optional[Any] ) -> List[Any]: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __a ) == "1": A__ = 2 # New Code # A__ = int(args.gradient_accumulation_steps ) # Initialize accelerator A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__a ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["""lr"""] A__ = int(config["""num_epochs"""] ) A__ = int(config["""seed"""] ) A__ = int(config["""batch_size"""] ) A__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__a ) A__ , A__ = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=1_0_0 , num_training_steps=(len(__a ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__a ): A__ = model(**__a ) A__ = output.loss accelerator.backward(__a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**__a ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__a , references=__a , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __a ) def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__a , default=__a , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__a , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) A__ = parser.parse_args() A__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(__a , __a ) if __name__ == "__main__": main()
247
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github __UpperCAmelCase = [ "good first issue", "feature request", "wip", ] def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: Tuple = Github(os.environ['GITHUB_TOKEN'] ) snake_case: Any = g.get_repo('huggingface/accelerate' ) snake_case: Dict = repo.get_issues(state='open' ) for issue in open_issues: snake_case: Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda __A : i.created_at , reverse=__A ) snake_case: List[str] = comments[0] if len(__A ) > 0 else None snake_case: Dict = dt.utcnow() snake_case: Any = (current_time - issue.updated_at).days snake_case: Union[str, Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
329
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __UpperCAmelCase = TypeVar("KEY") __UpperCAmelCase = TypeVar("VAL") @dataclass(frozen=snake_case , slots=snake_case ) class SCREAMING_SNAKE_CASE ( Generic[KEY, VAL] ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 class SCREAMING_SNAKE_CASE ( _Item ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self ): '''simple docstring''' return False __UpperCAmelCase = _DeletedItem() class SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ = 8 , SCREAMING_SNAKE_CASE__ = 0.75 ): '''simple docstring''' snake_case: str = initial_block_size snake_case: list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case: List[Any] = capacity_factor snake_case: int = 0 def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = self._buckets[ind] if not stored: snake_case: Optional[Any] = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: snake_case: List[str] = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False snake_case: Union[str, Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = self._buckets snake_case: Optional[Any] = [None] * new_size snake_case: Optional[Any] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _UpperCamelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def _UpperCamelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Tuple = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind snake_case: int = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): snake_case: List[str] = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: snake_case: str = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): snake_case: Union[str, Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' snake_case: Union[str, Any] = ' ,'.join( F"""{item.key}: {item.val}""" for item in self._buckets if item ) return F"""HashMap({val_string})"""
329
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=1_0_0 ,lowerCamelCase_=1_3 ,lowerCamelCase_=3_0 ,lowerCamelCase_=2 ,lowerCamelCase_=3 ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=3_2 ,lowerCamelCase_=5 ,lowerCamelCase_=4 ,lowerCamelCase_=3_7 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=1_0 ,lowerCamelCase_=0.02 ,lowerCamelCase_=3 ,) -> List[str]: A = parent A = vocab_size A = batch_size A = image_size A = patch_size A = num_channels A = is_training A = use_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = type_sequence_label_size A = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A = (image_size // patch_size) ** 2 A = num_patches + 1 def UpperCamelCase__ ( self ) -> Union[str, Any]: A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A = BeitConfig( vocab_size=self.vocab_size ,image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) return config, pixel_values, labels def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Tuple: A = FlaxBeitModel(config=lowerCamelCase_ ) A = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Union[str, Any]: A = FlaxBeitForMaskedImageModeling(config=lowerCamelCase_ ) A = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> int: A = self.type_sequence_label_size A = FlaxBeitForImageClassification(config=lowerCamelCase_ ) A = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images A = 1 A = FlaxBeitForImageClassification(lowerCamelCase_ ) A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A = model(lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def UpperCamelCase__ ( self ) -> None: A = FlaxBeitModelTester(self ) A = ConfigTester(self ,config_class=lowerCamelCase_ ,has_text_modality=lowerCamelCase_ ,hidden_size=3_7 ) def UpperCamelCase__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Dict: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(lowerCamelCase_ ) A = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Optional[Any]: A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A = self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) A = model_class(lowerCamelCase_ ) @jax.jit def model_jitted(lowerCamelCase_ ,**lowerCamelCase_ ): return model(pixel_values=lowerCamelCase_ ,**lowerCamelCase_ ) with self.subTest("""JIT Enabled""" ): A = model_jitted(**lowerCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): A = model_jitted(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) ,len(lowerCamelCase_ ) ) for jitted_output, output in zip(lowerCamelCase_ ,lowerCamelCase_ ): self.assertEqual(jitted_output.shape ,output.shape ) def UpperCamelCase__ ( self ) -> Union[str, Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> Optional[Any]: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def UpperCamelCase__ ( self ) -> str: A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def UpperCamelCase__ ( self ) -> int: for model_class_name in self.all_model_classes: A = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" ) A = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowerCamelCase_ ) def _A ( ): """simple docstring""" A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ) -> Dict: return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self ) -> Dict: A = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ) A = self.default_image_processor A = prepare_img() A = image_processor(images=lowerCamelCase_ ,return_tensors="""np""" ).pixel_values # prepare bool_masked_pos A = np.ones((1, 1_9_6) ,dtype=lowerCamelCase_ ) # forward pass A = model(pixel_values=lowerCamelCase_ ,bool_masked_pos=lowerCamelCase_ ) A = outputs.logits # verify the logits A = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape ,lowerCamelCase_ ) A = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] ,lowerCamelCase_ ,atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ) -> str: A = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ) A = self.default_image_processor A = prepare_img() A = image_processor(images=lowerCamelCase_ ,return_tensors="""np""" ) # forward pass A = model(**lowerCamelCase_ ) A = outputs.logits # verify the logits A = (1, 1_0_0_0) self.assertEqual(logits.shape ,lowerCamelCase_ ) A = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] ,lowerCamelCase_ ,atol=1E-4 ) ) A = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() ,lowerCamelCase_ ) @slow def UpperCamelCase__ ( self ) -> Tuple: A = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ) A = self.default_image_processor A = prepare_img() A = image_processor(images=lowerCamelCase_ ,return_tensors="""np""" ) # forward pass A = model(**lowerCamelCase_ ) A = outputs.logits # verify the logits A = (1, 2_1_8_4_1) self.assertEqual(logits.shape ,lowerCamelCase_ ) A = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] ,lowerCamelCase_ ,atol=1E-4 ) ) A = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() ,lowerCamelCase_ )
255
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''umt5''' _lowerCamelCase = ['''past_key_values'''] def __init__( self ,lowerCamelCase_=2_5_0_1_1_2 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=6_4 ,lowerCamelCase_=1_0_2_4 ,lowerCamelCase_=8 ,lowerCamelCase_=None ,lowerCamelCase_=6 ,lowerCamelCase_=3_2 ,lowerCamelCase_=1_2_8 ,lowerCamelCase_=0.1 ,lowerCamelCase_=1E-6 ,lowerCamelCase_=1.0 ,lowerCamelCase_="gated-gelu" ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_="T5Tokenizer" ,lowerCamelCase_=True ,lowerCamelCase_=0 ,lowerCamelCase_=1 ,lowerCamelCase_=0 ,**lowerCamelCase_ ,) -> Dict: super().__init__( is_encoder_decoder=lowerCamelCase_ ,tokenizer_class=lowerCamelCase_ ,tie_word_embeddings=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,decoder_start_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def UpperCamelCase__ ( self ) -> Dict: return self.d_model @property def UpperCamelCase__ ( self ) -> Any: return self.num_heads @property def UpperCamelCase__ ( self ) -> int: return self.num_layers class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ ,direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCamelCase__ ( self ) -> int: return 1_3 @property def UpperCamelCase__ ( self ) -> float: return 5E-4
255
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __lowerCamelCase ( a_ , unittest.TestCase ): """simple docstring""" snake_case__ = CpmAntTokenizer snake_case__ = False def a ( self : List[str] ) -> List[Any]: super().setUp() lowerCAmelCase__ = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def a ( self : Tuple ) -> Optional[Any]: lowerCAmelCase__ = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) lowerCAmelCase__ = "今天天气真好!" lowerCAmelCase__ = ["今天", "天气", "真", "好", "!"] lowerCAmelCase__ = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCAmelCase__ = "今天天气真好!" lowerCAmelCase__ = [tokenizer.bos_token] + tokens lowerCAmelCase__ = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) lowerCAmelCase__ = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
61
def SCREAMING_SNAKE_CASE__ ( snake_case_ = "The quick brown fox jumps over the lazy dog", ) -> bool: """simple docstring""" a = set() # Replace all the whitespace in our sentence a = input_str.replace(''' ''', '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(snake_case_ ) == 2_6 def SCREAMING_SNAKE_CASE__ ( snake_case_ = "The quick brown fox jumps over the lazy dog", ) -> bool: """simple docstring""" a = [False] * 2_6 for char in input_str: if char.islower(): a = True elif char.isupper(): a = True return all(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ = "The quick brown fox jumps over the lazy dog", ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" from timeit import timeit a = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''', setup=snake_case_ ) ) print(timeit('''is_pangram_faster()''', setup=snake_case_ ) ) print(timeit('''is_pangram_fastest()''', setup=snake_case_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
387
0
def UpperCAmelCase ( lowercase__ : int ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) a__ = 0 a__ = str(lowercase__ ) while len(lowercase__ ) != 1: a__ = [int(lowercase__ ) for i in num_string] a__ = 1 for i in range(0 , len(lowercase__ ) ): total *= numbers[i] a__ = str(lowercase__ ) steps += 1 return steps def UpperCAmelCase ( lowercase__ : int ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) a__ = 0 a__ = str(lowercase__ ) while len(lowercase__ ) != 1: a__ = [int(lowercase__ ) for i in num_string] a__ = 0 for i in range(0 , len(lowercase__ ) ): total += numbers[i] a__ = str(lowercase__ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
412
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowercase : int =logging.get_logger(__name__) @add_end_docstrings(A_ ) class lowerCAmelCase_ ( A_ ): '''simple docstring''' def __init__( self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) self.check_model_type(lowerCamelCase ) def _A ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ): '''simple docstring''' a__ , a__ = {}, {} if padding is not None: a__ = padding if truncation is not None: a__ = truncation if top_k is not None: a__ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , (Image.Image, str) ) and isinstance(lowerCamelCase , lowerCamelCase ): a__ = {"""image""": image, """question""": question} else: a__ = image a__ = super().__call__(lowerCamelCase , **lowerCamelCase ) return results def _A ( self , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False ): '''simple docstring''' a__ = load_image(inputs["""image"""] ) a__ = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=lowerCamelCase , truncation=lowerCamelCase ) a__ = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) model_inputs.update(lowerCamelCase ) return model_inputs def _A ( self , lowerCamelCase ): '''simple docstring''' a__ = self.model(**lowerCamelCase ) return model_outputs def _A ( self , lowerCamelCase , lowerCamelCase=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: a__ = self.model.config.num_labels if self.framework == "pt": a__ = model_outputs.logits.sigmoid()[0] a__ , a__ = probs.topk(lowerCamelCase ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) a__ = scores.tolist() a__ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
412
1