code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } lowercase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } lowercase_ = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } lowercase_ = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } lowercase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } lowercase_ = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } lowercase_ = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = DPRContextEncoderTokenizer class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = DPRQuestionEncoderTokenizer lowercase_ = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) lowercase_ = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) lowercase_ = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(lowerCAmelCase__ ) class __UpperCamelCase : """simple docstring""" def __call__( self : List[str] , _A : Tuple , _A : Optional[str] = None , _A : Optional[str] = None , _A : Union[bool, str] = False , _A : Union[bool, str] = False , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , **_A : Dict , ): """simple docstring""" if titles is None and texts is None: return super().__call__( _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) elif titles is None or texts is None: __SCREAMING_SNAKE_CASE : Tuple = titles if texts is None else texts return super().__call__( _A , _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) __SCREAMING_SNAKE_CASE : List[Any] = titles if not isinstance(_A , _A ) else [titles] __SCREAMING_SNAKE_CASE : Any = texts if not isinstance(_A , _A ) else [texts] __SCREAMING_SNAKE_CASE : List[Any] = len(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = questions if not isinstance(_A , _A ) else [questions] * n_passages assert len(_A ) == len( _A ), F'''There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.''' __SCREAMING_SNAKE_CASE : Tuple = super().__call__(_A , _A , padding=_A , truncation=_A )['''input_ids'''] __SCREAMING_SNAKE_CASE : Any = super().__call__(_A , add_special_tokens=_A , padding=_A , truncation=_A )['''input_ids'''] __SCREAMING_SNAKE_CASE : str = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A , _A ) ] } if return_attention_mask is not False: __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __SCREAMING_SNAKE_CASE : str = attention_mask return self.pad(_A , padding=_A , max_length=_A , return_tensors=_A ) def UpperCAmelCase__ ( self : int , _A : BatchEncoding , _A : DPRReaderOutput , _A : int = 16 , _A : int = 64 , _A : int = 4 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = reader_input['''input_ids'''] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = reader_output[:3] __SCREAMING_SNAKE_CASE : int = len(_A ) __SCREAMING_SNAKE_CASE : str = sorted(range(_A ) , reverse=_A , key=relevance_logits.__getitem__ ) __SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __SCREAMING_SNAKE_CASE : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __SCREAMING_SNAKE_CASE : Optional[int] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.pad_token_id ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = len(_A ) __SCREAMING_SNAKE_CASE : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_A , top_spans=_A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_A , start_index=_A , end_index=_A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase__ ( self : List[str] , _A : List[int] , _A : List[int] , _A : int , _A : int , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(_A , key=lambda _A : x[1] , reverse=_A ) __SCREAMING_SNAKE_CASE : int = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'''Wrong span indices: [{start_index}:{end_index}]''' __SCREAMING_SNAKE_CASE : Dict = end_index - start_index + 1 assert length <= max_answer_length, F'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(lowerCAmelCase__ ) class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = DPRReaderTokenizer
74
import warnings from ..trainer import Trainer from ..utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase ( _a ): def __init__(self , __magic_name__=None , **__magic_name__ ) -> Dict: '''simple docstring''' warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , __magic_name__ , ) super().__init__(args=__magic_name__ , **__magic_name__ )
60
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = StableDiffusionSAGPipeline SCREAMING_SNAKE_CASE__ = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) UpperCAmelCase : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) torch.manual_seed(0 ) UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) UpperCAmelCase : Union[str, Any] = CLIPTextModel(lowercase ) UpperCAmelCase : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __lowerCAmelCase ( self : Any , lowercase : str , lowercase : List[str]=0 ): '''simple docstring''' if str(lowercase ).startswith("mps" ): UpperCAmelCase : Optional[Any] = torch.manual_seed(lowercase ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=lowercase ).manual_seed(lowercase ) UpperCAmelCase : Any = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def __lowerCAmelCase ( self : Any ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase ): def __lowerCAmelCase ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : Any = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) UpperCAmelCase : List[str] = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase : Dict = "." UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] = sag_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase : Union[str, Any] = output.images UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase : Dict = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase : List[str] = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase : List[Any] = "." UpperCAmelCase : Dict = torch.manual_seed(0 ) UpperCAmelCase : str = sag_pipe( [prompt] , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase : List[Any] = output.images UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase : Any = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase : Optional[int] = sag_pipe.to(lowercase ) sag_pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase : List[Any] = "." UpperCAmelCase : List[str] = torch.manual_seed(0 ) UpperCAmelCase : List[str] = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) UpperCAmelCase : Any = output.images assert image.shape == (1, 5_12, 7_68, 3)
292
"""simple docstring""" from functools import reduce snake_case_ : List[Any] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowercase_ ( _lowercase : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _lowercase , _lowercase : str(int(_lowercase ) * int(_lowercase ) ) , n[i : i + 13] ) ) for i in range(len(_lowercase ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
292
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" _a = 42 _a = None _a = None __snake_case = namedtuple('''CoinsDistribResult''', '''moves excess''') def a ( __a ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(__a ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__a ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__a ) != count_coins(__a ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__a ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = get_distrib(node.left ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = get_distrib(node.right ) UpperCamelCase__ :Tuple = 1 - left_distrib_excess UpperCamelCase__ :Optional[int] = 1 - right_distrib_excess UpperCamelCase__ :int = ( left_distrib_moves + right_distrib_moves + abs(__a ) + abs(__a ) ) UpperCamelCase__ :Optional[Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__a , __a ) return get_distrib(__a )[0] if __name__ == "__main__": import doctest doctest.testmod()
189
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = LxmertTokenizer _a = LxmertTokenizerFast _a = True _a = True def lowerCAmelCase__ ( self ): '''simple docstring''' super().setUp() UpperCamelCase__ :Any = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCamelCase__ :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = '''UNwant\u00E9d,running''' UpperCamelCase__ :Union[str, Any] = '''unwanted, running''' return input_text, output_text def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.tokenizer_class(self.vocab_file ) UpperCamelCase__ :List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase__ ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase__ :str = self.get_tokenizer() UpperCamelCase__ :Union[str, Any] = self.get_rust_tokenizer() UpperCamelCase__ :int = '''I was born in 92000, and this is falsé.''' UpperCamelCase__ :Optional[Any] = tokenizer.tokenize(UpperCamelCase_ ) UpperCamelCase__ :str = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :int = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = self.get_rust_tokenizer() UpperCamelCase__ :Any = tokenizer.encode(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
189
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) class _a ( snake_case_ ): _UpperCamelCase: List[str] = "linear" _UpperCamelCase: int = "cosine" _UpperCamelCase: Dict = "cosine_with_restarts" _UpperCamelCase: Any = "polynomial" _UpperCamelCase: List[str] = "constant" _UpperCamelCase: Optional[int] = "constant_with_warmup" _UpperCamelCase: str = "piecewise_constant" def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ): '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE__ ,lambda SCREAMING_SNAKE_CASE__ : 1 ,last_epoch=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ): '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1.0 ,SCREAMING_SNAKE_CASE__ ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ): '''simple docstring''' lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : List[Any] = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: lowerCAmelCase , lowerCAmelCase : List[Any] = rule_str.split(""":""" ) lowerCAmelCase : List[str] = int(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Optional[int] = float(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : int = value lowerCAmelCase : Optional[Any] = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): def rule_func(SCREAMING_SNAKE_CASE__ ) -> float: lowerCAmelCase : List[str] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowerCAmelCase : Optional[Any] = create_rules_function(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=-1 ): '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) ) return max( 0.0 ,float(num_training_steps - current_step ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 0.5 ,SCREAMING_SNAKE_CASE__ = -1 ): '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Dict = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE__ ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = -1 ): '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 ,num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 ,0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE__ ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=1e-7 ,SCREAMING_SNAKE_CASE__=1.0 ,SCREAMING_SNAKE_CASE__=-1 ): '''simple docstring''' lowerCAmelCase : List[str] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(SCREAMING_SNAKE_CASE__ ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE__ ) / float(max(1 ,SCREAMING_SNAKE_CASE__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowerCAmelCase : Optional[int] = lr_init - lr_end lowerCAmelCase : Union[str, Any] = num_training_steps - num_warmup_steps lowerCAmelCase : Union[str, Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowerCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : Union[str, Any] ={ SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 1 ,SCREAMING_SNAKE_CASE__ = 1.0 ,SCREAMING_SNAKE_CASE__ = -1 ,): '''simple docstring''' lowerCAmelCase : Tuple = SchedulerType(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE__ ,step_rules=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,num_training_steps=SCREAMING_SNAKE_CASE__ ,num_cycles=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ,) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,num_training_steps=SCREAMING_SNAKE_CASE__ ,power=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ ,) return schedule_func( SCREAMING_SNAKE_CASE__ ,num_warmup_steps=SCREAMING_SNAKE_CASE__ ,num_training_steps=SCREAMING_SNAKE_CASE__ ,last_epoch=SCREAMING_SNAKE_CASE__ )
693
lowerCAmelCase : str ={ 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
693
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple=7 , __lowerCAmelCase : Any=3 , __lowerCAmelCase : str=18 , __lowerCAmelCase : Union[str, Any]=30 , __lowerCAmelCase : Optional[Any]=4_00 , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : str=True , ) -> Dict: _A = size if size is not None else {'''height''': 18, '''width''': 18} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_normalize def snake_case_ ( self : Dict ) -> Union[str, Any]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowerCamelCase__ ( _A , unittest.TestCase): """simple docstring""" a__ : Union[str, Any] = ImageGPTImageProcessor if is_vision_available() else None def snake_case_ ( self : List[str] ) -> str: _A = ImageGPTImageProcessingTester(self ) @property def snake_case_ ( self : List[Any] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , '''clusters''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(__lowerCAmelCase , '''do_normalize''' ) ) def snake_case_ ( self : List[Any] ) -> Any: _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def snake_case_ ( self : str ) -> Optional[int]: _A = self.image_processing_class(**self.image_processor_dict ) _A = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , __lowerCAmelCase ) def snake_case_ ( self : int ) -> Tuple: _A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(__lowerCAmelCase , '''image_processor.json''' ) image_processor_first.to_json_file(__lowerCAmelCase ) _A = self.image_processing_class.from_json_file(__lowerCAmelCase ).to_dict() _A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowerCAmelCase ) def snake_case_ ( self : Dict ) -> int: _A = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__lowerCAmelCase ) _A = self.image_processing_class.from_pretrained(__lowerCAmelCase ).to_dict() _A = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowerCAmelCase ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def snake_case_ ( self : Union[str, Any] ) -> Dict: pass def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: _A = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) _A = Image.open(dataset[4]['''file'''] ) _A = Image.open(dataset[5]['''file'''] ) _A = [imagea, imagea] return images @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def snake_case_ ( self : Optional[Any] ) -> str: _A = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) _A = prepare_images() # test non-batched _A = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) _A = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , __lowerCAmelCase ) # test batched _A = image_processing(__lowerCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) _A = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __lowerCAmelCase )
2
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger a :Optional[Any] = "<<<<<<< This should probably be modified because it mentions: " a :Tuple = "=======\n>>>>>>>\n" a :str = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] a :Union[str, Any] = [ # (pattern, replacement) # Order is important here for some replacements (r"tfds\.core", r"datasets"), (r"tf\.io\.gfile\.GFile", r"open"), (r"tf\.([\w\d]+)", r"datasets.Value('\1')"), (r"tfds\.features\.Text\(\)", r"datasets.Value('string')"), (r"tfds\.features\.Text\(", r"datasets.Value('string'),"), (r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("), (r"tfds\.features\.FeaturesDict\(", r"dict("), (r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (r"tfds\.", r"datasets."), (r"dl_manager\.manual_dir", r"self.config.data_dir"), (r"self\.builder_config", r"self.config"), ] def _lowercase ( __lowerCAmelCase ) -> int: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __a (UpperCamelCase_): '''simple docstring''' @staticmethod def _a ( _a ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=_a , required=_a , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=_a , required=_a , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=_a ) def __init__( self , _a , _a , *_a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = get_logger("""datasets-cli/converting""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tfds_path SCREAMING_SNAKE_CASE__ : List[Any] = datasets_directory def _a ( self ) -> List[str]: """simple docstring""" if os.path.isdir(self._tfds_path ): SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): SCREAMING_SNAKE_CASE__ : Tuple = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) SCREAMING_SNAKE_CASE__ : Dict = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : List[Any] = {} if os.path.isdir(self._tfds_path ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.listdir(_a ) else: SCREAMING_SNAKE_CASE__ : List[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) SCREAMING_SNAKE_CASE__ : int = os.path.join(_a , _a ) SCREAMING_SNAKE_CASE__ : Dict = os.path.join(_a , _a ) if not os.path.isfile(_a ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(_a , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE__ : List[str] = f.readlines() SCREAMING_SNAKE_CASE__ : Optional[int] = [] SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Dict = [] for line in lines: SCREAMING_SNAKE_CASE__ : List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: SCREAMING_SNAKE_CASE__ : List[Any] = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here SCREAMING_SNAKE_CASE__ : Optional[Any] = """""" continue elif "from absl import logging" in out_line: SCREAMING_SNAKE_CASE__ : Any = """from datasets import logging\n""" elif "getLogger" in out_line: SCREAMING_SNAKE_CASE__ : Optional[int] = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Tuple = list(filter(lambda _a : e in out_line , _a ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_a ) + """\n""" ) out_lines.append(_a ) out_lines.append(_a ) continue else: for pattern, replacement in TO_CONVERT: SCREAMING_SNAKE_CASE__ : int = re.sub(_a , _a , _a ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: SCREAMING_SNAKE_CASE__ : Dict = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , _a ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) SCREAMING_SNAKE_CASE__ : Dict = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: SCREAMING_SNAKE_CASE__ : Union[str, Any] = True out_lines.append(_a ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset SCREAMING_SNAKE_CASE__ : Union[str, Any] = f_name.replace(""".py""" , """""" ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(_a , _a ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(_a , _a ) os.makedirs(_a , exist_ok=_a ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_a ) if needs_manual_update: with_manual_update.append(_a ) with open(_a , """w""" , encoding="""utf-8""" ) as f: f.writelines(_a ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: SCREAMING_SNAKE_CASE__ : str = os.path.basename(_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(_a , _a ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
680
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = XLMTokenizer lowercase__ = False def lowercase_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] a : List[Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) a : Any = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(__snake_case ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(__snake_case ) ) def lowercase_ ( self : int , __snake_case : str ): a : Dict = 'lower newer' a : Optional[int] = 'lower newer' return input_text, output_text def lowercase_ ( self : Optional[int] ): a : Dict = XLMTokenizer(self.vocab_file , self.merges_file ) a : Union[str, Any] = 'lower' a : Any = ['low', 'er</w>'] a : str = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) a : List[str] = tokens + ['<unk>'] a : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) @slow def lowercase_ ( self : Any ): a : Optional[Any] = XLMTokenizer.from_pretrained('xlm-mlm-en-2048' ) a : Tuple = tokenizer.encode('sequence builders' , add_special_tokens=__snake_case ) a : Dict = tokenizer.encode('multi-sequence build' , add_special_tokens=__snake_case ) a : Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) a : Tuple = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
195
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowerCamelCase__ ( _A ): return EnvironmentCommand() class a__( lowerCamelCase__ ): @staticmethod def lowercase_ ( __snake_case : ArgumentParser ): a : Tuple = parser.add_parser('env' ) download_parser.set_defaults(func=__snake_case ) def lowercase_ ( self : List[str] ): a : str = huggingface_hub.__version__ a : List[str] = 'not installed' a : List[str] = 'NA' if is_torch_available(): import torch a : Optional[Any] = torch.__version__ a : int = torch.cuda.is_available() a : Optional[int] = 'not installed' if is_transformers_available(): import transformers a : Tuple = transformers.__version__ a : Dict = 'not installed' if is_accelerate_available(): import accelerate a : int = accelerate.__version__ a : Any = 'not installed' if is_xformers_available(): import xformers a : Optional[int] = xformers.__version__ a : List[str] = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(__snake_case ) ) return info @staticmethod def lowercase_ ( __snake_case : Union[str, Any] ): return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
195
1
'''simple docstring''' import operator as op def __A ( a_ : int ): lowerCAmelCase : List[str] = [] lowerCAmelCase : str = lambda a_ ,a_ : int(x / y ) # noqa: E731 integer division operation lowerCAmelCase : Tuple = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) ,"Action".center(1_2 ) ,"Stack" ,sep=" | " ) print("-" * (3_0 + len(_lowerCAmelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_lowerCAmelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) ,("push(" + x + ")").ljust(1_2 ) ,",".join(_lowerCAmelCase ) ,sep=" | " ) else: lowerCAmelCase : str = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) ,("pop(" + b + ")").ljust(1_2 ) ,",".join(_lowerCAmelCase ) ,sep=" | " ) lowerCAmelCase : int = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) ,("pop(" + a + ")").ljust(1_2 ) ,",".join(_lowerCAmelCase ) ,sep=" | " ) stack.append( str(opr[x](int(_lowerCAmelCase ) ,int(_lowerCAmelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) ,("push(" + a + x + b + ")").ljust(1_2 ) ,",".join(_lowerCAmelCase ) ,sep=" | " ,) return int(stack[0] ) if __name__ == "__main__": lowerCAmelCase = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
525
'''simple docstring''' def _A ( _lowerCAmelCase = 50 ): """simple docstring""" __lowercase =[[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"{solution() = }")
474
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : int = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ["""PerceiverFeatureExtractor"""] __UpperCamelCase : Any = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
701
def a_ ( _A , _A ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(_A ) , _A ) return number - int(_A ) if __name__ == "__main__": print(decimal_isolate(1.5_3, 0)) print(decimal_isolate(3_5.3_4_5, 1)) print(decimal_isolate(3_5.3_4_5, 2)) print(decimal_isolate(3_5.3_4_5, 3)) print(decimal_isolate(-1_4.7_8_9, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-1_4.1_2_3, 1)) print(decimal_isolate(-1_4.1_2_3, 2)) print(decimal_isolate(-1_4.1_2_3, 3))
372
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
283
def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :int )->int: '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def _lowerCAmelCase ( )->None: '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
283
1
from collections import deque def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Dict = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = deque() UpperCAmelCase_ : Dict = [False for _ in range(_SCREAMING_SNAKE_CASE )] UpperCAmelCase_ : Optional[Any] = [-1 for _ in range(_SCREAMING_SNAKE_CASE )] UpperCAmelCase_ : Tuple = index_of[:] def strong_connect(_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase_ : Dict = index # the number when this node is seen UpperCAmelCase_ : str = index # lowest rank node reachable from here index += 1 stack.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = True for w in g[v]: if index_of[w] == -1: UpperCAmelCase_ : Union[str, Any] = strong_connect(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCAmelCase_ : int = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[Any] = stack.pop() UpperCAmelCase_ : Union[str, Any] = False component.append(_SCREAMING_SNAKE_CASE ) while w != v: UpperCAmelCase_ : Union[str, Any] = stack.pop() UpperCAmelCase_ : str = False component.append(_SCREAMING_SNAKE_CASE ) components.append(_SCREAMING_SNAKE_CASE ) return index UpperCAmelCase_ : List[str] = [] for v in range(_SCREAMING_SNAKE_CASE ): if index_of[v] == -1: strong_connect(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return components def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for u, v in edges: g[u].append(_SCREAMING_SNAKE_CASE ) return g if __name__ == "__main__": # Test _lowerCamelCase = 7 _lowerCamelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6] _lowerCamelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5] _lowerCamelCase = [(u, v) for u, v in zip(source, target)] _lowerCamelCase = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
715
'''simple docstring''' import csv import tweepy # Twitter API credentials _lowerCamelCase = """""" _lowerCamelCase = """""" _lowerCamelCase = """""" _lowerCamelCase = """""" def a__ ( _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" UpperCAmelCase_ : List[Any] = tweepy.OAuthHandler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) auth.set_access_token(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = tweepy.API(_SCREAMING_SNAKE_CASE ) # initialize a list to hold all the tweepy Tweets UpperCAmelCase_ : str = [] # make initial request for most recent tweets (200 is the maximum allowed count) UpperCAmelCase_ : Dict = api.user_timeline(screen_name=_SCREAMING_SNAKE_CASE , count=2_00 ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # save the id of the oldest tweet less one UpperCAmelCase_ : Any = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_SCREAMING_SNAKE_CASE ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates UpperCAmelCase_ : Tuple = api.user_timeline( screen_name=_SCREAMING_SNAKE_CASE , count=2_00 , max_id=_SCREAMING_SNAKE_CASE ) # save most recent tweets alltweets.extend(_SCREAMING_SNAKE_CASE ) # update the id of the oldest tweet less one UpperCAmelCase_ : Optional[int] = alltweets[-1].id - 1 print(F'''...{len(_SCREAMING_SNAKE_CASE )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv UpperCAmelCase_ : str = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , "w" ) as f: UpperCAmelCase_ : str = csv.writer(_SCREAMING_SNAKE_CASE ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
323
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = ['image_processor', 'tokenizer'] snake_case__ :List[Any] = 'ChineseCLIPImageProcessor' snake_case__ :Optional[int] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Dict , __magic_name__ : List[str]=None , __magic_name__ : List[Any]=None , **__magic_name__ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __magic_name__ , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = self.image_processor def __call__( self : List[Any] , __magic_name__ : Tuple=None , __magic_name__ : Any=None , __magic_name__ : str=None , **__magic_name__ : List[str] ): """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowerCAmelCase__ = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: lowerCAmelCase__ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: lowerCAmelCase__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any , *__magic_name__ : str , **__magic_name__ : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.model_input_names lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __magic_name__ , ) return self.image_processor_class
48
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar("""T""") def _snake_case (__lowercase): return (position - 1) // 2 def _snake_case (__lowercase): return (2 * position) + 1 def _snake_case (__lowercase): return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = [] UpperCamelCase_ = {} UpperCamelCase_ = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def _UpperCAmelCase ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase_ = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase_ , UpperCamelCase_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase_ , UpperCamelCase_ = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Update the weight of the given key UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ = (elem, weight) if position > 0: UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase_ = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase_ = get_parent_position(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ , UpperCamelCase_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase_ = self.position_map[elem] UpperCamelCase_ , UpperCamelCase_ = self.heap[curr_pos] UpperCamelCase_ = get_child_left_position(_UpperCAmelCase ) UpperCamelCase_ = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: UpperCamelCase_ , UpperCamelCase_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Swap the nodes at the given positions UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ = self.heap[nodea_pos][0] UpperCamelCase_ , UpperCamelCase_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase_ = nodea_pos UpperCamelCase_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: UpperCamelCase_ = {} UpperCamelCase_ = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def _UpperCAmelCase ( self , _UpperCAmelCase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase_ = {} self.nodes += 1 def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) UpperCamelCase_ = weight UpperCamelCase_ = weight def _snake_case (__lowercase , ): UpperCamelCase_ = {node: maxsize for node in graph.connections} UpperCamelCase_ = {node: None for node in graph.connections} UpperCamelCase_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowercase , __lowercase) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase_ = priority_queue.extract_min() UpperCamelCase_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowercase , dist[neighbour]) UpperCamelCase_ = node return dist, parent
23
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase__ : Optional[int] = logging.get_logger(__name__) class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Dict =["""pixel_values"""] def __init__( self : Union[str, Any] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 3_2 , UpperCAmelCase__ : Tuple=PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Optional[Any] , ) ->None: """simple docstring""" SCREAMING_SNAKE_CASE : int = do_resize SCREAMING_SNAKE_CASE : List[Any] = do_rescale SCREAMING_SNAKE_CASE : List[str] = size_divisor SCREAMING_SNAKE_CASE : Any = resample super().__init__(**UpperCAmelCase__ ) def _lowercase ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : Optional[int] ) ->np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : int = get_image_size(UpperCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor SCREAMING_SNAKE_CASE : Any = height // size_divisor * size_divisor SCREAMING_SNAKE_CASE : Optional[int] = width // size_divisor * size_divisor SCREAMING_SNAKE_CASE : Dict = resize(UpperCAmelCase__ , (new_h, new_w) , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) return image def _lowercase ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float , UpperCAmelCase__ : Optional[ChannelDimension] = None , **UpperCAmelCase__ : List[Any] ) ->np.ndarray: """simple docstring""" return rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[TensorType, str]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : Tuple , ) ->BatchFeature: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : List[Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : str = size_divisor if size_divisor is not None else self.size_divisor SCREAMING_SNAKE_CASE : Optional[int] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) SCREAMING_SNAKE_CASE : int = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : List[str] = [to_numpy_array(UpperCAmelCase__ ) for img in images] if do_resize: SCREAMING_SNAKE_CASE : Optional[int] = [self.resize(UpperCAmelCase__ , size_divisor=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : int = [self.rescale(UpperCAmelCase__ , scale=1 / 2_5_5 ) for image in images] SCREAMING_SNAKE_CASE : List[str] = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
712
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : int = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Any ="""gpt_neox_japanese""" def __init__( self : Any , UpperCAmelCase__ : Any=3_2_0_0_0 , UpperCAmelCase__ : Dict=2_5_6_0 , UpperCAmelCase__ : List[str]=3_2 , UpperCAmelCase__ : Optional[int]=3_2 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Optional[int]=1.00 , UpperCAmelCase__ : List[Any]=1_0_0_0_0 , UpperCAmelCase__ : Tuple=2_0_4_8 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Tuple=3_1_9_9_6 , UpperCAmelCase__ : Tuple=3_1_9_9_9 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Union[str, Any]=0.0 , **UpperCAmelCase__ : Optional[Any] , ) ->Optional[Any]: """simple docstring""" super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_multiple_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Any = rotary_pct SCREAMING_SNAKE_CASE : Tuple = rotary_emb_base SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : str = hidden_dropout
446
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : List[str] = logging.get_logger(__name__) __A : str = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : List[Any] , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : int=[256, 512, 1024, 2048] , __lowerCamelCase : Dict=[3, 4, 6, 3] , __lowerCamelCase : List[str]="bottleneck" , __lowerCamelCase : Optional[int]="relu" , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]=None , **__lowerCamelCase : Union[str, Any] , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : List[Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Union[str, Any] ): return 1e-3
16
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _lowerCamelCase : Any = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _lowerCamelCase : Tuple = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) _lowerCamelCase : List[Any] = """|""".join(sys.argv[1:]) _lowerCamelCase : Dict = re.compile(rF'''^({joined_dirs}).*?\.py$''') _lowerCamelCase : Dict = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
177
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''xlm''' UpperCAmelCase__ = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self : Tuple , UpperCAmelCase__ : Optional[Any]=30_145 , UpperCAmelCase__ : List[str]=2_048 , UpperCAmelCase__ : str=12 , UpperCAmelCase__ : List[Any]=16 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : str=False , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Union[str, Any]=512 , UpperCAmelCase__ : List[str]=2_048**-0.5 , UpperCAmelCase__ : List[Any]=1e-12 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : str=0 , UpperCAmelCase__ : int=1 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : int=5 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Tuple="first" , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Any=5 , UpperCAmelCase__ : List[Any]=5 , UpperCAmelCase__ : int=0 , UpperCAmelCase__ : Dict=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : str=0 , **UpperCAmelCase__ : List[str] , ) ->str: '''simple docstring''' A__ = vocab_size A__ = emb_dim A__ = n_layers A__ = n_heads A__ = dropout A__ = attention_dropout A__ = gelu_activation A__ = sinusoidal_embeddings A__ = causal A__ = asm A__ = n_langs A__ = use_lang_emb A__ = layer_norm_eps A__ = bos_index A__ = eos_index A__ = pad_index A__ = unk_index A__ = mask_index A__ = is_encoder A__ = max_position_embeddings A__ = embed_init_std A__ = init_std A__ = summary_type A__ = summary_use_proj A__ = summary_activation A__ = summary_proj_to_labels A__ = summary_first_dropout A__ = start_n_top A__ = end_n_top A__ = mask_token_id A__ = lang_id if "n_words" in kwargs: A__ = kwargs['''n_words'''] super().__init__(pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE ( self : Dict) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
177
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ : List[str] = logging.get_logger(__name__) def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Dict = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): SCREAMING_SNAKE_CASE__ : Tuple = key.replace("""module.encoder""" ,"""glpn.encoder""" ) if key.startswith("""module.decoder""" ): SCREAMING_SNAKE_CASE__ : Dict = key.replace("""module.decoder""" ,"""decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 SCREAMING_SNAKE_CASE__ : Optional[int] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] SCREAMING_SNAKE_CASE__ : int = key.replace(f'''patch_embed{idx}''' ,f'''patch_embeddings.{int(_snake_case )-1}''' ) if "norm" in key: SCREAMING_SNAKE_CASE__ : Tuple = key.replace("""norm""" ,"""layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 SCREAMING_SNAKE_CASE__ : str = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] SCREAMING_SNAKE_CASE__ : Optional[Any] = key.replace(f'''layer_norm{idx}''' ,f'''layer_norm.{int(_snake_case )-1}''' ) if "layer_norm1" in key: SCREAMING_SNAKE_CASE__ : List[Any] = key.replace("""layer_norm1""" ,"""layer_norm_1""" ) if "layer_norm2" in key: SCREAMING_SNAKE_CASE__ : str = key.replace("""layer_norm2""" ,"""layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 SCREAMING_SNAKE_CASE__ : List[str] = key[key.find("""block""" ) + len("""block""" )] SCREAMING_SNAKE_CASE__ : Union[str, Any] = key.replace(f'''block{idx}''' ,f'''block.{int(_snake_case )-1}''' ) if "attn.q" in key: SCREAMING_SNAKE_CASE__ : Union[str, Any] = key.replace("""attn.q""" ,"""attention.self.query""" ) if "attn.proj" in key: SCREAMING_SNAKE_CASE__ : Tuple = key.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in key: SCREAMING_SNAKE_CASE__ : Optional[Any] = key.replace("""attn""" ,"""attention.self""" ) if "fc1" in key: SCREAMING_SNAKE_CASE__ : Union[str, Any] = key.replace("""fc1""" ,"""dense1""" ) if "fc2" in key: SCREAMING_SNAKE_CASE__ : Optional[int] = key.replace("""fc2""" ,"""dense2""" ) if "linear_pred" in key: SCREAMING_SNAKE_CASE__ : List[Any] = key.replace("""linear_pred""" ,"""classifier""" ) if "linear_fuse" in key: SCREAMING_SNAKE_CASE__ : Optional[int] = key.replace("""linear_fuse.conv""" ,"""linear_fuse""" ) SCREAMING_SNAKE_CASE__ : Dict = key.replace("""linear_fuse.bn""" ,"""batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 SCREAMING_SNAKE_CASE__ : Optional[Any] = key[key.find("""linear_c""" ) + len("""linear_c""" )] SCREAMING_SNAKE_CASE__ : Optional[int] = key.replace(f'''linear_c{idx}''' ,f'''linear_c.{int(_snake_case )-1}''' ) if "bot_conv" in key: SCREAMING_SNAKE_CASE__ : List[str] = key.replace("""bot_conv""" ,"""0.convolution""" ) if "skip_conv1" in key: SCREAMING_SNAKE_CASE__ : str = key.replace("""skip_conv1""" ,"""1.convolution""" ) if "skip_conv2" in key: SCREAMING_SNAKE_CASE__ : Union[str, Any] = key.replace("""skip_conv2""" ,"""2.convolution""" ) if "fusion1" in key: SCREAMING_SNAKE_CASE__ : Any = key.replace("""fusion1""" ,"""1.fusion""" ) if "fusion2" in key: SCREAMING_SNAKE_CASE__ : List[Any] = key.replace("""fusion2""" ,"""2.fusion""" ) if "fusion3" in key: SCREAMING_SNAKE_CASE__ : Dict = key.replace("""fusion3""" ,"""3.fusion""" ) if "fusion" in key and "conv" in key: SCREAMING_SNAKE_CASE__ : Any = key.replace("""conv""" ,"""convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): SCREAMING_SNAKE_CASE__ : List[str] = key.replace("""module.last_layer_depth""" ,"""head.head""" ) SCREAMING_SNAKE_CASE__ : int = value return new_state_dict def lowercase_ ( _snake_case ,_snake_case ): for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : List[Any] = kv_weight[ : config.hidden_sizes[i], : ] SCREAMING_SNAKE_CASE__ : List[Any] = kv_bias[: config.hidden_sizes[i]] SCREAMING_SNAKE_CASE__ : Tuple = kv_weight[ config.hidden_sizes[i] :, : ] SCREAMING_SNAKE_CASE__ : Optional[int] = kv_bias[config.hidden_sizes[i] :] def lowercase_ ( ): SCREAMING_SNAKE_CASE__ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ : Optional[int] = Image.open(requests.get(_snake_case ,stream=_snake_case ).raw ) return image @torch.no_grad() def lowercase_ ( _snake_case ,_snake_case ,_snake_case=False ,_snake_case=None ): SCREAMING_SNAKE_CASE__ : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512] ,decoder_hidden_size=64 ,depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) SCREAMING_SNAKE_CASE__ : List[Any] = GLPNImageProcessor() # prepare image SCREAMING_SNAKE_CASE__ : Dict = prepare_img() SCREAMING_SNAKE_CASE__ : Optional[int] = image_processor(images=_snake_case ,return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.load(_snake_case ,map_location=torch.device("""cpu""" ) ) # rename keys SCREAMING_SNAKE_CASE__ : str = rename_keys(_snake_case ) # key and value matrices need special treatment read_in_k_v(_snake_case ,_snake_case ) # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ : Union[str, Any] = GLPNForDepthEstimation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: SCREAMING_SNAKE_CASE__ : Any = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: SCREAMING_SNAKE_CASE__ : Any = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) SCREAMING_SNAKE_CASE__ : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] ,_snake_case ,atol=1E-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(_snake_case ,_snake_case ) ,organization="""nielsr""" ,commit_message="""Add model""" ,use_temp_dir=_snake_case ,) image_processor.push_to_hub( repo_path_or_name=Path(_snake_case ,_snake_case ) ,organization="""nielsr""" ,commit_message="""Add image processor""" ,use_temp_dir=_snake_case ,) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) UpperCAmelCase__ : Optional[int] = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
223
'''simple docstring''' import os import sys import unittest _lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _lowerCAmelCase = os.path.join(git_repo_path, '''src''', '''transformers''') _lowerCAmelCase = ''' {0} = None ''' _lowerCAmelCase = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' _lowerCAmelCase = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Union[str, Any] = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(__UpperCAmelCase ,"""tokenizers""" ) lowerCAmelCase__ : Optional[Any] = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(__UpperCAmelCase ,"""tensorflow_text""" ) lowerCAmelCase__ : List[Any] = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(__UpperCAmelCase ,"""sentencepiece_and_tokenizers""" ) lowerCAmelCase__ : Optional[Any] = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(__UpperCAmelCase ,"""sentencepiece_and_tensorflow_text""" ) lowerCAmelCase__ : Union[str, Any] = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(__UpperCAmelCase ,"""sentencepiece_and_tokenizers_and_vision""" ) def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : List[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" ,__UpperCAmelCase ) self.assertIn("""tensorflow_text""" ,__UpperCAmelCase ) self.assertIn("""sentencepiece_and_tokenizers""" ,__UpperCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" ,objects["""torch"""] ) self.assertIn("""TFBertModel""" ,objects["""tf"""] ) self.assertIn("""FlaxBertModel""" ,objects["""flax"""] ) self.assertIn("""BertModel""" ,objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" ,objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" ,objects["""sentencepiece_and_tokenizers"""] ) def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Any = create_dummy_object("""CONSTANT""" ,"""'torch'""" ) self.assertEqual(__UpperCAmelCase ,"""\nCONSTANT = None\n""" ) lowerCAmelCase__ : int = create_dummy_object("""function""" ,"""'torch'""" ) self.assertEqual( __UpperCAmelCase ,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) lowerCAmelCase__ : Tuple = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ lowerCAmelCase__ : Optional[Any] = create_dummy_object("""FakeClass""" ,"""'torch'""" ) self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Tuple = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ lowerCAmelCase__ : List[str] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] ,__UpperCAmelCase )
565
0
import logging import os from .state import PartialState class __magic_name__ ( logging.LoggerAdapter): @staticmethod def UpperCAmelCase__ ( lowerCamelCase__ : int ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Any = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : Dict ) -> Tuple: '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) UpperCamelCase__ : List[Any] = kwargs.pop('''main_process_only''' , lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = kwargs.pop('''in_order''' , lowerCamelCase__ ) if self.isEnabledFor(lowerCamelCase__ ): if self._should_log(lowerCamelCase__ ): UpperCamelCase__ , UpperCamelCase__ : List[str] = self.process(lowerCamelCase__ , lowerCamelCase__ ) self.logger.log(lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) elif in_order: UpperCamelCase__ : int = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCamelCase__ , UpperCamelCase__ : int = self.process(lowerCamelCase__ , lowerCamelCase__ ) self.logger.log(lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) state.wait_for_everyone() def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ): """simple docstring""" if log_level is None: UpperCamelCase__ : Tuple = os.environ.get('''ACCELERATE_LOG_LEVEL''' , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
106
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __UpperCamelCase : Dict = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
106
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a :int = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __a (_lowerCamelCase , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = XLMRobertaTokenizer _SCREAMING_SNAKE_CASE :Dict = XLMRobertaTokenizerFast _SCREAMING_SNAKE_CASE :Optional[int] = True _SCREAMING_SNAKE_CASE :Tuple = True def _a ( self ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : int = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = '''<pad>''' SCREAMING_SNAKE_CASE__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(_A ) , 1_002 ) def _a ( self ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = XLMRobertaTokenizer(_A , keep_accents=_A ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _a ( self ) -> Union[str, Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE__ : Optional[Any] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ : str = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer_r.save_pretrained(_A ) SCREAMING_SNAKE_CASE__ : Any = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE__ : List[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ : Any = tokenizer_r.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : List[str] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ : str = tokenizer_r.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE__ : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : int = tokenizer_r.save_pretrained(_A , legacy_format=_A ) SCREAMING_SNAKE_CASE__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ : Dict = tokenizer_r.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def _a ( self ) -> Any: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def _a ( self ) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) SCREAMING_SNAKE_CASE__ : List[str] = XLMRobertaTokenizer(f.name , keep_accents=_A ) SCREAMING_SNAKE_CASE__ : List[str] = pickle.dumps(_A ) pickle.loads(_A ) def _a ( self ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : List[str] = '''I was born in 92000, and this is falsé.''' SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.tokenize(_A ) SCREAMING_SNAKE_CASE__ : Tuple = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) SCREAMING_SNAKE_CASE__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) SCREAMING_SNAKE_CASE__ : int = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode(_A ) SCREAMING_SNAKE_CASE__ : Optional[Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = '''Hello World!''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) SCREAMING_SNAKE_CASE__ : str = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
680
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Any = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__magic_name__ ) EnvironmentCommand.register_subcommand(__magic_name__ ) TestCommand.register_subcommand(__magic_name__ ) RunBeamCommand.register_subcommand(__magic_name__ ) DummyDataCommand.register_subcommand(__magic_name__ ) # Parse args lowercase , lowercase : Optional[int] = parser.parse_known_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) lowercase : int = parse_unknown_args(__magic_name__ ) # Run lowercase : str = args.func(__magic_name__ , **__magic_name__ ) service.run() if __name__ == "__main__": main()
217
0
'''simple docstring''' import functools from typing import Any def snake_case__ ( _A: str , _A: list[str] ) -> Union[str, Any]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError("""the string should be not empty string""" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all( isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0 for item in words ): raise ValueError("""the words should be a list of non-empty strings""" ) # Build trie lowerCAmelCase = {} lowerCAmelCase = """WORD_KEEPER""" for word in words: lowerCAmelCase = trie for c in word: if c not in trie_node: lowerCAmelCase = {} lowerCAmelCase = trie_node[c] lowerCAmelCase = True lowerCAmelCase = len(_lowerCamelCase ) # Dynamic programming method @functools.cache def is_breakable(_A: int ) -> bool: if index == len_string: return True lowerCAmelCase = trie for i in range(_lowerCamelCase , _lowerCamelCase ): lowerCAmelCase = trie_node.get(string[i] , _lowerCamelCase ) if trie_node is None: return False if trie_node.get(_lowerCamelCase , _lowerCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' __lowercase = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
605
0
def __lowercase ( lowerCamelCase : list ): def merge(lowerCamelCase : list , lowerCamelCase : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCamelCase ) <= 1: return collection UpperCamelCase_ : str = len(lowerCamelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ = input('Enter numbers separated by a comma:\n').strip() a_ = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
417
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
417
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _A ( _lowercase ): '''simple docstring''' def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , "num_attention_heads" ) ) class _A : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : str=13 , lowerCamelCase : Union[str, Any]=32 , lowerCamelCase : Any=2 , lowerCamelCase : int=3 , lowerCamelCase : Optional[int]=640 , lowerCamelCase : Optional[Any]=4 , lowerCamelCase : List[str]="silu" , lowerCamelCase : Any=3 , lowerCamelCase : List[Any]=32 , lowerCamelCase : int=0.1 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[Any]=0.02 , lowerCamelCase : int=True , lowerCamelCase : int=True , lowerCamelCase : int=10 , lowerCamelCase : str=None , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = last_hidden_size __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = conv_kernel_size __lowercase = output_stride __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = classifier_dropout_prob __lowercase = use_labels __lowercase = is_training __lowercase = num_labels __lowercase = initializer_range __lowercase = scope def _snake_case ( self : Tuple ): '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case ( self : Optional[Any] ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = MobileViTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Dict ): '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ): '''simple docstring''' __lowercase = self.num_labels __lowercase = MobileViTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() __lowercase = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __lowercase = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _A ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _snake_case : Optional[Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _snake_case : str = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case : Any = False _snake_case : int = False _snake_case : Tuple = False _snake_case : str = False def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase = MobileViTModelTester(self ) __lowercase = MobileViTConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def _snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def _snake_case ( self : Any ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not output attentions" ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' pass def _snake_case ( self : List[Any] ): '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : Optional[int] ): '''simple docstring''' pass def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : Any ): __lowercase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) __lowercase = outputs.hidden_states __lowercase = 5 self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __lowercase = 2 for i in range(len(lowerCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @slow def _snake_case ( self : Optional[int] ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = MobileViTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def snake_case_ ( ): __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[Any] ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def _snake_case ( self : Any ): '''simple docstring''' __lowercase = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) __lowercase = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = model.to(lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits # verify the logits __lowercase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase ) __lowercase = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase , atol=1e-4 ) ) @slow def _snake_case ( self : str ): '''simple docstring''' __lowercase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = model.to(lowerCamelCase ) __lowercase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase , return_tensors="pt" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase ) __lowercase = outputs.logits.detach().cpu() __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase , target_sizes=[(50, 60)] ) __lowercase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase ) __lowercase = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase ) __lowercase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase )
655
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
1
class UpperCamelCase_ : '''simple docstring''' def __init__( self , a ) -> Dict: snake_case_ = val snake_case_ = None snake_case_ = None def _UpperCamelCase ( self , a ) -> Union[str, Any]: if self.val: if val < self.val: if self.left is None: snake_case_ = Node(a ) else: self.left.insert(a ) elif val > self.val: if self.right is None: snake_case_ = Node(a ) else: self.right.insert(a ) else: snake_case_ = val def __UpperCAmelCase ( a_ , a_): # Recursive traversal if root: inorder(root.left , a_) res.append(root.val) inorder(root.right , a_) def __UpperCAmelCase ( a_): # Build BST if len(a_) == 0: return arr snake_case_ = Node(arr[0]) for i in range(1 , len(a_)): root.insert(arr[i]) # Traverse BST in order. snake_case_ = [] inorder(a_ , a_) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
198
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a ) -> Optional[Any]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self , a = 1 , a = None , a = 0.0 , a = 50 , a = None , a = "pil" , a = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , a ): snake_case_ = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: snake_case_ = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(a )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = randn_tensor(a , generator=a , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output snake_case_ = self.unet(a , a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ = self.scheduler.step( a , a , a , eta=a , use_clipped_model_output=a , generator=a ).prev_sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
198
1
from __future__ import annotations def UpperCAmelCase ( _snake_case ): lowerCAmelCase = str(_snake_case ) return n == n[::-1] def UpperCAmelCase ( _snake_case = 1000000 ): lowerCAmelCase = 0 for i in range(1 , _snake_case ): if is_palindrome(_snake_case ) and is_palindrome(bin(_snake_case ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
33
from __future__ import annotations from typing import Generic, TypeVar UpperCAmelCase_ =TypeVar("""T""") class __UpperCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self , UpperCAmelCase_ ): lowerCAmelCase = data lowerCAmelCase = self lowerCAmelCase = 0 class __UpperCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): # map from node name to the node object lowerCAmelCase = {} def __snake_case ( self , UpperCAmelCase_ ): # create a new set with x as its member lowerCAmelCase = DisjointSetTreeNode(UpperCAmelCase_ ) def __snake_case ( self , UpperCAmelCase_ ): # find the set x belongs to (with path-compression) lowerCAmelCase = self.map[data] if elem_ref != elem_ref.parent: lowerCAmelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): # helper function for union operation if nodea.rank > nodea.rank: lowerCAmelCase = nodea else: lowerCAmelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ ): # merge 2 disjoint sets self.link(self.find_set(UpperCAmelCase_ ) , self.find_set(UpperCAmelCase_ ) ) class __UpperCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): # connections: map from the node to the neighbouring nodes (with weights) lowerCAmelCase = {} def __snake_case ( self , UpperCAmelCase_ ): # add a node ONLY if its not present in the graph if node not in self.connections: lowerCAmelCase = {} def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # add an edge with the given weight self.add_node(UpperCAmelCase_ ) self.add_node(UpperCAmelCase_ ) lowerCAmelCase = weight lowerCAmelCase = weight def __snake_case ( self ): lowerCAmelCase = [] lowerCAmelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda UpperCAmelCase_ : x[2] ) # creating the disjoint set lowerCAmelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(UpperCAmelCase_ ) # MST generation lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = edges[index] index += 1 lowerCAmelCase = disjoint_set.find_set(UpperCAmelCase_ ) lowerCAmelCase = disjoint_set.find_set(UpperCAmelCase_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) disjoint_set.union(UpperCAmelCase_ , UpperCAmelCase_ ) return graph
33
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class __lowercase ( __lowerCamelCase ): snake_case_ = """swin2sr""" snake_case_ = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[str] ,A : Tuple=64 ,A : Tuple=1 ,A : List[Any]=3 ,A : Dict=180 ,A : int=[6, 6, 6, 6, 6, 6] ,A : Optional[Any]=[6, 6, 6, 6, 6, 6] ,A : Any=8 ,A : Optional[int]=2.0 ,A : Tuple=True ,A : int=0.0 ,A : Dict=0.0 ,A : int=0.1 ,A : List[Any]="gelu" ,A : Optional[Any]=False ,A : Union[str, Any]=0.0_2 ,A : str=1e-5 ,A : Optional[int]=2 ,A : int=1.0 ,A : Any="1conv" ,A : Tuple="pixelshuffle" ,**A : Optional[int] ,): '''simple docstring''' super().__init__(**A ) UpperCAmelCase__ : List[Any] = image_size UpperCAmelCase__ : List[str] = patch_size UpperCAmelCase__ : Dict = num_channels UpperCAmelCase__ : str = embed_dim UpperCAmelCase__ : List[Any] = depths UpperCAmelCase__ : Union[str, Any] = len(A ) UpperCAmelCase__ : str = num_heads UpperCAmelCase__ : int = window_size UpperCAmelCase__ : int = mlp_ratio UpperCAmelCase__ : Any = qkv_bias UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = drop_path_rate UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : List[Any] = use_absolute_embeddings UpperCAmelCase__ : Union[str, Any] = layer_norm_eps UpperCAmelCase__ : List[str] = initializer_range UpperCAmelCase__ : Dict = upscale UpperCAmelCase__ : str = img_range UpperCAmelCase__ : int = resi_connection UpperCAmelCase__ : str = upsampler
65
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class __lowercase ( __lowerCamelCase ): snake_case_ = ["""input_features""", """is_longer"""] def __init__( self : str ,A : Union[str, Any]=64 ,A : Tuple=48_000 ,A : Dict=480 ,A : List[str]=10 ,A : str=1_024 ,A : Any=0.0 ,A : Optional[int]=False ,A : float = 0 ,A : float = 14_000 ,A : int = None ,A : str = "fusion" ,A : str = "repeatpad" ,**A : List[Any] ,): '''simple docstring''' super().__init__( feature_size=A ,sampling_rate=A ,padding_value=A ,return_attention_mask=A ,**A ,) UpperCAmelCase__ : List[Any] = top_db UpperCAmelCase__ : Union[str, Any] = truncation UpperCAmelCase__ : Optional[int] = padding UpperCAmelCase__ : List[Any] = fft_window_size UpperCAmelCase__ : Optional[Any] = (fft_window_size >> 1) + 1 UpperCAmelCase__ : Any = hop_length UpperCAmelCase__ : List[str] = max_length_s UpperCAmelCase__ : List[Any] = max_length_s * sampling_rate UpperCAmelCase__ : List[Any] = sampling_rate UpperCAmelCase__ : Optional[int] = frequency_min UpperCAmelCase__ : Tuple = frequency_max UpperCAmelCase__ : List[str] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=A ,min_frequency=A ,max_frequency=A ,sampling_rate=A ,norm=A ,mel_scale="""htk""" ,) UpperCAmelCase__ : str = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=A ,min_frequency=A ,max_frequency=A ,sampling_rate=A ,norm="""slaney""" ,mel_scale="""slaney""" ,) def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __lowercase ( self : List[str] ,A : np.array ,A : Optional[np.array] = None ): '''simple docstring''' UpperCAmelCase__ : Dict = spectrogram( A ,window_function(self.fft_window_size ,"""hann""" ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=A ,log_mel="""dB""" ,) return log_mel_spectrogram.T def __lowercase ( self : Optional[Any] ,A : Union[str, Any] ,A : int ,A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCAmelCase__ : List[str] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCAmelCase__ : int = [0] # randomly choose index for each part UpperCAmelCase__ : Tuple = np.random.choice(ranges[0] ) UpperCAmelCase__ : Tuple = np.random.choice(ranges[1] ) UpperCAmelCase__ : str = np.random.choice(ranges[2] ) UpperCAmelCase__ : List[str] = mel[idx_front : idx_front + chunk_frames, :] UpperCAmelCase__ : List[str] = mel[idx_middle : idx_middle + chunk_frames, :] UpperCAmelCase__ : Dict = mel[idx_back : idx_back + chunk_frames, :] UpperCAmelCase__ : Optional[Any] = torch.tensor(mel[None, None, :] ) UpperCAmelCase__ : int = torch.nn.functional.interpolate( A ,size=[chunk_frames, 64] ,mode="""bilinear""" ,align_corners=A ) UpperCAmelCase__ : Dict = mel_shrink[0][0].numpy() UpperCAmelCase__ : Dict = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def __lowercase ( self : Any ,A : np.array ,A : Optional[int] ,A : Any ,A : Tuple ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCAmelCase__ : int = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCAmelCase__ : str = len(A ) - max_length UpperCAmelCase__ : Optional[Any] = np.random.randint(0 ,overflow + 1 ) UpperCAmelCase__ : Optional[int] = waveform[idx : idx + max_length] UpperCAmelCase__ : Any = self._np_extract_fbank_features(A ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCAmelCase__ : Tuple = self._np_extract_fbank_features(A ,self.mel_filters ) UpperCAmelCase__ : Optional[int] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCAmelCase__ : int = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCAmelCase__ : List[Any] = np.stack([mel, mel, mel, mel] ,axis=0 ) UpperCAmelCase__ : Any = False else: UpperCAmelCase__ : Union[str, Any] = self._random_mel_fusion(A ,A ,A ) UpperCAmelCase__ : List[str] = True else: raise NotImplementedError(f"data_truncating {truncation} not implemented" ) else: UpperCAmelCase__ : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCAmelCase__ : str = int(max_length / len(A ) ) UpperCAmelCase__ : int = np.stack(np.tile(A ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCAmelCase__ : List[Any] = int(max_length / len(A ) ) UpperCAmelCase__ : str = np.stack(np.tile(A ,A ) ) UpperCAmelCase__ : Optional[Any] = np.pad(A ,(0, max_length - waveform.shape[0]) ,mode="""constant""" ,constant_values=0 ) if truncation == "fusion": UpperCAmelCase__ : int = self._np_extract_fbank_features(A ,self.mel_filters ) UpperCAmelCase__ : List[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: UpperCAmelCase__ : Any = self._np_extract_fbank_features(A ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : str ,A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,A : str = None ,A : Optional[str] = None ,A : Optional[int] = None ,A : Optional[int] = None ,A : Optional[Union[str, TensorType]] = None ,**A : List[str] ,): '''simple docstring''' UpperCAmelCase__ : Optional[int] = truncation if truncation is not None else self.truncation UpperCAmelCase__ : Dict = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCAmelCase__ : Optional[int] = isinstance(A ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) UpperCAmelCase__ : List[str] = is_batched_numpy or ( isinstance(A ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ : str = [np.asarray(A ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A ,np.ndarray ): UpperCAmelCase__ : Any = np.asarray(A ,dtype=np.floataa ) elif isinstance(A ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase__ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ : Optional[Any] = [np.asarray(A )] # convert to mel spectrogram, truncate and pad if needed. UpperCAmelCase__ : Tuple = [ self._get_input_mel(A ,max_length if max_length else self.nb_max_samples ,A ,A ) for waveform in raw_speech ] UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Tuple = [] for mel, longer in padded_inputs: input_mel.append(A ) is_longer.append(A ) if truncation == "fusion" and sum(A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCAmelCase__ : List[str] = np.random.randint(0 ,len(A ) ) UpperCAmelCase__ : int = True if isinstance(input_mel[0] ,A ): UpperCAmelCase__ : Tuple = [np.asarray(A ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCAmelCase__ : List[str] = [[longer] for longer in is_longer] UpperCAmelCase__ : List[Any] = {"""input_features""": input_mel, """is_longer""": is_longer} UpperCAmelCase__ : str = BatchFeature(A ) if return_tensors is not None: UpperCAmelCase__ : int = input_features.convert_to_tensors(A ) return input_features
65
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , ): lowerCAmelCase_ : Tuple = {} if train_file is not None: lowerCAmelCase_ : List[Any] = [train_file] if eval_file is not None: lowerCAmelCase_ : Dict = [eval_file] if test_file is not None: lowerCAmelCase_ : List[Any] = [test_file] lowerCAmelCase_ : Optional[Any] = datasets.load_dataset("csv" , data_files=UpperCAmelCase__) lowerCAmelCase_ : Dict = list(ds[list(files.keys())[0]].features.keys()) lowerCAmelCase_ : int = features_name.pop(UpperCAmelCase__) lowerCAmelCase_ : Tuple = list(set(ds[list(files.keys())[0]][label_name])) lowerCAmelCase_ : Any = {label: i for i, label in enumerate(UpperCAmelCase__)} lowerCAmelCase_ : List[Any] = tokenizer.model_input_names lowerCAmelCase_ : Optional[Any] = {} if len(UpperCAmelCase__) == 1: for k in files.keys(): lowerCAmelCase_ : Any = ds[k].map( lambda snake_case__: tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding="max_length") , batched=UpperCAmelCase__ , ) elif len(UpperCAmelCase__) == 2: for k in files.keys(): lowerCAmelCase_ : List[Any] = ds[k].map( lambda snake_case__: tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding="max_length" , ) , batched=UpperCAmelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: lowerCAmelCase_ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} lowerCAmelCase_ : Any = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: lowerCAmelCase_ : Tuple = {k: v for k, v in ex.items() if k in input_names} lowerCAmelCase_ : Optional[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: lowerCAmelCase_ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} lowerCAmelCase_ : Any = labelaid[ex[label_name]] yield (d, label) lowerCAmelCase_ : Optional[int] = ( tf.data.Dataset.from_generator( UpperCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: lowerCAmelCase_ : List[str] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN]))) lowerCAmelCase_ : Union[str, Any] = ( tf.data.Dataset.from_generator( UpperCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: lowerCAmelCase_ : Any = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION]))) lowerCAmelCase_ : List[Any] = ( tf.data.Dataset.from_generator( UpperCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: lowerCAmelCase_ : List[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST]))) return train_ds, val_ds, test_ds, labelaid _lowercase = logging.getLogger(__name__) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = field(metadata={'help': 'Which column contains the label'} ) UpperCamelCase_ = field(default=_a , metadata={'help': 'The path of the training file'} ) UpperCamelCase_ = field(default=_a , metadata={'help': 'The path of the development file'} ) UpperCamelCase_ = field(default=_a , metadata={'help': 'The path of the test file'} ) UpperCamelCase_ = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCamelCase_ = field( default=_a , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class __snake_case : """simple docstring""" UpperCamelCase_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCamelCase_ = field( default=_a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCamelCase_ = field( default=_a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) UpperCamelCase_ = field(default=_a , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ = field( default=_a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCamelCase ( ): lowerCAmelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome.") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, ''' F'''16-bits training: {training_args.fpaa}''') logger.info(F'''Training/evaluation parameters {training_args}''') # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCAmelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) lowerCAmelCase_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCAmelCase__) , labelaid=UpperCAmelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): lowerCAmelCase_ : List[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(snake_case__) -> Dict: lowerCAmelCase_ : Union[str, Any] = np.argmax(p.predictions , axis=1) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer lowerCAmelCase_ : Optional[int] = TFTrainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=UpperCAmelCase__ , eval_dataset=UpperCAmelCase__ , compute_metrics=UpperCAmelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir) # Evaluation lowerCAmelCase_ : Tuple = {} if training_args.do_eval: logger.info("*** Evaluate ***") lowerCAmelCase_ : List[str] = trainer.evaluate() lowerCAmelCase_ : Dict = os.path.join(training_args.output_dir , "eval_results.txt") with open(UpperCAmelCase__ , "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(F''' {key} = {value}''') writer.write(F'''{key} = {value}\n''') results.update(UpperCAmelCase__) return results if __name__ == "__main__": main()
714
from __future__ import annotations from random import random class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : int | None = None ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = value lowerCAmelCase_ : Any = random() lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def __repr__( self : Any ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} ,indent=1 ) def __str__( self : str ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = str(self.value ) + " " lowerCAmelCase_ : List[Any] = str(self.left or "" ) lowerCAmelCase_ : Union[str, Any] = str(self.right or "" ) return value + left + right def UpperCamelCase ( snake_case__ , snake_case__): if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase_ , lowerCAmelCase_ : Any = split(root.left , snake_case__) return left, root else: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = split(root.right , snake_case__) return root, right def UpperCamelCase ( snake_case__ , snake_case__): if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase_ : Dict = merge(left.right , snake_case__) return left else: lowerCAmelCase_ : List[str] = merge(snake_case__ , right.left) return right def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = Node(snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = split(snake_case__ , snake_case__) return merge(merge(snake_case__ , snake_case__) , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = split(snake_case__ , value - 1) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = split(snake_case__ , snake_case__) return merge(snake_case__ , snake_case__) def UpperCamelCase ( snake_case__): if not root: # None return else: inorder(root.left) print(root.value , end=",") inorder(root.right) def UpperCamelCase ( snake_case__ , snake_case__): for arg in args.split(): if arg[0] == "+": lowerCAmelCase_ : List[str] = insert(snake_case__ , int(arg[1:])) elif arg[0] == "-": lowerCAmelCase_ : Optional[int] = erase(snake_case__ , int(arg[1:])) else: print("Unknown command") return root def UpperCamelCase ( ): lowerCAmelCase_ : str = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. 'q' to quit. ") lowerCAmelCase_ : str = input() while args != "q": lowerCAmelCase_ : int = interact_treap(snake_case__ , snake_case__) print(snake_case__) lowerCAmelCase_ : str = input() print("good by!") if __name__ == "__main__": import doctest doctest.testmod() main()
683
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : Any = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class A__ ( __snake_case ): '''simple docstring''' def __lt__( self : int , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" return self[-1] < other[-1] def __eq__( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" return self[-1] == other[-1] def lowercase__ ( _UpperCamelCase) -> list: """simple docstring""" UpperCamelCase = [] # sort into stacks for element in collection: UpperCamelCase = Stack([element]) UpperCamelCase = bisect_left(_UpperCamelCase , _UpperCamelCase) if i != len(_UpperCamelCase): stacks[i].append(_UpperCamelCase) else: stacks.append(_UpperCamelCase) # use a heap-based merge to merge stack efficiently UpperCamelCase = merge(*(reversed(_UpperCamelCase) for stack in stacks)) return collection if __name__ == "__main__": __magic_name__ : str = input('''Enter numbers separated by a comma:\n''').strip() __magic_name__ : Any = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
410
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) UpperCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = -1 UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCamelCase = TextStreamer(_SCREAMING_SNAKE_CASE ) model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=_SCREAMING_SNAKE_CASE , streamer=_SCREAMING_SNAKE_CASE ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCamelCase = cs.out[:-1] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) UpperCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = -1 UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.decode(greedy_ids[0] ) UpperCamelCase = TextIteratorStreamer(_SCREAMING_SNAKE_CASE ) UpperCamelCase = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} UpperCamelCase = Thread(target=model.generate , kwargs=_SCREAMING_SNAKE_CASE ) thread.start() UpperCamelCase = '' for new_text in streamer: streamer_text += new_text self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) UpperCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = -1 UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=_SCREAMING_SNAKE_CASE ) UpperCamelCase = greedy_ids[:, input_ids.shape[1] :] UpperCamelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCamelCase = TextStreamer(_SCREAMING_SNAKE_CASE , skip_prompt=_SCREAMING_SNAKE_CASE ) model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=10 , do_sample=_SCREAMING_SNAKE_CASE , streamer=_SCREAMING_SNAKE_CASE ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCamelCase = cs.out[:-1] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained('distilgpt2' ) UpperCamelCase = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = -1 UpperCamelCase = torch.ones((1, 5) , device=_SCREAMING_SNAKE_CASE ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCamelCase = TextStreamer(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) model.generate(_SCREAMING_SNAKE_CASE , max_new_tokens=1 , do_sample=_SCREAMING_SNAKE_CASE , streamer=_SCREAMING_SNAKE_CASE ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCamelCase = cs.out[:-1] # Remove the final "\n" UpperCamelCase = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) UpperCamelCase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = -1 UpperCamelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = TextIteratorStreamer(_SCREAMING_SNAKE_CASE , timeout=0.0_0_1 ) UpperCamelCase = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} UpperCamelCase = Thread(target=model.generate , kwargs=_SCREAMING_SNAKE_CASE ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase = '' for new_text in streamer: streamer_text += new_text
410
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
209
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCamelCase_ = '''.''' if __name__ == "__main__": UpperCamelCase_ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') UpperCamelCase_ = [] UpperCamelCase_ = [] with open(doctest_file_path) as fp: for line in fp: UpperCamelCase_ = line.strip() UpperCamelCase_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCamelCase_ = '''\n'''.join(non_existent_paths) raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
209
1
'''simple docstring''' from math import sqrt def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> bool: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" snake_case = True # 0 and 1 are none primes. if number <= 1: snake_case = False for divisor in range(2 , int(round(sqrt(__snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: snake_case = False break # precondition assert isinstance(__snake_case , __snake_case ), "'status' must been from type bool" return status def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> Dict: assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N snake_case = list(range(2 , n + 1 ) ) snake_case = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__snake_case ) ): for j in range(i + 1 , len(__snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): snake_case = 0 # filters actual prime numbers. snake_case = [x for x in begin_list if x != 0] # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> List[str]: assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" snake_case = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__snake_case ): ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def __lowerCamelCase ( __lowerCAmelCase : Optional[int] ) -> Optional[int]: assert isinstance(__snake_case , __snake_case ) and number >= 0, "'number' must been an int and >= 0" snake_case = [] # this list will be returns of the function. # potential prime number factors. snake_case = 2 snake_case = number if number == 0 or number == 1: ans.append(__snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__snake_case ): while quotient != 1: if is_prime(__snake_case ) and (quotient % factor == 0): ans.append(__snake_case ) quotient /= factor else: factor += 1 else: ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case = 0 # prime factorization of 'number' snake_case = prime_factorization(__snake_case ) snake_case = max(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> int: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case = 0 # prime factorization of 'number' snake_case = prime_factorization(__snake_case ) snake_case = min(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , __snake_case ), "compare bust been from type bool" return number % 2 == 0 def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , __snake_case ), "compare bust been from type bool" return number % 2 != 0 def __lowerCamelCase ( __lowerCAmelCase : str ) -> str: assert ( isinstance(__snake_case , __snake_case ) and (number > 2) and is_even(__snake_case ) ), "'number' must been an int, even and > 2" snake_case = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' snake_case = get_prime_numbers(__snake_case ) snake_case = len(__snake_case ) # run variable for while-loops. snake_case = 0 snake_case = None # exit variable. for break up the loops snake_case = True while i < len_pn and loop: snake_case = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: snake_case = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and (len(__snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] ) -> str: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." snake_case = 0 while numbera != 0: snake_case = numbera % numbera snake_case = numbera snake_case = rest # precondition assert isinstance(__snake_case , __snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] ) -> List[str]: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." snake_case = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' snake_case = prime_factorization(__snake_case ) snake_case = prime_factorization(__snake_case ) elif numbera == 1 or numbera == 1: snake_case = [] snake_case = [] snake_case = max(__snake_case , __snake_case ) snake_case = 0 snake_case = 0 snake_case = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: snake_case = prime_fac_a.count(__snake_case ) snake_case = prime_fac_a.count(__snake_case ) for _ in range(max(__snake_case , __snake_case ) ): ans *= n else: snake_case = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: snake_case = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> Tuple: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'number' must been a positive int" snake_case = 0 snake_case = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__snake_case ): ans += 1 # precondition assert isinstance(__snake_case , __snake_case ) and is_prime( __snake_case ), "'ans' must been a prime number and from type int" return ans def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] ) -> Tuple: assert ( is_prime(__snake_case ) and is_prime(__snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" snake_case = p_number_a + 1 # jump to the next number snake_case = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__snake_case ): number += 1 while number < p_number_a: ans.append(__snake_case ) number += 1 # fetch the next prime number. while not is_prime(__snake_case ): number += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and ans[0] != p_number_a and ans[len(__snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> List[Any]: assert isinstance(__snake_case , __snake_case ) and (n >= 1), "'n' must been int and >= 1" snake_case = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__snake_case ) # precondition assert ans[0] == 1 and ans[len(__snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> str: assert isinstance(__snake_case , __snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" snake_case = get_divisors(__snake_case ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (divisors[0] == 1) and (divisors[len(__snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Dict ) -> Optional[Any]: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. snake_case = gcd(abs(__snake_case ) , abs(__snake_case ) ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __lowerCamelCase ( __lowerCAmelCase : int ) -> Optional[Any]: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been a int and >= 0" snake_case = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def __lowerCamelCase ( __lowerCAmelCase : List[Any] ) -> Union[str, Any]: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been an int and >= 0" snake_case = 0 snake_case = 1 snake_case = 1 # this will be return for _ in range(n - 1 ): snake_case = ans ans += fiba snake_case = tmp return ans
712
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: snake_case = ksize + 1 snake_case = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__lowerCAmelCase ): for x in range(__lowerCAmelCase ): # distance from center snake_case = x - ksize // 2 snake_case = y - ksize // 2 # degree to radiant snake_case = theta / 1_80 * np.pi snake_case = np.cos(_theta ) snake_case = np.sin(_theta ) # get kernel x snake_case = cos_theta * px + sin_theta * py # get kernel y snake_case = -sin_theta * px + cos_theta * py # fill kernel snake_case = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _SCREAMING_SNAKE_CASE = imread("../image_data/lena.jpg") # turn image in gray scale value _SCREAMING_SNAKE_CASE = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _SCREAMING_SNAKE_CASE = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: _SCREAMING_SNAKE_CASE = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _SCREAMING_SNAKE_CASE = out / out.max() * 255 _SCREAMING_SNAKE_CASE = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
517
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_5_0, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_0_0, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_0_0, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=__UpperCamelCase , ) assert hasattr(self , 'env' ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings snake_case_ = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__UpperCamelCase , instance_count=__UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCamelCase , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__UpperCamelCase , py_version='py36' , ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" TrainingJobAnalytics(__UpperCamelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __lowerCAmelCase ( self , __UpperCamelCase ): """simple docstring""" snake_case_ = self.create_estimator(__UpperCamelCase ) # run training estimator.fit() # result dataframe snake_case_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case_ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) snake_case_ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __UpperCamelCase )
187
from __future__ import annotations def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): snake_case_ , snake_case_ = array[indexa], array[indexa] def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if length > 1: snake_case_ = int(length / 2 ) for i in range(lowercase__ , low + middle ): comp_and_swap(lowercase__ , lowercase__ , i + middle , lowercase__ ) bitonic_merge(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) bitonic_merge(lowercase__ , low + middle , lowercase__ , lowercase__ ) def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if length > 1: snake_case_ = int(length / 2 ) bitonic_sort(lowercase__ , lowercase__ , lowercase__ , 1 ) bitonic_sort(lowercase__ , low + middle , lowercase__ , 0 ) bitonic_merge(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if __name__ == "__main__": A = input('Enter numbers separated by a comma:\n').strip() A = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
187
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
515
def __lowerCamelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: while second != 0: __UpperCamelCase : int = first & second first ^= second __UpperCamelCase : Dict = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = int(input('Enter the first number: ').strip()) UpperCamelCase = int(input('Enter the second number: ').strip()) print(F"""{add(first, second) = }""")
515
1
from __future__ import annotations def lowerCamelCase__ ( __lowerCamelCase : tuple[int, int] , __lowerCamelCase : int ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = position __UpperCAmelCase : Tuple = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] __UpperCAmelCase : Dict = [] for position in positions: __UpperCAmelCase , __UpperCAmelCase : Tuple = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(__lowerCamelCase ) return permissible_positions def lowerCamelCase__ ( __lowerCamelCase : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def lowerCamelCase__ ( __lowerCamelCase : list[list[int]] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : int ): if is_complete(__lowerCamelCase ): return True for position in get_valid_pos(__lowerCamelCase , len(__lowerCamelCase ) ): __UpperCAmelCase , __UpperCAmelCase : List[str] = position if board[y][x] == 0: __UpperCAmelCase : List[Any] = curr + 1 if open_knight_tour_helper(__lowerCamelCase , __lowerCamelCase , curr + 1 ): return True __UpperCAmelCase : Union[str, Any] = 0 return False def lowerCamelCase__ ( __lowerCamelCase : int ): __UpperCAmelCase : Union[str, Any] = [[0 for i in range(__lowerCamelCase )] for j in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): __UpperCAmelCase : Optional[Any] = 1 if open_knight_tour_helper(__lowerCamelCase , (i, j) , 1 ): return board __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Optional[int] = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
63
"""simple docstring""" def lowerCAmelCase_( lowercase_ : int = 10 ) -> str: if not isinstance(lowercase_ , lowercase_ ) or n < 0: raise ValueError('''Invalid input''' ) _lowerCamelCase = 10**n _lowerCamelCase = 2_84_33 * (pow(2 , 7_83_04_57 , lowercase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(1_0) = }""")
661
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Optional[int] ={ '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] =[ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCamelCase : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
237
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowerCamelCase : Dict =[ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _lowercase ( ) -> Optional[Any]: '''simple docstring''' __A : Union[str, Any] = Github(os.environ['GITHUB_TOKEN'] ) __A : Union[str, Any] = g.get_repo('huggingface/diffusers' ) __A : Optional[int] = repo.get_issues(state='open' ) for issue in open_issues: __A : Any = sorted(issue.get_comments() , key=lambda _SCREAMING_SNAKE_CASE : i.created_at , reverse=_SCREAMING_SNAKE_CASE ) __A : Optional[int] = comments[0] if len(_SCREAMING_SNAKE_CASE ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
237
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _lowerCamelCase : list[int] , _lowerCamelCase : int ) -> int: if len(_lowerCamelCase ) < k or k < 0: raise ValueError("""Invalid Input""" ) _lowerCAmelCase : str = sum(array[:k] ) for i in range(len(_lowerCamelCase ) - k ): _lowerCAmelCase : List[Any] = current_sum - array[i] + array[i + k] _lowerCAmelCase : List[Any] = max(_lowerCamelCase , _lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() UpperCamelCase_ = [randint(-10_00, 10_00) for i in range(1_00)] UpperCamelCase_ = randint(0, 1_10) print(F'The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}')
384
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class a_ (_a ): __lowerCAmelCase : List[Any] = """bart""" __lowerCAmelCase : Tuple = ["""past_key_values"""] __lowerCAmelCase : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , snake_case_=5_0_2_6_5 , snake_case_=1_0_2_4 , snake_case_=1_2 , snake_case_=4_0_9_6 , snake_case_=1_6 , snake_case_=1_2 , snake_case_=4_0_9_6 , snake_case_=1_6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_="gelu" , snake_case_=1_0_2_4 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=0.0 , snake_case_=False , snake_case_=True , snake_case_=3 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_=True , snake_case_=2 , snake_case_=2 , **snake_case_ , ): _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : int = d_model _lowerCAmelCase : Optional[Any] = encoder_ffn_dim _lowerCAmelCase : Union[str, Any] = encoder_layers _lowerCAmelCase : int = encoder_attention_heads _lowerCAmelCase : Optional[Any] = decoder_ffn_dim _lowerCAmelCase : Any = decoder_layers _lowerCAmelCase : Tuple = decoder_attention_heads _lowerCAmelCase : Optional[Any] = dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : int = activation_dropout _lowerCAmelCase : Dict = activation_function _lowerCAmelCase : Union[str, Any] = init_std _lowerCAmelCase : List[Any] = encoder_layerdrop _lowerCAmelCase : int = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : Tuple = use_cache _lowerCAmelCase : List[Any] = encoder_layers _lowerCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , snake_case_ ): _lowerCAmelCase : Dict = self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" ) class a_ (_a ): @property def __UpperCamelCase ( self ): if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Optional[int] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _lowerCAmelCase : List[str] = {0: """batch"""} _lowerCAmelCase : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _lowerCAmelCase : Optional[int] = {0: """batch""", 1: """decoder_sequence"""} _lowerCAmelCase : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase : str = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase : Tuple = self.num_layers for i in range(snake_case_ ): _lowerCAmelCase : str = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCAmelCase : int = {0: """batch""", 2: """past_sequence + sequence"""} else: _lowerCAmelCase : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def __UpperCamelCase ( self ): if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Optional[int] = super().outputs else: _lowerCAmelCase : int = super(snake_case_ , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase : str = self.num_layers for i in range(snake_case_ ): _lowerCAmelCase : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} _lowerCAmelCase : Any = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def __UpperCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): _lowerCAmelCase : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Generate decoder inputs _lowerCAmelCase : Union[str, Any] = seq_length if not self.use_past else 1 _lowerCAmelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase : List[str] = dict(**snake_case_ , **snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase : Optional[int] = common_inputs["""input_ids"""].shape _lowerCAmelCase : Tuple = common_inputs["""decoder_input_ids"""].shape[1] _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.num_attention_heads _lowerCAmelCase : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase : List[str] = decoder_seq_length + 3 _lowerCAmelCase : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase : Optional[Any] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(snake_case_ , snake_case_ )] , dim=1 ) _lowerCAmelCase : List[str] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.num_layers _lowerCAmelCase : List[str] = min(snake_case_ , snake_case_ ) _lowerCAmelCase : Tuple = max(snake_case_ , snake_case_ ) - min_num_layers _lowerCAmelCase : int = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(snake_case_ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), ) ) # TODO: test this. _lowerCAmelCase : Optional[int] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(snake_case_ , snake_case_ ): common_inputs["past_key_values"].append((torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) ) return common_inputs def __UpperCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): _lowerCAmelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowerCAmelCase , _lowerCAmelCase : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowerCAmelCase : Union[str, Any] = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase : Any = self.num_layers _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.num_attention_heads _lowerCAmelCase : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase : Optional[Any] = common_inputs["""attention_mask"""].dtype _lowerCAmelCase : List[Any] = torch.cat( [common_inputs["""attention_mask"""], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) _lowerCAmelCase : Any = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(snake_case_ ) ] return common_inputs def __UpperCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase : Optional[int] = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase : Tuple = tokenizer.num_special_tokens_to_add(snake_case_ ) _lowerCAmelCase : List[str] = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase : int = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase : Tuple = dict(tokenizer(snake_case_ , return_tensors=snake_case_ ) ) return common_inputs def __UpperCamelCase ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) elif self.task == "causal-lm": _lowerCAmelCase : Tuple = self._generate_dummy_inputs_for_causal_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) else: _lowerCAmelCase : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) return common_inputs def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase : Union[str, Any] = super()._flatten_past_key_values_(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: _lowerCAmelCase : Optional[Any] = super(snake_case_ , self )._flatten_past_key_values_( snake_case_ , snake_case_ , snake_case_ , snake_case_ )
384
1
from ....configuration_utils import PretrainedConfig from ....utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class lowerCamelCase__ ( A__ ): __lowerCamelCase = """van""" def __init__( self : Optional[int] , __a : Optional[int]=224 , __a : Dict=3 , __a : int=[7, 3, 3, 3] , __a : Optional[Any]=[4, 2, 2, 2] , __a : Any=[64, 128, 320, 512] , __a : Any=[3, 3, 12, 3] , __a : Optional[int]=[8, 8, 4, 4] , __a : List[Any]="gelu" , __a : Any=0.02 , __a : Optional[int]=1e-6 , __a : Optional[Any]=1e-2 , __a : Tuple=0.0 , __a : Union[str, Any]=0.0 , **__a : Optional[int] , ): '''simple docstring''' super().__init__(**__a ) lowerCamelCase__: str = image_size lowerCamelCase__: Tuple = num_channels lowerCamelCase__: Dict = patch_sizes lowerCamelCase__: str = strides lowerCamelCase__: List[Any] = hidden_sizes lowerCamelCase__: int = depths lowerCamelCase__: Union[str, Any] = mlp_ratios lowerCamelCase__: Optional[Any] = hidden_act lowerCamelCase__: int = initializer_range lowerCamelCase__: Tuple = layer_norm_eps lowerCamelCase__: Tuple = layer_scale_init_value lowerCamelCase__: List[Any] = drop_path_rate lowerCamelCase__: int = dropout_rate
242
class lowerCamelCase__ : def __init__( self : Dict ): '''simple docstring''' lowerCamelCase__: Dict = {} def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(__a , """ -> """ , """ -> """.join([str(__a ) for j in self.vertex[i]] ) ) def lowerCamelCase_ ( self : int , __a : int , __a : int ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(__a ) else: # else make a new vertex lowerCamelCase__: Any = [to_vertex] def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__a , __a ) def lowerCamelCase_ ( self : List[str] , __a : int , __a : list ): '''simple docstring''' lowerCamelCase__: Any = True print(__a , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__a , __a ) if __name__ == "__main__": _lowercase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
242
1
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = IFInpaintingPipeline lowerCamelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} lowerCamelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowercase_ ( self ): '''simple docstring''' return self._get_dummy_components() def lowercase_ ( self , A_ , A_=0 ): '''simple docstring''' if str(A_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(A_ ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=A_ ).manual_seed(A_ ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase_ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowercase_ ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowercase_ ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase_ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase_ ( self ): '''simple docstring''' self._test_save_load_local() def lowercase_ ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
100
0
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = IFImgaImgSuperResolutionPipeline __lowercase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) __lowercase : Optional[int] = PipelineTesterMixin.required_optional_params - {'latents'} def A__ ( self ): return self._get_superresolution_dummy_components() def A__ ( self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith("""mps""" ): UpperCAmelCase__ = torch.manual_seed(__lowercase ) else: UpperCAmelCase__ = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowercase ) ).to(__lowercase ) UpperCAmelCase__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowercase ) ).to(__lowercase ) UpperCAmelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A__ ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def A__ ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def A__ ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def A__ ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def A__ ( self ): self._test_save_load_local() def A__ ( self ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
422
"""simple docstring""" import math a : str = 10 a : List[Any] = 7 a : Tuple = BALLS_PER_COLOUR * NUM_COLOURS def snake_case__ ( _SCREAMING_SNAKE_CASE = 2_0 ) ->str: UpperCAmelCase__ = math.comb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
422
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _snake_case : def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> List[str]: return None class _snake_case : def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a) -> int: return None class _snake_case ( unittest.TestCase ): _lowercase : Optional[int] = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self) -> Any: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(a , 'tf' , 12 , **a) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(a , 'pt' , 12 , **a) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self) -> int: from transformers import BertModel SCREAMING_SNAKE_CASE = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t') as vocab_file: vocab_file.write('\n'.join(a)) vocab_file.flush() SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name) with TemporaryDirectory() as bert_save_dir: SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(a))) model.save_pretrained(a) self._test_export(a , 'pt' , 12 , a) @require_tf @slow def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(a , 'tf' , 12 , **a) SCREAMING_SNAKE_CASE = quantize(Path(a)) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(a).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model') @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self) -> Dict: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: SCREAMING_SNAKE_CASE = self._test_export(a , 'pt' , 12 , **a) SCREAMING_SNAKE_CASE = quantize(a) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(a).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model') def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a=None , **a) -> List[Any]: try: # Compute path with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE = Path(a).joinpath('model.onnx') # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(a , a , a , a , a , **a) return path except Exception as e: self.fail(a) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self) -> int: from transformers import BertModel SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random')) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random') self._test_infer_dynamic_axis(a , a , 'pt') @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: from transformers import TFBertModel SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random')) SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random') self._test_infer_dynamic_axis(a , a , 'tf') def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> int: SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(a , a) SCREAMING_SNAKE_CASE = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(a , a) # Assert all variables are present self.assertEqual(len(a) , len(a)) self.assertTrue(all(var_name in shapes for var_name in variable_names)) self.assertSequenceEqual(variable_names[:3] , a) self.assertSequenceEqual(variable_names[3:] , a) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'}) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'}) self.assertDictEqual(shapes['output_1'] , {0: 'batch'}) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask', 'token_type_ids'] SCREAMING_SNAKE_CASE = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , a , a) # Should have exactly the same number of args (all are valid) self.assertEqual(len(a) , 3) # Should have exactly the same input names self.assertEqual(set(a) , set(a)) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(a , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask'])) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , a , a) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(a) , 1) self.assertEqual(len(a) , 1) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids']) self.assertEqual(ordered_input_names[0] , 'input_ids') def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = generate_identified_filename(Path('/home/something/my_fake_model.onnx') , '-test') self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix())
73
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _snake_case = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _snake_case = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _snake_case = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: List[str]=True , __lowerCamelCase: Tuple=False ) -> str: if rouge_types is None: __UpperCAmelCase : Optional[Any] = ["rouge1", "rouge2", "rougeL", "rougeLsum"] __UpperCAmelCase : Tuple = rouge_scorer.RougeScorer(rouge_types=__lowerCamelCase , use_stemmer=__lowerCamelCase ) if use_aggregator: __UpperCAmelCase : Union[str, Any] = scoring.BootstrapAggregator() else: __UpperCAmelCase : str = [] for ref, pred in zip(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Dict = scorer.score(__lowerCamelCase , __lowerCamelCase ) if use_aggregator: aggregator.add_scores(__lowerCamelCase ) else: scores.append(__lowerCamelCase ) if use_aggregator: __UpperCAmelCase : Tuple = aggregator.aggregate() else: __UpperCAmelCase : Union[str, Any] = {} for key in scores[0]: __UpperCAmelCase : Dict = [score[key] for score in scores] return result
382
0
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ = tf.data.AUTOTUNE def lowerCamelCase ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" ,type=_snake_case ,default="roberta-base" ,help="The model config to use. Note that we don't copy the model's weights, only the config!" ,) parser.add_argument( "--tokenizer" ,type=_snake_case ,default="unigram-tokenizer-wikitext" ,help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." ,) parser.add_argument( "--per_replica_batch_size" ,type=_snake_case ,default=8 ,help="Batch size per TPU core." ,) parser.add_argument( "--no_tpu" ,action="store_true" ,help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." ,) parser.add_argument( "--tpu_name" ,type=_snake_case ,help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." ,default="local" ,) parser.add_argument( "--tpu_zone" ,type=_snake_case ,help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." ,) parser.add_argument( "--gcp_project" ,type=_snake_case ,help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" ,action="store_true" ,help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." ,) parser.add_argument( "--train_dataset" ,type=_snake_case ,help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." ,) parser.add_argument( "--shuffle_buffer_size" ,type=_snake_case ,default=2**18 ,help="Size of the shuffle buffer (in samples)" ,) parser.add_argument( "--eval_dataset" ,type=_snake_case ,help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." ,) parser.add_argument( "--num_epochs" ,type=_snake_case ,default=1 ,help="Number of epochs to train for." ,) parser.add_argument( "--learning_rate" ,type=_snake_case ,default=1e-4 ,help="Learning rate to use for training." ,) parser.add_argument( "--weight_decay_rate" ,type=_snake_case ,default=1e-3 ,help="Weight decay rate to use for training." ,) parser.add_argument( "--max_length" ,type=_snake_case ,default=512 ,help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" ,) parser.add_argument( "--mlm_probability" ,type=_snake_case ,default=0.15 ,help="Fraction of tokens to mask during training." ,) parser.add_argument("--output_dir" ,type=_snake_case ,required=_snake_case ,help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" ,type=_snake_case ,help="Model ID to upload to on the Hugging Face Hub." ) lowercase__ = parser.parse_args() return args def lowerCamelCase ( _snake_case : Optional[Any] ): '''simple docstring''' try: if args.tpu_name: lowercase__ = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name ,zone=args.tpu_zone ,project=args.gcp_project ) else: lowercase__ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(_snake_case ) tf.tpu.experimental.initialize_tpu_system(_snake_case ) return tpu def lowerCamelCase ( _snake_case : str ): '''simple docstring''' lowercase__ = 0 for file in file_list: lowercase__ = file.split("/" )[-1] lowercase__ = re.search(R"-\d+-(\d+)\.tfrecord" ,_snake_case ).group(1 ) lowercase__ = int(_snake_case ) num_samples += sample_count return num_samples def lowerCamelCase ( _snake_case : Union[str, Any] ,_snake_case : List[Any] ,_snake_case : int ,_snake_case : str ,_snake_case : Optional[int] ,_snake_case : Any=None ): '''simple docstring''' lowercase__ = count_samples(_snake_case ) lowercase__ = tf.data.Dataset.from_tensor_slices(_snake_case ) if shuffle: lowercase__ = dataset.shuffle(len(_snake_case ) ) lowercase__ = tf.data.TFRecordDataset(_snake_case ,num_parallel_reads=_snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase__ = dataset.apply(tf.data.experimental.assert_cardinality(_snake_case ) ) lowercase__ = dataset.map(_snake_case ,num_parallel_calls=_snake_case ) if shuffle: assert shuffle_buffer_size is not None lowercase__ = dataset.shuffle(args.shuffle_buffer_size ) lowercase__ = dataset.batch(_snake_case ,drop_remainder=_snake_case ) lowercase__ = dataset.map(_snake_case ,num_parallel_calls=_snake_case ) lowercase__ = dataset.prefetch(_snake_case ) return dataset def lowerCamelCase ( _snake_case : int ): '''simple docstring''' if not args.no_tpu: lowercase__ = initialize_tpu(_snake_case ) lowercase__ = tf.distribute.TPUStrategy(_snake_case ) else: lowercase__ = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) lowercase__ = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase__ = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase__ = tokenizer.vocab_size lowercase__ = tf.io.gfile.glob(os.path.join(args.train_dataset ,"*.tfrecord" ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) lowercase__ = tf.io.gfile.glob(os.path.join(args.eval_dataset ,"*.tfrecord" ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) lowercase__ = count_samples(_snake_case ) lowercase__ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase__ = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase__ = TFAutoModelForMaskedLM.from_config(_snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase__ , lowercase__ = create_optimizer( num_train_steps=_snake_case ,num_warmup_steps=total_train_steps // 20 ,init_lr=args.learning_rate ,weight_decay_rate=args.weight_decay_rate ,) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_snake_case ,metrics=["accuracy"] ) def decode_fn(_snake_case : List[str] ): lowercase__ = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa ,shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa ,shape=(args.max_length,) ), } return tf.io.parse_single_example(_snake_case ,_snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase__ = DataCollatorForLanguageModeling( tokenizer=_snake_case ,mlm_probability=args.mlm_probability ,mlm=_snake_case ,return_tensors="tf" ) def mask_with_collator(_snake_case : Optional[int] ): # TF really needs an isin() function lowercase__ = ( ~tf.cast(batch["attention_mask"] ,tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) lowercase__ , lowercase__ = data_collator.tf_mask_tokens( batch["input_ids"] ,vocab_size=len(_snake_case ) ,mask_token_id=tokenizer.mask_token_id ,special_tokens_mask=_snake_case ,) return batch lowercase__ = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase__ = prepare_dataset( _snake_case ,decode_fn=_snake_case ,mask_fn=_snake_case ,batch_size=_snake_case ,shuffle=_snake_case ,shuffle_buffer_size=args.shuffle_buffer_size ,) lowercase__ = prepare_dataset( _snake_case ,decode_fn=_snake_case ,mask_fn=_snake_case ,batch_size=_snake_case ,shuffle=_snake_case ,) lowercase__ = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir ,hub_model_id=args.hub_model_id ,tokenizer=_snake_case ) ) model.fit( _snake_case ,validation_data=_snake_case ,epochs=args.num_epochs ,callbacks=_snake_case ,) model.save_pretrained(args.output_dir ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = parse_args() main(args)
710
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } SCREAMING_SNAKE_CASE__ = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } SCREAMING_SNAKE_CASE__ = { "facebook/blenderbot_small-90M": 512, } class snake_case (UpperCamelCase ): lowerCAmelCase__ :Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase__ :Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ :List[Any] = BlenderbotSmallTokenizer def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_="<|endoftext|>" ,UpperCAmelCase_="<|endoftext|>" ,UpperCAmelCase_="<|endoftext|>" ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,) -> Optional[Any]: super().__init__( ByteLevelBPETokenizer( vocab=UpperCAmelCase_ ,merges=UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ,trim_offsets=UpperCAmelCase_ ,) ,bos_token=UpperCAmelCase_ ,eos_token=UpperCAmelCase_ ,unk_token=UpperCAmelCase_ ,**UpperCAmelCase_ ,) lowercase__ = add_prefix_space def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ) -> Optional[int]: lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ) -> List[int]: lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
539
0
'''simple docstring''' import sys def lowercase__( _UpperCamelCase : str )-> List[str]: """simple docstring""" _UpperCamelCase = len(lowerCAmelCase_ ) _UpperCamelCase = [[0 for x in range(lowerCAmelCase_ )] for x in range(lowerCAmelCase_ )] _UpperCamelCase = [[0 for x in range(lowerCAmelCase_ )] for x in range(lowerCAmelCase_ )] for chain_length in range(2 , lowerCAmelCase_ ): for a in range(1 , n - chain_length + 1 ): _UpperCamelCase = a + chain_length - 1 _UpperCamelCase = sys.maxsize for c in range(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCamelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _UpperCamelCase = cost _UpperCamelCase = c return matrix, sol def lowercase__( _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : int )-> Tuple: """simple docstring""" if i == j: print("A" + str(lowerCAmelCase_ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(lowerCAmelCase_ , lowerCAmelCase_ , optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase_ , optimal_solution[i][j] + 1 , lowerCAmelCase_ ) print(")" , end=" " ) def lowercase__( )-> Tuple: """simple docstring""" _UpperCamelCase = [30, 35, 15, 5, 10, 20, 25] _UpperCamelCase = len(lowerCAmelCase_ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _UpperCamelCase = matrix_chain_order(lowerCAmelCase_ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase_ , 1 , n - 1 ) if __name__ == "__main__": main()
138
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str ) -> list: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =len(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] =[] for i in range(len(lowerCAmelCase_ ) - pat_len + 1 ): SCREAMING_SNAKE_CASE_ : Dict =True for j in range(lowerCAmelCase_ ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE_ : Tuple =False break if match_found: position.append(lowerCAmelCase_ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
220
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case :List[str] = logging.get_logger(__name__) __snake_case :Dict = '''▁''' __snake_case :Dict = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __snake_case :Any = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __snake_case :Any = { '''facebook/s2t-small-librispeech-asr''': 1024, } __snake_case :Optional[Any] = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __snake_case :Tuple = {'''mustc''': MUSTC_LANGS} class _A ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ : int = VOCAB_FILES_NAMES UpperCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : str = MAX_MODEL_INPUT_SIZES UpperCamelCase__ : str = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ : Any = [] def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple="<s>" , __SCREAMING_SNAKE_CASE : Dict="</s>" , __SCREAMING_SNAKE_CASE : List[str]="<pad>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<unk>" , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) __a = do_upper_case __a = do_lower_case __a = load_json(__snake_case) __a = {v: k for k, v in self.encoder.items()} __a = spm_file __a = load_spm(__snake_case , self.sp_model_kwargs) if lang_codes is not None: __a = lang_codes __a = LANGUAGES[lang_codes] __a = [F'<lang:{lang}>' for lang in self.langs] __a = {lang: self.sp_model.PieceToId(F'<lang:{lang}>') for lang in self.langs} __a = self.lang_tokens __a = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang) else: __a = {} @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' return len(self.encoder) @property def _lowerCamelCase ( self : int): '''simple docstring''' return self._tgt_lang @tgt_lang.setter def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' __a = new_tgt_lang self.set_tgt_lang_special_tokens(__snake_case) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = self.lang_code_to_id[tgt_lang] __a = [lang_code_id] def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' return self.sp_model.encode(__snake_case , out_type=__snake_case) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' return self.encoder.get(__snake_case , self.encoder[self.unk_token]) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' return self.decoder.get(__snake_case , self.unk_token) def _lowerCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = [] __a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __a = self.sp_model.decode(__snake_case) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __a = [] else: current_sub_tokens.append(__snake_case) __a = self.sp_model.decode(__snake_case) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any=None): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) __a = [1] * len(self.prefix_tokens) __a = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case)) + suffix_ones return prefix_ones + ([0] * len(__snake_case)) + ([0] * len(__snake_case)) + suffix_ones def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : str): '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self : Any , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __a = {} __a = load_spm(self.spm_file , self.sp_model_kwargs) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' __a = Path(__snake_case) assert save_dir.is_dir(), F'{save_directory} should be a directory' __a = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) __a = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __snake_case) if os.path.abspath(self.spm_file) != os.path.abspath(__snake_case) and os.path.isfile(self.spm_file): copyfile(self.spm_file , __snake_case) elif not os.path.isfile(self.spm_file): with open(__snake_case , '''wb''') as fi: __a = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (str(__snake_case), str(__snake_case)) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = sentencepiece.SentencePieceProcessor(**a_ ) spm.Load(str(a_ ) ) return spm def __snake_case ( _UpperCAmelCase ): with open(a_ , '''r''' ) as f: return json.load(a_ ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): with open(a_ , '''w''' ) as f: json.dump(a_ , a_ , indent=2 )
705
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __snake_case ( _UpperCAmelCase ): __a = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __snake_case ( _UpperCAmelCase ): __a = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', '''stage2.cls_token''') ) return token def __snake_case ( ): __a = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = __a = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __a = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __a = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __a = [2, 2, 20] __a = [3, 12, 16] __a = [192, 768, 1024] __a = CvtForImageClassification(_UpperCAmelCase ) __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __a = image_size __a = torch.load(_UpperCAmelCase , map_location=torch.device('''cpu''' ) ) __a = OrderedDict() __a = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __a = list_of_state_dict + cls_token(_UpperCAmelCase ) __a = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): __a = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) __a = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): __a = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __snake_case :str = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __snake_case :Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
60
0
from collections import namedtuple SCREAMING_SNAKE_CASE : str = namedtuple("from_to", "from_ to") SCREAMING_SNAKE_CASE : Tuple = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.00454, 264.172), "cubicyard": from_to(0.76455, 1.30795), "cubicfoot": from_to(0.028, 35.3147), "cup": from_to(0.000236588, 4226.75), } def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Dict ): if from_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + """, """.join(_SCREAMING_SNAKE_CASE ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + """, """.join(_SCREAMING_SNAKE_CASE ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
635
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore A = """ Human: <<task>> Assistant: """ A = """huggingface-tools/default-prompts""" A = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase="run" ) -> List[str]: """simple docstring""" if prompt_or_repo_id is None: __UpperCAmelCase : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , UpperCamelCase ) is not None: return prompt_or_repo_id __UpperCAmelCase : str = cached_file( UpperCamelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(UpperCamelCase , "r" , encoding="utf-8" ) as f: return f.read()
77
0
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def _snake_case ( _snake_case : jnp.ndarray , _snake_case : int , _snake_case : float = 1 , _snake_case : float = 1 , _snake_case : float = 1.0E4 , _snake_case : bool = False , _snake_case : float = 1.0 , ) -> jnp.ndarray: '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' _A = float(embedding_dim // 2 ) _A = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _A = min_timescale * jnp.exp(jnp.arange(_snake_case , dtype=jnp.floataa ) * -log_timescale_increment ) _A = jnp.expand_dims(_snake_case , 1 ) * jnp.expand_dims(_snake_case , 0 ) # scale embeddings _A = scale * emb if flip_sin_to_cos: _A = jnp.concatenate([jnp.cos(_snake_case ), jnp.sin(_snake_case )] , axis=1 ) else: _A = jnp.concatenate([jnp.sin(_snake_case ), jnp.cos(_snake_case )] , axis=1 ) _A = jnp.reshape(_snake_case , [jnp.shape(_snake_case )[0], embedding_dim] ) return signal class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int = 32 UpperCAmelCase : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] ): _A = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(_UpperCAmelCase ) _A = nn.silu(_UpperCAmelCase ) _A = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(_UpperCAmelCase ) return temb class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int = 32 UpperCAmelCase : bool = False UpperCAmelCase : float = 1 @nn.compact def __call__( self : List[str] , _UpperCAmelCase : List[Any] ): return get_sinusoidal_embeddings( _UpperCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
505
"""simple docstring""" def _snake_case ( _snake_case : bytes ) -> str: '''simple docstring''' return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def _snake_case ( _snake_case : str ) -> bytes: '''simple docstring''' if (len(_snake_case ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
505
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers SCREAMING_SNAKE_CASE_:Any = float("""nan""") class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__ ): A : List[Any] = sys.stdout A : Dict = open(lowerCamelCase__, """a""" ) def __getattr__( self, lowerCamelCase__ ): return getattr(self.stdout, lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): self.stdout.write(lowerCamelCase__ ) # strip tqdm codes self.file.write(re.sub(R"""^.*\r""", """""", lowerCamelCase__, 0, re.M ) ) def __UpperCamelCase ( _lowerCAmelCase=80 , _lowerCAmelCase=False ) -> Optional[Any]: """simple docstring""" A : Any = [] # deal with critical env vars A : Optional[Any] = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: A : List[Any] = os.environ.get(_lowerCAmelCase , _lowerCAmelCase ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) A : Union[str, Any] = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(_lowerCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes A : Tuple = [] A : Tuple = """""" while len(_lowerCAmelCase ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_lowerCAmelCase ) A : int = """""" return "\\\n".join(_lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: """simple docstring""" A : Optional[Any] = re.sub(R"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own A : Optional[Any] = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir A : str = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} , ) A : List[str] = subprocess.run(_lowerCAmelCase , capture_output=_lowerCAmelCase , text=_lowerCAmelCase ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams A : Union[str, Any] = variation.replace(""" """ , """-""" ) with open(Path(_lowerCAmelCase ) / f'''log.{prefix}.stdout.txt''' , """w""" ) as f: f.write(result.stdout ) with open(Path(_lowerCAmelCase ) / f'''log.{prefix}.stderr.txt''' , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , """r""" , encoding="""utf-8""" ) as f: A : Union[str, Any] = json.load(_lowerCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> Optional[int]: """simple docstring""" A : Optional[int] = [] A : Tuple = [] A : Any = f'''{id}: {variation:<{longest_variation_len}}''' A : Union[str, Any] = f'''{preamble}: ''' A : List[str] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_lowerCAmelCase ) , desc=_lowerCAmelCase , leave=_lowerCAmelCase ): A : List[Any] = process_run_single( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A : List[str] = single_run_metrics[target_metric_key] if not math.isnan(_lowerCAmelCase ): metrics.append(_lowerCAmelCase ) results.append(_lowerCAmelCase ) outcome += "✓" else: outcome += "✘" A : Tuple = f'''\33[2K\r{outcome}''' if len(_lowerCAmelCase ) > 0: A : Optional[int] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} A : Optional[Any] = round(mean_metrics[target_metric_key] , 2 ) A : Tuple = f'''{outcome} {mean_target}''' if len(_lowerCAmelCase ) > 1: results_str += f''' {tuple(round(_lowerCAmelCase , 2 ) for x in results )}''' print(_lowerCAmelCase ) A : int = variation return mean_metrics else: print(_lowerCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCamelCase ( ) -> str: """simple docstring""" A : List[Any] = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: """simple docstring""" A : Tuple = pd.DataFrame(_lowerCAmelCase ) A : str = """variation""" A : List[str] = """diff_%""" A : Optional[Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan A : Union[str, Any] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_lowerCAmelCase ): # as a fallback, use the minimal value as the sentinel A : Union[str, Any] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_lowerCAmelCase ): A : Dict = df.apply( lambda _lowerCAmelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns A : Dict = [variation_key, target_metric_key, diff_key, *report_metric_keys] A : Tuple = df.reindex(_lowerCAmelCase , axis="""columns""" ) # reorder cols # capitalize A : Tuple = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible A : Tuple = df.rename(lambda _lowerCAmelCase : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) A : Optional[int] = df.rename(lambda _lowerCAmelCase : c.replace("""_""" , """\n""" ) , axis="""columns""" ) A : Union[str, Any] = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_lowerCAmelCase , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_lowerCAmelCase , floatfmt=""".2f""" )] print("""\n\n""".join(_lowerCAmelCase ) ) def __UpperCamelCase ( ) -> Optional[int]: """simple docstring""" A : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=_lowerCAmelCase , type=_lowerCAmelCase , nargs="""+""" , required=_lowerCAmelCase , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=_lowerCAmelCase , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=_lowerCAmelCase , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=_lowerCAmelCase , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=_lowerCAmelCase , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) A : List[str] = parser.parse_args() A : List[Any] = args.output_dir Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) A : Dict = get_base_command(_lowerCAmelCase , _lowerCAmelCase ) # split each dimension into its --foo variations A : str = [list(map(str.strip , re.split(R"""\|""" , _lowerCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty A : Tuple = list(map(str.strip , map(""" """.join , itertools.product(*_lowerCAmelCase ) ) ) ) A : Union[str, Any] = max(len(_lowerCAmelCase ) for x in variations ) # split wanted keys A : List[Any] = args.report_metric_keys.split() # capture prints into a log file for convenience A : Dict = f'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) A : Optional[Any] = Tee(_lowerCAmelCase ) print(f'''\n*** Running {len(_lowerCAmelCase )} benchmarks:''' ) print(f'''Base command: {" ".join(_lowerCAmelCase )}''' ) A : List[str] = """variation""" A : List[Any] = [] for id, variation in enumerate(tqdm(_lowerCAmelCase , desc="""Total completion: """ , leave=_lowerCAmelCase ) ): A : Any = base_cmd + variation.split() results.append( process_run( id + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , args.target_metric_key , _lowerCAmelCase , args.repeat_times , _lowerCAmelCase , args.verbose , ) ) process_results(_lowerCAmelCase , args.target_metric_key , _lowerCAmelCase , args.base_variation , _lowerCAmelCase ) if __name__ == "__main__": main()
662
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_:Union[str, Any] = """tiny-wmt19-en-ru""" # Build # borrowed from a test SCREAMING_SNAKE_CASE_:Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] SCREAMING_SNAKE_CASE_:Any = dict(zip(vocab, range(len(vocab)))) SCREAMING_SNAKE_CASE_:Dict = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_:List[Any] = Path(tmpdirname) SCREAMING_SNAKE_CASE_:str = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] SCREAMING_SNAKE_CASE_:Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] SCREAMING_SNAKE_CASE_:Any = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) SCREAMING_SNAKE_CASE_:Optional[int] = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) SCREAMING_SNAKE_CASE_:Optional[int] = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) SCREAMING_SNAKE_CASE_:Optional[Any] = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test SCREAMING_SNAKE_CASE_:Tuple = tokenizer(["""Making tiny model"""], return_tensors="""pt""") SCREAMING_SNAKE_CASE_:str = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
662
1
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> list[list[float]]: '''simple docstring''' snake_case__ : List[str] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__magic_name__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix snake_case__ : Union[str, Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements snake_case__ : Any = [[0.0, 0.0], [0.0, 0.0]] snake_case__ : List[str] = matrix[1][1], matrix[0][0] snake_case__ : Union[str, Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__magic_name__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__magic_name__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule snake_case__ : Any = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix snake_case__ : Tuple = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] snake_case__ : int = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) snake_case__ : str = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) snake_case__ : Optional[Any] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) snake_case__ : Dict = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) snake_case__ : Any = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) snake_case__ : str = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) snake_case__ : Tuple = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) snake_case__ : Dict = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) snake_case__ : Tuple = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) snake_case__ : Optional[Any] = array(__magic_name__ ) for i in range(3 ): for j in range(3 ): snake_case__ : Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix snake_case__ : Union[str, Any] = array(__magic_name__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__magic_name__ ) # Calculate the inverse of the matrix return [[float(d(__magic_name__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
719
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : List[str] = tempfile.mkdtemp() snake_case__ : Tuple = BlipImageProcessor() snake_case__ : Dict = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) snake_case__ : Dict = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).tokenizer def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ).image_processor def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : int = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case__ : Union[str, Any] = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self ): snake_case__ : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case__ : Optional[int] = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) snake_case__ : Any = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.get_image_processor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Optional[Any] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : str = self.prepare_image_inputs() snake_case__ : Optional[int] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) snake_case__ : int = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : List[Any] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """lower newer""" snake_case__ : List[Any] = processor(text=__SCREAMING_SNAKE_CASE ) snake_case__ : int = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): snake_case__ : str = self.get_image_processor() snake_case__ : int = self.get_tokenizer() snake_case__ : List[str] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = """lower newer""" snake_case__ : Optional[int] = self.prepare_image_inputs() snake_case__ : Tuple = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.get_image_processor() snake_case__ : Optional[Any] = self.get_tokenizer() snake_case__ : int = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : List[Any] = processor.batch_decode(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : List[Any] = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = """lower newer""" snake_case__ : List[Any] = self.prepare_image_inputs() snake_case__ : Optional[Any] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
419
0
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase = "▁" UpperCamelCase = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Dict = BigBirdTokenizer _snake_case : List[Any] = BigBirdTokenizerFast _snake_case : Any = True _snake_case : Optional[int] = True def __a ( self :Union[str, Any] ): super().setUp() UpperCamelCase__ :List[Any] = self.tokenizer_class(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self :str ): UpperCamelCase__ :List[str] = """<s>""" UpperCamelCase__ :str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(lowerCamelCase__ ) , 10_04 ) def __a ( self :Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __a ( self :Optional[Any] ): if not self.test_rust_tokenizer: return UpperCamelCase__ :Any = self.get_tokenizer() UpperCamelCase__ :str = self.get_rust_tokenizer() UpperCamelCase__ :List[Any] = """I was born in 92000, and this is falsé.""" UpperCamelCase__ :List[str] = tokenizer.tokenize(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ :Tuple = self.get_rust_tokenizer() UpperCamelCase__ :Any = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase__ :Tuple = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[Any] ): UpperCamelCase__ :Dict = BigBirdTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) UpperCamelCase__ :str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCamelCase__ :List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase__ :Tuple = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCamelCase__ :Optional[int] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __a ( self :Dict ): return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def __a ( self :List[str] ): UpperCamelCase__ :Dict = """Hello World!""" UpperCamelCase__ :Any = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def __a ( self :str ): UpperCamelCase__ :Optional[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off UpperCamelCase__ :Any = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @require_torch @slow def __a ( self :str ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCamelCase__ :Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCamelCase__ :Optional[Any] = """ """.join(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = self.big_tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase__ ) UpperCamelCase__ :List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = BigBirdConfig(attention_type="""original_full""" ) UpperCamelCase__ :List[str] = BigBirdModel(lowerCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase__ ) model(**lowerCamelCase__ ) @slow def __a ( self :List[str] ): UpperCamelCase__ :Any = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) UpperCamelCase__ :Any = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def __a ( self :Union[str, Any] ): # fmt: off UpperCamelCase__ :int = {"""input_ids""": [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
45
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCamelCase = get_tests_dir("fixtures") UpperCamelCase = get_tests_dir("fixtures/dummy_feature_extractor_config.json") UpperCamelCase = get_tests_dir("fixtures/dummy-config.json") class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[int] = 0 def __a ( self :str ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ :List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ :Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) UpperCamelCase__ :Union[str, Any] = WavaVecaFeatureExtractor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved UpperCamelCase__ :Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Dict ): with self.assertRaisesRegex( lowerCamelCase__ , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase__ :Dict = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def __a ( self :List[Any] ): with self.assertRaisesRegex( lowerCamelCase__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , revision="""aaaaaa""" ) def __a ( self :int ): with self.assertRaisesRegex( lowerCamelCase__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def __a ( self :Optional[int] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def __a ( self :Dict ): try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ :Any = CustomFeatureExtractor.from_pretrained(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __a ( self :Optional[int] ): class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : Optional[int] = True try: AutoConfig.register("""custom""" , lowerCamelCase__ ) AutoFeatureExtractor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local UpperCamelCase__ :Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase__ :str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase__ :Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=lowerCamelCase__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(lowerCamelCase__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
45
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowercase ( _lowercase ): @staticmethod @abstractmethod def lowerCamelCase_ ( UpperCamelCase__: ArgumentParser ): raise NotImplementedError() @abstractmethod def lowerCamelCase_ ( self: List[Any] ): raise NotImplementedError()
631
'''simple docstring''' import sys import turtle def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> None: my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) triangle(UpperCamelCase , get_mid(UpperCamelCase , UpperCamelCase ) , get_mid(UpperCamelCase , UpperCamelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) _A : Any =turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') _A : Dict =[(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
631
1
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 50 ): '''simple docstring''' snake_case: Union[str, Any] = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'{solution() = }')
329
'''simple docstring''' def lowerCAmelCase_ ( __A : int = 50 ): '''simple docstring''' snake_case: Dict = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
329
1
"""simple docstring""" from __future__ import annotations from random import choice def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' return choice(_lowerCamelCase ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = random_pivot(_lowerCamelCase ) # partition based on pivot # linear time _lowerCAmelCase : List[str] = [e for e in lst if e < pivot] _lowerCAmelCase : int = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowerCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowerCamelCase ) < k - 1: return kth_number(_lowerCamelCase , k - len(_lowerCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import argparse import struct import unittest class __UpperCamelCase : def __init__( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = data # Initialize hash values _lowerCAmelCase : Any = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants _lowerCAmelCase : str = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] _lowerCAmelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : int = b'\x80' + (b'\x00' * (63 - (len(_A ) + 8) % 64)) _lowerCAmelCase : Any = struct.pack('>Q' ,(len(_A ) * 8) ) return data + padding + big_endian_integer def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _lowerCAmelCase : int = list(struct.unpack('>16L' ,_A ) ) # add 48 0-ed integers words += [0] * 48 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array _lowerCAmelCase : List[str] = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) _lowerCAmelCase : Tuple = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) _lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression _lowerCAmelCase : Optional[Any] = self.ror(_A ,6 ) ^ self.ror(_A ,11 ) ^ self.ror(_A ,25 ) _lowerCAmelCase : int = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) _lowerCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 _lowerCAmelCase : Union[str, Any] = self.ror(_A ,2 ) ^ self.ror(_A ,13 ) ^ self.ror(_A ,22 ) _lowerCAmelCase : Any = (a & b) ^ (a & c) ^ (b & c) _lowerCAmelCase : Any = (sa + maj) % 0x1_0000_0000 _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) _lowerCAmelCase : Any = [a, b, c, d, e, f, g, h] # Modify final values _lowerCAmelCase : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] _lowerCAmelCase : List[str] = ''.join([hex(_A )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCamelCase ( self ,_A ,_A ): '''simple docstring''' return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' import hashlib _lowerCAmelCase : Any = bytes('Test String' ,'utf-8' ) self.assertEqual(SHAaaa(_A ).hash ,hashlib.shaaaa(_A ).hexdigest() ) def lowerCamelCase__ ( ): '''simple docstring''' import doctest doctest.testmod() _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) _lowerCAmelCase : Tuple = parser.parse_args() _lowerCAmelCase : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: _lowerCAmelCase : int = f.read() else: _lowerCAmelCase : int = bytes(_lowerCamelCase , 'utf-8' ) print(SHAaaa(_lowerCamelCase ).hash ) if __name__ == "__main__": main()
16
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer __UpperCamelCase = GPTaTokenizerFast __UpperCamelCase = True __UpperCamelCase = {'''add_prefix_space''': True} __UpperCamelCase = False def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] __lowercase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) __lowercase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase = {"""unk_token""": """<unk>"""} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case_ ) ) def UpperCAmelCase ( self : Optional[int] , **__lowerCamelCase : int ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def UpperCAmelCase ( self : List[str] , **__lowerCamelCase : Tuple ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] ) -> Tuple: '''simple docstring''' __lowercase = """lower newer""" __lowercase = """lower newer""" return input_text, output_text def UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' __lowercase = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase = """lower newer""" __lowercase = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowercase = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer(add_prefix_space=snake_case_ ) __lowercase = """lower newer""" # Testing tokenization __lowercase = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ ) __lowercase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens __lowercase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) __lowercase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens __lowercase = self.get_rust_tokenizer(add_prefix_space=snake_case_ ) __lowercase = tokenizer.encode(snake_case_ , add_prefix_space=snake_case_ ) __lowercase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing the unknown token __lowercase = tokens + [rust_tokenizer.unk_token] __lowercase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def UpperCAmelCase ( self : Union[str, Any] , *__lowerCamelCase : int , **__lowerCamelCase : Optional[int] ) -> str: '''simple docstring''' pass def UpperCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any]=15 ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) # Simple input __lowercase = """This is a simple input""" __lowercase = ["""This is a simple input 1""", """This is a simple input 2"""] __lowercase = ("""This is a simple input""", """This is a pair""") __lowercase = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding='max_length' ) # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding='max_length' ) # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding='max_length' , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding='max_length' ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding='max_length' ) # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding='max_length' , ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: '''simple docstring''' __lowercase = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input __lowercase = """This is a simple input""" __lowercase = ["""This is a simple input looooooooong""", """This is a simple input"""] __lowercase = ("""This is a simple input""", """This is a pair""") __lowercase = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] __lowercase = tokenizer.pad_token_id __lowercase = tokenizer(snake_case_ , padding='max_length' , max_length=30 , return_tensors='np' ) __lowercase = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors='np' ) __lowercase = tokenizer(*snake_case_ , padding='max_length' , max_length=60 , return_tensors='np' ) __lowercase = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' __lowercase = """$$$""" __lowercase = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=snake_case_ , add_bos_token=snake_case_ ) __lowercase = """This is a simple input""" __lowercase = ["""This is a simple input 1""", """This is a simple input 2"""] __lowercase = tokenizer.bos_token_id __lowercase = tokenizer(snake_case_ ) __lowercase = tokenizer(snake_case_ ) self.assertEqual(out_s.input_ids[0] , snake_case_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __lowercase = tokenizer.decode(out_s.input_ids ) __lowercase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , snake_case_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def UpperCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' pass def UpperCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' __lowercase = [self.get_tokenizer(do_lower_case=snake_case_ , add_bos_token=snake_case_ )] for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = """Encode this.""" __lowercase = """This one too please.""" __lowercase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) encoded_sequence += tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) __lowercase = tokenizer.encode_plus( snake_case_ , snake_case_ , add_special_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , ) __lowercase = encoded_sequence_dict["""input_ids"""] __lowercase = encoded_sequence_dict["""special_tokens_mask"""] self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) __lowercase = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(snake_case_ ) ] __lowercase = [x for x in filtered_sequence if x is not None] self.assertEqual(snake_case_ , snake_case_ ) @require_tokenizers class snake_case_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=snake_case_ ) __lowercase = """A photo of a cat""" __lowercase = tokenizer.encode( snake_case_ , ) self.assertEqual(snake_case_ , [2, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained('test_opt' ) __lowercase = AutoTokenizer.from_pretrained('./test_opt' ) __lowercase = tokenizer.encode( snake_case_ , ) self.assertEqual(snake_case_ , [2, 250, 1_345, 9, 10, 4_758] ) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=snake_case_ ) __lowercase = """A photo of a cat""" __lowercase = tokenizer.encode( snake_case_ , ) # Same as above self.assertEqual(snake_case_ , [2, 250, 1_345, 9, 10, 4_758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' __lowercase = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=snake_case_ ) __lowercase = """bos""" __lowercase = tokenizer.get_vocab()["""bos"""] __lowercase = """A photo of a cat""" __lowercase = tokenizer.encode( snake_case_ , ) # We changed the bos token self.assertEqual(snake_case_ , [31_957, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained('./tok' ) __lowercase = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) __lowercase = tokenizer.encode( snake_case_ , ) self.assertEqual(snake_case_ , [31_957, 250, 1_345, 9, 10, 4_758] )
375
'''simple docstring''' def UpperCamelCase__ ( _lowercase : list ) -> list: if len(_lowercase ) < 2: return collection def circle_sort_util(_lowercase : list , _lowercase : int , _lowercase : int ) -> bool: __UpperCAmelCase: Tuple = False if low == high: return swapped __UpperCAmelCase: int = low __UpperCAmelCase: int = high while left < right: if collection[left] > collection[right]: __UpperCAmelCase, __UpperCAmelCase: List[str] = ( collection[right], collection[left], ) __UpperCAmelCase: Optional[int] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __UpperCAmelCase, __UpperCAmelCase: str = ( collection[right + 1], collection[left], ) __UpperCAmelCase: Union[str, Any] = True __UpperCAmelCase: List[str] = low + int((high - low) / 2 ) __UpperCAmelCase: Optional[int] = circle_sort_util(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase: List[Any] = circle_sort_util(_lowercase , mid + 1 , _lowercase ) return swapped or left_swap or right_swap __UpperCAmelCase: str = True while is_not_sorted is True: __UpperCAmelCase: Dict = circle_sort_util(_lowercase , 0 , len(_lowercase ) - 1 ) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
523
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCAmelCase ( unittest.TestCase ): def a_ ( self ) -> List[Any]: UpperCAmelCase = 'laion/clap-htsat-unfused' UpperCAmelCase = tempfile.mkdtemp() def a_ ( self , **lowercase_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def a_ ( self , **lowercase_ ) -> Optional[int]: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowercase_ ) def a_ ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def a_ ( self ) -> str: UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) def a_ ( self ) -> int: UpperCAmelCase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCAmelCase = self.get_feature_extractor(do_normalize=lowercase_ , padding_value=1.0 ) UpperCAmelCase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) def a_ ( self ) -> int: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) UpperCAmelCase = floats_list((3, 1_0_0_0) ) UpperCAmelCase = feature_extractor(lowercase_ , return_tensors='np' ) UpperCAmelCase = processor(audios=lowercase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a_ ( self ) -> Any: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) UpperCAmelCase = 'This is a test string' UpperCAmelCase = processor(text=lowercase_ ) UpperCAmelCase = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self ) -> List[str]: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase = processor.batch_decode(lowercase_ ) UpperCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def a_ ( self ) -> Dict: UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
718
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : str = "" __SCREAMING_SNAKE_CASE : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __SCREAMING_SNAKE_CASE : str = None # compression type in fsspec. ex: "gzip" __SCREAMING_SNAKE_CASE : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , lowercase_ = "" , lowercase_ = None , lowercase_ = None , **lowercase_ ) -> str: super().__init__(self , **lowercase_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase = fsspec.open( lowercase_ , mode='rb' , protocol=lowercase_ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase = os.path.basename(self.file.path.split('::' )[0] ) UpperCAmelCase = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) UpperCAmelCase = None @classmethod def a_ ( cls , lowercase_ ) -> Union[str, Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowercase_ ).lstrip('/' ) def a_ ( self ) -> int: if self.dir_cache is None: UpperCAmelCase = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} UpperCAmelCase = {f['name']: f} def a_ ( self , lowercase_ ) -> Any: return self.file.open().read() def a_ ( self , lowercase_ , lowercase_ = "rb" , lowercase_=None , lowercase_=True , lowercase_=None , **lowercase_ , ) -> Optional[Any]: UpperCAmelCase = self._strip_protocol(lowercase_ ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[Any] = "bz2" __SCREAMING_SNAKE_CASE : Union[str, Any] = "bz2" __SCREAMING_SNAKE_CASE : Union[str, Any] = ".bz2" class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[str] = "gzip" __SCREAMING_SNAKE_CASE : Any = "gzip" __SCREAMING_SNAKE_CASE : List[str] = ".gz" class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[str] = "lz4" __SCREAMING_SNAKE_CASE : List[Any] = "lz4" __SCREAMING_SNAKE_CASE : Tuple = ".lz4" class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[str] = "xz" __SCREAMING_SNAKE_CASE : Union[str, Any] = "xz" __SCREAMING_SNAKE_CASE : List[Any] = ".xz" class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : List[str] = "zstd" __SCREAMING_SNAKE_CASE : int = "zstd" __SCREAMING_SNAKE_CASE : Tuple = ".zst" def __init__( self , lowercase_ , lowercase_ = "rb" , lowercase_ = None , lowercase_ = None , lowercase_ = DEFAULT_BLOCK_SIZE , **lowercase_ , ) -> str: super().__init__( fo=lowercase_ , mode=lowercase_ , target_protocol=lowercase_ , target_options=lowercase_ , block_size=lowercase_ , **lowercase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase = self.file.__enter__ class _UpperCAmelCase : def __init__( self , lowercase_ ) -> List[Any]: UpperCAmelCase = file_ def __enter__( self ) -> List[str]: self._file.__enter__() return self def __exit__( self , *lowercase_ , **lowercase_ ) -> List[str]: self._file.__exit__(*lowercase_ , **lowercase_ ) def __iter__( self ) -> Optional[int]: return iter(self._file ) def a_ ( self ) -> Tuple: return next(self._file ) def __getattr__( self , lowercase_ ) -> Optional[int]: return getattr(self._file , lowercase_ ) def fixed_enter(*lowercase_ , **lowercase_ ): return WrappedFile(_enter(*lowercase_ , **lowercase_ ) ) UpperCAmelCase = fixed_enter
183
0
"""simple docstring""" import numpy as np def SCREAMING_SNAKE_CASE__ ( snake_case : np.array )-> Dict: '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
438
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": A = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') A = parser.parse_args() if args.model_type == "bert": A = BertForMaskedLM.from_pretrained(args.model_name) A = 'bert' else: raise ValueError('args.model_type should be "bert".') A = model.state_dict() A = {} for w in ["word_embeddings", "position_embeddings"]: A = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: A = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] A = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 A = state_dict['cls.predictions.decoder.weight'] A = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: A = state_dict[f"""cls.predictions.transform.dense.{w}"""] A = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
320
0
from collections import deque from math import floor from random import random from time import time class A__ : """simple docstring""" def __init__( self) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] = {} def __lowercase ( self , lowercase , lowercase , lowercase=1) -> Optional[int]: '''simple docstring''' if self.graph.get(lowercase): if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: a__ : Optional[Any] = [[w, v]] if not self.graph.get(lowercase): a__ : Optional[Any] = [] def __lowercase ( self) -> List[str]: '''simple docstring''' return list(self.graph) def __lowercase ( self , lowercase , lowercase) -> List[Any]: '''simple docstring''' if self.graph.get(lowercase): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase) def __lowercase ( self , lowercase=-2 , lowercase=-1) -> Any: '''simple docstring''' if s == d: return [] a__ : str = [] a__ : Optional[Any] = [] if s == -2: a__ : Tuple = list(self.graph)[0] stack.append(lowercase) visited.append(lowercase) a__ : List[str] = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: a__ : Union[str, Any] = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(lowercase) return visited else: stack.append(node[1]) visited.append(node[1]) a__ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase) != 0: a__ : List[Any] = stack[len(lowercase) - 1] else: a__ : int = ss # check if se have reached the starting point if len(lowercase) == 0: return visited def __lowercase ( self , lowercase=-1) -> Any: '''simple docstring''' if c == -1: a__ : int = floor(random() * 1_0000) + 10 for i in range(lowercase): # every vertex has max 100 edges for _ in range(floor(random() * 102) + 1): a__ : int = floor(random() * c) + 1 if n != i: self.add_pair(lowercase , lowercase , 1) def __lowercase ( self , lowercase=-2) -> str: '''simple docstring''' a__ : Optional[Any] = deque() a__ : str = [] if s == -2: a__ : Optional[int] = list(self.graph)[0] d.append(lowercase) visited.append(lowercase) while d: a__ : int = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def __lowercase ( self , lowercase) -> str: '''simple docstring''' a__ : List[str] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __lowercase ( self , lowercase) -> Tuple: '''simple docstring''' return len(self.graph[u]) def __lowercase ( self , lowercase=-2) -> Tuple: '''simple docstring''' a__ : Dict = [] a__ : Optional[int] = [] if s == -2: a__ : List[str] = list(self.graph)[0] stack.append(lowercase) visited.append(lowercase) a__ : Dict = s a__ : Union[str, Any] = [] while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: a__ : Tuple = s for node in self.graph[s]: if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) a__ : List[Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop()) if len(lowercase) != 0: a__ : Union[str, Any] = stack[len(lowercase) - 1] else: a__ : str = ss # check if se have reached the starting point if len(lowercase) == 0: return sorted_nodes def __lowercase ( self) -> int: '''simple docstring''' a__ : Tuple = [] a__ : Union[str, Any] = [] a__ : str = list(self.graph)[0] stack.append(lowercase) visited.append(lowercase) a__ : Tuple = -2 a__ : List[Any] = [] a__ : Dict = s a__ : Tuple = False a__ : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: a__ : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): a__ : Dict = len(lowercase) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) a__ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() a__ : Dict = True if len(lowercase) != 0: a__ : int = stack[len(lowercase) - 1] else: a__ : str = False indirect_parents.append(lowercase) a__ : List[str] = s a__ : Union[str, Any] = ss # check if se have reached the starting point if len(lowercase) == 0: return list(lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[Any] = [] a__ : Dict = [] a__ : Union[str, Any] = list(self.graph)[0] stack.append(lowercase) visited.append(lowercase) a__ : Optional[Any] = -2 a__ : str = [] a__ : Any = s a__ : List[Any] = False a__ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: a__ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): a__ : Dict = len(lowercase) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) a__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() a__ : Union[str, Any] = True if len(lowercase) != 0: a__ : List[Any] = stack[len(lowercase) - 1] else: a__ : Dict = False indirect_parents.append(lowercase) a__ : List[str] = s a__ : Any = ss # check if se have reached the starting point if len(lowercase) == 0: return False def __lowercase ( self , lowercase=-2 , lowercase=-1) -> List[Any]: '''simple docstring''' a__ : Dict = time() self.dfs(lowercase , lowercase) a__ : int = time() return end - begin def __lowercase ( self , lowercase=-2) -> Optional[int]: '''simple docstring''' a__ : List[str] = time() self.bfs(lowercase) a__ : str = time() return end - begin class A__ : """simple docstring""" def __init__( self) -> List[Any]: '''simple docstring''' a__ : int = {} def __lowercase ( self , lowercase , lowercase , lowercase=1) -> Dict: '''simple docstring''' if self.graph.get(lowercase): # if there already is a edge if self.graph[u].count([w, v]) == 0: self.graph[u].append([w, v]) else: # if u does not exist a__ : List[str] = [[w, v]] # add the other way if self.graph.get(lowercase): # if there already is a edge if self.graph[v].count([w, u]) == 0: self.graph[v].append([w, u]) else: # if u does not exist a__ : Dict = [[w, u]] def __lowercase ( self , lowercase , lowercase) -> Tuple: '''simple docstring''' if self.graph.get(lowercase): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase) # the other way round if self.graph.get(lowercase): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase) def __lowercase ( self , lowercase=-2 , lowercase=-1) -> Optional[int]: '''simple docstring''' if s == d: return [] a__ : Any = [] a__ : List[Any] = [] if s == -2: a__ : str = list(self.graph)[0] stack.append(lowercase) visited.append(lowercase) a__ : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: a__ : Any = s for node in self.graph[s]: if visited.count(node[1]) < 1: if node[1] == d: visited.append(lowercase) return visited else: stack.append(node[1]) visited.append(node[1]) a__ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase) != 0: a__ : int = stack[len(lowercase) - 1] else: a__ : Optional[Any] = ss # check if se have reached the starting point if len(lowercase) == 0: return visited def __lowercase ( self , lowercase=-1) -> List[Any]: '''simple docstring''' if c == -1: a__ : Tuple = floor(random() * 1_0000) + 10 for i in range(lowercase): # every vertex has max 100 edges for _ in range(floor(random() * 102) + 1): a__ : Dict = floor(random() * c) + 1 if n != i: self.add_pair(lowercase , lowercase , 1) def __lowercase ( self , lowercase=-2) -> List[Any]: '''simple docstring''' a__ : List[str] = deque() a__ : Union[str, Any] = [] if s == -2: a__ : Any = list(self.graph)[0] d.append(lowercase) visited.append(lowercase) while d: a__ : List[Any] = d.popleft() if len(self.graph[s]) != 0: for node in self.graph[s]: if visited.count(node[1]) < 1: d.append(node[1]) visited.append(node[1]) return visited def __lowercase ( self , lowercase) -> Union[str, Any]: '''simple docstring''' return len(self.graph[u]) def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : Tuple = [] a__ : List[str] = [] a__ : str = list(self.graph)[0] stack.append(lowercase) visited.append(lowercase) a__ : Tuple = -2 a__ : Union[str, Any] = [] a__ : Optional[int] = s a__ : int = False a__ : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: a__ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): a__ : int = len(lowercase) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1]) break else: anticipating_nodes.add(stack[len_stack]) len_stack -= 1 if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) a__ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() a__ : int = True if len(lowercase) != 0: a__ : int = stack[len(lowercase) - 1] else: a__ : Optional[int] = False indirect_parents.append(lowercase) a__ : Optional[Any] = s a__ : int = ss # check if se have reached the starting point if len(lowercase) == 0: return list(lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : Any = [] a__ : int = [] a__ : Tuple = list(self.graph)[0] stack.append(lowercase) visited.append(lowercase) a__ : Union[str, Any] = -2 a__ : Dict = [] a__ : int = s a__ : str = False a__ : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s]) != 0: a__ : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1]) > 0 and node[1] != parent and indirect_parents.count(node[1]) > 0 and not on_the_way_back ): a__ : str = len(lowercase) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1]) break else: return True if visited.count(node[1]) < 1: stack.append(node[1]) visited.append(node[1]) a__ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() a__ : Dict = True if len(lowercase) != 0: a__ : Tuple = stack[len(lowercase) - 1] else: a__ : str = False indirect_parents.append(lowercase) a__ : int = s a__ : Union[str, Any] = ss # check if se have reached the starting point if len(lowercase) == 0: return False def __lowercase ( self) -> Dict: '''simple docstring''' return list(self.graph) def __lowercase ( self , lowercase=-2 , lowercase=-1) -> Tuple: '''simple docstring''' a__ : Any = time() self.dfs(lowercase , lowercase) a__ : Tuple = time() return end - begin def __lowercase ( self , lowercase=-2) -> Optional[Any]: '''simple docstring''' a__ : Optional[Any] = time() self.bfs(lowercase) a__ : int = time() return end - begin
713
def A_ ( A__ ) -> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) a__ : Any = [True] * (num + 1) a__ : Dict = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , A__ ): a__ : Tuple = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowercase : Union[str, Any] = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
392
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE_ ( a_ ): __a : str = '''git_vision_model''' def __init__( self , lowercase=7_6_8 , lowercase=3_0_7_2 , lowercase=1_2 , lowercase=1_2 , lowercase=3 , lowercase=2_2_4 , lowercase=1_6 , lowercase="quick_gelu" , lowercase=1e-5 , lowercase=0.0 , lowercase=0.0_2 , **lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : List[str] = num_channels __SCREAMING_SNAKE_CASE : Any = patch_size __SCREAMING_SNAKE_CASE : str = image_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Tuple = attention_dropout __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : Tuple = hidden_act @classmethod def _snake_case ( cls , lowercase , **lowercase ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": __SCREAMING_SNAKE_CASE : int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowercase_ , **lowercase_ ) class SCREAMING_SNAKE_CASE_ ( a_ ): __a : Tuple = '''git''' def __init__( self , lowercase=None , lowercase=3_0_5_2_2 , lowercase=7_6_8 , lowercase=6 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=1_0_2_4 , lowercase=0.0_2 , lowercase=1e-12 , lowercase=0 , lowercase="absolute" , lowercase=True , lowercase=False , lowercase=1_0_1 , lowercase=1_0_2 , lowercase=None , **lowercase , ) -> Optional[Any]: '''simple docstring''' super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , pad_token_id=lowercase_ , **lowercase_ ) if vision_config is None: __SCREAMING_SNAKE_CASE : Optional[Any] = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowercase_ ) __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : Dict = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = initializer_range __SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : int = position_embedding_type __SCREAMING_SNAKE_CASE : Optional[Any] = use_cache __SCREAMING_SNAKE_CASE : int = tie_word_embeddings __SCREAMING_SNAKE_CASE : Optional[int] = num_image_with_embedding __SCREAMING_SNAKE_CASE : Tuple = bos_token_id __SCREAMING_SNAKE_CASE : int = eos_token_id def _snake_case ( self ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : str = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE : List[Any] = self.__class__.model_type return output
158
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class a_ : '''simple docstring''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=True , lowercase_=False , lowercase_=True , lowercase_=9_9 , lowercase_=3_2 , lowercase_=5 , lowercase_=4 , lowercase_=3_7 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=5_1_2 , lowercase_=1_6 , lowercase_=2 , lowercase_=0.02 , lowercase_=3 , lowercase_=4 , lowercase_=None , ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> List[str]: '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , use_stable_embedding=lowercase_ , ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = OpenLlamaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ ) lowerCAmelCase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = OpenLlamaModel(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> str: '''simple docstring''' lowerCAmelCase_ = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = OpenLlamaForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) lowerCAmelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] lowerCAmelCase_ = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice lowerCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( a_ , a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __a: Dict = (OpenLlamaForCausalLM,) if is_torch_available() else () __a: List[str] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __a: Optional[int] = False __a: Tuple = False def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = OpenLlamaModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ , hidden_size=3_7 ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ = type self.model_tester.create_and_check_model(*lowercase_ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = input_dict['input_ids'] lowerCAmelCase_ = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = 'single_label_classification' lowerCAmelCase_ = input_dict['input_ids'] lowerCAmelCase_ = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase_ = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = 3 lowerCAmelCase_ = 'multi_label_classification' lowerCAmelCase_ = input_dict['input_ids'] lowerCAmelCase_ = input_ids.ne(1 ).to(lowercase_ ) lowerCAmelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase_ = OpenLlamaForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def _lowercase ( self ) -> int: '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowercase ( self , lowercase_ ) -> int: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase_ = OpenLlamaModel(lowercase_ ) original_model.to(lowercase_ ) original_model.eval() lowerCAmelCase_ = original_model(lowercase_ ).last_hidden_state lowerCAmelCase_ = original_model(lowercase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase_ = {'type': scaling_type, 'factor': 10.0} lowerCAmelCase_ = OpenLlamaModel(lowercase_ ) scaled_model.to(lowercase_ ) scaled_model.eval() lowerCAmelCase_ = scaled_model(lowercase_ ).last_hidden_state lowerCAmelCase_ = scaled_model(lowercase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowercase_ , lowercase_ , atol=1e-5 ) )
318
0
from __future__ import annotations UpperCAmelCase__ : Union[str, Any] = [] def __lowercase ( _A , _A , _A ) -> bool: for i in range(len(_A ) ): if board[row][i] == 1: return False for i in range(len(_A ) ): if board[i][column] == 1: return False for i, j in zip(range(_A , -1 , -1 ) , range(_A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_A , -1 , -1 ) , range(_A , len(_A ) ) ): if board[i][j] == 1: return False return True def __lowercase ( _A , _A ) -> bool: if row >= len(_A ): solution.append(_A ) printboard(_A ) print() return True for i in range(len(_A ) ): if is_safe(_A , _A , _A ): SCREAMING_SNAKE_CASE : List[str] = 1 solve(_A , row + 1 ) SCREAMING_SNAKE_CASE : Dict = 0 return False def __lowercase ( _A ) -> None: for i in range(len(_A ) ): for j in range(len(_A ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) UpperCAmelCase__ : Any = 8 UpperCAmelCase__ : Optional[int] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
712
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ : Dict = logging.get_logger(__name__) UpperCAmelCase__ : int = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class a__ ( UpperCAmelCase ): """simple docstring""" UpperCAmelCase__ : Any ="""gpt_neox_japanese""" def __init__( self : Any , UpperCAmelCase__ : Any=3_2_0_0_0 , UpperCAmelCase__ : Dict=2_5_6_0 , UpperCAmelCase__ : List[str]=3_2 , UpperCAmelCase__ : Optional[int]=3_2 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Optional[int]=1.00 , UpperCAmelCase__ : List[Any]=1_0_0_0_0 , UpperCAmelCase__ : Tuple=2_0_4_8 , UpperCAmelCase__ : Optional[int]=0.02 , UpperCAmelCase__ : Dict=1e-5 , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Tuple=3_1_9_9_6 , UpperCAmelCase__ : Tuple=3_1_9_9_9 , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Union[str, Any]=0.0 , **UpperCAmelCase__ : Optional[Any] , ) ->Optional[Any]: """simple docstring""" super().__init__(bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_multiple_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Any = rotary_pct SCREAMING_SNAKE_CASE : Tuple = rotary_emb_base SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : str = hidden_dropout
446
0
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase_ = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' lowercase_ = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' lowercase_ = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def a ( A__ : Optional[int] , A__ : Dict ) -> Dict: """simple docstring""" return float((preds == labels).mean() ) def a ( A__ : Any , A__ : int ) -> Any: """simple docstring""" _lowercase =simple_accuracy(A__ , A__ ) _lowercase =float(fa_score(y_true=A__ , y_pred=A__ ) ) return { "accuracy": acc, "f1": fa, } def a ( A__ : Any , A__ : List[Any] ) -> int: """simple docstring""" _lowercase =float(pearsonr(A__ , A__ )[0] ) _lowercase =float(spearmanr(A__ , A__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Dict: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowerCAmelCase , lowerCAmelCase )} elif self.config_name == "stsb": return pearson_and_spearman(lowerCAmelCase , lowerCAmelCase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowerCAmelCase , lowerCAmelCase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowerCAmelCase , lowerCAmelCase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
291
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowercase_ = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class __lowerCAmelCase ( unittest.TestCase , SCREAMING_SNAKE_CASE ): def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =load_tool('text-question-answering' ) self.tool.setup() _lowercase =load_tool('text-question-answering' , remote=lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =self.tool(lowerCAmelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.remote_tool(lowerCAmelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' ) def A__ ( self ) -> Any: '''simple docstring''' _lowercase =self.tool(text=lowerCAmelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' ) def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.remote_tool(text=lowerCAmelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCAmelCase , 'launched the BigScience Research Workshop' )
291
1
'''simple docstring''' class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = name _lowerCAmelCase = value _lowerCAmelCase = weight def __repr__( self ): """simple docstring""" return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def _lowercase ( self ): """simple docstring""" return self.value def _lowercase ( self ): """simple docstring""" return self.name def _lowercase ( self ): """simple docstring""" return self.weight def _lowercase ( self ): """simple docstring""" return self.value / self.weight def A (__lowerCamelCase :Any , __lowerCamelCase :Any , __lowerCamelCase :Dict ): _lowerCAmelCase = [] for i in range(len(snake_case__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def A (__lowerCamelCase :Tuple , __lowerCamelCase :Optional[int] , __lowerCamelCase :Any ): _lowerCAmelCase = sorted(snake_case__ , key=snake_case__ , reverse=snake_case__ ) _lowerCAmelCase = [] _lowerCAmelCase , _lowerCAmelCase = 0.0, 0.0 for i in range(len(snake_case__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def A (): pass if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule _lowercase = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
162
0
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = (IPNDMScheduler,) __magic_name__ = (('num_inference_steps', 50),) def a_ ( self , **__snake_case ): snake_case = {'''num_train_timesteps''': 1_0_0_0} config.update(**__snake_case ) return config def a_ ( self , __snake_case=0 , **__snake_case ): snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop('''num_inference_steps''' , __snake_case ) snake_case = self.dummy_sample snake_case = 0.1 * sample snake_case = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config(**__snake_case ) snake_case = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals snake_case = dummy_past_residuals[:] if time_step is None: snake_case = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) snake_case = scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals snake_case = dummy_past_residuals[:] snake_case = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample snake_case = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample snake_case = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a_ ( self ): pass def a_ ( self , __snake_case=0 , **__snake_case ): snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop('''num_inference_steps''' , __snake_case ) snake_case = self.dummy_sample snake_case = 0.1 * sample snake_case = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config() snake_case = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) snake_case = dummy_past_residuals[:] if time_step is None: snake_case = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) snake_case = scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) snake_case = dummy_past_residuals[:] snake_case = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample snake_case = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample snake_case = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a_ ( self , **__snake_case ): snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(**__snake_case ) snake_case = scheduler_class(**__snake_case ) snake_case = 1_0 snake_case = self.dummy_model() snake_case = self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): snake_case = model(__snake_case , __snake_case ) snake_case = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample for i, t in enumerate(scheduler.timesteps ): snake_case = model(__snake_case , __snake_case ) snake_case = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample return sample def a_ ( self ): snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop('''num_inference_steps''' , __snake_case ) for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config() snake_case = scheduler_class(**__snake_case ) snake_case = self.dummy_sample snake_case = 0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , '''set_timesteps''' ): scheduler.set_timesteps(__snake_case ) elif num_inference_steps is not None and not hasattr(__snake_case , '''set_timesteps''' ): snake_case = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case = dummy_past_residuals[:] snake_case = scheduler.timesteps[5] snake_case = scheduler.timesteps[6] snake_case = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample snake_case = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample snake_case = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def a_ ( self ): for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__snake_case , time_step=__snake_case ) def a_ ( self ): for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__snake_case , time_step=__snake_case ) def a_ ( self ): snake_case = self.full_loop() snake_case = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 2_5_4_0_5_2_9 ) < 1_0
550
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): snake_case = '''ZinengTang/tvlt-base''' snake_case = tempfile.mkdtemp() def a_ ( self , **__snake_case ): return TvltImageProcessor.from_pretrained(self.checkpoint , **__snake_case ) def a_ ( self , **__snake_case ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__snake_case ) def a_ ( self ): shutil.rmtree(self.tmpdirname ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_feature_extractor() snake_case = TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case ) processor.save_pretrained(self.tmpdirname ) snake_case = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __snake_case ) self.assertIsInstance(processor.image_processor , __snake_case ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_feature_extractor() snake_case = TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case ) snake_case = np.ones([1_2_0_0_0] ) snake_case = feature_extractor(__snake_case , return_tensors='''np''' ) snake_case = processor(audio=__snake_case , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_feature_extractor() snake_case = TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case ) snake_case = np.ones([3, 2_2_4, 2_2_4] ) snake_case = image_processor(__snake_case , return_tensors='''np''' ) snake_case = processor(images=__snake_case , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_feature_extractor() snake_case = TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case ) snake_case = np.ones([1_2_0_0_0] ) snake_case = np.ones([3, 2_2_4, 2_2_4] ) snake_case = processor(audio=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_feature_extractor() snake_case = TvltProcessor(image_processor=__snake_case , feature_extractor=__snake_case ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
550
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'google/vit-base-patch16-224': 'https://huggingface.co/vit-base-patch16-224/resolve/main/config.json', # See all ViT models at https://huggingface.co/models?filter=vit } class snake_case_ ( __lowercase ): A_ = 'vit' def __init__( self : str , _snake_case : Tuple=768 , _snake_case : List[Any]=12 , _snake_case : Dict=12 , _snake_case : int=3072 , _snake_case : Tuple="gelu" , _snake_case : str=0.0 , _snake_case : int=0.0 , _snake_case : List[str]=0.02 , _snake_case : Tuple=1E-12 , _snake_case : List[str]=224 , _snake_case : List[Any]=16 , _snake_case : int=3 , _snake_case : str=True , _snake_case : str=16 , **_snake_case : int , )->str: '''simple docstring''' super().__init__(**_snake_case ) __lowerCAmelCase : Optional[Any] = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Union[str, Any] = num_attention_heads __lowerCAmelCase : List[str] = intermediate_size __lowerCAmelCase : Tuple = hidden_act __lowerCAmelCase : Any = hidden_dropout_prob __lowerCAmelCase : Dict = attention_probs_dropout_prob __lowerCAmelCase : Optional[Any] = initializer_range __lowerCAmelCase : str = layer_norm_eps __lowerCAmelCase : Union[str, Any] = image_size __lowerCAmelCase : List[str] = patch_size __lowerCAmelCase : Union[str, Any] = num_channels __lowerCAmelCase : List[str] = qkv_bias __lowerCAmelCase : Union[str, Any] = encoder_stride class snake_case_ ( __lowercase ): A_ = version.parse('1.11' ) @property def UpperCAmelCase__ ( self : Tuple )->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase__ ( self : Optional[int] )->float: '''simple docstring''' return 1E-4
703
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[Any]=() , SCREAMING_SNAKE_CASE :Tuple=None , SCREAMING_SNAKE_CASE :int="no" , SCREAMING_SNAKE_CASE :Dict="29500" ) -> Dict: __lowerCAmelCase : List[str] = False __lowerCAmelCase : int = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): __lowerCAmelCase : int = True elif "IPython" in sys.modules: __lowerCAmelCase : Optional[int] = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: __lowerCAmelCase : List[str] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , SCREAMING_SNAKE_CASE ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: __lowerCAmelCase : List[Any] = 8 __lowerCAmelCase : List[str] = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="""TPU""" ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*SCREAMING_SNAKE_CASE ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr="""127.0.01""" , master_port=SCREAMING_SNAKE_CASE , mixed_precision=SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="""MULTI_GPU""" ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __lowerCAmelCase : Optional[Any] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[Any]=() , SCREAMING_SNAKE_CASE :Optional[int]=2 ) -> Dict: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): __lowerCAmelCase : Any = PrepareForLaunch(SCREAMING_SNAKE_CASE , debug=SCREAMING_SNAKE_CASE ) start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" )
240
0
"""simple docstring""" from typing import Any def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) ->list: """simple docstring""" _validation( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) # Creates data structures and fill initial step __UpperCAmelCase : dict = {} __UpperCAmelCase : dict = {} for state in states_space: __UpperCAmelCase : int = observations_space[0] __UpperCAmelCase : List[Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __UpperCAmelCase : Optional[int] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(UpperCAmelCase_ ) ): __UpperCAmelCase : Tuple = observations_space[o] __UpperCAmelCase : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __UpperCAmelCase : List[Any] = '''''' __UpperCAmelCase : Tuple = -1 for k_state in states_space: __UpperCAmelCase : str = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __UpperCAmelCase : Any = probability __UpperCAmelCase : Optional[int] = k_state # Update probabilities and pointers dicts __UpperCAmelCase : Dict = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __UpperCAmelCase : str = arg_max # The final observation __UpperCAmelCase : Tuple = observations_space[len(UpperCAmelCase_ ) - 1] # argmax for given final observation __UpperCAmelCase : Union[str, Any] = '''''' __UpperCAmelCase : Optional[int] = -1 for k_state in states_space: __UpperCAmelCase : Union[str, Any] = probabilities[(k_state, final_observation)] if probability > max_probability: __UpperCAmelCase : Any = probability __UpperCAmelCase : Optional[Any] = k_state __UpperCAmelCase : Optional[int] = arg_max # Process pointers backwards __UpperCAmelCase : int = last_state __UpperCAmelCase : Optional[int] = [] for o in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): result.append(UpperCAmelCase_ ) __UpperCAmelCase : str = pointers[previous, observations_space[o]] result.reverse() return result def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) ->None: """simple docstring""" _validate_not_empty( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) _validate_lists(UpperCAmelCase_ , UpperCAmelCase_ ) _validate_dicts( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) ->None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->None: """simple docstring""" _validate_list(UpperCAmelCase_ , '''observations_space''' ) _validate_list(UpperCAmelCase_ , '''states_space''' ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->None: """simple docstring""" if not isinstance(_object , UpperCAmelCase_ ): __UpperCAmelCase : List[str] = f'''{var_name} must be a list''' raise ValueError(UpperCAmelCase_ ) else: for x in _object: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __UpperCAmelCase : List[Any] = f'''{var_name} must be a list of strings''' raise ValueError(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) ->None: """simple docstring""" _validate_dict(UpperCAmelCase_ , '''initial_probabilities''' , UpperCAmelCase_ ) _validate_nested_dict(UpperCAmelCase_ , '''transition_probabilities''' ) _validate_nested_dict(UpperCAmelCase_ , '''emission_probabilities''' ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->None: """simple docstring""" _validate_dict(_object , UpperCAmelCase_ , UpperCAmelCase_ ) for x in _object.values(): _validate_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False ) ->None: """simple docstring""" if not isinstance(_object , UpperCAmelCase_ ): __UpperCAmelCase : int = f'''{var_name} must be a dict''' raise ValueError(UpperCAmelCase_ ) if not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for x in _object ): __UpperCAmelCase : Any = f'''{var_name} all keys must be strings''' raise ValueError(UpperCAmelCase_ ) if not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for x in _object.values() ): __UpperCAmelCase : Optional[Any] = '''nested dictionary ''' if nested else '''''' __UpperCAmelCase : List[Any] = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(UpperCAmelCase_ ) if __name__ == "__main__": from doctest import testmod testmod()
522
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : str = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _A : Union[str, Any] = 'CIDAS/clipseg-rd64-refined' _A : Tuple = 'image_segmenter' _A : List[Any] = CLIPSegForImageSegmentation _A : List[str] = ['image', 'text'] _A : Optional[int] = ['image'] def __init__( self : List[str] , *__lowercase : Union[str, Any] , **__lowercase : Any ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*__lowercase , **__lowercase ) def A_ ( self : int , __lowercase : "Image" , __lowercase : str ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=__lowercase , return_tensors='''pt''' ) def A_ ( self : List[Any] , __lowercase : List[Any] ): '''simple docstring''' with torch.no_grad(): __UpperCAmelCase : List[str] = self.model(**__lowercase ).logits return logits def A_ ( self : int , __lowercase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = outputs.cpu().detach().numpy() __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Any = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
522
1
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __lowercase (yaml.SafeLoader ): def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Union[str, Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCamelCase__ : str = [tuple(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else key for key in keys] UpperCamelCase__ : int = Counter(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}') def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=False): UpperCamelCase__ : Union[str, Any] = super().construct_mapping(UpperCAmelCase_ , deep=UpperCAmelCase_) self._check_no_duplicates_on_constructed_node(UpperCAmelCase_) return mapping def __UpperCAmelCase ( lowerCamelCase_) -> Tuple[Optional[str], str]: UpperCamelCase__ : str = list(readme_content.splitlines()) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCamelCase__ : Dict = full_content[1:].index('---') + 1 UpperCamelCase__ : Any = '\n'.join(full_content[1:sep_idx]) return yamlblock, "\n".join(full_content[sep_idx + 1 :]) return None, "\n".join(lowerCamelCase_) class __lowercase (__lowerCamelCase ): # class attributes _lowerCamelCase = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __UpperCamelCase ( cls : List[str] , UpperCAmelCase_ : Path): with open(UpperCAmelCase_ , encoding='utf-8') as readme_file: UpperCamelCase__ : Any = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(UpperCAmelCase_) else: return cls() def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Path): if path.exists(): with open(UpperCAmelCase_ , encoding='utf-8') as readme_file: UpperCamelCase__ : Tuple = readme_file.read() else: UpperCamelCase__ : List[Any] = None UpperCamelCase__ : List[Any] = self._to_readme(UpperCAmelCase_) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as readme_file: readme_file.write(UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[str] = None): if readme_content is not None: UpperCamelCase__ : Any = _split_yaml_from_readme(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: UpperCamelCase__ : List[str] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : str): UpperCamelCase__ : Any = yaml.load(UpperCAmelCase_ , Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields UpperCamelCase__ : int = { (key.replace('-' , '_') if key.replace('-' , '_') in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**UpperCAmelCase_) def __UpperCamelCase ( self : Any): return yaml.safe_dump( { (key.replace('_' , '-') if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=UpperCAmelCase_ , allow_unicode=UpperCAmelCase_ , encoding='utf-8' , ).decode('utf-8') lowerCAmelCase__ = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCAmelCase__ = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') lowerCAmelCase__ = ap.parse_args() lowerCAmelCase__ = Path(args.readme_filepath) lowerCAmelCase__ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
703
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = R""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" a__ : List[str] = max_length a__ : Dict = max_position_embeddings @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" a__ : List[Any] = input_ids.shape[-1] a__ : List[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f'maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ' "exceptions, performance degradation, or nothing at all." ) return is_done class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " f'Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ' "with `max_length = start_length + max_new_tokens` instead." , __UpperCAmelCase , ) a__ : List[str] = start_length a__ : Any = max_new_tokens a__ : Any = start_length + max_new_tokens @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return input_ids.shape[-1] >= self.max_length class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" a__ : List[Any] = max_time a__ : Any = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return any(criteria(__UpperCAmelCase , __UpperCAmelCase ) for criteria in self ) @property def _A ( self ): """simple docstring""" for stopping_criterium in self: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return stopping_criterium.max_length elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): return stopping_criterium.max_length return None def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> StoppingCriteriaList: a__ : str = stopping_criteria.max_length a__ : List[Any] = deepcopy(__UpperCamelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , __UpperCamelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__UpperCamelCase ) ) return new_stopping_criteria
191
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> List[Any]: a__ : Any = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> Optional[Any]: a__ , a__ : Optional[int] = emb.weight.shape a__ : Union[str, Any] = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) a__ : str = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase=None ) -> Optional[int]: a__ : Union[str, Any] = {} for old_key in state_dict.keys(): a__ : List[Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: a__ : List[str] = key.replace("moe_layer.experts.0" , F'ffn.experts.expert_{expert_idx}' ) else: a__ : Optional[Any] = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: a__ : Optional[Any] = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: a__ : int = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: a__ : Any = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: a__ : str = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: a__ : Optional[int] = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: a__ : int = key.replace("final_layer_norm" , "ff_layer_norm" ) a__ : Optional[int] = state_dict[old_key] return new_dict def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = WEIGHTS_NAME ) -> Dict: a__ : Any = [] a__ : List[str] = 0 os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) for expert in range(__UpperCamelCase ): a__ : Union[str, Any] = switch_checkpoint_path + F'-rank-{expert}.pt' if os.path.isfile(__UpperCamelCase ): a__ : str = torch.load(__UpperCamelCase )["model"] remove_ignore_keys_(__UpperCamelCase ) a__ : Tuple = rename_fairseq_keys(__UpperCamelCase , __UpperCamelCase ) a__ : str = os.path.join( __UpperCamelCase , weights_name.replace(".bin" , F'-{len(__UpperCamelCase )+1:05d}-of-???.bin' ) ) torch.save(__UpperCamelCase , __UpperCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__UpperCamelCase )[0]].dtype ) # Add the last block a__ : int = os.path.join(__UpperCamelCase , weights_name.replace(".bin" , F'-{len(__UpperCamelCase )+1:05d}-of-???.bin' ) ) a__ : Any = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(__UpperCamelCase ) a__ : Optional[Any] = rename_fairseq_keys(__UpperCamelCase , __UpperCamelCase ) a__ : List[Any] = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__UpperCamelCase ) == 1: a__ : Union[str, Any] = os.path.join(__UpperCamelCase , __UpperCamelCase ) torch.save(__UpperCamelCase , __UpperCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__UpperCamelCase , __UpperCamelCase ) # Otherwise, let's build the index a__ : Any = {} for idx, shard in enumerate(__UpperCamelCase ): a__ : Any = weights_name.replace(".bin" , F'-{idx+1:05d}-of-{len(__UpperCamelCase ):05d}.bin' ) a__ : Optional[Any] = os.path.join(__UpperCamelCase , weights_name.replace(".bin" , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(__UpperCamelCase , os.path.join(__UpperCamelCase , __UpperCamelCase ) ) for key in shard: a__ : Any = shard_file # Add the metadata a__ : Optional[int] = {"total_size": total_size} a__ : Optional[Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__UpperCamelCase , __UpperCamelCase ) , "w" , encoding="utf-8" ) as f: a__ : Any = json.dumps(__UpperCamelCase , indent=2 , sort_keys=__UpperCamelCase ) + "\n" f.write(__UpperCamelCase ) return metadata, index if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCamelCase = parser.parse_args() lowerCamelCase , lowerCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) lowerCamelCase = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
191
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase ( __A : Optional[int] , __A : Tuple , __A : Any , __A : List[Any] , __A : Optional[int] ) -> Tuple: '''simple docstring''' with open(__A ) as metadata_file: snake_case : Union[str, Any] = json.load(__A ) snake_case : Any = LukeConfig(use_entity_aware_attention=__A , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path snake_case : Any = torch.load(__A , map_location="""cpu""" )["""module"""] # Load the entity vocab file snake_case : Dict = load_original_entity_vocab(__A ) # add an entry for [MASK2] snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case : List[str] = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks snake_case : Any = AddedToken("""<ent>""" , lstrip=__A , rstrip=__A ) snake_case : str = AddedToken("""<ent2>""" , lstrip=__A , rstrip=__A ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__A ) with open(os.path.join(__A , """tokenizer_config.json""" ) , """r""" ) as f: snake_case : int = json.load(__A ) snake_case : Any = """MLukeTokenizer""" with open(os.path.join(__A , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(__A , __A ) with open(os.path.join(__A , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(__A , __A ) snake_case : Any = MLukeTokenizer.from_pretrained(__A ) # Initialize the embeddings of the special tokens snake_case : List[str] = tokenizer.convert_tokens_to_ids(["""@"""] )[0] snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(["""#"""] )[0] snake_case : Union[str, Any] = state_dict["""embeddings.word_embeddings.weight"""] snake_case : str = word_emb[ent_init_index].unsqueeze(0 ) snake_case : Dict = word_emb[enta_init_index].unsqueeze(0 ) snake_case : str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case : Any = state_dict[bias_name] snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" snake_case : List[str] = state_dict[prefix + matrix_name] snake_case : Optional[Any] = state_dict[prefix + matrix_name] snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case : List[str] = state_dict["""entity_embeddings.entity_embeddings.weight"""] snake_case : Dict = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) snake_case : Optional[int] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case : Dict = state_dict["""entity_predictions.bias"""] snake_case : Dict = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) snake_case : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case : Optional[int] = LukeForMaskedLM(config=__A ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) snake_case : Dict = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): snake_case : List[Any] = state_dict[key] else: snake_case : str = state_dict[key] snake_case : int = model.load_state_dict(__A , strict=__A ) if set(__A ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__A ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case : str = MLukeTokenizer.from_pretrained(__A , task="""entity_classification""" ) snake_case : Optional[int] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" snake_case : Dict = (0, 9) snake_case : Optional[Any] = tokenizer(__A , entity_spans=[span] , return_tensors="""pt""" ) snake_case : Any = model(**__A ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : Any = torch.Size((1, 33, 768) ) snake_case : List[str] = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : List[str] = torch.Size((1, 1, 768) ) snake_case : Optional[Any] = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __A , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction snake_case : List[Any] = MLukeTokenizer.from_pretrained(__A ) snake_case : List[str] = """Tokyo is the capital of <mask>.""" snake_case : Tuple = (24, 30) snake_case : Optional[Any] = tokenizer(__A , entity_spans=[span] , return_tensors="""pt""" ) snake_case : Any = model(**__A ) snake_case : str = encoding["""input_ids"""][0].tolist() snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) snake_case : Any = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__A ) snake_case : int = outputs.entity_logits[0][0].argmax().item() snake_case : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(__A ) ) model.save_pretrained(__A ) def lowercase ( __A : int ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""] snake_case : Optional[int] = [json.loads(__A ) for line in open(__A )] snake_case : Union[str, Any] = {} for entry in data: snake_case : str = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case : Optional[int] = entity_id break snake_case : List[Any] = f"""{language}:{entity_name}""" snake_case : List[Any] = entity_id return new_mapping if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) __lowercase : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
718
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : Optional[Any] = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class _A ( snake_case ): '''simple docstring''' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : Optional[Any] = max_length snake_case : List[Any] = max_position_embeddings @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = input_ids.shape[-1] snake_case : List[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ """exceptions, performance degradation, or nothing at all.""" ) return is_done class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ """with `max_length = start_length + max_new_tokens` instead.""" ,SCREAMING_SNAKE_CASE_ ,) snake_case : Tuple = start_length snake_case : List[str] = max_new_tokens snake_case : Optional[Any] = start_length + max_new_tokens @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return input_ids.shape[-1] >= self.max_length class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : List[str] = max_time snake_case : int = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class _A ( snake_case ): '''simple docstring''' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return any(criteria(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for criteria in self ) @property def snake_case_ ( self ): '''simple docstring''' for stopping_criterium in self: if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): return stopping_criterium.max_length elif isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): return stopping_criterium.max_length return None def lowercase ( __A : StoppingCriteriaList , __A : int ) -> StoppingCriteriaList: '''simple docstring''' snake_case : List[Any] = stopping_criteria.max_length snake_case : List[str] = deepcopy(__A ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" , __A ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__A ) ) return new_stopping_criteria
315
0
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging __magic_name__ : Dict =logging.get_logger(__name__) class UpperCamelCase_ : """simple docstring""" UpperCAmelCase__ : str = None @experimental def __snake_case ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return _map_with_joblib(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __snake_case ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] ): '''simple docstring''' __magic_name__ = num_proc if num_proc <= len(lowerCamelCase_ ) else len(lowerCamelCase_ ) __magic_name__ = [] # We organize the splits ourselve (contiguous splits) for index in range(lowerCamelCase_ ): __magic_name__ = len(lowerCamelCase_ ) // num_proc __magic_name__ = len(lowerCamelCase_ ) % num_proc __magic_name__ = div * index + min(lowerCamelCase_ , lowerCamelCase_ ) __magic_name__ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowerCamelCase_ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'Error dividing inputs iterable among processes. ' F'Total number of objects {len(lowerCamelCase_ )}, ' F'length: {sum(len(i[1] ) for i in split_kwds )}' ) logger.info( F'Spawning {num_proc} processes for {len(lowerCamelCase_ )} objects in slices of {[len(i[1] ) for i in split_kwds]}' ) __magic_name__ , __magic_name__ = None, None if not disable_tqdm: __magic_name__ , __magic_name__ = (RLock(),), tqdm.set_lock with Pool(lowerCamelCase_ , initargs=lowerCamelCase_ , initializer=lowerCamelCase_ ) as pool: __magic_name__ = pool.map(lowerCamelCase_ , lowerCamelCase_ ) logger.info(F'Finished {num_proc} processes' ) __magic_name__ = [obj for proc_res in mapped for obj in proc_res] logger.info(F'Unpacked {len(lowerCamelCase_ )} objects' ) return mapped def __snake_case ( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : List[str] ): '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=lowerCamelCase_ ): return joblib.Parallel()( joblib.delayed(lowerCamelCase_ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def __snake_case ( lowerCamelCase_ : str ): '''simple docstring''' __magic_name__ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: __magic_name__ = None
664
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ) -> str: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ = DisjunctiveConstraint(_lowerCamelCase ) self.assertTrue(isinstance(dc.token_ids , _lowerCamelCase ) ) with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __A ( self : List[Any] ) -> str: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint(_lowerCamelCase ) # fails here def __A ( self : List[Any] ) -> int: __magic_name__ = [[1, 2, 3], [1, 2, 4]] __magic_name__ = DisjunctiveConstraint(_lowerCamelCase ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) __magic_name__ = stepped is True and completed is False and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) __magic_name__ = stepped is True and completed is False and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(3 ) __magic_name__ = stepped is True and completed is True and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __A ( self : Any ) -> Union[str, Any]: __magic_name__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ = DisjunctiveConstraint(_lowerCamelCase ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
664
1
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=3 , _lowerCAmelCase=32 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=[10, 20, 30, 40] , _lowerCAmelCase=[1, 1, 2, 1] , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=3 , _lowerCAmelCase=None , ) -> List[str]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = num_channels _lowerCAmelCase = embeddings_size _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = hidden_act _lowerCAmelCase = num_labels _lowerCAmelCase = scope _lowerCAmelCase = len(_lowerCAmelCase ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case ( self ) -> int: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = TFRegNetModel(config=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , training=_lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFRegNetForImageClassification(_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , labels=_lowerCAmelCase , training=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __lowerCamelCase : Dict = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : Dict = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[int] = False def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = TFRegNetModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def _snake_case ( self ) -> Tuple: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _snake_case ( self ) -> int: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _snake_case ( self ) -> Union[str, Any]: super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _snake_case ( self ) -> Dict: pass def _snake_case ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) , training=_lowerCAmelCase ) _lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(_lowerCAmelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _lowerCAmelCase = layer_type _lowerCAmelCase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase={} ): _lowerCAmelCase = model(_lowerCAmelCase , return_dict=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , return_dict=_lowerCAmelCase , **_lowerCAmelCase ).to_tuple() def recursive_check(_lowerCAmelCase , _lowerCAmelCase ): if isinstance(_lowerCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCAmelCase , _lowerCAmelCase ): recursive_check(_lowerCAmelCase , _lowerCAmelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowerCAmelCase , _lowerCAmelCase ) ) , msg=( "Tuple and dict output are not equal. Difference:" f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(_lowerCAmelCase , _lowerCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {"output_hidden_states": True} ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) _lowerCAmelCase = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) check_equivalence(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {"output_hidden_states": True} ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _snake_case ( self ) -> int: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFRegNetModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __a(): '''simple docstring''' _lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def _snake_case ( self ) -> Optional[int]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_lowerCAmelCase , return_tensors="tf" ) # forward pass _lowerCAmelCase = model(**_lowerCAmelCase , training=_lowerCAmelCase ) # verify the logits _lowerCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowerCAmelCase = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 )
707
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = "T5Config" def __a(SCREAMING_SNAKE_CASE_ : jnp.array , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = jnp.zeros_like(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _lowerCAmelCase = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = jnp.where(shifted_input_ids == -100 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return shifted_input_ids class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = "mt5" __lowerCamelCase : Any = MTaConfig class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : List[str] = "mt5" __lowerCamelCase : Dict = MTaConfig class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[Any] = "mt5" __lowerCamelCase : str = MTaConfig
489
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : List[Any] = ['input_features', 'is_longer'] def __init__( self:List[Any] , _a:Dict=64 , _a:List[str]=4_80_00 , _a:str=4_80 , _a:Tuple=10 , _a:Dict=10_24 , _a:Any=0.0 , _a:List[Any]=False , _a:float = 0 , _a:float = 1_40_00 , _a:int = None , _a:str = "fusion" , _a:str = "repeatpad" , **_a:str , ): super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , return_attention_mask=_a , **_a , ) snake_case__ = top_db snake_case__ = truncation snake_case__ = padding snake_case__ = fft_window_size snake_case__ = (fft_window_size >> 1) + 1 snake_case__ = hop_length snake_case__ = max_length_s snake_case__ = max_length_s * sampling_rate snake_case__ = sampling_rate snake_case__ = frequency_min snake_case__ = frequency_max snake_case__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_a , min_frequency=_a , max_frequency=_a , sampling_rate=_a , norm=_a , mel_scale='''htk''' , ) snake_case__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_a , min_frequency=_a , max_frequency=_a , sampling_rate=_a , norm='''slaney''' , mel_scale='''slaney''' , ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = copy.deepcopy(self.__dict__ ) snake_case__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def SCREAMING_SNAKE_CASE__ ( self:int , _a:np.array , _a:Optional[np.array] = None ): snake_case__ = spectrogram( _a , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_a , log_mel='''dB''' , ) return log_mel_spectrogram.T def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:List[str] , _a:Dict , _a:int ): snake_case__ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case__ = [0] # randomly choose index for each part snake_case__ = np.random.choice(ranges[0] ) snake_case__ = np.random.choice(ranges[1] ) snake_case__ = np.random.choice(ranges[2] ) snake_case__ = mel[idx_front : idx_front + chunk_frames, :] snake_case__ = mel[idx_middle : idx_middle + chunk_frames, :] snake_case__ = mel[idx_back : idx_back + chunk_frames, :] snake_case__ = torch.tensor(mel[None, None, :] ) snake_case__ = torch.nn.functional.interpolate( _a , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=_a ) snake_case__ = mel_shrink[0][0].numpy() snake_case__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:np.array , _a:Dict , _a:List[str] , _a:Union[str, Any] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case__ = len(_a ) - max_length snake_case__ = np.random.randint(0 , overflow + 1 ) snake_case__ = waveform[idx : idx + max_length] snake_case__ = self._np_extract_fbank_features(_a , self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case__ = self._np_extract_fbank_features(_a , self.mel_filters ) snake_case__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case__ = np.stack([mel, mel, mel, mel] , axis=0 ) snake_case__ = False else: snake_case__ = self._random_mel_fusion(_a , _a , _a ) snake_case__ = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: snake_case__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case__ = int(max_length / len(_a ) ) snake_case__ = np.stack(np.tile(_a , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case__ = int(max_length / len(_a ) ) snake_case__ = np.stack(np.tile(_a , _a ) ) snake_case__ = np.pad(_a , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": snake_case__ = self._np_extract_fbank_features(_a , self.mel_filters ) snake_case__ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: snake_case__ = self._np_extract_fbank_features(_a , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self:Union[str, Any] , _a:Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _a:str = None , _a:Optional[str] = None , _a:Optional[int] = None , _a:Optional[int] = None , _a:Optional[Union[str, TensorType]] = None , **_a:int , ): snake_case__ = truncation if truncation is not None else self.truncation snake_case__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) snake_case__ = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) snake_case__ = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case__ = [np.asarray(_a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): snake_case__ = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case__ = [np.asarray(_a )] # convert to mel spectrogram, truncate and pad if needed. snake_case__ = [ self._get_input_mel(_a , max_length if max_length else self.nb_max_samples , _a , _a ) for waveform in raw_speech ] snake_case__ = [] snake_case__ = [] for mel, longer in padded_inputs: input_mel.append(_a ) is_longer.append(_a ) if truncation == "fusion" and sum(_a ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case__ = np.random.randint(0 , len(_a ) ) snake_case__ = True if isinstance(input_mel[0] , _a ): snake_case__ = [np.asarray(_a , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case__ = [[longer] for longer in is_longer] snake_case__ = {'''input_features''': input_mel, '''is_longer''': is_longer} snake_case__ = BatchFeature(_a ) if return_tensors is not None: snake_case__ = input_features.convert_to_tensors(_a ) return input_features
33
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__ ( unittest.TestCase ): def lowercase__ (self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE : Tuple = DisjunctiveConstraint(__UpperCAmelCase ) self.assertTrue(isinstance(dc.token_ids, __UpperCAmelCase ) ) with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowercase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCAmelCase ): DisjunctiveConstraint(__UpperCAmelCase ) # fails here def lowercase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveConstraint(__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dc.update(1 ) SCREAMING_SNAKE_CASE : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dc.update(2 ) SCREAMING_SNAKE_CASE : Any = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = dc.update(3 ) SCREAMING_SNAKE_CASE : List[Any] = stepped is True and completed is True and reset is False self.assertTrue(__UpperCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowercase__ (self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE : Union[str, Any] = DisjunctiveConstraint(__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
507
0
'''simple docstring''' def lowerCamelCase ( lowerCamelCase : int): return sum(i for i in range(1 , number // 2 + 1) if number % i == 0) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') __magic_name__ = int(input('Enter number: ').strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
713
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : complex , lowerCamelCase : str = "x" , lowerCamelCase : float = 10**-10 , lowerCamelCase : int = 1 , ): A_ : int = symbols(lowerCamelCase) A_ : List[Any] = lambdify(lowerCamelCase , lowerCamelCase) A_ : List[str] = lambdify(lowerCamelCase , diff(lowerCamelCase , lowerCamelCase)) A_ : str = starting_point while True: if diff_function(lowerCamelCase) != 0: A_ : int = prev_guess - multiplicity * func(lowerCamelCase) / diff_function( lowerCamelCase) else: raise ZeroDivisionError("""Could not find root""") from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess) < precision: return next_guess A_ : Union[str, Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', f"""{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
27
0
from __future__ import annotations def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): # noqa: E741 while r - l > 1: UpperCAmelCase__: Tuple = (l + r) // 2 if v[m] >= key: UpperCAmelCase__: Optional[Any] = m else: UpperCAmelCase__: Any = m # noqa: E741 return r def _A ( SCREAMING_SNAKE_CASE ): if len(SCREAMING_SNAKE_CASE ) == 0: return 0 UpperCAmelCase__: str = [0] * len(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Dict = 1 UpperCAmelCase__: List[Any] = v[0] for i in range(1 ,len(SCREAMING_SNAKE_CASE ) ): if v[i] < tail[0]: UpperCAmelCase__: int = v[i] elif v[i] > tail[length - 1]: UpperCAmelCase__: Union[str, Any] = v[i] length += 1 else: UpperCAmelCase__: List[str] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
113
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __UpperCamelCase ( _a ): '''simple docstring''' def _UpperCAmelCase ( self ): UpperCAmelCase__: Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _UpperCAmelCase ( self ): with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__: Optional[Any] = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _UpperCAmelCase ( self ): with self.assertRaises(lowerCamelCase__ ): UpperCAmelCase__: List[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Dict = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _UpperCAmelCase ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__: List[str] = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def _UpperCAmelCase ( self ): UpperCAmelCase__: List[str] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _UpperCAmelCase ( self ): UpperCAmelCase__: str = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Optional[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _UpperCAmelCase ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__: Union[str, Any] = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Any = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _UpperCAmelCase ( self ): UpperCAmelCase__: int = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _UpperCAmelCase ( self ): import PIL.Image UpperCAmelCase__: int = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=lowerCamelCase__ ) as mock_cast_to_python_objects: UpperCAmelCase__: Tuple = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , lowerCamelCase__ ) self.assertFalse(kwargs["optimize_list_casting"] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Optional[Any] = pa.BufferReader(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE ,pa.Buffer ) else pa.memory_map(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: str = pa.ipc.open_stream(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 1_0] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[str] = pa.BufferOutputStream() UpperCAmelCase__: Tuple = pa.schema(SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE ,schema=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCAmelCase__ , UpperCAmelCase__: List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__: Optional[int] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _A ( ): UpperCAmelCase__: Tuple = pa.BufferOutputStream() UpperCAmelCase__: Any = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=SCREAMING_SNAKE_CASE ,features=SCREAMING_SNAKE_CASE ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) UpperCAmelCase__ , UpperCAmelCase__: List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCAmelCase__: Dict = pa.BufferReader(output.getvalue() ) UpperCAmelCase__: Any = pa.ipc.open_stream(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: pa.Table = f.read_all() UpperCAmelCase__: Union[str, Any] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 1_0] ) def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[str] = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ,hash_salt="split_name" ,check_duplicates=SCREAMING_SNAKE_CASE ,) as writer: with pytest.raises(SCREAMING_SNAKE_CASE ): writer.write({"col_1": "foo", "col_2": 1} ,key=[1, 2] ) UpperCAmelCase__ , UpperCAmelCase__: Any = writer.finalize() @pytest.mark.parametrize("writer_batch_size" ,[None, 2, 1_0] ) def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: int = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ,hash_salt="split_name" ,check_duplicates=SCREAMING_SNAKE_CASE ,) as writer: with pytest.raises(SCREAMING_SNAKE_CASE ): writer.write({"col_1": "foo", "col_2": 1} ,key=1_0 ) writer.write({"col_1": "bar", "col_2": 2} ,key=1_0 ) UpperCAmelCase__ , UpperCAmelCase__: str = writer.finalize() @pytest.mark.parametrize("writer_batch_size" ,[None, 2, 1_0] ) def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Dict = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ,hash_salt="split_name" ,check_duplicates=SCREAMING_SNAKE_CASE ,) as writer: writer.write({"col_1": "foo", "col_2": 1} ,key=1 ) writer.write({"col_1": "bar", "col_2": 2} ,key=2 ) UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 1_0] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: int = pa.BufferOutputStream() UpperCAmelCase__: Optional[Any] = pa.schema(SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE ,schema=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) UpperCAmelCase__ , UpperCAmelCase__: int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__: Optional[Any] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 1_0] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Tuple = pa.BufferOutputStream() UpperCAmelCase__: List[str] = pa.schema(SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE ,schema=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) UpperCAmelCase__ , UpperCAmelCase__: Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__: str = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" ,[None, 1, 1_0] ) @pytest.mark.parametrize( "fields" ,[None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[str] = pa.BufferOutputStream() UpperCAmelCase__: List[Any] = pa.schema(SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE ,schema=SCREAMING_SNAKE_CASE ,writer_batch_size=SCREAMING_SNAKE_CASE ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) UpperCAmelCase__ , UpperCAmelCase__: Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__: Dict = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _A ( ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__: List[str] = {"col_1": pa.string(), "col_2": pa.intaa()} UpperCAmelCase__: str = os.path.join(SCREAMING_SNAKE_CASE ,"test.arrow" ) with ArrowWriter(path=SCREAMING_SNAKE_CASE ,schema=pa.schema(SCREAMING_SNAKE_CASE ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE ,metadata=writer._schema.metadata ) _check_output(SCREAMING_SNAKE_CASE ,1 ) def _A ( SCREAMING_SNAKE_CASE ): if pa.types.is_list(SCREAMING_SNAKE_CASE ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): if isinstance(lst[0] ,SCREAMING_SNAKE_CASE ): change_first_primitive_element_in_list(lst[0] ,SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__: Dict = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" ,[(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: str = pa.array(TypedSequence(SCREAMING_SNAKE_CASE ,optimized_int_type=SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" ,[ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] ,) @pytest.mark.parametrize("sequence" ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): # in range UpperCAmelCase__: List[Any] = pa.array(OptimizedTypedSequence(SCREAMING_SNAKE_CASE ,col=SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCAmelCase__: Dict = copy.deepcopy(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: List[Any] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Tuple = pa.array(OptimizedTypedSequence(SCREAMING_SNAKE_CASE ,col=SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" ,[False, True] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[Any] = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=SCREAMING_SNAKE_CASE ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[Any] = "mock://dataset-train.arrow" with ArrowWriter(path=SCREAMING_SNAKE_CASE ,storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs ,type(SCREAMING_SNAKE_CASE ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCAmelCase__ , UpperCAmelCase__: List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(SCREAMING_SNAKE_CASE ) def _A ( ): UpperCAmelCase__: Dict = pa.BufferOutputStream() with ParquetWriter(stream=SCREAMING_SNAKE_CASE ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) UpperCAmelCase__ , UpperCAmelCase__: str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCAmelCase__: str = pa.BufferReader(output.getvalue() ) UpperCAmelCase__: pa.Table = pq.read_table(SCREAMING_SNAKE_CASE ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" ,[False, True] ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): import PIL.Image UpperCAmelCase__: List[str] = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) ,dtype=np.uinta ) ).save(SCREAMING_SNAKE_CASE ,format="png" ) UpperCAmelCase__: List[Any] = pa.BufferOutputStream() with ParquetWriter( stream=SCREAMING_SNAKE_CASE ,features=Features({"image": Image()} ) ,embed_local_files=SCREAMING_SNAKE_CASE ) as writer: writer.write({"image": image_path} ) writer.finalize() UpperCAmelCase__: Optional[int] = pa.BufferReader(output.getvalue() ) UpperCAmelCase__: pa.Table = pq.read_table(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Dict = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] ,SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE ,"rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _A ( ): UpperCAmelCase__: List[str] = pa.schema([pa.field("col_1" ,pa.string() ,nullable=SCREAMING_SNAKE_CASE )] ) UpperCAmelCase__: Optional[Any] = pa.BufferOutputStream() with ArrowWriter(stream=SCREAMING_SNAKE_CASE ) as writer: writer._build_writer(inferred_schema=SCREAMING_SNAKE_CASE ) assert writer._schema == pa.schema([pa.field("col_1" ,pa.string() )] )
113
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = tempfile.mkdtemp() __a : Any = BlipImageProcessor() __a : List[Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) __a : str = BlipProcessor(__UpperCamelCase , __UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).tokenizer def __lowerCamelCase ( self , **__UpperCamelCase ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ).image_processor def __lowerCamelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a : Dict = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __a : str = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 ) __a : Any = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = self.get_image_processor() __a : Dict = self.get_tokenizer() __a : Optional[Any] = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __a : List[Any] = self.prepare_image_inputs() __a : List[str] = image_processor(__UpperCamelCase , return_tensors="""np""" ) __a : Optional[int] = processor(images=__UpperCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.get_image_processor() __a : Tuple = self.get_tokenizer() __a : Tuple = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __a : Optional[Any] = """lower newer""" __a : Optional[int] = processor(text=__UpperCamelCase ) __a : List[str] = tokenizer(__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = self.get_image_processor() __a : List[str] = self.get_tokenizer() __a : List[str] = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __a : Tuple = """lower newer""" __a : Any = self.prepare_image_inputs() __a : Optional[int] = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def __lowerCamelCase ( self ): '''simple docstring''' __a : str = self.get_image_processor() __a : Dict = self.get_tokenizer() __a : List[str] = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __a : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a : Dict = processor.batch_decode(__UpperCamelCase ) __a : Optional[int] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.get_image_processor() __a : Optional[int] = self.get_tokenizer() __a : str = BlipProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __a : Dict = """lower newer""" __a : List[str] = self.prepare_image_inputs() __a : List[Any] = processor(text=__UpperCamelCase , images=__UpperCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
697
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = params __a : Optional[Any] = np.array(__UpperCamelCase ) __a : Union[str, Any] = np.array([len(__UpperCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __UpperCamelCase ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def __lowerCamelCase ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.params.max_model_input_size __a : Union[str, Any] = self.lengths > max_len logger.info(f"""Splitting {sum(__UpperCamelCase )} too long sequences.""" ) def divide_chunks(__UpperCamelCase , __UpperCamelCase ): return [l[i : i + n] for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )] __a : int = [] __a : Union[str, Any] = [] if self.params.mlm: __a , __a : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __a , __a : str = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __a : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __a : int = np.insert(__UpperCamelCase , 0 , __UpperCamelCase ) if sub_s[-1] != sep_id: __a : str = np.insert(__UpperCamelCase , len(__UpperCamelCase ) , __UpperCamelCase ) assert len(__UpperCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__UpperCamelCase ) new_tok_ids.extend(__UpperCamelCase ) new_lengths.extend([len(__UpperCamelCase ) for l in sub_seqs] ) __a : Dict = np.array(__UpperCamelCase ) __a : Tuple = np.array(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = len(self ) __a : List[str] = self.lengths > 11 __a : int = self.token_ids[indices] __a : Union[str, Any] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __lowerCamelCase ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __a : List[str] = self.params.special_tok_ids["""unk_token"""] __a : str = len(self ) __a : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __a : Optional[Any] = (unk_occs / self.lengths) < 0.5 __a : List[str] = self.token_ids[indices] __a : Optional[int] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[str] = [t[0] for t in batch] __a : str = [t[1] for t in batch] assert len(__UpperCamelCase ) == len(__UpperCamelCase ) # Max for paddings __a : Optional[int] = max(__UpperCamelCase ) # Pad token ids if self.params.mlm: __a : int = self.params.special_tok_ids["""pad_token"""] else: __a : Tuple = self.params.special_tok_ids["""unk_token"""] __a : Any = [list(t.astype(__UpperCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(__UpperCamelCase )) for t in token_ids] assert len(tk_ ) == len(__UpperCamelCase ) assert all(len(__UpperCamelCase ) == max_seq_len_ for t in tk_ ) __a : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) __a : Optional[Any] = torch.tensor(__UpperCamelCase ) # (bs) return tk_t, lg_t
697
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class __lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" A__ : Optional[int] = field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : Optional[int] = Features({"image": Image()} ) A__ : int = Features({"labels": ClassLabel} ) A__ : Tuple = "image" A__ : Tuple = "labels" def _a ( self : Dict , _snake_case : str ): """simple docstring""" if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , _snake_case ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) A__ = copy.deepcopy(self ) A__ = self.label_schema.copy() A__ = features[self.label_column] A__ = label_schema return task_template @property def _a ( self : int ): """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
9
"""simple docstring""" __UpperCAmelCase = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __UpperCAmelCase = frozenset(['prompt', 'negative_prompt']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset(['image']) __UpperCAmelCase = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['image']) __UpperCAmelCase = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __UpperCAmelCase = frozenset(['prompt', 'image', 'negative_prompt']) __UpperCAmelCase = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __UpperCAmelCase = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) __UpperCAmelCase = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['image', 'mask_image']) __UpperCAmelCase = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['example_image', 'image', 'mask_image']) __UpperCAmelCase = frozenset(['class_labels']) __UpperCAmelCase = frozenset(['class_labels']) __UpperCAmelCase = frozenset(['batch_size']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset(['batch_size']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __UpperCAmelCase = frozenset(['prompt', 'negative_prompt']) __UpperCAmelCase = frozenset(['input_tokens']) __UpperCAmelCase = frozenset(['input_tokens'])
65
0
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=768 ): """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = proj_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = CLIPVisionModel(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = PaintByExampleMapper(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE_ : Tuple = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE_ : str = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.model(pixel_values=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = clip_output.pooler_output SCREAMING_SNAKE_CASE_ : List[str] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.final_layer_norm(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = self.proj_out(_SCREAMING_SNAKE_CASE ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _A ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : Dict = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE_ : str = config.hidden_size SCREAMING_SNAKE_CASE_ : Dict = 1 SCREAMING_SNAKE_CASE_ : List[Any] = nn.ModuleList( [ BasicTransformerBlock(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , activation_fn='gelu' , attention_bias=_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" for block in self.blocks: SCREAMING_SNAKE_CASE_ : Any = block(_SCREAMING_SNAKE_CASE ) return hidden_states
707
def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def A_ ( a = 1_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 for i in range(2 , max_n + 1 ): SCREAMING_SNAKE_CASE_ : List[str] = pre_numerator SCREAMING_SNAKE_CASE_ : str = 2 * i // 3 if i % 3 == 0 else 1 SCREAMING_SNAKE_CASE_ : Tuple = cur_numerator SCREAMING_SNAKE_CASE_ : Tuple = e_cont * pre_numerator + temp return sum_digits(a ) if __name__ == "__main__": print(F'{solution() = }')
353
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ : Union[str, Any] = 16 UpperCAmelCase_ : List[Any] = 32 def UpperCAmelCase_ ( A , A = 1_6 ): '''simple docstring''' _a : Dict = AutoTokenizer.from_pretrained('bert-base-cased' ) _a : List[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) _a : Union[str, Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a__ , max_length=a__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : int = datasets.map( a__ , batched=a__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : Dict = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : List[Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : Dict = 1_6 elif accelerator.mixed_precision != "no": _a : str = 8 else: _a : List[Any] = None return tokenizer.pad( a__ , padding='longest' , max_length=a__ , pad_to_multiple_of=a__ , return_tensors='pt' , ) # Instantiate dataloaders. _a : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) _a : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=a__ , collate_fn=a__ , batch_size=a__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ : Optional[Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( A , A ): '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , a__ ) == "1": _a : List[Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _a : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: _a : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Optional[Any] = config['lr'] _a : Tuple = int(config['num_epochs'] ) _a : Tuple = int(config['seed'] ) _a : Tuple = int(config['batch_size'] ) set_seed(a__ ) _a , _a : Tuple = get_dataloaders(a__ , a__ ) _a : List[str] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _a : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : Dict = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=a__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer _a : str = AdamW(params=model.parameters() , lr=a__ ) # Instantiate scheduler _a : Dict = get_linear_schedule_with_warmup( optimizer=a__ , num_warmup_steps=1_0_0 , num_training_steps=(len(a__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : List[Any] = accelerator.prepare( a__ , a__ , a__ , a__ , a__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _a : Union[str, Any] = os.path.split(a__ )[-1].split('.' )[0] accelerator.init_trackers(a__ , a__ ) # Now we train the model for epoch in range(a__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _a : str = 0 for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : str = model(**a__ ) _a : List[Any] = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _a : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(a__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _a : str = model(**a__ ) _a : Tuple = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=a__ , references=a__ , ) _a : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , a__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(a__ ), 'epoch': epoch, } , step=a__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCAmelCase_ ( ): '''simple docstring''' _a : Dict = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=a__ , default=a__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=a__ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) _a : List[Any] = parser.parse_args() _a : Optional[Any] = {'lr': 2E-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(a__ , a__ ) if __name__ == "__main__": main()
120
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = 1 _UpperCamelCase = 3 _UpperCamelCase = (32, 32) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def lowercase ( self ) -> str: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCamelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def lowercase ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase ( self ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) return CLIPTextModel(lowerCamelCase_ ) def lowercase ( self ) -> Dict: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=lowerCamelCase_ , )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] _UpperCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _UpperCamelCase = np.array([0.31_13, 0.39_10, 0.42_72, 0.48_59, 0.50_61, 0.46_52, 0.53_62, 0.57_15, 0.56_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape[0] == 2 _UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = self.dummy_cond_unet_upscale _UpperCamelCase = DDPMScheduler() _UpperCamelCase = DDIMScheduler(prediction_type="v_prediction" ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _UpperCamelCase = unet.half() _UpperCamelCase = text_encoder.half() # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionUpscalePipeline( unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , max_noise_level=3_50 , ) _UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCamelCase = "A painting of a squirrel eating a burger" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=2 , output_type="np" , ).images _UpperCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase ( self ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained(lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowercase ( self ) -> str: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) _UpperCamelCase = "stabilityai/stable-diffusion-x4-upscaler" _UpperCamelCase = StableDiffusionUpscalePipeline.from_pretrained( lowerCamelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = "a cat sitting on a park bench" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=lowerCamelCase_ , image=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , output_type="np" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
147
0
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __UpperCamelCase = TypeVar('''T''') class lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = len(__A ) SCREAMING_SNAKE_CASE = [any_type for _ in range(self.N )] + arr SCREAMING_SNAKE_CASE = fnc self.build() def __A ( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: p += self.N SCREAMING_SNAKE_CASE = v while p > 1: SCREAMING_SNAKE_CASE = p // 2 SCREAMING_SNAKE_CASE = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> T | None: # noqa: E741 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = l + self.N, r + self.N SCREAMING_SNAKE_CASE = None while l <= r: if l % 2 == 1: SCREAMING_SNAKE_CASE = self.st[l] if res is None else self.fn(__A , self.st[l] ) if r % 2 == 0: SCREAMING_SNAKE_CASE = self.st[r] if res is None else self.fn(__A , self.st[r] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __UpperCamelCase = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __UpperCamelCase = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __UpperCamelCase = SegmentTree(test_array, min) __UpperCamelCase = SegmentTree(test_array, max) __UpperCamelCase = SegmentTree(test_array, lambda a, b: a + b) def lowercase () -> List[Any]: for i in range(len(UpperCamelCase__ ) ): for j in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE = reduce(UpperCamelCase__ , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE = reduce(UpperCamelCase__ , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE = reduce(lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(UpperCamelCase__ , UpperCamelCase__ ) assert max_range == max_segment_tree.query(UpperCamelCase__ , UpperCamelCase__ ) assert sum_range == sum_segment_tree.query(UpperCamelCase__ , UpperCamelCase__ ) test_all_segments() for index, value in test_updates.items(): __UpperCamelCase = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
715
"""simple docstring""" from math import sqrt def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> int: SCREAMING_SNAKE_CASE = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE_ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE_ ): total += i return total - n def lowercase (SCREAMING_SNAKE_CASE_ : int = 1_00_00 ) -> int: SCREAMING_SNAKE_CASE = sum( i for i in range(1 , SCREAMING_SNAKE_CASE_ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE_ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
327
0
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' def get_matched_characters(__UpperCAmelCase , __UpperCAmelCase ) -> str: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __SCREAMING_SNAKE_CASE = int(max(0 , i - limit ) ) __SCREAMING_SNAKE_CASE = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = f"""{_stra[0:_stra.index(__UpperCAmelCase )]} {_stra[_stra.index(__UpperCAmelCase ) + 1:]}""" return "".join(__UpperCAmelCase ) # matching characters __SCREAMING_SNAKE_CASE = get_matched_characters(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = get_matched_characters(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) # transposition __SCREAMING_SNAKE_CASE = ( len([(ca, ca) for ca, ca in zip(__UpperCAmelCase , __UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: __SCREAMING_SNAKE_CASE = 0.0 else: __SCREAMING_SNAKE_CASE = ( 1 / 3 * ( match_count / len(__UpperCAmelCase ) + match_count / len(__UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __SCREAMING_SNAKE_CASE = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
109
'''simple docstring''' import os from math import logaa def __magic_name__ ( __UpperCAmelCase = "base_exp.txt" ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = list(map(__UpperCAmelCase , line.split(""",""" ) ) ) if x * logaa(__UpperCAmelCase ) > largest: __SCREAMING_SNAKE_CASE = x * logaa(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = i + 1 return result if __name__ == "__main__": print(solution())
109
1
from __future__ import annotations import math def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : float ): if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) def lowerCAmelCase_ ( ): UpperCamelCase_ : Dict = [90, 23, 6, 33, 21, 65, 123, 3_4423] UpperCamelCase_ : Optional[int] = math.log(len(_SCREAMING_SNAKE_CASE ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
138
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class UpperCamelCase ( unittest.TestCase ): a__ :List[str] = StableDiffusionLDMaDPipeline a__ :str = TEXT_TO_IMAGE_PARAMS a__ :Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS a__ :Any = TEXT_TO_IMAGE_IMAGE_PARAMS def A_ (self ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCamelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) UpperCamelCase_ : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) UpperCamelCase_ : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase_ : Tuple = CLIPTextModel(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCamelCase_ : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A_ (self , __UpperCamelCase , __UpperCamelCase=0 ) -> Optional[Any]: if str(__UpperCamelCase ).startswith("""mps""" ): UpperCamelCase_ : Any = torch.manual_seed(__UpperCamelCase ) else: UpperCamelCase_ : str = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ : List[str] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A_ (self ) -> str: UpperCamelCase_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ : List[str] = self.get_dummy_components() UpperCamelCase_ : List[Any] = StableDiffusionLDMaDPipeline(**__UpperCamelCase ) UpperCamelCase_ : Optional[int] = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : List[str] = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : Optional[int] = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Tuple = output.rgb, output.depth UpperCamelCase_ : Optional[Any] = rgb[0, -3:, -3:, -1] UpperCamelCase_ : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase_ : str = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) UpperCamelCase_ : Optional[Any] = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def A_ (self ) -> List[Any]: UpperCamelCase_ : Tuple = self.get_dummy_components() UpperCamelCase_ : int = StableDiffusionLDMaDPipeline(**__UpperCamelCase ) UpperCamelCase_ : Tuple = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : List[str] = 3 * [inputs["""prompt"""]] # forward UpperCamelCase_ : List[Any] = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : int = output.rgb, output.depth UpperCamelCase_ : Dict = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase_ : Optional[Any] = depth_slice_a[0, -3:, -1] UpperCamelCase_ : Any = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : Optional[int] = 3 * [inputs.pop("""prompt""" )] UpperCamelCase_ : Optional[int] = ldmad_pipe.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors="""pt""" , ) UpperCamelCase_ : List[Any] = text_inputs["""input_ids"""].to(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = ldmad_pipe.text_encoder(__UpperCamelCase )[0] UpperCamelCase_ : Optional[int] = prompt_embeds # forward UpperCamelCase_ : Any = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = output.rgb, output.depth UpperCamelCase_ : Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] UpperCamelCase_ : Union[str, Any] = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def A_ (self ) -> str: UpperCamelCase_ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ : int = self.get_dummy_components() UpperCamelCase_ : List[str] = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) UpperCamelCase_ : int = StableDiffusionLDMaDPipeline(**__UpperCamelCase ) UpperCamelCase_ : Optional[int] = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase ) UpperCamelCase_ : str = """french fries""" UpperCamelCase_ : Dict = ldmad_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : List[str] = output.rgb, output.depth UpperCamelCase_ : Dict = rgb[0, -3:, -3:, -1] UpperCamelCase_ : List[Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) UpperCamelCase_ : int = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) UpperCamelCase_ : Tuple = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def A_ (self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ (self , __UpperCamelCase , __UpperCamelCase="cpu" , __UpperCamelCase=torch.floataa , __UpperCamelCase=0 ) -> List[str]: UpperCamelCase_ : List[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ : List[str] = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase_ : Dict = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ) UpperCamelCase_ : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A_ (self ) -> Optional[Any]: UpperCamelCase_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) UpperCamelCase_ : Dict = ldmad_pipe.to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = self.get_inputs(__UpperCamelCase ) UpperCamelCase_ : str = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = output.rgb, output.depth UpperCamelCase_ : Tuple = rgb[0, -3:, -3:, -1].flatten() UpperCamelCase_ : int = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) UpperCamelCase_ : str = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) UpperCamelCase_ : List[str] = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def A_ (self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ (self , __UpperCamelCase , __UpperCamelCase="cpu" , __UpperCamelCase=torch.floataa , __UpperCamelCase=0 ) -> Any: UpperCamelCase_ : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = np.random.RandomState(__UpperCamelCase ).standard_normal((1, 4, 64, 64) ) UpperCamelCase_ : Any = torch.from_numpy(__UpperCamelCase ).to(device=__UpperCamelCase , dtype=__UpperCamelCase ) UpperCamelCase_ : Dict = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A_ (self ) -> Optional[int]: UpperCamelCase_ : Union[str, Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = self.get_inputs(__UpperCamelCase ) UpperCamelCase_ : List[str] = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Tuple = output.rgb, output.depth UpperCamelCase_ : Any = 0.495_586 UpperCamelCase_ : Dict = 0.33_795_515 UpperCamelCase_ : Optional[int] = 112.48_518 UpperCamelCase_ : Union[str, Any] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def A_ (self ) -> str: UpperCamelCase_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__UpperCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase_ : Optional[int] = self.get_inputs(__UpperCamelCase ) UpperCamelCase_ : Tuple = ldmad_pipe(**__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_ : Optional[int] = output.rgb, output.depth UpperCamelCase_ : int = 0.4_194_127 UpperCamelCase_ : Optional[Any] = 0.35_375_586 UpperCamelCase_ : Optional[Any] = 0.5_638_502 UpperCamelCase_ : List[Any] = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
138
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = (UniPCMultistepScheduler,) SCREAMING_SNAKE_CASE = (("num_inference_steps", 2_5),) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> int: lowercase__ : Tuple = { "num_train_timesteps": 1000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__lowerCAmelCase ) return config def _lowerCAmelCase( self , __lowerCAmelCase=0 , **__lowerCAmelCase ) -> List[str]: lowercase__ : int = dict(self.forward_default_kwargs ) lowercase__ : List[str] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) lowercase__ : Tuple = self.dummy_sample lowercase__ : int = 0.1 * sample lowercase__ : Optional[Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowercase__ : List[Any] = self.get_scheduler_config(**__lowerCAmelCase ) lowercase__ : List[Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals lowercase__ : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) lowercase__ : Optional[Any] = scheduler_class.from_pretrained(__lowerCAmelCase ) new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals lowercase__ : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__ : Optional[Any] = sample, sample for t in range(__lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): lowercase__ : int = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase__ : Dict = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowerCAmelCase( self , __lowerCAmelCase=0 , **__lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Optional[int] = dict(self.forward_default_kwargs ) lowercase__ : Dict = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) lowercase__ : Optional[Any] = self.dummy_sample lowercase__ : str = 0.1 * sample lowercase__ : int = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowercase__ : str = self.get_scheduler_config() lowercase__ : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) lowercase__ : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCAmelCase ) lowercase__ : List[str] = scheduler_class.from_pretrained(__lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) lowercase__ : str = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase__ : Tuple = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase__ : List[str] = new_scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowerCAmelCase( self , __lowerCAmelCase=None , **__lowerCAmelCase ) -> Optional[int]: if scheduler is None: lowercase__ : Dict = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config(**__lowerCAmelCase ) lowercase__ : str = scheduler_class(**__lowerCAmelCase ) lowercase__ : List[Any] = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config(**__lowerCAmelCase ) lowercase__ : Optional[Any] = scheduler_class(**__lowerCAmelCase ) lowercase__ : Any = 10 lowercase__ : Optional[int] = self.dummy_model() lowercase__ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : List[Any] = model(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Optional[int] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample return sample def _lowerCAmelCase( self ) -> Tuple: lowercase__ : str = dict(self.forward_default_kwargs ) lowercase__ : Optional[Any] = kwargs.pop('''num_inference_steps''' , __lowerCAmelCase ) for scheduler_class in self.scheduler_classes: lowercase__ : Tuple = self.get_scheduler_config() lowercase__ : Dict = scheduler_class(**__lowerCAmelCase ) lowercase__ : str = self.dummy_sample lowercase__ : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCAmelCase , '''set_timesteps''' ): scheduler.set_timesteps(__lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(__lowerCAmelCase , '''set_timesteps''' ): lowercase__ : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase__ : Dict = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] lowercase__ : Any = dummy_past_residuals[: scheduler.config.solver_order] lowercase__ : Any = scheduler.timesteps[5] lowercase__ : Union[str, Any] = scheduler.timesteps[6] lowercase__ : Optional[int] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample lowercase__ : Optional[Any] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowerCAmelCase( self ) -> Any: # make sure that iterating over schedulers with same config names gives same results # for defaults lowercase__ : Optional[int] = UniPCMultistepScheduler(**self.get_scheduler_config() ) lowercase__ : Tuple = self.full_loop(scheduler=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 lowercase__ : Optional[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase__ : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) lowercase__ : Dict = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase__ : List[str] = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase__ : Union[str, Any] = self.full_loop(scheduler=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def _lowerCAmelCase( self ) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowerCAmelCase( self ) -> int: self.check_over_configs(thresholding=__lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , ) def _lowerCAmelCase( self ) -> str: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Optional[int]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , ) lowercase__ : Union[str, Any] = self.full_loop( solver_order=__lowerCAmelCase , solver_type=__lowerCAmelCase , prediction_type=__lowerCAmelCase , ) assert not torch.isnan(__lowerCAmelCase ).any(), "Samples have nan numbers" def _lowerCAmelCase( self ) -> List[Any]: self.check_over_configs(lower_order_final=__lowerCAmelCase ) self.check_over_configs(lower_order_final=__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=__lowerCAmelCase , time_step=0 ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : Any = self.full_loop() lowercase__ : Optional[int] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def _lowerCAmelCase( self ) -> Dict: lowercase__ : str = self.full_loop(prediction_type='''v_prediction''' ) lowercase__ : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : int = self.scheduler_classes[0] lowercase__ : Dict = self.get_scheduler_config(thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0 ) lowercase__ : Optional[int] = scheduler_class(**__lowerCAmelCase ) lowercase__ : List[Any] = 10 lowercase__ : Any = self.dummy_model() lowercase__ : Union[str, Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase__ : Any = model(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Tuple = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Dict: for scheduler_class in self.scheduler_classes: lowercase__ : str = self.get_scheduler_config(**__lowerCAmelCase ) lowercase__ : Optional[Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
152
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = CycleDiffusionPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self : Any ): torch.manual_seed(0 ) __lowerCamelCase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) __lowerCamelCase : Tuple = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , num_train_timesteps=1000 , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowerCamelCase : Union[str, Any] = CLIPTextModel(UpperCAmelCase ) __lowerCamelCase : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __lowerCamelCase : Optional[int] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=0 ): __lowerCamelCase : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) __lowerCamelCase : str = image / 2 + 0.5 if str(UpperCAmelCase ).startswith("mps" ): __lowerCamelCase : List[Any] = torch.manual_seed(UpperCAmelCase ) else: __lowerCamelCase : str = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) __lowerCamelCase : str = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : List[Any] = self.get_dummy_components() __lowerCamelCase : Optional[int] = CycleDiffusionPipeline(**UpperCAmelCase ) __lowerCamelCase : List[str] = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : int = self.get_dummy_inputs(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = pipe(**UpperCAmelCase ) __lowerCamelCase : List[str] = output.images __lowerCamelCase : Any = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCamelCase : Tuple = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : List[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(UpperCAmelCase , "half" ): __lowerCamelCase : str = module.half() __lowerCamelCase : str = CycleDiffusionPipeline(**UpperCAmelCase ) __lowerCamelCase : Optional[Any] = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase ) __lowerCamelCase : int = pipe(**UpperCAmelCase ) __lowerCamelCase : Any = output.images __lowerCamelCase : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCamelCase : List[str] = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCamelCase__ ( self : Tuple ): return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def lowerCamelCase__ ( self : Dict ): return super().test_inference_batch_single_identical() @skip_mps def lowerCamelCase__ ( self : Dict ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCamelCase__ ( self : Union[str, Any] ): return super().test_save_load_optional_components() @skip_mps def lowerCamelCase__ ( self : str ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) __lowerCamelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) __lowerCamelCase : List[str] = init_image.resize((512, 512) ) __lowerCamelCase : Union[str, Any] = "CompVis/stable-diffusion-v1-4" __lowerCamelCase : Tuple = DDIMScheduler.from_pretrained(UpperCAmelCase , subfolder="scheduler" ) __lowerCamelCase : Optional[int] = CycleDiffusionPipeline.from_pretrained( UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() __lowerCamelCase : Optional[int] = "A black colored car" __lowerCamelCase : Dict = "A blue colored car" __lowerCamelCase : str = torch.manual_seed(0 ) __lowerCamelCase : Tuple = pipe( prompt=UpperCAmelCase , source_prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase , output_type="np" , ) __lowerCamelCase : Union[str, Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowerCamelCase__ ( self : int ): __lowerCamelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) __lowerCamelCase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) __lowerCamelCase : int = init_image.resize((512, 512) ) __lowerCamelCase : List[Any] = "CompVis/stable-diffusion-v1-4" __lowerCamelCase : Union[str, Any] = DDIMScheduler.from_pretrained(UpperCAmelCase , subfolder="scheduler" ) __lowerCamelCase : str = CycleDiffusionPipeline.from_pretrained(UpperCAmelCase , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() __lowerCamelCase : List[Any] = "A black colored car" __lowerCamelCase : List[Any] = "A blue colored car" __lowerCamelCase : Dict = torch.manual_seed(0 ) __lowerCamelCase : Any = pipe( prompt=UpperCAmelCase , source_prompt=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=100 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase , output_type="np" , ) __lowerCamelCase : Optional[int] = output.images assert np.abs(image - expected_image ).max() < 2E-2
646
0
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __A ( unittest.TestCase , __snake_case ): def _lowercase (self : List[str] ): UpperCAmelCase_ = load_tool("text-to-speech" ) self.tool.setup() def _lowercase (self : Dict ): torch.manual_seed(0 ) UpperCAmelCase_ = self.tool("hey" ) UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def _lowercase (self : List[str] ): torch.manual_seed(0 ) UpperCAmelCase_ = self.tool("hey" ) UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
702
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = abs(snake_case_ ) UpperCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = abs(snake_case_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' return sum(int(snake_case_ ) for c in str(abs(snake_case_ ) ) ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case_ : Callable , snake_case_ : int ) -> None: UpperCAmelCase_ = f"""{func.__name__}({value})""" UpperCAmelCase_ = timeit(f"""__main__.{call}""" , setup="import __main__" ) print(f"""{call:56} = {func(snake_case_ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(snake_case_ , snake_case_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
415
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :str = AutoConfig.from_pretrained(snake_case ) __magic_name__ :Dict = FlaxAutoModelForSeqaSeqLM.from_config(config=snake_case ) __magic_name__ :Any = checkpoints.load_tax_checkpoint(snake_case ) __magic_name__ :List[str] = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": __magic_name__ :Tuple = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": __magic_name__ :Optional[int] = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __magic_name__ :Any = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): __magic_name__ :Union[str, Any] = f'''layers_{str(snake_case )}''' # Self-Attention __magic_name__ :List[str] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] __magic_name__ :str = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] __magic_name__ :str = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] __magic_name__ :Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __magic_name__ :List[str] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization __magic_name__ :Any = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: __magic_name__ :Any = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __magic_name__ :Tuple = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __magic_name__ :List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __magic_name__ :List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __magic_name__ :Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __magic_name__ :Optional[int] = flax_model.params['''encoder''']['''block'''][str(snake_case )]['''layer'''] __magic_name__ :List[Any] = tax_attention_key __magic_name__ :List[str] = tax_attention_out __magic_name__ :Optional[int] = tax_attention_query __magic_name__ :str = tax_attention_value __magic_name__ :Dict = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __magic_name__ :Any = tax_global_layer_norm if split_mlp_wi: __magic_name__ :str = tax_mlp_wi_a __magic_name__ :Dict = tax_mlp_wi_a else: __magic_name__ :Tuple = tax_mlp_wi __magic_name__ :Optional[int] = tax_mlp_wo __magic_name__ :Optional[int] = tax_mlp_layer_norm __magic_name__ :Any = flax_model_encoder_layer_block # Only for layer 0: __magic_name__ :Dict = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T __magic_name__ :List[Any] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __magic_name__ :Any = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T __magic_name__ :Dict = tax_encoder_global_rel_embedding # Assigning __magic_name__ :Union[str, Any] = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] __magic_name__ :List[str] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __magic_name__ :List[Any] = f'''layers_{str(snake_case )}''' # Self-Attention __magic_name__ :Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] __magic_name__ :str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] __magic_name__ :Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] __magic_name__ :Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization __magic_name__ :Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention __magic_name__ :Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] __magic_name__ :Tuple = tax_enc_dec_attention_module['''key''']['''kernel'''] __magic_name__ :Optional[int] = tax_enc_dec_attention_module['''out''']['''kernel'''] __magic_name__ :List[str] = tax_enc_dec_attention_module['''query''']['''kernel'''] __magic_name__ :Tuple = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization __magic_name__ :int = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: __magic_name__ :Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __magic_name__ :Dict = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __magic_name__ :int = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __magic_name__ :Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __magic_name__ :Dict = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __magic_name__ :List[str] = flax_model.params['''decoder''']['''block'''][str(snake_case )]['''layer'''] __magic_name__ :Any = tax_attention_key __magic_name__ :List[str] = tax_attention_out __magic_name__ :Tuple = tax_attention_query __magic_name__ :Tuple = tax_attention_value __magic_name__ :Tuple = tax_pre_attention_layer_norm __magic_name__ :Optional[Any] = tax_enc_dec_attention_key __magic_name__ :str = tax_enc_dec_attention_out __magic_name__ :Union[str, Any] = tax_enc_dec_attention_query __magic_name__ :Any = tax_enc_dec_attention_value __magic_name__ :Tuple = tax_cross_layer_norm if split_mlp_wi: __magic_name__ :Optional[int] = tax_mlp_wi_a __magic_name__ :Union[str, Any] = tax_mlp_wi_a else: __magic_name__ :Optional[int] = tax_mlp_wi __magic_name__ :List[str] = tax_mlp_wo __magic_name__ :int = txa_mlp_layer_norm __magic_name__ :str = flax_model_decoder_layer_block # Decoder Normalization __magic_name__ :Optional[Any] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] __magic_name__ :Tuple = txa_decoder_norm # Only for layer 0: __magic_name__ :Optional[Any] = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T __magic_name__ :str = tax_decoder_rel_embedding # Token Embeddings __magic_name__ :List[Any] = tax_model['''target''']['''token_embedder''']['''embedding'''] __magic_name__ :Any = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __magic_name__ :int = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(snake_case ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : Any = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '''vivit''' def __init__( self : Union[str, Any] , lowercase : int=2_24 , lowercase : Tuple=32 , lowercase : str=[2, 16, 16] , lowercase : str=3 , lowercase : Dict=7_68 , lowercase : Union[str, Any]=12 , lowercase : List[Any]=12 , lowercase : Dict=30_72 , lowercase : int="gelu_fast" , lowercase : Dict=0.0 , lowercase : Dict=0.0 , lowercase : List[str]=0.0_2 , lowercase : Tuple=1E-06 , lowercase : Any=True , **lowercase : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : int = num_hidden_layers UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Any = layer_norm_eps UpperCAmelCase : List[Any] = image_size UpperCAmelCase : str = num_frames UpperCAmelCase : str = tubelet_size UpperCAmelCase : int = num_channels UpperCAmelCase : Optional[int] = qkv_bias super().__init__(**lowercase )
595
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def UpperCamelCase__ ( A__ ) -> np.ndarray: return input_array.reshape((input_array.size, 1) ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> np.ndarray: snake_case__ : Tuple = np.nan for i in range(A__ ): snake_case__ : Optional[Any] = features[:, labels == i] snake_case__ : Tuple = data.mean(1 ) # Centralize the data of class i snake_case__ : Optional[Any] = data - column_reshape(A__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(A__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case__ : Optional[int] = np.dot(A__ , centered_data.T ) return covariance_sum / features.shape[1] def UpperCamelCase__ ( A__ , A__ , A__ ) -> np.ndarray: snake_case__ : Tuple = features.mean(1 ) snake_case__ : Any = np.nan for i in range(A__ ): snake_case__ : Dict = features[:, labels == i] snake_case__ : Optional[Any] = data.shape[1] snake_case__ : List[Any] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(A__ ) - column_reshape(A__ ) , (column_reshape(A__ ) - column_reshape(A__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) snake_case__ : Any = device_data * np.dot( column_reshape(A__ ) - column_reshape(A__ ) , (column_reshape(A__ ) - column_reshape(A__ )).T , ) return covariance_sum / features.shape[1] def UpperCamelCase__ ( A__ , A__ ) -> np.ndarray: # Check if the features have been loaded if features.any(): snake_case__ : List[str] = features.mean(1 ) # Center the dataset snake_case__ : Optional[Any] = features - np.reshape(A__ , (data_mean.size, 1) ) snake_case__ : List[str] = np.dot(A__ , centered_data.T ) / features.shape[1] snake_case__ , snake_case__ : List[str] = np.linalg.eigh(A__ ) # Take all the columns in the reverse order (-1), and then takes only the first snake_case__ : Tuple = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space snake_case__ : Optional[int] = np.dot(filtered_eigenvectors.T , A__ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=A__ ) logging.error('Dataset empty' ) raise AssertionError def UpperCamelCase__ ( A__ , A__ , A__ , A__ ) -> np.ndarray: assert classes > dimensions # Check if features have been already loaded if features.any: snake_case__ , snake_case__ : List[str] = eigh( covariance_between_classes(A__ , A__ , A__ ) , covariance_within_classes(A__ , A__ , A__ ) , ) snake_case__ : str = eigenvectors[:, ::-1][:, :dimensions] snake_case__ , snake_case__ , snake_case__ : Dict = np.linalg.svd(A__ ) snake_case__ : List[str] = svd_matrix[:, 0:dimensions] snake_case__ : Any = np.dot(filtered_svd_matrix.T , A__ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=A__ ) logging.error('Dataset empty' ) raise AssertionError def UpperCamelCase__ ( ) -> None: # Create dummy dataset with 2 classes and 3 features snake_case__ : int = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) snake_case__ : Any = np.array([0, 0, 0, 1, 1] ) snake_case__ : List[str] = 2 snake_case__ : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(A__ ) as error_info: snake_case__ : Optional[Any] = linear_discriminant_analysis( A__ , A__ , A__ , A__ ) if isinstance(A__ , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def UpperCamelCase__ ( ) -> None: snake_case__ : int = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) snake_case__ : List[Any] = 2 snake_case__ : Any = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(A__ ) as error_info: snake_case__ : int = principal_component_analysis(A__ , A__ ) if not np.allclose(A__ , A__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
699
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) class __snake_case ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase = None __lowerCamelCase = None class __snake_case ( folder_based_builder.FolderBasedBuilder ): __lowerCamelCase = datasets.Audio() __lowerCamelCase = """audio""" __lowerCamelCase = AudioFolderConfig __lowerCamelCase = 42 # definition at the bottom of the script __lowerCamelCase = AudioClassification(audio_column="""audio""" ,label_column="""label""" ) lowerCAmelCase__ : Tuple = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase__ : List[Any] = AUDIO_EXTENSIONS
699
1
def UpperCAmelCase_ ( UpperCAmelCase__ ): if not grid or not grid[0]: raise TypeError("""The grid does not contain the appropriate information""" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase_ = grid[0] for row_n in range(1 , len(UpperCAmelCase__ ) ): lowercase_ = grid[row_n] lowercase_ = fill_row(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = grid[row_n] return grid[-1][-1] def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): current_row[0] += row_above[0] for cell_n in range(1 , len(UpperCAmelCase__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
412
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters a = False a = False def UpperCAmelCase_ ( UpperCAmelCase__ ): return TrainCommand(UpperCAmelCase__ ) class UpperCamelCase__ ( __magic_name__ ): @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : ArgumentParser ): '''simple docstring''' lowercase_ = parser.add_parser("""train""" , help="""CLI tool to train a model on a task.""" ) train_parser.add_argument( """--train_data""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.""" , ) train_parser.add_argument( """--column_label""" , type=UpperCamelCase__ , default=0 , help="""Column of the dataset csv file with example labels.""" ) train_parser.add_argument( """--column_text""" , type=UpperCamelCase__ , default=1 , help="""Column of the dataset csv file with example texts.""" ) train_parser.add_argument( """--column_id""" , type=UpperCamelCase__ , default=2 , help="""Column of the dataset csv file with example ids.""" ) train_parser.add_argument( """--skip_first_row""" , action="""store_true""" , help="""Skip the first row of the csv file (headers).""" ) train_parser.add_argument("""--validation_data""" , type=UpperCamelCase__ , default="""""" , help="""path to validation dataset.""" ) train_parser.add_argument( """--validation_split""" , type=UpperCamelCase__ , default=0.1 , help="""if validation dataset is not provided, fraction of train dataset to use as validation dataset.""" , ) train_parser.add_argument("""--output""" , type=UpperCamelCase__ , default="""./""" , help="""path to saved the trained model.""" ) train_parser.add_argument( """--task""" , type=UpperCamelCase__ , default="""text_classification""" , help="""Task to train the model on.""" ) train_parser.add_argument( """--model""" , type=UpperCamelCase__ , default="""bert-base-uncased""" , help="""Model's name or path to stored model.""" ) train_parser.add_argument("""--train_batch_size""" , type=UpperCamelCase__ , default=32 , help="""Batch size for training.""" ) train_parser.add_argument("""--valid_batch_size""" , type=UpperCamelCase__ , default=64 , help="""Batch size for validation.""" ) train_parser.add_argument("""--learning_rate""" , type=UpperCamelCase__ , default=3e-5 , help="""Learning rate.""" ) train_parser.add_argument("""--adam_epsilon""" , type=UpperCamelCase__ , default=1e-08 , help="""Epsilon for Adam optimizer.""" ) train_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self : Union[str, Any] , UpperCamelCase__ : Namespace ): '''simple docstring''' lowercase_ = logging.get_logger("""transformers-cli/training""" ) lowercase_ = """tf""" if is_tf_available() else """torch""" os.makedirs(args.output , exist_ok=UpperCamelCase__ ) lowercase_ = args.output lowercase_ = args.column_label lowercase_ = args.column_text lowercase_ = args.column_id self.logger.info(F'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": lowercase_ = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F'''Loading dataset from {args.train_data}''' ) lowercase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase_ = None if args.validation_data: self.logger.info(F'''Loading validation dataset from {args.validation_data}''' ) lowercase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase_ = args.validation_split lowercase_ = args.train_batch_size lowercase_ = args.valid_batch_size lowercase_ = args.learning_rate lowercase_ = args.adam_epsilon def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' raise NotImplementedError def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
412
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self , a__ ) -> Optional[int]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ): A = model_result["""result"""][batch_size][sequence_length] self.assertIsNotNone(a__ ) def _UpperCAmelCase ( self ) -> Union[str, Any]: A = """sshleifer/tiny-gpt2""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: A = """sgugger/tiny-distilbert-classification""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , only_pretrain_model=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[Any]: A = """sshleifer/tiny-gpt2""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , torchscript=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _UpperCAmelCase ( self ) -> Union[str, Any]: A = """sshleifer/tiny-gpt2""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , fpaa=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> int: A = """sshleifer/tiny-gpt2""" A = AutoConfig.from_pretrained(a__ ) # set architectures equal to `None` A = None A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ , configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: A = """sshleifer/tiny-gpt2""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == """cpu""" , """Can\'t do half precision""" ) def _UpperCAmelCase ( self ) -> List[str]: A = """sshleifer/tiny-gpt2""" A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=a__ , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> str: A = """sshleifer/tiny-gpt2""" A = AutoConfig.from_pretrained(a__ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ , configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> Union[str, Any]: A = """sshleifer/tinier_bart""" A = AutoConfig.from_pretrained(a__ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ , configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _UpperCAmelCase ( self ) -> List[str]: A = """sshleifer/tiny-gpt2""" A = AutoConfig.from_pretrained(a__ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ , configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Any: A = """sshleifer/tinier_bart""" A = AutoConfig.from_pretrained(a__ ) A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a__ , ) A = PyTorchBenchmark(a__ , configs=[config] ) A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _UpperCAmelCase ( self ) -> Optional[Any]: A = """sshleifer/tiny-gpt2""" with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , save_to_csv=a__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a__ , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(a__ , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(a__ , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(a__ , """train_time.csv""" ) , env_info_csv_file=os.path.join(a__ , """env.csv""" ) , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) benchmark.run() self.assertTrue(Path(os.path.join(a__ , """inf_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(a__ , """train_time.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(a__ , """inf_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(a__ , """train_mem.csv""" ) ).exists() ) self.assertTrue(Path(os.path.join(a__ , """env.csv""" ) ).exists() ) def _UpperCAmelCase ( self ) -> Tuple: A = """sshleifer/tiny-gpt2""" def _check_summary_is_not_empty(a__ ): self.assertTrue(hasattr(a__ , """sequential""" ) ) self.assertTrue(hasattr(a__ , """cumulative""" ) ) self.assertTrue(hasattr(a__ , """current""" ) ) self.assertTrue(hasattr(a__ , """total""" ) ) with tempfile.TemporaryDirectory() as tmp_dir: A = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=a__ , inference=a__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a__ , """log.txt""" ) , log_print=a__ , trace_memory_line_by_line=a__ , multi_process=a__ , ) A = PyTorchBenchmark(a__ ) A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(a__ , """log.txt""" ) ).exists() )
706
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Any=5 ) -> Optional[Any]: """simple docstring""" assert masked_input.count("""<mask>""" ) == 1 A = torch.tensor(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ).unsqueeze(0 ) # Batch size 1 A = model(UpperCamelCase__ )[0] # The last hidden-state is the first element of the output tuple A = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() A = logits[0, masked_index, :] A = logits.softmax(dim=0 ) A , A = prob.topk(k=UpperCamelCase__ , dim=0 ) A = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(UpperCamelCase__ ) )] ) A = tokenizer.mask_token A = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): A = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(UpperCamelCase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(UpperCamelCase__ ) , UpperCamelCase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(UpperCamelCase__ , UpperCamelCase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _lowercase : Optional[int] = CamembertTokenizer.from_pretrained("camembert-base") _lowercase : int = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() _lowercase : Optional[int] = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
546
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase_ : def __init__( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str=13 , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Any=99 , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : List[str]=4 , lowerCAmelCase_ : List[Any]=37 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[Any]=512 , lowerCAmelCase_ : Any=16 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Any=0.0_2 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Tuple=None , ) -> Any: UpperCAmelCase_ : str = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Optional[Any] = use_input_mask UpperCAmelCase_ : List[str] = use_token_type_ids UpperCAmelCase_ : Any = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : int = num_choices UpperCAmelCase_ : Dict = scope def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[Any] = None if self.use_input_mask: UpperCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , use_stable_embedding=lowerCAmelCase_ , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ) -> str: UpperCAmelCase_ : str = OpenLlamaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , ) -> Tuple: UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = OpenLlamaModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) UpperCAmelCase_ : Any = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) UpperCAmelCase_ : List[str] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , ) -> Any: UpperCAmelCase_ : str = OpenLlamaForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : str = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Any: UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Union[str, Any] = OpenLlamaForCausalLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # first forward pass UpperCAmelCase_ : Union[str, Any] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ , ) UpperCAmelCase_ : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase_ : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase_ : int = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )["hidden_states"][0] UpperCAmelCase_ : Dict = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , )["hidden_states"][0] # select random slice UpperCAmelCase_ : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: UpperCAmelCase_ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ (__A , __A , __A , unittest.TestCase ): __magic_name__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __magic_name__ = (OpenLlamaForCausalLM,) if is_torch_available() else () __magic_name__ = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = OpenLlamaModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : int = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : Tuple = input_dict["input_ids"] UpperCAmelCase_ : Optional[int] = input_ids.ne(1 ).to(lowerCAmelCase_ ) UpperCAmelCase_ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Union[str, Any] = OpenLlamaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : Optional[Any] = "single_label_classification" UpperCAmelCase_ : Any = input_dict["input_ids"] UpperCAmelCase_ : Any = input_ids.ne(1 ).to(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase_ : Union[str, Any] = OpenLlamaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : str = "multi_label_classification" UpperCAmelCase_ : List[Any] = input_dict["input_ids"] UpperCAmelCase_ : Union[str, Any] = input_ids.ne(1 ).to(lowerCAmelCase_ ) UpperCAmelCase_ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_ : Dict = OpenLlamaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: pass @parameterized.expand([("linear",), ("dynamic",)] ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : int = OpenLlamaModel(lowerCAmelCase_ ) original_model.to(lowerCAmelCase_ ) original_model.eval() UpperCAmelCase_ : List[Any] = original_model(lowerCAmelCase_ ).last_hidden_state UpperCAmelCase_ : Any = original_model(lowerCAmelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_ : Any = {"type": scaling_type, "factor": 1_0.0} UpperCAmelCase_ : str = OpenLlamaModel(lowerCAmelCase_ ) scaled_model.to(lowerCAmelCase_ ) scaled_model.eval() UpperCAmelCase_ : Optional[int] = scaled_model(lowerCAmelCase_ ).last_hidden_state UpperCAmelCase_ : Tuple = scaled_model(lowerCAmelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-5 ) )
95
import numpy as np import qiskit def A_ ( _lowerCAmelCase = 8 , _lowerCAmelCase = None ) -> str: UpperCamelCase : Tuple = np.random.default_rng(seed=_lowerCAmelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. UpperCamelCase : List[str] = 6 * key_len # Measurement basis for Alice's qubits. UpperCamelCase : List[Any] = rng.integers(2 , size=_lowerCAmelCase ) # The set of states Alice will prepare. UpperCamelCase : List[Any] = rng.integers(2 , size=_lowerCAmelCase ) # Measurement basis for Bob's qubits. UpperCamelCase : Optional[int] = rng.integers(2 , size=_lowerCAmelCase ) # Quantum Circuit to simulate BB84 UpperCamelCase : List[Any] = qiskit.QuantumCircuit(_lowerCAmelCase , name="BB84" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_lowerCAmelCase ): if alice_state[index] == 1: bbaa_circ.x(_lowerCAmelCase ) if alice_basis[index] == 1: bbaa_circ.h(_lowerCAmelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_lowerCAmelCase ): if bob_basis[index] == 1: bbaa_circ.h(_lowerCAmelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. UpperCamelCase : Union[str, Any] = qiskit.Aer.get_backend("aer_simulator" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. UpperCamelCase : Tuple = qiskit.execute(_lowerCAmelCase , _lowerCAmelCase , shots=1 , seed_simulator=_lowerCAmelCase ) # Returns the result of measurement. UpperCamelCase : Optional[Any] = job.result().get_counts(_lowerCAmelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. UpperCamelCase : Tuple = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. UpperCamelCase : Tuple = gen_key[:key_len] if len(_lowerCAmelCase ) >= key_len else gen_key.ljust(_lowerCAmelCase , "0" ) return key if __name__ == "__main__": print(f"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
629
0
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class A_ ( a_ ): _SCREAMING_SNAKE_CASE = ["""input_features""", """is_longer"""] def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=64 , __SCREAMING_SNAKE_CASE : str=4_80_00 , __SCREAMING_SNAKE_CASE : int=4_80 , __SCREAMING_SNAKE_CASE : Dict=10 , __SCREAMING_SNAKE_CASE : Optional[int]=10_24 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , __SCREAMING_SNAKE_CASE : float = 0 , __SCREAMING_SNAKE_CASE : float = 1_40_00 , __SCREAMING_SNAKE_CASE : int = None , __SCREAMING_SNAKE_CASE : str = "fusion" , __SCREAMING_SNAKE_CASE : str = "repeatpad" , **__SCREAMING_SNAKE_CASE : int , ): super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = top_db __a = truncation __a = padding __a = fft_window_size __a = (fft_window_size >> 1) + 1 __a = hop_length __a = max_length_s __a = max_length_s * sampling_rate __a = sampling_rate __a = frequency_min __a = frequency_max __a = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=__SCREAMING_SNAKE_CASE , max_frequency=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , norm=__SCREAMING_SNAKE_CASE , mel_scale="htk" , ) __a = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=__SCREAMING_SNAKE_CASE , max_frequency=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , norm="slaney" , mel_scale="slaney" , ) def _UpperCAmelCase ( self : List[str] ): __a = copy.deepcopy(self.__dict__ ) __a = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _UpperCAmelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : np.array , __SCREAMING_SNAKE_CASE : Optional[np.array] = None ): __a = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__SCREAMING_SNAKE_CASE , log_mel="dB" , ) return log_mel_spectrogram.T def _UpperCAmelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ): __a = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __a = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __a = [0] # randomly choose index for each part __a = np.random.choice(ranges[0] ) __a = np.random.choice(ranges[1] ) __a = np.random.choice(ranges[2] ) __a = mel[idx_front : idx_front + chunk_frames, :] __a = mel[idx_middle : idx_middle + chunk_frames, :] __a = mel[idx_back : idx_back + chunk_frames, :] __a = torch.tensor(mel[None, None, :] ) __a = torch.nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=[chunk_frames, 64] , mode="bilinear" , align_corners=__SCREAMING_SNAKE_CASE ) __a = mel_shrink[0][0].numpy() __a = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _UpperCAmelCase ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : np.array , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": __a = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __a = len(__SCREAMING_SNAKE_CASE ) - max_length __a = np.random.randint(0 , overflow + 1 ) __a = waveform[idx : idx + max_length] __a = self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __a = self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE , self.mel_filters ) __a = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __a = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __a = np.stack([mel, mel, mel, mel] , axis=0 ) __a = False else: __a = self._random_mel_fusion(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: __a = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __a = int(max_length / len(__SCREAMING_SNAKE_CASE ) ) __a = np.stack(np.tile(__SCREAMING_SNAKE_CASE , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __a = int(max_length / len(__SCREAMING_SNAKE_CASE ) ) __a = np.stack(np.tile(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) __a = np.pad(__SCREAMING_SNAKE_CASE , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": __a = self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE , self.mel_filters ) __a = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __a = self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , **__SCREAMING_SNAKE_CASE : int , ): __a = truncation if truncation is not None else self.truncation __a = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __a = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __a = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): __a = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a = [np.asarray(__SCREAMING_SNAKE_CASE )] # convert to mel spectrogram, truncate and pad if needed. __a = [ self._get_input_mel(__SCREAMING_SNAKE_CASE , max_length if max_length else self.nb_max_samples , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for waveform in raw_speech ] __a = [] __a = [] for mel, longer in padded_inputs: input_mel.append(__SCREAMING_SNAKE_CASE ) is_longer.append(__SCREAMING_SNAKE_CASE ) if truncation == "fusion" and sum(__SCREAMING_SNAKE_CASE ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __a = np.random.randint(0 , len(__SCREAMING_SNAKE_CASE ) ) __a = True if isinstance(input_mel[0] , __SCREAMING_SNAKE_CASE ): __a = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __a = [[longer] for longer in is_longer] __a = {"input_features": input_mel, "is_longer": is_longer} __a = BatchFeature(__SCREAMING_SNAKE_CASE ) if return_tensors is not None: __a = input_features.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return input_features
721
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) def __A ( _A , _A=False , _A=False ): """simple docstring""" __a = "backbone." if is_semantic else "" __a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""{prefix}blocks.{i}.norm1.weight""", f"""beit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm1.bias""", f"""beit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.weight""", f"""beit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (f"""{prefix}blocks.{i}.attn.proj.bias""", f"""beit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.weight""", f"""beit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.norm2.bias""", f"""beit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.weight""", f"""beit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc1.bias""", f"""beit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.weight""", f"""beit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""{prefix}blocks.{i}.mlp.fc2.bias""", f"""beit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ (f"""{prefix}cls_token""", "beit.embeddings.cls_token"), (f"""{prefix}patch_embed.proj.weight""", "beit.embeddings.patch_embeddings.projection.weight"), (f"""{prefix}patch_embed.proj.bias""", "beit.embeddings.patch_embeddings.projection.bias"), (f"""{prefix}pos_embed""", "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __A ( _A , _A , _A=False , _A=False ): """simple docstring""" for i in range(config.num_hidden_layers ): __a = "backbone." if is_semantic else "" # queries, keys and values __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.qkv.weight""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.q_bias""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.attn.v_bias""" ) __a = in_proj_weight[ : config.hidden_size, : ] __a = q_bias __a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a = in_proj_weight[ -config.hidden_size :, : ] __a = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __a = state_dict.pop(f"""{prefix}blocks.{i}.gamma_1""" ) __a = state_dict.pop(f"""{prefix}blocks.{i}.gamma_2""" ) __a = gamma_a __a = gamma_a def __A ( _A , _A , _A ): """simple docstring""" __a = dct.pop(_A ) __a = val def __A ( ): """simple docstring""" __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __A ( _A , _A , _A=False ): """simple docstring""" __a = False if "rvlcdip" in checkpoint_url else True __a = BeitConfig(use_absolute_position_embeddings=_A , use_mask_token=_A ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __a = 1024 __a = 4096 __a = 24 __a = 16 # labels if "rvlcdip" in checkpoint_url: __a = 16 __a = "huggingface/label-files" __a = "rvlcdip-id2label.json" __a = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) __a = {int(_A ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __a = torch.hub.load_state_dict_from_url(_A , map_location="cpu" )["model"] __a = create_rename_keys(_A , has_lm_head=_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , has_lm_head=_A ) # load HuggingFace model __a = BeitForMaskedImageModeling(_A ) if has_lm_head else BeitForImageClassification(_A ) model.eval() model.load_state_dict(_A ) # Check outputs on an image __a = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_A ) __a = prepare_img() __a = image_processor(images=_A , return_tensors="pt" ) __a = encoding["pixel_values"] __a = model(_A ) __a = outputs.logits # verify logits __a = [1, 16] if "rvlcdip" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_A ), "Shape of logits not as expected" Path(_A ).mkdir(exist_ok=_A ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if push_to_hub: if has_lm_head: __a = "dit-base" if "base" in checkpoint_url else "dit-large" else: __a = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_A , ) model.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_A , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
525
0
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __a (UpperCamelCase_): '''simple docstring''' # to overwrite at feature extractactor specific tests _SCREAMING_SNAKE_CASE :List[Any] = None _SCREAMING_SNAKE_CASE :Tuple = None @property def _a ( self ) -> Tuple: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_a , """feature_size""" ) ) self.assertTrue(hasattr(_a , """sampling_rate""" ) ) self.assertTrue(hasattr(_a , """padding_value""" ) ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Optional[Any] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_a ) == len(_a ) for x, y in zip(_a , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE__ : int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) SCREAMING_SNAKE_CASE__ : int = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) SCREAMING_SNAKE_CASE__ : int = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ : Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) SCREAMING_SNAKE_CASE__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Dict = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) SCREAMING_SNAKE_CASE__ : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_a ) SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : str = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) SCREAMING_SNAKE_CASE__ : Any = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def _a ( self , _a=False ) -> Any: """simple docstring""" def _inputs_have_equal_length(_a ): SCREAMING_SNAKE_CASE__ : int = len(input[0] ) for input_slice in input[1:]: if len(_a ) != length: return False return True def _inputs_are_equal(_a , _a ): if len(_a ) != len(_a ): return False for input_slice_a, input_slice_a in zip(_a , _a ): if not np.allclose(np.asarray(_a ) , np.asarray(_a ) , atol=1E-3 ): return False return True SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : List[str] = self.feat_extract_tester.prepare_inputs_for_common(numpify=_a ) SCREAMING_SNAKE_CASE__ : List[str] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Dict = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : List[str] = self.feat_extract_tester.seq_length_diff SCREAMING_SNAKE_CASE__ : int = self.feat_extract_tester.max_seq_length + pad_diff SCREAMING_SNAKE_CASE__ : int = self.feat_extract_tester.min_seq_length SCREAMING_SNAKE_CASE__ : str = self.feat_extract_tester.batch_size SCREAMING_SNAKE_CASE__ : Tuple = self.feat_extract_tester.feature_size # test padding for List[int] + numpy SCREAMING_SNAKE_CASE__ : int = feat_extract.pad(_a , padding=_a ) SCREAMING_SNAKE_CASE__ : Dict = input_a[input_name] SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.pad(_a , padding="""longest""" ) SCREAMING_SNAKE_CASE__ : str = input_a[input_name] SCREAMING_SNAKE_CASE__ : str = feat_extract.pad(_a , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = input_a[input_name] SCREAMING_SNAKE_CASE__ : int = feat_extract.pad(_a , padding="""longest""" , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : List[str] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_a ): feat_extract.pad(_a , padding="""max_length""" )[input_name] SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.pad( _a , padding="""max_length""" , max_length=_a , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_are_equal(_a , _a ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE__ : List[Any] = feat_extract.pad(_a , pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE__ : List[str] = input_a[input_name] SCREAMING_SNAKE_CASE__ : Any = feat_extract.pad(_a , padding="""longest""" , pad_to_multiple_of=10 ) SCREAMING_SNAKE_CASE__ : Optional[int] = input_a[input_name] SCREAMING_SNAKE_CASE__ : List[Any] = feat_extract.pad( _a , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = input_a[input_name] SCREAMING_SNAKE_CASE__ : Dict = feat_extract.pad( _a , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_a , return_tensors="""np""" , ) SCREAMING_SNAKE_CASE__ : List[str] = input_a[input_name] self.assertTrue(all(len(_a ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_a , _a ) ) SCREAMING_SNAKE_CASE__ : str = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_a ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct SCREAMING_SNAKE_CASE__ : Union[str, Any] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def _a ( self , _a=False ) -> Optional[int]: """simple docstring""" def _inputs_have_equal_length(_a ): SCREAMING_SNAKE_CASE__ : Tuple = len(input[0] ) for input_slice in input[1:]: if len(_a ) != length: return False return True def _inputs_are_equal(_a , _a ): if len(_a ) != len(_a ): return False for input_slice_a, input_slice_a in zip(_a , _a ): if not np.allclose(np.asarray(_a ) , np.asarray(_a ) , atol=1E-3 ): return False return True SCREAMING_SNAKE_CASE__ : str = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=_a ) SCREAMING_SNAKE_CASE__ : Any = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest SCREAMING_SNAKE_CASE__ : int = feat_extract.pad( _a , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = input_a[input_name] SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.pad(_a , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) SCREAMING_SNAKE_CASE__ : str = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertFalse(_inputs_have_equal_length(_a ) ) # truncate to smallest with np SCREAMING_SNAKE_CASE__ : Tuple = feat_extract.pad( _a , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=_a , ) SCREAMING_SNAKE_CASE__ : int = input_a[input_name] SCREAMING_SNAKE_CASE__ : List[Any] = feat_extract.pad( _a , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_a ) ) # truncate to middle SCREAMING_SNAKE_CASE__ : Any = feat_extract.pad( _a , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_a , return_tensors="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = input_a[input_name] SCREAMING_SNAKE_CASE__ : int = feat_extract.pad( _a , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = input_a[input_name] SCREAMING_SNAKE_CASE__ : Optional[Any] = feat_extract.pad( _a , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ : Tuple = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertTrue(_inputs_are_equal(_a , _a ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_a ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a , truncation=_a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a , padding="""longest""" , truncation=_a )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_a ): feat_extract.pad(_a , padding="""longest""" , truncation=_a )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_a ): feat_extract.pad(_a , padding="""max_length""" , truncation=_a )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy SCREAMING_SNAKE_CASE__ : List[str] = 12 SCREAMING_SNAKE_CASE__ : List[str] = feat_extract.pad( _a , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_a , truncation=_a , ) SCREAMING_SNAKE_CASE__ : List[str] = input_a[input_name] SCREAMING_SNAKE_CASE__ : int = feat_extract.pad( _a , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_a , ) SCREAMING_SNAKE_CASE__ : Optional[int] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of SCREAMING_SNAKE_CASE__ : Dict = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: SCREAMING_SNAKE_CASE__ : Tuple = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_a ) ) self.assertFalse(_inputs_have_equal_length(_a ) ) def _a ( self ) -> int: """simple docstring""" self._check_padding(numpify=_a ) def _a ( self ) -> int: """simple docstring""" self._check_padding(numpify=_a ) def _a ( self ) -> Any: """simple docstring""" self._check_truncation(numpify=_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" self._check_truncation(numpify=_a ) @require_torch def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Dict = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[Any] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.pad(_a , padding="""longest""" , return_tensors="""np""" )[input_name] SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.pad(_a , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Tuple = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[Any] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : List[str] = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : str = feat_extract.pad(_a , padding="""longest""" , return_tensors="""np""" )[input_name] SCREAMING_SNAKE_CASE__ : str = feat_extract.pad(_a , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.feat_extract_dict SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.feature_extraction_class(**_a ) SCREAMING_SNAKE_CASE__ : Dict = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE__ : str = [len(_a ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ : Dict = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Dict = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : Dict = feat_extract.pad(_a , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _a ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _a ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.feat_extract_dict SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() SCREAMING_SNAKE_CASE__ : int = [len(_a ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ : Optional[Any] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : str = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : Optional[Any] = min(_a ) SCREAMING_SNAKE_CASE__ : Dict = feat_extract.pad( _a , padding="""max_length""" , max_length=_a , truncation=_a , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
680
"""simple docstring""" from math import factorial def _lowercase ( __lowerCAmelCase = 100 ) -> int: return sum(int(__lowerCAmelCase ) for x in str(factorial(__lowerCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
680
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = BertJapaneseTokenizer snake_case = False snake_case = True def _snake_case ( self )->Tuple: '''simple docstring''' super().setUp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] A_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : Union[str, Any] = '''こんにちは、世界。 \nこんばんは、世界。''' A_ : List[str] = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ , A_ : Optional[int] = self.get_input_output_texts(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) A_ : Dict = tokenizer.decode(_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) return text, ids def _snake_case ( self )->Tuple: '''simple docstring''' pass # TODO add if relevant def _snake_case ( self )->List[Any]: '''simple docstring''' pass # TODO add if relevant def _snake_case ( self )->str: '''simple docstring''' pass # TODO add if relevant def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Tuple = self.tokenizer_class(self.vocab_file ) A_ : Optional[int] = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _snake_case ( self )->Any: '''simple docstring''' A_ : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) A_ : str = '''こんにちは、世界。\nこんばんは、世界。''' A_ : str = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) A_ : Dict = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as handle: pickle.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as handle: A_ : Any = pickle.load(_SCREAMING_SNAKE_CASE ) A_ : Any = tokenizer_new.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : List[str] = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _snake_case ( self )->Dict: '''simple docstring''' try: A_ : Optional[int] = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _snake_case ( self )->str: '''simple docstring''' try: A_ : Union[str, Any] = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Optional[Any] = MecabTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def _snake_case ( self )->List[str]: '''simple docstring''' try: A_ : Tuple = MecabTokenizer( do_lower_case=_SCREAMING_SNAKE_CASE , normalize_text=_SCREAMING_SNAKE_CASE , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Union[str, Any] = MecabTokenizer(normalize_text=_SCREAMING_SNAKE_CASE , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) A_ : Tuple = '''こんにちは、世界。\nこんばんは、世界。''' A_ : Dict = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) A_ : List[Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as handle: pickle.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as handle: A_ : Tuple = pickle.load(_SCREAMING_SNAKE_CASE ) A_ : Dict = tokenizer_new.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_sudachi def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Union[str, Any] = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _snake_case ( self )->str: '''simple docstring''' A_ : Any = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def _snake_case ( self )->Any: '''simple docstring''' A_ : Union[str, Any] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Tuple = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def _snake_case ( self )->str: '''simple docstring''' A_ : Any = SudachiTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _snake_case ( self )->str: '''simple docstring''' A_ : List[str] = SudachiTokenizer(normalize_text=_SCREAMING_SNAKE_CASE , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Union[str, Any] = SudachiTokenizer(trim_whitespace=_SCREAMING_SNAKE_CASE , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def _snake_case ( self )->Any: '''simple docstring''' A_ : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = '''こんにちは、世界。\nこんばんは、世界。''' A_ : Dict = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) A_ : List[Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as handle: pickle.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , '''rb''' ) as handle: A_ : str = pickle.load(_SCREAMING_SNAKE_CASE ) A_ : Dict = tokenizer_new.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_jumanpp def _snake_case ( self )->Dict: '''simple docstring''' A_ : Dict = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _snake_case ( self )->int: '''simple docstring''' A_ : str = JumanppTokenizer(do_lower_case=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _snake_case ( self )->Any: '''simple docstring''' A_ : List[str] = JumanppTokenizer(normalize_text=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def _snake_case ( self )->List[str]: '''simple docstring''' A_ : List[Any] = JumanppTokenizer(trim_whitespace=_SCREAMING_SNAKE_CASE ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def _snake_case ( self )->Dict: '''simple docstring''' A_ : Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def _snake_case ( self )->str: '''simple docstring''' A_ : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] A_ : Optional[Any] = {} for i, token in enumerate(_SCREAMING_SNAKE_CASE ): A_ : List[str] = i A_ : Optional[int] = WordpieceTokenizer(vocab=_SCREAMING_SNAKE_CASE , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def _snake_case ( self )->int: '''simple docstring''' A_ : Union[str, Any] = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) A_ : Dict = tokenizer.subword_tokenizer A_ : List[Any] = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) A_ : Optional[int] = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Optional[Any] = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) A_ : Optional[Any] = tokenizer.encode('''ありがとう。''' , add_special_tokens=_SCREAMING_SNAKE_CASE ) A_ : Dict = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) A_ : str = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = BertJapaneseTokenizer snake_case = False def _snake_case ( self )->Optional[int]: '''simple docstring''' super().setUp() A_ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] A_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' A_ : Union[str, Any] = '''こんにちは、世界。 \nこんばんは、世界。''' A_ : Dict = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def _snake_case ( self )->int: '''simple docstring''' pass # TODO add if relevant def _snake_case ( self )->Tuple: '''simple docstring''' pass # TODO add if relevant def _snake_case ( self )->Optional[Any]: '''simple docstring''' pass # TODO add if relevant def _snake_case ( self )->Any: '''simple docstring''' A_ : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) A_ : Any = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _SCREAMING_SNAKE_CASE , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _snake_case ( self )->str: '''simple docstring''' A_ : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] A_ : Optional[int] = {} for i, token in enumerate(_SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = i A_ : Optional[int] = CharacterTokenizer(vocab=_SCREAMING_SNAKE_CASE , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : List[str] = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) A_ : List[str] = tokenizer.encode('''ありがとう。''' , add_special_tokens=_SCREAMING_SNAKE_CASE ) A_ : str = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_SCREAMING_SNAKE_CASE ) A_ : str = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : List[str] = '''cl-tohoku/bert-base-japanese''' A_ : Optional[Any] = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Any: '''simple docstring''' A_ : Union[str, Any] = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) A_ : Optional[int] = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
152
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = None class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" snake_case = 2 @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 0.0_2 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 1.0_0_7 , _SCREAMING_SNAKE_CASE = 80 , _SCREAMING_SNAKE_CASE = 0.0_5 , _SCREAMING_SNAKE_CASE = 50 , )->Optional[Any]: '''simple docstring''' A_ : Tuple = sigma_max # setable values A_ : int = None A_ : np.IntTensor = None A_ : torch.FloatTensor = None # sigma(t_i) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[Any]: '''simple docstring''' A_ : int = num_inference_steps A_ : List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A_ : Optional[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) A_ : Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A_ : Any = torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A_ : int = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A_ : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) A_ : Tuple = self.config.s_noise * randn_tensor(sample.shape , generator=_SCREAMING_SNAKE_CASE ).to(sample.device ) A_ : Any = sigma + gamma * sigma A_ : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[KarrasVeOutput, Tuple]: '''simple docstring''' A_ : Dict = sample_hat + sigma_hat * model_output A_ : Optional[int] = (sample_hat - pred_original_sample) / sigma_hat A_ : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[KarrasVeOutput, Tuple]: '''simple docstring''' A_ : Any = sample_prev + sigma_prev * model_output A_ : str = (sample_prev - pred_original_sample) / sigma_prev A_ : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' raise NotImplementedError()
152
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class a ( __snake_case ): SCREAMING_SNAKE_CASE : List[Any] = """lilt""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any]=30522 , __SCREAMING_SNAKE_CASE : Union[str, Any]=768 , __SCREAMING_SNAKE_CASE : Any=12 , __SCREAMING_SNAKE_CASE : str=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=3072 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Any=512 , __SCREAMING_SNAKE_CASE : Tuple=2 , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Optional[Any]=1e-1_2 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : Tuple="absolute" , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : int=1024 , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[str]: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = classifier_dropout lowerCamelCase_ = channel_shrink_ratio lowerCamelCase_ = max_ad_position_embeddings
549
"""simple docstring""" def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float ) -> float: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
549
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _A ( __UpperCAmelCase ): UpperCamelCase__ : int = (DDIMParallelScheduler,) UpperCamelCase__ : Optional[Any] = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def _lowerCamelCase ( self : List[str] , **__SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**__SCREAMING_SNAKE_CASE) return config def _lowerCamelCase ( self : Dict , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE) __a = scheduler_class(**__SCREAMING_SNAKE_CASE) __a , __a = 10, 0.0 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(__SCREAMING_SNAKE_CASE) for t in scheduler.timesteps: __a = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE).prev_sample return sample def _lowerCamelCase ( self : Dict): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__SCREAMING_SNAKE_CASE) __a = self.scheduler_classes[0] __a = self.get_scheduler_config(steps_offset=1) __a = scheduler_class(**__SCREAMING_SNAKE_CASE) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1])) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : str): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Tuple): '''simple docstring''' self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500]): self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE , num_inference_steps=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE , eta=__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__SCREAMING_SNAKE_CASE) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998) - 0.02)) < 1E-5 def _lowerCamelCase ( self : int): '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**__SCREAMING_SNAKE_CASE) __a , __a = 10, 0.0 scheduler.set_timesteps(__SCREAMING_SNAKE_CASE) __a = self.dummy_model() __a = self.dummy_sample_deter __a = self.dummy_sample_deter + 0.1 __a = self.dummy_sample_deter - 0.1 __a = samplea.shape[0] __a = torch.stack([samplea, samplea, samplea] , dim=0) __a = torch.arange(__SCREAMING_SNAKE_CASE)[0:3, None].repeat(1 , __SCREAMING_SNAKE_CASE) __a = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) __a = scheduler.batch_step_no_noise(__SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , __SCREAMING_SNAKE_CASE) __a = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) __a = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 1_147.7_904) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.full_loop() __a = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) __a = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 172.0_067) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.full_loop(prediction_type='''v_prediction''') __a = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) __a = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self.full_loop(set_alpha_to_one=__SCREAMING_SNAKE_CASE , beta_start=0.01) __a = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) __a = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 149.8_295) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.full_loop(set_alpha_to_one=__SCREAMING_SNAKE_CASE , beta_start=0.01) __a = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) __a = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 149.0_784) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
700
def __snake_case ( _UpperCAmelCase ): __a = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __snake_case ( _UpperCAmelCase ): __a = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __a = remove_duplicates(key.upper() ) __a = len(_UpperCAmelCase ) # First fill cipher with key characters __a = {alphabet[i]: char for i, char in enumerate(_UpperCAmelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_UpperCAmelCase ) , 26 ): __a = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __a = alphabet[i - offset] __a = char return cipher_alphabet def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return "".join(cipher_map.get(_UpperCAmelCase , _UpperCAmelCase ) for ch in message.upper() ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_UpperCAmelCase , _UpperCAmelCase ) for ch in message.upper() ) def __snake_case ( ): __a = input('''Enter message to encode or decode: ''' ).strip() __a = input('''Enter keyword: ''' ).strip() __a = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __a = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __a = create_cipher_map(_UpperCAmelCase ) print(func(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __lowercase( ): """simple docstring""" raise RuntimeError("CUDA out of memory." ) class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__(self ): '''simple docstring''' super().__init__() lowerCamelCase = nn.Linear(3 , 4 ) lowerCamelCase = nn.BatchNormad(4 ) lowerCamelCase = nn.Linear(4 , 5 ) def _a (self , __a ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(__a ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__a , [1_28, 64, 32, 16, 8] ) def _a (self ): '''simple docstring''' lowerCamelCase = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(__a , __a ): nonlocal batch_sizes batch_sizes.append(__a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowerCamelCase , lowerCamelCase = mock_training_loop_function("hello" ) self.assertListEqual(__a , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def _a (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__a ): pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def _a (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__a ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def _a (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(__a , __a , __a ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__a ) as cm: mock_training_loop_function(1_28 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def _a (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__a ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(__a ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def _a (self ): '''simple docstring''' lowerCamelCase = torch.cuda.memory_allocated() lowerCamelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __a ) lowerCamelCase = release_memory(__a ) self.assertEqual(torch.cuda.memory_allocated() , __a )
623
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a (self ): '''simple docstring''' lowerCamelCase = 1 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def _a (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _a (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _a (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) return CLIPTextModel(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.dummy_cond_unet_upscale lowerCamelCase = DDPMScheduler() lowerCamelCase = DDIMScheduler(prediction_type="v_prediction" ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=3_50 , ) lowerCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = "A painting of a squirrel eating a burger" lowerCamelCase = torch.Generator(device=__a ).manual_seed(0 ) lowerCamelCase = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase = output.images lowerCamelCase = torch.Generator(device=__a ).manual_seed(0 ) lowerCamelCase = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=__a , )[0] lowerCamelCase = image[0, -3:, -3:, -1] lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] lowerCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCamelCase = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _a (self ): '''simple docstring''' lowerCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase = self.dummy_cond_unet_upscale lowerCamelCase = DDPMScheduler() lowerCamelCase = DDIMScheduler(prediction_type="v_prediction" ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=3_50 , ) lowerCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = "A painting of a squirrel eating a burger" lowerCamelCase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase = output.images assert image.shape[0] == 2 lowerCamelCase = torch.Generator(device=__a ).manual_seed(0 ) lowerCamelCase = sd_pipe( [prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) lowerCamelCase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _a (self ): '''simple docstring''' lowerCamelCase = self.dummy_cond_unet_upscale lowerCamelCase = DDPMScheduler() lowerCamelCase = DDIMScheduler(prediction_type="v_prediction" ) lowerCamelCase = self.dummy_vae lowerCamelCase = self.dummy_text_encoder lowerCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCamelCase = unet.half() lowerCamelCase = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCamelCase = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=3_50 , ) lowerCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase = "A painting of a squirrel eating a burger" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = sd_pipe( [prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="np" , ).images lowerCamelCase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): '''simple docstring''' lowerCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) lowerCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) lowerCamelCase = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase = StableDiffusionUpscalePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() lowerCamelCase = "a cat sitting on a park bench" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _a (self ): '''simple docstring''' lowerCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) lowerCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) lowerCamelCase = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() lowerCamelCase = "a cat sitting on a park bench" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe( prompt=__a , image=__a , generator=__a , output_type="np" , ) lowerCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _a (self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) lowerCamelCase = "stabilityai/stable-diffusion-x4-upscaler" lowerCamelCase = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase = "a cat sitting on a park bench" lowerCamelCase = torch.manual_seed(0 ) lowerCamelCase = pipe( prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="np" , ) lowerCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
623
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __UpperCAmelCase = get_logger(__name__) class UpperCamelCase__ ( enum.Enum ): """simple docstring""" UpperCAmelCase_ ="all_checks" UpperCAmelCase_ ="basic_checks" UpperCAmelCase_ ="no_checks" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None ): if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) SCREAMING_SNAKE_CASE_ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE_ = ''' for ''' + verification_name if verification_name is not None else '''''' if len(__lowerCamelCase ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def A__ ( __lowerCamelCase, __lowerCamelCase ): if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) ) SCREAMING_SNAKE_CASE_ = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCamelCase ) ) logger.info('''All the splits matched successfully.''' ) def A__ ( __lowerCamelCase, __lowerCamelCase = True ): if record_checksum: SCREAMING_SNAKE_CASE_ = shaaaa() with open(__lowerCamelCase, '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ), B'''''' ): m.update(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ = m.hexdigest() else: SCREAMING_SNAKE_CASE_ = None return {"num_bytes": os.path.getsize(__lowerCamelCase ), "checksum": checksum} def A__ ( __lowerCamelCase ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
712
from math import factorial def A__ ( __lowerCamelCase = 20 ): SCREAMING_SNAKE_CASE_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE_ = n // 2 return int(factorial(__lowerCamelCase ) / (factorial(__lowerCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
597
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Optional[Any] = KandinskyInpaintPipeline A__ : Dict = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] A__ : Any = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] A__ : Tuple = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] A__ : Dict = False @property def _a ( self : Optional[Any] ): """simple docstring""" return 32 @property def _a ( self : int ): """simple docstring""" return 32 @property def _a ( self : List[Any] ): """simple docstring""" return self.time_input_dim @property def _a ( self : str ): """simple docstring""" return self.time_input_dim * 4 @property def _a ( self : List[str] ): """simple docstring""" return 1_00 @property def _a ( self : Any ): """simple docstring""" A__ = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _a ( self : str ): """simple docstring""" torch.manual_seed(0 ) A__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) A__ = MultilingualCLIP(_snake_case ) A__ = text_encoder.eval() return text_encoder @property def _a ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) A__ = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } A__ = UNetaDConditionModel(**_snake_case ) return model @property def _a ( self : int ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _a ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def _a ( self : List[Any] ): """simple docstring""" A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_snake_case , set_alpha_to_one=_snake_case , steps_offset=1 , prediction_type='epsilon' , thresholding=_snake_case , ) A__ = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _a ( self : str , _snake_case : int , _snake_case : List[str]=0 ): """simple docstring""" A__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_snake_case ) ).to(_snake_case ) A__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_snake_case ) # create init_image A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) A__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((2_56, 2_56) ) # create mask A__ = np.ones((64, 64) , dtype=np.floataa ) A__ = 0 if str(_snake_case ).startswith('mps' ): A__ = torch.manual_seed(_snake_case ) else: A__ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) A__ = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def _a ( self : List[str] ): """simple docstring""" A__ = 'cpu' A__ = self.get_dummy_components() A__ = self.pipeline_class(**_snake_case ) A__ = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) A__ = pipe(**self.get_dummy_inputs(_snake_case ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _a ( self : Dict ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _a ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) A__ = np.ones((7_68, 7_68) , dtype=np.floataa ) A__ = 0 A__ = 'a hat' A__ = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) A__ = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) A__ = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ , A__ = pipe_prior( _snake_case , generator=_snake_case , num_inference_steps=5 , negative_prompt='' , ).to_tuple() A__ = pipeline( _snake_case , image=_snake_case , mask_image=_snake_case , image_embeds=_snake_case , negative_image_embeds=_snake_case , generator=_snake_case , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type='np' , ) A__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
9
import datasets A : Optional[int] = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' A : Optional[int] = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' A : str = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> str: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def UpperCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def UpperCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): return {"accuracy": simple_accuracy(__UpperCamelCase , __UpperCamelCase )}
287
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __UpperCamelCase : __A = 42 __A = None __A = None lowercase_ : str = namedtuple('''CoinsDistribResult''', '''moves excess''') def SCREAMING_SNAKE_CASE ( lowercase_ : TreeNode | None ): if root is None: return 0 # Validation def count_nodes(lowercase_ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase_ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase_ ) != count_coins(lowercase_ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(lowercase_ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase , lowercase = get_distrib(node.left ) lowercase , lowercase = get_distrib(node.right ) lowercase = 1 - left_distrib_excess lowercase = 1 - right_distrib_excess lowercase = ( left_distrib_moves + right_distrib_moves + abs(lowercase_ ) + abs(lowercase_ ) ) lowercase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase_ , lowercase_ ) return get_distrib(lowercase_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
653
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : List[str] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [144, 192, 240] lowercase = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase = [96, 120, 144] lowercase = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase = [64, 80, 96] lowercase = [16, 16, 24, 48, 64, 80, 320] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 512 lowercase = 16 lowercase = 21 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1000 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Any=False ): for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowercase = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowercase = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowercase = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: lowercase = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : str=False ): if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowercase_ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def SCREAMING_SNAKE_CASE ( ): lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : List[str]=False ): lowercase = get_mobilevit_config(lowercase_ ) # load original state_dict lowercase = torch.load(lowercase_ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowercase_ ).eval() else: lowercase = MobileViTForImageClassification(lowercase_ ).eval() lowercase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowercase_ , organization="""apple""" ) model.push_to_hub(lowercase_ , organization="""apple""" ) if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase_ : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
653
1
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Optional[int] , *a :Optional[int] , **a :Optional[int] ) -> Tuple: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :str , *a :Optional[Any] , **a :List[str] ) -> str: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Optional[int] , *a :int , **a :Union[str, Any] ) -> Dict: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Union[str, Any] , *a :Dict , **a :int ) -> str: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Tuple , *a :Tuple , **a :List[Any] ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :List[Any] , *a :Dict , **a :Any ) -> List[str]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Union[str, Any] , *a :List[Any] , **a :Optional[Any] ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Optional[int] , *a :Optional[int] , **a :List[str] ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :List[str] , *a :Any , **a :int ) -> str: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Tuple , *a :Union[str, Any] , **a :Optional[int] ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Optional[int] , *a :Optional[int] , **a :List[str] ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :str , *a :Optional[int] , **a :List[Any] ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :List[str] , *a :Tuple , **a :Union[str, Any] ) -> int: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Tuple , *a :Any , **a :Tuple ) -> Tuple: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Any , *a :Any , **a :Optional[int] ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :List[Any] , *a :Optional[int] , **a :Optional[Any] ) -> Optional[Any]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Optional[int] , *a :Optional[int] , **a :Any ) -> List[str]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Tuple , *a :str , **a :Union[str, Any] ) -> List[str]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Optional[Any] , *a :Optional[Any] , **a :int ) -> str: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :List[Any] , *a :str , **a :Any ) -> Dict: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :int , *a :int , **a :Tuple ) -> str: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Any , *a :int , **a :Any ) -> List[str]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Any , *a :Optional[Any] , **a :Optional[Any] ) -> List[str]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Any , *a :List[str] , **a :Dict ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :str , *a :str , **a :List[Any] ) -> Dict: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :List[str] , *a :Union[str, Any] , **a :Optional[Any] ) -> int: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Tuple , *a :Dict , **a :Optional[Any] ) -> Tuple: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Tuple , *a :Optional[int] , **a :Any ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Dict , *a :List[Any] , **a :Union[str, Any] ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :List[str] , *a :int , **a :Union[str, Any] ) -> str: requires_backends(self , ["sentencepiece"] ) class lowerCamelCase__ ( metaclass=__lowercase): '''simple docstring''' _A = ['sentencepiece'] def __init__( self :Dict , *a :str , **a :str ) -> Any: requires_backends(self , ["sentencepiece"] )
557
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
557
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging snake_case_ = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__(self : Any , a__ : Optional[Any] , a__ : Optional[Any]=768 ): """simple docstring""" super().__init__(a__ ) __snake_case = proj_size __snake_case = CLIPVisionModel(a__ ) __snake_case = PaintByExampleMapper(a__ ) __snake_case = nn.LayerNorm(config.hidden_size ) __snake_case = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __snake_case = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def a (self : Optional[Any] , a__ : List[Any] , a__ : List[str]=False ): """simple docstring""" __snake_case = self.model(pixel_values=a__ ) __snake_case = clip_output.pooler_output __snake_case = self.mapper(latent_states[:, None] ) __snake_case = self.final_layer_norm(a__ ) __snake_case = self.proj_out(a__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self : str , a__ : Any ): """simple docstring""" super().__init__() __snake_case = (config.num_hidden_layers + 1) // 5 __snake_case = config.hidden_size __snake_case = 1 __snake_case = nn.ModuleList( [ BasicTransformerBlock(a__ , a__ , a__ , activation_fn='''gelu''' , attention_bias=a__ ) for _ in range(a__ ) ] ) def a (self : Any , a__ : Any ): """simple docstring""" for block in self.blocks: __snake_case = block(a__ ) return hidden_states
388
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case_ = 16 snake_case_ = 32 def lowerCamelCase__ ( snake_case_ : Accelerator , snake_case_ : int = 16 ) -> List[str]: __snake_case = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __snake_case = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case_ : int ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case = 16 elif accelerator.mixed_precision != "no": __snake_case = 8 else: __snake_case = None return tokenizer.pad( snake_case_ , padding='''longest''' , max_length=snake_case_ , pad_to_multiple_of=snake_case_ , return_tensors='''pt''' , ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __snake_case = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case_ = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( snake_case_ : str , snake_case_ : Optional[Any] ) -> Tuple: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case_ ) == "1": __snake_case = 2 # New Code # __snake_case = int(args.gradient_accumulation_steps ) __snake_case = int(args.local_sgd_steps ) # Initialize accelerator __snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=snake_case_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config['''lr'''] __snake_case = int(config['''num_epochs'''] ) __snake_case = int(config['''seed'''] ) __snake_case = int(config['''batch_size'''] ) __snake_case = evaluate.load('''glue''' , '''mrpc''' ) set_seed(snake_case_ ) __snake_case , __snake_case = get_dataloaders(snake_case_ , snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case = model.to(accelerator.device ) # Instantiate optimizer __snake_case = AdamW(params=model.parameters() , lr=snake_case_ ) # Instantiate scheduler __snake_case = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=100 , num_training_steps=(len(snake_case_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() with LocalSGD( accelerator=snake_case_ , model=snake_case_ , local_sgd_steps=snake_case_ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(snake_case_ ): __snake_case = model(**snake_case_ ) __snake_case = output.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case = model(**snake_case_ ) __snake_case = outputs.logits.argmax(dim=-1 ) __snake_case , __snake_case = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) __snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , snake_case_ ) def lowerCamelCase__ ( ) -> Optional[int]: __snake_case = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case_ , default=snake_case_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=snake_case_ , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=snake_case_ , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __snake_case = parser.parse_args() __snake_case = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
388
1
'''simple docstring''' from __future__ import annotations A = [] def UpperCAmelCase ( UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : int , UpperCAmelCase__ : int): for i in range(len(UpperCAmelCase__)): if board[row][i] == 1: return False for i in range(len(UpperCAmelCase__)): if board[i][column] == 1: return False for i, j in zip(range(UpperCAmelCase__ , -1 , -1) , range(UpperCAmelCase__ , -1 , -1)): if board[i][j] == 1: return False for i, j in zip(range(UpperCAmelCase__ , -1 , -1) , range(UpperCAmelCase__ , len(UpperCAmelCase__))): if board[i][j] == 1: return False return True def UpperCAmelCase ( UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : int): if row >= len(UpperCAmelCase__): solution.append(UpperCAmelCase__) printboard(UpperCAmelCase__) print() return True for i in range(len(UpperCAmelCase__)): if is_safe(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__): lowerCamelCase : Optional[Any] = 1 solve(UpperCAmelCase__ , row + 1) lowerCamelCase : Any = 0 return False def UpperCAmelCase ( UpperCAmelCase__ : list[list[int]]): for i in range(len(UpperCAmelCase__)): for j in range(len(UpperCAmelCase__)): if board[i][j] == 1: print('Q' , end=' ') else: print('.' , end=' ') print() # n=int(input("The no. of queens")) A = 8 A = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
320
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
0
def _A (UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' while b: lowerCamelCase__ : int = b, a % b return a def _A (UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(UpperCamelCase , a % b ) def _A () ->str: '''simple docstring''' print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
718
def _A (UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' while b: lowerCamelCase__ ,lowerCamelCase__ : int = b, a % b return a def _A (UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(UpperCamelCase , a % b ) def _A () ->str: '''simple docstring''' print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
96
0
'''simple docstring''' from statistics import mean import numpy as np def UpperCamelCase ( lowercase_ : list , lowercase_ : list , lowercase_ : list , lowercase_ : int ) -> list: '''simple docstring''' lowercase =0 # Number of processes finished lowercase =0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowercase =[0] * no_of_process # List to include calculation results lowercase =[0] * no_of_process # Sort by arrival time. lowercase =[burst_time[i] for i in np.argsort(lowercase_ )] lowercase =[process_name[i] for i in np.argsort(lowercase_ )] arrival_time.sort() while no_of_process > finished_process_count: lowercase =0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowercase =arrival_time[i] lowercase =0 # Index showing the location of the process being performed lowercase =0 # Saves the current response ratio. lowercase =0 for i in range(0 , lowercase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowercase =(burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowercase =temp lowercase =i # Calculate the turn around time lowercase =current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowercase =1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def UpperCamelCase ( lowercase_ : list , lowercase_ : list , lowercase_ : list , lowercase_ : int ) -> list: '''simple docstring''' lowercase =[0] * no_of_process for i in range(0 , lowercase_ ): lowercase =turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCAmelCase : str = 5 _UpperCAmelCase : Optional[Any] = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCAmelCase : Dict = [1, 2, 3, 4, 5] _UpperCAmelCase : List[Any] = [1, 2, 3, 4, 5] _UpperCAmelCase : Optional[Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCAmelCase : Optional[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F"""{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t""" F"""{turn_around_time[i]}\t\t\t{waiting_time[i]}""" ) print(F"""average waiting time : {mean(waiting_time):.5f}""") print(F"""average turn around time : {mean(turn_around_time):.5f}""")
72
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class a ( __UpperCAmelCase , unittest.TestCase ): lowercase_ : Optional[Any] = BlenderbotSmallTokenizer lowercase_ : List[str] = False def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" super().setUp() __lowerCAmelCase = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] __lowerCAmelCase = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) __lowerCAmelCase = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] __lowerCAmelCase = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def UpperCAmelCase__ ( self : Any , **snake_case__ : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : str ): """simple docstring""" __lowerCAmelCase = "adapt act apte" __lowerCAmelCase = "adapt act apte" return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = "adapt act apte" __lowerCAmelCase = ["adapt", "act", "ap@@", "te"] __lowerCAmelCase = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) __lowerCAmelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __lowerCAmelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_384] __lowerCAmelCase = "I am a small frog." __lowerCAmelCase = tok([src_text] , padding=snake_case__ , truncation=snake_case__ )["input_ids"] __lowerCAmelCase = tok.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) __lowerCAmelCase = "I am a small frog ." __lowerCAmelCase = "." __lowerCAmelCase = tok(snake_case__ )["input_ids"] __lowerCAmelCase = tok(snake_case__ )["input_ids"] assert encoded[-1] == encoded_dot[0]
611
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): A__= 'swin' A__= { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[Any] , _lowercase : str=2_24 , _lowercase : Optional[Any]=4 , _lowercase : Optional[int]=3 , _lowercase : str=96 , _lowercase : Dict=[2, 2, 6, 2] , _lowercase : str=[3, 6, 12, 24] , _lowercase : Union[str, Any]=7 , _lowercase : Tuple=4.0 , _lowercase : Union[str, Any]=True , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.0 , _lowercase : Union[str, Any]=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Union[str, Any]=False , _lowercase : List[str]=0.0_2 , _lowercase : List[str]=1E-5 , _lowercase : str=32 , _lowercase : Optional[int]=None , _lowercase : Union[str, Any]=None , **_lowercase : Dict , ): """simple docstring""" super().__init__(**_lowercase ) UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = len(_lowercase ) UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase__ = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) UpperCAmelCase__ = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(_lowercase ) + 1 )] UpperCAmelCase__ , UpperCAmelCase__ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= version.parse('1.11' ) @property def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return 1E-4
700
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowercase__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Any ): """simple docstring""" UpperCAmelCase__ = "ylacombe/bark-small" UpperCAmelCase__ = tempfile.mkdtemp() UpperCAmelCase__ = "en_speaker_1" UpperCAmelCase__ = "This is a test string" UpperCAmelCase__ = "speaker_embeddings_path.json" UpperCAmelCase__ = "speaker_embeddings" def _UpperCAmelCase ( self : List[str] , **_lowercase : str ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **_lowercase ) def _UpperCAmelCase ( self : str ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = BarkProcessor(tokenizer=_lowercase ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _UpperCAmelCase ( self : str ): """simple docstring""" UpperCAmelCase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase__ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase__ = 35 UpperCAmelCase__ = 2 UpperCAmelCase__ = 8 UpperCAmelCase__ = { "semantic_prompt": np.ones(_lowercase ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase__ = processor(text=self.input_string , voice_preset=_lowercase ) UpperCAmelCase__ = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowercase , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase__ = os.path.join(self.tmpdirname , "file.npz" ) np.savez(_lowercase , **_lowercase ) UpperCAmelCase__ = processor(text=self.input_string , voice_preset=_lowercase ) UpperCAmelCase__ = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowercase , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase__ = processor(text=self.input_string , voice_preset=self.voice_preset ) def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = BarkProcessor(tokenizer=_lowercase ) UpperCAmelCase__ = processor(text=self.input_string ) UpperCAmelCase__ = tokenizer( self.input_string , padding="max_length" , max_length=2_56 , add_special_tokens=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
277
0
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): A_ : List[str] = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) A_ : List[str] = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } A_ : Any = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ : str = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ : Optional[Any] = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } A_ : int = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ : List[str] = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) A_ : Union[str, Any] = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ : int = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) A_ : Optional[int] = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ : Any = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." A_ : Tuple = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ : Any = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." A_ : Optional[int] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" A_ : Any = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." A_ : Union[str, Any] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" A_ : List[Any] = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." A_ : Tuple = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" A_ : str = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." A_ : List[str] = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ : Dict = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." A_ : Any = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" A_ : str = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." A_ : Dict = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ : List[str] = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." A_ : List[str] = "" A_ : Union[str, Any] = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." A_ : Tuple = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" A_ : Tuple = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' assert ReadMe.from_string(__magic_name__ , __magic_name__ ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : List[Any] ) -> Any: '''simple docstring''' with pytest.raises(__magic_name__ , match=re.escape(expected_error.format(path="""root""" ) ) ): snake_case__ : Optional[Any] = ReadMe.from_string(__magic_name__ , __magic_name__ ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCamelCase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' with pytest.raises(__magic_name__ , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(__magic_name__ , __magic_name__ ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> str: '''simple docstring''' ReadMe.from_string(__magic_name__ , __magic_name__ , suppress_parsing_errors=__magic_name__ ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Dict = Path(__magic_name__ ) / """README.md""" with open(__magic_name__ , """w+""" ) as readme_file: readme_file.write(__magic_name__ ) snake_case__ : Optional[Any] = ReadMe.from_readme(__magic_name__ , __magic_name__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : Any ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Any = Path(__magic_name__ ) / """README.md""" with open(__magic_name__ , """w+""" ) as readme_file: readme_file.write(__magic_name__ ) snake_case__ : Tuple = expected_error.format(path=__magic_name__ ) with pytest.raises(__magic_name__ , match=re.escape(__magic_name__ ) ): snake_case__ : Tuple = ReadMe.from_readme(__magic_name__ , __magic_name__ ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : Tuple ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Any = Path(__magic_name__ ) / """README.md""" with open(__magic_name__ , """w+""" ) as readme_file: readme_file.write(__magic_name__ ) snake_case__ : List[str] = expected_error.format(path=__magic_name__ ) with pytest.raises(__magic_name__ , match=re.escape(__magic_name__ ) ): ReadMe.from_readme(__magic_name__ , __magic_name__ ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : int = Path(__magic_name__ ) / """README.md""" with open(__magic_name__ , """w+""" ) as readme_file: readme_file.write(__magic_name__ ) ReadMe.from_readme(__magic_name__ , __magic_name__ , suppress_parsing_errors=__magic_name__ )
38
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Optional[int] = { "sayakpaul/vit-msn-base": "https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''vit_msn''' def __init__( self : List[str] , UpperCAmelCase__ : Any=768 , UpperCAmelCase__ : Optional[int]=12 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : int=3072 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : List[Any]=1e-06 , UpperCAmelCase__ : List[Any]=224 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : List[Any] , ) ->int: super().__init__(**UpperCAmelCase__ ) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = qkv_bias
390
0
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(_lowercase) class __snake_case ( _lowercase): def __init__( self : Tuple , *__lowerCAmelCase : Any , **__lowerCAmelCase : Any ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , '''vision''' ) self.check_model_type(__lowerCAmelCase ) def __call__( self : List[Any] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Dict ): """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , **__lowerCAmelCase : Tuple ): """simple docstring""" return {}, {}, {} def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = load_image(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = image.size _lowerCamelCase : Optional[Any] = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Dict = self.model(**__lowerCAmelCase ) return model_outputs def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : str = model_outputs.predicted_depth _lowerCamelCase : int = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = prediction.squeeze().cpu().numpy() _lowerCamelCase : Any = (output * 2_5_5 / np.max(__lowerCAmelCase )).astype('''uint8''' ) _lowerCamelCase : Any = Image.fromarray(__lowerCAmelCase ) _lowerCamelCase : int = {} _lowerCamelCase : Optional[Any] = predicted_depth _lowerCamelCase : Any = depth return output_dict
598
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase__ = False class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Union[str, Any]=3_2 ): """simple docstring""" set_seed(0 ) _lowerCamelCase : str = UNetaDModel(sample_size=__lowerCAmelCase , in_channels=3 , out_channels=3 ) _lowerCamelCase : Optional[int] = torch.optim.SGD(model.parameters() , lr=0.00_01 ) return model, optimizer @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _lowerCamelCase : str = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=__lowerCAmelCase , ) _lowerCamelCase : Optional[int] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=__lowerCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _lowerCamelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(__lowerCAmelCase ) for _ in range(4 )] _lowerCamelCase : List[Any] = [torch.randn((4, 3, 3_2, 3_2) ).to(__lowerCAmelCase ) for _ in range(4 )] _lowerCamelCase : Any = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(__lowerCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler _lowerCamelCase , _lowerCamelCase : str = self.get_model_optimizer(resolution=3_2 ) model.train().to(__lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() _lowerCamelCase : str = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _lowerCamelCase : Any = model(__lowerCAmelCase , timesteps[i] ).sample _lowerCamelCase : List[str] = torch.nn.functional.mse_loss(__lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _lowerCamelCase , _lowerCamelCase : List[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(__lowerCAmelCase ) for i in range(4 ): optimizer.zero_grad() _lowerCamelCase : Optional[Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _lowerCamelCase : Tuple = model(__lowerCAmelCase , timesteps[i] ).sample _lowerCamelCase : List[Any] = torch.nn.functional.mse_loss(__lowerCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) ) self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) )
598
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCAmelCase__ : """simple docstring""" def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=64 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): lowerCamelCase_ : Tuple = parent lowerCamelCase_ : List[Any] = batch_size lowerCamelCase_ : List[Any] = seq_length lowerCamelCase_ : Tuple = is_training lowerCamelCase_ : Optional[Any] = use_input_mask lowerCamelCase_ : Any = use_token_type_ids lowerCamelCase_ : str = use_labels lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : Any = hidden_size lowerCamelCase_ : int = embedding_size lowerCamelCase_ : Dict = num_hidden_layers lowerCamelCase_ : Tuple = num_attention_heads lowerCamelCase_ : Tuple = intermediate_size lowerCamelCase_ : Dict = hidden_act lowerCamelCase_ : Union[str, Any] = hidden_dropout_prob lowerCamelCase_ : int = attention_probs_dropout_prob lowerCamelCase_ : List[Any] = max_position_embeddings lowerCamelCase_ : List[str] = type_vocab_size lowerCamelCase_ : Dict = type_sequence_label_size lowerCamelCase_ : Tuple = initializer_range lowerCamelCase_ : int = num_labels lowerCamelCase_ : Union[str, Any] = num_choices lowerCamelCase_ : Union[str, Any] = scope def _UpperCamelCase ( self ): lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Any = None if self.use_input_mask: lowerCamelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : int = None if self.use_token_type_ids: lowerCamelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Optional[int] = None lowerCamelCase_ : Tuple = None lowerCamelCase_ : Optional[int] = None if self.use_labels: lowerCamelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Dict = MegatronBertModel(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase_ : Dict = model(a_ , attention_mask=a_ , token_type_ids=a_ ) lowerCamelCase_ : List[str] = model(a_ , token_type_ids=a_ ) lowerCamelCase_ : List[str] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Dict = MegatronBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase_ : Optional[int] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Optional[int] = MegatronBertForCausalLM(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase_ : Tuple = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Tuple = MegatronBertForNextSentencePrediction(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase_ : Union[str, Any] = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Dict = MegatronBertForPreTraining(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase_ : Dict = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , next_sentence_label=a_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Optional[Any] = MegatronBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase_ : str = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Any = self.num_labels lowerCamelCase_ : Dict = MegatronBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowerCamelCase_ : str = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Optional[int] = self.num_labels lowerCamelCase_ : str = MegatronBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase_ : Optional[int] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): lowerCamelCase_ : Dict = self.num_choices lowerCamelCase_ : Dict = MegatronBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() lowerCamelCase_ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ : Any = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase_ : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __lowerCamelCase, __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase : str = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : Tuple = True # test_resize_embeddings = False __UpperCAmelCase : str = False def _UpperCamelCase ( self , a_ , a_ , a_=False ): lowerCamelCase_ : Union[str, Any] = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class in get_values(a_ ): lowerCamelCase_ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a_ ) lowerCamelCase_ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = MegatronBertModelTester(self ) lowerCamelCase_ : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def _UpperCamelCase ( self ): self.config_tester.run_common_tests() def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*a_ ) def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' return torch.tensor( lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_ , ) __magic_name__ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip("Model is not available." ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: lowerCamelCase_ : int = os.path.join(os.environ["MYDIR"] , a_ ) lowerCamelCase_ : str = MegatronBertModel.from_pretrained(a_ ) model.to(a_ ) model.half() lowerCamelCase_ : List[str] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCamelCase_ : List[str] = model(a_ )[0] lowerCamelCase_ : List[str] = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , a_ ) lowerCamelCase_ : int = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): lowerCamelCase_ : Union[str, Any] = output[0, ii, jj] lowerCamelCase_ : Tuple = expected[3 * ii + jj] lowerCamelCase_ : Optional[int] = "ii={} jj={} a={} b={}".format(a_ , a_ , a_ , a_ ) self.assertTrue(math.isclose(a_ , a_ , rel_tol=a_ , abs_tol=a_ ) , msg=a_ )
250
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=512 , a_=16 , a_=2 , a_=0.02 , a_=4 , ): lowerCamelCase_ : List[str] = parent lowerCamelCase_ : Any = batch_size lowerCamelCase_ : List[str] = seq_length lowerCamelCase_ : Dict = is_training lowerCamelCase_ : List[Any] = use_attention_mask lowerCamelCase_ : Tuple = use_token_type_ids lowerCamelCase_ : Dict = use_labels lowerCamelCase_ : Optional[Any] = vocab_size lowerCamelCase_ : List[Any] = hidden_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : Dict = intermediate_size lowerCamelCase_ : List[Any] = hidden_act lowerCamelCase_ : Optional[Any] = hidden_dropout_prob lowerCamelCase_ : Tuple = attention_probs_dropout_prob lowerCamelCase_ : str = max_position_embeddings lowerCamelCase_ : str = type_vocab_size lowerCamelCase_ : Tuple = type_sequence_label_size lowerCamelCase_ : str = initializer_range lowerCamelCase_ : Optional[Any] = num_choices def _UpperCamelCase ( self ): lowerCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Any = None if self.use_attention_mask: lowerCamelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Dict = None if self.use_token_type_ids: lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _UpperCamelCase ( self ): lowerCamelCase_ : str = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = config_and_inputs lowerCamelCase_ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = True __UpperCAmelCase : Union[str, Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCamelCase ( self ): lowerCamelCase_ : Any = FlaxRoFormerModelTester(self ) @slow def _UpperCamelCase ( self ): for model_class_name in self.all_model_classes: lowerCamelCase_ : List[str] = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=a_ ) lowerCamelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) lowerCamelCase_ : Union[str, Any] = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ : Any = model(a_ )[0] lowerCamelCase_ : List[str] = 5_0000 lowerCamelCase_ : List[Any] = (1, 6, vocab_size) self.assertEqual(output.shape , a_ ) lowerCamelCase_ : Tuple = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , a_ , atol=1E-4 ) )
250
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __a = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def a ( snake_case__: Optional[Any] ): '''simple docstring''' lowercase_ = {} state_dict.pop('''pixel_mean''' , snake_case__ ) state_dict.pop('''pixel_std''' , snake_case__ ) lowercase_ = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase_ = key.replace(snake_case__ , snake_case__ ) if re.match(snake_case__ , snake_case__ ): lowercase_ = int(re.match(snake_case__ , snake_case__ ).group(2 ) ) if layer_nb == 0: lowercase_ = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: lowercase_ = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: lowercase_ = key.replace('''layers.2''' , '''proj_out''' ) lowercase_ = value lowercase_ = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def a ( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: str , snake_case__: Optional[int]="ybelkada/segment-anything" ): '''simple docstring''' lowercase_ = hf_hub_download(snake_case__ , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: lowercase_ = SamConfig() elif "sam_vit_l" in model_name: lowercase_ = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowercase_ = SamConfig( vision_config=snake_case__ , ) elif "sam_vit_h" in model_name: lowercase_ = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowercase_ = SamConfig( vision_config=snake_case__ , ) lowercase_ = torch.load(snake_case__ , map_location='''cpu''' ) lowercase_ = replace_keys(snake_case__ ) lowercase_ = SamImageProcessor() lowercase_ = SamProcessor(image_processor=snake_case__ ) lowercase_ = SamModel(snake_case__ ) hf_model.load_state_dict(snake_case__ ) lowercase_ = hf_model.to('''cuda''' ) lowercase_ = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' lowercase_ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('''RGB''' ) lowercase_ = [[[400, 650]]] lowercase_ = [[1]] lowercase_ = processor(images=np.array(snake_case__ ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowercase_ = hf_model(**snake_case__ ) lowercase_ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 lowercase_ = processor( images=np.array(snake_case__ ) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowercase_ = hf_model(**snake_case__ ) lowercase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 lowercase_ = ((75, 275, 1_725, 850),) lowercase_ = processor(images=np.array(snake_case__ ) , input_boxes=snake_case__ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowercase_ = hf_model(**snake_case__ ) lowercase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. lowercase_ = [[[400, 650], [800, 650]]] lowercase_ = [[1, 1]] lowercase_ = processor( images=np.array(snake_case__ ) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowercase_ = hf_model(**snake_case__ ) lowercase_ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": __a = argparse.ArgumentParser() __a = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) __a = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
409
def a ( ): '''simple docstring''' lowercase_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] lowercase_ = 6 lowercase_ = 1 lowercase_ = 1_901 lowercase_ = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 lowercase_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 lowercase_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 lowercase_ = day - days_per_month[month - 2] if month > 12: year += 1 lowercase_ = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
409
1