code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__ : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=30 , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=10 , _UpperCamelCase=0.0_2 , _UpperCamelCase=None , ): """simple docstring""" _lowercase : List[str] = parent _lowercase : str = batch_size _lowercase : List[Any] = image_size _lowercase : Optional[Any] = patch_size _lowercase : Tuple = num_channels _lowercase : List[str] = is_training _lowercase : Dict = use_labels _lowercase : List[str] = hidden_size _lowercase : int = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Any = attention_probs_dropout_prob _lowercase : Dict = type_sequence_label_size _lowercase : Union[str, Any] = initializer_range _lowercase : str = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : List[str] = (image_size // patch_size) ** 2 _lowercase : List[Any] = num_patches + 1 def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Tuple = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : str = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Any = ViTMSNModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowercase : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[int] = self.type_sequence_label_size _lowercase : List[str] = ViTMSNForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowercase : Optional[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowercase : int = 1 _lowercase : int = ViTMSNForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowercase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase : str = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[Any] = False def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = ViTMSNModelTester(self ) _lowercase : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : str = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = model_class(_UpperCAmelCase ) _lowercase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : List[str] = [*signature.parameters.keys()] _lowercase : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Any = ViTMSNModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _A ( ) -> List[Any]: _lowercase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(2 ) _lowercase : int = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(_UpperCAmelCase ) _lowercase : int = self.default_image_processor _lowercase : Optional[int] = prepare_img() _lowercase : List[Any] = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowercase : Optional[Any] = model(**_UpperCAmelCase ) # verify the logits _lowercase : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowercase : int = torch.tensor([-0.0_8_0_3, -0.4_4_5_4, -0.2_3_7_5] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
245
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = KandinskyVaaControlnetPipeline lowerCAmelCase_ : int = ["""image_embeds""", """negative_image_embeds""", """hint"""] lowerCAmelCase_ : List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] lowerCAmelCase_ : Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCAmelCase_ : List[Any] = False @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return 1_00 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase__ = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.dummy_unet UpperCAmelCase__ = self.dummy_movq UpperCAmelCase__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_UpperCAmelCase , ) UpperCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict=0 ): """simple docstring""" UpperCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) # create hint UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): UpperCAmelCase__ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase__ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = """cpu""" UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = self.pipeline_class(**_UpperCAmelCase ) UpperCAmelCase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) UpperCAmelCase__ = output.images UpperCAmelCase__ = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) UpperCAmelCase__ = torch.from_numpy(np.array(_UpperCAmelCase ) ).float() / 255.0 UpperCAmelCase__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) UpperCAmelCase__ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) UpperCAmelCase__ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = """A robot, 4k photo""" UpperCAmelCase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ = pipe_prior( _UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCAmelCase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCAmelCase__ = pipeline( image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , hint=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=1_00 , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
603
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( _UpperCamelCase , unittest.TestCase): '''simple docstring''' __magic_name__ : List[Any] = DDIMPipeline __magic_name__ : str = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __magic_name__ : Any = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } __magic_name__ : Any = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __magic_name__ : Optional[int] = False def _UpperCAmelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) A__ : Optional[int] =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) A__ : int =DDIMScheduler() A__ : Union[str, Any] ={"unet": unet, "scheduler": scheduler} return components def _UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int=0 ): if str(UpperCamelCase__ ).startswith("mps" ): A__ : Dict =torch.manual_seed(UpperCamelCase__ ) else: A__ : Any =torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ : Optional[int] ={ "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _UpperCAmelCase ( self : List[Any] ): A__ : List[str] ="cpu" A__ : List[str] =self.get_dummy_components() A__ : Union[str, Any] =self.pipeline_class(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Optional[Any] =self.get_dummy_inputs(UpperCamelCase__ ) A__ : List[Any] =pipe(**UpperCamelCase__ ).images A__ : Union[str, Any] =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) A__ : Tuple =np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) A__ : int =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCamelCase__ , 1E-3 ) def _UpperCAmelCase ( self : Tuple ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _UpperCAmelCase ( self : Optional[Any] ): super().test_save_load_local(expected_max_difference=3E-3 ) def _UpperCAmelCase ( self : int ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _UpperCAmelCase ( self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' def _UpperCAmelCase ( self : int ): A__ : Optional[Any] ="google/ddpm-cifar10-32" A__ : List[Any] =UNetaDModel.from_pretrained(UpperCamelCase__ ) A__ : Optional[int] =DDIMScheduler() A__ : Optional[int] =DDIMPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) ddim.to(UpperCamelCase__ ) ddim.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Optional[int] =torch.manual_seed(0 ) A__ : str =ddim(generator=UpperCamelCase__ , eta=0.0 , output_type="numpy" ).images A__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Dict =np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : int ): A__ : Dict ="google/ddpm-ema-bedroom-256" A__ : List[str] =UNetaDModel.from_pretrained(UpperCamelCase__ ) A__ : Optional[Any] =DDIMScheduler.from_pretrained(UpperCamelCase__ ) A__ : Optional[Any] =DDIMPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) ddpm.to(UpperCamelCase__ ) ddpm.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Dict =torch.manual_seed(0 ) A__ : int =ddpm(generator=UpperCamelCase__ , output_type="numpy" ).images A__ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A__ : int =np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
595
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
595
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase_ = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
2
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __a = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
374
0
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer lowercase__ = "bart" lowercase__ = True @st.cache(allow_output_mutation=_snake_case ) def __magic_name__ ( ): if LOAD_DENSE_INDEX: __a : str = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __a : Optional[Any] = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __a : Optional[int] = qar_model.eval() else: __a , __a : Tuple = (None, None) if MODEL_TYPE == "bart": __a : Optional[int] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __a : Dict = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __a : Tuple = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __a : Optional[Any] = sas_model.eval() else: __a , __a : str = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_snake_case ) def __magic_name__ ( ): if LOAD_DENSE_INDEX: __a : Optional[Any] = faiss.StandardGpuResources() __a : Tuple = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __a : Union[str, Any] = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 1_2_8) , ) __a : List[str] = faiss.IndexFlatIP(1_2_8 ) __a : Dict = faiss.index_cpu_to_gpu(_snake_case , 1 , _snake_case ) wikiaab_gpu_index_flat.add(_snake_case ) # TODO fix for larger GPU else: __a , __a : int = (None, None) __a : Any = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_snake_case ) def __magic_name__ ( ): __a : Optional[int] = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __a : Optional[int] = elia["""train_eli5"""] __a : Optional[int] = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 1_2_8) ) __a : Optional[int] = faiss.IndexFlatIP(1_2_8 ) eli5_train_q_index.add(_snake_case ) return (elia_train, eli5_train_q_index) lowercase__ , lowercase__ , lowercase__ = load_indexes() lowercase__ , lowercase__ , lowercase__ , lowercase__ = load_models() lowercase__ , lowercase__ = load_train_data() def __magic_name__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any]=1_0 ): __a : int = embed_questions_for_retrieval([question] , _snake_case , _snake_case ) __a , __a : Optional[int] = eli5_train_q_index.search(_snake_case , _snake_case ) __a : Optional[int] = [elia_train[int(_snake_case )] for i in I[0]] return nn_examples def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any]="wiki40b" , _lowerCamelCase : Dict="dense" , _lowerCamelCase : Dict=1_0 ): if source == "none": __a , __a : int = (""" <P> """.join(["""""" for _ in range(1_1 )] ).strip(), []) else: if method == "dense": __a , __a : List[str] = query_qa_dense_index( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: __a , __a : List[str] = query_es_index( _snake_case , _snake_case , index_name="""english_wiki40b_snippets_100w""" , n_results=_snake_case , ) __a : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __a : Union[str, Any] = """question: {} context: {}""".format(_snake_case , _snake_case ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def __magic_name__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any]=6_4 , _lowerCamelCase : int=2_5_6 , _lowerCamelCase : str=False , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : Tuple=0.95 , _lowerCamelCase : int=0.8 ): with torch.no_grad(): __a : Dict = qa_sas_generate( _snake_case , _snake_case , _snake_case , num_answers=1 , num_beams=_snake_case , min_len=_snake_case , max_len=_snake_case , do_sample=_snake_case , temp=_snake_case , top_p=_snake_case , top_k=_snake_case , max_input_length=1_0_2_4 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar lowercase__ = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" lowercase__ = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia lowercase__ = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) lowercase__ = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] lowercase__ = st.sidebar.checkbox("Demo options") if demo_options: lowercase__ = st.sidebar.selectbox( "", action_list, index=3, ) lowercase__ = action_list.index(action_st) lowercase__ = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) lowercase__ = show_type == "Show full text of passages" else: lowercase__ = 3 lowercase__ = True lowercase__ = st.sidebar.checkbox("Retrieval options") if retrieval_options: lowercase__ = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) lowercase__ = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) lowercase__ = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: lowercase__ = "wiki40b" lowercase__ = "dense" lowercase__ = "beam" lowercase__ = 2 lowercase__ = 64 lowercase__ = 256 lowercase__ = None lowercase__ = None lowercase__ = st.sidebar.checkbox("Generation options") if generate_options: lowercase__ = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) lowercase__ = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) lowercase__ = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) lowercase__ = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": lowercase__ = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: lowercase__ = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) lowercase__ = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) lowercase__ = None # start main text lowercase__ = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] lowercase__ = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": lowercase__ = st.text_input("Enter your question here:", "") else: lowercase__ = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": lowercase__ , lowercase__ = make_support(question, source=wiki_source, method="dense", n_results=10) lowercase__ , lowercase__ = make_support(question, source=wiki_source, method="sparse", n_results=10) lowercase__ = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] lowercase__ = support_list[:10] lowercase__ = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: lowercase__ , lowercase__ = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: lowercase__ , lowercase__ = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): lowercase__ = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) lowercase__ = res[1].strip() if sec_titles == "": lowercase__ = "[{}]({})".format(res[0], wiki_url) else: lowercase__ = sec_titles.split(" & ") lowercase__ = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: lowercase__ = find_nearest_training(question) lowercase__ = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) lowercase__ = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) lowercase__ = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
711
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self , _lowercase , _lowercase=None , _lowercase=None , _lowercase=0 ): '''simple docstring''' __a : Any = 1.0 if scale is None else scale __a : str = 0.0 if loc is None else loc super().__init__(_lowercase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_lowercase )] ) @property def lowerCAmelCase__(self ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def lowerCAmelCase__(self ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def lowerCAmelCase__(self ): '''simple docstring''' return self.variance.sqrt() class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self , _lowercase , _lowercase , _lowercase , **_lowercase ): '''simple docstring''' super().__init__(**_lowercase ) __a : str = args_dim __a : List[Any] = nn.ModuleList([nn.Linear(_lowercase , _lowercase ) for dim in args_dim.values()] ) __a : Dict = domain_map def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : List[Any] = [proj(_lowercase ) for proj in self.proj] return self.domain_map(*_lowercase ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__(self , _lowercase ): '''simple docstring''' super().__init__() __a : Optional[int] = function def lowerCAmelCase__(self , _lowercase , *_lowercase ): '''simple docstring''' return self.function(_lowercase , *_lowercase ) class SCREAMING_SNAKE_CASE__ : _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__(self , _lowercase = 1 ): '''simple docstring''' __a : Optional[int] = dim __a : str = {k: dim * self.args_dim[k] for k in self.args_dim} def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*_lowercase ) else: return Independent(self.distribution_class(*_lowercase ) , 1 ) def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = None , ): '''simple docstring''' __a : Tuple = self._base_distribution(_lowercase ) if loc is None and scale is None: return distr else: return AffineTransformed(_lowercase , loc=_lowercase , scale=_lowercase , event_dim=self.event_dim ) @property def lowerCAmelCase__(self ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def lowerCAmelCase__(self ): '''simple docstring''' return len(self.event_shape ) @property def lowerCAmelCase__(self ): '''simple docstring''' return 0.0 def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return ParameterProjection( in_features=_lowercase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowerCAmelCase__(self , *_lowercase ): '''simple docstring''' raise NotImplementedError() @staticmethod def lowerCAmelCase__(_lowercase ): '''simple docstring''' return (x + torch.sqrt(torch.square(_lowercase ) + 4.0 )) / 2.0 class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : int = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) __a : Optional[Any] = 2.0 + cls.squareplus(_lowercase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase ): '''simple docstring''' __a : str = cls.squareplus(_lowercase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase ): '''simple docstring''' __a : Union[str, Any] = cls.squareplus(_lowercase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a , __a : Optional[Any] = distr_args if self.dim == 1: return self.distribution_class(total_count=_lowercase , logits=_lowercase ) else: return Independent(self.distribution_class(total_count=_lowercase , logits=_lowercase ) , 1 ) def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = None ): '''simple docstring''' __a , __a : List[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
63
0
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : Tuple = OpenAIGPTTokenizer _lowerCAmelCase : Optional[Any] = OpenAIGPTTokenizerFast _lowerCAmelCase : str = True _lowerCAmelCase : Optional[int] = False def _snake_case ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] snake_case_ : Optional[int] = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ : int = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] snake_case_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(lowercase_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) def _snake_case ( self : Dict , lowercase_ : List[Any] ): return "lower newer", "lower newer" def _snake_case ( self : str ): snake_case_ : Optional[Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) snake_case_ : int = '''lower''' snake_case_ : Any = ['''low''', '''er</w>'''] snake_case_ : List[str] = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ : Optional[int] = tokens + ['''<unk>'''] snake_case_ : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def _snake_case ( self : Tuple , lowercase_ : Optional[int]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ : str = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) # Simple input snake_case_ : Optional[Any] = '''This is a simple input''' snake_case_ : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] snake_case_ : List[Any] = ('''This is a simple input''', '''This is a pair''') snake_case_ : int = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding='''max_length''' ) # Simple input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding='''max_length''' ) # Simple input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding='''max_length''' , ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding='''max_length''' ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding='''max_length''' ) # Pair input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding='''max_length''' , ) def _snake_case ( self : Any ): pass @require_ftfy @require_spacy @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase__): pass
123
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowercase__ : int = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : str = ["""input_features""", """attention_mask"""] def __init__( self : Optional[int] , lowercase_ : str=80 , lowercase_ : Optional[int]=16000 , lowercase_ : List[Any]=0.0 , lowercase_ : int=10 , lowercase_ : Optional[int]=25 , lowercase_ : List[Any]="hamming_window" , lowercase_ : Tuple=3_27_68.0 , lowercase_ : Any=0.97 , lowercase_ : Dict=1.0 , lowercase_ : Union[str, Any]=True , lowercase_ : Any=True , lowercase_ : Optional[Any]=False , **lowercase_ : str , ): super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_ ) snake_case_ : List[Any] = feature_size snake_case_ : List[Any] = sampling_rate snake_case_ : str = padding_value snake_case_ : List[Any] = hop_length snake_case_ : Dict = win_length snake_case_ : Optional[int] = frame_signal_scale snake_case_ : int = preemphasis_coeff snake_case_ : Optional[int] = mel_floor snake_case_ : List[str] = normalize_means snake_case_ : Union[str, Any] = normalize_vars snake_case_ : Optional[int] = win_function snake_case_ : List[Any] = return_attention_mask snake_case_ : Any = win_length * sampling_rate // 1000 snake_case_ : Union[str, Any] = hop_length * sampling_rate // 1000 snake_case_ : Dict = optimal_fft_length(self.sample_size ) snake_case_ : List[str] = (self.n_fft // 2) + 1 def _snake_case ( self : Union[str, Any] , lowercase_ : np.array ): if self.win_function == "hamming_window": snake_case_ : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase_ ) else: snake_case_ : Optional[Any] = window_function(window_length=self.sample_size , name=self.win_function ) snake_case_ : List[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) snake_case_ : str = spectrogram( one_waveform * self.frame_signal_scale , window=lowercase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowercase_ , preemphasis=self.preemphasis_coeff , mel_filters=lowercase_ , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def _snake_case ( self : Optional[int] , lowercase_ : Any , lowercase_ : int , lowercase_ : List[Any] ): # make sure we normalize float32 arrays if self.normalize_means: snake_case_ : int = x[:input_length].mean(axis=0 ) snake_case_ : int = np.subtract(lowercase_ , lowercase_ ) if self.normalize_vars: snake_case_ : Tuple = x[:input_length].std(axis=0 ) snake_case_ : Union[str, Any] = np.divide(lowercase_ , lowercase_ ) if input_length < x.shape[0]: snake_case_ : Tuple = padding_value # make sure array is in float32 snake_case_ : List[Any] = x.astype(np.floataa ) return x def _snake_case ( self : Union[str, Any] , lowercase_ : List[np.ndarray] , lowercase_ : Optional[np.ndarray] = None ): snake_case_ : List[str] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowercase_ , lowercase_ , self.padding_value ) for x, n in zip(lowercase_ , lowercase_ )] def __call__( self : Tuple , lowercase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Optional[int] = None , lowercase_ : bool = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[int] = None , **lowercase_ : Union[str, Any] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) snake_case_ : Dict = isinstance(lowercase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) snake_case_ : List[Any] = is_batched_numpy or ( isinstance(lowercase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : int = [np.asarray(lowercase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowercase_ , np.ndarray ): snake_case_ : int = np.asarray(lowercase_ , dtype=np.floataa ) elif isinstance(lowercase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Dict = [raw_speech] # extract fbank features snake_case_ : Optional[int] = [self._extract_mfsc_features(lowercase_ ) for one_waveform in raw_speech] # convert into correct format for padding snake_case_ : int = BatchFeature({'''input_features''': features} ) snake_case_ : Tuple = self.pad( lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) # make sure list is in array format snake_case_ : Dict = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , lowercase_ ): snake_case_ : Tuple = [np.asarray(lowercase_ , dtype=np.floataa ) for feature in input_features] snake_case_ : List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: snake_case_ : Tuple = [np.asarray(lowercase_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: snake_case_ : str = ( np.array(lowercase_ , dtype=np.intaa ) if self._get_padding_strategies(lowercase_ , max_length=lowercase_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) snake_case_ : Any = self.normalize( padded_inputs['''input_features'''] , attention_mask=lowercase_ ) if return_tensors is not None: snake_case_ : Any = padded_inputs.convert_to_tensors(lowercase_ ) return padded_inputs
123
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Optional[int] = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class A__ ( a_ ): UpperCAmelCase = "pix2struct_text_model" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[Any] , _a : Optional[int]=5_0244 , _a : Union[str, Any]=768 , _a : Optional[int]=64 , _a : List[Any]=2048 , _a : List[Any]=12 , _a : Union[str, Any]=12 , _a : Tuple=32 , _a : List[str]=128 , _a : List[str]=0.1 , _a : Union[str, Any]=1E-6 , _a : List[Any]=1.0 , _a : str="gelu_new" , _a : List[str]=0 , _a : Tuple=False , _a : Tuple=0 , _a : Any=1 , _a : Tuple=False , _a : Optional[int]=True , **_a : Optional[Any] , ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =d_kv _SCREAMING_SNAKE_CASE =d_ff _SCREAMING_SNAKE_CASE =num_layers _SCREAMING_SNAKE_CASE =num_heads _SCREAMING_SNAKE_CASE =relative_attention_num_buckets _SCREAMING_SNAKE_CASE =relative_attention_max_distance _SCREAMING_SNAKE_CASE =dropout_rate _SCREAMING_SNAKE_CASE =layer_norm_epsilon _SCREAMING_SNAKE_CASE =initializer_factor _SCREAMING_SNAKE_CASE =use_cache _SCREAMING_SNAKE_CASE =eos_token_id _SCREAMING_SNAKE_CASE =decoder_start_token_id # for backwards compatibility _SCREAMING_SNAKE_CASE =dense_act_fn super().__init__( pad_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , tie_word_embeddings=lowercase_ , is_decoder=lowercase_ , **lowercase_ , ) @classmethod def __UpperCamelCase ( cls : int , _a : Union[str, os.PathLike] , **_a : Optional[int] ) -> Union[str, Any]: """simple docstring""" cls._set_token_in_kwargs(lowercase_ ) _SCREAMING_SNAKE_CASE =cls.get_config_dict(lowercase_ , **lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": _SCREAMING_SNAKE_CASE =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase_ , **lowercase_ ) class A__ ( a_ ): UpperCAmelCase = "pix2struct_vision_model" def __init__( self : int , _a : Optional[int]=768 , _a : Dict=768 , _a : Dict=2048 , _a : Optional[Any]=64 , _a : List[Any]=12 , _a : Optional[Any]=12 , _a : Union[str, Any]="gelu_new" , _a : str=1E-6 , _a : Any=0.0 , _a : Any=0.0 , _a : Optional[int]=1E-10 , _a : str=1.0 , _a : str=4096 , _a : Union[str, Any]=32 , _a : int=128 , **_a : Tuple , ) -> Tuple: """simple docstring""" super().__init__(**lowercase_ ) _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =patch_embed_hidden_size _SCREAMING_SNAKE_CASE =d_ff _SCREAMING_SNAKE_CASE =dropout_rate _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =initializer_factor _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =dense_act_fn _SCREAMING_SNAKE_CASE =seq_len _SCREAMING_SNAKE_CASE =relative_attention_num_buckets _SCREAMING_SNAKE_CASE =relative_attention_max_distance _SCREAMING_SNAKE_CASE =d_kv @classmethod def __UpperCamelCase ( cls : Union[str, Any] , _a : Union[str, os.PathLike] , **_a : int ) -> Any: """simple docstring""" cls._set_token_in_kwargs(lowercase_ ) _SCREAMING_SNAKE_CASE =cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": _SCREAMING_SNAKE_CASE =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowercase_ , **lowercase_ ) class A__ ( a_ ): UpperCAmelCase = "pix2struct" UpperCAmelCase = True def __init__( self : Tuple , _a : Optional[int]=None , _a : Dict=None , _a : Dict=1.0 , _a : Union[str, Any]=0.02 , _a : Union[str, Any]=False , _a : int=False , _a : Optional[Any]=True , **_a : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__(tie_word_embeddings=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ ) if text_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) _SCREAMING_SNAKE_CASE =PixaStructTextConfig(**lowercase_ ) _SCREAMING_SNAKE_CASE =PixaStructVisionConfig(**lowercase_ ) _SCREAMING_SNAKE_CASE =self.text_config.decoder_start_token_id _SCREAMING_SNAKE_CASE =self.text_config.pad_token_id _SCREAMING_SNAKE_CASE =self.text_config.eos_token_id _SCREAMING_SNAKE_CASE =initializer_factor _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =self.initializer_range _SCREAMING_SNAKE_CASE =self.initializer_range _SCREAMING_SNAKE_CASE =is_vqa @classmethod def __UpperCamelCase ( cls : Tuple , _a : PixaStructTextConfig , _a : PixaStructVisionConfig , **_a : str ) -> Dict: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.text_config.to_dict() _SCREAMING_SNAKE_CASE =self.vision_config.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output
691
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Any ,lowercase_ : Dict ,lowercase_ : List[str]=7 ,lowercase_ : Tuple=3 ,lowercase_ : List[str]=1_8 ,lowercase_ : Optional[Any]=3_0 ,lowercase_ : List[Any]=4_0_0 ,lowercase_ : List[Any]=True ,lowercase_ : Any=None ,lowercase_ : Optional[Any]=True ,lowercase_ : str=None ,lowercase_ : List[Any]=True ,lowercase_ : Dict=[0.5, 0.5, 0.5] ,lowercase_ : Dict=[0.5, 0.5, 0.5] ,): lowerCAmelCase__ : Any = size if size is not None else {'''shortest_edge''': 1_8} lowerCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} lowerCAmelCase__ : Dict = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : Union[str, Any] = min_resolution lowerCAmelCase__ : Dict = max_resolution lowerCAmelCase__ : List[str] = do_resize lowerCAmelCase__ : Optional[Any] = size lowerCAmelCase__ : Tuple = do_center_crop lowerCAmelCase__ : Optional[int] = crop_size lowerCAmelCase__ : List[str] = do_normalize lowerCAmelCase__ : Tuple = image_mean lowerCAmelCase__ : int = image_std def __lowerCAmelCase ( self : List[str] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = LevitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Optional[Any] = LevitImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase_ ,'''image_std''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_center_crop''' ) ) self.assertTrue(hasattr(lowercase_ ,'''size''' ) ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 1_8} ) self.assertEqual(image_processor.crop_size ,{'''height''': 1_8, '''width''': 1_8} ) lowerCAmelCase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size ,{'''height''': 8_4, '''width''': 8_4} ) def __lowerCAmelCase ( self : Union[str, Any] ): pass def __lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,Image.Image ) # Test not batched input lowerCAmelCase__ : Any = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCAmelCase ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Union[str, Any] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCAmelCase ( self : int ): # Initialize image_processing lowerCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : Dict = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
450
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : Union[str, Any] = """realm""" def __init__( self , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=1E-3 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=320 , _SCREAMING_SNAKE_CASE=1335_3718 , _SCREAMING_SNAKE_CASE=5000 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , ): super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Common config a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = retriever_proj_size a_ = num_hidden_layers a_ = num_attention_heads a_ = num_candidates a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps # Reader config a_ = span_hidden_size a_ = max_span_width a_ = reader_layer_norm_eps a_ = reader_beam_size a_ = reader_seq_len # Retrieval config a_ = num_block_records a_ = searcher_beam_size
712
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _A = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" a_ = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. a_ = json.loads(UpperCamelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. a_ = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". a_ = json.loads(UpperCamelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , UpperCamelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : str = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def __magic_name__ ( self ): super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , _SCREAMING_SNAKE_CASE , ) @cached_property def __magic_name__ ( self ): logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: a_ = torch.device("""cpu""" ) a_ = 0 elif is_sagemaker_model_parallel_available(): a_ = smp.local_rank() a_ = torch.device("""cuda""" , _SCREAMING_SNAKE_CASE ) a_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) a_ = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) a_ = torch.device("""cuda""" , self.local_rank ) a_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 a_ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. a_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) a_ = torch.device("""cuda""" , self.local_rank ) a_ = 1 if device.type == "cuda": torch.cuda.set_device(_SCREAMING_SNAKE_CASE ) return device @property def __magic_name__ ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __magic_name__ ( self ): return not is_sagemaker_model_parallel_available() @property def __magic_name__ ( self ): return False
403
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
74
from pathlib import Path import fire def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = Path(snake_case ) __SCREAMING_SNAKE_CASE : Dict = Path(snake_case ) dest_dir.mkdir(exist_ok=snake_case ) for path in src_dir.iterdir(): __SCREAMING_SNAKE_CASE : Union[str, Any] = [x.rstrip() for x in list(path.open().readlines() )][:n] __SCREAMING_SNAKE_CASE : Tuple = dest_dir.joinpath(path.name ) print(snake_case ) dest_path.open('''w''' ).write('''\n'''.join(snake_case ) ) if __name__ == "__main__": fire.Fire(minify)
74
1
'''simple docstring''' import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowercase ( __UpperCAmelCase ): def __init__(self , A ): lowerCamelCase_ : Dict = data def __iter__(self ): for element in self.data: yield element def lowercase_ ( _lowercase=True ) -> List[Any]: '''simple docstring''' lowerCamelCase_ : str = Accelerator(even_batches=__lowerCAmelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase = False ) -> Dict: '''simple docstring''' if iterable: lowerCamelCase_ : Optional[Any] = DummyIterableDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) else: lowerCamelCase_ : str = TensorDataset(torch.as_tensor(range(__lowerCAmelCase ) ) ) lowerCamelCase_ : List[str] = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase ) lowerCamelCase_ : Dict = accelerator.prepare(__lowerCAmelCase ) return dl def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = create_dataloader(accelerator=__lowerCAmelCase , dataset_size=__lowerCAmelCase , batch_size=__lowerCAmelCase ) lowerCamelCase_ : Optional[Any] = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def lowercase_ ( ) -> Tuple: '''simple docstring''' lowerCamelCase_ : List[str] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def lowercase_ ( ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Any = create_accelerator(even_batches=__lowerCAmelCase ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCAmelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : int = create_accelerator(even_batches=__lowerCAmelCase ) lowerCamelCase_ : Union[str, Any] = torch.nn.Linear(1 , 1 ) lowerCamelCase_ : Any = accelerator.prepare(__lowerCAmelCase ) lowerCamelCase_ : Tuple = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) lowerCamelCase_ : str = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCAmelCase ): lowerCamelCase_ : Tuple = ddp_model(batch[0].float() ) lowerCamelCase_ : Optional[int] = output.sum() loss.backward() batch_idxs.append(__lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def lowercase_ ( _lowercase ) -> Optional[Any]: '''simple docstring''' with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : Tuple = True lowerCamelCase_ : List[str] = False lowerCamelCase_ : Optional[Any] = create_accelerator(even_batches=__lowerCAmelCase ) lowerCamelCase_ : Optional[int] = torch.nn.Linear(1 , 1 ) lowerCamelCase_ : Optional[int] = accelerator.prepare(__lowerCAmelCase ) lowerCamelCase_ : Optional[Any] = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) lowerCamelCase_ : Tuple = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): lowerCamelCase_ : Any = train_dl.batch_sampler.even_batches lowerCamelCase_ : Optional[Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : Tuple = True lowerCamelCase_ : int = False lowerCamelCase_ : Any = create_accelerator(even_batches=__lowerCAmelCase ) lowerCamelCase_ : int = torch.nn.Linear(1 , 1 ) lowerCamelCase_ : Optional[Any] = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) lowerCamelCase_ : str = create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): lowerCamelCase_ : Dict = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def lowercase_ ( ) -> int: '''simple docstring''' lowerCamelCase_ : Optional[Any] = create_accelerator() lowerCamelCase_ : List[str] = torch.nn.Linear(1 , 1 ) lowerCamelCase_ : Optional[Any] = accelerator.prepare(__lowerCAmelCase ) create_dataloader(__lowerCAmelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCAmelCase ) with warnings.catch_warnings(record=__lowerCAmelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCAmelCase ): pass assert issubclass(w[-1].category , __lowerCAmelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def lowercase_ ( ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) lowerCamelCase_ : str = accelerator.state.distributed_type lowerCamelCase_ : Optional[Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCAmelCase ) lowerCamelCase_ : List[str] = original_state if __name__ == "__main__": main()
712
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __lowercase : Union[str, Any] = logging.get_logger(__name__) def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ : Optional[Any] = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. lowerCamelCase_ : Optional[Any] = json.loads(_lowercase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. lowerCamelCase_ : List[str] = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". lowerCamelCase_ : List[str] = json.loads(_lowercase ) if not mpi_options.get('''sagemaker_mpi_enabled''' , _lowercase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __lowercase ( _lowercase ): lowerCamelCase : str = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def UpperCAmelCase__ (self ): super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , A , ) @cached_property def UpperCAmelCase__ (self ): logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: lowerCamelCase_ : Optional[int] = torch.device('''cpu''' ) lowerCamelCase_ : Dict = 0 elif is_sagemaker_model_parallel_available(): lowerCamelCase_ : int = smp.local_rank() lowerCamelCase_ : str = torch.device('''cuda''' , A ) lowerCamelCase_ : Tuple = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) lowerCamelCase_ : List[Any] = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) lowerCamelCase_ : Union[str, Any] = torch.device('''cuda''' , self.local_rank ) lowerCamelCase_ : List[str] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 lowerCamelCase_ : List[str] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. lowerCamelCase_ : Any = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) lowerCamelCase_ : Any = torch.device('''cuda''' , self.local_rank ) lowerCamelCase_ : List[str] = 1 if device.type == "cuda": torch.cuda.set_device(A ) return device @property def UpperCAmelCase__ (self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCAmelCase__ (self ): return not is_sagemaker_model_parallel_available() @property def UpperCAmelCase__ (self ): return False
357
0
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor UpperCamelCase : Tuple = logging.get_logger(__name__) class A__ ( lowercase__ ): """simple docstring""" def __init__( self : Union[str, Any] , *lowerCamelCase__ : Tuple , **lowerCamelCase__ : Tuple ): warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , _A , ) super().__init__(*_A , **_A )
37
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCamelCase : '''simple docstring''' A_ : Tuple = XGLMConfig A_ : str = {} A_ : Any = """gelu""" def __init__( self : Union[str, Any] , _A : List[str] , _A : Dict=14 , _A : Any=7 , _A : Any=True , _A : Tuple=True , _A : Union[str, Any]=True , _A : Any=99 , _A : Optional[Any]=32 , _A : Union[str, Any]=2 , _A : Union[str, Any]=4 , _A : List[Any]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[int]=0.1 , _A : List[Any]=512 , _A : Tuple=0.02 , ) -> str: __magic_name__ : Any = parent __magic_name__ : Dict = batch_size __magic_name__ : Dict = seq_length __magic_name__ : int = is_training __magic_name__ : List[Any] = use_input_mask __magic_name__ : Tuple = use_labels __magic_name__ : Optional[int] = vocab_size __magic_name__ : Union[str, Any] = d_model __magic_name__ : str = num_hidden_layers __magic_name__ : Optional[Any] = num_attention_heads __magic_name__ : Any = ffn_dim __magic_name__ : List[str] = activation_function __magic_name__ : Optional[Any] = activation_dropout __magic_name__ : List[Any] = attention_dropout __magic_name__ : Optional[Any] = max_position_embeddings __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : Optional[Any] = None __magic_name__ : str = 0 __magic_name__ : Optional[Any] = 2 __magic_name__ : int = 1 def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __lowerCAmelCase ( self : Optional[Any] ) -> str: __magic_name__ : Tuple = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __magic_name__ : int = None if self.use_input_mask: __magic_name__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[Any] = self.get_config() __magic_name__ : Optional[int] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_A , ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: __magic_name__ : List[Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Tuple = config_and_inputs __magic_name__ : Optional[int] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : int = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () A_ : Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () A_ : Union[str, Any] = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) A_ : Dict = False A_ : Union[str, Any] = False A_ : Tuple = False def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: __magic_name__ : Optional[Any] = TFXGLMModelTester(self ) __magic_name__ : Dict = ConfigTester(self , config_class=_A , n_embd=37 ) def __lowerCAmelCase ( self : Any ) -> Dict: self.config_tester.run_common_tests() @slow def __lowerCAmelCase ( self : Any ) -> int: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Union[str, Any] = TFXGLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: super().test_resize_token_embeddings() @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : str , _A : Optional[int]=True ) -> Dict: __magic_name__ : int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __magic_name__ : str = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __magic_name__ : str = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __magic_name__ : Union[str, Any] = model.generate(_A , do_sample=_A , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _A ) @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : Tuple = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __magic_name__ : List[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __magic_name__ : Optional[int] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __magic_name__ : Optional[int] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __magic_name__ : Tuple = model.generate(_A , do_sample=_A , seed=[7, 0] ) __magic_name__ : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=_A ) __magic_name__ : str = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(_A , _A ) @slow def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __magic_name__ : Optional[Any] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __magic_name__ : Dict = 'left' # use different length sentences to test batching __magic_name__ : str = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __magic_name__ : int = tokenizer(_A , return_tensors='tf' , padding=_A ) __magic_name__ : Dict = inputs['input_ids'] __magic_name__ : Any = model.generate(input_ids=_A , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __magic_name__ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __magic_name__ : Dict = model.generate(input_ids=_A , max_new_tokens=12 ) __magic_name__ : Union[str, Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __magic_name__ : int = model.generate(input_ids=_A , max_new_tokens=12 ) __magic_name__ : Dict = tokenizer.batch_decode(_A , skip_special_tokens=_A ) __magic_name__ : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_A ) __magic_name__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=_A ) __magic_name__ : List[str] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , [non_padded_sentence, padded_sentence] )
561
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _a ( SCREAMING_SNAKE_CASE__ : Namespace ) -> Dict: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowerCamelCase : Any = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class lowerCamelCase (__lowerCamelCase ): """simple docstring""" @staticmethod def A_ ( _UpperCAmelCase : ArgumentParser ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.add_parser( "convert", help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.", ) train_parser.add_argument("--model_type", type=_UpperCAmelCase, required=_UpperCAmelCase, help="Model\'s type." ) train_parser.add_argument( "--tf_checkpoint", type=_UpperCAmelCase, required=_UpperCAmelCase, help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output", type=_UpperCAmelCase, required=_UpperCAmelCase, help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config", type=_UpperCAmelCase, default="", help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name", type=_UpperCAmelCase, default=_UpperCAmelCase, help="Optional fine-tuning task name if the TF model was a finetuned model.", ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self : str, _UpperCAmelCase : str, _UpperCAmelCase : str, _UpperCAmelCase : str, _UpperCAmelCase : str, _UpperCAmelCase : str, *_UpperCAmelCase : Optional[int], ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = logging.get_logger("transformers-cli/converting" ) self._logger.info(F'''Loading model {model_type}''' ) SCREAMING_SNAKE_CASE__ : int = model_type SCREAMING_SNAKE_CASE__ : str = tf_checkpoint SCREAMING_SNAKE_CASE__ : int = pytorch_dump_output SCREAMING_SNAKE_CASE__ : Dict = config SCREAMING_SNAKE_CASE__ : str = finetuning_task_name def A_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_UpperCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): SCREAMING_SNAKE_CASE__ : str = self._tf_checkpoint SCREAMING_SNAKE_CASE__ : Dict = "" else: SCREAMING_SNAKE_CASE__ : List[str] = self._tf_checkpoint SCREAMING_SNAKE_CASE__ : int = "" convert_transfo_xl_checkpoint_to_pytorch( _UpperCAmelCase, self._config, self._pytorch_dump_output, _UpperCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
706
from copy import deepcopy class lowerCamelCase : """simple docstring""" def __init__( self : Optional[int], _UpperCAmelCase : list[int] | None = None, _UpperCAmelCase : int | None = None ) -> None: """simple docstring""" if arr is None and size is not None: SCREAMING_SNAKE_CASE__ : List[Any] = size SCREAMING_SNAKE_CASE__ : str = [0] * size elif arr is not None: self.init(_UpperCAmelCase ) else: raise ValueError("Either arr or size must be specified" ) def A_ ( self : Optional[Any], _UpperCAmelCase : list[int] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = len(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = deepcopy(_UpperCAmelCase ) for i in range(1, self.size ): SCREAMING_SNAKE_CASE__ : Tuple = self.next_(_UpperCAmelCase ) if j < self.size: self.tree[j] += self.tree[i] def A_ ( self : Dict ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.tree[:] for i in range(self.size - 1, 0, -1 ): SCREAMING_SNAKE_CASE__ : List[Any] = self.next_(_UpperCAmelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def A_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" return index + (index & (-index)) @staticmethod def A_ ( _UpperCAmelCase : int ) -> int: """simple docstring""" return index - (index & (-index)) def A_ ( self : Dict, _UpperCAmelCase : int, _UpperCAmelCase : int ) -> None: """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value SCREAMING_SNAKE_CASE__ : Optional[int] = self.next_(_UpperCAmelCase ) def A_ ( self : str, _UpperCAmelCase : int, _UpperCAmelCase : int ) -> None: """simple docstring""" self.add(_UpperCAmelCase, value - self.get(_UpperCAmelCase ) ) def A_ ( self : Optional[Any], _UpperCAmelCase : int ) -> int: """simple docstring""" if right == 0: return 0 SCREAMING_SNAKE_CASE__ : Dict = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] SCREAMING_SNAKE_CASE__ : Any = self.prev(_UpperCAmelCase ) return result def A_ ( self : str, _UpperCAmelCase : int, _UpperCAmelCase : int ) -> int: """simple docstring""" return self.prefix(_UpperCAmelCase ) - self.prefix(_UpperCAmelCase ) def A_ ( self : Dict, _UpperCAmelCase : int ) -> int: """simple docstring""" return self.query(_UpperCAmelCase, index + 1 ) def A_ ( self : List[str], _UpperCAmelCase : int ) -> int: """simple docstring""" value -= self.tree[0] if value < 0: return -1 SCREAMING_SNAKE_CASE__ : List[Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
157
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCamelCase_ : int = TypeVar("""T""") def UpperCamelCase ( _UpperCAmelCase : int ) -> int: '''simple docstring''' return (position - 1) // 2 def UpperCamelCase ( _UpperCAmelCase : int ) -> int: '''simple docstring''' return (2 * position) + 1 def UpperCamelCase ( _UpperCAmelCase : int ) -> int: '''simple docstring''' return (2 * position) + 2 class __lowercase ( Generic[T] ): def __init__(self : List[str] ) -> None: _lowercase : list[tuple[T, int]] = [] _lowercase : dict[T, int] = {} _lowercase : int = 0 def __len__(self : Optional[Any] ) -> int: return self.elements def __repr__(self : str ) -> str: return str(self.heap ) def _a(self : Optional[Any] ) -> bool: # Check if the priority queue is empty return self.elements == 0 def _a(self : Optional[Any] , snake_case : T , snake_case : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _lowercase : Optional[Any] = self.elements self.elements += 1 self._bubble_up(snake_case ) def _a(self : Union[str, Any] ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _lowercase , _lowercase : Optional[int] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _lowercase , _lowercase : Union[str, Any] = self.heap[0] self._bubble_down(snake_case ) return elem def _a(self : List[Any] , snake_case : T , snake_case : int ) -> None: # Update the weight of the given key _lowercase : int = self.position_map[elem] _lowercase : str = (elem, weight) if position > 0: _lowercase : Any = get_parent_position(snake_case ) _lowercase , _lowercase : Tuple = self.heap[parent_position] if parent_weight > weight: self._bubble_up(snake_case ) else: self._bubble_down(snake_case ) else: self._bubble_down(snake_case ) def _a(self : Union[str, Any] , snake_case : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _lowercase : Any = self.position_map[elem] if curr_pos == 0: return None _lowercase : Any = get_parent_position(snake_case ) _lowercase , _lowercase : Any = self.heap[curr_pos] _lowercase , _lowercase : Union[str, Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(snake_case , snake_case ) return self._bubble_up(snake_case ) return None def _a(self : List[str] , snake_case : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _lowercase : str = self.position_map[elem] _lowercase , _lowercase : Union[str, Any] = self.heap[curr_pos] _lowercase : Union[str, Any] = get_child_left_position(snake_case ) _lowercase : str = get_child_right_position(snake_case ) if child_left_position < self.elements and child_right_position < self.elements: _lowercase , _lowercase : int = self.heap[child_left_position] _lowercase , _lowercase : str = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(snake_case , snake_case ) return self._bubble_down(snake_case ) if child_left_position < self.elements: _lowercase , _lowercase : Tuple = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(snake_case , snake_case ) return self._bubble_down(snake_case ) else: return None if child_right_position < self.elements: _lowercase , _lowercase : Union[str, Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(snake_case , snake_case ) return self._bubble_down(snake_case ) return None def _a(self : List[str] , snake_case : int , snake_case : int ) -> None: # Swap the nodes at the given positions _lowercase : Optional[Any] = self.heap[nodea_pos][0] _lowercase : List[str] = self.heap[nodea_pos][0] _lowercase , _lowercase : int = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _lowercase : str = nodea_pos _lowercase : Dict = nodea_pos class __lowercase ( Generic[T] ): def __init__(self : List[str] ) -> None: _lowercase : dict[T, dict[T, int]] = {} _lowercase : int = 0 def __repr__(self : Optional[int] ) -> str: return str(self.connections ) def __len__(self : Optional[Any] ) -> int: return self.nodes def _a(self : Tuple , snake_case : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _lowercase : Optional[int] = {} self.nodes += 1 def _a(self : str , snake_case : T , snake_case : T , snake_case : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(snake_case ) self.add_node(snake_case ) _lowercase : Optional[Any] = weight _lowercase : Optional[int] = weight def UpperCamelCase ( _UpperCAmelCase : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' _lowercase : dict[T, int] = {node: maxsize for node in graph.connections} _lowercase : dict[T, T | None] = {node: None for node in graph.connections} _lowercase : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_UpperCAmelCase , _UpperCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization _lowercase : List[str] = priority_queue.extract_min() _lowercase : Tuple = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowercase : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) _lowercase : int = node # running prim's algorithm while not priority_queue.is_empty(): _lowercase : str = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowercase : Optional[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_UpperCAmelCase , dist[neighbour] ) _lowercase : Any = node return dist, parent
461
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging UpperCamelCase_ : int = logging.get_logger(__name__) def UpperCamelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' _lowercase : List[Any] = nn.functional.normalize(_UpperCAmelCase ) _lowercase : List[str] = nn.functional.normalize(_UpperCAmelCase ) return torch.mm(_UpperCAmelCase , normalized_text_embeds.t() ) class __lowercase ( __snake_case ): _A = CLIPConfig _A = ["CLIPEncoderLayer"] def __init__(self : List[str] , snake_case : CLIPConfig ) -> Optional[int]: super().__init__(snake_case ) _lowercase : Tuple = CLIPVisionModel(config.vision_config ) _lowercase : Any = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case ) _lowercase : int = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case ) _lowercase : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case ) _lowercase : Any = nn.Parameter(torch.ones(17 ) , requires_grad=snake_case ) _lowercase : Dict = nn.Parameter(torch.ones(3 ) , requires_grad=snake_case ) @torch.no_grad() def _a(self : int , snake_case : Tuple , snake_case : Optional[Any] ) -> Union[str, Any]: _lowercase : str = self.vision_model(snake_case )[1] # pooled_output _lowercase : List[Any] = self.visual_projection(snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowercase : str = cosine_distance(snake_case , self.special_care_embeds ).cpu().float().numpy() _lowercase : Optional[int] = cosine_distance(snake_case , self.concept_embeds ).cpu().float().numpy() _lowercase : List[str] = [] _lowercase : int = image_embeds.shape[0] for i in range(snake_case ): _lowercase : int = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images _lowercase : Optional[int] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): _lowercase : Union[str, Any] = special_cos_dist[i][concept_idx] _lowercase : Optional[int] = self.special_care_embeds_weights[concept_idx].item() _lowercase : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) _lowercase : Union[str, Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): _lowercase : Tuple = cos_dist[i][concept_idx] _lowercase : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() _lowercase : str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case ) result.append(snake_case ) _lowercase : Dict = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _a(self : str , snake_case : torch.FloatTensor , snake_case : torch.FloatTensor ) -> List[str]: _lowercase : Dict = self.vision_model(snake_case )[1] # pooled_output _lowercase : Any = self.visual_projection(snake_case ) _lowercase : Optional[Any] = cosine_distance(snake_case , self.special_care_embeds ) _lowercase : Optional[Any] = cosine_distance(snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images _lowercase : Optional[int] = 0.0 _lowercase : Optional[int] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) _lowercase : List[str] = torch.any(special_scores > 0 , dim=1 ) _lowercase : List[Any] = special_care * 0.01 _lowercase : Optional[Any] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) _lowercase : Any = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) _lowercase : List[Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
461
1
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __UpperCAmelCase : A__ : CommonSchedulerState # setable values A__ : jnp.ndarray A__ : jnp.ndarray A__ : Optional[int] = None @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): return cls(common=A_ , init_noise_sigma=A_ , timesteps=A_ ) @dataclass class __UpperCAmelCase ( __snake_case ): A__ : DDPMSchedulerState class __UpperCAmelCase ( __snake_case , __snake_case ): A__ : Dict = [e.name for e in FlaxKarrasDiffusionSchedulers] A__ : jnp.dtype @property def _a ( self ): return True @register_to_config def __init__( self , _lowerCamelCase = 1000 , _lowerCamelCase = 0.0_0_0_1 , _lowerCamelCase = 0.0_2 , _lowerCamelCase = "linear" , _lowerCamelCase = None , _lowerCamelCase = "fixed_small" , _lowerCamelCase = True , _lowerCamelCase = "epsilon" , _lowerCamelCase = jnp.floataa , ): lowerCamelCase__ =dtype def _a ( self , _lowerCamelCase = None ): if common is None: lowerCamelCase__ =CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCamelCase__ =jnp.array(1.0 , dtype=self.dtype ) lowerCamelCase__ =jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=A_ , init_noise_sigma=A_ , timesteps=A_ , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None ): return sample def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = () ): lowerCamelCase__ =self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCamelCase__ =(jnp.arange(0 , A_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=A_ , timesteps=A_ , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None ): lowerCamelCase__ =state.common.alphas_cumprod[t] lowerCamelCase__ =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCamelCase__ =(1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCamelCase__ =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCamelCase__ =jnp.clip(A_ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCamelCase__ =jnp.log(jnp.clip(A_ , a_min=1E-20 ) ) elif variance_type == "fixed_large": lowerCamelCase__ =state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCamelCase__ =jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCamelCase__ =variance lowerCamelCase__ =state.common.betas[t] lowerCamelCase__ =(predicted_variance + 1) / 2 lowerCamelCase__ =frac * max_log + (1 - frac) * min_log return variance def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = True , ): lowerCamelCase__ =timestep if key is None: lowerCamelCase__ =jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCamelCase__ =jnp.split(A_ , sample.shape[1] , axis=1 ) else: lowerCamelCase__ =None # 1. compute alphas, betas lowerCamelCase__ =state.common.alphas_cumprod[t] lowerCamelCase__ =jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCamelCase__ =1 - alpha_prod_t lowerCamelCase__ =1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCamelCase__ =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCamelCase__ =model_output elif self.config.prediction_type == "v_prediction": lowerCamelCase__ =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCamelCase__ =jnp.clip(A_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ =(alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCamelCase__ =state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCamelCase__ =jax.random.split(A_ , num=1 ) lowerCamelCase__ =jax.random.normal(A_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(A_ , A_ , predicted_variance=A_ ) ** 0.5) * noise lowerCamelCase__ =jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCamelCase__ =pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=A_ , state=A_ ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): return add_noise_common(state.common , A_ , A_ , A_ ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): return get_velocity_common(state.common , A_ , A_ , A_ ) def __len__( self ): return self.config.num_train_timesteps
716
"""simple docstring""" import heapq import sys import numpy as np a =tuple[int, int] class __UpperCAmelCase : def __init__( self ): lowerCamelCase__ =[] lowerCamelCase__ =set() def _a ( self ): if not self.empty(): return self.elements[0][0] else: return float("inf" ) def _a ( self ): return len(self.elements ) == 0 def _a ( self , _lowerCamelCase , _lowerCamelCase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCamelCase ) else: # update # print("update", item) lowerCamelCase__ =[] ((lowerCamelCase__) , (lowerCamelCase__)) =heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCamelCase__) , (lowerCamelCase__)) =heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self , _lowerCamelCase ): if item in self.set: self.set.remove(_lowerCamelCase ) lowerCamelCase__ =[] ((lowerCamelCase__) , (lowerCamelCase__)) =heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCamelCase__) , (lowerCamelCase__)) =heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self ): return self.elements[0][1] def _a ( self ): ((lowerCamelCase__) , (lowerCamelCase__)) =heapq.heappop(self.elements ) self.set.remove(_lowerCamelCase ) return (priority, item) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ =np.array(__lowerCAmelCase ) lowerCamelCase__ =np.array(__lowerCAmelCase ) return np.linalg.norm(a - b ) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' return consistent_heuristic(__lowerCAmelCase , __lowerCAmelCase ) // t def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ =g_function[start] + Wa * heuristics[i](__lowerCAmelCase , __lowerCAmelCase ) return ans def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ =np.chararray((n, n) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowerCamelCase__ ="*" for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if (j, (n - 1) - i) in blocks: lowerCamelCase__ ="#" lowerCamelCase__ ="-" lowerCamelCase__ =back_pointer[goal] while x != start: ((lowerCamelCase__) , (lowerCamelCase__)) =x # print(x) lowerCamelCase__ ="-" lowerCamelCase__ =back_pointer[x] lowerCamelCase__ ="-" for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) lowerCamelCase__ =back_pointer[goal] while x != start: print(__lowerCAmelCase , end=" " ) lowerCamelCase__ =back_pointer[x] print(__lowerCAmelCase ) sys.exit() def lowerCamelCase_ ( __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> List[str]: '''simple docstring''' for itera in range(__lowerCAmelCase ): open_list[itera].remove_element(__lowerCAmelCase ) # print("s", s) # print("j", j) ((lowerCamelCase__) , (lowerCamelCase__)) =s lowerCamelCase__ =(x - 1, y) lowerCamelCase__ =(x + 1, y) lowerCamelCase__ =(x, y + 1) lowerCamelCase__ =(x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__lowerCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__lowerCAmelCase ) lowerCamelCase__ =-1 lowerCamelCase__ =float("inf" ) if valid(__lowerCAmelCase ) and g_function[neighbours] > g_function[s] + 1: lowerCamelCase__ =g_function[s] + 1 lowerCamelCase__ =s if neighbours not in close_list_anchor: open_list[0].put(__lowerCAmelCase , key(__lowerCAmelCase , 0 , __lowerCAmelCase , __lowerCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1 , __lowerCAmelCase ): if key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) <= Wa * key( __lowerCAmelCase , 0 , __lowerCAmelCase , __lowerCAmelCase ): open_list[j].put( __lowerCAmelCase , key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) def lowerCamelCase_ ( ) -> Any: '''simple docstring''' lowerCamelCase__ =[] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a ={0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a =[ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a =make_common_ground() a =blocks_blk # hyper parameters a =1 a =1 a =20 a =3 # one consistent and two other inconsistent # start and end destination a =(0, 0) a =(n - 1, n - 1) a =1 def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' lowerCamelCase__ ={start: 0, goal: float("inf" )} lowerCamelCase__ ={start: -1, goal: -1} lowerCamelCase__ =[] lowerCamelCase__ =set() for i in range(__lowerCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__lowerCAmelCase , key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ =[] lowerCamelCase__ =[] while open_list[0].minkey() < float("inf" ): for i in range(1 , __lowerCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: lowerCamelCase__ , lowerCamelCase__ =open_list[i].top_show() visited.add(__lowerCAmelCase ) expand_state( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) close_list_inad.append(__lowerCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: lowerCamelCase__ =open_list[0].top_show() visited.add(__lowerCAmelCase ) expand_state( __lowerCAmelCase , 0 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) close_list_anchor.append(__lowerCAmelCase ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__lowerCAmelCase ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
132
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __UpperCamelCase : Union[str, Any] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __UpperCamelCase : Any = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __UpperCamelCase : int = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __UpperCamelCase : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __UpperCamelCase : Dict = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __UpperCamelCase : Optional[int] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __UpperCamelCase : Optional[int] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase ,lowerCAmelCase = randrange(len(_UpperCAmelCase ) ), randrange(len(_UpperCAmelCase ) ) lowerCAmelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] lowerCAmelCase ,lowerCAmelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 100 ): return (generate_random_hand() for _ in range(_UpperCAmelCase )) @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : List[str] ): assert PokerHand(_UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ): assert PokerHand(_UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): lowerCAmelCase = PokerHand(_UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ): assert PokerHand(_UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ): assert PokerHand(_UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ): assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ): assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [PokerHand(_UpperCAmelCase ) for hand in SORTED_HANDS] lowerCAmelCase = poker_hands.copy() shuffle(_UpperCAmelCase ) lowerCAmelCase = chain(sorted(_UpperCAmelCase ) ) for index, hand in enumerate(_UpperCAmelCase ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE (): # Test that five high straights are compared correctly. lowerCAmelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE (): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowerCAmelCase = PokerHand('2C 4S AS 3D 5C' ) lowerCAmelCase = True lowerCAmelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE (): # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowerCAmelCase = 0 lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , 'poker_hands.txt' ) with open(_UpperCAmelCase ) as file_hand: for line in file_hand: lowerCAmelCase = line[:14].strip() lowerCAmelCase = line[15:].strip() lowerCAmelCase ,lowerCAmelCase = PokerHand(_UpperCAmelCase ), PokerHand(_UpperCAmelCase ) lowerCAmelCase = player.compare_with(_UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""DeiTFeatureExtractor"""] SCREAMING_SNAKE_CASE = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
199
0
"""simple docstring""" import math class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Any , __a : list[list[float]] , __a : list[int] ) -> int: _UpperCamelCase : List[Any] = 0.0 _UpperCamelCase : Union[str, Any] = 0.0 for i in range(len(__a ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : list[list[int | float]] , __a : list[int] , __a : int , __a : float ) -> list[list[int | float]]: for i in range(len(__a ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Optional[int] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase : List[str] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase : List[Any] = SelfOrganizingMap() _UpperCamelCase : int = 3 _UpperCamelCase : List[Any] = 0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample _UpperCamelCase : int = training_samples[j] # Compute the winning vector _UpperCamelCase : Tuple = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # Update the winning vector _UpperCamelCase : int = self_organizing_map.update(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # classify test sample _UpperCamelCase : Optional[int] = [0, 0, 0, 1] _UpperCamelCase : Dict = self_organizing_map.get_winner(lowercase_ ,lowercase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
51
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class UpperCAmelCase ( _snake_case ): UpperCAmelCase = "timesformer" def __init__( self : List[str] , __lowerCamelCase : Optional[int]=2_2_4 , __lowerCamelCase : List[str]=1_6 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Optional[int]=8 , __lowerCamelCase : Optional[Any]=7_6_8 , __lowerCamelCase : Tuple=1_2 , __lowerCamelCase : Optional[Any]=1_2 , __lowerCamelCase : Any=3_0_7_2 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Optional[Any]=1e-6 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[Any]="divided_space_time" , __lowerCamelCase : Any=0 , **__lowerCamelCase : str , ): super().__init__(**__lowerCamelCase ) UpperCAmelCase__ :Optional[int] = image_size UpperCAmelCase__ :Any = patch_size UpperCAmelCase__ :Optional[Any] = num_channels UpperCAmelCase__ :List[Any] = num_frames UpperCAmelCase__ :Optional[Any] = hidden_size UpperCAmelCase__ :List[Any] = num_hidden_layers UpperCAmelCase__ :List[str] = num_attention_heads UpperCAmelCase__ :Any = intermediate_size UpperCAmelCase__ :Tuple = hidden_act UpperCAmelCase__ :Dict = hidden_dropout_prob UpperCAmelCase__ :List[Any] = attention_probs_dropout_prob UpperCAmelCase__ :Optional[Any] = initializer_range UpperCAmelCase__ :int = layer_norm_eps UpperCAmelCase__ :Dict = qkv_bias UpperCAmelCase__ :Any = attention_type UpperCAmelCase__ :Optional[Any] = drop_path_rate
467
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=_snake_case ): UpperCAmelCase = ["note_seq"] def __init__( self : List[str] , *__lowerCamelCase : int , **__lowerCamelCase : Optional[int] ): requires_backends(self , ['''note_seq'''] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *__lowerCamelCase : Dict , **__lowerCamelCase : Optional[Any] ): requires_backends(cls , ['''note_seq'''] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls : str , *__lowerCamelCase : Any , **__lowerCamelCase : Optional[Any] ): requires_backends(cls , ['''note_seq'''] )
467
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __A ( a__ ): '''simple docstring''' def __lt__( self , __lowerCAmelCase ): '''simple docstring''' return self[-1] < other[-1] def __eq__( self , __lowerCAmelCase ): '''simple docstring''' return self[-1] == other[-1] def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' lowerCamelCase__ = [] # sort into stacks for element in collection: lowerCamelCase__ = Stack([element] ) lowerCamelCase__ = bisect_left(lowerCAmelCase_ ,lowerCAmelCase_ ) if i != len(lowerCAmelCase_ ): stacks[i].append(lowerCAmelCase_ ) else: stacks.append(lowerCAmelCase_ ) # use a heap-based merge to merge stack efficiently lowerCamelCase__ = merge(*(reversed(lowerCAmelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": _a = input("Enter numbers separated by a comma:\n").strip() _a = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
702
import string from math import logaa def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = document.translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ).replace('''\n''' ,'''''' ) lowerCamelCase__ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> tuple[int, int]: '''simple docstring''' lowerCamelCase__ = corpus.lower().translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase__ = corpus_without_punctuation.split('''\n''' ) lowerCamelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) ,3 ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' return round(tf * idf ,3 )
29
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class a : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=64 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = parent __SCREAMING_SNAKE_CASE: Any = batch_size __SCREAMING_SNAKE_CASE: Dict = seq_length __SCREAMING_SNAKE_CASE: List[str] = is_training __SCREAMING_SNAKE_CASE: Any = use_input_mask __SCREAMING_SNAKE_CASE: Optional[int] = use_token_type_ids __SCREAMING_SNAKE_CASE: Dict = use_labels __SCREAMING_SNAKE_CASE: Any = vocab_size __SCREAMING_SNAKE_CASE: List[Any] = hidden_size __SCREAMING_SNAKE_CASE: str = embedding_size __SCREAMING_SNAKE_CASE: Any = num_hidden_layers __SCREAMING_SNAKE_CASE: Optional[Any] = num_attention_heads __SCREAMING_SNAKE_CASE: List[str] = intermediate_size __SCREAMING_SNAKE_CASE: Any = hidden_act __SCREAMING_SNAKE_CASE: Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE: str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE: List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE: Optional[int] = type_vocab_size __SCREAMING_SNAKE_CASE: Any = type_sequence_label_size __SCREAMING_SNAKE_CASE: Dict = initializer_range __SCREAMING_SNAKE_CASE: List[Any] = num_labels __SCREAMING_SNAKE_CASE: List[str] = num_choices __SCREAMING_SNAKE_CASE: Union[str, Any] = scope def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE: Any = None if self.use_input_mask: __SCREAMING_SNAKE_CASE: Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE: str = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE: Union[str, Any] = None __SCREAMING_SNAKE_CASE: Optional[int] = None __SCREAMING_SNAKE_CASE: Tuple = None if self.use_labels: __SCREAMING_SNAKE_CASE: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE: int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE: Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE: Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case_ ( self ): """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = MegatronBertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: str = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[str] = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = MegatronBertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: int = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = MegatronBertForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: List[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = MegatronBertForNextSentencePrediction(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: str = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = MegatronBertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Tuple = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , next_sentence_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = MegatronBertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Union[str, Any] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.num_labels __SCREAMING_SNAKE_CASE: str = MegatronBertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = self.num_labels __SCREAMING_SNAKE_CASE: str = MegatronBertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = self.num_choices __SCREAMING_SNAKE_CASE: Any = MegatronBertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE: Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE: Optional[int] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ): str = config_and_inputs __SCREAMING_SNAKE_CASE: Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowercase ,__lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : List[str] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : List[Any] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[int] = True # test_resize_embeddings = False SCREAMING_SNAKE_CASE__ : Optional[int] = False def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = MegatronBertModelTester(self ) __SCREAMING_SNAKE_CASE: Union[str, Any] = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowerCAmelCase ) def lowerCAmelCase ( UpperCamelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" return torch.tensor( UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , ) lowerCAmelCase : Any = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __SCREAMING_SNAKE_CASE: Union[str, Any] = os.path.join(os.environ['''MYDIR'''] , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = MegatronBertModel.from_pretrained(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.half() __SCREAMING_SNAKE_CASE: str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE: Dict = model(_lowerCAmelCase )[0] __SCREAMING_SNAKE_CASE: Dict = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , _lowerCAmelCase ) __SCREAMING_SNAKE_CASE: str = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): __SCREAMING_SNAKE_CASE: Tuple = output[0, ii, jj] __SCREAMING_SNAKE_CASE: Tuple = expected[3 * ii + jj] __SCREAMING_SNAKE_CASE: List[Any] = '''ii={} jj={} a={} b={}'''.format(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(math.isclose(_lowerCAmelCase , _lowerCAmelCase , rel_tol=_lowerCAmelCase , abs_tol=_lowerCAmelCase ) , msg=_lowerCAmelCase )
202
import pprint import requests lowerCamelCase__ = "https://zenquotes.io/api" def __A() -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __A() -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": lowerCamelCase__ = random_quotes() pprint.pprint(response)
612
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE ={ '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def lowercase__( ): print('Making key files...' ) make_key_files('rsa' , 10_24 ) print('Key files generation successful.' ) def lowercase__( __SCREAMING_SNAKE_CASE : int ): print('Generating prime p...' ) lowercase_ : List[str] = rabinMiller.generate_large_prime(__SCREAMING_SNAKE_CASE ) print('Generating prime q...' ) lowercase_ : int = rabinMiller.generate_large_prime(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: lowercase_ : str = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) lowercase_ : List[str] = cryptoMath.find_mod_inverse(__SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) lowercase_ : Any = (n, e) lowercase_ : int = (n, d) return (public_key, private_key) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() lowercase_ , lowercase_ : int = generate_key(__SCREAMING_SNAKE_CASE ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , 'w' ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , 'w' ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
477
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : List[str] = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class __snake_case ( UpperCamelCase_ ): _a = '''falcon''' _a = ['''past_key_values'''] def __init__( self : List[Any] , A_ : int=6_5_0_2_4 , A_ : Tuple=4_5_4_4 , A_ : List[str]=3_2 , A_ : Any=7_1 , A_ : Union[str, Any]=1e-5 , A_ : Optional[Any]=0.02 , A_ : Dict=True , A_ : str=0.0 , A_ : List[str]=0.0 , A_ : List[str]=None , A_ : Optional[Any]=False , A_ : Union[str, Any]=False , A_ : str=True , A_ : Optional[Any]=True , A_ : Dict=False , A_ : List[Any]=1_1 , A_ : List[str]=1_1 , **A_ : Union[str, Any] , ): lowerCAmelCase_ : List[Any] = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase_ : Dict = kwargs.pop('''n_embed''' , A_) lowerCAmelCase_ : Union[str, Any] = hidden_size if n_embed is None else n_embed lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Optional[int] = layer_norm_epsilon lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = hidden_dropout lowerCAmelCase_ : List[str] = attention_dropout lowerCAmelCase_ : Optional[Any] = bos_token_id lowerCAmelCase_ : Union[str, Any] = eos_token_id lowerCAmelCase_ : List[Any] = num_attention_heads if num_kv_heads is None else num_kv_heads lowerCAmelCase_ : Tuple = alibi lowerCAmelCase_ : Tuple = new_decoder_architecture lowerCAmelCase_ : Dict = multi_query # Ignored when new_decoder_architecture is True lowerCAmelCase_ : int = parallel_attn lowerCAmelCase_ : List[str] = bias super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_) @property def UpperCAmelCase__ ( self : Tuple): return self.hidden_size // self.num_attention_heads @property def UpperCAmelCase__ ( self : Tuple): return not self.alibi
171
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A__ : Tuple = TypeVar('''KEY''') A__ : List[Any] = TypeVar('''VAL''') @dataclass(frozen=UpperCamelCase_ ,slots=UpperCamelCase_ ) class __snake_case ( Generic[KEY, VAL] ): _a = 42 _a = 42 class __snake_case ( _Item ): def __init__( self : Union[str, Any]): super().__init__(A_ , A_) def __bool__( self : int): return False A__ : Optional[int] = _DeletedItem() class __snake_case ( MutableMapping[KEY, VAL] ): def __init__( self : Optional[Any] , A_ : int = 8 , A_ : float = 0.75): lowerCAmelCase_ : Optional[Any] = initial_block_size lowerCAmelCase_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCAmelCase_ : str = capacity_factor lowerCAmelCase_ : Union[str, Any] = 0 def UpperCAmelCase__ ( self : str , A_ : KEY): return hash(A_) % len(self._buckets) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : int): return (ind + 1) % len(self._buckets) def UpperCAmelCase__ ( self : Tuple , A_ : int , A_ : KEY , A_ : VAL): lowerCAmelCase_ : str = self._buckets[ind] if not stored: lowerCAmelCase_ : Optional[int] = _Item(A_ , A_) self._len += 1 return True elif stored.key == key: lowerCAmelCase_ : Union[str, Any] = _Item(A_ , A_) return True else: return False def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : List[Any] = len(self._buckets) * self._capacity_factor return len(self) >= int(A_) def UpperCAmelCase__ ( self : List[Any]): if len(self._buckets) <= self._initial_block_size: return False lowerCAmelCase_ : Any = len(self._buckets) * self._capacity_factor / 2 return len(self) < limit def UpperCAmelCase__ ( self : Optional[Any] , A_ : int): lowerCAmelCase_ : List[str] = self._buckets lowerCAmelCase_ : str = [None] * new_size lowerCAmelCase_ : Optional[Any] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val) def UpperCAmelCase__ ( self : int): self._resize(len(self._buckets) * 2) def UpperCAmelCase__ ( self : Dict): self._resize(len(self._buckets) // 2) def UpperCAmelCase__ ( self : List[str] , A_ : KEY): lowerCAmelCase_ : str = self._get_bucket_index(A_) for _ in range(len(self._buckets)): yield ind lowerCAmelCase_ : Tuple = self._get_next_ind(A_) def UpperCAmelCase__ ( self : List[Any] , A_ : KEY , A_ : VAL): for ind in self._iterate_buckets(A_): if self._try_set(A_ , A_ , A_): break def __setitem__( self : int , A_ : KEY , A_ : VAL): if self._is_full(): self._size_up() self._add_item(A_ , A_) def __delitem__( self : Tuple , A_ : KEY): for ind in self._iterate_buckets(A_): lowerCAmelCase_ : Tuple = self._buckets[ind] if item is None: raise KeyError(A_) if item is _deleted: continue if item.key == key: lowerCAmelCase_ : Dict = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : List[str] , A_ : KEY): for ind in self._iterate_buckets(A_): lowerCAmelCase_ : Tuple = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(A_) def __len__( self : Dict): return self._len def __iter__( self : Dict): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any]): lowerCAmelCase_ : List[Any] = ''' ,'''.join( F"""{item.key}: {item.val}""" for item in self._buckets if item) return F"""HashMap({val_string})"""
171
1
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Any = '▁' SCREAMING_SNAKE_CASE_ : Dict = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } SCREAMING_SNAKE_CASE_ : str = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } SCREAMING_SNAKE_CASE_ : List[Any] = { 'facebook/s2t-small-librispeech-asr': 1_0_2_4, } SCREAMING_SNAKE_CASE_ : Tuple = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] SCREAMING_SNAKE_CASE_ : str = {'mustc': MUSTC_LANGS} class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = MAX_MODEL_INPUT_SIZES UpperCAmelCase = ["input_ids", "attention_mask"] UpperCAmelCase = [] def __init__( self: Union[str, Any] , UpperCamelCase: Dict , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple="<s>" , UpperCamelCase: str="</s>" , UpperCamelCase: List[Any]="<pad>" , UpperCamelCase: Union[str, Any]="<unk>" , UpperCamelCase: int=False , UpperCamelCase: str=False , UpperCamelCase: List[str]=None , UpperCamelCase: Any=None , UpperCamelCase: Optional[Dict[str, Any]] = None , **UpperCamelCase: int , ): """simple docstring""" A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , do_upper_case=UpperCamelCase , do_lower_case=UpperCamelCase , tgt_lang=UpperCamelCase , lang_codes=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase , ) A__ = do_upper_case A__ = do_lower_case A__ = load_json(UpperCamelCase ) A__ = {v: k for k, v in self.encoder.items()} A__ = spm_file A__ = load_spm(UpperCamelCase , self.sp_model_kwargs ) if lang_codes is not None: A__ = lang_codes A__ = LANGUAGES[lang_codes] A__ = [f"""<lang:{lang}>""" for lang in self.langs] A__ = {lang: self.sp_model.PieceToId(f"""<lang:{lang}>""" ) for lang in self.langs} A__ = self.lang_tokens A__ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: A__ = {} @property def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" return len(self.encoder ) @property def UpperCamelCase ( self: Dict ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def UpperCamelCase ( self: Any , UpperCamelCase: List[str] ): """simple docstring""" A__ = new_tgt_lang self.set_tgt_lang_special_tokens(UpperCamelCase ) def UpperCamelCase ( self: int , UpperCamelCase: str ): """simple docstring""" A__ = self.lang_code_to_id[tgt_lang] A__ = [lang_code_id] def UpperCamelCase ( self: Dict , UpperCamelCase: str ): """simple docstring""" return self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) def UpperCamelCase ( self: Dict , UpperCamelCase: Dict ): """simple docstring""" return self.encoder.get(UpperCamelCase , self.encoder[self.unk_token] ) def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: int ): """simple docstring""" return self.decoder.get(UpperCamelCase , self.unk_token ) def UpperCamelCase ( self: str , UpperCamelCase: List[str] ): """simple docstring""" A__ = [] A__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: A__ = self.sp_model.decode(UpperCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " A__ = [] else: current_sub_tokens.append(UpperCamelCase ) A__ = self.sp_model.decode(UpperCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: int=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self: List[Any] , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) A__ = [1] * len(self.prefix_tokens ) A__ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase )) + ([0] * len(UpperCamelCase )) + suffix_ones def UpperCamelCase ( self: str ): """simple docstring""" A__ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: str ): """simple docstring""" A__ = self.__dict__.copy() A__ = None return state def __setstate__( self: Any , UpperCamelCase: Dict ): """simple docstring""" A__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ = {} A__ = load_spm(self.spm_file , self.sp_model_kwargs ) def UpperCamelCase ( self: Optional[int] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ): """simple docstring""" A__ = Path(UpperCamelCase ) assert save_dir.is_dir(), f"""{save_directory} should be a directory""" A__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) A__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , UpperCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , UpperCamelCase ) elif not os.path.isfile(self.spm_file ): with open(UpperCamelCase , """wb""" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (str(UpperCamelCase ), str(UpperCamelCase )) def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict[str, Any] ): A__ = sentencepiece.SentencePieceProcessor(**UpperCAmelCase_ ) spm.Load(str(UpperCAmelCase_ ) ) return spm def _snake_case ( UpperCAmelCase_ : str ): with open(UpperCAmelCase_ , """r""" ) as f: return json.load(UpperCAmelCase_ ) def _snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): with open(UpperCAmelCase_ , """w""" ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ , indent=2 )
716
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : list ): if len(UpperCAmelCase_ ) <= 1: return lst A__ = 1 while i < len(UpperCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: A__ , A__ = lst[i], lst[i - 1] i -= 1 if i == 0: A__ = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Union[str, Any] = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
500
0
lowercase__ : List[str] = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) lowercase__ : Optional[Any] = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 1_2, '''Pm''': 1_5, '''Em''': 1_8, '''Zm''': 2_1, '''Ym''': 2_4, } def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> float: lowerCAmelCase = from_type.lower().strip('''s''' ) lowerCAmelCase = to_type.lower().strip('''s''' ) lowerCAmelCase = UNIT_SYMBOL.get(snake_case__ , snake_case__ ) lowerCAmelCase = UNIT_SYMBOL.get(snake_case__ , snake_case__ ) if from_sanitized not in METRIC_CONVERSION: lowerCAmelCase = ( f"Invalid 'from_type' value: {from_type!r}.\n" f"Conversion abbreviations are: {', '.join(snake_case__ )}" ) raise ValueError(snake_case__ ) if to_sanitized not in METRIC_CONVERSION: lowerCAmelCase = ( f"Invalid 'to_type' value: {to_type!r}.\n" f"Conversion abbreviations are: {', '.join(snake_case__ )}" ) raise ValueError(snake_case__ ) lowerCAmelCase = METRIC_CONVERSION[from_sanitized] lowerCAmelCase = METRIC_CONVERSION[to_sanitized] lowerCAmelCase = 1 if from_exponent > to_exponent: lowerCAmelCase = from_exponent - to_exponent else: lowerCAmelCase = -(to_exponent - from_exponent) return value * pow(1_0 , snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
312
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__=() , snake_case__=None , snake_case__="no" , snake_case__="29500" ) -> Dict: lowerCAmelCase = False lowerCAmelCase = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): lowerCAmelCase = True elif "IPython" in sys.modules: lowerCAmelCase = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: lowerCAmelCase = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , snake_case__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: lowerCAmelCase = 8 lowerCAmelCase = PrepareForLaunch(snake_case__ , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(snake_case__ , args=snake_case__ , nprocs=snake_case__ , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*snake_case__ ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=snake_case__ , master_addr='''127.0.01''' , master_port=snake_case__ , mixed_precision=snake_case__ ): lowerCAmelCase = PrepareForLaunch(snake_case__ , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(snake_case__ , args=snake_case__ , nprocs=snake_case__ , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowerCAmelCase = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*snake_case__ ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__=() , snake_case__=2 ) -> Dict: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=snake_case__ , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): lowerCAmelCase = PrepareForLaunch(snake_case__ , debug=snake_case__ ) start_processes(snake_case__ , args=snake_case__ , nprocs=snake_case__ , start_method='''fork''' )
312
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = """layoutlmv3""" def __init__(self , lowerCAmelCase__=5_02_65 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=10_24 , lowerCAmelCase__=1_28 , lowerCAmelCase__=1_28 , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=1_28 , lowerCAmelCase__=64 , lowerCAmelCase__=2_56 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=2_24 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=None , **lowerCAmelCase__ , ): '''simple docstring''' super().__init__( vocab_size=lowerCAmelCase__ , hidden_size=lowerCAmelCase__ , num_hidden_layers=lowerCAmelCase__ , num_attention_heads=lowerCAmelCase__ , intermediate_size=lowerCAmelCase__ , hidden_act=lowerCAmelCase__ , hidden_dropout_prob=lowerCAmelCase__ , attention_probs_dropout_prob=lowerCAmelCase__ , max_position_embeddings=lowerCAmelCase__ , type_vocab_size=lowerCAmelCase__ , initializer_range=lowerCAmelCase__ , layer_norm_eps=lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase : Optional[Any] = max_ad_position_embeddings _UpperCamelCase : Any = coordinate_size _UpperCamelCase : List[Any] = shape_size _UpperCamelCase : Optional[Any] = has_relative_attention_bias _UpperCamelCase : Optional[int] = rel_pos_bins _UpperCamelCase : Dict = max_rel_pos _UpperCamelCase : Tuple = has_spatial_attention_bias _UpperCamelCase : Optional[int] = rel_ad_pos_bins _UpperCamelCase : Any = max_rel_ad_pos _UpperCamelCase : Union[str, Any] = text_embed _UpperCamelCase : Dict = visual_embed _UpperCamelCase : int = input_size _UpperCamelCase : str = num_channels _UpperCamelCase : Optional[Any] = patch_size _UpperCamelCase : Tuple = classifier_dropout class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCAmelCase = version.parse("""1.12""" ) @property def lowercase_ (self ): '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def lowercase_ (self ): '''simple docstring''' return 1E-5 @property def lowercase_ (self ): '''simple docstring''' return 12 def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 40 , lowerCAmelCase__ = 40 , ): '''simple docstring''' setattr(processor.image_processor , "apply_ocr" , lowerCAmelCase__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _UpperCamelCase : Union[str, Any] = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCamelCase : Any = processor.tokenizer.num_special_tokens_to_add(lowerCAmelCase__ ) _UpperCamelCase : str = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence _UpperCamelCase : List[Any] = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes _UpperCamelCase : int = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) _UpperCamelCase : Union[str, Any] = self._generate_dummy_images(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = dict( processor( lowerCAmelCase__ , text=lowerCAmelCase__ , boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , ) ) return inputs
239
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def __lowerCAmelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ) -> str: _UpperCamelCase : str = state_dict.pop(__lowerCAmelCase ) _UpperCamelCase : Union[str, Any] = val def __lowerCAmelCase ( __lowerCAmelCase : Optional[int] ) -> Optional[Any]: _UpperCamelCase : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCamelCase : Optional[Any] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) _UpperCamelCase : str = value else: _UpperCamelCase : str = value return new_state_dict def __lowerCAmelCase ( __lowerCAmelCase : str ) -> List[str]: _UpperCamelCase : Any = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCamelCase : Any = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) _UpperCamelCase : List[str] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : Tuple = in_proj_weight[:256, :] _UpperCamelCase : Dict = in_proj_bias[:256] _UpperCamelCase : int = in_proj_weight[256:512, :] _UpperCamelCase : Tuple = in_proj_bias[256:512] _UpperCamelCase : str = in_proj_weight[-256:, :] _UpperCamelCase : int = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase : int = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) _UpperCamelCase : Optional[int] = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : List[Any] = in_proj_weight[:256, :] _UpperCamelCase : str = in_proj_bias[:256] _UpperCamelCase : Optional[Any] = in_proj_weight[256:512, :] _UpperCamelCase : str = in_proj_bias[256:512] _UpperCamelCase : Tuple = in_proj_weight[-256:, :] _UpperCamelCase : Optional[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _UpperCamelCase : Any = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) _UpperCamelCase : Tuple = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCamelCase : Optional[Any] = in_proj_weight_cross_attn[:256, :] _UpperCamelCase : str = in_proj_bias_cross_attn[:256] _UpperCamelCase : Dict = in_proj_weight_cross_attn[256:512, :] _UpperCamelCase : int = in_proj_bias_cross_attn[256:512] _UpperCamelCase : int = in_proj_weight_cross_attn[-256:, :] _UpperCamelCase : Optional[Any] = in_proj_bias_cross_attn[-256:] def __lowerCAmelCase ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> List[Any]: _UpperCamelCase , _UpperCamelCase : List[str] = image.size _UpperCamelCase : Dict = max(__lowerCAmelCase , __lowerCAmelCase ) _UpperCamelCase : Tuple = 800 if "detection" in checkpoint_url else 1000 _UpperCamelCase : Tuple = target_max_size / current_max_size _UpperCamelCase : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __lowerCAmelCase ( __lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase : Optional[int] = F.to_tensor(__lowerCAmelCase ) _UpperCamelCase : Dict = F.normalize(__lowerCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __lowerCAmelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] ) -> Tuple: logger.info("Converting model..." ) # load original state dict _UpperCamelCase : Tuple = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCamelCase : List[str] = rename_backbone_keys(__lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCamelCase : List[Any] = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): _UpperCamelCase : Dict = state_dict.pop(__lowerCAmelCase ) _UpperCamelCase : Any = val # create HuggingFace model and load state dict _UpperCamelCase : str = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: _UpperCamelCase : List[str] = 15 _UpperCamelCase : Optional[Any] = 2 _UpperCamelCase : Optional[Any] = {0: "table", 1: "table rotated"} _UpperCamelCase : Any = idalabel _UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} else: _UpperCamelCase : Any = 125 _UpperCamelCase : List[str] = 6 _UpperCamelCase : str = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } _UpperCamelCase : Optional[Any] = idalabel _UpperCamelCase : str = {v: k for k, v in idalabel.items()} _UpperCamelCase : str = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1000 ) _UpperCamelCase : Any = TableTransformerForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify our conversion _UpperCamelCase : str = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" _UpperCamelCase : Dict = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=__lowerCAmelCase ) _UpperCamelCase : Dict = Image.open(__lowerCAmelCase ).convert("RGB" ) _UpperCamelCase : List[Any] = normalize(resize(__lowerCAmelCase , __lowerCAmelCase ) ).unsqueeze(0 ) _UpperCamelCase : str = model(__lowerCAmelCase ) if "detection" in checkpoint_url: _UpperCamelCase : Any = (1, 15, 3) _UpperCamelCase : Optional[Any] = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) _UpperCamelCase : Any = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: _UpperCamelCase : Any = (1, 125, 7) _UpperCamelCase : List[Any] = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) _UpperCamelCase : Optional[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) _UpperCamelCase : Any = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(__lowerCAmelCase ) image_processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
239
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _a : List[Any] = logging.get_logger(__name__) def _lowerCAmelCase ( lowercase , lowercase=False , lowercase=False ) -> Optional[Any]: __lowerCAmelCase = """backbone.""" if is_semantic else """""" __lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', """beit.embeddings.cls_token"""), (f'{prefix}patch_embed.proj.weight', """beit.embeddings.patch_embeddings.projection.weight"""), (f'{prefix}patch_embed.proj.bias', """beit.embeddings.patch_embeddings.projection.bias"""), (f'{prefix}pos_embed', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( lowercase , lowercase , lowercase=False , lowercase=False ) -> Any: for i in range(config.num_hidden_layers ): __lowerCAmelCase = """backbone.""" if is_semantic else """""" # queries, keys and values __lowerCAmelCase = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) __lowerCAmelCase = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) __lowerCAmelCase = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) __lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] __lowerCAmelCase = q_bias __lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] __lowerCAmelCase = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowerCAmelCase = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) __lowerCAmelCase = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) __lowerCAmelCase = gamma_a __lowerCAmelCase = gamma_a def _lowerCAmelCase ( lowercase , lowercase , lowercase ) -> Tuple: __lowerCAmelCase = dct.pop(_A ) __lowerCAmelCase = val def _lowerCAmelCase ( ) -> Dict: __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowercase , lowercase , lowercase=False ) -> int: __lowerCAmelCase = False if """rvlcdip""" in checkpoint_url else True __lowerCAmelCase = BeitConfig(use_absolute_position_embeddings=_A , use_mask_token=_A ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowerCAmelCase = 1024 __lowerCAmelCase = 4096 __lowerCAmelCase = 24 __lowerCAmelCase = 16 # labels if "rvlcdip" in checkpoint_url: __lowerCAmelCase = 16 __lowerCAmelCase = """huggingface/label-files""" __lowerCAmelCase = """rvlcdip-id2label.json""" __lowerCAmelCase = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(_A ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowerCAmelCase = torch.hub.load_state_dict_from_url(_A , map_location="""cpu""" )["""model"""] __lowerCAmelCase = create_rename_keys(_A , has_lm_head=_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , has_lm_head=_A ) # load HuggingFace model __lowerCAmelCase = BeitForMaskedImageModeling(_A ) if has_lm_head else BeitForImageClassification(_A ) model.eval() model.load_state_dict(_A ) # Check outputs on an image __lowerCAmelCase = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_A ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="""pt""" ) __lowerCAmelCase = encoding["""pixel_values"""] __lowerCAmelCase = model(_A ) __lowerCAmelCase = outputs.logits # verify logits __lowerCAmelCase = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_A ), "Shape of logits not as expected" Path(_A ).mkdir(exist_ok=_A ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_A ) if push_to_hub: if has_lm_head: __lowerCAmelCase = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowerCAmelCase = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_A , ) model.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_A , ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) _a : Any = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
689
import math from collections.abc import Iterator from itertools import takewhile def UpperCamelCase__ ( _A: int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = 2 while True: if is_prime(_A ): yield num num += 1 def UpperCamelCase__ ( _A: int = 2000000 ): '''simple docstring''' return sum(takewhile(lambda _A : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
479
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) class _snake_case ( lowercase__): UpperCamelCase__ : Dict =["""pixel_values"""] def __init__( self : Optional[int], __lowercase : bool = True, __lowercase : Dict[str, int] = None, __lowercase : int = 0.9, __lowercase : PILImageResampling = PILImageResampling.BICUBIC, __lowercase : bool = True, __lowercase : Dict[str, int] = None, __lowercase : Union[int, float] = 1 / 255, __lowercase : bool = True, __lowercase : bool = True, __lowercase : Optional[Union[float, List[float]]] = None, __lowercase : Optional[Union[float, List[float]]] = None, **__lowercase : Union[str, Any], ): super().__init__(**__lowercase ) lowercase__ = size if size is not None else {"shortest_edge": 224} lowercase__ = get_size_dict(__lowercase, default_to_square=__lowercase ) lowercase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase__ = get_size_dict(__lowercase, param_name="crop_size" ) lowercase__ = do_resize lowercase__ = size lowercase__ = crop_pct lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self : Dict, __lowercase : np.ndarray, __lowercase : Dict[str, int], __lowercase : Optional[float] = None, __lowercase : PILImageResampling = PILImageResampling.BICUBIC, __lowercase : Optional[Union[str, ChannelDimension]] = None, **__lowercase : List[str], ): lowercase__ = get_size_dict(__lowercase, default_to_square=__lowercase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: lowercase__ = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase__ = int(size["height"] / crop_pct ) else: lowercase__ = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(__lowercase ) ) lowercase__ = get_resize_output_image_size(__lowercase, size=__lowercase, default_to_square=__lowercase ) else: if "shortest_edge" in size: lowercase__ = get_resize_output_image_size(__lowercase, size=size["shortest_edge"], default_to_square=__lowercase ) elif "height" in size and "width" in size: lowercase__ = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(__lowercase ) ) return resize(__lowercase, size=__lowercase, resample=__lowercase, data_format=__lowercase, **__lowercase ) def A__ ( self : Any, __lowercase : np.ndarray, __lowercase : Dict[str, int], __lowercase : Optional[Union[str, ChannelDimension]] = None, **__lowercase : Any, ): lowercase__ = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__lowercase, size=(size["height"], size["width"]), data_format=__lowercase, **__lowercase ) def A__ ( self : Optional[int], __lowercase : np.ndarray, __lowercase : Union[int, float], __lowercase : Optional[Union[str, ChannelDimension]] = None, **__lowercase : List[str], ): return rescale(__lowercase, scale=__lowercase, data_format=__lowercase, **__lowercase ) def A__ ( self : str, __lowercase : np.ndarray, __lowercase : Union[float, List[float]], __lowercase : Union[float, List[float]], __lowercase : Optional[Union[str, ChannelDimension]] = None, **__lowercase : Tuple, ): return normalize(__lowercase, mean=__lowercase, std=__lowercase, data_format=__lowercase, **__lowercase ) def A__ ( self : List[str], __lowercase : ImageInput, __lowercase : bool = None, __lowercase : Dict[str, int] = None, __lowercase : int = None, __lowercase : PILImageResampling = None, __lowercase : bool = None, __lowercase : Dict[str, int] = None, __lowercase : bool = None, __lowercase : float = None, __lowercase : bool = None, __lowercase : Optional[Union[float, List[float]]] = None, __lowercase : Optional[Union[float, List[float]]] = None, __lowercase : Optional[Union[str, TensorType]] = None, __lowercase : ChannelDimension = ChannelDimension.FIRST, **__lowercase : Tuple, ): lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = crop_pct if crop_pct is not None else self.crop_pct lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(__lowercase, default_to_square=__lowercase ) lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(__lowercase, param_name="crop_size" ) lowercase__ = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(__lowercase ) for image in images] if do_resize: lowercase__ = [self.resize(image=__lowercase, size=__lowercase, crop_pct=__lowercase, resample=__lowercase ) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=__lowercase, size=__lowercase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=__lowercase, scale=__lowercase ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=__lowercase, mean=__lowercase, std=__lowercase ) for image in images] lowercase__ = [to_channel_dimension_format(__lowercase, __lowercase ) for image in images] lowercase__ = {"pixel_values": images} return BatchFeature(data=__lowercase, tensor_type=__lowercase )
37
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
37
1
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
489
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> str: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) _SCREAMING_SNAKE_CASE : List[Any] = precision _SCREAMING_SNAKE_CASE : List[str] = ceil(precision / 14 ) _SCREAMING_SNAKE_CASE : List[str] = 426_880 * Decimal(10_005 ).sqrt() _SCREAMING_SNAKE_CASE : str = 1 _SCREAMING_SNAKE_CASE : List[str] = 13_591_409 _SCREAMING_SNAKE_CASE : str = Decimal(__SCREAMING_SNAKE_CASE ) for k in range(1 , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = factorial(6 * k ) // (factorial(3 * k ) * factorial(__SCREAMING_SNAKE_CASE ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(F"The first {n} digits of pi is: {pi(n)}")
338
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class a_ ( unittest.TestCase ): def __init__( self :List[str] , _lowercase :Any , _lowercase :Dict=7 , _lowercase :Union[str, Any]=3 , _lowercase :Tuple=18 , _lowercase :Any=30 , _lowercase :List[str]=400 , _lowercase :List[str]=True , _lowercase :List[Any]=None , _lowercase :str=True , _lowercase :Dict=None , _lowercase :Optional[Any]=True , _lowercase :str=[0.5, 0.5, 0.5] , _lowercase :Dict=[0.5, 0.5, 0.5] , ) -> Dict: UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 18} UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std def __a ( self :Dict) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =LevitImageProcessor if is_vision_available() else None def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = LevitImageProcessingTester(self) @property def __a ( self :Optional[int]) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''')) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''')) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''')) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''')) self.assertTrue(hasattr(UpperCamelCase__ , '''do_center_crop''')) self.assertTrue(hasattr(UpperCamelCase__ , '''size''')) def __a ( self :List[Any]) -> List[str]: UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'''shortest_edge''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) def __a ( self :Optional[int]) -> List[Any]: pass def __a ( self :int) -> Dict: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(UpperCamelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __a ( self :Union[str, Any]) -> List[str]: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(UpperCamelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __a ( self :Union[str, Any]) -> List[str]: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(UpperCamelCase__ , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
700
def A ( __UpperCAmelCase ) -> Dict: '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ = head.next, head while fast and fast.next: UpperCAmelCase_ = fast.next.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = slow.next UpperCAmelCase_ = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ = None while second: UpperCAmelCase_ = second.next UpperCAmelCase_ = node UpperCAmelCase_ = second UpperCAmelCase_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ = node.next UpperCAmelCase_ = head.next return True def A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ = UpperCAmelCase_ = UpperCAmelCase_ = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ = [slow.val] while slow.next: UpperCAmelCase_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ = cur.next return True def A ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ = {} UpperCAmelCase_ = 0 while head: if head.val in d: d[head.val].append(__UpperCAmelCase ) else: UpperCAmelCase_ = [pos] UpperCAmelCase_ = head.next pos += 1 UpperCAmelCase_ = pos - 1 UpperCAmelCase_ = 0 for v in d.values(): if len(__UpperCAmelCase ) % 2 != 0: middle += 1 else: UpperCAmelCase_ = 0 for i in range(0 , len(__UpperCAmelCase ) ): if v[i] + v[len(__UpperCAmelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
561
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = 'data2vec-text' def __init__( self : str , snake_case_ : Dict=3_0522 , snake_case_ : Union[str, Any]=768 , snake_case_ : List[str]=12 , snake_case_ : int=12 , snake_case_ : Any=3072 , snake_case_ : Optional[int]="gelu" , snake_case_ : str=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : Optional[int]=512 , snake_case_ : Tuple=2 , snake_case_ : Optional[int]=0.02 , snake_case_ : str=1E-12 , snake_case_ : Optional[Any]=1 , snake_case_ : Any=0 , snake_case_ : str=2 , snake_case_ : int="absolute" , snake_case_ : Union[str, Any]=True , snake_case_ : List[str]=None , **snake_case_ : Any , ): """simple docstring""" super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) A : Any = vocab_size A : Optional[Any] = hidden_size A : List[Any] = num_hidden_layers A : Optional[int] = num_attention_heads A : Optional[int] = hidden_act A : List[str] = intermediate_size A : Any = hidden_dropout_prob A : str = attention_probs_dropout_prob A : Optional[Any] = max_position_embeddings A : Any = type_vocab_size A : Optional[int] = initializer_range A : Optional[int] = layer_norm_eps A : str = position_embedding_type A : List[str] = use_cache A : List[str] = classifier_dropout class _SCREAMING_SNAKE_CASE ( snake_case ): @property def _UpperCAmelCase ( self : Tuple ): """simple docstring""" if self.task == "multiple-choice": A : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
256
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _lowerCamelCase ( ): '''simple docstring''' print('''Making key files...''' ) make_key_files('''rsa''' , 1024 ) print('''Key files generation successful.''' ) def _lowerCamelCase ( lowerCamelCase_: int ): '''simple docstring''' print('''Generating prime p...''' ) A : Optional[Any] = rabinMiller.generate_large_prime(lowerCamelCase_ ) print('''Generating prime q...''' ) A : Tuple = rabinMiller.generate_large_prime(lowerCamelCase_ ) A : Optional[Any] = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: A : Any = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCamelCase_ , (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) A : Optional[Any] = cryptoMath.find_mod_inverse(lowerCamelCase_ , (p - 1) * (q - 1) ) A : List[Any] = (n, e) A : Optional[Any] = (n, d) return (public_key, private_key) def _lowerCamelCase ( lowerCamelCase_: str , lowerCamelCase_: int ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() A , A : Union[str, Any] = generate_key(lowerCamelCase_ ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , '''w''' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , '''w''' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
256
1
"""simple docstring""" import requests from bsa import BeautifulSoup def _lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[Any] ) -> Any: '''simple docstring''' __A : Optional[int] = BeautifulSoup(requests.get(__A , params=__A ).content , 'html.parser' ) __A : List[Any] = soup.find('div' , attrs={'class': 'gs_ri'} ) __A : int = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": lowerCamelCase : List[Any] ={ '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 20_18, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
701
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase : Tuple =logging.get_logger(__name__) lowerCamelCase : Union[str, Any] ={ '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __snake_case( A_ ): '''simple docstring''' _UpperCAmelCase = "umt5" _UpperCAmelCase = ["past_key_values"] def __init__( self , __lowerCamelCase=250112 , __lowerCamelCase=512 , __lowerCamelCase=64 , __lowerCamelCase=1024 , __lowerCamelCase=8 , __lowerCamelCase=None , __lowerCamelCase=6 , __lowerCamelCase=32 , __lowerCamelCase=128 , __lowerCamelCase=0.1 , __lowerCamelCase=1e-6 , __lowerCamelCase=1.0 , __lowerCamelCase="gated-gelu" , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase="T5Tokenizer" , __lowerCamelCase=True , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=0 , **__lowerCamelCase , ): '''simple docstring''' super().__init__( is_encoder_decoder=__lowerCamelCase , tokenizer_class=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , ) __A : Union[str, Any] = vocab_size __A : Any = d_model __A : str = d_kv __A : List[Any] = d_ff __A : Union[str, Any] = num_layers __A : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __A : Union[str, Any] = num_heads __A : str = relative_attention_num_buckets __A : Union[str, Any] = relative_attention_max_distance __A : int = dropout_rate __A : int = layer_norm_epsilon __A : int = initializer_factor __A : List[Any] = feed_forward_proj __A : str = use_cache __A : str = self.feed_forward_proj.split('-' ) __A : str = act_info[-1] __A : Any = act_info[0] == 'gated' if len(__lowerCamelCase ) > 1 and act_info[0] != "gated" or len(__lowerCamelCase ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __A : Optional[int] = 'gelu_new' @property def _a ( self ): '''simple docstring''' return self.d_model @property def _a ( self ): '''simple docstring''' return self.num_heads @property def _a ( self ): '''simple docstring''' return self.num_layers class __snake_case( A_ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def _a ( self ): '''simple docstring''' __A : List[Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __A : int = 'past_encoder_sequence + sequence' __A : List[str] = {0: 'batch'} __A : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __A : List[str] = {0: 'batch', 1: 'decoder_sequence'} __A : str = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def _a ( self ): '''simple docstring''' return 13 @property def _a ( self ): '''simple docstring''' return 5e-4
237
0
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def _lowerCAmelCase ( _UpperCamelCase : str ) -> Tuple: """simple docstring""" def decorator(_UpperCamelCase : Optional[Any] ): _SCREAMING_SNAKE_CASE =getattr(_UpperCamelCase , 'handle_key' , [] ) handle += [key] setattr(_UpperCamelCase , 'handle_key' , _UpperCamelCase ) return func return decorator def _lowerCAmelCase ( *_UpperCamelCase : List[str] ) -> str: """simple docstring""" def decorator(_UpperCamelCase : List[str] ): _SCREAMING_SNAKE_CASE =getattr(_UpperCamelCase , 'handle_key' , [] ) handle += keys setattr(_UpperCamelCase , 'handle_key' , _UpperCamelCase ) return func return decorator class A__ ( A__ ): def __new__( cls : Union[str, Any] , _a : Any , _a : Dict , _a : List[Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =super().__new__(cls , _a , _a , _a ) if not hasattr(_a , 'key_handler' ): setattr(_a , 'key_handler' , {} ) setattr(_a , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): _SCREAMING_SNAKE_CASE =getattr(_a , 'handle_key' , [] ) for key in handled_keys: _SCREAMING_SNAKE_CASE =value return new_cls @staticmethod def A ( cls : Union[str, Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =get_character() if char != KEYMAP["undefined"]: _SCREAMING_SNAKE_CASE =ord(_a ) _SCREAMING_SNAKE_CASE =cls.key_handler.get(_a ) if handler: _SCREAMING_SNAKE_CASE =char return handler(cls ) else: return None def _lowerCAmelCase ( cls : int ) -> Optional[int]: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
405
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase : str = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Any=None , _UpperCamelCase : str=None , _UpperCamelCase : int=None , _UpperCamelCase : str=None , _UpperCamelCase : Union[str, Any]=None , ) -> List[str]: """simple docstring""" if attention_mask is None: _SCREAMING_SNAKE_CASE =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _SCREAMING_SNAKE_CASE =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A__ : def __init__( self : Optional[Any] , _a : Union[str, Any] , _a : List[Any]=13 , _a : int=7 , _a : List[Any]=True , _a : Optional[Any]=False , _a : Tuple=99 , _a : List[str]=16 , _a : Any=2 , _a : Tuple=4 , _a : List[str]=4 , _a : Optional[int]="gelu" , _a : List[str]=0.1 , _a : Optional[Any]=0.1 , _a : int=32 , _a : int=2 , _a : str=1 , _a : Dict=0 , _a : Tuple=0.02 , ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =eos_token_id _SCREAMING_SNAKE_CASE =pad_token_id _SCREAMING_SNAKE_CASE =bos_token_id _SCREAMING_SNAKE_CASE =initializer_range def A ( self : int ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _SCREAMING_SNAKE_CASE =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _SCREAMING_SNAKE_CASE =shift_tokens_right(_a , 1 , 2 ) _SCREAMING_SNAKE_CASE =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_a , ) _SCREAMING_SNAKE_CASE =prepare_blenderbot_inputs_dict(_a , _a , _a ) return config, inputs_dict def A ( self : str ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() return config, inputs_dict def A ( self : Dict , _a : Dict , _a : Union[str, Any] , _a : List[str] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =20 _SCREAMING_SNAKE_CASE =model_class_name(_a ) _SCREAMING_SNAKE_CASE =model.encode(inputs_dict['input_ids'] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _SCREAMING_SNAKE_CASE =model.init_cache(decoder_input_ids.shape[0] , _a , _a ) _SCREAMING_SNAKE_CASE =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _SCREAMING_SNAKE_CASE =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE =model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) _SCREAMING_SNAKE_CASE =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _SCREAMING_SNAKE_CASE =model.decode( decoder_input_ids[:, -1:] , _a , decoder_attention_mask=_a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_a , ) _SCREAMING_SNAKE_CASE =model.decode(_a , _a ) _SCREAMING_SNAKE_CASE =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" ) def A ( self : Optional[int] , _a : List[str] , _a : Optional[Any] , _a : str ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =20 _SCREAMING_SNAKE_CASE =model_class_name(_a ) _SCREAMING_SNAKE_CASE =model.encode(inputs_dict['input_ids'] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _SCREAMING_SNAKE_CASE =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _SCREAMING_SNAKE_CASE =model.init_cache(decoder_input_ids.shape[0] , _a , _a ) _SCREAMING_SNAKE_CASE =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE =model.decode( decoder_input_ids[:, :-1] , _a , decoder_attention_mask=_a , past_key_values=_a , decoder_position_ids=_a , ) _SCREAMING_SNAKE_CASE =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _SCREAMING_SNAKE_CASE =model.decode( decoder_input_ids[:, -1:] , _a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_a , decoder_position_ids=_a , ) _SCREAMING_SNAKE_CASE =model.decode(_a , _a , decoder_attention_mask=_a ) _SCREAMING_SNAKE_CASE =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"Max diff is {diff}" ) @require_flax class A__ ( unittest.TestCase ): A__ = 99 def A ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _SCREAMING_SNAKE_CASE =input_ids.shape[0] _SCREAMING_SNAKE_CASE =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._get_config_and_data() _SCREAMING_SNAKE_CASE =FlaxBlenderbotSmallForConditionalGeneration(_a ) _SCREAMING_SNAKE_CASE =lm_model(input_ids=_a ) _SCREAMING_SNAKE_CASE =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _a ) def A ( self : List[str] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _SCREAMING_SNAKE_CASE =FlaxBlenderbotSmallForConditionalGeneration(_a ) _SCREAMING_SNAKE_CASE =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE =lm_model(input_ids=_a , decoder_input_ids=_a ) _SCREAMING_SNAKE_CASE =(*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _a ) def A ( self : Union[str, Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE =shift_tokens_right(_a , 1 , 2 ) _SCREAMING_SNAKE_CASE =np.equal(_a , 1 ).astype(np.floataa ).sum() _SCREAMING_SNAKE_CASE =np.equal(_a , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_a , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A__ ( A__ , unittest.TestCase , A__ ): A__ = True A__ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) A__ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def A ( self : Tuple ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =FlaxBlenderbotSmallModelTester(self ) def A ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_a , _a , _a ) def A ( self : Any ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_a , _a , _a ) def A ( self : List[str] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE =self._prepare_for_class(_a , _a ) _SCREAMING_SNAKE_CASE =model_class(_a ) @jax.jit def encode_jitted(_a : Optional[Any] , _a : Optional[Any]=None , **_a : Any ): return model.encode(input_ids=_a , attention_mask=_a ) with self.subTest('JIT Enabled' ): _SCREAMING_SNAKE_CASE =encode_jitted(**_a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE =encode_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) def A ( self : str ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE =model_class(_a ) _SCREAMING_SNAKE_CASE =model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _SCREAMING_SNAKE_CASE ={ 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_a : Tuple , _a : Any , _a : Optional[Any] ): return model.decode( decoder_input_ids=_a , decoder_attention_mask=_a , encoder_outputs=_a , ) with self.subTest('JIT Enabled' ): _SCREAMING_SNAKE_CASE =decode_jitted(**_a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE =decode_jitted(**_a ).to_tuple() self.assertEqual(len(_a ) , len(_a ) ) for jitted_output, output in zip(_a , _a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A ( self : Any ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _SCREAMING_SNAKE_CASE =np.ones((1, 1) ) * model.config.eos_token_id _SCREAMING_SNAKE_CASE =model(_a ) self.assertIsNotNone(_a )
405
1
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["torch", "scipy"] def __init__(self : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : int) ->str: '''simple docstring''' requires_backends(self , ["torch", "scipy"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str) ->Optional[int]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"]) @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str) ->int: '''simple docstring''' requires_backends(cls , ["torch", "scipy"])
716
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __A = datasets.utils.logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): '''simple docstring''' lowercase_ = 1_0000 lowercase_ = None lowercase_ = None class _SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowercase_ = ParquetConfig def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Any: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Any) ->Any: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""") lowerCamelCase__: Optional[Any] =dl_manager.download_and_extract(self.config.data_files) if isinstance(UpperCAmelCase_ , (str, list, tuple)): lowerCamelCase__: Any =data_files if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase__: Optional[int] =[dl_manager.iter_files(UpperCAmelCase_) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files})] lowerCamelCase__: int =[] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: List[Any] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCamelCase__: str =[dl_manager.iter_files(UpperCAmelCase_) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCAmelCase_): with open(UpperCAmelCase_ , "rb") as f: lowerCamelCase__: Union[str, Any] =datasets.Features.from_arrow_schema(pq.read_schema(UpperCAmelCase_)) break splits.append(datasets.SplitGenerator(name=UpperCAmelCase_ , gen_kwargs={"files": files})) return splits def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : pa.Table) ->pa.Table: '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCamelCase__: str =table_cast(UpperCAmelCase_ , self.info.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Optional[Any]) ->int: '''simple docstring''' lowerCamelCase__: str =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema) != sorted(self.config.columns): raise ValueError( F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""") for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase_)): with open(UpperCAmelCase_ , "rb") as f: lowerCamelCase__: Optional[Any] =pq.ParquetFile(UpperCAmelCase_) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns)): lowerCamelCase__: Optional[Any] =pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F"""{file_idx}_{batch_idx}""", self._cast_table(UpperCAmelCase_) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase_)}: {e}""") raise
437
0
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Any ): lowerCAmelCase = k_size // 2 lowerCAmelCase ,lowerCAmelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ): lowerCAmelCase ,lowerCAmelCase = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase = height - k_size + 1 lowerCAmelCase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase = 0 for i, j in product(range(_UpperCAmelCase ) , range(_UpperCAmelCase ) ): lowerCAmelCase = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase = gen_gaussian_kernel(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = ravel(_UpperCAmelCase ) # reshape and get the dst image lowerCAmelCase = dot(_UpperCAmelCase , _UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image __UpperCamelCase : Tuple = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value __UpperCamelCase : int = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCamelCase : Optional[Any] = gaussian_filter(gray, 3, sigma=1) __UpperCamelCase : Tuple = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
4
from __future__ import annotations def lowercase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" snake_case__ : list[list[int]] =[] create_all_state(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , [] , SCREAMING_SNAKE_CASE ) return result def lowercase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[list[int]] , ): """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE , level - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) current_list.pop() def lowercase_ ( SCREAMING_SNAKE_CASE : list[list[int]] ): """simple docstring""" for i in total_list: print(*SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
381
0
'''simple docstring''' import requests A_ = "YOUR API KEY" def A_ ( snake_case , snake_case = giphy_api_key ): SCREAMING_SNAKE_CASE:str = "+".join(query.split() ) SCREAMING_SNAKE_CASE:List[Any] = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' SCREAMING_SNAKE_CASE:int = requests.get(snake_case ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
465
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A_ = logging.get_logger(__name__) class _snake_case ( _a ): _A : Union[str, Any] = ['''pixel_values'''] def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 255 ,SCREAMING_SNAKE_CASE__ : bool = True ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,**SCREAMING_SNAKE_CASE__ : List[str] ,): super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = size if size is not None else {"shortest_edge": 384} SCREAMING_SNAKE_CASE:List[str] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = do_resize SCREAMING_SNAKE_CASE:List[Any] = size # Default value set here for backwards compatibility where the value in config is None SCREAMING_SNAKE_CASE:Dict = crop_pct if crop_pct is not None else 224 / 256 SCREAMING_SNAKE_CASE:Any = resample SCREAMING_SNAKE_CASE:Dict = do_rescale SCREAMING_SNAKE_CASE:Optional[int] = rescale_factor SCREAMING_SNAKE_CASE:Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE:Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE:Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Dict[str, int] ,SCREAMING_SNAKE_CASE__ : float ,SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : int ,): SCREAMING_SNAKE_CASE:List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE:Any = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct SCREAMING_SNAKE_CASE:Any = int(shortest_edge / crop_pct ) SCREAMING_SNAKE_CASE:Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=SCREAMING_SNAKE_CASE__ ,size=(shortest_edge, shortest_edge) ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( SCREAMING_SNAKE_CASE__ ,size=(shortest_edge, shortest_edge) ,resample=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[int, float] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): return rescale(SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : np.ndarray ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Union[float, List[float]] ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None ,**SCREAMING_SNAKE_CASE__ : Union[str, Any] ,): return normalize(SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ,data_format=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : ImageInput ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Dict[str, int] = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : PILImageResampling = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : float = None ,SCREAMING_SNAKE_CASE__ : bool = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None ,SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None ,SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE__ : List[Any] ,): SCREAMING_SNAKE_CASE:Optional[int] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE:List[str] = crop_pct if crop_pct is not None else self.crop_pct SCREAMING_SNAKE_CASE:Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE:List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE:str = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE:str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE:Any = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE:Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE:Optional[int] = size if size is not None else self.size SCREAMING_SNAKE_CASE:Tuple = get_size_dict(SCREAMING_SNAKE_CASE__ ,default_to_square=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE:int = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE:Optional[int] = [self.resize(image=SCREAMING_SNAKE_CASE__ ,size=SCREAMING_SNAKE_CASE__ ,crop_pct=SCREAMING_SNAKE_CASE__ ,resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE:Union[str, Any] = [self.rescale(image=SCREAMING_SNAKE_CASE__ ,scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE:Optional[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ ,mean=SCREAMING_SNAKE_CASE__ ,std=SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) for image in images] SCREAMING_SNAKE_CASE:int = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ ,tensor_type=SCREAMING_SNAKE_CASE__ )
465
1
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = CLIPTokenizer SCREAMING_SNAKE_CASE = CLIPTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ : Optional[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase__ : Optional[int] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCAmelCase__ : List[str] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] UpperCAmelCase__ : Dict = {"""unk_token""": """<unk>"""} UpperCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCamelCase ) ) def _a (self , **_lowerCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a (self , **_lowerCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = """lower newer""" UpperCAmelCase__ : List[Any] = """lower newer""" return input_text, output_text def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ : Tuple = """lower newer""" UpperCAmelCase__ : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] UpperCAmelCase__ : int = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase__ : List[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @require_ftfy def _a (self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : List[Any] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : str = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" UpperCAmelCase__ : Union[str, Any] = tokenizer_s.tokenize(_lowerCamelCase ) UpperCAmelCase__ : Dict = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCAmelCase__ : List[Any] = """xa\u0303y""" + """ """ + """x\xe3y""" UpperCAmelCase__ : Dict = tokenizer_s.tokenize(_lowerCamelCase ) UpperCAmelCase__ : Any = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on unicode of space type UpperCAmelCase__ : Optional[Any] = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCAmelCase__ : List[str] = tokenizer_s.tokenize(_lowerCamelCase ) UpperCAmelCase__ : Any = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on unicode of line break type UpperCAmelCase__ : int = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCAmelCase__ : Any = tokenizer_s.tokenize(_lowerCamelCase ) UpperCAmelCase__ : Tuple = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : str = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase__ : Dict = F"""{text_of_1_token} {text_of_1_token}""" UpperCAmelCase__ : Dict = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , ) UpperCAmelCase__ : Union[str, Any] = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCamelCase ) + 1, len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) UpperCAmelCase__ : List[Any] = F""" {text}""" UpperCAmelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , ) UpperCAmelCase__ : int = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCamelCase ) + 1, 1 + len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) def _a (self ): """simple docstring""" with self.assertRaises(_lowerCamelCase ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def _a (self ): """simple docstring""" super().test_tokenization_python_rust_equals() def _a (self ): """simple docstring""" pass
182
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = KandinskyInpaintPipeline SCREAMING_SNAKE_CASE = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] SCREAMING_SNAKE_CASE = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] SCREAMING_SNAKE_CASE = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE = False @property def _a (self ): """simple docstring""" return 32 @property def _a (self ): """simple docstring""" return 32 @property def _a (self ): """simple docstring""" return self.time_input_dim @property def _a (self ): """simple docstring""" return self.time_input_dim * 4 @property def _a (self ): """simple docstring""" return 100 @property def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def _a (self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) UpperCAmelCase__ : List[Any] = MultilingualCLIP(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = text_encoder.eval() return text_encoder @property def _a (self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ : Dict = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase__ : List[Any] = UNetaDConditionModel(**_lowerCamelCase ) return model @property def _a (self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _a (self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ : Any = VQModel(**self.dummy_movq_kwargs ) return model def _a (self ): """simple docstring""" UpperCAmelCase__ : Dict = self.dummy_text_encoder UpperCAmelCase__ : Optional[Any] = self.dummy_tokenizer UpperCAmelCase__ : Optional[Any] = self.dummy_unet UpperCAmelCase__ : List[Any] = self.dummy_movq UpperCAmelCase__ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_lowerCamelCase , ) UpperCAmelCase__ : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _a (self , _lowerCamelCase , _lowerCamelCase=0 ): """simple docstring""" UpperCAmelCase__ : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCamelCase ) # create init_image UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Optional[Any] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask UpperCAmelCase__ : List[Any] = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase__ : Optional[int] = 0 if str(_lowerCamelCase ).startswith("""mps""" ): UpperCAmelCase__ : Tuple = torch.manual_seed(_lowerCamelCase ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) UpperCAmelCase__ : Any = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """cpu""" UpperCAmelCase__ : Optional[Any] = self.get_dummy_components() UpperCAmelCase__ : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCAmelCase__ : List[str] = pipe(**self.get_dummy_inputs(_lowerCamelCase ) ) UpperCAmelCase__ : Optional[int] = output.images UpperCAmelCase__ : Union[str, Any] = pipe( **self.get_dummy_inputs(_lowerCamelCase ) , return_dict=_lowerCamelCase , )[0] UpperCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Any = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def _a (self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): """simple docstring""" UpperCAmelCase__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) UpperCAmelCase__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCAmelCase__ : List[str] = np.ones((768, 768) , dtype=np.floataa ) UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : int = """a hat""" UpperCAmelCase__ : List[Any] = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCamelCase ) UpperCAmelCase__ : str = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) UpperCAmelCase__ : int = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) UpperCAmelCase__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = pipe_prior( _lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCAmelCase__ : Union[str, Any] = pipeline( _lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , image_embeds=_lowerCamelCase , negative_image_embeds=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) UpperCAmelCase__ : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase )
182
1
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( SCREAMING_SNAKE_CASE ,unittest.TestCase): '''simple docstring''' UpperCamelCase__ : str = GPTaTokenizer UpperCamelCase__ : Dict = GPTaTokenizerFast UpperCamelCase__ : List[Any] = True UpperCamelCase__ : int = {"""add_prefix_space""": True} UpperCamelCase__ : Optional[Any] = False def _a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] a__ = dict(zip(a_ , range(len(a_ ) ) ) ) a__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] a__ = {"""unk_token""": """<unk>"""} a__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) def _a ( self , **a_ ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a_ ) def _a ( self , **a_ ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def _a ( self , a_ ): a__ = """lower newer""" a__ = """lower newer""" return input_text, output_text def _a ( self ): a__ = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ = """lower newer""" a__ = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] a__ = tokenizer.tokenize(a_ , add_prefix_space=a_ ) self.assertListEqual(a_ , a_ ) a__ = tokens + [tokenizer.unk_token] a__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def _a ( self ): if not self.test_rust_tokenizer: return a__ = self.get_tokenizer() a__ = self.get_rust_tokenizer(add_prefix_space=a_ ) a__ = """lower newer""" # Testing tokenization a__ = tokenizer.tokenize(a_ , add_prefix_space=a_ ) a__ = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids without special tokens a__ = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) a__ = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids with special tokens a__ = self.get_rust_tokenizer(add_prefix_space=a_ ) a__ = tokenizer.encode(a_ , add_prefix_space=a_ ) a__ = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) # Testing the unknown token a__ = tokens + [rust_tokenizer.unk_token] a__ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def _a ( self , *a_ , **a_ ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _a ( self , a_=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) # Simple input a__ = """This is a simple input""" a__ = ["""This is a simple input 1""", """This is a simple input 2"""] a__ = ("""This is a simple input""", """This is a pair""") a__ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding="""max_length""" ) # Simple input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding="""max_length""" ) # Simple input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding="""max_length""" , ) # Pair input self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding="""max_length""" ) # Pair input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding="""max_length""" ) # Pair input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding="""max_length""" , ) def _a ( self ): a__ = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input a__ = """This is a simple input""" a__ = ["""This is a simple input looooooooong""", """This is a simple input"""] a__ = ("""This is a simple input""", """This is a pair""") a__ = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] a__ = tokenizer.pad_token_id a__ = tokenizer(a_ , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) a__ = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors="""np""" ) a__ = tokenizer(*a_ , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) a__ = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def _a ( self ): a__ = """$$$""" a__ = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a_ , add_bos_token=a_ ) a__ = """This is a simple input""" a__ = ["""This is a simple input 1""", """This is a simple input 2"""] a__ = tokenizer.bos_token_id a__ = tokenizer(a_ ) a__ = tokenizer(a_ ) self.assertEqual(out_s.input_ids[0] , a_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) a__ = tokenizer.decode(out_s.input_ids ) a__ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def _a ( self ): pass def _a ( self ): # TODO: change to self.get_tokenizers() when the fast version is implemented a__ = [self.get_tokenizer(do_lower_case=a_ , add_bos_token=a_ )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a__ = """Encode this.""" a__ = """This one too please.""" a__ = tokenizer.encode(a_ , add_special_tokens=a_ ) encoded_sequence += tokenizer.encode(a_ , add_special_tokens=a_ ) a__ = tokenizer.encode_plus( a_ , a_ , add_special_tokens=a_ , return_special_tokens_mask=a_ , ) a__ = encoded_sequence_dict["""input_ids"""] a__ = encoded_sequence_dict["""special_tokens_mask"""] self.assertEqual(len(a_ ) , len(a_ ) ) a__ = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a_ ) ] a__ = [x for x in filtered_sequence if x is not None] self.assertEqual(a_ , a_ ) @require_tokenizers class __snake_case ( unittest.TestCase): '''simple docstring''' def _a ( self ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 a__ = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=a_ ) a__ = """A photo of a cat""" a__ = tokenizer.encode( a_ , ) self.assertEqual(a_ , [2, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained("""test_opt""" ) a__ = AutoTokenizer.from_pretrained("""./test_opt""" ) a__ = tokenizer.encode( a_ , ) self.assertEqual(a_ , [2, 250, 1_345, 9, 10, 4_758] ) def _a ( self ): a__ = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=a_ ) a__ = """A photo of a cat""" a__ = tokenizer.encode( a_ , ) # Same as above self.assertEqual(a_ , [2, 250, 1_345, 9, 10, 4_758] ) @unittest.skip("""This test is failing because of a bug in the fast tokenizer""" ) def _a ( self ): a__ = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=a_ ) a__ = """bos""" a__ = tokenizer.get_vocab()["""bos"""] a__ = """A photo of a cat""" a__ = tokenizer.encode( a_ , ) # We changed the bos token self.assertEqual(a_ , [31_957, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained("""./tok""" ) a__ = AutoTokenizer.from_pretrained("""./tok""" ) self.assertTrue(tokenizer.is_fast ) a__ = tokenizer.encode( a_ , ) self.assertEqual(a_ , [31_957, 250, 1_345, 9, 10, 4_758] )
704
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False, False, False @dataclass class __snake_case : '''simple docstring''' UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : bool = True UpperCamelCase__ : bool = True UpperCamelCase__ : Optional[str] = None # Automatically constructed UpperCamelCase__ : ClassVar[str] = "dict" UpperCamelCase__ : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()}) UpperCamelCase__ : str = field(default="""Audio""" ,init=SCREAMING_SNAKE_CASE ,repr=SCREAMING_SNAKE_CASE) def __call__( self ): return self.pa_type def _a ( self , a_ ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(a_ , a_ ): return {"bytes": None, "path": value} elif isinstance(a_ , a_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes a__ = BytesIO() sf.write(a_ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) a__ = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: a__ = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32_767 a__ = BytesIO(bytes() ) sf.write(a_ , a_ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _a ( self , a_ , a_ = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) a__ , a__ = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err a__ = xsplitext(a_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: a__ = token_per_repo_id or {} a__ = path.split("""::""" )[-1] try: a__ = string_to_dict(a_ , config.HUB_DATASETS_URL )["""repo_id"""] a__ = token_per_repo_id[repo_id] except (ValueError, KeyError): a__ = None with xopen(a_ , """rb""" , use_auth_token=a_ ) as f: a__ , a__ = sf.read(a_ ) else: a__ , a__ = sf.read(a_ ) a__ = array.T if self.mono: a__ = librosa.to_mono(a_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: a__ = librosa.resample(a_ , orig_sr=a_ , target_sr=self.sampling_rate ) a__ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _a ( self ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _a ( self , a_ ): if pa.types.is_string(storage.type ): a__ = pa.array([None] * len(a_ ) , type=pa.binary() ) a__ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): a__ = pa.array([None] * len(a_ ) , type=pa.string() ) a__ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): a__ = pa.array([Audio().encode_example(a_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: a__ = storage.field("""bytes""" ) else: a__ = pa.array([None] * len(a_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: a__ = storage.field("""path""" ) else: a__ = pa.array([None] * len(a_ ) , type=pa.string() ) a__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(a_ , self.pa_type ) def _a ( self , a_ ): @no_op_if_value_is_null def path_to_bytes(a_ ): with xopen(a_ , """rb""" ) as f: a__ = f.read() return bytes_ a__ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) a__ = pa.array( [os.path.basename(a_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) a__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(a_ , self.pa_type )
351
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _SCREAMING_SNAKE_CASE : Dict = pytest.mark.integration @require_faiss class A ( lowerCamelCase_ ): '''simple docstring''' def UpperCAmelCase__ ( self : Tuple): _lowercase: str = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(_UpperCamelCase) for x in np.arange(30).tolist()]}) return dset def UpperCAmelCase__ ( self : Union[str, Any]): import faiss _lowercase: Any = self._create_dummy_dataset() _lowercase: Dict = dset.map( lambda _UpperCamelCase , _UpperCamelCase: {"vecs": i * np.ones(5 , dtype=np.floataa)} , with_indices=_UpperCamelCase , keep_in_memory=_UpperCamelCase) _lowercase: Dict = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT) _lowercase , _lowercase: Union[str, Any] = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples["filename"][0] , "my_name-train_29") dset.drop_index("vecs") def UpperCAmelCase__ ( self : List[Any]): import faiss _lowercase: Optional[Any] = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _lowercase , _lowercase: List[Any] = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples["filename"][0] , "my_name-train_29") def UpperCAmelCase__ ( self : List[str]): import faiss _lowercase: Tuple = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCamelCase) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name) dset.load_faiss_index("vecs2" , tmp_file.name) os.unlink(tmp_file.name) _lowercase , _lowercase: List[str] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa)) self.assertEqual(examples["filename"][0] , "my_name-train_29") def UpperCAmelCase__ ( self : Any): _lowercase: str = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5)) * np.arange(30).reshape(-1 , 1) , index_name="vecs") dset.drop_index("vecs") self.assertRaises(_UpperCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa))) def UpperCAmelCase__ ( self : str): from elasticsearch import Elasticsearch _lowercase: Union[str, Any] = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search") as mocked_search, patch( "elasticsearch.client.IndicesClient.create") as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk") as mocked_bulk: _lowercase: Any = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30) _lowercase: int = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} _lowercase: List[str] = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=_UpperCamelCase) _lowercase , _lowercase: Dict = dset.get_nearest_examples("filename" , "my_name-train_29") self.assertEqual(examples["filename"][0] , "my_name-train_29") @require_faiss class A ( lowerCamelCase_ ): '''simple docstring''' def UpperCAmelCase__ ( self : List[Any]): import faiss _lowercase: Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsNotNone(index.faiss_index) self.assertEqual(index.faiss_index.ntotal , 5) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa)) self.assertEqual(index.faiss_index.ntotal , 10) # single query _lowercase: Optional[int] = np.zeros(5 , dtype=np.floataa) _lowercase: Optional[Any] = 1 _lowercase , _lowercase: Union[str, Any] = index.search(_UpperCamelCase) self.assertRaises(_UpperCamelCase , index.search , query.reshape(-1 , 1)) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) # batched queries _lowercase: Tuple = np.eye(5 , dtype=np.floataa)[::-1] _lowercase , _lowercase: Union[str, Any] = index.search_batch(_UpperCamelCase) self.assertRaises(_UpperCamelCase , index.search_batch , queries[0]) _lowercase: Optional[int] = [scores[0] for scores in total_scores] _lowercase: Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCamelCase) , 0) self.assertListEqual([4, 3, 2, 1, 0] , _UpperCamelCase) def UpperCAmelCase__ ( self : Any): import faiss _lowercase: Optional[Any] = FaissIndex(string_factory="Flat") index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) _lowercase: Tuple = FaissIndex(string_factory="LSH") index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexLSH) with self.assertRaises(_UpperCamelCase): _lowercase: Optional[int] = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5)) def UpperCAmelCase__ ( self : Tuple): import faiss _lowercase: Dict = faiss.IndexFlat(5) _lowercase: str = FaissIndex(custom_index=_UpperCamelCase) index.add_vectors(np.eye(5 , dtype=np.floataa)) self.assertIsInstance(index.faiss_index , faiss.IndexFlat) def UpperCAmelCase__ ( self : Optional[int]): import faiss _lowercase: Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT) index.add_vectors(np.eye(5 , dtype=np.floataa)) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_UpperCamelCase) as tmp_file: index.save(tmp_file.name) _lowercase: Tuple = FaissIndex.load(tmp_file.name) os.unlink(tmp_file.name) _lowercase: Union[str, Any] = np.zeros(5 , dtype=np.floataa) _lowercase: Union[str, Any] = 1 _lowercase , _lowercase: Optional[Any] = index.search(_UpperCamelCase) self.assertGreater(scores[0] , 0) self.assertEqual(indices[0] , 1) @require_faiss def __lowerCAmelCase ( __magic_name__ ): import faiss _lowercase: List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) _lowercase: Any = "index.faiss" _lowercase: Dict = f"mock://{index_name}" index.save(lowerCAmelCase__ , storage_options=mockfs.storage_options ) _lowercase: Optional[int] = FaissIndex.load(lowerCAmelCase__ , storage_options=mockfs.storage_options ) _lowercase: List[Any] = np.zeros(5 , dtype=np.floataa ) _lowercase: List[Any] = 1 _lowercase , _lowercase: Any = index.search(lowerCAmelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A ( lowerCamelCase_ ): '''simple docstring''' def UpperCAmelCase__ ( self : List[Any]): from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search") as mocked_search, patch( "elasticsearch.client.IndicesClient.create") as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk") as mocked_bulk: _lowercase: Any = Elasticsearch() _lowercase: Union[str, Any] = {"acknowledged": True} _lowercase: Tuple = ElasticSearchIndex(es_client=_UpperCamelCase) mocked_bulk.return_value([(True, None)] * 3) index.add_documents(["foo", "bar", "foobar"]) # single query _lowercase: Tuple = "foo" _lowercase: Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} _lowercase , _lowercase: Dict = index.search(_UpperCamelCase) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # single query with timeout _lowercase: Tuple = "foo" _lowercase: Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} _lowercase , _lowercase: Dict = index.search(_UpperCamelCase , request_timeout=30) self.assertEqual(scores[0] , 1) self.assertEqual(indices[0] , 0) # batched queries _lowercase: int = ["foo", "bar", "foobar"] _lowercase: List[str] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} _lowercase , _lowercase: Dict = index.search_batch(_UpperCamelCase) _lowercase: Optional[int] = [scores[0] for scores in total_scores] _lowercase: Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCamelCase) , 0) self.assertListEqual([1, 1, 1] , _UpperCamelCase) # batched queries with timeout _lowercase: Dict = ["foo", "bar", "foobar"] _lowercase: Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} _lowercase , _lowercase: str = index.search_batch(_UpperCamelCase , request_timeout=30) _lowercase: Any = [scores[0] for scores in total_scores] _lowercase: Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(_UpperCamelCase) , 0) self.assertListEqual([1, 1, 1] , _UpperCamelCase)
226
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowerCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase__ ( self , UpperCAmelCase ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , config_name=UpperCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AutoConfig.from_pretrained('''gpt2''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } lowerCamelCase_ = copy.deepcopy(UpperCAmelCase ) lowerCamelCase_ = generation_config.update(**UpperCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCAmelCase , {'''foo''': '''bar'''} ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() lowerCamelCase_ = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) lowerCamelCase_ = GenerationConfig.from_model_config(UpperCAmelCase ) assert not hasattr(UpperCAmelCase , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCAmelCase ) self.assertEqual(default_config.num_beams , 1 ) lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCAmelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase ) lowerCamelCase_ = GenerationConfig.from_pretrained(UpperCAmelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCAmelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __lowerCamelCase ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls ): lowerCamelCase_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def UpperCAmelCase__ ( cls ): try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''test-generation-config''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = GenerationConfig( do_sample=UpperCAmelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCamelCase_ = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) )
29
0
'''simple docstring''' def lowerCAmelCase (__A = 4_000_000): """simple docstring""" _a = [0, 1] _a = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 _a = 0 for j in range(len(__lowerCAmelCase) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
709
'''simple docstring''' lowercase_ = 256 # Modulus to hash a string lowercase_ = 1_000_003 def lowerCAmelCase (__A , __A): """simple docstring""" _a = len(__A) _a = len(__A) if p_len > t_len: return False _a = 0 _a = 0 _a = 1 # Calculating the hash of pattern and substring of text for i in range(__A): _a = (ord(pattern[i]) + p_hash * alphabet_size) % modulus _a = (ord(text[i]) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _a = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _a = ( (text_hash - ord(text[i]) * modulus_power) * alphabet_size + ord(text[i + p_len]) ) % modulus return False def lowerCAmelCase (): """simple docstring""" _a = '''abc1abc12''' _a = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _a = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(__A , __A) and not rabin_karp(__A , __A) # Test 2) _a = '''ABABX''' _a = '''ABABZABABYABABX''' assert rabin_karp(__A , __A) # Test 3) _a = '''AAAB''' _a = '''ABAAAAAB''' assert rabin_karp(__A , __A) # Test 4) _a = '''abcdabcy''' _a = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(__A , __A) # Test 5) _a = '''Lü''' _a = '''Lüsai''' assert rabin_karp(__A , __A) _a = '''Lue''' assert not rabin_karp(__A , __A) print('''Success.''') if __name__ == "__main__": test_rabin_karp()
352
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} lowerCamelCase : Tuple = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } lowerCamelCase : Any = { "abeja/gpt-neox-japanese-2.7b": 2_048, } def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Any ): '''simple docstring''' with open(lowercase , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = collections.OrderedDict() lowerCamelCase_ = collections.OrderedDict() lowerCamelCase_ = collections.OrderedDict() with open(lowercase , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowercase ): lowerCamelCase_ = b lowerCamelCase_ = idx for wd in b: lowerCamelCase_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : str , A_ : Any , A_ : Any , A_ : Optional[Any]="<|endoftext|>" , A_ : Any="<|endoftext|>" , A_ : Optional[int]="<|startoftext|>" , A_ : Union[str, Any]="<|endoftext|>" , A_ : Any=False , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__( unk_token=A_ , pad_token=A_ , bos_token=A_ , eos_token=A_ , do_clean_text=A_ , **A_ , ) if not os.path.isfile(A_ ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(A_ ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) lowerCamelCase_ = do_clean_text lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = load_vocab_and_emoji(A_ , A_ ) lowerCamelCase_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def a__ ( self : List[str] ) -> Dict: """simple docstring""" return len(self.raw_vocab ) def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def a__ ( self : Optional[Any] , A_ : str ) -> Tuple: """simple docstring""" return self.subword_tokenizer.tokenize(A_ , clean=self.do_clean_text ) def a__ ( self : Optional[int] , A_ : Dict ) -> List[Any]: """simple docstring""" return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def a__ ( self : Union[str, Any] , A_ : Union[str, Any] ) -> int: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(A_ ) def a__ ( self : Optional[int] , A_ : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = ''.join(A_ ).strip() return out_string def a__ ( self : Optional[Any] , A_ : "Conversation" ) -> List[int]: """simple docstring""" lowerCamelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A_ , add_special_tokens=A_ ) + [self.eos_token_id] ) if len(A_ ) > self.model_max_length: lowerCamelCase_ = input_ids[-self.model_max_length :] return input_ids def a__ ( self : List[Any] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCamelCase_ = 0 if os.path.isdir(A_ ): lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: lowerCamelCase_ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase_ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) lowerCamelCase_ = token_index writer.write(','.join(A_ ) + '\n' ) index += 1 with open(A_ , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , A_ ) return vocab_file, emoji_file class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Any , A_ : Union[str, Any] , A_ : int , A_ : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = vocab # same as swe lowerCamelCase_ = ids_to_tokens # same as bpe lowerCamelCase_ = emoji lowerCamelCase_ = np.max([len(A_ ) for w in self.vocab.keys()] ) lowerCamelCase_ = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) lowerCamelCase_ = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) lowerCamelCase_ = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) lowerCamelCase_ = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowerCamelCase_ = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowerCamelCase_ = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) lowerCamelCase_ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' lowerCamelCase_ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' lowerCamelCase_ = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : str ) -> Optional[int]: """simple docstring""" return len(self.ids_to_tokens ) def a__ ( self : Union[str, Any] , A_ : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.content_repattera.sub('<URL>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<EMAIL>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<TEL>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<DATE>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<DATE>' , A_ ) lowerCamelCase_ = self.content_repattera.sub('<PRICE>' , A_ ) lowerCamelCase_ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCamelCase_ = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def a__ ( self : int , A_ : Optional[Any] , A_ : Tuple=False ) -> Dict: """simple docstring""" lowerCamelCase_ = text.replace(' ' , '<SP>' ) lowerCamelCase_ = text.replace(' ' , '<SP>' ) lowerCamelCase_ = text.replace('\r\n' , '<BR>' ) lowerCamelCase_ = text.replace('\n' , '<BR>' ) lowerCamelCase_ = text.replace('\r' , '<BR>' ) lowerCamelCase_ = text.replace('\t' , '<TAB>' ) lowerCamelCase_ = text.replace('—' , 'ー' ) lowerCamelCase_ = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCamelCase_ = text.replace(A_ , A_ ) if clean: lowerCamelCase_ = self.clean_text(A_ ) def check_simbol(A_ : Union[str, Any] ): lowerCamelCase_ = x.encode() if len(A_ ) == 1 and len(A_ ) == 2: lowerCamelCase_ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2_A1 and c <= 0XC2_BF) or (c >= 0XC7_80 and c <= 0XC7_83) or (c >= 0XCA_B9 and c <= 0XCB_BF) or (c >= 0XCC_80 and c <= 0XCD_A2) ): return True return False def checkuae(A_ : Tuple ): lowerCamelCase_ = x.encode() if len(A_ ) == 1 and len(A_ ) == 3: lowerCamelCase_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE2_80_80 and c <= 0XE2_B0_7F: return True return False lowerCamelCase_ = 0 lowerCamelCase_ = [] while pos < len(A_ ): lowerCamelCase_ = min(len(A_ ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 lowerCamelCase_ = [] # (token_id, token, pos) for e in range(A_ , A_ , -1 ): lowerCamelCase_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(A_ ) > 2: lowerCamelCase_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(A_ ) > 0: # the smallest token_id is adopted lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = sorted(A_ , key=lambda A_ : x[0] )[0] result.append(A_ ) lowerCamelCase_ = e else: lowerCamelCase_ = pos + 1 lowerCamelCase_ = text[pos:end] if check_simbol(A_ ): result.append('<KIGOU>' ) elif checkuae(A_ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) lowerCamelCase_ = end return result def a__ ( self : List[Any] , A_ : Tuple , A_ : List[str]="\n" ) -> List[str]: """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(A_ ) > 0: words.append(bytearray(A_ ).decode('utf-8' , errors='replace' ) ) lowerCamelCase_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(A_ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(A_ ) if len(A_ ) > 0: words.append(bytearray(A_ ).decode('utf-8' , errors='replace' ) ) lowerCamelCase_ = ''.join(A_ ) return text
70
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') __UpperCAmelCase = {'target_lang': 'fi', 'source_lang': 'en'} __UpperCAmelCase = '>>zh<<' __UpperCAmelCase = 'Helsinki-NLP/' if is_torch_available(): __UpperCAmelCase = 'pt' elif is_tf_available(): __UpperCAmelCase = 'tf' else: __UpperCAmelCase = 'jax' @require_sentencepiece class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = MarianTokenizer snake_case_ = False snake_case_ = True def __lowercase ( self : Optional[int] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : Optional[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] UpperCAmelCase__ : int = dict(zip(A ,range(len(A ) ) ) ) UpperCAmelCase__ : Optional[int] = Path(self.tmpdirname ) save_json(A ,save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(A ,save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(A ,save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(A ,save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) UpperCAmelCase__ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : List[Any] ,**A : List[Any] ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : Union[str, Any] ,A : Tuple ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = """</s>""" UpperCAmelCase__ : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) ,A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) ,A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""</s>""" ) self.assertEqual(vocab_keys[1] ,"""<unk>""" ) self.assertEqual(vocab_keys[-1] ,"""<pad>""" ) self.assertEqual(len(A ) ,9 ) def __lowercase ( self : Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,9 ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" ) UpperCAmelCase__ : List[str] = en_de_tokenizer(["""I am a small frog"""] ,return_tensors=A ) self.assertIsInstance(A ,A ) UpperCAmelCase__ : str = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(A ,batch.input_ids[0] ) UpperCAmelCase__ : Optional[Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(A ) UpperCAmelCase__ : Tuple = [x.name for x in Path(A ).glob("""*""" )] self.assertIn("""source.spm""" ,A ) MarianTokenizer.from_pretrained(A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = tok( ["""I am a small frog""" * 1_000, """I am a small frog"""] ,padding=A ,truncation=A ,return_tensors=A ) self.assertIsInstance(A ,A ) self.assertEqual(batch.input_ids.shape ,(2, 512) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Tuple = tok(["""I am a tiny frog""", """I am a small frog"""] ,padding=A ,return_tensors=A ) self.assertIsInstance(A ,A ) self.assertEqual(batch_smaller.input_ids.shape ,(2, 10) ) @slow def __lowercase ( self : Dict ): '''simple docstring''' # fmt: off UpperCAmelCase__ : Optional[int] = {"""input_ids""": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A ,model_name="""Helsinki-NLP/opus-mt-en-de""" ,revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" ,decode_kwargs={"""use_source_tokenizer""": True} ,) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) UpperCAmelCase__ : Any = """Tämä on testi""" UpperCAmelCase__ : int = """This is a test""" UpperCAmelCase__ : List[str] = [76, 7, 2_047, 2] UpperCAmelCase__ : Optional[Any] = [69, 12, 11, 940, 2] UpperCAmelCase__ : List[str] = tokenizer(A ).input_ids self.assertListEqual(A ,A ) UpperCAmelCase__ : Optional[int] = tokenizer(text_target=A ).input_ids self.assertListEqual(A ,A ) UpperCAmelCase__ : int = tokenizer.decode(A ,skip_special_tokens=A ) self.assertEqual(A ,A )
65
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __a (UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = ShapEImgaImgPipeline _SCREAMING_SNAKE_CASE :Tuple = ["""image"""] _SCREAMING_SNAKE_CASE :Any = ["""image"""] _SCREAMING_SNAKE_CASE :int = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] _SCREAMING_SNAKE_CASE :Tuple = False @property def _a ( self ) -> Dict: """simple docstring""" return 32 @property def _a ( self ) -> Tuple: """simple docstring""" return 32 @property def _a ( self ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def _a ( self ) -> Any: """simple docstring""" return 8 @property def _a ( self ) -> int: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPVisionModel(_a ) return model @property def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = CLIPImageProcessor( crop_size=224 , do_center_crop=_a , do_normalize=_a , do_resize=_a , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def _a ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } SCREAMING_SNAKE_CASE__ : Optional[Any] = PriorTransformer(**_a ) return model @property def _a ( self ) -> Dict: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE__ : List[str] = ShapERenderer(**_a ) return model def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.dummy_prior SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_image_encoder SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_image_processor SCREAMING_SNAKE_CASE__ : Dict = self.dummy_renderer SCREAMING_SNAKE_CASE__ : Optional[int] = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_024 , prediction_type="""sample""" , use_karras_sigmas=_a , clip_sample=_a , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE__ : List[str] = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def _a ( self , _a , _a=0 ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : Optional[int] = torch.manual_seed(_a ) else: SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device=_a ).manual_seed(_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = """cpu""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : int = self.pipeline_class(**_a ) SCREAMING_SNAKE_CASE__ : Dict = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : List[str] = pipe(**self.get_dummy_inputs(_a ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = output.images[0] SCREAMING_SNAKE_CASE__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Optional[int]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = torch_device == """cpu""" SCREAMING_SNAKE_CASE__ : Dict = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_a , relax_max_difference=_a , ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.pipeline_class(**_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_inputs(_a ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE__ : Dict = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE__ : Optional[int] = pipe(**_a , num_images_per_prompt=_a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) SCREAMING_SNAKE_CASE__ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) SCREAMING_SNAKE_CASE__ : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device=_a ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe( _a , generator=_a , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_a , _a )
12
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> Union[str, Any]: """simple docstring""" super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a ) SCREAMING_SNAKE_CASE__ : List[Any] = Sql( cache_dir=_a , features=_a , sql=_a , con=_a , **_a , ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Optional[int] = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , ) # Build dataset for splits SCREAMING_SNAKE_CASE__ : str = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class __a : '''simple docstring''' def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Any: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) SCREAMING_SNAKE_CASE__ : int = dataset SCREAMING_SNAKE_CASE__ : Any = name SCREAMING_SNAKE_CASE__ : Optional[Any] = con SCREAMING_SNAKE_CASE__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE SCREAMING_SNAKE_CASE__ : int = num_proc SCREAMING_SNAKE_CASE__ : int = to_sql_kwargs def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.to_sql_kwargs.pop("""sql""" , _a ) SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""con""" , _a ) SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""index""" , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._write(index=_a , **self.to_sql_kwargs ) return written def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = args SCREAMING_SNAKE_CASE__ : List[str] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs SCREAMING_SNAKE_CASE__ : Any = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) SCREAMING_SNAKE_CASE__ : Optional[int] = batch.to_pandas() SCREAMING_SNAKE_CASE__ : List[Any] = df.to_sql(self.name , self.con , index=_a , **_a ) return num_rows or len(_a ) def _a ( self , _a , **_a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
12
1
"""simple docstring""" import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def snake_case__ ( self ) -> Dict: A__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase__ , "embed_dim" ) ) self.parent.assertTrue(hasattr(lowercase__ , "num_heads" ) ) class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=64 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=[16, 48, 96] , SCREAMING_SNAKE_CASE__=[1, 3, 6] , SCREAMING_SNAKE_CASE__=[1, 2, 10] , SCREAMING_SNAKE_CASE__=[7, 3, 3] , SCREAMING_SNAKE_CASE__=[4, 2, 2] , SCREAMING_SNAKE_CASE__=[2, 1, 1] , SCREAMING_SNAKE_CASE__=[2, 2, 2] , SCREAMING_SNAKE_CASE__=[False, False, True] , SCREAMING_SNAKE_CASE__=[0.0, 0.0, 0.0] , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=1e-12 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 , ) -> int: A__ = parent A__ = batch_size A__ = image_size A__ = patch_sizes A__ = patch_stride A__ = patch_padding A__ = is_training A__ = use_labels A__ = num_labels A__ = num_channels A__ = embed_dim A__ = num_heads A__ = stride_kv A__ = depth A__ = cls_token A__ = attention_drop_rate A__ = initializer_range A__ = layer_norm_eps def snake_case__ ( self ) -> List[str]: A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.num_labels ) A__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: A__ = CvtModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() A__ = model(lowercase__ ) A__ = (self.image_size, self.image_size) A__ = image_size[0], image_size[1] for i in range(len(self.depth ) ): A__ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) A__ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ = self.num_labels A__ = CvtForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() A__ = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self ) -> int: A__ = self.prepare_config_and_inputs() A__ = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A__ : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else () A__ : Any = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) A__ : Tuple = False A__ : str = False A__ : Optional[Any] = False A__ : Union[str, Any] = False A__ : List[str] = False def snake_case__ ( self ) -> Any: A__ = CvtModelTester(self ) A__ = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def snake_case__ ( self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self ) -> Union[str, Any]: return @unittest.skip(reason="Cvt does not output attentions" ) def snake_case__ ( self ) -> List[Any]: pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def snake_case__ ( self ) -> Union[str, Any]: pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def snake_case__ ( self ) -> Dict: pass def snake_case__ ( self ) -> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(lowercase__ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase__ ) def snake_case__ ( self ) -> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def snake_case__ ( self ) -> Union[str, Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) A__ = outputs.hidden_states A__ = len(self.model_tester.depth ) self.assertEqual(len(lowercase__ ) , lowercase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def snake_case__ ( self ) -> Dict: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case__ ( self ) -> List[Any]: pass @slow def snake_case__ ( self ) -> Optional[Any]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = CvtModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def _lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self ) -> Tuple: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case__ ( self ) -> Optional[Any]: A__ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase__ ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=lowercase__ , return_tensors="pt" ).to(lowercase__ ) # forward pass with torch.no_grad(): A__ = model(**lowercase__ ) # verify the logits A__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase__ ) A__ = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) )
104
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCAmelCase :Optional[Any] = """Create a default config file for Accelerate with only a few flags set.""" def __lowerCAmelCase ( a_="no" , a_ = default_json_config_file , a_ = False ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = Path(a_ ) path.parent.mkdir(parents=a_ , exist_ok=a_ ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False SCREAMING_SNAKE_CASE : List[str] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.device_count() SCREAMING_SNAKE_CASE : str = num_gpus SCREAMING_SNAKE_CASE : Dict = False if num_gpus > 1: SCREAMING_SNAKE_CASE : List[str] = 'MULTI_GPU' else: SCREAMING_SNAKE_CASE : Optional[int] = 'NO' elif is_xpu_available() and use_xpu: SCREAMING_SNAKE_CASE : List[str] = torch.xpu.device_count() SCREAMING_SNAKE_CASE : List[Any] = num_xpus SCREAMING_SNAKE_CASE : Optional[int] = False if num_xpus > 1: SCREAMING_SNAKE_CASE : List[Any] = 'MULTI_XPU' else: SCREAMING_SNAKE_CASE : List[Any] = 'NO' elif is_npu_available(): SCREAMING_SNAKE_CASE : List[str] = torch.npu.device_count() SCREAMING_SNAKE_CASE : Any = num_npus SCREAMING_SNAKE_CASE : Dict = False if num_npus > 1: SCREAMING_SNAKE_CASE : Any = 'MULTI_NPU' else: SCREAMING_SNAKE_CASE : Union[str, Any] = 'NO' else: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = 'NO' SCREAMING_SNAKE_CASE : Any = ClusterConfig(**a_ ) config.to_json_file(a_ ) return path def __lowerCAmelCase ( a_ , a_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = parser.add_parser('default' , parents=a_ , help=a_ , formatter_class=a_ ) parser.add_argument( '--config_file' , default=a_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=a_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=a_ ) return parser def __lowerCAmelCase ( a_ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
251
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" lowercase : Dict = RobertaTokenizer lowercase : Union[str, Any] = RobertaTokenizerFast lowercase : List[str] = True lowercase : List[Any] = {'cls_token': '<s>'} def lowercase_ ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] a : Dict = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) a : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a : Optional[int] = {'unk_token': '<unk>'} a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowercase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowercase ) ) def lowercase_ ( self , **__UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase_ ( self , **__UpperCAmelCase ) -> Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase_ ( self , __UpperCAmelCase ) -> List[str]: a : List[str] = 'lower newer' a : str = 'lower newer' return input_text, output_text def lowercase_ ( self ) -> Any: a : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) a : str = 'lower newer' a : Dict = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] a : Optional[int] = tokenizer.tokenize(_lowercase ) # , add_prefix_space=True) self.assertListEqual(_lowercase , _lowercase ) a : Any = tokens + [tokenizer.unk_token] a : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def lowercase_ ( self ) -> str: a : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_lowercase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_lowercase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def lowercase_ ( self ) -> Optional[int]: a : Any = self.tokenizer_class.from_pretrained('roberta-base' ) a : Any = tokenizer.encode('sequence builders' , add_special_tokens=_lowercase ) a : int = tokenizer.encode('multi-sequence build' , add_special_tokens=_lowercase ) a : Dict = tokenizer.encode( 'sequence builders' , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) a : Any = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) a : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowercase ) a : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase_ ( self ) -> Dict: a : Tuple = self.get_tokenizer() a : int = 'Encode this sequence.' a : int = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments a : Optional[int] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) a : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_lowercase , _lowercase ) a : List[str] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) a : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_lowercase , _lowercase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) a : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) a : int = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_lowercase , _lowercase ) # Testing spaces after special tokens a : List[str] = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase )} ) # mask token has a left space a : List[str] = tokenizer.convert_tokens_to_ids(_lowercase ) a : Optional[Any] = 'Encode <mask> sequence' a : str = 'Encode <mask>sequence' a : int = tokenizer.encode(_lowercase ) a : Optional[int] = encoded.index(_lowercase ) a : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_lowercase , _lowercase ) a : Tuple = tokenizer.encode(_lowercase ) a : Optional[Any] = encoded.index(_lowercase ) a : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_lowercase , _lowercase ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a : str = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) a : Optional[Any] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) a : Any = 'A, <mask> AllenNLP sentence.' a : Tuple = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) a : List[str] = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) a : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) a : List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _lowercase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowercase_ ( self ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): a : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) a : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) a : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _lowercase ) self.assertEqual(post_processor_state['add_prefix_space'] , _lowercase ) self.assertEqual(post_processor_state['trim_offsets'] , _lowercase ) def lowercase_ ( self ) -> Union[str, Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): a : Optional[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` a : List[str] = f'{text_of_1_token} {text_of_1_token}' a : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) a : Optional[Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) a : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) a : Optional[Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) a : Any = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) a : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , ) a : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) a : str = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , ) a : str = f' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) a : Optional[int] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) a : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ) + 1, 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) a : Tuple = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) a : List[str] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) a : str = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) a : Any = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
707
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class A_ ( _UpperCAmelCase ): """simple docstring""" def __init__( self , __UpperCAmelCase=0.01 , __UpperCAmelCase=10_00 ) -> int: a : Dict = p_stop a : Tuple = max_length def __iter__( self ) -> str: a : Optional[Any] = 0 a : Union[str, Any] = False while not stop and count < self.max_length: yield count count += 1 a : Optional[int] = random.random() < self.p_stop class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ) -> List[str]: a : Optional[Any] = [ BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 ) ] a : str = [list(__UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__UpperCAmelCase ) for shard in batch_sampler_shards] , [len(__UpperCAmelCase ) for e in expected] ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> List[str]: # Check the shards when the dataset is a round multiple of total batch size. a : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. a : Dict = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. a : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. a : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) # Check the shards when the dataset is very small. a : Optional[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : List[str] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) a : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : int = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. a : List[str] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. a : int = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. a : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Optional[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. a : Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : int = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) a : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> Optional[int]: # Check the shards when the dataset is a round multiple of total batch size. a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[int] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. a : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. a : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : int = BatchSampler(range(22 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. a : List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. a : Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : str = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Dict = BatchSampler(range(2 ) , batch_size=3 , drop_last=__UpperCAmelCase ) a : Dict = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> List[str]: # Check the shards when the dataset is a round multiple of batch size. a : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. a : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. a : List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) # Check the shards when the dataset is very small. a : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) a : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Tuple = [[], []] self.check_batch_sampler_shards(__UpperCAmelCase , __UpperCAmelCase , split_batches=__UpperCAmelCase , even_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> List[Any]: a : int = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] a : Dict = [BatchSamplerShard(__UpperCAmelCase , 2 , __UpperCAmelCase , even_batches=__UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=False ) -> Tuple: random.seed(__UpperCAmelCase ) a : Dict = list(__UpperCAmelCase ) a : Any = [ IterableDatasetShard( __UpperCAmelCase , batch_size=__UpperCAmelCase , drop_last=__UpperCAmelCase , num_processes=__UpperCAmelCase , process_index=__UpperCAmelCase , split_batches=__UpperCAmelCase , ) for i in range(__UpperCAmelCase ) ] a : int = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__UpperCAmelCase ) iterable_dataset_lists.append(list(__UpperCAmelCase ) ) a : Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size a : Optional[int] = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(len(__UpperCAmelCase ) % shard_batch_size == 0 ) a : Optional[Any] = [] for idx in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__UpperCAmelCase ) < len(__UpperCAmelCase ): reference += reference self.assertListEqual(__UpperCAmelCase , reference[: len(__UpperCAmelCase )] ) def lowercase_ ( self ) -> int: a : Any = 42 a : Union[str, Any] = RandomIterableDataset() self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) # Edge case with a very small dataset a : Dict = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) self.check_iterable_dataset_shards(__UpperCAmelCase , __UpperCAmelCase , batch_size=4 , drop_last=__UpperCAmelCase , split_batches=__UpperCAmelCase ) def lowercase_ ( self ) -> List[Any]: a : str = BatchSampler(range(16 ) , batch_size=4 , drop_last=__UpperCAmelCase ) a : Any = SkipBatchSampler(__UpperCAmelCase , 2 ) self.assertListEqual(list(__UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ) -> str: a : Optional[Any] = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ) -> int: a : List[str] = DataLoader(list(range(16 ) ) , batch_size=4 ) a : Dict = skip_first_batches(__UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ) -> Any: a : Union[str, Any] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase_ ( self ) -> List[Any]: Accelerator() a : Union[str, Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
509
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : int ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__A , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__A , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__A ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Dict = ['''pixel_values'''] def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE__ : int , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : str = size if size is not None else {'shortest_edge': 2_2_4} a_ : Any = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='crop_size' ) a_ : Optional[int] = do_resize a_ : Tuple = size a_ : List[str] = do_center_crop a_ : Optional[int] = crop_size a_ : Tuple = resample a_ : Tuple = do_rescale a_ : Optional[int] = rescale_factor a_ : Optional[int] = do_normalize a_ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a_ : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Any , ) -> np.ndarray: a_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" in size: a_ : Union[str, Any] = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE__ ) elif "height" in size and "width" in size: a_ : Optional[Any] = (size['height'], size['width']) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> np.ndarray: a_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[int, float] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> Any: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Any , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : float = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. a_ : Dict = to_numpy_array(SCREAMING_SNAKE_CASE__ ) if do_resize: a_ : Optional[Any] = self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) if do_center_crop: a_ : List[str] = self.center_crop(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) if do_rescale: a_ : Tuple = self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) if do_normalize: a_ : Optional[Any] = self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) a_ : Tuple = to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return image def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : float = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> PIL.Image.Image: a_ : Any = do_resize if do_resize is not None else self.do_resize a_ : Tuple = resample if resample is not None else self.resample a_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale a_ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : str = do_normalize if do_normalize is not None else self.do_normalize a_ : Tuple = image_mean if image_mean is not None else self.image_mean a_ : List[Any] = image_std if image_std is not None else self.image_std a_ : List[Any] = size if size is not None else self.size a_ : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) a_ : int = crop_size if crop_size is not None else self.crop_size a_ : Tuple = get_size_dict(SCREAMING_SNAKE_CASE__ , param_name='crop_size' ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) a_ : List[str] = make_batched(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = [ [ self._preprocess_image( image=SCREAMING_SNAKE_CASE__ , do_resize=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , do_center_crop=SCREAMING_SNAKE_CASE__ , crop_size=SCREAMING_SNAKE_CASE__ , do_rescale=SCREAMING_SNAKE_CASE__ , rescale_factor=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ , image_mean=SCREAMING_SNAKE_CASE__ , image_std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , ) for img in video ] for video in videos ] a_ : int = {'pixel_values': videos} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
570
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCAmelCase_ : Tuple = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = '''maskformer''' snake_case__ : List[str] = {'''hidden_size''': '''mask_feature_size'''} snake_case__ : Tuple = ['''resnet''', '''swin'''] snake_case__ : Any = ['''detr'''] def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : int = 2_5_6 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[Dict] = None , SCREAMING_SNAKE_CASE__ : Optional[Dict] = None , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 , SCREAMING_SNAKE_CASE__ : float = 20.0 , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Union[str, Any]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k a_ : Union[str, Any] = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Tuple = backbone_config.pop('model_type' ) a_ : Dict = CONFIG_MAPPING[backbone_model_type] a_ : int = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ F"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 a_ : List[str] = DetrConfig() else: # verify that the decoder is supported a_ : Dict = ( decoder_config.pop('model_type' ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"""Transformer Decoder {decoder_type} not supported, please use one of""" F""" {",".join(self.decoders_supported )}""" ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Dict = CONFIG_MAPPING[decoder_type] a_ : str = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) a_ : int = backbone_config a_ : Tuple = decoder_config # main feature dimension for the model a_ : str = fpn_feature_size a_ : List[str] = mask_feature_size # initializer a_ : Optional[int] = init_std a_ : Any = init_xavier_std # Hungarian matcher && loss a_ : List[str] = cross_entropy_weight a_ : Optional[int] = dice_weight a_ : int = mask_weight a_ : str = use_auxiliary_loss a_ : str = no_object_weight a_ : int = output_auxiliary_logits a_ : str = self.decoder_config.encoder_attention_heads a_ : Union[str, Any] = self.decoder_config.num_hidden_layers super().__init__(**SCREAMING_SNAKE_CASE__ ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] , SCREAMING_SNAKE_CASE__ : PretrainedConfig , SCREAMING_SNAKE_CASE__ : PretrainedConfig , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: return cls( backbone_config=SCREAMING_SNAKE_CASE__ , decoder_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Dict[str, any]: a_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) a_ : Dict = self.backbone_config.to_dict() a_ : Optional[Any] = self.decoder_config.to_dict() a_ : List[Any] = self.__class__.model_type return output
570
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=snake_case ): """simple docstring""" lowerCAmelCase__ : str = ['torch', 'scipy'] def __init__( self: str , *__lowerCAmelCase: int , **__lowerCAmelCase: Union[str, Any] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["torch", "scipy"] ) @classmethod def _UpperCAmelCase ( cls: Any , *__lowerCAmelCase: str , **__lowerCAmelCase: Dict ) -> List[str]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"] ) @classmethod def _UpperCAmelCase ( cls: Dict , *__lowerCAmelCase: Union[str, Any] , **__lowerCAmelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"] )
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
286
0
from PIL import Image def _lowerCAmelCase ( _lowerCAmelCase ) -> Image: '''simple docstring''' __snake_case , __snake_case = image.size __snake_case = 0 __snake_case = image.load() for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): __snake_case = pixels[j, i] mean += pixel mean //= width * height for j in range(_lowerCAmelCase ): for i in range(_lowerCAmelCase ): __snake_case = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": A : Union[str, Any] = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
371
from __future__ import annotations def _lowerCAmelCase ( _lowerCAmelCase ) -> list[int]: '''simple docstring''' __snake_case = 2 __snake_case = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowerCAmelCase ) if n > 1: factors.append(_lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
371
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ : Optional[Any] = logging.get_logger(__name__) a_ : int = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase ="roberta-prelayernorm" def __init__( self : List[str] , snake_case__ : str=5_0_2_6_5 , snake_case__ : str=7_6_8 , snake_case__ : str=1_2 , snake_case__ : Any=1_2 , snake_case__ : Any=3_0_7_2 , snake_case__ : int="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Any=0.1 , snake_case__ : str=5_1_2 , snake_case__ : Optional[int]=2 , snake_case__ : int=0.02 , snake_case__ : str=1E-12 , snake_case__ : Any=1 , snake_case__ : Tuple=0 , snake_case__ : List[str]=2 , snake_case__ : Union[str, Any]="absolute" , snake_case__ : Optional[Any]=True , snake_case__ : List[Any]=None , **snake_case__ : Tuple , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = classifier_dropout class UpperCamelCase ( SCREAMING_SNAKE_CASE ): @property def UpperCamelCase ( self : str ): """simple docstring""" if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
673
import numpy as np def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def __lowerCAmelCase ( _UpperCamelCase : np.ndarray ) -> np.ndarray: '''simple docstring''' return vector * sigmoid(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
673
1
'''simple docstring''' import requests lowercase ='' # <-- Put your OpenWeatherMap appid here! lowercase ='https://api.openweathermap.org/data/2.5/' def lowerCamelCase__ ( __lowerCamelCase : str = "Chicago" , __lowerCamelCase : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + 'weather' , params=locals() ).json() def lowerCamelCase__ ( __lowerCamelCase : str = "Kolkata, India" , __lowerCamelCase : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def lowerCamelCase__ ( __lowerCamelCase : float = 55.68 , __lowerCamelCase : float = 12.57 , __lowerCamelCase : str = APPID ): '''simple docstring''' return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowercase =input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
446
'''simple docstring''' import argparse lowercase ='docs/source/_static/js/custom.js' def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' with open(__lowerCamelCase , encoding='utf-8' , newline='\n' ) as f: _UpperCAmelCase : Optional[Any] =f.readlines() _UpperCAmelCase : Dict =0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 _UpperCAmelCase : Tuple =f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(__lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__lowerCamelCase ) if __name__ == "__main__": lowercase =argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowercase =parser.parse_args() update_custom_js(args.version)
446
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = "Speech2TextFeatureExtractor" snake_case = "Speech2TextTokenizer" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False def __call__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Dict ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowerCamelCase__ = kwargs.pop("""raw_speech""" ) else: lowerCamelCase__ = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase__ = args[0] lowerCamelCase__ = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowerCamelCase__ = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None: lowerCamelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ = encodings["""input_ids"""] return inputs def __UpperCAmelCase ( self : int , *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Any , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @contextmanager def __UpperCAmelCase ( self : Optional[Any] ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowerCamelCase__ = True lowerCamelCase__ = self.tokenizer yield lowerCamelCase__ = self.feature_extractor lowerCamelCase__ = False
258
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __magic_name__ = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
258
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Dict = """table-transformer""" lowerCamelCase_ : List[Any] = ["""past_key_values"""] lowerCamelCase_ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=3 , UpperCamelCase__=100 , UpperCamelCase__=6 , UpperCamelCase__=2048 , UpperCamelCase__=8 , UpperCamelCase__=6 , UpperCamelCase__=2048 , UpperCamelCase__=8 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=True , UpperCamelCase__="relu" , UpperCamelCase__=256 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1.0 , UpperCamelCase__=False , UpperCamelCase__="sine" , UpperCamelCase__="resnet50" , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=1 , UpperCamelCase__=5 , UpperCamelCase__=2 , UpperCamelCase__=0.1 , **UpperCamelCase__ , ) -> Dict: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCamelCase : Dict = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase : Any = backbone_config.get("model_type" ) lowerCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] lowerCamelCase : List[str] = config_class.from_dict(UpperCamelCase__ ) # set timm attributes to None lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = None, None, None lowerCamelCase : Optional[Any] = use_timm_backbone lowerCamelCase : List[str] = backbone_config lowerCamelCase : List[str] = num_channels lowerCamelCase : Union[str, Any] = num_queries lowerCamelCase : Optional[Any] = d_model lowerCamelCase : Optional[int] = encoder_ffn_dim lowerCamelCase : List[Any] = encoder_layers lowerCamelCase : List[Any] = encoder_attention_heads lowerCamelCase : List[str] = decoder_ffn_dim lowerCamelCase : Union[str, Any] = decoder_layers lowerCamelCase : Dict = decoder_attention_heads lowerCamelCase : Optional[int] = dropout lowerCamelCase : List[Any] = attention_dropout lowerCamelCase : Tuple = activation_dropout lowerCamelCase : Union[str, Any] = activation_function lowerCamelCase : Union[str, Any] = init_std lowerCamelCase : Optional[int] = init_xavier_std lowerCamelCase : List[Any] = encoder_layerdrop lowerCamelCase : str = decoder_layerdrop lowerCamelCase : Dict = encoder_layers lowerCamelCase : Any = auxiliary_loss lowerCamelCase : int = position_embedding_type lowerCamelCase : List[Any] = backbone lowerCamelCase : Dict = use_pretrained_backbone lowerCamelCase : Optional[int] = dilation # Hungarian matcher lowerCamelCase : Any = class_cost lowerCamelCase : List[Any] = bbox_cost lowerCamelCase : int = giou_cost # Loss coefficients lowerCamelCase : List[str] = mask_loss_coefficient lowerCamelCase : Optional[Any] = dice_loss_coefficient lowerCamelCase : str = bbox_loss_coefficient lowerCamelCase : Optional[int] = giou_loss_coefficient lowerCamelCase : Tuple = eos_coefficient super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def _lowercase ( self ) -> int: return self.encoder_attention_heads @property def _lowercase ( self ) -> int: return self.d_model class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : List[str] = version.parse("""1.11""" ) @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowercase ( self ) -> float: return 1e-5 @property def _lowercase ( self ) -> int: return 12
311
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict[Optional[str], Type[Formatter]] = {} SCREAMING_SNAKE_CASE__ : Dict[Optional[str], str] = {} SCREAMING_SNAKE_CASE__ : Dict[Optional[str], Exception] = {} def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,) -> str: lowerCamelCase : List[str] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) lowerCamelCase : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) lowerCamelCase : Dict = format_type def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple: lowerCamelCase : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowerCamelCase : str = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: SCREAMING_SNAKE_CASE__ : str = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: SCREAMING_SNAKE_CASE__ : str = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: SCREAMING_SNAKE_CASE__ : Tuple = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def A ( _SCREAMING_SNAKE_CASE ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def A ( _SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Formatter: lowerCamelCase : Tuple = get_format_type_from_alias(_SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
311
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) snake_case__ = sum(__lowerCAmelCase ) / len(__lowerCAmelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
714
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> str | Literal[False]: snake_case__ = list(__lowerCAmelCase ) snake_case__ = list(__lowerCAmelCase ) snake_case__ = 0 for i in range(len(__lowerCAmelCase ) ): if lista[i] != lista[i]: count += 1 snake_case__ = '''_''' if count > 1: return False else: return "".join(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list[str]: snake_case__ = [] while True: snake_case__ = ['''$'''] * len(__lowerCAmelCase ) snake_case__ = [] for i in range(len(__lowerCAmelCase ) ): for j in range(i + 1 , len(__lowerCAmelCase ) ): snake_case__ = compare_string(binary[i] , binary[j] ) if k is False: snake_case__ = '''*''' snake_case__ = '''*''' temp.append('''X''' ) for i in range(len(__lowerCAmelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowerCAmelCase ) == 0: return pi snake_case__ = list(set(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[str]: snake_case__ = [] for minterm in minterms: snake_case__ = '''''' for _ in range(__lowerCAmelCase ): snake_case__ = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowerCAmelCase ) return temp def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: snake_case__ = list(__lowerCAmelCase ) snake_case__ = list(__lowerCAmelCase ) snake_case__ = 0 for i in range(len(__lowerCAmelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[str]: snake_case__ = [] snake_case__ = [0] * len(__lowerCAmelCase ) for i in range(len(chart[0] ) ): snake_case__ = 0 snake_case__ = -1 for j in range(len(__lowerCAmelCase ) ): if chart[j][i] == 1: count += 1 snake_case__ = j if count == 1: snake_case__ = 1 for i in range(len(__lowerCAmelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowerCAmelCase ) ): snake_case__ = 0 temp.append(prime_implicants[i] ) while True: snake_case__ = 0 snake_case__ = -1 snake_case__ = 0 for i in range(len(__lowerCAmelCase ) ): snake_case__ = chart[i].count(1 ) if count_n > max_n: snake_case__ = count_n snake_case__ = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowerCAmelCase ) ): snake_case__ = 0 def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[list[int]]: snake_case__ = [[0 for x in range(len(__lowerCAmelCase ) )] for x in range(len(__lowerCAmelCase ) )] for i in range(len(__lowerCAmelCase ) ): snake_case__ = prime_implicants[i].count('''_''' ) for j in range(len(__lowerCAmelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , __lowerCAmelCase ): snake_case__ = 1 return chart def SCREAMING_SNAKE_CASE ( ) -> None: snake_case__ = int(input('''Enter the no. of variables\n''' ) ) snake_case__ = [ float(__lowerCAmelCase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] snake_case__ = decimal_to_binary(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = check(__lowerCAmelCase ) print('''Prime Implicants are:''' ) print(__lowerCAmelCase ) snake_case__ = prime_implicant_chart(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = selection(__lowerCAmelCase , __lowerCAmelCase ) print('''Essential Prime Implicants are:''' ) print(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
208
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = """ZinengTang/tvlt-base""" SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() def _snake_case ( self :Optional[int] , **__A :List[str] ) -> Union[str, Any]: """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint , **__A ) def _snake_case ( self :Dict , **__A :Union[str, Any] ) -> str: """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__A ) def _snake_case ( self :List[Any] ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self :Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = TvltProcessor(image_processor=__A , feature_extractor=__A ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __A ) self.assertIsInstance(processor.image_processor , __A ) def _snake_case ( self :List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = TvltProcessor(image_processor=__A , feature_extractor=__A ) SCREAMING_SNAKE_CASE__ = np.ones([1_2000] ) SCREAMING_SNAKE_CASE__ = feature_extractor(__A , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processor(audio=__A , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self :Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = TvltProcessor(image_processor=__A , feature_extractor=__A ) SCREAMING_SNAKE_CASE__ = np.ones([3, 224, 224] ) SCREAMING_SNAKE_CASE__ = image_processor(__A , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processor(images=__A , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _snake_case ( self :Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = TvltProcessor(image_processor=__A , feature_extractor=__A ) SCREAMING_SNAKE_CASE__ = np.ones([1_2000] ) SCREAMING_SNAKE_CASE__ = np.ones([3, 224, 224] ) SCREAMING_SNAKE_CASE__ = processor(audio=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self :Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_feature_extractor() SCREAMING_SNAKE_CASE__ = TvltProcessor(image_processor=__A , feature_extractor=__A ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
6
'''simple docstring''' import math def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Dict = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: float = 1 / 1_23_45 ): __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : List[str] = 3 while True: __SCREAMING_SNAKE_CASE : int = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : str = int(_lowerCamelCase ) total_partitions += 1 if check_partition_perfect(_lowerCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCamelCase ) integer += 1 if __name__ == "__main__": print(f"{solution() = }")
578
0
import random def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" __lowerCAmelCase = a[left_index] __lowerCAmelCase = left_index + 1 for j in range(left_index + 1 , _A ): if a[j] < pivot: __lowerCAmelCase, __lowerCAmelCase = a[i], a[j] i += 1 __lowerCAmelCase, __lowerCAmelCase = a[i - 1], a[left_index] return i - 1 def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if left < right: __lowerCAmelCase = random.randint(_A , right - 1 ) __lowerCAmelCase, __lowerCAmelCase = ( a[left], a[pivot], ) # switches the pivot with the left most bound __lowerCAmelCase = partition(_A , _A , _A ) quick_sort_random( _A , _A , _A ) # recursive quicksort to the left of the pivot point quick_sort_random( _A , pivot_index + 1 , _A ) # recursive quicksort to the right of the pivot point def __lowercase ( ): """simple docstring""" __lowerCAmelCase = input('Enter numbers separated by a comma:\n' ).strip() __lowerCAmelCase = [int(_A ) for item in user_input.split(',' )] quick_sort_random(_A , 0 , len(_A ) ) print(_A ) if __name__ == "__main__": main()
719
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] lowerCamelCase = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] lowerCamelCase = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): lowerCamelCase = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
102
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[int]: __lowerCamelCase = [], [] while len(_a ) > 1: __lowerCamelCase = min(_a ), max(_a ) start.append(_a ) end.append(_a ) collection.remove(_a ) collection.remove(_a ) end.reverse() return start + collection + end if __name__ == "__main__": __UpperCAmelCase =input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase =[int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
546
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def lowercase ( _a=None ,_a=None ) -> List[Any]: return field(default_factory=lambda: default ,metadata=_a ) @dataclass class UpperCAmelCase__ : snake_case_ = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) snake_case_ = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) snake_case_ = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Benchmark training of model'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Verbose memory tracing'''} ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Trace memory line by line'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Save result to a CSV file'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Save all print statements in a log file'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Whether to print environment information'''} ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) snake_case_ = field( default=F'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) snake_case_ = field( default=F'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) snake_case_ = field( default=F'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) snake_case_ = field( default=F'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) snake_case_ = field( default=F'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) snake_case_ = field( default=F'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) snake_case_ = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def snake_case_ ( self ): """simple docstring""" warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , A__ , ) def snake_case_ ( self ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case_ ( self ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def snake_case_ ( self ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
137
0
'''simple docstring''' def UpperCAmelCase ( A : list[int] , A : list[int] ): SCREAMING_SNAKE_CASE : List[str] = len(A ) print('''The following activities are selected:''' ) # The first activity is always selected SCREAMING_SNAKE_CASE : str = 0 print(A , end=''',''' ) # Consider rest of the activities for j in range(A ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(A , end=''',''' ) SCREAMING_SNAKE_CASE : int = j if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : Tuple = [1, 3, 0, 5, 8, 5] lowerCAmelCase_ : Any = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
706
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Tuple=32 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Dict=10 , lowerCAmelCase__ : List[Any]=[10, 20, 30, 40] , lowerCAmelCase__ : List[Any]=[1, 1, 2, 1] , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]="relu" , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : Tuple=None , ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : str = embeddings_size SCREAMING_SNAKE_CASE : str = hidden_sizes SCREAMING_SNAKE_CASE : Tuple = depths SCREAMING_SNAKE_CASE : Dict = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : List[Any] = scope SCREAMING_SNAKE_CASE : List[Any] = len(lowerCAmelCase__ ) def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Any ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __lowercase ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = TFRegNetModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowercase ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : Any = TFRegNetForImageClassification(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( snake_case_ , snake_case_ , unittest.TestCase ): _lowerCAmelCase : str = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _lowerCAmelCase : str = ( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) _lowerCAmelCase : Tuple = False _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[str] = False _lowerCAmelCase : str = False _lowerCAmelCase : str = False def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = TFRegNetModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __lowercase ( self : List[str] ): """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __lowercase ( self : Optional[int] ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def __lowercase ( self : int ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __lowercase ( self : Dict ): """simple docstring""" pass def __lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __lowercase ( self : Dict ): """simple docstring""" def check_hidden_states_output(lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : int = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE : Union[str, Any] = layer_type SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __lowercase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str={} ): SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__ ).to_tuple() def recursive_check(lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ): if isinstance(lowerCAmelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {'''output_hidden_states''': True} ) SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {'''output_hidden_states''': True} ) def __lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __lowercase ( self : Any ): """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = TFRegNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCAmelCase ( ): SCREAMING_SNAKE_CASE : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def __lowercase ( self : List[str] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowercase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE : str = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : int = prepare_img() SCREAMING_SNAKE_CASE : List[str] = image_processor(images=lowerCAmelCase__ , return_tensors='''tf''' ) # forward pass SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits SCREAMING_SNAKE_CASE : List[str] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 )
464
0
'''simple docstring''' import math import sys def a_ ( __UpperCAmelCase ) -> str: """simple docstring""" snake_case: Tuple ='' try: with open(__snake_case , 'rb' ) as binary_file: snake_case: List[str] =binary_file.read() for dat in data: snake_case: Optional[Any] =f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def a_ ( __UpperCAmelCase ) -> str: """simple docstring""" snake_case: Optional[int] ={'0': '0', '1': '1'} snake_case , snake_case: str ='', '' snake_case: List[str] =len(__snake_case ) for i in range(len(__snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue snake_case: Tuple =lexicon[curr_string] result += last_match_id snake_case: Optional[int] =last_match_id + '0' if math.loga(__snake_case ).is_integer(): snake_case: Union[str, Any] ={} for curr_key in list(__snake_case ): snake_case: Any =lexicon.pop(__snake_case ) snake_case: Union[str, Any] =new_lex snake_case: int =last_match_id + '1' index += 1 snake_case: Dict ='' return result def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> None: """simple docstring""" snake_case: List[str] =8 try: with open(__snake_case , 'wb' ) as opened_file: snake_case: int =[ to_write[i : i + byte_length] for i in range(0 , len(__snake_case ) , __snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__snake_case , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def a_ ( __UpperCAmelCase ) -> str: """simple docstring""" snake_case: Dict =0 for letter in data_bits: if letter == "1": break counter += 1 snake_case: Optional[int] =data_bits[counter:] snake_case: Union[str, Any] =data_bits[counter + 1 :] return data_bits def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> None: """simple docstring""" snake_case: Optional[Any] =read_file_binary(__snake_case ) snake_case: List[Any] =remove_prefix(__snake_case ) snake_case: str =decompress_data(__snake_case ) write_file_binary(__snake_case , __snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { """configuration_table_transformer""": [ """TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TableTransformerConfig""", """TableTransformerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TableTransformerForObjectDetection""", """TableTransformerModel""", """TableTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=5 ) -> Tuple: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("<mask>" ) == 1 _UpperCAmelCase = torch.tensor(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ).unsqueeze(0 ) # Batch size 1 _UpperCAmelCase = model(_lowerCAmelCase )[0] # The last hidden-state is the first element of the output tuple _UpperCAmelCase = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _UpperCAmelCase = logits[0, masked_index, :] _UpperCAmelCase = logits.softmax(dim=0 ) _UpperCAmelCase , _UpperCAmelCase = prob.topk(k=_lowerCAmelCase , dim=0 ) _UpperCAmelCase = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowerCAmelCase ) )] ) _UpperCAmelCase = tokenizer.mask_token _UpperCAmelCase = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): _UpperCAmelCase = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(_lowerCAmelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(_lowerCAmelCase ) , _lowerCAmelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowerCAmelCase , _lowerCAmelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __lowerCAmelCase = CamembertTokenizer.from_pretrained("camembert-base") __lowerCAmelCase = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() __lowerCAmelCase = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
129
def __lowerCamelCase ( _lowerCAmelCase ) -> Dict: _UpperCAmelCase = [0] * len(_lowerCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowerCAmelCase ) ): if indegree[i] == 0: queue.append(_lowerCAmelCase ) while queue: _UpperCAmelCase = queue.pop(0 ) cnt += 1 topo.append(_lowerCAmelCase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowerCAmelCase ) if cnt != len(_lowerCAmelCase ): print("Cycle exists" ) else: print(_lowerCAmelCase ) # Adjacency List of Graph __lowerCAmelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
129
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) class __snake_case( lowercase__ , lowercase__ ): '''simple docstring''' UpperCAmelCase : List[str] = "maskformer-swin" UpperCAmelCase : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , A_=224 , A_=4 , A_=3 , A_=96 , A_=[2, 2, 6, 2] , A_=[3, 6, 12, 24] , A_=7 , A_=4.0 , A_=True , A_=0.0 , A_=0.0 , A_=0.1 , A_="gelu" , A_=False , A_=0.0_2 , A_=1e-5 , A_=None , A_=None , **A_ , ) -> Union[str, Any]: super().__init__(**lowercase_ ) lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = len(lowercase_ ) lowerCAmelCase = num_heads lowerCAmelCase = window_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = use_absolute_embeddings lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase = int(embed_dim * 2 ** (len(lowercase_ ) - 1) ) lowerCAmelCase = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(lowercase_ ) + 1 )] lowerCAmelCase, lowerCAmelCase = get_aligned_output_features_output_indices( out_features=lowercase_ , out_indices=lowercase_ , stage_names=self.stage_names )
433
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
83
def snake_case ( snake_case__ :int , snake_case__ :int) -> int: return int(input_a == input_a == 0) def snake_case ( ) -> None: print("""Truth Table of NOR Gate:""") print("""| Input 1 | Input 2 | Output |""") print(F'''| 0 | 0 | {nor_gate(0 , 0)} |''') print(F'''| 0 | 1 | {nor_gate(0 , 1)} |''') print(F'''| 1 | 0 | {nor_gate(1 , 0)} |''') print(F'''| 1 | 1 | {nor_gate(1 , 1)} |''') if __name__ == "__main__": import doctest doctest.testmod() main()
83
1
def __UpperCAmelCase ( __a : int ,__a : int ) -> str: """simple docstring""" if not isinstance(__a ,__a ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__a ,__a ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) _a : List[Any] = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__a ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
14
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> list: __snake_case = len(_UpperCAmelCase ) __snake_case = [] for i in range(len(_UpperCAmelCase ) - pat_len + 1 ): __snake_case = True for j in range(_UpperCAmelCase ): if s[i + j] != pattern[j]: __snake_case = False break if match_found: position.append(_UpperCAmelCase ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
69
0
"""simple docstring""" from __future__ import annotations from typing import Any class a_ : def __init__( self : Union[str, Any] , snake_case__ : int ): lowerCAmelCase__ = num_of_nodes lowerCAmelCase__ = [] lowerCAmelCase__ = {} def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : int , snake_case__ : int , snake_case__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _SCREAMING_SNAKE_CASE ( self : str , snake_case__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase__ = self.find_component(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : list[int] , snake_case__ : int , snake_case__ : int ): if component_size[u_node] <= component_size[v_node]: lowerCAmelCase__ = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case__ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase__ = self.find_component(snake_case__ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase__ = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = edge lowerCAmelCase__ = self.m_component[u] lowerCAmelCase__ = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase__ = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = edge lowerCAmelCase__ = self.m_component[u] lowerCAmelCase__ = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case__ , snake_case__ , snake_case__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 lowerCAmelCase__ = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _UpperCAmelCase ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : str = LayoutLMTokenizer UpperCamelCase_ : List[Any] = LayoutLMTokenizerFast UpperCamelCase_ : Dict = True UpperCamelCase_ : Any = True def _SCREAMING_SNAKE_CASE ( self : Tuple ): super().setUp() lowerCAmelCase__ = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : int , **snake_case__ : Union[str, Any] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : Tuple ): lowerCAmelCase__ = """UNwant\u00E9d,running""" lowerCAmelCase__ = """unwanted, running""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [7, 4, 5, 10, 8, 9] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): pass
674
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCAmelCase : List[str] = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def SCREAMING_SNAKE_CASE__ ( snake_case : int=None )-> int: '''simple docstring''' if subparsers is not None: UpperCAmelCase__ : Optional[int] = subparsers.add_parser("tpu-config" , description=_description ) else: UpperCAmelCase__ : int = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments UpperCAmelCase__ : Union[str, Any] = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=snake_case , default=snake_case , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=snake_case , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=snake_case , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) UpperCAmelCase__ : Tuple = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=snake_case , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=snake_case ) return parser def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(snake_case ): UpperCAmelCase__ : int = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase__ : Any = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase__ : List[Any] = defaults.commands if not args.tpu_name: UpperCAmelCase__ : Optional[Any] = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase__ : List[str] = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase__ : Any = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": UpperCAmelCase__ : Optional[int] = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , snake_case ): UpperCAmelCase__ : int = f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: UpperCAmelCase__ : Tuple = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , snake_case ): UpperCAmelCase__ : List[Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase__ : Dict = ["cd /usr/share"] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command UpperCAmelCase__ : int = "; ".join(snake_case ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase__ : str = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(snake_case )}' ) return subprocess.run(snake_case ) print("Successfully setup pod." ) def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Dict = tpu_command_parser() UpperCAmelCase__ : Union[str, Any] = parser.parse_args() tpu_command_launcher(snake_case )
438
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Any = data UpperCAmelCase__ : Node | None = None class lowerCAmelCase__ : def __init__( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[int] = None def __iter__( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.head while self.head: yield node.data UpperCAmelCase__ : Optional[Any] = node.next if node == self.head: break def __len__( self : Tuple ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : str ): '''simple docstring''' return "->".join(str(snake_case__ ) for item in iter(self ) ) def __a ( self : Optional[Any] , snake_case__ : Any ): '''simple docstring''' self.insert_nth(len(self ) , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Any ): '''simple docstring''' self.insert_nth(0 , snake_case__ ) def __a ( self : Any , snake_case__ : int , snake_case__ : Any ): '''simple docstring''' if index < 0 or index > len(self ): raise IndexError("list index out of range." ) UpperCAmelCase__ : Any = Node(snake_case__ ) if self.head is None: UpperCAmelCase__ : Union[str, Any] = new_node # first node points itself UpperCAmelCase__ : List[str] = new_node elif index == 0: # insert at head UpperCAmelCase__ : Optional[Any] = self.head UpperCAmelCase__ : List[Any] = new_node else: UpperCAmelCase__ : Union[str, Any] = self.head for _ in range(index - 1 ): UpperCAmelCase__ : Dict = temp.next UpperCAmelCase__ : Tuple = temp.next UpperCAmelCase__ : str = new_node if index == len(self ) - 1: # insert at tail UpperCAmelCase__ : Union[str, Any] = new_node def __a ( self : List[Any] ): '''simple docstring''' return self.delete_nth(0 ) def __a ( self : Optional[Any] ): '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def __a ( self : Tuple , snake_case__ : int = 0 ): '''simple docstring''' if not 0 <= index < len(self ): raise IndexError("list index out of range." ) UpperCAmelCase__ : Union[str, Any] = self.head if self.head == self.tail: # just one node UpperCAmelCase__ : str = None elif index == 0: # delete head node UpperCAmelCase__ : List[Any] = self.tail.next.next UpperCAmelCase__ : Dict = self.head.next else: UpperCAmelCase__ : List[Any] = self.head for _ in range(index - 1 ): UpperCAmelCase__ : Tuple = temp.next UpperCAmelCase__ : Dict = temp.next UpperCAmelCase__ : Dict = temp.next.next if index == len(self ) - 1: # delete at tail UpperCAmelCase__ : int = temp return delete_node.data def __a ( self : Any ): '''simple docstring''' return len(self ) == 0 def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : str = CircularLinkedList() assert len(snake_case ) == 0 assert circular_linked_list.is_empty() is True assert str(snake_case ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(snake_case ) == i circular_linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
438
1
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __SCREAMING_SNAKE_CASE = i + 1 else: __SCREAMING_SNAKE_CASE = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
248
"""simple docstring""" import baseaa def _lowerCAmelCase ( UpperCamelCase_ ): return baseaa.baaencode(string.encode("""utf-8""" ) ) def _lowerCAmelCase ( UpperCamelCase_ ): return baseaa.baadecode(UpperCamelCase_ ).decode("""utf-8""" ) if __name__ == "__main__": __magic_name__ = "Hello World!" __magic_name__ = baseaa_encode(test) print(encoded) __magic_name__ = baseaa_decode(encoded) print(decoded)
248
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase = 0 ) -> list: """simple docstring""" __UpperCAmelCase : List[str] = length or len(UpperCamelCase ) __UpperCAmelCase : List[str] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __UpperCAmelCase , __UpperCAmelCase : int = list_data[i + 1], list_data[i] __UpperCAmelCase : List[Any] = True return list_data if not swapped else bubble_sort(UpperCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
77
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A = logging.get_logger(__name__) class a__ ( __magic_name__ ): lowercase_ = ["input_features", "is_longer"] def __init__( self : List[str] , UpperCamelCase_ : Dict=64 , UpperCamelCase_ : Tuple=48000 , UpperCamelCase_ : List[Any]=480 , UpperCamelCase_ : List[str]=10 , UpperCamelCase_ : str=1024 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 14000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ): """simple docstring""" super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = top_db __UpperCAmelCase : Optional[Any] = truncation __UpperCAmelCase : str = padding __UpperCAmelCase : int = fft_window_size __UpperCAmelCase : str = (fft_window_size >> 1) + 1 __UpperCAmelCase : List[Any] = hop_length __UpperCAmelCase : Optional[Any] = max_length_s __UpperCAmelCase : Tuple = max_length_s * sampling_rate __UpperCAmelCase : str = sampling_rate __UpperCAmelCase : int = frequency_min __UpperCAmelCase : Optional[Any] = frequency_max __UpperCAmelCase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale="htk" , ) __UpperCAmelCase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm="slaney" , mel_scale="slaney" , ) def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : Dict = copy.deepcopy(self.__dict__) __UpperCAmelCase : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def a_ ( self : int , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None): """simple docstring""" __UpperCAmelCase : List[Any] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , "hann") , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel="dB" , ) return log_mel_spectrogram.T def a_ ( self : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int): """simple docstring""" __UpperCAmelCase : Optional[Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : str = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : Dict = [0] # randomly choose index for each part __UpperCAmelCase : Dict = np.random.choice(ranges[0]) __UpperCAmelCase : List[str] = np.random.choice(ranges[1]) __UpperCAmelCase : List[Any] = np.random.choice(ranges[2]) __UpperCAmelCase : List[Any] = mel[idx_front : idx_front + chunk_frames, :] __UpperCAmelCase : List[str] = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCAmelCase : List[str] = mel[idx_back : idx_back + chunk_frames, :] __UpperCAmelCase : Tuple = torch.tensor(mel[None, None, :]) __UpperCAmelCase : Union[str, Any] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode="bilinear" , align_corners=UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = mel_shrink[0][0].numpy() __UpperCAmelCase : Optional[int] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def a_ ( self : Optional[Any] , UpperCamelCase_ : np.array , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCAmelCase : List[str] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCAmelCase : List[Any] = len(UpperCamelCase_) - max_length __UpperCAmelCase : int = np.random.randint(0 , overflow + 1) __UpperCAmelCase : Union[str, Any] = waveform[idx : idx + max_length] __UpperCAmelCase : Union[str, Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney)[None, :] elif truncation == "fusion": __UpperCAmelCase : Any = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters) __UpperCAmelCase : Dict = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCAmelCase : Tuple = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCAmelCase : List[str] = np.stack([mel, mel, mel, mel] , axis=0) __UpperCAmelCase : Any = False else: __UpperCAmelCase : List[str] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : Union[str, Any] = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented") else: __UpperCAmelCase : Optional[Any] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCAmelCase : Tuple = int(max_length / len(UpperCamelCase_)) __UpperCAmelCase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1))[:max_length] if padding == "repeatpad": __UpperCAmelCase : Union[str, Any] = int(max_length / len(UpperCamelCase_)) __UpperCAmelCase : Optional[Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : int = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0) if truncation == "fusion": __UpperCAmelCase : Any = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters) __UpperCAmelCase : List[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: __UpperCAmelCase : Optional[int] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self : Dict , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Any , ): """simple docstring""" __UpperCAmelCase : int = truncation if truncation is not None else self.truncation __UpperCAmelCase : Optional[Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug.") __UpperCAmelCase : List[str] = isinstance(UpperCamelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}") __UpperCAmelCase : str = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __UpperCAmelCase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray): __UpperCAmelCase : Tuple = np.asarray(UpperCamelCase_ , dtype=np.floataa) elif isinstance(UpperCamelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __UpperCAmelCase : Optional[int] = raw_speech.astype(np.floataa) # always return batch if not is_batched: __UpperCAmelCase : int = [np.asarray(UpperCamelCase_)] # convert to mel spectrogram, truncate and pad if needed. __UpperCAmelCase : Optional[int] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_) for waveform in raw_speech ] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : List[Any] = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_) is_longer.append(UpperCamelCase_) if truncation == "fusion" and sum(UpperCamelCase_) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCAmelCase : Any = np.random.randint(0 , len(UpperCamelCase_)) __UpperCAmelCase : Optional[int] = True if isinstance(input_mel[0] , UpperCamelCase_): __UpperCAmelCase : Tuple = [np.asarray(UpperCamelCase_ , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool __UpperCAmelCase : List[str] = [[longer] for longer in is_longer] __UpperCAmelCase : Optional[int] = {"input_features": input_mel, "is_longer": is_longer} __UpperCAmelCase : Optional[int] = BatchFeature(UpperCamelCase_) if return_tensors is not None: __UpperCAmelCase : Any = input_features.convert_to_tensors(UpperCamelCase_) return input_features
77
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase : Tuple = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , ): '''simple docstring''' if attention_mask is None: _SCREAMING_SNAKE_CASE = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _SCREAMING_SNAKE_CASE = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __snake_case: def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=16 , A_=2 , A_=4 , A_=4 , A_="gelu" , A_=0.1 , A_=0.1 , A_=32 , A_=2 , A_=1 , A_=0 , A_=0.02 , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = seq_length _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = eos_token_id _SCREAMING_SNAKE_CASE = pad_token_id _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = initializer_range def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _SCREAMING_SNAKE_CASE = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _SCREAMING_SNAKE_CASE = shift_tokens_right(A_ , 1 , 2 ) _SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=A_ , ) _SCREAMING_SNAKE_CASE = prepare_blenderbot_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def A ( self , A_ , A_ , A_ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 20 _SCREAMING_SNAKE_CASE = model_class_name(A_ ) _SCREAMING_SNAKE_CASE = model.encode(inputs_dict['''input_ids'''] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , A_ , A_ ) _SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , A_ , decoder_attention_mask=A_ , past_key_values=A_ , decoder_position_ids=A_ , ) _SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , A_ , decoder_attention_mask=A_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A_ , ) _SCREAMING_SNAKE_CASE = model.decode(A_ , A_ ) _SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) def A ( self , A_ , A_ , A_ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 20 _SCREAMING_SNAKE_CASE = model_class_name(A_ ) _SCREAMING_SNAKE_CASE = model.encode(inputs_dict['''input_ids'''] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] , A_ , A_ ) _SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] , A_ , decoder_attention_mask=A_ , past_key_values=A_ , decoder_position_ids=A_ , ) _SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] , A_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A_ , decoder_position_ids=A_ , ) _SCREAMING_SNAKE_CASE = model.decode(A_ , A_ , decoder_attention_mask=A_ ) _SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'''Max diff is {diff}''' ) @require_flax class __snake_case( unittest.TestCase ): _A = 99 def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _SCREAMING_SNAKE_CASE = input_ids.shape[0] _SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self._get_config_and_data() _SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration(A_ ) _SCREAMING_SNAKE_CASE = lm_model(input_ids=A_ ) _SCREAMING_SNAKE_CASE = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , A_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration(A_ ) _SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE = lm_model(input_ids=A_ , decoder_input_ids=A_ ) _SCREAMING_SNAKE_CASE = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , A_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _SCREAMING_SNAKE_CASE = shift_tokens_right(A_ , 1 , 2 ) _SCREAMING_SNAKE_CASE = np.equal(A_ , 1 ).astype(np.floataa ).sum() _SCREAMING_SNAKE_CASE = np.equal(A_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(A_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __snake_case( __A , unittest.TestCase , __A ): _A = True _A = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _A = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = FlaxBlenderbotModelTester(self ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A_ , A_ , A_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A_ , A_ , A_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE = self._prepare_for_class(A_ , A_ ) _SCREAMING_SNAKE_CASE = model_class(A_ ) @jax.jit def encode_jitted(A_ , A_=None , **A_ ): return model.encode(input_ids=A_ , attention_mask=A_ ) with self.subTest('''JIT Enabled''' ): _SCREAMING_SNAKE_CASE = encode_jitted(**A_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE = encode_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _SCREAMING_SNAKE_CASE = model_class(A_ ) _SCREAMING_SNAKE_CASE = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _SCREAMING_SNAKE_CASE = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(A_ , A_ , A_ ): return model.decode( decoder_input_ids=A_ , decoder_attention_mask=A_ , encoder_outputs=A_ , ) with self.subTest('''JIT Enabled''' ): _SCREAMING_SNAKE_CASE = decode_jitted(**A_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _SCREAMING_SNAKE_CASE = decode_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _SCREAMING_SNAKE_CASE = np.ones((1, 1) ) * model.config.eos_token_id _SCREAMING_SNAKE_CASE = model(A_ ) self.assertIsNotNone(A_ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} _SCREAMING_SNAKE_CASE = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} _SCREAMING_SNAKE_CASE = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=A_ ) _SCREAMING_SNAKE_CASE = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) _SCREAMING_SNAKE_CASE = ['''Sam'''] _SCREAMING_SNAKE_CASE = tokenizer(A_ , return_tensors='''jax''' ) _SCREAMING_SNAKE_CASE = model.generate(**A_ , **A_ ) _SCREAMING_SNAKE_CASE = '''Sam is a great name. It means "sun" in Gaelic.''' _SCREAMING_SNAKE_CASE = tokenizer.batch_decode(A_ , **A_ ) assert generated_txt[0].strip() == tgt_text
168
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __snake_case( unittest.TestCase ): def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _SCREAMING_SNAKE_CASE = '''fp16''' self.assertTrue(is_safetensors_compatible(A_ , variant=A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _SCREAMING_SNAKE_CASE = '''fp16''' self.assertTrue(is_safetensors_compatible(A_ , variant=A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] _SCREAMING_SNAKE_CASE = '''fp16''' self.assertTrue(is_safetensors_compatible(A_ , variant=A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] _SCREAMING_SNAKE_CASE = '''fp16''' self.assertFalse(is_safetensors_compatible(A_ , variant=A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] _SCREAMING_SNAKE_CASE = '''fp16''' self.assertTrue(is_safetensors_compatible(A_ , variant=A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] _SCREAMING_SNAKE_CASE = '''fp16''' self.assertTrue(is_safetensors_compatible(A_ , variant=A_ ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] _SCREAMING_SNAKE_CASE = '''fp16''' self.assertFalse(is_safetensors_compatible(A_ , variant=A_ ) )
168
1
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort lowerCAmelCase__ = '''1''' lowerCAmelCase__ = '''0''' lowerCAmelCase__ = '''1''' lowerCAmelCase__ = ort.SessionOptions() lowerCAmelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') lowerCAmelCase__ = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowerCAmelCase__ = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) lowerCAmelCase__ = ort.RunOptions() lowerCAmelCase__ = 128 lowerCAmelCase__ = 1 lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') lowerCAmelCase__ = time.time() lowerCAmelCase__ = 2000 lowerCAmelCase__ = {} for iter in range(max_iters): lowerCAmelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
83
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "blenderbot-small" __lowerCamelCase : Optional[Any] = ["past_key_values"] __lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase = {0: "batch"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(_lowerCAmelCase , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape _lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers _lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["attention_mask"].dtype _lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
18
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : float | Decimal , UpperCAmelCase_ : float = 1_0**-1_0 ) -> float: '''simple docstring''' _UpperCamelCase : Optional[Any] = a while True: _UpperCamelCase : Optional[Any] = Decimal(UpperCAmelCase_ ) - ( Decimal(eval(UpperCAmelCase_ ) ) / Decimal(eval(str(diff(UpperCAmelCase_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(UpperCAmelCase_ ) ) < precision: # noqa: S307 return float(UpperCAmelCase_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(f'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(f'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(f'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
648
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """▁""" lowerCAmelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCAmelCase__ = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["input_ids", "attention_mask"] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__snake_case)) _UpperCamelCase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase : int = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase : List[Any] = 1 _UpperCamelCase : Any = len(self.sp_model) + self.fairseq_offset _UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): _UpperCamelCase : List[Any] = self.__dict__.copy() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __snake_case): _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def A__ ( self , __snake_case , __snake_case = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase : Tuple = [self.cls_token_id] _UpperCamelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is None: return [1] + ([0] * len(__snake_case)) + [1] return [1] + ([0] * len(__snake_case)) + [1, 1] + ([0] * len(__snake_case)) + [1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self , __snake_case): return self.sp_model.encode(__snake_case , out_type=__snake_case) def A__ ( self , __snake_case): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase : str = self.sp_model.PieceToId(__snake_case) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , __snake_case): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self , __snake_case): _UpperCamelCase : Optional[int] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : str = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] )-> Dict: A__ = os.path.join(args.tf_model_dir , '''parameters.json''' ) A__ = json.loads(open(a_ ).read() ) if not params: raise ValueError( f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith('''.pt''' ): A__ = args.output + '''.pt''' A__ = OrderedDict() with tf.device('''/CPU:0''' ): A__ = tf.train.load_checkpoint(args.tf_model_dir ) A__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): A__ = reader.get_tensor(a_ ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): A__ = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): A__ = 8 A__ = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(a_ ) elif key_name.startswith('''model/moe''' ): A__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): A__ = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(a_ ) elif key_name.endswith('''/softmlp/kernel''' ): A__ = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(a_ ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): A__ = key_name[-9:-7] for i in range(1_6 ): A__ = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) A__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided A__ = torch.tensor(a_ ) elif key_name.startswith('''model/mlp''' ): A__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): A__ = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(a_ ) elif key_name.endswith('''/p1/bias''' ): A__ = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(a_ ) elif key_name.endswith('''/p2/kernel''' ): A__ = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(a_ ) elif key_name.endswith('''/p2/bias''' ): A__ = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(a_ ) elif key_name.startswith('''model/ln''' ): A__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A__ = '''model.blocks.%d.feed_forward.norm.bias''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(a_ ) elif key_name.endswith('''/g''' ): A__ = '''model.blocks.%d.feed_forward.norm.weight''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(a_ ) elif key_name.startswith('''model/att''' ): A__ = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): A__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum A__ = state[:, 0, :, :] A__ = state[:, 1, :, :] A__ = state[:, 2, :, :] A__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix A__ = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player A__ = torch.tensor(a_ ) A__ = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player A__ = torch.tensor(a_ ) A__ = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player A__ = torch.tensor(a_ ) elif key_name.endswith('''/o/kernel''' ): A__ = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player A__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(a_ ) elif key_name.startswith('''model/an''' ): A__ = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): A__ = '''model.blocks.%d.self_attn.norm.bias''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(a_ ) elif key_name.endswith('''/g''' ): A__ = '''model.blocks.%d.self_attn.norm.weight''' % player A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(a_ ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): A__ = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] A__ = '''model.%s.weight''' % nlayer A__ = vnp.copy() # same in embedded A__ = torch.tensor(a_ ) if key_name.startswith('''model/wte''' ): A__ = '''lm_head.weight''' A__ = vnp.copy() # same in embedded A__ = torch.tensor(a_ ) elif key_name.startswith('''model/wob''' ): A__ = '''final_logits_bias''' A__ = vnp.copy() # same in embedded A__ = state.reshape((1, -1) ) A__ = torch.tensor(a_ ) elif key_name == "model/dense/kernel": A__ = '''model.last_project.weight''' A__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix A__ = torch.tensor(a_ ) elif key_name == "model/dense_1/bias": A__ = '''model.last_project.bias''' A__ = vnp.copy() # same because it is one dimensional A__ = torch.tensor(a_ ) torch.save(a_ , args.output ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") _lowercase = parser.parse_args() convert_tf_gptsan_to_pt(args)
632
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ = logging.getLogger() def SCREAMING_SNAKE_CASE ( a_ : Path , a_ : list ): __a = '\n'.join(a_ ) Path(a_ ).open('w' ).writelines(a_ ) UpperCAmelCase_ = "patrickvonplaten/t5-tiny-random" UpperCAmelCase_ = "sshleifer/bart-tiny-random" UpperCAmelCase_ = "sshleifer/tiny-mbart" UpperCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __lowercase ( __magic_name__ ): def UpperCamelCase__ ( self , UpperCamelCase ) -> Dict: __a = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' __a = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __a = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(UpperCamelCase , UpperCamelCase ) __a = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) __a = 'translation_en_to_de' if model == T5_TINY else 'summarization' __a = f"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split() with patch.object(UpperCamelCase , 'argv' , UpperCamelCase ): run_generate() assert Path(UpperCamelCase ).exists() # os.remove(Path(output_file_name)) def UpperCamelCase__ ( self ) -> int: self.run_eval_tester(UpperCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def UpperCamelCase__ ( self , UpperCamelCase ) -> Union[str, Any]: self.run_eval_tester(UpperCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def UpperCamelCase__ ( self , UpperCamelCase ) -> Optional[Any]: __a = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' __a = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __a = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } __a = Path(self.get_auto_remove_tmp_dir() ) __a = str(tmp_dir / 'scores.json' ) __a = str(tmp_dir / 'val.target' ) _dump_articles(UpperCamelCase , text['en'] ) _dump_articles(UpperCamelCase , text['de'] ) __a = 'translation_en_to_de' if model == T5_TINY else 'summarization' __a = f"\n run_eval_search.py\n {model}\n {str(UpperCamelCase )}\n {str(UpperCamelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(UpperCamelCase , 'argv' , UpperCamelCase ): with CaptureStdout() as cs: run_search() __a = [' num_beams | length_penalty', model, 'Best score args'] __a = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(UpperCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(UpperCamelCase ).exists() os.remove(Path(UpperCamelCase ) )
539
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """layoutlmv3""" def __init__( self , __UpperCAmelCase=5_02_65 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , __UpperCAmelCase=1_28 , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=1_28 , __UpperCAmelCase=64 , __UpperCAmelCase=2_56 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2_24 , __UpperCAmelCase=3 , __UpperCAmelCase=16 , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Optional[int]: super().__init__( vocab_size=__UpperCAmelCase , hidden_size=__UpperCAmelCase , num_hidden_layers=__UpperCAmelCase , num_attention_heads=__UpperCAmelCase , intermediate_size=__UpperCAmelCase , hidden_act=__UpperCAmelCase , hidden_dropout_prob=__UpperCAmelCase , attention_probs_dropout_prob=__UpperCAmelCase , max_position_embeddings=__UpperCAmelCase , type_vocab_size=__UpperCAmelCase , initializer_range=__UpperCAmelCase , layer_norm_eps=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) a_ = max_ad_position_embeddings a_ = coordinate_size a_ = shape_size a_ = has_relative_attention_bias a_ = rel_pos_bins a_ = max_rel_pos a_ = has_spatial_attention_bias a_ = rel_ad_pos_bins a_ = max_rel_ad_pos a_ = text_embed a_ = visual_embed a_ = input_size a_ = num_channels a_ = patch_size a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Any = version.parse("""1.12""" ) @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ]) @property def UpperCAmelCase__ ( self) ->float: return 1E-5 @property def UpperCAmelCase__ ( self) ->int: return 12 def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = 3 , __UpperCAmelCase = 40 , __UpperCAmelCase = 40 , ) ->Mapping[str, Any]: setattr(processor.image_processor , "apply_ocr" , __UpperCAmelCase) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a_ = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a_ = processor.tokenizer.num_special_tokens_to_add(__UpperCAmelCase) a_ = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase) # Generate dummy inputs according to compute batch and sequence a_ = [[" ".join([processor.tokenizer.unk_token]) * seq_length]] * batch_size # Generate dummy bounding boxes a_ = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) a_ = self._generate_dummy_images(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = dict( processor( __UpperCAmelCase , text=__UpperCAmelCase , boxes=__UpperCAmelCase , return_tensors=__UpperCAmelCase , )) return inputs
210
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Dict = ConsistencyModelPipeline a_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS a_ : List[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt a_ : int = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCAmelCase__ ( self) ->Dict: a_ = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def UpperCAmelCase__ ( self) ->Optional[int]: a_ = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def UpperCAmelCase__ ( self , __UpperCAmelCase=False) ->Optional[Any]: if class_cond: a_ = self.dummy_cond_unet else: a_ = self.dummy_uncond_unet # Default to CM multistep sampler a_ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) a_ = { "unet": unet, "scheduler": scheduler, } return components def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=0) ->Any: if str(__UpperCAmelCase).startswith("mps"): a_ = torch.manual_seed(__UpperCAmelCase) else: a_ = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a_ = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def UpperCAmelCase__ ( self) ->Optional[int]: a_ = "cpu" # ensure determinism for the device-dependent torch.Generator a_ = self.get_dummy_components() a_ = ConsistencyModelPipeline(**__UpperCAmelCase) a_ = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_dummy_inputs(__UpperCAmelCase) a_ = pipe(**__UpperCAmelCase).images assert image.shape == (1, 32, 32, 3) a_ = image[0, -3:, -3:, -1] a_ = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCAmelCase__ ( self) ->str: a_ = "cpu" # ensure determinism for the device-dependent torch.Generator a_ = self.get_dummy_components(class_cond=__UpperCAmelCase) a_ = ConsistencyModelPipeline(**__UpperCAmelCase) a_ = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_dummy_inputs(__UpperCAmelCase) a_ = 0 a_ = pipe(**__UpperCAmelCase).images assert image.shape == (1, 32, 32, 3) a_ = image[0, -3:, -3:, -1] a_ = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = "cpu" # ensure determinism for the device-dependent torch.Generator a_ = self.get_dummy_components() a_ = ConsistencyModelPipeline(**__UpperCAmelCase) a_ = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_dummy_inputs(__UpperCAmelCase) a_ = 1 a_ = None a_ = pipe(**__UpperCAmelCase).images assert image.shape == (1, 32, 32, 3) a_ = image[0, -3:, -3:, -1] a_ = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = "cpu" # ensure determinism for the device-dependent torch.Generator a_ = self.get_dummy_components(class_cond=__UpperCAmelCase) a_ = ConsistencyModelPipeline(**__UpperCAmelCase) a_ = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_dummy_inputs(__UpperCAmelCase) a_ = 1 a_ = None a_ = 0 a_ = pipe(**__UpperCAmelCase).images assert image.shape == (1, 32, 32, 3) a_ = image[0, -3:, -3:, -1] a_ = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=(1, 3, 64, 64)) ->Tuple: a_ = torch.manual_seed(__UpperCAmelCase) a_ = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: a_ = self.get_fixed_latents(seed=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase , shape=__UpperCAmelCase) a_ = latents return inputs def UpperCAmelCase__ ( self , __UpperCAmelCase=0 , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=(1, 3, 64, 64)) ->Dict: if type(__UpperCAmelCase) == str: a_ = torch.device(__UpperCAmelCase) a_ = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a_ = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase) return latents def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") a_ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) a_ = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase) pipe.to(torch_device=__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_inputs() a_ = pipe(**__UpperCAmelCase).images assert image.shape == (1, 64, 64, 3) a_ = image[0, -3:, -3:, -1] a_ = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 def UpperCAmelCase__ ( self) ->Dict: a_ = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") a_ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) a_ = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase) pipe.to(torch_device=__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_inputs() a_ = 1 a_ = None a_ = pipe(**__UpperCAmelCase).images assert image.shape == (1, 64, 64, 3) a_ = image[0, -3:, -3:, -1] a_ = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2 @require_torch_a def UpperCAmelCase__ ( self) ->List[Any]: a_ = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") a_ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) a_ = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase) pipe.to(torch_device=__UpperCAmelCase , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_inputs(get_fixed_latents=__UpperCAmelCase , device=__UpperCAmelCase) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__UpperCAmelCase , enable_math=__UpperCAmelCase , enable_mem_efficient=__UpperCAmelCase): a_ = pipe(**__UpperCAmelCase).images assert image.shape == (1, 64, 64, 3) a_ = image[0, -3:, -3:, -1] a_ = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 @require_torch_a def UpperCAmelCase__ ( self) ->Optional[int]: a_ = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") a_ = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) a_ = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase) pipe.to(torch_device=__UpperCAmelCase , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = self.get_inputs(get_fixed_latents=__UpperCAmelCase , device=__UpperCAmelCase) a_ = 1 a_ = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__UpperCAmelCase , enable_math=__UpperCAmelCase , enable_mem_efficient=__UpperCAmelCase): a_ = pipe(**__UpperCAmelCase).images assert image.shape == (1, 64, 64, 3) a_ = image[0, -3:, -3:, -1] a_ = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
210
1
import re from filelock import FileLock try: import nltk lowercase = True except (ImportError, ModuleNotFoundError): lowercase = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __lowerCAmelCase ( UpperCAmelCase__ : str ) -> str: re.sub("""<n>""" , """""" , UpperCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCAmelCase__ ) )
272
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
272
1
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _UpperCamelCase : List[Any] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _UpperCamelCase : int = get_tests_dir("fixtures/vocab.json") _UpperCamelCase : Dict = get_tests_dir("fixtures") class _snake_case ( unittest.TestCase ): SCREAMING_SNAKE_CASE : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = WavaVecaConfig() lowerCAmelCase = AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.json' ) ) lowerCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = WavaVecaFeatureExtractor() lowerCAmelCase = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) lowerCAmelCase = WavaVecaProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # drop `processor_class` in tokenizer with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 'r' ) as f: lowerCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) config_dict.pop('processor_class' ) with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 'w' ) as f: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = WavaVecaFeatureExtractor() lowerCAmelCase = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) lowerCAmelCase = WavaVecaProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # drop `processor_class` in feature extractor with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 'r' ) as f: lowerCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) config_dict.pop('processor_class' ) with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 'w' ) as f: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) # copy relevant files copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 'w' ) as f: f.write('{}' ) lowerCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) lowerCAmelCase = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) lowerCAmelCase = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version lowerCAmelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' try: AutoConfig.register('custom' , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.txt' ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowerCAmelCase = CustomTokenizer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = CustomProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Dict = False class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : str = False class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Optional[Any] = '''AutoFeatureExtractor''' SCREAMING_SNAKE_CASE : Optional[Any] = '''AutoTokenizer''' SCREAMING_SNAKE_CASE : Any = False try: AutoConfig.register('custom' , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local classes. lowerCAmelCase = AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowerCAmelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowerCAmelCase = AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class _snake_case ( unittest.TestCase ): SCREAMING_SNAKE_CASE : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' lowerCAmelCase = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def _SCREAMING_SNAKE_CASE ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = WavaVecaProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_SCREAMING_SNAKE_CASE , 'test-processor' ) , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) lowerCAmelCase = WavaVecaProcessor.from_pretrained(F'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , _SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = WavaVecaProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_SCREAMING_SNAKE_CASE , 'test-processor-org' ) , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization='valid_org' , ) lowerCAmelCase = WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , _SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowerCAmelCase = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , 'vocab.txt' ) with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) lowerCAmelCase = CustomTokenizer(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = CustomProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'{USER}/test-dynamic-processor' , token=self._token ) lowerCAmelCase = Repository(_SCREAMING_SNAKE_CASE , clone_from=F'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_SCREAMING_SNAKE_CASE , 'tokenizer_config.json' ) ) as f: lowerCAmelCase = json.load(_SCREAMING_SNAKE_CASE ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , 'custom_processing.py' ) ) ) repo.push_to_hub() lowerCAmelCase = AutoProcessor.from_pretrained(F'{USER}/test-dynamic-processor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
514
'''simple docstring''' _UpperCamelCase : Optional[int] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _UpperCamelCase : str = [{"type": "code", "content": INSTALL_CONTENT}] _UpperCamelCase : Any = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
514
1
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowerCamelCase__ : def __init__( self : Any , A_ : int ): '''simple docstring''' if isinstance(A_ , A_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __lowercase = deepcopy(A_ ) elif os.path.exists(A_ ): with io.open(A_ , """r""" , encoding="""utf-8""" ) as f: __lowercase = json.load(A_ ) else: try: __lowercase = baseaa.urlsafe_baadecode(A_ ).decode("""utf-8""" ) __lowercase = json.loads(A_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) __lowercase = config self.set_stage_and_offload() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = self.get_value("""zero_optimization.stage""" , -1 ) # offload __lowercase = False if self.is_zeroa() or self.is_zeroa(): __lowercase = set(["""cpu""", """nvme"""] ) __lowercase = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __lowercase = True def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : Dict ): '''simple docstring''' __lowercase = self.config # find the config node of interest if it exists __lowercase = ds_key_long.split(""".""" ) __lowercase = nodes.pop() for node in nodes: __lowercase = config.get(A_ ) if config is None: return None, ds_key return config, ds_key def SCREAMING_SNAKE_CASE_ ( self : Any , A_ : int , A_ : List[str]=None ): '''simple docstring''' __lowercase , __lowercase = self.find_config_node(A_ ) if config is None: return default return config.get(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : Dict , A_ : str=False ): '''simple docstring''' __lowercase = self.config # find the config node of interest if it exists __lowercase = ds_key_long.split(""".""" ) for node in nodes: __lowercase = config __lowercase = config.get(A_ ) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(A_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : List[Any] ): '''simple docstring''' __lowercase = self.get_value(A_ ) return False if value is None else bool(A_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : List[Any] ): '''simple docstring''' __lowercase = self.get_value(A_ ) return False if value is None else not bool(A_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return self._stage == 2 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self._stage == 3 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return self._offload class lowerCamelCase__ : def __init__( self : Union[str, Any] , A_ : Union[str, Any] ): '''simple docstring''' __lowercase = engine def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : str , **A_ : Any ): '''simple docstring''' self.engine.backward(A_ , **A_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowerCamelCase__ ( _a ): def __init__( self : Optional[int] , A_ : str ): '''simple docstring''' super().__init__(A_ , device_placement=A_ , scaler=A_ ) __lowercase = hasattr(self.optimizer , """overflow""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : str=None ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class lowerCamelCase__ ( _a ): def __init__( self : List[str] , A_ : Dict , A_ : List[str] ): '''simple docstring''' super().__init__(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowerCamelCase__ : def __init__( self : Dict , A_ : Any , A_ : int=0.0_01 , A_ : Union[str, Any]=0 , **A_ : Dict ): '''simple docstring''' __lowercase = params __lowercase = lr __lowercase = weight_decay __lowercase = kwargs class lowerCamelCase__ : def __init__( self : Union[str, Any] , A_ : Union[str, Any] , A_ : Any=None , A_ : str=0 , **A_ : int ): '''simple docstring''' __lowercase = optimizer __lowercase = total_num_steps __lowercase = warmup_num_steps __lowercase = kwargs
616
"""simple docstring""" class lowerCamelCase__ : def __init__( self : Optional[Any] , A_ : Dict , A_ : str , A_ : Any ): '''simple docstring''' __lowercase = None __lowercase = None __lowercase = graph self._normalize_graph(A_ , A_ ) __lowercase = len(A_ ) __lowercase = None def SCREAMING_SNAKE_CASE_ ( self : Dict , A_ : str , A_ : List[Any] ): '''simple docstring''' if sources is int: __lowercase = [sources] if sinks is int: __lowercase = [sinks] if len(A_ ) == 0 or len(A_ ) == 0: return __lowercase = sources[0] __lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(A_ ) > 1 or len(A_ ) > 1: __lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __lowercase = max_input_flow __lowercase = 0 __lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __lowercase = max_input_flow __lowercase = size - 1 def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : Dict ): '''simple docstring''' __lowercase = algorithm(self ) class lowerCamelCase__ : def __init__( self : Tuple , A_ : Optional[int] ): '''simple docstring''' __lowercase = flow_network __lowercase = flow_network.verticesCount __lowercase = flow_network.sourceIndex __lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __lowercase = flow_network.graph __lowercase = False def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' if not self.executed: self._algorithm() __lowercase = True def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' pass class lowerCamelCase__ ( _a ): def __init__( self : Union[str, Any] , A_ : int ): '''simple docstring''' super().__init__(A_ ) # use this to save your result __lowercase = -1 def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase__ ( _a ): def __init__( self : List[str] , A_ : Tuple ): '''simple docstring''' super().__init__(A_ ) __lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] __lowercase = [0] * self.verticies_count __lowercase = [0] * self.verticies_count def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __lowercase = 0 while i < len(A_ ): __lowercase = vertices_list[i] __lowercase = self.heights[vertex_index] self.process_vertex(A_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A_ ) ) __lowercase = 0 else: i += 1 __lowercase = sum(self.preflow[self.source_index] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Optional[int] ): '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A_ , A_ ) self.relabel(A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , A_ : Union[str, Any] , A_ : List[str] ): '''simple docstring''' __lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Optional[Any] ): '''simple docstring''' __lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __lowercase = self.heights[to_index] if min_height is not None: __lowercase = min_height + 1 if __name__ == "__main__": UpperCAmelCase__ =[0] UpperCAmelCase__ =[3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase__ =[[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase__ =FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase__ =flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
616
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( _a : str , _a : list[str] | None = None , _a : dict[str, float] | None = None , _a : bool = False , ): '''simple docstring''' UpperCAmelCase_ : int = cipher_alphabet or [chr(_a ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) UpperCAmelCase_ : int = { """a""": 0.0_8_4_9_7, """b""": 0.0_1_4_9_2, """c""": 0.0_2_2_0_2, """d""": 0.0_4_2_5_3, """e""": 0.1_1_1_6_2, """f""": 0.0_2_2_2_8, """g""": 0.0_2_0_1_5, """h""": 0.0_6_0_9_4, """i""": 0.0_7_5_4_6, """j""": 0.0_0_1_5_3, """k""": 0.0_1_2_9_2, """l""": 0.0_4_0_2_5, """m""": 0.0_2_4_0_6, """n""": 0.0_6_7_4_9, """o""": 0.0_7_5_0_7, """p""": 0.0_1_9_2_9, """q""": 0.0_0_0_9_5, """r""": 0.0_7_5_8_7, """s""": 0.0_6_3_2_7, """t""": 0.0_9_3_5_6, """u""": 0.0_2_7_5_8, """v""": 0.0_0_9_7_8, """w""": 0.0_2_5_6_0, """x""": 0.0_0_1_5_0, """y""": 0.0_1_9_9_4, """z""": 0.0_0_0_7_7, } else: # Custom frequencies dictionary UpperCAmelCase_ : Tuple = frequencies_dict if not case_sensitive: UpperCAmelCase_ : Any = ciphertext.lower() # Chi squared statistic values UpperCAmelCase_ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_a ) ): UpperCAmelCase_ : Optional[int] = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet UpperCAmelCase_ : Any = (alphabet_letters.index(letter.lower() ) - shift) % len( _a ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter UpperCAmelCase_ : int = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: UpperCAmelCase_ : Tuple = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message UpperCAmelCase_ : int = decrypted_with_shift.lower().count(_a ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCAmelCase_ : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCAmelCase_ : List[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message UpperCAmelCase_ : List[str] = decrypted_with_shift.count(_a ) # Get the excepcted amount of times the letter should appear based # on letter frequencies UpperCAmelCase_ : Dict = frequencies[letter] * occurrences # Complete the chi squared statistic formula UpperCAmelCase_ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary UpperCAmelCase_ : List[str] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_a : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] UpperCAmelCase_ : int = min( _a , key=_a , ) # Get all the data from the most likely cipher (key, decoded message) ( UpperCAmelCase_ ) : Tuple = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
721
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: List[Any]=7 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: int=True ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=99 ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Dict=5 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: Any=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Any=512 ,lowerCamelCase_: List[Any]=16 ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: List[Any]=0.0_2 ,lowerCamelCase_: Dict=4 ,) -> Any: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_attention_mask UpperCAmelCase_ : str = use_token_type_ids UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[Any] = num_choices def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Optional[Any] = None if self.use_attention_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Any = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=lowerCamelCase_ ,) return config, input_ids, attention_mask def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : int = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : Tuple = FlaxDistilBertModelTester(self ) @slow def A__ ( self: Optional[Any] ) -> List[Any]: for model_class_name in self.all_model_classes: UpperCAmelCase_ : int = model_class_name.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase_ : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ ) @require_flax class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Dict = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) UpperCAmelCase_ : Union[str, Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCAmelCase_ : Any = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ )[0] UpperCAmelCase_ : Tuple = (1, 11, 768) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,lowerCamelCase_ ,atol=1e-4 ) )
322
0
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = [int(a__ ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(a__ ) == 4 and all(0 <= int(a__ ) <= 254 for octet in octets ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = input().strip() _UpperCAmelCase : Optional[Any] = '''valid''' if is_ip_va_address_valid(ip) else '''invalid''' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
362
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = KandinskyImgaImgPipeline UpperCAmelCase = ["prompt", "image_embeds", "negative_image_embeds", "image"] UpperCAmelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] UpperCAmelCase = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase = False @property def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" return self.time_input_dim @property def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return self.time_input_dim * 4 @property def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return 100 @property def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _SCREAMING_SNAKE_CASE =MultilingualCLIP(_a ) _SCREAMING_SNAKE_CASE =text_encoder.eval() return text_encoder @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _SCREAMING_SNAKE_CASE =UNetaDConditionModel(**_a ) return model @property def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self : str ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.dummy_text_encoder _SCREAMING_SNAKE_CASE =self.dummy_tokenizer _SCREAMING_SNAKE_CASE =self.dummy_unet _SCREAMING_SNAKE_CASE =self.dummy_movq _SCREAMING_SNAKE_CASE ={ '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } _SCREAMING_SNAKE_CASE =DDIMScheduler(**_a ) _SCREAMING_SNAKE_CASE ={ '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self : str , _a : int , _a : int=0 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _SCREAMING_SNAKE_CASE =floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((256, 256) ) if str(_a ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**_a ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs(_a ) ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _SCREAMING_SNAKE_CASE ='''A red cartoon frog, 4k''' _SCREAMING_SNAKE_CASE =KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _SCREAMING_SNAKE_CASE =KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE =pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =torch.Generator(device='''cpu''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _SCREAMING_SNAKE_CASE =pipeline( _a , image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
691
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __lowerCAmelCase = threading.Lock() __lowerCAmelCase = None __lowerCAmelCase = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } __lowerCAmelCase = logging.WARNING __lowerCAmelCase = True def _lowercase ( ) -> List[str]: """simple docstring""" _UpperCamelCase = os.getenv("TRANSFORMERS_VERBOSITY" , UpperCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def _lowercase ( ) -> int: """simple docstring""" return __name__.split("." )[0] def _lowercase ( ) -> str: """simple docstring""" return logging.getLogger(_get_library_name() ) def _lowercase ( ) -> int: """simple docstring""" global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _UpperCamelCase = logging.StreamHandler() # Set sys.stderr as stream. _UpperCamelCase = sys.stderr.flush # Apply our default configuration to the library root logger. _UpperCamelCase = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _UpperCamelCase = False def _lowercase ( ) -> List[Any]: """simple docstring""" global _default_handler with _lock: if not _default_handler: return _UpperCamelCase = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _UpperCamelCase = None def _lowercase ( ) -> Optional[int]: """simple docstring""" return log_levels def _lowercase ( a__ : Optional[str] = None ) -> Optional[Any]: """simple docstring""" if name is None: _UpperCamelCase = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCamelCase__ ) def _lowercase ( ) -> Optional[Any]: """simple docstring""" _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _lowercase ( a__ : int ) -> int: """simple docstring""" _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCamelCase__ ) def _lowercase ( ) -> List[Any]: """simple docstring""" return set_verbosity(UpperCamelCase__ ) def _lowercase ( ) -> Tuple: """simple docstring""" return set_verbosity(UpperCamelCase__ ) def _lowercase ( ) -> Tuple: """simple docstring""" return set_verbosity(UpperCamelCase__ ) def _lowercase ( ) -> Any: """simple docstring""" return set_verbosity(UpperCamelCase__ ) def _lowercase ( ) -> List[str]: """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _lowercase ( ) -> Optional[int]: """simple docstring""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _lowercase ( a__ : logging.Handler ) -> str: """simple docstring""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCamelCase__ ) def _lowercase ( a__ : logging.Handler ) -> Optional[int]: """simple docstring""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCamelCase__ ) def _lowercase ( ) -> Dict: """simple docstring""" _configure_library_root_logger() _UpperCamelCase = False def _lowercase ( ) -> List[Any]: """simple docstring""" _configure_library_root_logger() _UpperCamelCase = True def _lowercase ( ) -> Tuple: """simple docstring""" _UpperCamelCase = _get_library_root_logger().handlers for handler in handlers: _UpperCamelCase = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(UpperCamelCase__ ) def _lowercase ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCamelCase__ ) def _lowercase ( self : str , *a__ : Any , **a__ : Dict ) -> int: """simple docstring""" _UpperCamelCase = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , UpperCamelCase__ ) if no_advisory_warnings: return self.warning(*UpperCamelCase__ , **UpperCamelCase__ ) __lowerCAmelCase = warning_advice @functools.lru_cache(UpperCamelCase__ ) def _lowercase ( self : Dict , *a__ : str , **a__ : Optional[int] ) -> List[Any]: """simple docstring""" self.warning(*UpperCamelCase__ , **UpperCamelCase__ ) __lowerCAmelCase = warning_once class lowerCamelCase_ : def __init__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> str: # pylint: disable=unused-argument """simple docstring""" _UpperCamelCase = args[0] if args else None def __iter__( self ) -> List[str]: """simple docstring""" return iter(self._iterator ) def __getattr__( self , lowerCamelCase_ ) -> List[Any]: """simple docstring""" def empty_fn(*lowerCamelCase_ , **lowerCamelCase_ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> str: """simple docstring""" return self def __exit__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: """simple docstring""" return class lowerCamelCase_ : def __call__( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> List[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*__A , **__A ) else: return EmptyTqdm(*__A , **__A ) def lowercase ( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> str: """simple docstring""" _UpperCamelCase = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__A , **__A ) def lowercase ( self ) -> List[Any]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() __lowerCAmelCase = _tqdm_cls() def _lowercase ( ) -> List[str]: """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def _lowercase ( ) -> Optional[Any]: """simple docstring""" global _tqdm_active _UpperCamelCase = True hf_hub_utils.enable_progress_bars() def _lowercase ( ) -> int: """simple docstring""" global _tqdm_active _UpperCamelCase = False hf_hub_utils.disable_progress_bars()
715
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( lowercase , unittest.TestCase ): __lowercase : Union[str, Any] = AlbertTokenizer __lowercase : Any = AlbertTokenizerFast __lowercase : Dict = True __lowercase : Union[str, Any] = True __lowercase : str = True def lowercase ( self ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = AlbertTokenizer(lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase ( self , lowerCamelCase_ ) -> List[str]: """simple docstring""" _UpperCamelCase = "this is a test" _UpperCamelCase = "this is a test" return input_text, output_text def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = "<pad>" _UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(lowerCamelCase_ ) , 3_00_00 ) def lowercase ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def lowercase ( self ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = "I was born in 92000, and this is falsé." _UpperCamelCase = tokenizer.tokenize(lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(lowerCamelCase_ ) _UpperCamelCase = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = AlbertTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) _UpperCamelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [48, 25, 21, 12_89] ) _UpperCamelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def lowercase ( self ) -> str: """simple docstring""" _UpperCamelCase = AlbertTokenizer(lowerCamelCase_ ) _UpperCamelCase = tokenizer.encode("sequence builders" ) _UpperCamelCase = tokenizer.encode("multi-sequence build" ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) _UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
589
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" __A = """bit""" __A = ["""preactivation""", """bottleneck"""] __A = ["""SAME""", """VALID"""] def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=64 , __UpperCamelCase=[2_56, 5_12, 10_24, 20_48] , __UpperCamelCase=[3, 4, 6, 3] , __UpperCamelCase="preactivation" , __UpperCamelCase="relu" , __UpperCamelCase=None , __UpperCamelCase=32 , __UpperCamelCase=0.0 , __UpperCamelCase=False , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case_ = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = global_padding snake_case_ = num_groups snake_case_ = drop_path_rate snake_case_ = embedding_dynamic_padding snake_case_ = output_stride snake_case_ = width_factor snake_case_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
187
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=2 , __UpperCamelCase=24 , __UpperCamelCase=16 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=32 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=None , __UpperCamelCase=2 , __UpperCamelCase=2 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = patch_size snake_case_ = max_length snake_case_ = num_mel_bins snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = frequency_stride snake_case_ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) snake_case_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 snake_case_ = (self.max_length - self.patch_size) // self.time_stride + 1 snake_case_ = frequency_out_dimension * time_out_dimension snake_case_ = num_patches + 2 def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, input_values, labels def __lowerCAmelCase ( self ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = ASTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_values': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __A = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = ASTModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['input_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = ASTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a(): '''simple docstring''' snake_case_ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) snake_case_ , snake_case_ = torchaudio.load(lowercase__ ) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.default_feature_extractor snake_case_ = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(__UpperCamelCase ) snake_case_ = self.default_feature_extractor snake_case_ , snake_case_ = prepare_audio() snake_case_ = audio.squeeze().numpy() snake_case_ = feature_extractor(__UpperCamelCase , sampling_rate=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
187
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __magic_name__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""image_processor""", """tokenizer"""] a_ = """ViltImageProcessor""" a_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : List[Any] ,_a : Optional[Any]=None ,_a : List[str]=None ,**_a : Any ): '''simple docstring''' A_ : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,_a ,) A_ : List[str] = kwargs.pop("""feature_extractor""" ) A_ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_a ,_a ) A_ : Optional[Any] = self.image_processor def __call__( self : Any ,_a : Tuple ,_a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_a : bool = True ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Union[bool, str, TruncationStrategy] = None ,_a : Optional[int] = None ,_a : int = 0 ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : Optional[bool] = None ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = True ,_a : Optional[Union[str, TensorType]] = None ,**_a : Tuple ,): '''simple docstring''' A_ : int = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_token_type_ids=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) # add pixel_values + pixel_mask A_ : Optional[int] = self.image_processor(_a ,return_tensors=_a ) encoding.update(_a ) return encoding def _a ( self : List[Any] ,*_a : Any ,**_a : Any ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def _a ( self : int ,*_a : int ,**_a : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @property def _a ( self : List[Any] ): '''simple docstring''' A_ : Optional[int] = self.tokenizer.model_input_names A_ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _a ( self : str ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,_a ,) return self.image_processor_class @property def _a ( self : int ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" ,_a ,) return self.image_processor
27
1
import numpy # List of input, output pairs lowerCAmelCase_ = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) lowerCAmelCase_ = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) lowerCAmelCase_ = [2, 4, 1, 5] lowerCAmelCase_ = len(train_data) lowerCAmelCase_ = 0.009 def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase="train" ) -> List[str]: """simple docstring""" return calculate_hypothesis_value(_UpperCamelCase , _UpperCamelCase ) - output( _UpperCamelCase , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[int] = 0 for i in range(len(_UpperCamelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=m ) -> Union[str, Any]: """simple docstring""" snake_case_ : Union[str, Any] = 0 for i in range(_UpperCamelCase ): if index == -1: summation_value += _error(_UpperCamelCase ) else: summation_value += _error(_UpperCamelCase ) * train_data[i][0][index] return summation_value def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case_ : int = summation_of_cost_derivative(_UpperCamelCase , _UpperCamelCase ) / m return cost_derivative_value def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output snake_case_ : Optional[int] = 0.000_002 snake_case_ : List[str] = 0 snake_case_ : List[str] = 0 while True: j += 1 snake_case_ : str = [0, 0, 0, 0] for i in range(0 , len(_UpperCamelCase ) ): snake_case_ : str = get_cost_derivative(i - 1 ) snake_case_ : Any = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCamelCase , _UpperCamelCase , atol=_UpperCamelCase , rtol=_UpperCamelCase , ): break snake_case_ : Dict = temp_parameter_vector print(('''Number of iterations:''', j) ) def lowerCamelCase_ ( ) -> int: """simple docstring""" for i in range(len(_UpperCamelCase ) ): print(('''Actual output value:''', output(_UpperCamelCase , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(_UpperCamelCase , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
60
"""simple docstring""" def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = len(lowercase ) for i in range(n - 1 ): for j in range(i + 1 ,lowercase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __UpperCAmelCase ( lowercase ): """simple docstring""" if len(lowercase ) <= 1: return arr, 0 _UpperCAmelCase = len(lowercase ) // 2 _UpperCAmelCase = arr[0:mid] _UpperCAmelCase = arr[mid:] _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(lowercase ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(lowercase ) _UpperCAmelCase , _UpperCAmelCase = _count_cross_inversions(lowercase ,lowercase ) _UpperCAmelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = _UpperCAmelCase = _UpperCAmelCase = 0 while i < len(lowercase ) and j < len(lowercase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowercase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowercase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) _UpperCAmelCase = count_inversions_bf(lowercase ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(lowercase ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ ,lowercase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() _UpperCAmelCase = count_inversions_bf(lowercase ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(lowercase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ ,lowercase ) # an empty list should also have zero inversions _UpperCAmelCase = [] _UpperCAmelCase = count_inversions_bf(lowercase ) _UpperCAmelCase , _UpperCAmelCase = count_inversions_recursive(lowercase ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ ,lowercase ) if __name__ == "__main__": main()
277
0
from collections import defaultdict from math import ceil, sqrt def UpperCAmelCase ( A__ = 1_00_00_00 , A__ = 10 ) -> int: _snake_case : defaultdict = defaultdict(A__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: _snake_case : Optional[int] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: _snake_case : Dict = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(A__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
519
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class __SCREAMING_SNAKE_CASE : """simple docstring""" SCREAMING_SNAKE_CASE_ = BlenderbotSmallConfig SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , ): """simple docstring""" _snake_case : Any = parent _snake_case : str = batch_size _snake_case : Optional[Any] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : int = use_labels _snake_case : int = vocab_size _snake_case : Tuple = hidden_size _snake_case : Any = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : List[str] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : str = attention_probs_dropout_prob _snake_case : str = max_position_embeddings _snake_case : Optional[Any] = eos_token_id _snake_case : Dict = pad_token_id _snake_case : Dict = bos_token_id def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _snake_case : Dict = prepare_blenderbot_small_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : Dict = TFBlenderbotSmallModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder() _snake_case : Any = inputs_dict["""input_ids"""] _snake_case : Optional[int] = input_ids[:1, :] _snake_case : Any = inputs_dict["""attention_mask"""][:1, :] _snake_case : Dict = inputs_dict["""head_mask"""] _snake_case : Dict = 1 # first forward pass _snake_case : str = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : Dict = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] _snake_case : Dict = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : List[Any] = output_from_no_past[:, -3:, random_slice_idx] _snake_case : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1e-3 ) def UpperCAmelCase ( A__ , A__ , A__ , A__=None , A__=None , A__=None , A__=None , A__=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case : str = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def __lowerCamelCase( self ): """simple docstring""" _snake_case : int = TFBlenderbotSmallModelTester(self ) _snake_case : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCamelCase( self ): """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE__ ) @require_tokenizers @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] SCREAMING_SNAKE_CASE_ = 'facebook/blenderbot_small-90M' @cached_property def __lowerCamelCase( self ): """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def __lowerCamelCase( self ): """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCamelCase( self ): """simple docstring""" _snake_case : Tuple = self.tokenizer(self.src_text , return_tensors="""tf""" ) _snake_case : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=SCREAMING_SNAKE_CASE__ , ) _snake_case : Optional[int] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=SCREAMING_SNAKE_CASE__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
519
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : int=7 , __magic_name__ : Tuple=3 , __magic_name__ : Optional[int]=1_8 , __magic_name__ : List[str]=3_0 , __magic_name__ : Union[str, Any]=4_0_0 , __magic_name__ : Tuple=True , __magic_name__ : Optional[Any]=None , __magic_name__ : Any=True , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=True , ): """simple docstring""" UpperCamelCase = size if size is not None else {"""shortest_edge""": 2_0} UpperCamelCase = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_flip_channel_order def lowerCamelCase_ ( self : int ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase ( __snake_case , unittest.TestCase ): lowercase = MobileViTImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = MobileViTImageProcessingTester(self ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , """do_resize""" ) ) self.assertTrue(hasattr(__magic_name__ , """size""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_center_crop""" ) ) self.assertTrue(hasattr(__magic_name__ , """center_crop""" ) ) self.assertTrue(hasattr(__magic_name__ , """do_flip_channel_order""" ) ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 2_0} ) self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} ) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(__magic_name__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
386
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def _lowercase ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : str ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(SCREAMING_SNAKE_CASE_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="""longest""" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __snake_case = mocked_dataloaders # noqa: F811 def _lowercase ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , SCREAMING_SNAKE_CASE_ ) == "1": UpperCamelCase = 2 # New Code # UpperCamelCase = int(args.gradient_accumulation_steps ) UpperCamelCase = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["""lr"""] UpperCamelCase = int(config["""num_epochs"""] ) UpperCamelCase = int(config["""seed"""] ) UpperCamelCase = int(config["""batch_size"""] ) UpperCamelCase = evaluate.load("""glue""" , """mrpc""" ) set_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() with LocalSGD( accelerator=SCREAMING_SNAKE_CASE_ , model=SCREAMING_SNAKE_CASE_ , local_sgd_steps=SCREAMING_SNAKE_CASE_ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase = output.loss accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , SCREAMING_SNAKE_CASE_ ) def _lowercase ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=SCREAMING_SNAKE_CASE_ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
386
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def a__ ( ): '''simple docstring''' __magic_name__ = HfArgumentParser(A_ ) __magic_name__ = parser.parse_args_into_dataclasses()[0] __magic_name__ = TensorFlowBenchmark(args=A_ ) try: __magic_name__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: __magic_name__ = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" __magic_name__ = """ """.join(str(A_ ).split(""" """ )[:-1] ) __magic_name__ = """""" __magic_name__ = eval(str(A_ ).split(""" """ )[-1] ) __magic_name__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(A_ ) if len(A_ ) > 0: __magic_name__ = full_error_msg + begin_error_msg + str(A_ ) raise ValueError(A_ ) benchmark.run() if __name__ == "__main__": main()
76
import collections import importlib.util import os import re from pathlib import Path __lowerCAmelCase : int = 'src/transformers' # Matches is_xxx_available() __lowerCAmelCase : Optional[int] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __lowerCAmelCase : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowerCAmelCase : int = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __lowerCAmelCase : Optional[Any] = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __lowerCAmelCase : Optional[Any] = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowerCAmelCase : Dict = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __lowerCAmelCase : List[str] = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __lowerCAmelCase : Optional[int] = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __lowerCAmelCase : List[str] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __lowerCAmelCase : int = re.compile(R'^\s*try:') # Catches a line with else: __lowerCAmelCase : Tuple = re.compile(R'^\s*else:') def a__ ( A_ ): '''simple docstring''' if _re_test_backend.search(A_ ) is None: return None __magic_name__ = [b[0] for b in _re_backend.findall(A_ )] backends.sort() return "_and_".join(A_ ) def a__ ( A_ ): '''simple docstring''' with open(A_, """r""", encoding="""utf-8""", newline="""\n""" ) as f: __magic_name__ = f.readlines() __magic_name__ = 0 while line_index < len(A_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A_ ): return None # First grab the objects without a specific backend in _import_structure __magic_name__ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __magic_name__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A_ ): __magic_name__ = _re_one_line_import_struct.search(A_ ).groups()[0] __magic_name__ = re.findall("""\[([^\]]+)\]""", A_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __magic_name__ = _re_import_struct_key_value.search(A_ ) if single_line_import_search is not None: __magic_name__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(A_ ) > 0] objects.extend(A_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __magic_name__ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __magic_name__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __magic_name__ = lines[line_index] if _re_import_struct_add_one.search(A_ ) is not None: objects.append(_re_import_struct_add_one.search(A_ ).groups()[0] ) elif _re_import_struct_add_many.search(A_ ) is not None: __magic_name__ = _re_import_struct_add_many.search(A_ ).groups()[0].split(""", """ ) __magic_name__ = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_between_brackets.search(A_ ) is not None: __magic_name__ = _re_between_brackets.search(A_ ).groups()[0].split(""", """ ) __magic_name__ = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_quote_object.search(A_ ) is not None: objects.append(_re_quote_object.search(A_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __magic_name__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __magic_name__ = [] while ( line_index < len(A_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __magic_name__ = lines[line_index] __magic_name__ = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __magic_name__ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(A_ ): # If the line is an if is_backend_available, we grab all objects associated. __magic_name__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __magic_name__ = lines[line_index] __magic_name__ = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __magic_name__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( A_, A_ ): '''simple docstring''' def find_duplicates(A_ ): return [k for k, v in collections.Counter(A_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __magic_name__ = [] for key in import_dict_objects.keys(): __magic_name__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) __magic_name__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __magic_name__ = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def a__ ( ): '''simple docstring''' __magic_name__ = [] for root, _, files in os.walk(A_ ): if "__init__.py" in files: __magic_name__ = os.path.join(A_, """__init__.py""" ) __magic_name__ = parse_init(A_ ) if objects is not None: __magic_name__ = analyze_results(*A_ ) if len(A_ ) > 0: __magic_name__ = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(A_ ) ) if len(A_ ) > 0: raise ValueError("""\n\n""".join(A_ ) ) def a__ ( ): '''simple docstring''' __magic_name__ = [] for path, directories, files in os.walk(A_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(A_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A_ ) / folder).glob("""*.py""" ) ) ) == 0: continue __magic_name__ = str((Path(A_ ) / folder).relative_to(A_ ) ) __magic_name__ = short_path.replace(os.path.sep, """.""" ) submodules.append(A_ ) for fname in files: if fname == "__init__.py": continue __magic_name__ = str((Path(A_ ) / fname).relative_to(A_ ) ) __magic_name__ = short_path.replace(""".py""", """""" ).replace(os.path.sep, """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(A_ ) return submodules __lowerCAmelCase : Dict = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def a__ ( ): '''simple docstring''' __magic_name__ = importlib.util.spec_from_file_location( """transformers""", os.path.join(A_, """__init__.py""" ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __magic_name__ = spec.loader.load_module() __magic_name__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(A_ ) > 0: __magic_name__ = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
76
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class A__(a_ ): """simple docstring""" _A : Union[str, Any] = '''speech_to_text_2''' _A : Optional[Any] = ['''past_key_values'''] _A : List[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , _lowercase=10_000 , _lowercase=6 , _lowercase=2_048 , _lowercase=4 , _lowercase=0.0 , _lowercase=True , _lowercase="relu" , _lowercase=256 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.0_2 , _lowercase=2 , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=1_024 , **_lowercase , ) -> List[str]: a_ : Tuple = vocab_size a_ : Optional[int] = d_model a_ : Any = decoder_ffn_dim a_ : Optional[int] = decoder_layers a_ : Any = decoder_attention_heads a_ : str = dropout a_ : Any = attention_dropout a_ : Tuple = activation_dropout a_ : str = activation_function a_ : int = init_std a_ : Tuple = decoder_layerdrop a_ : Any = use_cache a_ : int = decoder_layers a_ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True a_ : List[Any] = max_target_positions super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
540
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case : int = logging.get_logger(__name__) def _UpperCAmelCase ( a__): '''simple docstring''' a_ : str = DPTConfig(embedding_type="""hybrid""") if "large" in checkpoint_url: a_ : List[str] = 1_0_2_4 a_ : List[str] = 4_0_9_6 a_ : Tuple = 2_4 a_ : str = 1_6 a_ : List[str] = [5, 1_1, 1_7, 2_3] a_ : str = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] a_ : Any = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: a_ : int = 7_6_8 a_ : List[str] = [1, 1, 1, 0.5] a_ : Tuple = [2_5_6, 5_1_2, 7_6_8, 7_6_8] a_ : Tuple = 1_5_0 a_ : Optional[Any] = 1_6 a_ : Union[str, Any] = (1, 3_8_4, 3_8_4) a_ : Optional[int] = False a_ : int = """project""" if "ade" in checkpoint_url: a_ : Union[str, Any] = True a_ : int = 7_6_8 a_ : Dict = [1, 1, 1, 0.5] a_ : Optional[int] = 1_5_0 a_ : Tuple = 1_6 a_ : str = """huggingface/label-files""" a_ : List[Any] = """ade20k-id2label.json""" a_ : Tuple = json.load(open(cached_download(hf_hub_url(a__ , a__ , repo_type="""dataset""")) , """r""")) a_ : Optional[Any] = {int(a__): v for k, v in idalabel.items()} a_ : str = idalabel a_ : Optional[Any] = {v: k for k, v in idalabel.items()} a_ : Optional[int] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Any = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(a__ , a__) def _UpperCAmelCase ( a__): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): a_ : Dict = name.replace("""pretrained.model""" , """dpt.encoder""") if "pretrained.model" in name: a_ : List[Any] = name.replace("""pretrained.model""" , """dpt.embeddings""") if "patch_embed" in name: a_ : List[str] = name.replace("""patch_embed""" , """""") if "pos_embed" in name: a_ : Tuple = name.replace("""pos_embed""" , """position_embeddings""") if "attn.proj" in name: a_ : Optional[int] = name.replace("""attn.proj""" , """attention.output.dense""") if "proj" in name and "project" not in name: a_ : Tuple = name.replace("""proj""" , """projection""") if "blocks" in name: a_ : Any = name.replace("""blocks""" , """layer""") if "mlp.fc1" in name: a_ : Tuple = name.replace("""mlp.fc1""" , """intermediate.dense""") if "mlp.fc2" in name: a_ : List[str] = name.replace("""mlp.fc2""" , """output.dense""") if "norm1" in name and "backbone" not in name: a_ : Dict = name.replace("""norm1""" , """layernorm_before""") if "norm2" in name and "backbone" not in name: a_ : str = name.replace("""norm2""" , """layernorm_after""") if "scratch.output_conv" in name: a_ : List[Any] = name.replace("""scratch.output_conv""" , """head""") if "scratch" in name: a_ : Optional[int] = name.replace("""scratch""" , """neck""") if "layer1_rn" in name: a_ : List[Any] = name.replace("""layer1_rn""" , """convs.0""") if "layer2_rn" in name: a_ : Any = name.replace("""layer2_rn""" , """convs.1""") if "layer3_rn" in name: a_ : List[Any] = name.replace("""layer3_rn""" , """convs.2""") if "layer4_rn" in name: a_ : Optional[Any] = name.replace("""layer4_rn""" , """convs.3""") if "refinenet" in name: a_ : Tuple = int(name[len("""neck.refinenet""") : len("""neck.refinenet""") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 a_ : List[Any] = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: a_ : List[Any] = name.replace("""out_conv""" , """projection""") if "resConfUnit1" in name: a_ : List[str] = name.replace("""resConfUnit1""" , """residual_layer1""") if "resConfUnit2" in name: a_ : Optional[int] = name.replace("""resConfUnit2""" , """residual_layer2""") if "conv1" in name: a_ : List[str] = name.replace("""conv1""" , """convolution1""") if "conv2" in name: a_ : Optional[Any] = name.replace("""conv2""" , """convolution2""") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: a_ : List[Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""") if "pretrained.act_postprocess2.0.project.0" in name: a_ : str = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""") if "pretrained.act_postprocess3.0.project.0" in name: a_ : List[str] = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""") if "pretrained.act_postprocess4.0.project.0" in name: a_ : Any = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""") # resize blocks if "pretrained.act_postprocess1.3" in name: a_ : Dict = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""") if "pretrained.act_postprocess1.4" in name: a_ : Dict = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""") if "pretrained.act_postprocess2.3" in name: a_ : int = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""") if "pretrained.act_postprocess2.4" in name: a_ : List[Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""") if "pretrained.act_postprocess3.3" in name: a_ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""") if "pretrained.act_postprocess4.3" in name: a_ : Dict = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""") if "pretrained.act_postprocess4.4" in name: a_ : Tuple = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""") if "pretrained" in name: a_ : List[Any] = name.replace("""pretrained""" , """dpt""") if "bn" in name: a_ : Optional[int] = name.replace("""bn""" , """batch_norm""") if "head" in name: a_ : Union[str, Any] = name.replace("""head""" , """head.head""") if "encoder.norm" in name: a_ : Any = name.replace("""encoder.norm""" , """layernorm""") if "auxlayer" in name: a_ : Any = name.replace("""auxlayer""" , """auxiliary_head.head""") if "backbone" in name: a_ : Optional[Any] = name.replace("""backbone""" , """backbone.bit.encoder""") if ".." in name: a_ : str = name.replace("""..""" , """.""") if "stem.conv" in name: a_ : Union[str, Any] = name.replace("""stem.conv""" , """bit.embedder.convolution""") if "blocks" in name: a_ : Union[str, Any] = name.replace("""blocks""" , """layers""") if "convolution" in name and "backbone" in name: a_ : Dict = name.replace("""convolution""" , """conv""") if "layer" in name and "backbone" in name: a_ : Optional[int] = name.replace("""layer""" , """layers""") if "backbone.bit.encoder.bit" in name: a_ : Union[str, Any] = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""") if "embedder.conv" in name: a_ : List[str] = name.replace("""embedder.conv""" , """embedder.convolution""") if "backbone.bit.encoder.stem.norm" in name: a_ : str = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""") return name def _UpperCAmelCase ( a__ , a__): '''simple docstring''' for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ : Optional[int] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') a_ : str = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict a_ : Any = in_proj_weight[: config.hidden_size, :] a_ : List[str] = in_proj_bias[: config.hidden_size] a_ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ : Any = in_proj_weight[ -config.hidden_size :, : ] a_ : List[str] = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( ): '''simple docstring''' a_ : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" a_ : Union[str, Any] = Image.open(requests.get(a__ , stream=a__).raw) return im @torch.no_grad() def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__): '''simple docstring''' a_ , a_ : str = get_dpt_config(a__) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") a_ : str = torch.load(a__ , map_location="""cpu""") # remove certain keys remove_ignore_keys_(a__) # rename keys for key in state_dict.copy().keys(): a_ : List[str] = state_dict.pop(a__) a_ : str = val # read in qkv matrices read_in_q_k_v(a__ , a__) # load HuggingFace model a_ : Any = DPTForSemanticSegmentation(a__) if """ade""" in checkpoint_url else DPTForDepthEstimation(a__) model.load_state_dict(a__) model.eval() # Check outputs on an image a_ : Any = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 a_ : Any = DPTImageProcessor(size=a__) a_ : Dict = prepare_img() a_ : int = image_processor(a__ , return_tensors="""pt""") # forward pass a_ : Optional[Any] = model(**a__).logits if """ade""" in checkpoint_url else model(**a__).predicted_depth if show_prediction: a_ : List[str] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=a__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5).show() if pytorch_dump_folder_path is not None: Path(a__).mkdir(exist_ok=a__) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(a__) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(a__) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""") image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""") if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) __snake_case : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
540
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __snake_case ( self : Any ): '''simple docstring''' snake_case : Dict =1 snake_case : int =3 snake_case : Dict =(32, 32) snake_case : List[Any] =floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(_snake_case ) return image @property def __snake_case ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) snake_case : Dict =UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''), up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''), cross_attention_dim=32, ) return model @property def __snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) snake_case : Dict =AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], latent_channels=4, ) return model @property def __snake_case ( self : int ): '''simple docstring''' torch.manual_seed(0 ) snake_case : str =CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) return CLIPTextModel(_snake_case ) @property def __snake_case ( self : List[str] ): '''simple docstring''' def extract(*_snake_case : Optional[Any], **_snake_case : Union[str, Any] ): class lowerCAmelCase_ : def __init__( self : List[str] ): '''simple docstring''' snake_case : Any =torch.ones([0] ) def __snake_case ( self : str, _snake_case : int ): '''simple docstring''' self.pixel_values.to(_snake_case ) return self return Out() return extract def __snake_case ( self : List[Any] ): '''simple docstring''' snake_case : Dict ='''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case : Union[str, Any] =self.dummy_cond_unet snake_case : Optional[Any] =DDIMScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='''scaled_linear''', clip_sample=_snake_case, set_alpha_to_one=_snake_case, ) snake_case : Any =self.dummy_vae snake_case : Optional[Any] =self.dummy_text_encoder snake_case : Optional[int] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk snake_case : Tuple =StableDiffusionPipeline( unet=_snake_case, scheduler=_snake_case, vae=_snake_case, text_encoder=_snake_case, tokenizer=_snake_case, safety_checker=_snake_case, feature_extractor=self.dummy_extractor, ) snake_case : List[Any] =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case : Dict ='''A painting of a squirrel eating a burger''' snake_case : Dict =torch.Generator(device=_snake_case ).manual_seed(0 ) snake_case : Optional[Any] =sd_pipe([prompt], generator=_snake_case, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) snake_case : List[str] =output.images snake_case : Optional[int] =torch.Generator(device=_snake_case ).manual_seed(0 ) snake_case : int =sd_pipe( [prompt], generator=_snake_case, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=_snake_case, )[0] snake_case : str =image[0, -3:, -3:, -1] snake_case : str =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : Any =np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Any ='''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case : Dict =self.dummy_cond_unet snake_case : Any =PNDMScheduler(skip_prk_steps=_snake_case ) snake_case : List[str] =self.dummy_vae snake_case : Tuple =self.dummy_text_encoder snake_case : int =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk snake_case : str =StableDiffusionPipeline( unet=_snake_case, scheduler=_snake_case, vae=_snake_case, text_encoder=_snake_case, tokenizer=_snake_case, safety_checker=_snake_case, feature_extractor=self.dummy_extractor, ) snake_case : Optional[Any] =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case : List[Any] ='''A painting of a squirrel eating a burger''' snake_case : Union[str, Any] =torch.Generator(device=_snake_case ).manual_seed(0 ) snake_case : Tuple =sd_pipe([prompt], generator=_snake_case, guidance_scale=6.0, num_inference_steps=2, output_type='''np''' ) snake_case : List[str] =output.images snake_case : Optional[Any] =torch.Generator(device=_snake_case ).manual_seed(0 ) snake_case : List[str] =sd_pipe( [prompt], generator=_snake_case, guidance_scale=6.0, num_inference_steps=2, output_type='''np''', return_dict=_snake_case, )[0] snake_case : Optional[int] =image[0, -3:, -3:, -1] snake_case : Optional[int] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case : Dict =np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : Optional[int] =StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''', safety_checker=_snake_case ) assert isinstance(_snake_case, _snake_case ) assert isinstance(pipe.scheduler, _snake_case ) assert pipe.safety_checker is None snake_case : Dict =pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_snake_case ) snake_case : Any =StableDiffusionPipeline.from_pretrained(_snake_case ) # sanity check that the pipeline still works assert pipe.safety_checker is None snake_case : Any =pipe('''example prompt''', num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''', '''This test requires a GPU''' ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Dict =self.dummy_cond_unet snake_case : Optional[int] =PNDMScheduler(skip_prk_steps=_snake_case ) snake_case : str =self.dummy_vae snake_case : Any =self.dummy_text_encoder snake_case : Optional[Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 snake_case : Optional[Any] =unet.half() snake_case : int =vae.half() snake_case : Tuple =bert.half() # make sure here that pndm scheduler skips prk snake_case : str =StableDiffusionPipeline( unet=_snake_case, scheduler=_snake_case, vae=_snake_case, text_encoder=_snake_case, tokenizer=_snake_case, safety_checker=_snake_case, feature_extractor=self.dummy_extractor, ) snake_case : Tuple =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case : Optional[Any] ='''A painting of a squirrel eating a burger''' snake_case : Optional[int] =sd_pipe([prompt], num_inference_steps=2, output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def __snake_case ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : int =StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=_snake_case ) snake_case : Any =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) snake_case : Any =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case : List[str] =( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) snake_case : Optional[Any] =4_003_660_346 snake_case : List[Any] =7 # without safety guidance (sld_guidance_scale = 0) snake_case : List[Any] =torch.manual_seed(_snake_case ) snake_case : Tuple =sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) snake_case : Any =output.images snake_case : Union[str, Any] =image[0, -3:, -3:, -1] snake_case : Dict =[0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) snake_case : List[str] =torch.manual_seed(_snake_case ) snake_case : Tuple =sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2_000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) snake_case : Optional[Any] =output.images snake_case : List[Any] =image[0, -3:, -3:, -1] snake_case : Tuple =[0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : str =StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''', safety_checker=_snake_case ) snake_case : Dict =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) snake_case : Optional[Any] =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case : Any ='''padme amidala taking a bath artwork, safe for work, no nudity''' snake_case : int =2_734_971_755 snake_case : List[Any] =7 snake_case : List[Any] =torch.manual_seed(_snake_case ) snake_case : Optional[int] =sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) snake_case : Optional[Any] =output.images snake_case : Optional[int] =image[0, -3:, -3:, -1] snake_case : List[Any] =[0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 snake_case : List[Any] =torch.manual_seed(_snake_case ) snake_case : Any =sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2_000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) snake_case : Optional[Any] =output.images snake_case : Any =image[0, -3:, -3:, -1] snake_case : int =[0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __snake_case ( self : Any ): '''simple docstring''' snake_case : Dict =StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) snake_case : List[Any] =sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) snake_case : Optional[int] =( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) snake_case : Any =1_044_355_234 snake_case : str =12 snake_case : Any =torch.manual_seed(_snake_case ) snake_case : List[Any] =sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=0, ) snake_case : List[Any] =output.images snake_case : Tuple =image[0, -3:, -3:, -1] snake_case : Optional[Any] =np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 snake_case : List[str] =torch.manual_seed(_snake_case ) snake_case : Dict =sd_pipe( [prompt], generator=_snake_case, guidance_scale=_snake_case, num_inference_steps=50, output_type='''np''', width=512, height=512, sld_guidance_scale=2_000, sld_warmup_steps=7, sld_threshold=0.025, sld_momentum_scale=0.5, sld_mom_beta=0.7, ) snake_case : int =output.images snake_case : Optional[int] =image[0, -3:, -3:, -1] snake_case : int =np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
136
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip A : Optional[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _a ( lowerCamelCase_ ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): return max(metric_fn(lowerCamelCase_ , lowerCamelCase_ ) for gt in ground_truths ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Tuple =[line.strip() for line in open(lowerCamelCase_ , '''r''' ).readlines()] snake_case : Optional[Any] =[] if args.gold_data_mode == "qa": snake_case : int =pd.read_csv(lowerCamelCase_ , sep='''\t''' , header=lowerCamelCase_ ) for answer_list in data[1]: snake_case : int =ast.literal_eval(lowerCamelCase_ ) answers.append(lowerCamelCase_ ) else: snake_case : Tuple =[line.strip() for line in open(lowerCamelCase_ , '''r''' ).readlines()] snake_case : Union[str, Any] =[[reference] for reference in references] snake_case : str =0 for prediction, ground_truths in zip(lowerCamelCase_ , lowerCamelCase_ ): total += 1 em += metric_max_over_ground_truths(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) fa += metric_max_over_ground_truths(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) snake_case : List[str] =1_00.0 * em / total snake_case : Union[str, Any] =1_00.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Optional[int] =args.k snake_case : List[Any] =[line.strip() for line in open(lowerCamelCase_ , '''r''' ).readlines()] snake_case : Tuple =[line.strip() for line in open(lowerCamelCase_ , '''r''' ).readlines()] snake_case : int =0 for hypo, reference in zip(lowerCamelCase_ , lowerCamelCase_ ): snake_case : int =set(hypo.split('''\t''' )[:k] ) snake_case : Union[str, Any] =set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k snake_case : List[str] =1_00.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): def strip_title(lowerCamelCase_ ): if title.startswith('''"''' ): snake_case : Optional[int] =title[1:] if title.endswith('''"''' ): snake_case : List[Any] =title[:-1] return title snake_case : Optional[Any] =rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase_ , return_tensors='''pt''' , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , )['''input_ids'''].to(args.device ) snake_case : str =rag_model.rag.question_encoder(lowerCamelCase_ ) snake_case : Union[str, Any] =question_enc_outputs[0] snake_case : str =rag_model.retriever( lowerCamelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) snake_case : Union[str, Any] =rag_model.retriever.index.get_doc_dicts(result.doc_ids ) snake_case : Tuple =[] for docs in all_docs: snake_case : Union[str, Any] =[strip_title(lowerCamelCase_ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(lowerCamelCase_ ) ) return provenance_strings def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): with torch.no_grad(): snake_case : Any =rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase_ , return_tensors='''pt''' , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) snake_case : Optional[Any] =inputs_dict.input_ids.to(args.device ) snake_case : Any =inputs_dict.attention_mask.to(args.device ) snake_case : Any =rag_model.generate( # rag_model overwrites generate lowerCamelCase_ , attention_mask=lowerCamelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCamelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) snake_case : str =rag_model.retriever.generator_tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) if args.print_predictions: for q, a in zip(lowerCamelCase_ , lowerCamelCase_ ): logger.info('''Q: {} - A: {}'''.format(lowerCamelCase_ , lowerCamelCase_ ) ) return answers def _a ( ): snake_case : str =argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=lowerCamelCase_ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=lowerCamelCase_ , choices=['''exact''', '''compressed''', '''legacy'''] , type=lowerCamelCase_ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=lowerCamelCase_ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=lowerCamelCase_ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=lowerCamelCase_ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=lowerCamelCase_ , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=lowerCamelCase_ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=lowerCamelCase_ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=lowerCamelCase_ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=lowerCamelCase_ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=lowerCamelCase_ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=lowerCamelCase_ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) snake_case : int =parser.parse_args() snake_case : Any =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def _a ( lowerCamelCase_ ): snake_case : Optional[int] ={} if args.model_type is None: snake_case : str =infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): snake_case : Optional[int] =RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration snake_case : List[Any] =args.n_docs if args.index_name is not None: snake_case : Dict =args.index_name if args.index_path is not None: snake_case : Any =args.index_path else: snake_case : str =BartForConditionalGeneration snake_case : Dict =( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , lowerCamelCase_ ) snake_case : Dict =get_scores if args.eval_mode == '''e2e''' else get_precision_at_k snake_case : Any =evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(lowerCamelCase_ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(lowerCamelCase_ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): snake_case : List[str] =RagRetriever.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) snake_case : List[str] =model_class.from_pretrained(lowerCamelCase_ , retriever=lowerCamelCase_ , **lowerCamelCase_ ) model.retriever.init_retrieval() else: snake_case : Optional[int] =model_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: snake_case : Optional[int] =[] for line in tqdm(lowerCamelCase_ ): questions.append(line.strip() ) if len(lowerCamelCase_ ) == args.eval_batch_size: snake_case : List[str] =evaluate_batch_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) preds_file.write('''\n'''.join(lowerCamelCase_ ) + '''\n''' ) preds_file.flush() snake_case : Tuple =[] if len(lowerCamelCase_ ) > 0: snake_case : str =evaluate_batch_fn(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) preds_file.write('''\n'''.join(lowerCamelCase_ ) ) preds_file.flush() score_fn(lowerCamelCase_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": A : Union[str, Any] = get_args() main(args)
136
1
import csv import tweepy # Twitter API credentials snake_case : Union[str, Any] = "" snake_case : Union[str, Any] = "" snake_case : str = "" snake_case : str = "" def lowerCAmelCase_ ( _snake_case : str ) -> None: '''simple docstring''' __magic_name__ : int = tweepy.OAuthHandler(_snake_case , _snake_case ) auth.set_access_token(_snake_case , _snake_case ) __magic_name__ : Union[str, Any] = tweepy.API(_snake_case ) # initialize a list to hold all the tweepy Tweets __magic_name__ : Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) __magic_name__ : Dict = api.user_timeline(screen_name=_snake_case , count=200 ) # save most recent tweets alltweets.extend(_snake_case ) # save the id of the oldest tweet less one __magic_name__ : Union[str, Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_snake_case ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates __magic_name__ : int = api.user_timeline( screen_name=_snake_case , count=200 , max_id=_snake_case ) # save most recent tweets alltweets.extend(_snake_case ) # update the id of the oldest tweet less one __magic_name__ : Any = alltweets[-1].id - 1 print(F'''...{len(_snake_case )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv __magic_name__ : int = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , "w" ) as f: __magic_name__ : Optional[Any] = csv.writer(_snake_case ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(_snake_case ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
124
from typing import Dict from .base import GenericTensor, Pipeline class _snake_case ( snake_case ): def SCREAMING_SNAKE_CASE ( self , _a=None , _a=None , _a=None , **_a ): if tokenize_kwargs is None: __magic_name__ : Tuple = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) __magic_name__ : Dict = truncation __magic_name__ : str = tokenize_kwargs __magic_name__ : Any = {} if return_tensors is not None: __magic_name__ : Optional[int] = return_tensors return preprocess_params, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self , _a , **_a ): __magic_name__ : List[Any] = self.framework __magic_name__ : Union[str, Any] = self.tokenizer(_a , return_tensors=_a , **_a ) return model_inputs def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : List[Any] = self.model(**_a ) return model_outputs def SCREAMING_SNAKE_CASE ( self , _a , _a=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_a , **_a ): return super().__call__(*_a , **_a )
124
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase__ = "\nHuman: <<task>>\n\nAssistant: " UpperCAmelCase__ = "huggingface-tools/default-prompts" UpperCAmelCase__ = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def _A( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : str="run" ) -> Optional[Any]: '''simple docstring''' if prompt_or_repo_id is None: __lowercase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , UpperCamelCase__ ) is not None: return prompt_or_repo_id __lowercase = cached_file( UpperCamelCase__ , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: return f.read()
362
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : List[Any] = (DEISMultistepScheduler,) UpperCamelCase_ : Any = (('num_inference_steps', 25),) def UpperCAmelCase_ ( self : List[str] , **lowerCamelCase__ : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**lowerCamelCase__ ) return config def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : Union[str, Any]=0 , **lowerCamelCase__ : Dict ) -> Any: """simple docstring""" __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop('''num_inference_steps''' , lowerCamelCase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config(**lowerCamelCase__ ) __lowercase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals __lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) __lowercase = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals __lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] __lowercase , __lowercase = sample, sample for t in range(lowerCamelCase__ , time_step + scheduler.config.solver_order + 1 ): __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowercase = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self : Any ) -> Tuple: """simple docstring""" pass def UpperCAmelCase_ ( self : Optional[int] , lowerCamelCase__ : Any=0 , **lowerCamelCase__ : Any ) -> Any: """simple docstring""" __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop('''num_inference_steps''' , lowerCamelCase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) __lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) __lowercase = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) __lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowercase = new_scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self : Union[str, Any] , lowerCamelCase__ : Optional[int]=None , **lowerCamelCase__ : Dict ) -> Optional[Any]: """simple docstring""" if scheduler is None: __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(**lowerCamelCase__ ) __lowercase = scheduler_class(**lowerCamelCase__ ) __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(**lowerCamelCase__ ) __lowercase = scheduler_class(**lowerCamelCase__ ) __lowercase = 10 __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop('''num_inference_steps''' , lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCamelCase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ , '''set_timesteps''' ): __lowercase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] __lowercase = dummy_past_residuals[: scheduler.config.solver_order] __lowercase = scheduler.timesteps[5] __lowercase = scheduler.timesteps[6] __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ ( self : str ) -> List[Any]: """simple docstring""" __lowercase = DEISMultistepScheduler(**self.get_scheduler_config() ) __lowercase = self.full_loop(scheduler=lowerCamelCase__ ) __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 __lowercase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowercase = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowercase = UniPCMultistepScheduler.from_config(scheduler.config ) __lowercase = DEISMultistepScheduler.from_config(scheduler.config ) __lowercase = self.full_loop(scheduler=lowerCamelCase__ ) __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def UpperCAmelCase_ ( self : int ) -> List[Any]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase__ , prediction_type=lowerCamelCase__ , sample_max_value=lowerCamelCase__ , algorithm_type='''deis''' , solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) __lowercase = self.full_loop( solver_order=lowerCamelCase__ , solver_type=lowerCamelCase__ , prediction_type=lowerCamelCase__ , algorithm_type=lowerCamelCase__ , ) assert not torch.isnan(lowerCamelCase__ ).any(), "Samples have nan numbers" def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" self.check_over_configs(lower_order_final=lowerCamelCase__ ) self.check_over_configs(lower_order_final=lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowerCamelCase__ , time_step=0 ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = self.full_loop() __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def UpperCAmelCase_ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.full_loop(prediction_type='''v_prediction''' ) __lowercase = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(thresholding=lowerCamelCase__ , dynamic_thresholding_ratio=0 ) __lowercase = scheduler_class(**lowerCamelCase__ ) __lowercase = 10 __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowercase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowercase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample assert sample.dtype == torch.floataa
362
1
"""simple docstring""" from __future__ import annotations from statistics import mean def A ( _A, _A, _A ): """simple docstring""" snake_case_ :Any = [0] * no_of_processes snake_case_ :Optional[Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_A ): snake_case_ :Tuple = burst_time[i] snake_case_ :list[int] = [] snake_case_ :int = 0 snake_case_ :List[str] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case_ :List[Any] = [] snake_case_ :Any = -1 for i in range(_A ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_A ) if len(_A ) > 0: snake_case_ :List[str] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case_ :Optional[int] = i total_time += burst_time[target_process] completed += 1 snake_case_ :List[Any] = 0 snake_case_ :Any = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def A ( _A, _A, _A ): """simple docstring""" snake_case_ :List[Any] = [0] * no_of_processes for i in range(_A ): snake_case_ :List[Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') __UpperCAmelCase : Optional[Any] = 4 __UpperCAmelCase : Union[str, Any] = [2, 5, 3, 7] __UpperCAmelCase : List[Any] = [0, 0, 0, 0] __UpperCAmelCase : Optional[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __UpperCAmelCase : Optional[Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( F'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' F'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(F'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(F'''Average turnaround time = {mean(turn_around_time):.5f}''')
584
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase : str = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Any = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __UpperCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
584
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' return 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 2_00 ) -> int: '''simple docstring''' return two_pound(__lowerCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
100
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Any = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
100
1
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' if n == 1 or not isinstance(__lowerCamelCase , __lowerCamelCase ): return 0 elif n == 2: return 1 else: _UpperCAmelCase : List[str] =[0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowerCamelCase__ ( __lowerCamelCase : int ): '''simple docstring''' _UpperCAmelCase : int =0 _UpperCAmelCase : Any =2 while digits < n: index += 1 _UpperCAmelCase : int =len(str(fibonacci(__lowerCamelCase ) ) ) return index def lowerCamelCase__ ( __lowerCamelCase : int = 1_0_0_0 ): '''simple docstring''' return fibonacci_digits_index(__lowerCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
446
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class __magic_name__ ( lowerCAmelCase ): def __init__( self , *snake_case , **snake_case) -> Dict: '''simple docstring''' super().__init__(*snake_case , **snake_case) requires_backends(self , 'vision') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def lowerCAmelCase ( self , snake_case=None) -> str: '''simple docstring''' _UpperCAmelCase : Any ={} if top_k is not None: _UpperCAmelCase : Optional[int] =top_k return {}, {}, postprocess_params def __call__( self , snake_case , **snake_case) -> List[str]: '''simple docstring''' return super().__call__(snake_case , **snake_case) def lowerCAmelCase ( self , snake_case) -> List[str]: '''simple docstring''' _UpperCAmelCase : int =load_image(snake_case) _UpperCAmelCase : Tuple =self.image_processor(images=snake_case , return_tensors=self.framework) return model_inputs def lowerCAmelCase ( self , snake_case) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] =self.model(**snake_case) return model_outputs def lowerCAmelCase ( self , snake_case , snake_case=5) -> Any: '''simple docstring''' if top_k > self.model.config.num_labels: _UpperCAmelCase : Optional[Any] =self.model.config.num_labels if self.framework == "pt": _UpperCAmelCase : List[Any] =model_outputs.logits.softmax(-1)[0] _UpperCAmelCase , _UpperCAmelCase : Optional[Any] =probs.topk(snake_case) elif self.framework == "tf": _UpperCAmelCase : int =stable_softmax(model_outputs.logits , axis=-1)[0] _UpperCAmelCase : List[Any] =tf.math.top_k(snake_case , k=snake_case) _UpperCAmelCase , _UpperCAmelCase : List[str] =topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}") _UpperCAmelCase : int =scores.tolist() _UpperCAmelCase : Tuple =ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(snake_case , snake_case)]
446
1
'''simple docstring''' import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __snake_case ( *SCREAMING_SNAKE_CASE_ : List[str] ) -> int: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCAmelCase = list(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __snake_case ( SCREAMING_SNAKE_CASE_ : Exception ) -> bool: """simple docstring""" UpperCAmelCase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __snake_case ( SCREAMING_SNAKE_CASE_ : callable = None , SCREAMING_SNAKE_CASE_ : int = 128 ) -> Dict: """simple docstring""" if function is None: return functools.partial(SCREAMING_SNAKE_CASE_ , starting_batch_size=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : str ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() UpperCAmelCase = list(inspect.signature(SCREAMING_SNAKE_CASE_ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE_ ) < (len(SCREAMING_SNAKE_CASE_ ) + 1): UpperCAmelCase = ''', '''.join([f"{arg}={value}" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f"Batch size was passed into `{function.__name__}` as the first argument when called." f"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
570
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a__ : Dict = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
570
1
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE__ : str = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE__ : List[str] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Optional[Any] , snake_case : Tuple , snake_case : str ): """simple docstring""" super().__init__(snake_case , snake_case ) def __call__( self : str , snake_case : Optional[int] , snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case : bool = True , snake_case : Union[bool, str, PaddingStrategy] = False , snake_case : Union[bool, str, TruncationStrategy] = None , snake_case : Optional[int] = None , snake_case : int = 0 , snake_case : Optional[int] = None , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = True , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : Optional[Any] , ): """simple docstring""" _snake_case : Optional[int] = self.tokenizer( text=snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , stride=snake_case , pad_to_multiple_of=snake_case , return_token_type_ids=snake_case , return_attention_mask=snake_case , return_overflowing_tokens=snake_case , return_special_tokens_mask=snake_case , return_offsets_mapping=snake_case , return_length=snake_case , verbose=snake_case , return_tensors=snake_case , **snake_case , ) # add pixel_values + pixel_mask _snake_case : Optional[int] = self.image_processor( snake_case , return_tensors=snake_case , do_normalize=snake_case , do_center_crop=snake_case , **snake_case ) encoding.update(snake_case ) return encoding def __UpperCAmelCase ( self : Tuple , *snake_case : Optional[Any] , **snake_case : str ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case , **snake_case ) def __UpperCAmelCase ( self : str , *snake_case : Optional[int] , **snake_case : List[Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case , **snake_case ) @property def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case : Tuple = self.tokenizer.model_input_names _snake_case : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
517
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} SCREAMING_SNAKE_CASE_ = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } SCREAMING_SNAKE_CASE_ = { "abeja/gpt-neox-japanese-2.7b": 2_048, } def lowerCamelCase__ ( a__ , a__) -> List[str]: """simple docstring""" with open(a__ , 'r' , encoding='utf-8') as f: _snake_case : Union[str, Any] = json.loads(f.read()) _snake_case : List[Any] = collections.OrderedDict() _snake_case : str = collections.OrderedDict() _snake_case : Union[str, Any] = collections.OrderedDict() with open(a__ , 'r' , encoding='utf-8') as f: _snake_case : Tuple = f.readlines() _snake_case : Optional[Any] = [[t.rstrip('\n')] if (t == ',' or ',' not in t) else t.rstrip('\n').split(',') for t in token] for idx, b in enumerate(a__): _snake_case : Optional[int] = b _snake_case : Optional[Any] = idx for wd in b: _snake_case : Tuple = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , snake_case : str , snake_case : Any , snake_case : str="<|endoftext|>" , snake_case : List[str]="<|endoftext|>" , snake_case : Optional[Any]="<|startoftext|>" , snake_case : str="<|endoftext|>" , snake_case : Any=False , **snake_case : List[Any] , ): """simple docstring""" super().__init__( unk_token=snake_case , pad_token=snake_case , bos_token=snake_case , eos_token=snake_case , do_clean_text=snake_case , **snake_case , ) if not os.path.isfile(snake_case ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) _snake_case : Any = do_clean_text _snake_case , _snake_case , _snake_case , _snake_case : Optional[int] = load_vocab_and_emoji(snake_case , snake_case ) _snake_case : Optional[int] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return len(self.raw_vocab ) def __UpperCAmelCase ( self : str ): """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def __UpperCAmelCase ( self : Optional[int] , snake_case : Optional[Any] ): """simple docstring""" return self.subword_tokenizer.tokenize(snake_case , clean=self.do_clean_text ) def __UpperCAmelCase ( self : Optional[int] , snake_case : Optional[Any] ): """simple docstring""" return self.vocab.get(snake_case , self.vocab.get(self.unk_token ) ) def __UpperCAmelCase ( self : List[str] , snake_case : Tuple ): """simple docstring""" return self.subword_tokenizer.convert_id_to_token(snake_case ) def __UpperCAmelCase ( self : List[Any] , snake_case : Dict ): """simple docstring""" _snake_case : List[Any] = ''.join(snake_case ).strip() return out_string def __UpperCAmelCase ( self : Optional[Any] , snake_case : "Conversation" ): """simple docstring""" _snake_case : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case , add_special_tokens=snake_case ) + [self.eos_token_id] ) if len(snake_case ) > self.model_max_length: _snake_case : Dict = input_ids[-self.model_max_length :] return input_ids def __UpperCAmelCase ( self : List[str] , snake_case : str , snake_case : Optional[str] = None ): """simple docstring""" _snake_case : Optional[int] = 0 if os.path.isdir(snake_case ): _snake_case : List[str] = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : List[Any] = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: _snake_case : List[Any] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : List[str] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) _snake_case : List[str] = token_index writer.write(','.join(snake_case ) + '\n' ) index += 1 with open(snake_case , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , snake_case ) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' def __init__( self : str , snake_case : str , snake_case : List[str] , snake_case : List[str] ): """simple docstring""" _snake_case : List[str] = vocab # same as swe _snake_case : List[str] = ids_to_tokens # same as bpe _snake_case : int = emoji _snake_case : List[str] = np.max([len(snake_case ) for w in self.vocab.keys()] ) _snake_case : Dict = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) _snake_case : int = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) _snake_case : List[Any] = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) _snake_case : List[str] = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _snake_case : Tuple = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _snake_case : Union[str, Any] = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) _snake_case : Optional[int] = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' _snake_case : Dict = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' _snake_case : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : int ): """simple docstring""" return len(self.ids_to_tokens ) def __UpperCAmelCase ( self : Dict , snake_case : List[str] ): """simple docstring""" _snake_case : str = self.content_repattera.sub('<URL>' , snake_case ) _snake_case : List[str] = self.content_repattera.sub('<EMAIL>' , snake_case ) _snake_case : Dict = self.content_repattera.sub('<TEL>' , snake_case ) _snake_case : Optional[int] = self.content_repattera.sub('<DATE>' , snake_case ) _snake_case : Tuple = self.content_repattera.sub('<DATE>' , snake_case ) _snake_case : str = self.content_repattera.sub('<PRICE>' , snake_case ) _snake_case : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _snake_case : int = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def __UpperCAmelCase ( self : Any , snake_case : Tuple , snake_case : str=False ): """simple docstring""" _snake_case : List[Any] = text.replace(' ' , '<SP>' ) _snake_case : List[Any] = text.replace(' ' , '<SP>' ) _snake_case : List[str] = text.replace('\r\n' , '<BR>' ) _snake_case : int = text.replace('\n' , '<BR>' ) _snake_case : Dict = text.replace('\r' , '<BR>' ) _snake_case : int = text.replace('\t' , '<TAB>' ) _snake_case : int = text.replace('—' , 'ー' ) _snake_case : str = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: _snake_case : Optional[Any] = text.replace(snake_case , snake_case ) if clean: _snake_case : List[str] = self.clean_text(snake_case ) def check_simbol(snake_case : Dict ): _snake_case : Optional[Any] = x.encode() if len(snake_case ) == 1 and len(snake_case ) == 2: _snake_case : int = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2a1 and c <= 0Xc2bf) or (c >= 0Xc780 and c <= 0Xc783) or (c >= 0Xcab9 and c <= 0Xcbbf) or (c >= 0Xcc80 and c <= 0Xcda2) ): return True return False def checkuae(snake_case : List[Any] ): _snake_case : int = x.encode() if len(snake_case ) == 1 and len(snake_case ) == 3: _snake_case : Optional[int] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe28080 and c <= 0Xe2b07f: return True return False _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [] while pos < len(snake_case ): _snake_case : Tuple = min(len(snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 _snake_case : Union[str, Any] = [] # (token_id, token, pos) for e in range(snake_case , snake_case , -1 ): _snake_case : str = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case ) > 2: _snake_case : List[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case ) > 0: # the smallest token_id is adopted _snake_case , _snake_case , _snake_case : List[str] = sorted(snake_case , key=lambda snake_case : x[0] )[0] result.append(snake_case ) _snake_case : Optional[Any] = e else: _snake_case : int = pos + 1 _snake_case : Tuple = text[pos:end] if check_simbol(snake_case ): result.append('<KIGOU>' ) elif checkuae(snake_case ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) _snake_case : int = end return result def __UpperCAmelCase ( self : Union[str, Any] , snake_case : Tuple , snake_case : str="\n" ): """simple docstring""" _snake_case : Union[str, Any] = [] _snake_case : List[str] = [] _snake_case : Optional[int] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case ) > 0: words.append(bytearray(snake_case ).decode('utf-8' , errors='replace' ) ) _snake_case : Union[str, Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case ) if len(snake_case ) > 0: words.append(bytearray(snake_case ).decode('utf-8' , errors='replace' ) ) _snake_case : Dict = ''.join(snake_case ) return text
517
1
from torch import nn class lowerCamelCase ( nn.Module ): def __init__( self , lowercase__ , lowercase__): super().__init__() __UpperCAmelCase : str = class_size __UpperCAmelCase : Union[str, Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) __UpperCAmelCase : List[str] = nn.Linear(lowercase__ , lowercase__) def A( self , lowercase__): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) __UpperCAmelCase : Union[str, Any] = self.mlp(lowercase__) return logits
675
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowerCAmelCase = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __SCREAMING_SNAKE_CASE ( lowercase_ = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' __UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __UpperCAmelCase : str = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __UpperCAmelCase : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(F'Job {i:>2} is {job[0]} at {job[1]}')
675
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = 'beit' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Any=8192 , UpperCAmelCase__ : Optional[int]=768 , UpperCAmelCase__ : Union[str, Any]=12 , UpperCAmelCase__ : Optional[Any]=12 , UpperCAmelCase__ : str=3072 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : Dict=0.0 , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : str=1E-12 , UpperCAmelCase__ : str=224 , UpperCAmelCase__ : Optional[Any]=16 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[Any]=[3, 5, 7, 11] , UpperCAmelCase__ : List[str]=[1, 2, 3, 6] , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Union[str, Any]=0.4 , UpperCAmelCase__ : List[Any]=256 , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Optional[int]=255 , **UpperCAmelCase__ : Tuple , ): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) lowercase : List[str] =vocab_size lowercase : str =hidden_size lowercase : Any =num_hidden_layers lowercase : List[str] =num_attention_heads lowercase : List[Any] =intermediate_size lowercase : Optional[int] =hidden_act lowercase : Optional[int] =hidden_dropout_prob lowercase : Any =attention_probs_dropout_prob lowercase : List[str] =initializer_range lowercase : int =layer_norm_eps lowercase : str =image_size lowercase : Union[str, Any] =patch_size lowercase : Tuple =num_channels lowercase : List[Any] =use_mask_token lowercase : Optional[int] =use_absolute_position_embeddings lowercase : Any =use_relative_position_bias lowercase : int =use_shared_relative_position_bias lowercase : str =layer_scale_init_value lowercase : int =drop_path_rate lowercase : Optional[int] =use_mean_pooling # decode head attributes (semantic segmentation) lowercase : Dict =out_indices lowercase : int =pool_scales # auxiliary head attributes (semantic segmentation) lowercase : Optional[Any] =use_auxiliary_head lowercase : Optional[int] =auxiliary_loss_weight lowercase : Optional[int] =auxiliary_channels lowercase : Any =auxiliary_num_convs lowercase : Tuple =auxiliary_concat_input lowercase : List[Any] =semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = version.parse('1.11' ) @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return 1E-4
92
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _a: int = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: Tuple = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: Any = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: Union[str, Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a: Optional[Any] = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _a: int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
162
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : str = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = """detr""" lowercase_ = ["""past_key_values"""] lowercase_ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase__=True , lowercase__=None , lowercase__=3 , lowercase__=1_0_0 , lowercase__=6 , lowercase__=2_0_4_8 , lowercase__=8 , lowercase__=6 , lowercase__=2_0_4_8 , lowercase__=8 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__="relu" , lowercase__=2_5_6 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.02 , lowercase__=1.0 , lowercase__=False , lowercase__="sine" , lowercase__="resnet50" , lowercase__=True , lowercase__=False , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=1 , lowercase__=1 , lowercase__=5 , lowercase__=2 , lowercase__=0.1 , **lowercase__ , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __A =CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowercase__ , lowercase__ ): __A =backbone_config.get('''model_type''' ) __A =CONFIG_MAPPING[backbone_model_type] __A =config_class.from_dict(lowercase__ ) # set timm attributes to None __A , __A , __A =None, None, None __A =use_timm_backbone __A =backbone_config __A =num_channels __A =num_queries __A =d_model __A =encoder_ffn_dim __A =encoder_layers __A =encoder_attention_heads __A =decoder_ffn_dim __A =decoder_layers __A =decoder_attention_heads __A =dropout __A =attention_dropout __A =activation_dropout __A =activation_function __A =init_std __A =init_xavier_std __A =encoder_layerdrop __A =decoder_layerdrop __A =encoder_layers __A =auxiliary_loss __A =position_embedding_type __A =backbone __A =use_pretrained_backbone __A =dilation # Hungarian matcher __A =class_cost __A =bbox_cost __A =giou_cost # Loss coefficients __A =mask_loss_coefficient __A =dice_loss_coefficient __A =bbox_loss_coefficient __A =giou_loss_coefficient __A =eos_coefficient super().__init__(is_encoder_decoder=lowercase__ , **lowercase__ ) @property def __UpperCamelCase ( self ): '''simple docstring''' return self.encoder_attention_heads @property def __UpperCamelCase ( self ): '''simple docstring''' return self.d_model @classmethod def __UpperCamelCase ( cls , lowercase__ , **lowercase__ ): '''simple docstring''' return cls(backbone_config=lowercase__ , **lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' __A =copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __A =self.backbone_config.to_dict() __A =self.__class__.model_type return output class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = version.parse("""1.11""" ) @property def __UpperCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def __UpperCamelCase ( self ): '''simple docstring''' return 1E-5 @property def __UpperCamelCase ( self ): '''simple docstring''' return 1_2
516
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _lowerCamelCase : Optional[int] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self , lowercase__ ): '''simple docstring''' super().__init__() __A =torchvision.models.resnetaaa(pretrained=lowercase__ ) __A =list(model.children() )[:-2] __A =nn.Sequential(*lowercase__ ) __A =nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A =self.pool(self.model(lowercase__ ) ) __A =torch.flatten(lowercase__ , start_dim=2 ) __A =out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' __A =[json.loads(lowercase__ ) for l in open(lowercase__ )] __A =os.path.dirname(lowercase__ ) __A =tokenizer __A =labels __A =len(lowercase__ ) __A =max_seq_length __A =transforms def __len__( self ): '''simple docstring''' return len(self.data ) def __getitem__( self , lowercase__ ): '''simple docstring''' __A =torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=lowercase__ ) ) __A , __A , __A =sentence[0], sentence[1:-1], sentence[-1] __A =sentence[: self.max_seq_length] __A =torch.zeros(self.n_classes ) __A =1 __A =Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) __A =self.transforms(lowercase__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def __UpperCamelCase ( self ): '''simple docstring''' __A =Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def A__ ( __A : Tuple ) ->Optional[int]: __A =[len(row['''sentence'''] ) for row in batch] __A , __A =len(__A ), max(__A ) __A =torch.zeros(__A , __A , dtype=torch.long ) __A =torch.zeros(__A , __A , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__A , __A ) ): __A =input_row['''sentence'''] __A =1 __A =torch.stack([row['''image'''] for row in batch] ) __A =torch.stack([row['''label'''] for row in batch] ) __A =torch.stack([row['''image_start_token'''] for row in batch] ) __A =torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def A__ ( ) ->List[Any]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def A__ ( ) ->List[Any]: return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
516
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->str: UpperCAmelCase = OmegaConf.load(lowerCAmelCase_ ) UpperCAmelCase = torch.load(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] UpperCAmelCase = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase = {} UpperCAmelCase = """first_stage_model.""" for key in keys: if key.startswith(lowerCAmelCase_ ): UpperCAmelCase = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase = {} UpperCAmelCase = """model.diffusion_model.""" for key in keys: if key.startswith(lowerCAmelCase_ ): UpperCAmelCase = state_dict[key] UpperCAmelCase = config.model.params.first_stage_config.params UpperCAmelCase = config.model.params.unet_config.params UpperCAmelCase = VQModel(**lowerCAmelCase_ ).eval() vqvae.load_state_dict(lowerCAmelCase_ ) UpperCAmelCase = UNetLDMModel(**lowerCAmelCase_ ).eval() unet.load_state_dict(lowerCAmelCase_ ) UpperCAmelCase = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="""scaled_linear""" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=lowerCAmelCase_ , ) UpperCAmelCase = LDMPipeline(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) pipeline.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) __a = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
377
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class __lowercase ( __snake_case ): UpperCamelCase = '''pix2struct_text_model''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , __lowerCamelCase : Optional[int]=5_0_2_4_4 , __lowerCamelCase : int=7_6_8 , __lowerCamelCase : Union[str, Any]=6_4 , __lowerCamelCase : Dict=2_0_4_8 , __lowerCamelCase : int=1_2 , __lowerCamelCase : Any=1_2 , __lowerCamelCase : Union[str, Any]=3_2 , __lowerCamelCase : Any=1_2_8 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : str=1e-6 , __lowerCamelCase : int=1.0 , __lowerCamelCase : Optional[int]="gelu_new" , __lowerCamelCase : int=0 , __lowerCamelCase : int=False , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Dict=1 , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : Dict , ) -> int: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = d_kv UpperCAmelCase = d_ff UpperCAmelCase = num_layers UpperCAmelCase = num_heads UpperCAmelCase = relative_attention_num_buckets UpperCAmelCase = relative_attention_max_distance UpperCAmelCase = dropout_rate UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_factor UpperCAmelCase = use_cache UpperCAmelCase = eos_token_id UpperCAmelCase = decoder_start_token_id # for backwards compatibility UpperCAmelCase = dense_act_fn super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , is_decoder=__lowerCamelCase , **__lowerCamelCase , ) @classmethod def _lowercase ( cls : List[Any] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__lowerCamelCase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCAmelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class __lowercase ( __snake_case ): UpperCamelCase = '''pix2struct_vision_model''' def __init__( self : str , __lowerCamelCase : Any=7_6_8 , __lowerCamelCase : Dict=7_6_8 , __lowerCamelCase : List[Any]=2_0_4_8 , __lowerCamelCase : List[Any]=6_4 , __lowerCamelCase : Union[str, Any]=1_2 , __lowerCamelCase : Optional[int]=1_2 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Tuple=1e-6 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : int=1e-1_0 , __lowerCamelCase : Union[str, Any]=1.0 , __lowerCamelCase : Any=4_0_9_6 , __lowerCamelCase : Dict=3_2 , __lowerCamelCase : Any=1_2_8 , **__lowerCamelCase : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__(**__lowerCamelCase ) UpperCAmelCase = hidden_size UpperCAmelCase = patch_embed_hidden_size UpperCAmelCase = d_ff UpperCAmelCase = dropout_rate UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor UpperCAmelCase = attention_dropout UpperCAmelCase = layer_norm_eps UpperCAmelCase = dense_act_fn UpperCAmelCase = seq_len UpperCAmelCase = relative_attention_num_buckets UpperCAmelCase = relative_attention_max_distance UpperCAmelCase = d_kv @classmethod def _lowercase ( cls : Any , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : int ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__lowerCamelCase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": UpperCAmelCase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class __lowercase ( __snake_case ): UpperCamelCase = '''pix2struct''' UpperCamelCase = True def __init__( self : str , __lowerCamelCase : str=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=1.0 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Any=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : str=True , **__lowerCamelCase : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(tie_word_embeddings=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) if text_config is None: UpperCAmelCase = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: UpperCAmelCase = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) UpperCAmelCase = PixaStructTextConfig(**__lowerCamelCase ) UpperCAmelCase = PixaStructVisionConfig(**__lowerCamelCase ) UpperCAmelCase = self.text_config.decoder_start_token_id UpperCAmelCase = self.text_config.pad_token_id UpperCAmelCase = self.text_config.eos_token_id UpperCAmelCase = initializer_factor UpperCAmelCase = initializer_range UpperCAmelCase = self.initializer_range UpperCAmelCase = self.initializer_range UpperCAmelCase = is_vqa @classmethod def _lowercase ( cls : List[Any] , __lowerCamelCase : PixaStructTextConfig , __lowerCamelCase : PixaStructVisionConfig , **__lowerCamelCase : Dict ) -> Union[str, Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase ) def _lowercase ( self : List[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output
377
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "dpt" def __init__( self :Union[str, Any] , __A :int=768 , __A :Optional[int]=12 , __A :Optional[Any]=12 , __A :Dict=3072 , __A :Optional[Any]="gelu" , __A :Union[str, Any]=0.0 , __A :Optional[Any]=0.0 , __A :int=0.0_2 , __A :Optional[Any]=1E-12 , __A :Union[str, Any]=384 , __A :int=16 , __A :Tuple=3 , __A :Tuple=False , __A :int=True , __A :Optional[Any]=[2, 5, 8, 11] , __A :Any="project" , __A :Any=[4, 2, 1, 0.5] , __A :str=[96, 192, 384, 768] , __A :int=256 , __A :Union[str, Any]=-1 , __A :List[Any]=False , __A :int=True , __A :List[Any]=0.4 , __A :Any=255 , __A :Any=0.1 , __A :Tuple=[1, 1024, 24, 24] , __A :int=[0, 1] , __A :Union[str, Any]=None , **__A :Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) SCREAMING_SNAKE_CASE__ = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } SCREAMING_SNAKE_CASE__ = BitConfig(**__A ) elif isinstance(__A , __A ): logger.info("""Initializing the config with a `BiT` backbone.""" ) SCREAMING_SNAKE_CASE__ = BitConfig(**__A ) elif isinstance(__A , __A ): SCREAMING_SNAKE_CASE__ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) SCREAMING_SNAKE_CASE__ = backbone_featmap_shape SCREAMING_SNAKE_CASE__ = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) SCREAMING_SNAKE_CASE__ = readout_type SCREAMING_SNAKE_CASE__ = reassemble_factors SCREAMING_SNAKE_CASE__ = neck_hidden_sizes SCREAMING_SNAKE_CASE__ = fusion_hidden_size SCREAMING_SNAKE_CASE__ = head_in_index SCREAMING_SNAKE_CASE__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE__ = use_auxiliary_head SCREAMING_SNAKE_CASE__ = auxiliary_loss_weight SCREAMING_SNAKE_CASE__ = semantic_loss_ignore_index SCREAMING_SNAKE_CASE__ = semantic_classifier_dropout def _snake_case ( self :Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: SCREAMING_SNAKE_CASE__ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output
707
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCamelCase = '\\n Text data.\n Second line of data.' _lowerCamelCase = 'file' @pytest.fixture(scope="""session""" ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ): SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") SCREAMING_SNAKE_CASE__ = bytes(UpperCamelCase__ , """utf-8""" ) with zstd.open(UpperCamelCase__ , """wb""" ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): with open(os.path.join(tmpfs.local_root_dir , UpperCamelCase__ ) , """w""" ) as f: f.write(UpperCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Dict , UpperCamelCase__: int , UpperCamelCase__: str , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} SCREAMING_SNAKE_CASE__ = input_paths[compression_format] SCREAMING_SNAKE_CASE__ = tmp_path / """cache""" SCREAMING_SNAKE_CASE__ = DownloadConfig(cache_dir=UpperCamelCase__ , extract_compressed_file=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ = f.read() with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Any , UpperCamelCase__: Union[str, Any] ): SCREAMING_SNAKE_CASE__ = """custom_cache""" SCREAMING_SNAKE_CASE__ = """custom_extracted_dir""" SCREAMING_SNAKE_CASE__ = tmp_path / """custom_extracted_path""" if default_extracted: SCREAMING_SNAKE_CASE__ = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , UpperCamelCase__ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) SCREAMING_SNAKE_CASE__ = xz_file SCREAMING_SNAKE_CASE__ = ( DownloadConfig(extract_compressed_file=UpperCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) assert Path(UpperCamelCase__ ).parent.parts[-2:] == expected def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] ): # absolute path SCREAMING_SNAKE_CASE__ = str(Path(UpperCamelCase__ ).resolve() ) assert cached_path(UpperCamelCase__ ) == text_file # relative path SCREAMING_SNAKE_CASE__ = str(Path(UpperCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(UpperCamelCase__ ) == text_file def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): # absolute path SCREAMING_SNAKE_CASE__ = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) # relative path SCREAMING_SNAKE_CASE__ = """./__missing_file__.txt""" with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ): SCREAMING_SNAKE_CASE__ = get_from_cache(f'''tmp://{tmpfs_file}''' ) with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE__ = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( ): with pytest.raises(UpperCamelCase__ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(UpperCamelCase__ ): http_get("""https://huggingface.co""" , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ): SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(UpperCamelCase__ ): ftp_get("""ftp://huggingface.co""" , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(UpperCamelCase__ ): fsspec_get("""s3://huggingface.co""" , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): fsspec_head("""s3://huggingface.co""" )
59
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __lowerCamelCase : Optional[int] = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
416
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase : int = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class a ( UpperCamelCase_ ,unittest.TestCase ): __lowercase = BartphoTokenizer __lowercase = False __lowercase = True def lowerCAmelCase_ ( self )-> int: '''simple docstring''' super().setUp() A__ : Optional[Any] =['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] A__ : Tuple =dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) A__ : Optional[int] ={'''unk_token''': '''<unk>'''} A__ : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n' ) A__ : int =BartphoTokenizer(__UpperCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self , **__UpperCamelCase )-> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowerCAmelCase_ ( self , __UpperCamelCase )-> Optional[Any]: '''simple docstring''' A__ : List[Any] ='''This is a là test''' A__ : Optional[int] ='''This is a<unk><unk> test''' return input_text, output_text def lowerCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' A__ : Tuple =BartphoTokenizer(__UpperCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) A__ : Dict ='''This is a là test''' A__ : Tuple ='''▁This ▁is ▁a ▁l à ▁t est'''.split() A__ : Optional[int] =tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) A__ : Union[str, Any] =tokens + [tokenizer.unk_token] A__ : int =[4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
416
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class A__: def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : int=2 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Tuple=64 , __SCREAMING_SNAKE_CASE : str=None ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = np.random.default_rng(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = length __SCREAMING_SNAKE_CASE = rng.normal(size=(length,) ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.length def __getitem__( self : int , __SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class A__( torch.nn.Module ): def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : List[str]=False ) -> List[Any]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __SCREAMING_SNAKE_CASE = True def _a ( self : int , __SCREAMING_SNAKE_CASE : int=None ) -> List[str]: """simple docstring""" if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __SCREAMING_SNAKE_CASE = False return x * self.a[0] + self.b[0] class A__( torch.nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : List[str]=0 , __SCREAMING_SNAKE_CASE : int=False ) -> Optional[int]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(__SCREAMING_SNAKE_CASE ).float() ) __SCREAMING_SNAKE_CASE = torch.nn.Parameter(torch.tensor(__SCREAMING_SNAKE_CASE ).float() ) __SCREAMING_SNAKE_CASE = True def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> List[Any]: """simple docstring""" if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __SCREAMING_SNAKE_CASE = False return x * self.a + self.b def _a ( UpperCAmelCase__ , UpperCAmelCase__ = 16 ) -> int: from datasets import load_dataset from transformers import AutoTokenizer __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __SCREAMING_SNAKE_CASE = load_dataset('''csv''' , data_files=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = datasets['''train'''].unique('''label''' ) __SCREAMING_SNAKE_CASE = {v: i for i, v in enumerate(UpperCAmelCase__ )} def tokenize_function(UpperCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) if "label" in examples: __SCREAMING_SNAKE_CASE = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __SCREAMING_SNAKE_CASE = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(UpperCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase__ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(UpperCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets['''train'''] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=2 ) __SCREAMING_SNAKE_CASE = DataLoader(tokenized_datasets['''validation'''] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
716
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A__( unittest.TestCase ): def _a ( self : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 def _a ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : str ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = CLIPConfig() # Create a dummy config file with image_proceesor_type __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('''image_processor_type''' ) __SCREAMING_SNAKE_CASE = CLIPImageProcessor(**__SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(__SCREAMING_SNAKE_CASE ) config.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved __SCREAMING_SNAKE_CASE = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> str: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''clip-base is not a local folder and is not a valid model identifier''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''clip-base''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def _a ( self : Dict ) -> Dict: """simple docstring""" with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _a ( self : int ) -> Any: """simple docstring""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _a ( self : Optional[Any] ) -> str: """simple docstring""" try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''preprocessor_config.json''' __SCREAMING_SNAKE_CASE = Path(__SCREAMING_SNAKE_CASE ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__SCREAMING_SNAKE_CASE , '''w''' ) ) __SCREAMING_SNAKE_CASE = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _a ( self : int ) -> List[Any]: """simple docstring""" class A__( __magic_name__ ): lowerCAmelCase = True try: AutoConfig.register('''custom''' , __SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
690
0
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = os.path.join(args.tf_model_dir , "parameters.json" ) snake_case__ = json.loads(open(__lowerCAmelCase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): snake_case__ = args.output + ".pt" snake_case__ = OrderedDict() with tf.device("/CPU:0" ): snake_case__ = tf.train.load_checkpoint(args.tf_model_dir ) snake_case__ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case__ = reader.get_tensor(__lowerCAmelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): snake_case__ = int(key_name[9] ) elif key_name.startswith("pasts/out" ): snake_case__ = 8 snake_case__ = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.startswith("model/moe" ): snake_case__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): snake_case__ = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player snake_case__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.endswith("/softmlp/kernel" ): snake_case__ = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player snake_case__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): snake_case__ = key_name[-9:-7] for i in range(16 ): snake_case__ = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) snake_case__ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.startswith("model/mlp" ): snake_case__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): snake_case__ = "model.blocks.%d.feed_forward.mlp.wi.weight" % player snake_case__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.endswith("/p1/bias" ): snake_case__ = "model.blocks.%d.feed_forward.mlp.wi.bias" % player snake_case__ = vnp.copy() # same because it is one dimensional snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.endswith("/p2/kernel" ): snake_case__ = "model.blocks.%d.feed_forward.mlp.wo.weight" % player snake_case__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.endswith("/p2/bias" ): snake_case__ = "model.blocks.%d.feed_forward.mlp.wo.bias" % player snake_case__ = vnp.copy() # same because it is one dimensional snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.startswith("model/ln" ): snake_case__ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): snake_case__ = "model.blocks.%d.feed_forward.norm.bias" % player snake_case__ = vnp.copy() # same because it is one dimensional snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.endswith("/g" ): snake_case__ = "model.blocks.%d.feed_forward.norm.weight" % player snake_case__ = vnp.copy() # same because it is one dimensional snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.startswith("model/att" ): snake_case__ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): snake_case__ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case__ = state[:, 0, :, :] snake_case__ = state[:, 1, :, :] snake_case__ = state[:, 2, :, :] snake_case__ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player snake_case__ = torch.tensor(__lowerCAmelCase ) snake_case__ = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player snake_case__ = torch.tensor(__lowerCAmelCase ) snake_case__ = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.endswith("/o/kernel" ): snake_case__ = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player snake_case__ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.startswith("model/an" ): snake_case__ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): snake_case__ = "model.blocks.%d.self_attn.norm.bias" % player snake_case__ = vnp.copy() # same because it is one dimensional snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.endswith("/g" ): snake_case__ = "model.blocks.%d.self_attn.norm.weight" % player snake_case__ = vnp.copy() # same because it is one dimensional snake_case__ = torch.tensor(__lowerCAmelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): snake_case__ = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] snake_case__ = "model.%s.weight" % nlayer snake_case__ = vnp.copy() # same in embedded snake_case__ = torch.tensor(__lowerCAmelCase ) if key_name.startswith("model/wte" ): snake_case__ = "lm_head.weight" snake_case__ = vnp.copy() # same in embedded snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name.startswith("model/wob" ): snake_case__ = "final_logits_bias" snake_case__ = vnp.copy() # same in embedded snake_case__ = state.reshape((1, -1) ) snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name == "model/dense/kernel": snake_case__ = "model.last_project.weight" snake_case__ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case__ = torch.tensor(__lowerCAmelCase ) elif key_name == "model/dense_1/bias": snake_case__ = "model.last_project.bias" snake_case__ = vnp.copy() # same because it is one dimensional snake_case__ = torch.tensor(__lowerCAmelCase ) torch.save(__lowerCAmelCase , args.output ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') __magic_name__ = parser.parse_args() convert_tf_gptsan_to_pt(args)
276
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) __magic_name__ = logging.getLogger(__name__) __magic_name__ = {'''facebook/bart-base''': BartForConditionalGeneration} __magic_name__ = {'''facebook/bart-base''': BartTokenizer} def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=__lowerCAmelCase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=__lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__lowerCAmelCase , ) parser.add_argument( "--config_name" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=__lowerCAmelCase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="Where to store the final ONNX file." ) snake_case__ = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase="cpu" ): snake_case__ = model_dict[model_name].from_pretrained(__lowerCAmelCase ).to(__lowerCAmelCase ) snake_case__ = tokenizer_dict[model_name].from_pretrained(__lowerCAmelCase ) if model_name in ["facebook/bart-base"]: snake_case__ = 0 snake_case__ = None snake_case__ = 0 return huggingface_model, tokenizer def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): model.eval() snake_case__ = None snake_case__ = torch.jit.script(BARTBeamSearchGenerator(__lowerCAmelCase ) ) with torch.no_grad(): snake_case__ = "My friends are cool but they eat too many carbs." snake_case__ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors="pt" ).to(model.device ) snake_case__ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=__lowerCAmelCase , max_length=__lowerCAmelCase , early_stopping=__lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __lowerCAmelCase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , __lowerCAmelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=__lowerCAmelCase , ) logger.info("Model exported to {}".format(__lowerCAmelCase ) ) snake_case__ = remove_dup_initializers(os.path.abspath(__lowerCAmelCase ) ) logger.info("Deduplicated and optimized model written to {}".format(__lowerCAmelCase ) ) snake_case__ = onnxruntime.InferenceSession(__lowerCAmelCase ) snake_case__ = ort_sess.run( __lowerCAmelCase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(__lowerCAmelCase ), "max_length": np.array(__lowerCAmelCase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def SCREAMING_SNAKE_CASE__ ( ): snake_case__ = parse_args() snake_case__ = 5 snake_case__ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case__ = torch.device(args.device ) snake_case__ , snake_case__ = load_model_tokenizer(args.model_name_or_path , __lowerCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(__lowerCAmelCase ) if args.max_length: snake_case__ = args.max_length if args.num_beams: snake_case__ = args.num_beams if args.output_file_path: snake_case__ = args.output_file_path else: snake_case__ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
276
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ : Union[str, Any] = '''src/diffusers''' A_ : List[Any] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. A_ : List[str] = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) A_ : Optional[int] = spec.loader.load_module() def UpperCAmelCase__ ( UpperCAmelCase__ :List[str] , UpperCAmelCase__ :Optional[Any] ): '''simple docstring''' return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , UpperCAmelCase__ ) is not None def UpperCAmelCase__ ( UpperCAmelCase__ :Any ): '''simple docstring''' a = object_name.split("." ) a = 0 # First let's find the module where our object lives. a = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__ , F"""{module}.py""" ) ): i += 1 if i < len(UpperCAmelCase__ ): a = os.path.join(UpperCAmelCase__ , parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(UpperCAmelCase__ , F"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: a = f.readlines() # Now let's find the class / func in the code! a = "" a = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(rF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index] , UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) A_ : List[Any] = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') A_ : List[Any] = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') A_ : int = re.compile(r'''<FILL\s+[^>]*>''') def UpperCAmelCase__ ( UpperCAmelCase__ :Tuple ): '''simple docstring''' a = code.split("\n" ) a = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def UpperCAmelCase__ ( UpperCAmelCase__ :Optional[int] ): '''simple docstring''' a = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: a = F"""class Bla:\n{code}""" a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=UpperCAmelCase__ ) a = black.format_str(UpperCAmelCase__ , mode=UpperCAmelCase__ ) a , a = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("class Bla:\n" ) :] if has_indent else result def UpperCAmelCase__ ( UpperCAmelCase__ :Tuple , UpperCAmelCase__ :str=False ): '''simple docstring''' with open(UpperCAmelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: a = f.readlines() a = [] a = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): a = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a , a , a = search.groups() a = find_code_in_diffusers(UpperCAmelCase__ ) a = get_indent(UpperCAmelCase__ ) a = line_index + 1 if indent == theoretical_indent else line_index + 2 a = theoretical_indent a = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break a = lines[line_index] a = _should_continue(UpperCAmelCase__ , UpperCAmelCase__ ) and re.search(F"""^{indent}# End copy""" , UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a = lines[start_index:line_index] a = "".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies a = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] a = "\n".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: a = replace_pattern.replace("with" , "" ).split("," ) a = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue a , a , a = pattern.groups() a = re.sub(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if option.strip() == "all-casing": a = re.sub(obja.lower() , obja.lower() , UpperCAmelCase__ ) a = re.sub(obja.upper() , obja.upper() , UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a = blackify(lines[start_index - 1] + theoretical_code ) a = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a = lines[:start_index] + [theoretical_code] + lines[line_index:] a = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(UpperCAmelCase__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def UpperCAmelCase__ ( UpperCAmelCase__ :bool = False ): '''simple docstring''' a = glob.glob(os.path.join(UpperCAmelCase__ , "**/*.py" ) , recursive=UpperCAmelCase__ ) a = [] for filename in all_files: a = is_copy_consistent(UpperCAmelCase__ , UpperCAmelCase__ ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: a = "\n".join(UpperCAmelCase__ ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ : int = parser.parse_args() check_copies(args.fix_and_overwrite)
32
def UpperCAmelCase__ ( UpperCAmelCase__ :int , UpperCAmelCase__ :int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) a = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" a = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" a = max(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase__ ) , b_binary.zfill(UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
1
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _UpperCAmelCase ( __A : int , __A : Tuple="shi-labs/oneformer_demo" ): with open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) as f: a_ : Optional[Any] = json.load(__A ) a_ : List[Any] = {} a_ : List[Any] = [] a_ : Tuple = [] for key, info in class_info.items(): a_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(__A ) ) a_ : Optional[Any] = thing_ids a_ : str = class_names return metadata class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=7 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=30 , __SCREAMING_SNAKE_CASE : str=400 , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : str=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[int]=10 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=255 , __SCREAMING_SNAKE_CASE : List[Any]="shi-labs/oneformer_demo" , __SCREAMING_SNAKE_CASE : List[str]="ade20k_panoptic.json" , __SCREAMING_SNAKE_CASE : List[Any]=10 , ) -> Dict: a_ : int = parent a_ : Optional[Any] = batch_size a_ : str = num_channels a_ : Tuple = min_resolution a_ : List[Any] = max_resolution a_ : List[Any] = do_resize a_ : Union[str, Any] = {'''shortest_edge''': 32, '''longest_edge''': 1333} if size is None else size a_ : Dict = do_normalize a_ : Union[str, Any] = image_mean a_ : Dict = image_std a_ : int = class_info_file a_ : List[Any] = prepare_metadata(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = num_text a_ : Any = repo_path # for the post_process_functions a_ : List[str] = 2 a_ : Tuple = 10 a_ : Union[str, Any] = 10 a_ : Dict = 3 a_ : int = 4 a_ : Optional[Any] = num_labels a_ : Union[str, Any] = do_reduce_labels a_ : Tuple = ignore_index def SCREAMING_SNAKE_CASE ( self : str ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]=False ) -> Optional[Any]: if not batched: a_ : List[Any] = image_inputs[0] if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ): a_ , a_ : List[str] = image.size else: a_ , a_ : Any = image.shape[1], image.shape[2] if w < h: a_ : int = int(self.size['''shortest_edge'''] * h / w ) a_ : Union[str, Any] = self.size['''shortest_edge'''] elif w > h: a_ : Any = self.size['''shortest_edge'''] a_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: a_ : Optional[int] = self.size['''shortest_edge'''] a_ : int = self.size['''shortest_edge'''] else: a_ : int = [] for image in image_inputs: a_ , a_ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a_ : List[str] = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] a_ : str = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string snake_case__ = image_processing_class def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Optional[int] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''ignore_index''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''class_info_file''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''num_text''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''repo_path''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''metadata''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_reduce_labels''' ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: pass def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: # Initialize image_processor a_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : Dict = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a_ , a_ : Optional[int] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ : Union[str, Any] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) a_ : Any = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: # Initialize image_processor a_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input a_ : List[Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a_ , a_ : Union[str, Any] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ : Union[str, Any] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) a_ : Tuple = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: # Initialize image_processor a_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input a_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a_ , a_ : int = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ : Tuple = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) a_ : int = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : str="np" ) -> Any: a_ : Dict = self.image_processing_class(**self.image_processor_dict ) # prepare image and target a_ : Optional[Any] = self.image_processing_tester.num_labels a_ : Union[str, Any] = None a_ : int = None a_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) if with_segmentation_maps: a_ : List[str] = num_labels if is_instance_map: a_ : str = list(range(__SCREAMING_SNAKE_CASE ) ) * 2 a_ : str = dict(enumerate(__SCREAMING_SNAKE_CASE ) ) a_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": a_ : Any = [Image.fromarray(__SCREAMING_SNAKE_CASE ) for annotation in annotations] a_ : Dict = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , instance_id_to_semantic_id=__SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE , ) return inputs def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: def common(__SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : List[str]=None ): a_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=__SCREAMING_SNAKE_CASE , is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = inputs['''mask_labels'''] a_ : Any = inputs['''class_labels'''] a_ : Any = inputs['''pixel_values'''] a_ : Optional[Any] = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__SCREAMING_SNAKE_CASE ) common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type='''pil''' ) common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type='''pil''' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ : int = np.zeros((20, 50) ) a_ : Dict = 1 a_ : Optional[Any] = 1 a_ : Dict = 1 a_ : Tuple = binary_mask_to_rle(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: a_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() a_ : str = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) a_ : Dict = [(1, 4) for i in range(self.image_processing_tester.batch_size )] a_ : List[str] = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE , target_sizes=__SCREAMING_SNAKE_CASE ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: a_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a_ : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() a_ : Tuple = image_processor.post_process_instance_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: a_ : List[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a_ : int = self.image_processing_tester.get_fake_oneformer_outputs() a_ : str = image_processor.post_process_panoptic_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
466
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _UpperCAmelCase ( __A : int , __A : Tuple="shi-labs/oneformer_demo" ): with open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) as f: a_ : Optional[Any] = json.load(__A ) a_ : List[Any] = {} a_ : List[Any] = [] a_ : Tuple = [] for key, info in class_info.items(): a_ : Tuple = info['''name'''] class_names.append(info['''name'''] ) if info["isthing"]: thing_ids.append(int(__A ) ) a_ : Optional[Any] = thing_ids a_ : str = class_names return metadata class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str]=7 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : List[Any]=30 , __SCREAMING_SNAKE_CASE : str=400 , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : str=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[int]=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE : Optional[int]=10 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Optional[int]=255 , __SCREAMING_SNAKE_CASE : List[Any]="shi-labs/oneformer_demo" , __SCREAMING_SNAKE_CASE : List[str]="ade20k_panoptic.json" , __SCREAMING_SNAKE_CASE : List[Any]=10 , ) -> Dict: a_ : int = parent a_ : Optional[Any] = batch_size a_ : str = num_channels a_ : Tuple = min_resolution a_ : List[Any] = max_resolution a_ : List[Any] = do_resize a_ : Union[str, Any] = {'''shortest_edge''': 32, '''longest_edge''': 1333} if size is None else size a_ : Dict = do_normalize a_ : Union[str, Any] = image_mean a_ : Dict = image_std a_ : int = class_info_file a_ : List[Any] = prepare_metadata(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) a_ : Optional[int] = num_text a_ : Any = repo_path # for the post_process_functions a_ : List[str] = 2 a_ : Tuple = 10 a_ : Union[str, Any] = 10 a_ : Dict = 3 a_ : int = 4 a_ : Optional[Any] = num_labels a_ : Union[str, Any] = do_reduce_labels a_ : Tuple = ignore_index def SCREAMING_SNAKE_CASE ( self : str ) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]=False ) -> Optional[Any]: if not batched: a_ : List[Any] = image_inputs[0] if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ): a_ , a_ : List[str] = image.size else: a_ , a_ : Any = image.shape[1], image.shape[2] if w < h: a_ : int = int(self.size['''shortest_edge'''] * h / w ) a_ : Union[str, Any] = self.size['''shortest_edge'''] elif w > h: a_ : Any = self.size['''shortest_edge'''] a_ : Any = int(self.size['''shortest_edge'''] * w / h ) else: a_ : Optional[int] = self.size['''shortest_edge'''] a_ : int = self.size['''shortest_edge'''] else: a_ : int = [] for image in image_inputs: a_ , a_ : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a_ : List[str] = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0] a_ : str = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): snake_case__ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string snake_case__ = image_processing_class def SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: a_ : Optional[int] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: a_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''ignore_index''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''class_info_file''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''num_text''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''repo_path''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''metadata''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_reduce_labels''' ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: pass def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: # Initialize image_processor a_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ : Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input a_ : Dict = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a_ , a_ : Optional[int] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ : Union[str, Any] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) a_ : Any = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: # Initialize image_processor a_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input a_ : List[Any] = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a_ , a_ : Union[str, Any] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ : Union[str, Any] = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) a_ : Tuple = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> int: # Initialize image_processor a_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input a_ : str = image_processor(image_inputs[0] , ['''semantic'''] , return_tensors='''pt''' ).pixel_values a_ , a_ : int = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ , a_ : Tuple = self.image_processing_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE ) a_ : int = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : str="np" ) -> Any: a_ : Dict = self.image_processing_class(**self.image_processor_dict ) # prepare image and target a_ : Optional[Any] = self.image_processing_tester.num_labels a_ : Union[str, Any] = None a_ : int = None a_ : Dict = prepare_image_inputs(self.image_processing_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) if with_segmentation_maps: a_ : List[str] = num_labels if is_instance_map: a_ : str = list(range(__SCREAMING_SNAKE_CASE ) ) * 2 a_ : str = dict(enumerate(__SCREAMING_SNAKE_CASE ) ) a_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": a_ : Any = [Image.fromarray(__SCREAMING_SNAKE_CASE ) for annotation in annotations] a_ : Dict = image_processor( __SCREAMING_SNAKE_CASE , ['''semantic'''] * len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , return_tensors='''pt''' , instance_id_to_semantic_id=__SCREAMING_SNAKE_CASE , pad_and_return_pixel_mask=__SCREAMING_SNAKE_CASE , ) return inputs def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: pass def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: def common(__SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : List[str]=None ): a_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=__SCREAMING_SNAKE_CASE , is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = inputs['''mask_labels'''] a_ : Any = inputs['''class_labels'''] a_ : Any = inputs['''pixel_values'''] a_ : Optional[Any] = inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.num_text ) common() common(is_instance_map=__SCREAMING_SNAKE_CASE ) common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type='''pil''' ) common(is_instance_map=__SCREAMING_SNAKE_CASE , segmentation_type='''pil''' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ : int = np.zeros((20, 50) ) a_ : Dict = 1 a_ : Optional[Any] = 1 a_ : Dict = 1 a_ : Tuple = binary_mask_to_rle(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: a_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() a_ : str = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) a_ : Dict = [(1, 4) for i in range(self.image_processing_tester.batch_size )] a_ : List[str] = fature_extractor.post_process_semantic_segmentation(__SCREAMING_SNAKE_CASE , target_sizes=__SCREAMING_SNAKE_CASE ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: a_ : Optional[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a_ : Optional[int] = self.image_processing_tester.get_fake_oneformer_outputs() a_ : Tuple = image_processor.post_process_instance_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: a_ : List[Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='''ade20k_panoptic.json''' , num_text=self.image_processing_tester.num_text , repo_path='''shi-labs/oneformer_demo''' , ) a_ : int = self.image_processing_tester.get_fake_oneformer_outputs() a_ : str = image_processor.post_process_panoptic_segmentation(__SCREAMING_SNAKE_CASE , threshold=0 ) self.assertTrue(len(__SCREAMING_SNAKE_CASE ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('''segmentation''' in el ) self.assertTrue('''segments_info''' in el ) self.assertEqual(type(el['''segments_info'''] ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( el['''segmentation'''].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
466
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : int = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """poolformer""" def __init__( self :Optional[int] , __snake_case :int=3 , __snake_case :List[Any]=16 , __snake_case :Union[str, Any]=16 , __snake_case :Any=3 , __snake_case :Optional[int]=4.0 , __snake_case :Optional[int]=[2, 2, 6, 2] , __snake_case :List[str]=[64, 1_28, 3_20, 5_12] , __snake_case :Dict=[7, 3, 3, 3] , __snake_case :Any=[4, 2, 2, 2] , __snake_case :str=[2, 1, 1, 1] , __snake_case :str=4 , __snake_case :str=0.0 , __snake_case :List[Any]="gelu" , __snake_case :Optional[int]=True , __snake_case :Union[str, Any]=1E-5 , __snake_case :Union[str, Any]=0.02 , **__snake_case :int , ): '''simple docstring''' __magic_name__ : Optional[int] =num_channels __magic_name__ : List[str] =patch_size __magic_name__ : Union[str, Any] =stride __magic_name__ : Tuple =padding __magic_name__ : Dict =pool_size __magic_name__ : List[Any] =hidden_sizes __magic_name__ : Optional[int] =mlp_ratio __magic_name__ : Any =depths __magic_name__ : Any =patch_sizes __magic_name__ : Dict =strides __magic_name__ : Any =num_encoder_blocks __magic_name__ : Optional[Any] =drop_path_rate __magic_name__ : Optional[int] =hidden_act __magic_name__ : Optional[int] =use_layer_scale __magic_name__ : Optional[Any] =layer_scale_init_value __magic_name__ : Union[str, Any] =initializer_range super().__init__(**__snake_case ) class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :Any ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Optional[Any] ): '''simple docstring''' return 2E-3
367
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class __A ( UpperCamelCase__ ): UpperCamelCase = """t5""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self :Optional[Any] , __snake_case :Optional[Any]=3_21_28 , __snake_case :Optional[int]=5_12 , __snake_case :str=64 , __snake_case :int=20_48 , __snake_case :Union[str, Any]=6 , __snake_case :Union[str, Any]=None , __snake_case :Union[str, Any]=8 , __snake_case :List[str]=32 , __snake_case :Dict=1_28 , __snake_case :List[Any]=0.1 , __snake_case :int=1E-6 , __snake_case :List[str]=1.0 , __snake_case :Optional[int]="relu" , __snake_case :List[str]=True , __snake_case :Union[str, Any]=True , __snake_case :Union[str, Any]=0 , __snake_case :str=1 , **__snake_case :int , ): '''simple docstring''' __magic_name__ : str =vocab_size __magic_name__ : str =d_model __magic_name__ : Optional[Any] =d_kv __magic_name__ : int =d_ff __magic_name__ : Union[str, Any] =num_layers __magic_name__ : Tuple =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __magic_name__ : List[str] =num_heads __magic_name__ : Optional[Any] =relative_attention_num_buckets __magic_name__ : Union[str, Any] =relative_attention_max_distance __magic_name__ : Dict =dropout_rate __magic_name__ : Dict =layer_norm_epsilon __magic_name__ : List[str] =initializer_factor __magic_name__ : Any =feed_forward_proj __magic_name__ : Optional[int] =use_cache __magic_name__ : Tuple =self.feed_forward_proj.split("""-""" ) __magic_name__ : int =act_info[-1] __magic_name__ : int =act_info[0] == """gated""" if len(__snake_case ) > 1 and act_info[0] != "gated" or len(__snake_case ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __magic_name__ : str ="""gelu_new""" super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , **__snake_case , ) class __A ( UpperCamelCase__ ): @property def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int ={ """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: __magic_name__ : List[str] ="""past_encoder_sequence + sequence""" __magic_name__ : List[Any] ={0: """batch"""} __magic_name__ : Union[str, Any] ={0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __magic_name__ : int ={0: """batch""", 1: """decoder_sequence"""} __magic_name__ : Tuple ={0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) return common_inputs @property def A__ ( self :Union[str, Any] ): '''simple docstring''' return 13
367
1