source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(img):
gx = img.shape[0]
gy = img.shape[1]
for i in range(gx):
for j in range(gy):
if img[i, j]:
found_neighbour = False
for ii in range(max(0, i - 1), min(gx, i + 2)):
for jj in range(max(0, j - 1), min(gy, j + 2)):
if ii == i and jj == j:
continue
if img[ii, jj]:
found_neighbour = True
break
if found_neighbour:
break
if not found_neighbour:
img[i, j] = 0
|
removeSinglePixels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n gx = img.shape[0]\n gy = img.shape[1]\n for i in range(gx):\n for j in range(gy):\n if img[i, j]:\n found_neighbour = False\n for ii in range(max(0, i - 1), min(gx, i + 2)):\n for jj in range(max(0, j - 1), min(gy, j + 2)):\n if ii == i and jj == j:\n continue\n if img[ii, jj]:\n found_neighbour = True\n break\n if found_neighbour:\n break\n if not found_neighbour:\n img[i, j] = 0\n",
"role": "user"
},
{
"content": "removeSinglePixels",
"role": "assistant"
}
] |
def x(grid, mask, kernel=15, power=2, fr=1, fphi=1, cx=0, cy=0):
gx = grid.shape[0]
gy = grid.shape[0]
for i in range(gx):
for j in range(gy):
if mask[i, j]:
xmn = i - kernel
if xmn < 0:
xmn = 0
xmx = i + kernel
if xmx > gx:
xmx = gx
ymn = j - kernel
if ymn < 0:
ymn = 0
ymx = j + kernel
if ymx > gx:
ymx = gy
sumWi = 0.0
value = 0.0
R = ((i - cx) ** 2 + (j - cy) ** 2) ** 0.5
PHI = atan2(j - cy, i - cx)
for xi in range(xmn, xmx):
for yi in range(ymn, ymx):
if (xi != i or yi != j) and not mask[xi, yi]:
nR = ((xi - cx) ** 2 + (yi - cy) ** 2) ** 0.5
dr = R - nR
midR = 0.5 * (R + nR)
nphi = atan2(yi - cy, xi - cx)
dphi = min(2 * np.pi - abs(PHI - nphi), abs(PHI -
nphi))
dphi *= midR
dist = ((fr * dr) ** 2 + (fphi * dphi) ** 2) ** 2
wi = 1 / dist ** (0.5 * power)
sumWi += wi
value += wi * grid[xi, yi]
if sumWi:
grid[i, j] = value / sumWi
return grid
|
interpolateCircular2dStructuredIDW
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, mask, kernel=15, power=2, fr=1, fphi=1, cx=0, cy=0):\n gx = grid.shape[0]\n gy = grid.shape[0]\n for i in range(gx):\n for j in range(gy):\n if mask[i, j]:\n xmn = i - kernel\n if xmn < 0:\n xmn = 0\n xmx = i + kernel\n if xmx > gx:\n xmx = gx\n ymn = j - kernel\n if ymn < 0:\n ymn = 0\n ymx = j + kernel\n if ymx > gx:\n ymx = gy\n sumWi = 0.0\n value = 0.0\n R = ((i - cx) ** 2 + (j - cy) ** 2) ** 0.5\n PHI = atan2(j - cy, i - cx)\n for xi in range(xmn, xmx):\n for yi in range(ymn, ymx):\n if (xi != i or yi != j) and not mask[xi, yi]:\n nR = ((xi - cx) ** 2 + (yi - cy) ** 2) ** 0.5\n dr = R - nR\n midR = 0.5 * (R + nR)\n nphi = atan2(yi - cy, xi - cx)\n dphi = min(2 * np.pi - abs(PHI - nphi), abs(PHI -\n nphi))\n dphi *= midR\n dist = ((fr * dr) ** 2 + (fphi * dphi) ** 2) ** 2\n wi = 1 / dist ** (0.5 * power)\n sumWi += wi\n value += wi * grid[xi, yi]\n if sumWi:\n grid[i, j] = value / sumWi\n return grid\n",
"role": "user"
},
{
"content": "interpolateCircular2dStructuredIDW",
"role": "assistant"
}
] |
def x(grid, mask, kernel=15, power=2):
vals = np.empty(shape=4, dtype=grid.dtype)
dist = np.empty(shape=4, dtype=np.uint16)
weights = np.empty(shape=4, dtype=np.float32)
valid = np.empty(shape=4, dtype=bool)
return _calc(grid, mask, power, kernel, vals, dist, weights, valid)
|
interpolate2dStructuredCrossAvg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, mask, kernel=15, power=2):\n vals = np.empty(shape=4, dtype=grid.dtype)\n dist = np.empty(shape=4, dtype=np.uint16)\n weights = np.empty(shape=4, dtype=np.float32)\n valid = np.empty(shape=4, dtype=bool)\n return _calc(grid, mask, power, kernel, vals, dist, weights, valid)\n",
"role": "user"
},
{
"content": "interpolate2dStructuredCrossAvg",
"role": "assistant"
}
] |
def x(ksize):
i = ksize * 2 + 1
kk = np.ones((i, i), dtype=bool)
x, y = np.where(kk)
pos = np.empty(shape=(i, i, 2), dtype=int)
pos[:, :, 0] = x.reshape(i, i) - ksize
pos[:, :, 1] = y.reshape(i, i) - ksize
dist = np.fromfunction(lambda x, y: ((x - ksize) ** 2 + (y - ksize) **
2) ** 0.5, (i, i))
pos = np.dstack(np.unravel_index(np.argsort(dist.ravel()), (i, i)))[0, 1:]
pos0 = pos[:, 0]
pos1 = pos[:, 1]
return pos - ksize, dist[pos0, pos1]
|
growPositions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ksize):\n i = ksize * 2 + 1\n kk = np.ones((i, i), dtype=bool)\n x, y = np.where(kk)\n pos = np.empty(shape=(i, i, 2), dtype=int)\n pos[:, :, 0] = x.reshape(i, i) - ksize\n pos[:, :, 1] = y.reshape(i, i) - ksize\n dist = np.fromfunction(lambda x, y: ((x - ksize) ** 2 + (y - ksize) ** \n 2) ** 0.5, (i, i))\n pos = np.dstack(np.unravel_index(np.argsort(dist.ravel()), (i, i)))[0, 1:]\n pos0 = pos[:, 0]\n pos1 = pos[:, 1]\n return pos - ksize, dist[pos0, pos1]\n",
"role": "user"
},
{
"content": "growPositions",
"role": "assistant"
}
] |
def x(qimage, dtype='array'):
result_shape = qimage.height(), qimage.width()
temp_shape = qimage.height(), qimage.bytesPerLine() * 8 // qimage.depth()
if qimage.format() in (QtGui.QImage.Format_ARGB32_Premultiplied, QtGui.
QImage.Format_ARGB32, QtGui.QImage.Format_RGB32):
if dtype == 'rec':
dtype = np.dtype({'b': (np.uint8, 0), 'g': (np.uint8, 1), 'r':
(np.uint8, 2), 'a': (np.uint8, 3)})
elif dtype == 'array':
dtype = np.uint8
result_shape += 4,
temp_shape += 4,
elif qimage.format() == QtGui.QImage.Format_Indexed8:
dtype = np.uint8
else:
raise ValueError('qimage2numpy only supports 32bit and 8bit images')
buf = qimage.bits().asstring(qimage.byteCount())
result = np.frombuffer(buf, dtype).reshape(temp_shape)
if result_shape != temp_shape:
result = result[:, :result_shape[1]]
if qimage.format() == QtGui.QImage.Format_RGB32 and dtype == np.uint8:
result = result[..., :3]
result = result[..., ::-1]
return result
|
qImageToArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(qimage, dtype='array'):\n result_shape = qimage.height(), qimage.width()\n temp_shape = qimage.height(), qimage.bytesPerLine() * 8 // qimage.depth()\n if qimage.format() in (QtGui.QImage.Format_ARGB32_Premultiplied, QtGui.\n QImage.Format_ARGB32, QtGui.QImage.Format_RGB32):\n if dtype == 'rec':\n dtype = np.dtype({'b': (np.uint8, 0), 'g': (np.uint8, 1), 'r':\n (np.uint8, 2), 'a': (np.uint8, 3)})\n elif dtype == 'array':\n dtype = np.uint8\n result_shape += 4,\n temp_shape += 4,\n elif qimage.format() == QtGui.QImage.Format_Indexed8:\n dtype = np.uint8\n else:\n raise ValueError('qimage2numpy only supports 32bit and 8bit images')\n buf = qimage.bits().asstring(qimage.byteCount())\n result = np.frombuffer(buf, dtype).reshape(temp_shape)\n if result_shape != temp_shape:\n result = result[:, :result_shape[1]]\n if qimage.format() == QtGui.QImage.Format_RGB32 and dtype == np.uint8:\n result = result[..., :3]\n result = result[..., ::-1]\n return result\n",
"role": "user"
},
{
"content": "qImageToArray",
"role": "assistant"
}
] |
def x(arr, stdyrange, stdx=0, modex='wrap', modey='reflect'):
assert arr.ndim == 2, 'only works on 2d arrays at the moment'
s0 = arr.shape[0]
if isinstance(stdyrange, np.ndarray):
assert len(stdyrange
) == s0, '[stdyrange] needs to have same length as [arr]'
stdys = stdyrange
else:
if type(stdyrange) not in (list, tuple):
stdyrange = 0, stdyrange
mn, mx = stdyrange
stdys = np.linspace(mn, mx, s0)
kx = int(stdx * 2.5)
kx += 1 - kx % 2
ky = int(mx * 2.5)
ky += 1 - ky % 2
arr2 = extendArrayForConvolution(arr, (kx, ky), modex, modey)
inp = np.zeros((ky, kx))
inp[ky // 2, kx // 2] = 1
kernels = np.empty((s0, ky, kx))
for i in range(s0):
stdy = stdys[i]
kernels[i] = gaussian_filter(inp, (stdy, stdx))
out = np.empty_like(arr)
_2dConvolutionYdependentKernel(arr2, out, kernels)
return out
|
varYSizeGaussianFilter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, stdyrange, stdx=0, modex='wrap', modey='reflect'):\n assert arr.ndim == 2, 'only works on 2d arrays at the moment'\n s0 = arr.shape[0]\n if isinstance(stdyrange, np.ndarray):\n assert len(stdyrange\n ) == s0, '[stdyrange] needs to have same length as [arr]'\n stdys = stdyrange\n else:\n if type(stdyrange) not in (list, tuple):\n stdyrange = 0, stdyrange\n mn, mx = stdyrange\n stdys = np.linspace(mn, mx, s0)\n kx = int(stdx * 2.5)\n kx += 1 - kx % 2\n ky = int(mx * 2.5)\n ky += 1 - ky % 2\n arr2 = extendArrayForConvolution(arr, (kx, ky), modex, modey)\n inp = np.zeros((ky, kx))\n inp[ky // 2, kx // 2] = 1\n kernels = np.empty((s0, ky, kx))\n for i in range(s0):\n stdy = stdys[i]\n kernels[i] = gaussian_filter(inp, (stdy, stdx))\n out = np.empty_like(arr)\n _2dConvolutionYdependentKernel(arr2, out, kernels)\n return out\n",
"role": "user"
},
{
"content": "varYSizeGaussianFilter",
"role": "assistant"
}
] |
def x(psf, sy, sx):
ps0, ps1 = psf.shape
c0, c1 = ps0 // 2, ps1 // 2
ssx = 2 * sx ** 2
ssy = 2 * sy ** 2
for i in range(ps0):
for j in range(ps1):
psf[i, j] = exp(-((i - c0) ** 2 / ssy + (j - c1) ** 2 / ssx))
psf /= psf.sum()
|
numbaGaussian2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(psf, sy, sx):\n ps0, ps1 = psf.shape\n c0, c1 = ps0 // 2, ps1 // 2\n ssx = 2 * sx ** 2\n ssy = 2 * sy ** 2\n for i in range(ps0):\n for j in range(ps1):\n psf[i, j] = exp(-((i - c0) ** 2 / ssy + (j - c1) ** 2 / ssx))\n psf /= psf.sum()\n",
"role": "user"
},
{
"content": "numbaGaussian2d",
"role": "assistant"
}
] |
def x(img, image_is_artefact_free=False, min_rel_size=0.05, max_abs_size=11):
s0, s1 = img.shape[:2]
s = min(max_abs_size, int(max(s0, s1) * min_rel_size))
arr = np.zeros(shape=(s0 - 2 * s, s1 - 2 * s), dtype=img.dtype)
_spatialStd(img, arr, s)
i, j = np.unravel_index(arr.argmin(), arr.shape)
sub = img[int(i + 0.5 * s):int(i + s * 1.5), int(j + s * 0.5):int(j + s *
1.5)]
return np.median(sub)
|
estimateBackgroundLevel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, image_is_artefact_free=False, min_rel_size=0.05, max_abs_size=11):\n s0, s1 = img.shape[:2]\n s = min(max_abs_size, int(max(s0, s1) * min_rel_size))\n arr = np.zeros(shape=(s0 - 2 * s, s1 - 2 * s), dtype=img.dtype)\n _spatialStd(img, arr, s)\n i, j = np.unravel_index(arr.argmin(), arr.shape)\n sub = img[int(i + 0.5 * s):int(i + s * 1.5), int(j + s * 0.5):int(j + s *\n 1.5)]\n return np.median(sub)\n",
"role": "user"
},
{
"content": "estimateBackgroundLevel",
"role": "assistant"
}
] |
def x():
arr = np.array([[2.5, 1.00281], [7.5, 1.00238], [12.5, 1.00174], [17.5,
1.00204], [22.5, 1.00054], [27.5, 0.998255], [32.5, 0.995351], [
37.5, 0.991246], [42.5, 0.985304], [47.5, 0.975338], [52.5,
0.960455], [57.5, 0.937544], [62.5, 0.900607], [67.5, 0.844636], [
72.5, 0.735028], [77.5, 0.57492], [82.5, 0.263214], [87.5, 0.123062]])
angles = arr[:, 0]
vals = arr[:, 1]
vals[vals > 1] = 1
return angles, vals
|
EL_Si_module
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n arr = np.array([[2.5, 1.00281], [7.5, 1.00238], [12.5, 1.00174], [17.5,\n 1.00204], [22.5, 1.00054], [27.5, 0.998255], [32.5, 0.995351], [\n 37.5, 0.991246], [42.5, 0.985304], [47.5, 0.975338], [52.5, \n 0.960455], [57.5, 0.937544], [62.5, 0.900607], [67.5, 0.844636], [\n 72.5, 0.735028], [77.5, 0.57492], [82.5, 0.263214], [87.5, 0.123062]])\n angles = arr[:, 0]\n vals = arr[:, 1]\n vals[vals > 1] = 1\n return angles, vals\n",
"role": "user"
},
{
"content": "EL_Si_module",
"role": "assistant"
}
] |
def x():
vals = np.array([(80, 0.88), (75, 0.88), (70, 0.88), (65, 0.88), (60,
0.88), (55, 0.88), (50, 0.87), (45, 0.86), (40, 0.85), (35, 0.83),
(30, 0.8), (25, 0.76), (20, 0.7), (15, 0.6), (10, 0.44)])
vals[:, 0] = 90 - vals[:, 0]
vals[:, 1] /= vals[0, 1]
return vals[:, 0], vals[:, 1]
|
TG_glass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n vals = np.array([(80, 0.88), (75, 0.88), (70, 0.88), (65, 0.88), (60, \n 0.88), (55, 0.88), (50, 0.87), (45, 0.86), (40, 0.85), (35, 0.83),\n (30, 0.8), (25, 0.76), (20, 0.7), (15, 0.6), (10, 0.44)])\n vals[:, 0] = 90 - vals[:, 0]\n vals[:, 1] /= vals[0, 1]\n return vals[:, 0], vals[:, 1]\n",
"role": "user"
},
{
"content": "TG_glass",
"role": "assistant"
}
] |
def x(imgs, bg=None):
bg = getBackground(bg)
for n, i in enumerate(imgs):
i = imread(i, dtype=float)
i -= bg
smooth = fastMean(median_filter(i, 3))
i /= smooth
if n == 0:
out = i
else:
out += i
out /= n + 1
return out
|
sensitivity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(imgs, bg=None):\n bg = getBackground(bg)\n for n, i in enumerate(imgs):\n i = imread(i, dtype=float)\n i -= bg\n smooth = fastMean(median_filter(i, 3))\n i /= smooth\n if n == 0:\n out = i\n else:\n out += i\n out /= n + 1\n return out\n",
"role": "user"
},
{
"content": "sensitivity",
"role": "assistant"
}
] |
def x(u, v, p, dt, nt, rho, nu, boundaryConditionUV, boundardConditionP,
nit=100):
un = np.empty_like(u)
vn = np.empty_like(v)
pn = np.empty_like(p)
b = np.zeros_like(p)
ny, nx = p.shape
dx = 2 / (nx - 1)
dy = 2 / (ny - 1)
for _ in range(nt):
un[:] = u
vn[:] = v
_buildB(b, rho, dt, u, v, dx, dy)
for _ in range(nit):
_pressurePoisson(p, pn, dx, dy, b)
boundardConditionP(p)
_calcUV(u, v, un, p, vn, dt, dx, dy, rho, nu)
boundaryConditionUV(u, v)
return u, v, p
|
navierStokes2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(u, v, p, dt, nt, rho, nu, boundaryConditionUV, boundardConditionP,\n nit=100):\n un = np.empty_like(u)\n vn = np.empty_like(v)\n pn = np.empty_like(p)\n b = np.zeros_like(p)\n ny, nx = p.shape\n dx = 2 / (nx - 1)\n dy = 2 / (ny - 1)\n for _ in range(nt):\n un[:] = u\n vn[:] = v\n _buildB(b, rho, dt, u, v, dx, dy)\n for _ in range(nit):\n _pressurePoisson(p, pn, dx, dy, b)\n boundardConditionP(p)\n _calcUV(u, v, un, p, vn, dt, dx, dy, rho, nu)\n boundaryConditionUV(u, v)\n return u, v, p\n",
"role": "user"
},
{
"content": "navierStokes2d",
"role": "assistant"
}
] |
def x(u, v, t, img, interpolation=cv2.INTER_LANCZOS4):
ny, nx = u.shape
sy, sx = np.mgrid[:float(ny):1, :float(nx):1]
sx += u * t
sy += v * t
return cv2.remap(img.astype(np.float32), sx.astype(np.float32), sy.
astype(np.float32), interpolation)
|
shiftImage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(u, v, t, img, interpolation=cv2.INTER_LANCZOS4):\n ny, nx = u.shape\n sy, sx = np.mgrid[:float(ny):1, :float(nx):1]\n sx += u * t\n sy += v * t\n return cv2.remap(img.astype(np.float32), sx.astype(np.float32), sy.\n astype(np.float32), interpolation)\n",
"role": "user"
},
{
"content": "shiftImage",
"role": "assistant"
}
] |
def x(img, snr=25, rShot=0.5):
s0, s1 = img.shape[:2]
m = img.mean()
if np.isnan(m):
m = np.nanmean(img)
assert m != 0, 'image mean cannot be zero'
img = img / m
noise = np.random.normal(size=s0 * s1).reshape(s0, s1)
if rShot > 0:
noise *= rShot * img ** 0.5 + 1
noise /= np.nanstd(noise)
noise[np.isnan(noise)] = 0
return m * (img + noise / snr)
|
addNoise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, snr=25, rShot=0.5):\n s0, s1 = img.shape[:2]\n m = img.mean()\n if np.isnan(m):\n m = np.nanmean(img)\n assert m != 0, 'image mean cannot be zero'\n img = img / m\n noise = np.random.normal(size=s0 * s1).reshape(s0, s1)\n if rShot > 0:\n noise *= rShot * img ** 0.5 + 1\n noise /= np.nanstd(noise)\n noise[np.isnan(noise)] = 0\n return m * (img + noise / snr)\n",
"role": "user"
},
{
"content": "addNoise",
"role": "assistant"
}
] |
def x(arr, shape):
ss0, ss1 = shape
s0, s1 = arr.shape
pos0 = linspace2(0, s0, ss0, dtype=int)
pos1 = linspace2(0, s1, ss1, dtype=int)
k0 = pos0[0]
k1 = pos1[0]
out = np.empty(shape, dtype=arr.dtype)
_calc(arr, out, pos0, pos1, k0, k1, ss0, ss1)
return out
|
coarseMaximum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, shape):\n ss0, ss1 = shape\n s0, s1 = arr.shape\n pos0 = linspace2(0, s0, ss0, dtype=int)\n pos1 = linspace2(0, s1, ss1, dtype=int)\n k0 = pos0[0]\n k1 = pos1[0]\n out = np.empty(shape, dtype=arr.dtype)\n _calc(arr, out, pos0, pos1, k0, k1, ss0, ss1)\n return out\n",
"role": "user"
},
{
"content": "coarseMaximum",
"role": "assistant"
}
] |
def x(XY, shape=None, a=None, f=None, D=None, center=None):
if a is None:
assert f is not None and D is not None
a = 2 * np.arctan2(D / 2, f)
x, y = XY
try:
c0, c1 = center
except:
s0, s1 = shape
c0, c1 = s0 / 2, s1 / 2
rx = (x - c0) ** 2
ry = (y - c1) ** 2
return 1 / (1 + np.tan(a) * ((rx + ry) / c0)) ** 0.5
|
angleOfView
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(XY, shape=None, a=None, f=None, D=None, center=None):\n if a is None:\n assert f is not None and D is not None\n a = 2 * np.arctan2(D / 2, f)\n x, y = XY\n try:\n c0, c1 = center\n except:\n s0, s1 = shape\n c0, c1 = s0 / 2, s1 / 2\n rx = (x - c0) ** 2\n ry = (y - c1) ** 2\n return 1 / (1 + np.tan(a) * ((rx + ry) / c0)) ** 0.5\n",
"role": "user"
},
{
"content": "angleOfView",
"role": "assistant"
}
] |
def x(x, y, b, x0=None, y0=None):
if x0 is None:
x0 = x[-1, -1]
if y0 is None:
y0 = y[-1, -1]
return np.cos(np.arctan(np.sqrt((x - x0 / 2) ** 2 + (y - y0 / 2) ** 2) / b)
)
|
angleOfView2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, b, x0=None, y0=None):\n if x0 is None:\n x0 = x[-1, -1]\n if y0 is None:\n y0 = y[-1, -1]\n return np.cos(np.arctan(np.sqrt((x - x0 / 2) ** 2 + (y - y0 / 2) ** 2) / b)\n )\n",
"role": "user"
},
{
"content": "angleOfView2",
"role": "assistant"
}
] |
def x(edges, nCells, subgrid=None, dtype=float):
nx, ny = nCells
y, x = np.mgrid[0.0:ny + 1, 0.0:nx + 1]
src = np.float32([[0, 0], [nx, 0], [nx, ny], [0, ny]])
dst = sortCorners(edges).astype(np.float32)
homography = cv2.getPerspectiveTransform(src, dst)
pts = np.float32((x.flatten(), y.flatten())).T
pts = pts.reshape(1, *pts.shape)
pts2 = cv2.perspectiveTransform(pts, homography)[0]
horiz = pts2.reshape(ny + 1, nx + 1, 2)
vert = np.swapaxes(horiz, 0, 1)
subh, subv = [], []
if subgrid is not None:
sh, sv = subgrid
if len(sh):
subh = np.empty(shape=(ny * len(sh), nx + 1, 2), dtype=np.float32)
last_si = 0
for n, si in enumerate(sh):
spts = pts[:, :-(nx + 1)]
spts[..., 1] += si - last_si
last_si = si
spts2 = cv2.perspectiveTransform(spts, homography)[0]
subh[n::len(sh)] = spts2.reshape(ny, nx + 1, 2)
if len(sv):
subv = np.empty(shape=(ny + 1, nx * len(sv), 2), dtype=np.float32)
last_si = 0
sspts = pts.reshape(1, ny + 1, nx + 1, 2)
sspts = sspts[:, :, :-1]
sspts = sspts.reshape(1, (ny + 1) * nx, 2)
for n, si in enumerate(sv):
sspts[..., 0] += si - last_si
last_si = si
spts2 = cv2.perspectiveTransform(sspts, homography)[0]
subv[:, n::len(sv)] = spts2.reshape(ny + 1, nx, 2)
subv = np.swapaxes(subv, 0, 1)
return [horiz, vert, subh, subv]
|
gridLinesFromVertices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(edges, nCells, subgrid=None, dtype=float):\n nx, ny = nCells\n y, x = np.mgrid[0.0:ny + 1, 0.0:nx + 1]\n src = np.float32([[0, 0], [nx, 0], [nx, ny], [0, ny]])\n dst = sortCorners(edges).astype(np.float32)\n homography = cv2.getPerspectiveTransform(src, dst)\n pts = np.float32((x.flatten(), y.flatten())).T\n pts = pts.reshape(1, *pts.shape)\n pts2 = cv2.perspectiveTransform(pts, homography)[0]\n horiz = pts2.reshape(ny + 1, nx + 1, 2)\n vert = np.swapaxes(horiz, 0, 1)\n subh, subv = [], []\n if subgrid is not None:\n sh, sv = subgrid\n if len(sh):\n subh = np.empty(shape=(ny * len(sh), nx + 1, 2), dtype=np.float32)\n last_si = 0\n for n, si in enumerate(sh):\n spts = pts[:, :-(nx + 1)]\n spts[..., 1] += si - last_si\n last_si = si\n spts2 = cv2.perspectiveTransform(spts, homography)[0]\n subh[n::len(sh)] = spts2.reshape(ny, nx + 1, 2)\n if len(sv):\n subv = np.empty(shape=(ny + 1, nx * len(sv), 2), dtype=np.float32)\n last_si = 0\n sspts = pts.reshape(1, ny + 1, nx + 1, 2)\n sspts = sspts[:, :, :-1]\n sspts = sspts.reshape(1, (ny + 1) * nx, 2)\n for n, si in enumerate(sv):\n sspts[..., 0] += si - last_si\n last_si = si\n spts2 = cv2.perspectiveTransform(sspts, homography)[0]\n subv[:, n::len(sv)] = spts2.reshape(ny + 1, nx, 2)\n subv = np.swapaxes(subv, 0, 1)\n return [horiz, vert, subh, subv]\n",
"role": "user"
},
{
"content": "gridLinesFromVertices",
"role": "assistant"
}
] |
def x(self, MTFx, MTFy):
if self.mtf_x is None:
self.MTF()
f = UnivariateSpline(self.mtf_x, self.mtf_y - 0.5)
return f.roots()[0]
|
MTF50
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, MTFx, MTFy):\n if self.mtf_x is None:\n self.MTF()\n f = UnivariateSpline(self.mtf_x, self.mtf_y - 0.5)\n return f.roots()[0]\n",
"role": "user"
},
{
"content": "MTF50",
"role": "assistant"
}
] |
def x(self, px_per_mm):
res = 100
r = 4
px_size = 1 / px_per_mm
std = self.std * px_size
x = np.linspace(-r * std, r * std, res)
lsf = self.gaussian1d(x, 1, 0, std)
y = abs(np.fft.fft(lsf))
y /= np.max(y)
dstep = r * std / res
freq = np.fft.fftfreq(lsf.size, dstep)
i = np.argmax(freq > px_per_mm)
self.mtf_x = freq[:i]
self.mtf_y = y[:i]
return self.mtf_x, self.mtf_y
|
MTF
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, px_per_mm):\n res = 100\n r = 4\n px_size = 1 / px_per_mm\n std = self.std * px_size\n x = np.linspace(-r * std, r * std, res)\n lsf = self.gaussian1d(x, 1, 0, std)\n y = abs(np.fft.fft(lsf))\n y /= np.max(y)\n dstep = r * std / res\n freq = np.fft.fftfreq(lsf.size, dstep)\n i = np.argmax(freq > px_per_mm)\n self.mtf_x = freq[:i]\n self.mtf_y = y[:i]\n return self.mtf_x, self.mtf_y\n",
"role": "user"
},
{
"content": "MTF",
"role": "assistant"
}
] |
def x(self, psf, method='convolve', fitParams=None):
img = scaleSignal(self.img, fitParams=fitParams)
if method == 'convolve':
blurred = convolve2d(img, psf, 'same')
m = abs(img - blurred) / abs(img + blurred)
m = np.nan_to_num(m)
m *= self.std ** 2
m[m > 1] = 1
self.blur_distortion = m
np.save('blurred', blurred)
return m
else:
restored = unsupervised_wiener(img, psf)[0]
m = abs(img - restored) / abs(img + restored)
m = np.nan_to_num(m)
m *= self.std ** 2
m[m > 1] = 1
self.blur_distortion = m
return m, restored
|
uncertaintyMap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, psf, method='convolve', fitParams=None):\n img = scaleSignal(self.img, fitParams=fitParams)\n if method == 'convolve':\n blurred = convolve2d(img, psf, 'same')\n m = abs(img - blurred) / abs(img + blurred)\n m = np.nan_to_num(m)\n m *= self.std ** 2\n m[m > 1] = 1\n self.blur_distortion = m\n np.save('blurred', blurred)\n return m\n else:\n restored = unsupervised_wiener(img, psf)[0]\n m = abs(img - restored) / abs(img + restored)\n m = np.nan_to_num(m)\n m *= self.std ** 2\n m[m > 1] = 1\n self.blur_distortion = m\n return m, restored\n",
"role": "user"
},
{
"content": "uncertaintyMap",
"role": "assistant"
}
] |
def x(self):
if self._corrPsf is None:
self.psf()
p = self._corrPsf.copy()
mn = p.min()
p[p < 0.05 * p.max()] = mn
p -= mn
p /= p.sum()
x, y = self._psfGridCoords()
x = x.flatten()
y = y.flatten()
guess = 1, 1, 0
param, _ = curve_fit(self._fn, (x, y), p.flatten(), guess)
self._fitParam = param
stdx, stdy = param[:2]
self._std = (stdx + stdy) / 2
return self._std
|
stdDev
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._corrPsf is None:\n self.psf()\n p = self._corrPsf.copy()\n mn = p.min()\n p[p < 0.05 * p.max()] = mn\n p -= mn\n p /= p.sum()\n x, y = self._psfGridCoords()\n x = x.flatten()\n y = y.flatten()\n guess = 1, 1, 0\n param, _ = curve_fit(self._fn, (x, y), p.flatten(), guess)\n self._fitParam = param\n stdx, stdy = param[:2]\n self._std = (stdx + stdy) / 2\n return self._std\n",
"role": "user"
},
{
"content": "stdDev",
"role": "assistant"
}
] |
def x(grid, mask, kernel=15, power=2, fx=1, fy=1):
weights = np.empty(shape=(2 * kernel + 1, 2 * kernel + 1))
for xi in range(-kernel, kernel + 1):
for yi in range(-kernel, kernel + 1):
dist = (fx * xi) ** 2 + (fy * yi) ** 2
if dist:
weights[xi + kernel, yi + kernel] = 1 / dist ** (0.5 * power)
return _calc(grid, mask, kernel, weights)
|
interpolate2dStructuredIDW
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, mask, kernel=15, power=2, fx=1, fy=1):\n weights = np.empty(shape=(2 * kernel + 1, 2 * kernel + 1))\n for xi in range(-kernel, kernel + 1):\n for yi in range(-kernel, kernel + 1):\n dist = (fx * xi) ** 2 + (fy * yi) ** 2\n if dist:\n weights[xi + kernel, yi + kernel] = 1 / dist ** (0.5 * power)\n return _calc(grid, mask, kernel, weights)\n",
"role": "user"
},
{
"content": "interpolate2dStructuredIDW",
"role": "assistant"
}
] |
def x(imgs, times, down_scale_factor=1):
imgs = np.asarray(imgs)
s0, s1, s2 = imgs.shape
if down_scale_factor > 1:
s1 //= down_scale_factor
s2 //= down_scale_factor
imgs2 = np.empty(shape=(s0, s1, s2))
for n, c in enumerate(imgs):
imgs2[n] = cv2.resize(c, (s2, s1), interpolation=cv2.INTER_AREA)
imgs = imgs2
ascent, offset, error = linRegressUsingMasked2dArrays(times, imgs,
calcError=True)
fn_imgs = np.array([(offset + t * ascent) for t in times])
diff = imgs - fn_imgs
diff = median_filter(diff, 5)
error_t = np.tile(error, (s0, 1, 1))
evt = np.abs(diff) > 0.5 * error_t
avlen = _calcAvgLen(evt, np.empty(shape=evt.shape[1:]))
i = avlen == 0
avlen = maskedFilter(avlen, mask=i, fn='mean', ksize=7, fill_mask=False)
i = maximum_filter(i, 3)
avlen[i] = 0
avlen = maximum_filter(avlen, 3)
i = avlen == 0
avlen = median_filter(avlen, 3)
avlen[i] = 0
return error, avlen, ascent, offset
|
temporalSignalStability
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(imgs, times, down_scale_factor=1):\n imgs = np.asarray(imgs)\n s0, s1, s2 = imgs.shape\n if down_scale_factor > 1:\n s1 //= down_scale_factor\n s2 //= down_scale_factor\n imgs2 = np.empty(shape=(s0, s1, s2))\n for n, c in enumerate(imgs):\n imgs2[n] = cv2.resize(c, (s2, s1), interpolation=cv2.INTER_AREA)\n imgs = imgs2\n ascent, offset, error = linRegressUsingMasked2dArrays(times, imgs,\n calcError=True)\n fn_imgs = np.array([(offset + t * ascent) for t in times])\n diff = imgs - fn_imgs\n diff = median_filter(diff, 5)\n error_t = np.tile(error, (s0, 1, 1))\n evt = np.abs(diff) > 0.5 * error_t\n avlen = _calcAvgLen(evt, np.empty(shape=evt.shape[1:]))\n i = avlen == 0\n avlen = maskedFilter(avlen, mask=i, fn='mean', ksize=7, fill_mask=False)\n i = maximum_filter(i, 3)\n avlen[i] = 0\n avlen = maximum_filter(avlen, 3)\n i = avlen == 0\n avlen = median_filter(avlen, 3)\n avlen[i] = 0\n return error, avlen, ascent, offset\n",
"role": "user"
},
{
"content": "temporalSignalStability",
"role": "assistant"
}
] |
def x(images, bgImages=None, averageSpot=True, thresh=None):
fitimg, mask = None, None
mx = 0
for c, img in enumerate(images):
print('%s/%s' % (c + 1, len(images)))
if c == 0:
avgBg = getBackground2(bgImages, img)
img = imread(img, dtype=float)
img -= avgBg
if fitimg is None:
fitimg = np.zeros_like(img)
mask = np.zeros_like(img, dtype=bool)
if thresh is None:
t = threshold_otsu(img)
else:
t = thresh
spots, n = label(minimum_filter(img > t, 3), background=0,
return_num=True)
spot_sizes = [(spots == i).sum() for i in range(1, n + 1)]
try:
spot = spots == np.argmax(spot_sizes) + 1
except ValueError:
print("couldn't find spot in image")
continue
if averageSpot:
spot = np.rint(center_of_mass(spot)).astype(int)
mx2 = img[spot].max()
else:
mx2 = img[spot].mean()
fitimg[spot] = img[spot]
mask[spot] = 1
if mx2 > mx:
mx = mx2
fitimg /= mx
return fitimg, mask
|
vignettingFromSpotAverage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(images, bgImages=None, averageSpot=True, thresh=None):\n fitimg, mask = None, None\n mx = 0\n for c, img in enumerate(images):\n print('%s/%s' % (c + 1, len(images)))\n if c == 0:\n avgBg = getBackground2(bgImages, img)\n img = imread(img, dtype=float)\n img -= avgBg\n if fitimg is None:\n fitimg = np.zeros_like(img)\n mask = np.zeros_like(img, dtype=bool)\n if thresh is None:\n t = threshold_otsu(img)\n else:\n t = thresh\n spots, n = label(minimum_filter(img > t, 3), background=0,\n return_num=True)\n spot_sizes = [(spots == i).sum() for i in range(1, n + 1)]\n try:\n spot = spots == np.argmax(spot_sizes) + 1\n except ValueError:\n print(\"couldn't find spot in image\")\n continue\n if averageSpot:\n spot = np.rint(center_of_mass(spot)).astype(int)\n mx2 = img[spot].max()\n else:\n mx2 = img[spot].mean()\n fitimg[spot] = img[spot]\n mask[spot] = 1\n if mx2 > mx:\n mx = mx2\n fitimg /= mx\n return fitimg, mask\n",
"role": "user"
},
{
"content": "vignettingFromSpotAverage",
"role": "assistant"
}
] |
def x(imgDir, posExTime, outDir, show_legend, show_plots, save_to_file, ftype):
xvals = []
hist = []
peaks = []
exTimes = []
max_border = 0
if not imgDir.exists():
raise Exception("image dir doesn't exist")
for n, f in enumerate(imgDir):
print(f)
try:
img = imgDir.join(f)
s = FitHistogramPeaks(img)
xvals.append(s.xvals)
hist.append(s.yvals)
peaks.append(s.fitValues())
if s.border() > max_border:
max_border = s.plotBorder()
exTimes.append(float(f[posExTime[0]:posExTime[1] + 1]))
except:
pass
nx = 2
ny = int(len(hist) // nx) + len(hist) % nx
fig, ax = plt.subplots(ny, nx)
if nx > 1:
ax = [list(i) for i in zip(*ax)]
axx = []
for xa in ax:
for ya in xa:
axx.append(ya)
ax = axx
for x, h, p, e, a in zip(xvals, hist, peaks, exTimes, ax):
a.plot(x, h, label='histogram', thickness=3)
for n, pi in enumerate(p):
l2 = a.plot(x, pi, label='peak %s' % n, thickness=6)
a.set_xlim(xmin=0, xmax=max_border)
a.set_title('%s s' % e)
l1 = ax[0].legend()
l1.draw_frame(False)
plt.xlabel('pixel value')
plt.ylabel('number of pixels')
fig = plt.gcf()
fig.set_size_inches(7 * nx, 3 * ny)
if save_to_file:
p = PathStr(outDir).join('result').setFiletype(ftype)
plt.savefig(p, bbox_inches='tight')
if show_plots:
plt.show()
|
plotSet
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(imgDir, posExTime, outDir, show_legend, show_plots, save_to_file, ftype):\n xvals = []\n hist = []\n peaks = []\n exTimes = []\n max_border = 0\n if not imgDir.exists():\n raise Exception(\"image dir doesn't exist\")\n for n, f in enumerate(imgDir):\n print(f)\n try:\n img = imgDir.join(f)\n s = FitHistogramPeaks(img)\n xvals.append(s.xvals)\n hist.append(s.yvals)\n peaks.append(s.fitValues())\n if s.border() > max_border:\n max_border = s.plotBorder()\n exTimes.append(float(f[posExTime[0]:posExTime[1] + 1]))\n except:\n pass\n nx = 2\n ny = int(len(hist) // nx) + len(hist) % nx\n fig, ax = plt.subplots(ny, nx)\n if nx > 1:\n ax = [list(i) for i in zip(*ax)]\n axx = []\n for xa in ax:\n for ya in xa:\n axx.append(ya)\n ax = axx\n for x, h, p, e, a in zip(xvals, hist, peaks, exTimes, ax):\n a.plot(x, h, label='histogram', thickness=3)\n for n, pi in enumerate(p):\n l2 = a.plot(x, pi, label='peak %s' % n, thickness=6)\n a.set_xlim(xmin=0, xmax=max_border)\n a.set_title('%s s' % e)\n l1 = ax[0].legend()\n l1.draw_frame(False)\n plt.xlabel('pixel value')\n plt.ylabel('number of pixels')\n fig = plt.gcf()\n fig.set_size_inches(7 * nx, 3 * ny)\n if save_to_file:\n p = PathStr(outDir).join('result').setFiletype(ftype)\n plt.savefig(p, bbox_inches='tight')\n if show_plots:\n plt.show()\n",
"role": "user"
},
{
"content": "plotSet",
"role": "assistant"
}
] |
def x(imgs, bg_imgs=None):
img = imgAverage(imgs)
bg = getBackground2(bg_imgs, img)
img -= bg
img = toGray(img)
mx = median_filter(img[::10, ::10], 3).max()
img /= mx
return img
|
flatFieldFromCloseDistance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(imgs, bg_imgs=None):\n img = imgAverage(imgs)\n bg = getBackground2(bg_imgs, img)\n img -= bg\n img = toGray(img)\n mx = median_filter(img[::10, ::10], 3).max()\n img /= mx\n return img\n",
"role": "user"
},
{
"content": "flatFieldFromCloseDistance",
"role": "assistant"
}
] |
def x(images, bgImages=None, calcStd=False, nlf=None, nstd=6):
if len(images) > 1:
def x(img):
img = imread(img)
s0, s1 = img.shape[:2]
return -img[::s0 // 10, ::s1 // 10].min()
images = sorted(images, key=lambda i: fn(i))
avgBg = getBackground2(bgImages, images[1])
i0 = imread(images[0], dtype=float) - avgBg
i1 = imread(images[1], dtype=float) - avgBg
if nlf is None:
nlf = oneImageNLF(i0, i1)[0]
det = SingleTimeEffectDetection((i0, i1), nlf, nStd=nstd,
calcVariance=calcStd)
for i in images[1:]:
i = imread(i)
thresh = det.noSTE - nlf(det.noSTE) * nstd
mask = i > thresh
det.addImage(i, mask)
ma = det.noSTE
else:
ma = imread(images[0], dtype=float) - avgBg
mx = median_filter(ma[::10, ::10], 3).max()
if calcStd:
return ma / mx, det.mma.var ** 0.5 / mx
return ma / mx
|
flatFieldFromCloseDistance2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(images, bgImages=None, calcStd=False, nlf=None, nstd=6):\n if len(images) > 1:\n\n def x(img):\n img = imread(img)\n s0, s1 = img.shape[:2]\n return -img[::s0 // 10, ::s1 // 10].min()\n images = sorted(images, key=lambda i: fn(i))\n avgBg = getBackground2(bgImages, images[1])\n i0 = imread(images[0], dtype=float) - avgBg\n i1 = imread(images[1], dtype=float) - avgBg\n if nlf is None:\n nlf = oneImageNLF(i0, i1)[0]\n det = SingleTimeEffectDetection((i0, i1), nlf, nStd=nstd,\n calcVariance=calcStd)\n for i in images[1:]:\n i = imread(i)\n thresh = det.noSTE - nlf(det.noSTE) * nstd\n mask = i > thresh\n det.addImage(i, mask)\n ma = det.noSTE\n else:\n ma = imread(images[0], dtype=float) - avgBg\n mx = median_filter(ma[::10, ::10], 3).max()\n if calcStd:\n return ma / mx, det.mma.var ** 0.5 / mx\n return ma / mx\n",
"role": "user"
},
{
"content": "flatFieldFromCloseDistance2",
"role": "assistant"
}
] |
def x(imgs, bg=0, roi=None):
mean = None
M = len(imgs)
if bg is not 0:
bg = imread(bg)[roi]
if roi is not None:
bg = bg[roi]
for i in imgs:
img = imread(i).asfarray()
if roi is not None:
img = img[roi]
img -= bg
if mean is None:
mean = np.zeros_like(img)
std = np.zeros_like(img)
mean += img
del img
mean /= M
for i in imgs:
img = imread(i).asfarray()
if roi is not None:
img = img[roi]
img -= bg
std += (mean - img) ** 2
del img
std = (std / M) ** 0.5
return mean.mean() / std.mean()
|
SNR_hinken
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(imgs, bg=0, roi=None):\n mean = None\n M = len(imgs)\n if bg is not 0:\n bg = imread(bg)[roi]\n if roi is not None:\n bg = bg[roi]\n for i in imgs:\n img = imread(i).asfarray()\n if roi is not None:\n img = img[roi]\n img -= bg\n if mean is None:\n mean = np.zeros_like(img)\n std = np.zeros_like(img)\n mean += img\n del img\n mean /= M\n for i in imgs:\n img = imread(i).asfarray()\n if roi is not None:\n img = img[roi]\n img -= bg\n std += (mean - img) ** 2\n del img\n std = (std / M) ** 0.5\n return mean.mean() / std.mean()\n",
"role": "user"
},
{
"content": "SNR_hinken",
"role": "assistant"
}
] |
def x(masks):
assert len(masks) <= 8, 'can only transform up to 8 masks into image'
masks = np.asarray(masks, dtype=np.uint8)
assert masks.ndim == 3, 'layers need to be stack of 2d arrays'
return np.packbits(masks, axis=0)[0].T
|
boolMasksToImage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(masks):\n assert len(masks) <= 8, 'can only transform up to 8 masks into image'\n masks = np.asarray(masks, dtype=np.uint8)\n assert masks.ndim == 3, 'layers need to be stack of 2d arrays'\n return np.packbits(masks, axis=0)[0].T\n",
"role": "user"
},
{
"content": "boolMasksToImage",
"role": "assistant"
}
] |
def x(arr):
assert arr.dtype == np.uint8, 'image needs to be dtype=uint8'
masks = np.unpackbits(arr).reshape(*arr.shape, 8)
return np.swapaxes(masks, 2, 0)
|
imageToBoolMasks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr):\n assert arr.dtype == np.uint8, 'image needs to be dtype=uint8'\n masks = np.unpackbits(arr).reshape(*arr.shape, 8)\n return np.swapaxes(masks, 2, 0)\n",
"role": "user"
},
{
"content": "imageToBoolMasks",
"role": "assistant"
}
] |
def x(corners, in_plane=False):
q = corners
l0 = [q[0, 0], q[0, 1], q[1, 0], q[1, 1]]
l1 = [q[0, 0], q[0, 1], q[-1, 0], q[-1, 1]]
l2 = [q[2, 0], q[2, 1], q[3, 0], q[3, 1]]
l3 = [q[2, 0], q[2, 1], q[1, 0], q[1, 1]]
a1 = line.length(l0) / line.length(l1)
a2 = line.length(l2) / line.length(l3)
if in_plane:
if abs(0.5 * np.pi - abs(line.angle2(l0, l1))) < abs(0.5 * np.pi -
abs(line.angle2(l2, l3))):
return a1
else:
return a2
return 0.5 * (a1 + a2)
|
calcAspectRatioFromCorners
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(corners, in_plane=False):\n q = corners\n l0 = [q[0, 0], q[0, 1], q[1, 0], q[1, 1]]\n l1 = [q[0, 0], q[0, 1], q[-1, 0], q[-1, 1]]\n l2 = [q[2, 0], q[2, 1], q[3, 0], q[3, 1]]\n l3 = [q[2, 0], q[2, 1], q[1, 0], q[1, 1]]\n a1 = line.length(l0) / line.length(l1)\n a2 = line.length(l2) / line.length(l3)\n if in_plane:\n if abs(0.5 * np.pi - abs(line.angle2(l0, l1))) < abs(0.5 * np.pi -\n abs(line.angle2(l2, l3))):\n return a1\n else:\n return a2\n return 0.5 * (a1 + a2)\n",
"role": "user"
},
{
"content": "calcAspectRatioFromCorners",
"role": "assistant"
}
] |
def x(img, text, alpha, org, fontFace, fontScale, color, thickness):
x, y = cv2.getTextSize(text, fontFace, fontScale, thickness)[0]
ox, oy = org
imgcut = img[oy - y - 3:oy, ox:ox + x]
if img.ndim == 3:
txtarr = np.zeros(shape=(y + 3, x, 3), dtype=np.uint8)
else:
txtarr = np.zeros(shape=(y + 3, x), dtype=np.uint8)
cv2.putText(txtarr, text, (0, y), fontFace, fontScale, color, thickness
=thickness)
cv2.addWeighted(txtarr, alpha, imgcut, 1, 0, imgcut, -1)
return img
|
putTextAlpha
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, text, alpha, org, fontFace, fontScale, color, thickness):\n x, y = cv2.getTextSize(text, fontFace, fontScale, thickness)[0]\n ox, oy = org\n imgcut = img[oy - y - 3:oy, ox:ox + x]\n if img.ndim == 3:\n txtarr = np.zeros(shape=(y + 3, x, 3), dtype=np.uint8)\n else:\n txtarr = np.zeros(shape=(y + 3, x), dtype=np.uint8)\n cv2.putText(txtarr, text, (0, y), fontFace, fontScale, color, thickness\n =thickness)\n cv2.addWeighted(txtarr, alpha, imgcut, 1, 0, imgcut, -1)\n return img\n",
"role": "user"
},
{
"content": "putTextAlpha",
"role": "assistant"
}
] |
def x(img, f=10, inplace=False):
s0, s1 = img.shape[:2]
ss0 = int(round(s0 / f))
ss1 = int(round(s1 / f))
small = cv2.resize(img, (ss1, ss0), interpolation=cv2.INTER_AREA)
k = {'interpolation': cv2.INTER_LINEAR}
if inplace:
k['dst'] = img
return cv2.resize(small, (s1, s0), **k)
|
fastMean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, f=10, inplace=False):\n s0, s1 = img.shape[:2]\n ss0 = int(round(s0 / f))\n ss1 = int(round(s1 / f))\n small = cv2.resize(img, (ss1, ss0), interpolation=cv2.INTER_AREA)\n k = {'interpolation': cv2.INTER_LINEAR}\n if inplace:\n k['dst'] = img\n return cv2.resize(small, (s1, s0), **k)\n",
"role": "user"
},
{
"content": "fastMean",
"role": "assistant"
}
] |
def x(*paths):
try:
f_name = os.path.join(*paths)
with open(f_name, 'r') as f:
return f.read()
except IOError:
print('%s not existing ... skipping' % f_name)
return ''
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*paths):\n try:\n f_name = os.path.join(*paths)\n with open(f_name, 'r') as f:\n return f.read()\n except IOError:\n print('%s not existing ... skipping' % f_name)\n return ''\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(imgs_path):
firsts = imgs_path[:2]
imgs = imgs_path[2:]
for n, i in enumerate(firsts):
firsts[n] = np.asfarray(imread(i))
d = DarkCurrentMap(firsts)
for i in imgs:
i = imread(i)
d.addImg(i)
return d.map()
|
averageSameExpTimes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(imgs_path):\n firsts = imgs_path[:2]\n imgs = imgs_path[2:]\n for n, i in enumerate(firsts):\n firsts[n] = np.asfarray(imread(i))\n d = DarkCurrentMap(firsts)\n for i in imgs:\n i = imread(i)\n d.addImg(i)\n return d.map()\n",
"role": "user"
},
{
"content": "averageSameExpTimes",
"role": "assistant"
}
] |
def x(expTimes, imgs, mxIntensity=65535, min_ascent=0.001):
ascent, offset, error = linRegressUsingMasked2dArrays(expTimes, imgs,
imgs > mxIntensity)
ascent[np.isnan(ascent)] = 0
if min_ascent > 0:
i = ascent < min_ascent
offset[i] += 0.5 * (np.min(expTimes) + np.max(expTimes)) * ascent[i]
ascent[i] = 0
return offset, ascent, error
|
getLinearityFunction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(expTimes, imgs, mxIntensity=65535, min_ascent=0.001):\n ascent, offset, error = linRegressUsingMasked2dArrays(expTimes, imgs, \n imgs > mxIntensity)\n ascent[np.isnan(ascent)] = 0\n if min_ascent > 0:\n i = ascent < min_ascent\n offset[i] += 0.5 * (np.min(expTimes) + np.max(expTimes)) * ascent[i]\n ascent[i] = 0\n return offset, ascent, error\n",
"role": "user"
},
{
"content": "getLinearityFunction",
"role": "assistant"
}
] |
def x(expTimes, img_paths):
d = {}
for e, i in zip(expTimes, img_paths):
if e not in d:
d[e] = []
d[e].append(i)
d = OrderedDict(sorted(d.items()))
return list(d.keys()), list(d.values())
|
sortForSameExpTime
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(expTimes, img_paths):\n d = {}\n for e, i in zip(expTimes, img_paths):\n if e not in d:\n d[e] = []\n d[e].append(i)\n d = OrderedDict(sorted(d.items()))\n return list(d.keys()), list(d.values())\n",
"role": "user"
},
{
"content": "sortForSameExpTime",
"role": "assistant"
}
] |
def x(exposuretimes, imgs):
x, imgs_p = sortForSameExpTime(exposuretimes, imgs)
s0, s1 = imgs[0].shape
imgs = np.empty(shape=(len(x), s0, s1), dtype=imgs[0].dtype)
for i, ip in zip(imgs, imgs_p):
if len(ip) == 1:
i[:] = ip[0]
else:
i[:] = averageSameExpTimes(ip)
return x, imgs
|
getDarkCurrentAverages
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(exposuretimes, imgs):\n x, imgs_p = sortForSameExpTime(exposuretimes, imgs)\n s0, s1 = imgs[0].shape\n imgs = np.empty(shape=(len(x), s0, s1), dtype=imgs[0].dtype)\n for i, ip in zip(imgs, imgs_p):\n if len(ip) == 1:\n i[:] = ip[0]\n else:\n i[:] = averageSameExpTimes(ip)\n return x, imgs\n",
"role": "user"
},
{
"content": "getDarkCurrentAverages",
"role": "assistant"
}
] |
def x(exposuretimes, imgs, **kwargs):
exposuretimes, imgs = getDarkCurrentAverages(exposuretimes, imgs)
offs, ascent, rmse = getLinearityFunction(exposuretimes, imgs, **kwargs)
return offs, ascent, rmse
|
getDarkCurrentFunction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(exposuretimes, imgs, **kwargs):\n exposuretimes, imgs = getDarkCurrentAverages(exposuretimes, imgs)\n offs, ascent, rmse = getLinearityFunction(exposuretimes, imgs, **kwargs)\n return offs, ascent, rmse\n",
"role": "user"
},
{
"content": "getDarkCurrentFunction",
"role": "assistant"
}
] |
def x(img, line, height=15, length=None, zoom=1, fast=False, borderValue=0):
height = int(round(height))
if height % 2 == 0:
height += 1
if length is None:
length = int(round(ln.length(line)))
hh = height - 1
ll = length - 1
p0 = np.array(line[0:2], dtype=float)
p1 = np.array(line[2:], dtype=float)
norm = np.array(ln.normal(line))
if not ln.isHoriz(line):
norm *= -1
p2 = (p0 + p1) * 0.5 + norm * hh * 0.5
middleY = hh / 2
pp0 = [0, middleY]
pp1 = [ll, middleY]
pp2 = [ll * 0.5, hh]
pts1 = np.array([p0, p1, p2], dtype=np.float32)
pts2 = np.array([pp0, pp1, pp2], dtype=np.float32)
if zoom != 1:
length = int(round(length * zoom))
height = int(round(height * zoom))
pts2 *= zoom
M = cv2.getAffineTransform(pts1, pts2)
dst = cv2.warpAffine(img, M, (length, height), flags=cv2.INTER_NEAREST if
fast else cv2.INTER_LINEAR, borderValue=borderValue)
return dst
|
alignImageAlongLine
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, line, height=15, length=None, zoom=1, fast=False, borderValue=0):\n height = int(round(height))\n if height % 2 == 0:\n height += 1\n if length is None:\n length = int(round(ln.length(line)))\n hh = height - 1\n ll = length - 1\n p0 = np.array(line[0:2], dtype=float)\n p1 = np.array(line[2:], dtype=float)\n norm = np.array(ln.normal(line))\n if not ln.isHoriz(line):\n norm *= -1\n p2 = (p0 + p1) * 0.5 + norm * hh * 0.5\n middleY = hh / 2\n pp0 = [0, middleY]\n pp1 = [ll, middleY]\n pp2 = [ll * 0.5, hh]\n pts1 = np.array([p0, p1, p2], dtype=np.float32)\n pts2 = np.array([pp0, pp1, pp2], dtype=np.float32)\n if zoom != 1:\n length = int(round(length * zoom))\n height = int(round(height * zoom))\n pts2 *= zoom\n M = cv2.getAffineTransform(pts1, pts2)\n dst = cv2.warpAffine(img, M, (length, height), flags=cv2.INTER_NEAREST if\n fast else cv2.INTER_LINEAR, borderValue=borderValue)\n return dst\n",
"role": "user"
},
{
"content": "alignImageAlongLine",
"role": "assistant"
}
] |
def x(image, sx, sy, kernelSize=None):
psf_is_const = not isinstance(sx, np.ndarray)
if not psf_is_const:
assert image.shape == sx.shape == sy.shape, 'Image and position uncertainty maps need to have same size'
if kernelSize is None:
kernelSize = _kSizeFromStd(max(sx.max(), sy.max()))
else:
assert type(sx) in (int, float) and type(sx) in (int, float
), 'Image and position uncertainty values need to be int OR float'
if kernelSize is None:
kernelSize = _kSizeFromStd(max(sx, sy))
if image.dtype.kind == 'u':
image = image.astype(int)
size = kernelSize // 2
if size < 1:
size = 1
kernelSize = 1 + 2 * size
psf = np.zeros((kernelSize, kernelSize))
sint = np.zeros(image.shape)
if psf_is_const:
_calc_constPSF(image, sint, sx, sy, psf, size)
else:
_calc_variPSF(image, sint, sx, sy, psf, size)
return sint
|
positionToIntensityUncertainty
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, sx, sy, kernelSize=None):\n psf_is_const = not isinstance(sx, np.ndarray)\n if not psf_is_const:\n assert image.shape == sx.shape == sy.shape, 'Image and position uncertainty maps need to have same size'\n if kernelSize is None:\n kernelSize = _kSizeFromStd(max(sx.max(), sy.max()))\n else:\n assert type(sx) in (int, float) and type(sx) in (int, float\n ), 'Image and position uncertainty values need to be int OR float'\n if kernelSize is None:\n kernelSize = _kSizeFromStd(max(sx, sy))\n if image.dtype.kind == 'u':\n image = image.astype(int)\n size = kernelSize // 2\n if size < 1:\n size = 1\n kernelSize = 1 + 2 * size\n psf = np.zeros((kernelSize, kernelSize))\n sint = np.zeros(image.shape)\n if psf_is_const:\n _calc_constPSF(image, sint, sx, sy, psf, size)\n else:\n _calc_variPSF(image, sint, sx, sy, psf, size)\n return sint\n",
"role": "user"
},
{
"content": "positionToIntensityUncertainty",
"role": "assistant"
}
] |
def x(image, f):
from skimage.morphology import square
from skimage.filters import rank
from skimage.transform._warps import rescale
selem = square(f)
arri = rank.mean(image, selem=selem)
return rescale(arri, 1 / f, order=0)
|
coarsenImage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, f):\n from skimage.morphology import square\n from skimage.filters import rank\n from skimage.transform._warps import rescale\n selem = square(f)\n arri = rank.mean(image, selem=selem)\n return rescale(arri, 1 / f, order=0)\n",
"role": "user"
},
{
"content": "coarsenImage",
"role": "assistant"
}
] |
def x(image, std, y0, y1, x0, x1):
fy, fx = y1 - y0, x1 - x0
if fy != fx:
raise Exception('averaged area need to be square ATM')
image = _coarsenImage(image, fx)
k = _kSizeFromStd(std)
y0 = int(round(y0 / fy))
x0 = int(round(x0 / fx))
arr = image[y0 - k:y0 + k, x0 - k:x0 + k]
U = positionToIntensityUncertainty(arr, std / fx, std / fx)
return U[k:-k, k:-k]
|
positionToIntensityUncertaintyForPxGroup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, std, y0, y1, x0, x1):\n fy, fx = y1 - y0, x1 - x0\n if fy != fx:\n raise Exception('averaged area need to be square ATM')\n image = _coarsenImage(image, fx)\n k = _kSizeFromStd(std)\n y0 = int(round(y0 / fy))\n x0 = int(round(x0 / fx))\n arr = image[y0 - k:y0 + k, x0 - k:x0 + k]\n U = positionToIntensityUncertainty(arr, std / fx, std / fx)\n return U[k:-k, k:-k]\n",
"role": "user"
},
{
"content": "positionToIntensityUncertaintyForPxGroup",
"role": "assistant"
}
] |
def x(arr, ksize):
out = np.empty_like(arr)
_calc(arr, out, ksize // 2)
return out
|
nan_maximum_filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, ksize):\n out = np.empty_like(arr)\n _calc(arr, out, ksize // 2)\n return out\n",
"role": "user"
},
{
"content": "nan_maximum_filter",
"role": "assistant"
}
] |
def x(img, threshold=0.1, size=3, condition='>', copy=True):
from scipy.ndimage import median_filter
indices = None
if threshold > 0:
blur = np.asfarray(median_filter(img, size=size))
with np.errstate(divide='ignore', invalid='ignore', over='ignore'):
if condition == '>':
indices = abs((img - blur) / blur) > threshold
else:
indices = abs((img - blur) / blur) < threshold
if copy:
img = img.copy()
img[indices] = blur[indices]
return img, indices
|
medianThreshold
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, threshold=0.1, size=3, condition='>', copy=True):\n from scipy.ndimage import median_filter\n indices = None\n if threshold > 0:\n blur = np.asfarray(median_filter(img, size=size))\n with np.errstate(divide='ignore', invalid='ignore', over='ignore'):\n if condition == '>':\n indices = abs((img - blur) / blur) > threshold\n else:\n indices = abs((img - blur) / blur) < threshold\n if copy:\n img = img.copy()\n img[indices] = blur[indices]\n return img, indices\n",
"role": "user"
},
{
"content": "medianThreshold",
"role": "assistant"
}
] |
def x(arr, ksize=30, every=None, resize=True, fn='median', interpolation=
cv2.INTER_LANCZOS4, smoothksize=0, borderMode=cv2.BORDER_REFLECT):
if every is None:
every = max(ksize // 3, 1)
else:
assert ksize >= 3 * every
s0, s1 = arr.shape[:2]
ss0 = s0 // every
every = s0 // ss0
ss1 = s1 // every
out = np.full((ss0 + 1, ss1 + 1), np.nan)
c = {'median': _calcMedian, 'nanmedian': _calcNanMedian, 'nanmean':
_calcNanMean, 'mean': _calcMean}[fn]
ss0, ss1 = c(arr, out, ksize, every)
out = out[:ss0, :ss1]
if smoothksize:
out = gaussian_filter(out, smoothksize)
if not resize:
return out
return cv2.resize(out, arr.shape[:2][::-1], interpolation=interpolation)
|
fastFilter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, ksize=30, every=None, resize=True, fn='median', interpolation=\n cv2.INTER_LANCZOS4, smoothksize=0, borderMode=cv2.BORDER_REFLECT):\n if every is None:\n every = max(ksize // 3, 1)\n else:\n assert ksize >= 3 * every\n s0, s1 = arr.shape[:2]\n ss0 = s0 // every\n every = s0 // ss0\n ss1 = s1 // every\n out = np.full((ss0 + 1, ss1 + 1), np.nan)\n c = {'median': _calcMedian, 'nanmedian': _calcNanMedian, 'nanmean':\n _calcNanMean, 'mean': _calcMean}[fn]\n ss0, ss1 = c(arr, out, ksize, every)\n out = out[:ss0, :ss1]\n if smoothksize:\n out = gaussian_filter(out, smoothksize)\n if not resize:\n return out\n return cv2.resize(out, arr.shape[:2][::-1], interpolation=interpolation)\n",
"role": "user"
},
{
"content": "fastFilter",
"role": "assistant"
}
] |
def x(filename):
labels = []
TIMES = (0.3, 0.4, 0.6, 0.8, 1.2, 1.6, 2.4, 3.2, 4.8, 6.4, 9.6, 12.8,
19.2, 25.6, 38.4, 51.2, 76.8, 102.6, 153.6, 204.6, 307.2, 409.8,
614.4, 819.0, 1228.8, 1638.6, 3276.6, 5400.0, 8100.0, 12168.0,
18216.0, 27324.0, 41004.0, 61488.0, 92268.0)
with open(filename, 'rb') as f:
height, width, frames = np.frombuffer(f.read(4 * 3), dtype=np.uint32)
arrs = np.empty((frames, width, height), dtype=np.uint16)
for i in range(frames):
current, voltage = np.frombuffer(f.read(8 * 2), dtype=np.float64)
i_time = np.frombuffer(f.read(4), dtype=np.uint32)[0]
time = TIMES[i_time]
arr = np.frombuffer(f.read(width * height * 2), dtype=np.uint16)
arrs[i] = arr.reshape(width, height)
labels.append({'exposure time[s]': time, 'current[A]': current,
'voltage[V]': voltage})
return arrs, labels
|
elbin
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n labels = []\n TIMES = (0.3, 0.4, 0.6, 0.8, 1.2, 1.6, 2.4, 3.2, 4.8, 6.4, 9.6, 12.8, \n 19.2, 25.6, 38.4, 51.2, 76.8, 102.6, 153.6, 204.6, 307.2, 409.8, \n 614.4, 819.0, 1228.8, 1638.6, 3276.6, 5400.0, 8100.0, 12168.0, \n 18216.0, 27324.0, 41004.0, 61488.0, 92268.0)\n with open(filename, 'rb') as f:\n height, width, frames = np.frombuffer(f.read(4 * 3), dtype=np.uint32)\n arrs = np.empty((frames, width, height), dtype=np.uint16)\n for i in range(frames):\n current, voltage = np.frombuffer(f.read(8 * 2), dtype=np.float64)\n i_time = np.frombuffer(f.read(4), dtype=np.uint32)[0]\n time = TIMES[i_time]\n arr = np.frombuffer(f.read(width * height * 2), dtype=np.uint16)\n arrs[i] = arr.reshape(width, height)\n labels.append({'exposure time[s]': time, 'current[A]': current,\n 'voltage[V]': voltage})\n return arrs, labels\n",
"role": "user"
},
{
"content": "elbin",
"role": "assistant"
}
] |
def x(xy, sx, sy, mx=0, my=0, rho=0, amp=1, offs=0):
x, y = xy
return offs + amp * (1 / (2 * np.pi * sx * sy * (1 - rho ** 2) ** 0.5) *
np.exp(-1 / (2 * (1 - rho ** 2)) * ((x - mx) ** 2 / sx ** 2 + (y -
my) ** 2 / sy ** 2 - 2 * rho * (x - mx) * (y - my) / (sx * sy))))
|
gaussian2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xy, sx, sy, mx=0, my=0, rho=0, amp=1, offs=0):\n x, y = xy\n return offs + amp * (1 / (2 * np.pi * sx * sy * (1 - rho ** 2) ** 0.5) *\n np.exp(-1 / (2 * (1 - rho ** 2)) * ((x - mx) ** 2 / sx ** 2 + (y -\n my) ** 2 / sy ** 2 - 2 * rho * (x - mx) * (y - my) / (sx * sy))))\n",
"role": "user"
},
{
"content": "gaussian2d",
"role": "assistant"
}
] |
def x(self, img_rgb):
H = self.pattern.findHomography(img_rgb)[0]
H_inv = self.pattern.invertHomography(H)
s = self.img_orig.shape
warped = cv2.warpPerspective(img_rgb, H_inv, (s[1], s[0]))
return warped
|
fitImg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img_rgb):\n H = self.pattern.findHomography(img_rgb)[0]\n H_inv = self.pattern.invertHomography(H)\n s = self.img_orig.shape\n warped = cv2.warpPerspective(img_rgb, H_inv, (s[1], s[0]))\n return warped\n",
"role": "user"
},
{
"content": "fitImg",
"role": "assistant"
}
] |
def x(img, ratio, nbins=100):
start, stop = scaleSignalCutParams(img, ratio, nbins)
img = img - start
img /= stop - start
return img
|
scaleSignalCut
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, ratio, nbins=100):\n start, stop = scaleSignalCutParams(img, ratio, nbins)\n img = img - start\n img /= stop - start\n return img\n",
"role": "user"
},
{
"content": "scaleSignalCut",
"role": "assistant"
}
] |
def x(img, fitParams=None, backgroundToZero=False, reference=None):
img = imread(img)
if reference is not None:
low, high = signalRange(img, fitParams)
low2, high2 = signalRange(reference)
img = np.asfarray(img)
ampl = (high2 - low2) / (high - low)
img -= low
img *= ampl
img += low2
return img
else:
offs, div = scaleParams(img, fitParams, backgroundToZero)
img = np.asfarray(img) - offs
img /= div
print('offset: %s, divident: %s' % (offs, div))
return img
|
scaleSignal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, fitParams=None, backgroundToZero=False, reference=None):\n img = imread(img)\n if reference is not None:\n low, high = signalRange(img, fitParams)\n low2, high2 = signalRange(reference)\n img = np.asfarray(img)\n ampl = (high2 - low2) / (high - low)\n img -= low\n img *= ampl\n img += low2\n return img\n else:\n offs, div = scaleParams(img, fitParams, backgroundToZero)\n img = np.asfarray(img) - offs\n img /= div\n print('offset: %s, divident: %s' % (offs, div))\n return img\n",
"role": "user"
},
{
"content": "scaleSignal",
"role": "assistant"
}
] |
def x(fitParams):
smn, _, _ = getSignalParameters(fitParams)
bg = fitParams[0]
_, avg, std = bg
bgmn = max(0, avg - 3 * std)
if avg + 4 * std < smn:
bgmx = avg + 4 * std
if avg + 3 * std < smn:
bgmx = avg + 3 * std
if avg + 2 * std < smn:
bgmx = avg + 2 * std
else:
bgmx = avg + std
return bgmn, avg, bgmx
|
getBackgroundRange
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fitParams):\n smn, _, _ = getSignalParameters(fitParams)\n bg = fitParams[0]\n _, avg, std = bg\n bgmn = max(0, avg - 3 * std)\n if avg + 4 * std < smn:\n bgmx = avg + 4 * std\n if avg + 3 * std < smn:\n bgmx = avg + 3 * std\n if avg + 2 * std < smn:\n bgmx = avg + 2 * std\n else:\n bgmx = avg + std\n return bgmn, avg, bgmx\n",
"role": "user"
},
{
"content": "getBackgroundRange",
"role": "assistant"
}
] |
def x(fitParams):
signal = getSignalPeak(fitParams)
bg = getBackgroundPeak(fitParams)
if signal == bg:
return False
r = signal[0] / bg[0]
if r < 1:
r = 1 / r
return r < 100
|
hasBackground
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fitParams):\n signal = getSignalPeak(fitParams)\n bg = getBackgroundPeak(fitParams)\n if signal == bg:\n return False\n r = signal[0] / bg[0]\n if r < 1:\n r = 1 / r\n return r < 100\n",
"role": "user"
},
{
"content": "hasBackground",
"role": "assistant"
}
] |
def x(img, bins=None):
f = FitHistogramPeaks(img, bins=bins)
i = signalPeakIndex(f.fitParams)
spos = f.fitParams[i][1]
bpos = f.fitParams[i - 1][1]
ind = np.logical_and(f.xvals > bpos, f.xvals < spos)
try:
i = np.argmin(f.yvals[ind])
return f.xvals[ind][i]
except ValueError as e:
if bins is None:
return signalMinimum2(img, bins=400)
else:
raise e
|
signalMinimum2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, bins=None):\n f = FitHistogramPeaks(img, bins=bins)\n i = signalPeakIndex(f.fitParams)\n spos = f.fitParams[i][1]\n bpos = f.fitParams[i - 1][1]\n ind = np.logical_and(f.xvals > bpos, f.xvals < spos)\n try:\n i = np.argmin(f.yvals[ind])\n return f.xvals[ind][i]\n except ValueError as e:\n if bins is None:\n return signalMinimum2(img, bins=400)\n else:\n raise e\n",
"role": "user"
},
{
"content": "signalMinimum2",
"role": "assistant"
}
] |
def x(img, fitParams=None, n_std=3):
if fitParams is None:
fitParams = FitHistogramPeaks(img).fitParams
assert len(fitParams) > 1, 'need 2 peaks so get minimum signal'
i = signalPeakIndex(fitParams)
signal = fitParams[i]
bg = getBackgroundPeak(fitParams)
smn = signal[1] - n_std * signal[2]
bmx = bg[1] + n_std * bg[2]
if smn > bmx:
return smn
def x(p1, p2):
s1, m1, std1 = p1
s2, m2, std2 = p2
a = 1 / (2 * std1 ** 2) - 1 / (2 * std2 ** 2)
b = m2 / std2 ** 2 - m1 / std1 ** 2
c = m1 ** 2 / (2 * std1 ** 2) - m2 ** 2 / (2 * std2 ** 2) - np.log(
std2 * s1 / (std1 * s2))
return np.roots([a, b, c])
i = solve(bg, signal)
try:
return i[np.logical_and(i > bg[1], i < signal[1])][0]
except IndexError:
return max(smn, bmx)
|
signalMinimum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, fitParams=None, n_std=3):\n if fitParams is None:\n fitParams = FitHistogramPeaks(img).fitParams\n assert len(fitParams) > 1, 'need 2 peaks so get minimum signal'\n i = signalPeakIndex(fitParams)\n signal = fitParams[i]\n bg = getBackgroundPeak(fitParams)\n smn = signal[1] - n_std * signal[2]\n bmx = bg[1] + n_std * bg[2]\n if smn > bmx:\n return smn\n\n def x(p1, p2):\n s1, m1, std1 = p1\n s2, m2, std2 = p2\n a = 1 / (2 * std1 ** 2) - 1 / (2 * std2 ** 2)\n b = m2 / std2 ** 2 - m1 / std1 ** 2\n c = m1 ** 2 / (2 * std1 ** 2) - m2 ** 2 / (2 * std2 ** 2) - np.log(\n std2 * s1 / (std1 * s2))\n return np.roots([a, b, c])\n i = solve(bg, signal)\n try:\n return i[np.logical_and(i > bg[1], i < signal[1])][0]\n except IndexError:\n return max(smn, bmx)\n",
"role": "user"
},
{
"content": "signalMinimum",
"role": "assistant"
}
] |
def x(fitParams, n_std=3):
signal = getSignalPeak(fitParams)
mx = signal[1] + n_std * signal[2]
mn = signal[1] - n_std * signal[2]
if mn < fitParams[0][1]:
mn = fitParams[0][1]
return mn, signal[1], mx
|
getSignalParameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fitParams, n_std=3):\n signal = getSignalPeak(fitParams)\n mx = signal[1] + n_std * signal[2]\n mn = signal[1] - n_std * signal[2]\n if mn < fitParams[0][1]:\n mn = fitParams[0][1]\n return mn, signal[1], mx\n",
"role": "user"
},
{
"content": "getSignalParameters",
"role": "assistant"
}
] |
def x(img, save_path=None, name_additive='_eqHist'):
if isinstance(img, string_types):
img = PathStr(img)
if not img.exists():
raise Exception("image path doesn't exist")
img_name = img.basename().replace('.', '%s.' % name_additive)
if save_path is None:
save_path = img.dirname()
img = cv2.imread(img)
if img.dtype != np.dtype('uint8'):
eqFn = _equalizeHistogram
else:
eqFn = cv2.equalizeHist
if len(img.shape) == 3:
for i in range(img.shape[2]):
img[:, :, i] = eqFn(img[:, :, i])
else:
img = eqFn(img)
if save_path:
img_name = PathStr(save_path).join(img_name)
cv2.imwrite(img_name, img)
return img
|
equalizeImage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, save_path=None, name_additive='_eqHist'):\n if isinstance(img, string_types):\n img = PathStr(img)\n if not img.exists():\n raise Exception(\"image path doesn't exist\")\n img_name = img.basename().replace('.', '%s.' % name_additive)\n if save_path is None:\n save_path = img.dirname()\n img = cv2.imread(img)\n if img.dtype != np.dtype('uint8'):\n eqFn = _equalizeHistogram\n else:\n eqFn = cv2.equalizeHist\n if len(img.shape) == 3:\n for i in range(img.shape[2]):\n img[:, :, i] = eqFn(img[:, :, i])\n else:\n img = eqFn(img)\n if save_path:\n img_name = PathStr(save_path).join(img_name)\n cv2.imwrite(img_name, img)\n return img\n",
"role": "user"
},
{
"content": "equalizeImage",
"role": "assistant"
}
] |
def x(img):
intType = None
if 'f' not in img.dtype.str:
TO_FLOAT_TYPES = {np.dtype('uint8'): np.float16, np.dtype('uint16'):
np.float32, np.dtype('uint32'): np.float64, np.dtype('uint64'):
np.float64}
intType = img.dtype
img = img.astype(TO_FLOAT_TYPES[intType], copy=False)
DEPTH_TO_NBINS = {np.dtype('float16'): 256, np.dtype('float32'): 32768,
np.dtype('float64'): 2147483648}
nBins = DEPTH_TO_NBINS[img.dtype]
mn, mx = np.amin(img), np.amax(img)
if abs(mn) > abs(mx):
mx = mn
img /= mx
img = exposure.equalize_hist(img, nbins=nBins)
img *= mx
if intType:
img = img.astype(intType)
return img
|
equalizeHistogram
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n intType = None\n if 'f' not in img.dtype.str:\n TO_FLOAT_TYPES = {np.dtype('uint8'): np.float16, np.dtype('uint16'):\n np.float32, np.dtype('uint32'): np.float64, np.dtype('uint64'):\n np.float64}\n intType = img.dtype\n img = img.astype(TO_FLOAT_TYPES[intType], copy=False)\n DEPTH_TO_NBINS = {np.dtype('float16'): 256, np.dtype('float32'): 32768,\n np.dtype('float64'): 2147483648}\n nBins = DEPTH_TO_NBINS[img.dtype]\n mn, mx = np.amin(img), np.amax(img)\n if abs(mn) > abs(mx):\n mx = mn\n img /= mx\n img = exposure.equalize_hist(img, nbins=nBins)\n img *= mx\n if intType:\n img = img.astype(intType)\n return img\n",
"role": "user"
},
{
"content": "equalizeHistogram",
"role": "assistant"
}
] |
def x(img, thresh=0, min_increase=0, max_length=0, dtype=bool):
out = np.zeros(shape=img.shape, dtype=dtype)
_calc(img, out, thresh, min_increase, max_length)
_calc(img.T, out.T, thresh, min_increase, max_length)
return out
|
localizedMaximum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, thresh=0, min_increase=0, max_length=0, dtype=bool):\n out = np.zeros(shape=img.shape, dtype=dtype)\n _calc(img, out, thresh, min_increase, max_length)\n _calc(img.T, out.T, thresh, min_increase, max_length)\n return out\n",
"role": "user"
},
{
"content": "localizedMaximum",
"role": "assistant"
}
] |
def x(self, ref):
self.quad = None
self._camera_position = None
self._homography = None
self._homography_is_fixed = True
self._pose = None
if isinstance(ref, np.ndarray) and ref.shape == (3, 3):
self._homography = ref
elif len(ref) == 4:
self.quad = sortCorners(ref)
o = self.obj_points
else:
self.ref = imread(ref)
self.pattern = PatternRecognition(self.ref)
self._homography_is_fixed = False
|
setReference
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ref):\n self.quad = None\n self._camera_position = None\n self._homography = None\n self._homography_is_fixed = True\n self._pose = None\n if isinstance(ref, np.ndarray) and ref.shape == (3, 3):\n self._homography = ref\n elif len(ref) == 4:\n self.quad = sortCorners(ref)\n o = self.obj_points\n else:\n self.ref = imread(ref)\n self.pattern = PatternRecognition(self.ref)\n self._homography_is_fixed = False\n",
"role": "user"
},
{
"content": "setReference",
"role": "assistant"
}
] |
def x(self, img, rotX=0, rotY=0, quad=None):
self.img = imread(img)
corr = self.correct(self.img)
s = self.img.shape
if quad is None:
wquad = (self.quad - self.quad.mean(axis=0)).astype(float)
win_width = s[1]
win_height = s[0]
for n, q in enumerate(wquad):
p = Point3D(q[0], q[1], 0).rotateX(-rotX).rotateY(-rotY)
p = p.project(win_width, win_height, s[1], s[1])
wquad[n] = p.x, p.y
wquad = sortCorners(wquad)
w = wquad[:, 0].max() - wquad[:, 0].min()
h = wquad[:, 1].max() - wquad[:, 1].min()
scale = min(s[1] / w, s[0] / h)
wquad = (wquad * scale).astype(int)
else:
wquad = sortCorners(quad)
wquad -= wquad.min(axis=0)
lx = corr.shape[1]
ly = corr.shape[0]
objP = np.array([[0, 0], [lx, 0], [lx, ly], [0, ly]], dtype=np.float32)
homography = cv2.getPerspectiveTransform(wquad.astype(np.float32), objP)
w = wquad[:, 0].max() - wquad[:, 0].min()
h = wquad[:, 1].max() - wquad[:, 1].min()
dist = cv2.warpPerspective(corr, homography, (int(w), int(h)), flags=
cv2.INTER_CUBIC | cv2.WARP_INVERSE_MAP)
bg = np.zeros(shape=s)
rmn = bg.shape[0] / 2, bg.shape[1] / 2
ss = dist.shape
mn = ss[0] / 2, ss[1] / 2
ref = int(rmn[0] - mn[0]), int(rmn[1] - mn[1])
bg[ref[0]:ss[0] + ref[0], ref[1]:ss[1] + ref[1]] = dist
self.quad = wquad
self.quad += ref[1], ref[0]
self.img = bg
self._homography = None
self._poseFromQuad()
if self.opts['do_correctIntensity']:
tf = self.tiltFactor()
if self.img.ndim == 3:
for col in range(self.img.shape[2]):
self.img[..., col] *= tf
else:
self.img = self.img * tf
return self.img
|
distort
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img, rotX=0, rotY=0, quad=None):\n self.img = imread(img)\n corr = self.correct(self.img)\n s = self.img.shape\n if quad is None:\n wquad = (self.quad - self.quad.mean(axis=0)).astype(float)\n win_width = s[1]\n win_height = s[0]\n for n, q in enumerate(wquad):\n p = Point3D(q[0], q[1], 0).rotateX(-rotX).rotateY(-rotY)\n p = p.project(win_width, win_height, s[1], s[1])\n wquad[n] = p.x, p.y\n wquad = sortCorners(wquad)\n w = wquad[:, 0].max() - wquad[:, 0].min()\n h = wquad[:, 1].max() - wquad[:, 1].min()\n scale = min(s[1] / w, s[0] / h)\n wquad = (wquad * scale).astype(int)\n else:\n wquad = sortCorners(quad)\n wquad -= wquad.min(axis=0)\n lx = corr.shape[1]\n ly = corr.shape[0]\n objP = np.array([[0, 0], [lx, 0], [lx, ly], [0, ly]], dtype=np.float32)\n homography = cv2.getPerspectiveTransform(wquad.astype(np.float32), objP)\n w = wquad[:, 0].max() - wquad[:, 0].min()\n h = wquad[:, 1].max() - wquad[:, 1].min()\n dist = cv2.warpPerspective(corr, homography, (int(w), int(h)), flags=\n cv2.INTER_CUBIC | cv2.WARP_INVERSE_MAP)\n bg = np.zeros(shape=s)\n rmn = bg.shape[0] / 2, bg.shape[1] / 2\n ss = dist.shape\n mn = ss[0] / 2, ss[1] / 2\n ref = int(rmn[0] - mn[0]), int(rmn[1] - mn[1])\n bg[ref[0]:ss[0] + ref[0], ref[1]:ss[1] + ref[1]] = dist\n self.quad = wquad\n self.quad += ref[1], ref[0]\n self.img = bg\n self._homography = None\n self._poseFromQuad()\n if self.opts['do_correctIntensity']:\n tf = self.tiltFactor()\n if self.img.ndim == 3:\n for col in range(self.img.shape[2]):\n self.img[..., col] *= tf\n else:\n self.img = self.img * tf\n return self.img\n",
"role": "user"
},
{
"content": "distort",
"role": "assistant"
}
] |
def x(self, img, grid):
self.img = imread(img)
h = self.homography
if self.opts['do_correctIntensity']:
self.img = self.img / self._getTiltFactor(self.img.shape)
s0, s1 = grid.shape[:2]
n0, n1 = s0 - 1, s1 - 1
snew = self._newBorders
b = self.opts['border']
sx, sy = (snew[0] - 2 * b) // n0, (snew[1] - 2 * b) // n1
out = np.empty(snew[::-1], dtype=self.img.dtype)
def x(ix, iy, objP, outcut):
shape = outcut.shape[::-1]
quad = grid[ix:ix + 2, iy:iy + 2].reshape(4, 2)[np.array([0, 2, 3, 1])]
hcell = cv2.getPerspectiveTransform(quad.astype(np.float32), objP)
cv2.warpPerspective(self.img, hcell, shape, outcut, flags=cv2.
INTER_LANCZOS4, **self.opts['cv2_opts'])
return quad
objP = np.array([[0, 0], [sx, 0], [sx, sy], [0, sy]], dtype=np.float32)
for ix in range(1, n0 - 1):
for iy in range(1, n1 - 1):
sub = out[iy * sy + b:(iy + 1) * sy + b, ix * sx + b:(ix + 1) *
sx + b]
shape = sub.shape[::-1]
quad = grid[ix:ix + 2, iy:iy + 2].reshape(4, 2)[np.array([0, 2,
3, 1])]
hcell = cv2.getPerspectiveTransform(quad.astype(np.float32), objP)
cv2.warpPerspective(self.img, hcell, shape, sub, flags=cv2.
INTER_LANCZOS4, **self.opts['cv2_opts'])
objP[:, 1] += b
for ix in range(1, n0 - 1):
warp(ix, 0, objP, out[:sy + b, ix * sx + b:(ix + 1) * sx + b])
objP[:, 1] -= b
for ix in range(1, n0 - 1):
iy = n1 - 1
y = iy * sy + b
x = ix * sx + b
warp(ix, iy, objP, out[y:y + sy + b, x:x + sx])
objP[:, 0] += b
for iy in range(1, n1 - 1):
y = iy * sy + b
warp(0, iy, objP, out[y:y + sy, :sx + b])
objP[:, 0] -= b
ix = n0 - 1
x = ix * sx + b
for iy in range(1, n1 - 1):
y = iy * sy + b
warp(ix, iy, objP, out[y:y + sy, x:x + sx + b])
warp(n0 - 1, n1 - 1, objP, out[-sy - b - 1:, x:x + sx + b])
objP += b, b
warp(0, 0, objP, out[0:sy + b, 0:sx + b])
objP[:, 0] -= b
warp(n0 - 1, 0, objP, out[:sy + b, x:x + sx + b])
objP += b, -b
warp(0, n1 - 1, objP, out[-sy - b - 1:, :sx + b])
return out
|
correctGrid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img, grid):\n self.img = imread(img)\n h = self.homography\n if self.opts['do_correctIntensity']:\n self.img = self.img / self._getTiltFactor(self.img.shape)\n s0, s1 = grid.shape[:2]\n n0, n1 = s0 - 1, s1 - 1\n snew = self._newBorders\n b = self.opts['border']\n sx, sy = (snew[0] - 2 * b) // n0, (snew[1] - 2 * b) // n1\n out = np.empty(snew[::-1], dtype=self.img.dtype)\n\n def x(ix, iy, objP, outcut):\n shape = outcut.shape[::-1]\n quad = grid[ix:ix + 2, iy:iy + 2].reshape(4, 2)[np.array([0, 2, 3, 1])]\n hcell = cv2.getPerspectiveTransform(quad.astype(np.float32), objP)\n cv2.warpPerspective(self.img, hcell, shape, outcut, flags=cv2.\n INTER_LANCZOS4, **self.opts['cv2_opts'])\n return quad\n objP = np.array([[0, 0], [sx, 0], [sx, sy], [0, sy]], dtype=np.float32)\n for ix in range(1, n0 - 1):\n for iy in range(1, n1 - 1):\n sub = out[iy * sy + b:(iy + 1) * sy + b, ix * sx + b:(ix + 1) *\n sx + b]\n shape = sub.shape[::-1]\n quad = grid[ix:ix + 2, iy:iy + 2].reshape(4, 2)[np.array([0, 2,\n 3, 1])]\n hcell = cv2.getPerspectiveTransform(quad.astype(np.float32), objP)\n cv2.warpPerspective(self.img, hcell, shape, sub, flags=cv2.\n INTER_LANCZOS4, **self.opts['cv2_opts'])\n objP[:, 1] += b\n for ix in range(1, n0 - 1):\n warp(ix, 0, objP, out[:sy + b, ix * sx + b:(ix + 1) * sx + b])\n objP[:, 1] -= b\n for ix in range(1, n0 - 1):\n iy = n1 - 1\n y = iy * sy + b\n x = ix * sx + b\n warp(ix, iy, objP, out[y:y + sy + b, x:x + sx])\n objP[:, 0] += b\n for iy in range(1, n1 - 1):\n y = iy * sy + b\n warp(0, iy, objP, out[y:y + sy, :sx + b])\n objP[:, 0] -= b\n ix = n0 - 1\n x = ix * sx + b\n for iy in range(1, n1 - 1):\n y = iy * sy + b\n warp(ix, iy, objP, out[y:y + sy, x:x + sx + b])\n warp(n0 - 1, n1 - 1, objP, out[-sy - b - 1:, x:x + sx + b])\n objP += b, b\n warp(0, 0, objP, out[0:sy + b, 0:sx + b])\n objP[:, 0] -= b\n warp(n0 - 1, 0, objP, out[:sy + b, x:x + sx + b])\n objP += b, -b\n warp(0, n1 - 1, objP, out[-sy - b - 1:, :sx + b])\n return out\n",
"role": "user"
},
{
"content": "correctGrid",
"role": "assistant"
}
] |
def x(self, img):
print('CORRECT PERSPECTIVE ...')
self.img = imread(img)
if not self._homography_is_fixed:
self._homography = None
h = self.homography
if self.opts['do_correctIntensity']:
tf = self.tiltFactor()
self.img = np.asfarray(self.img)
if self.img.ndim == 3:
for col in range(self.img.shape[2]):
self.img[..., col] /= tf
else:
self.img = self.img / tf
warped = cv2.warpPerspective(self.img, h, self._newBorders[::-1], flags
=cv2.INTER_LANCZOS4, **self.opts['cv2_opts'])
return warped
|
correct
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img):\n print('CORRECT PERSPECTIVE ...')\n self.img = imread(img)\n if not self._homography_is_fixed:\n self._homography = None\n h = self.homography\n if self.opts['do_correctIntensity']:\n tf = self.tiltFactor()\n self.img = np.asfarray(self.img)\n if self.img.ndim == 3:\n for col in range(self.img.shape[2]):\n self.img[..., col] /= tf\n else:\n self.img = self.img / tf\n warped = cv2.warpPerspective(self.img, h, self._newBorders[::-1], flags\n =cv2.INTER_LANCZOS4, **self.opts['cv2_opts'])\n return warped\n",
"role": "user"
},
{
"content": "correct",
"role": "assistant"
}
] |
def x(self, pose=None):
if pose is None:
pose = self.pose()
t, r = pose
return -np.matrix(cv2.Rodrigues(r)[0]).T * np.matrix(t)
|
camera_position
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pose=None):\n if pose is None:\n pose = self.pose()\n t, r = pose\n return -np.matrix(cv2.Rodrigues(r)[0]).T * np.matrix(t)\n",
"role": "user"
},
{
"content": "camera_position",
"role": "assistant"
}
] |
def x(self, **kwargs):
v0 = self.cam2PlaneVectorField(**kwargs)
v0[2][v0[2] < 0] = np.nan
_t, r = self.pose()
n = self.planeSfN(r)
n[2] *= -1
beta2 = vectorAngle(v0, n)
return beta2
|
viewAngle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **kwargs):\n v0 = self.cam2PlaneVectorField(**kwargs)\n v0[2][v0[2] < 0] = np.nan\n _t, r = self.pose()\n n = self.planeSfN(r)\n n[2] *= -1\n beta2 = vectorAngle(v0, n)\n return beta2\n",
"role": "user"
},
{
"content": "viewAngle",
"role": "assistant"
}
] |
def x(self, quad=None):
fg = np.zeros(shape=self._newBorders[::-1], dtype=np.uint8)
if quad is None:
quad = self.quad
else:
quad = quad.astype(np.int32)
cv2.fillConvexPoly(fg, quad, 1)
return fg.astype(bool)
|
foreground
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, quad=None):\n fg = np.zeros(shape=self._newBorders[::-1], dtype=np.uint8)\n if quad is None:\n quad = self.quad\n else:\n quad = quad.astype(np.int32)\n cv2.fillConvexPoly(fg, quad, 1)\n return fg.astype(bool)\n",
"role": "user"
},
{
"content": "foreground",
"role": "assistant"
}
] |
def x(self, midpointdepth=None, printAvAngle=False):
beta2 = self.viewAngle(midpointdepth=midpointdepth)
try:
angles, vals = getattr(emissivity_vs_angle, self.opts['material'])()
except AttributeError:
raise AttributeError(
'material[%s] is not in list of know materials: %s' % (self.
opts['material'], [o[0] for o in getmembers(emissivity_vs_angle
) if isfunction(o[1])]))
if printAvAngle:
avg_angle = beta2[self.foreground()].mean()
print('angle: %s DEG' % np.degrees(avg_angle))
normEmissivity = np.clip(InterpolatedUnivariateSpline(np.radians(angles
), vals)(beta2), 0, 1)
return normEmissivity
|
tiltFactor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, midpointdepth=None, printAvAngle=False):\n beta2 = self.viewAngle(midpointdepth=midpointdepth)\n try:\n angles, vals = getattr(emissivity_vs_angle, self.opts['material'])()\n except AttributeError:\n raise AttributeError(\n 'material[%s] is not in list of know materials: %s' % (self.\n opts['material'], [o[0] for o in getmembers(emissivity_vs_angle\n ) if isfunction(o[1])]))\n if printAvAngle:\n avg_angle = beta2[self.foreground()].mean()\n print('angle: %s DEG' % np.degrees(avg_angle))\n normEmissivity = np.clip(InterpolatedUnivariateSpline(np.radians(angles\n ), vals)(beta2), 0, 1)\n return normEmissivity\n",
"role": "user"
},
{
"content": "tiltFactor",
"role": "assistant"
}
] |
def x(self, focal_Length_mm, f_number, midpointdepth=1000, focusAtYX=None,
shape=None, uncertainties=(0, 0)):
if shape is None:
s = self.img.shape
else:
s = shape
depthMap = self.depthMap(midpointdepth)
if focusAtYX is None:
focusAtYX = s[0] // 2, s[1] // 2
infocusDepth = depthMap[focusAtYX]
depthOfField_blur = defocusThroughDepth(depthMap, infocusDepth,
focal_Length_mm, f_number, k=2.335)
py, px = np.mgrid[0:s[0], 0:s[1]]
wx = cv2.warpPerspective(np.asfarray(px), self.homography, self.
_newBorders, borderValue=np.nan, flags=cv2.INTER_LANCZOS4)
wy = cv2.warpPerspective(np.asfarray(py), self.homography, self.
_newBorders, borderValue=np.nan, flags=cv2.INTER_LANCZOS4)
pxSizeFactorX = 1 / np.abs(np.gradient(wx)[1])
pxSizeFactorY = 1 / np.abs(np.gradient(wy)[0])
depthOfField_blur = cv2.warpPerspective(depthOfField_blur, self.
homography, self._newBorders, borderValue=np.nan)
warpedU = []
for u in uncertainties:
if isinstance(u, np.ndarray) and u.size > 1:
u = cv2.warpPerspective(u, self.homography, self._newBorders,
borderValue=np.nan, flags=cv2.INTER_LANCZOS4)
else:
u *= self.areaRatio
warpedU.append(u)
ux, uy = warpedU
ux = pxSizeFactorX * (ux ** 2 + depthOfField_blur ** 2) ** 0.5
uy = pxSizeFactorY * (uy ** 2 + depthOfField_blur ** 2) ** 0.5
return ux, uy, depthOfField_blur, pxSizeFactorX, pxSizeFactorY
|
standardUncertainties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, focal_Length_mm, f_number, midpointdepth=1000, focusAtYX=None,\n shape=None, uncertainties=(0, 0)):\n if shape is None:\n s = self.img.shape\n else:\n s = shape\n depthMap = self.depthMap(midpointdepth)\n if focusAtYX is None:\n focusAtYX = s[0] // 2, s[1] // 2\n infocusDepth = depthMap[focusAtYX]\n depthOfField_blur = defocusThroughDepth(depthMap, infocusDepth,\n focal_Length_mm, f_number, k=2.335)\n py, px = np.mgrid[0:s[0], 0:s[1]]\n wx = cv2.warpPerspective(np.asfarray(px), self.homography, self.\n _newBorders, borderValue=np.nan, flags=cv2.INTER_LANCZOS4)\n wy = cv2.warpPerspective(np.asfarray(py), self.homography, self.\n _newBorders, borderValue=np.nan, flags=cv2.INTER_LANCZOS4)\n pxSizeFactorX = 1 / np.abs(np.gradient(wx)[1])\n pxSizeFactorY = 1 / np.abs(np.gradient(wy)[0])\n depthOfField_blur = cv2.warpPerspective(depthOfField_blur, self.\n homography, self._newBorders, borderValue=np.nan)\n warpedU = []\n for u in uncertainties:\n if isinstance(u, np.ndarray) and u.size > 1:\n u = cv2.warpPerspective(u, self.homography, self._newBorders,\n borderValue=np.nan, flags=cv2.INTER_LANCZOS4)\n else:\n u *= self.areaRatio\n warpedU.append(u)\n ux, uy = warpedU\n ux = pxSizeFactorX * (ux ** 2 + depthOfField_blur ** 2) ** 0.5\n uy = pxSizeFactorY * (uy ** 2 + depthOfField_blur ** 2) ** 0.5\n return ux, uy, depthOfField_blur, pxSizeFactorX, pxSizeFactorY\n",
"role": "user"
},
{
"content": "standardUncertainties",
"role": "assistant"
}
] |
def x(self, quad=None):
if quad is None:
quad = self.quad
if quad.ndim == 3:
quad = quad[0]
img_pn = np.ascontiguousarray(quad[:, :2], dtype=np.float32).reshape((4,
1, 2))
obj_pn = self.obj_points - self.obj_points.mean(axis=0)
retval, rvec, tvec = cv2.solvePnP(obj_pn, img_pn, self.opts[
'cameraMatrix'], self.opts['distCoeffs'], flags=cv2.SOLVEPNP_P3P)
if not retval:
print("Couln't estimate pose")
return tvec, rvec
|
poseFromQuad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, quad=None):\n if quad is None:\n quad = self.quad\n if quad.ndim == 3:\n quad = quad[0]\n img_pn = np.ascontiguousarray(quad[:, :2], dtype=np.float32).reshape((4,\n 1, 2))\n obj_pn = self.obj_points - self.obj_points.mean(axis=0)\n retval, rvec, tvec = cv2.solvePnP(obj_pn, img_pn, self.opts[\n 'cameraMatrix'], self.opts['distCoeffs'], flags=cv2.SOLVEPNP_P3P)\n if not retval:\n print(\"Couln't estimate pose\")\n return tvec, rvec\n",
"role": "user"
},
{
"content": "poseFromQuad",
"role": "assistant"
}
] |
def x(self, img=None, quad=None, thickness=30):
if img is None:
img = self.img
if quad is None:
quad = self.quad
q = np.int32(quad)
c = int(img.max())
cv2.line(img, tuple(q[0]), tuple(q[1]), c, thickness)
cv2.line(img, tuple(q[1]), tuple(q[2]), c, thickness)
cv2.line(img, tuple(q[2]), tuple(q[3]), c, thickness)
cv2.line(img, tuple(q[3]), tuple(q[0]), c, thickness)
return img
|
drawQuad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img=None, quad=None, thickness=30):\n if img is None:\n img = self.img\n if quad is None:\n quad = self.quad\n q = np.int32(quad)\n c = int(img.max())\n cv2.line(img, tuple(q[0]), tuple(q[1]), c, thickness)\n cv2.line(img, tuple(q[1]), tuple(q[2]), c, thickness)\n cv2.line(img, tuple(q[2]), tuple(q[3]), c, thickness)\n cv2.line(img, tuple(q[3]), tuple(q[0]), c, thickness)\n return img\n",
"role": "user"
},
{
"content": "drawQuad",
"role": "assistant"
}
] |
def x(self, img=None, thickness=8):
if img is None:
img = self.img
elif img is False:
img = np.zeros(shape=self.img.shape, dtype=self.img.dtype)
else:
img = imread(img)
w, h = self.opts['new_size']
axis = np.float32([[0.5 * w, 0.5 * h, 0], [w, 0.5 * h, 0], [0.5 * w, h,
0], [0.5 * w, 0.5 * h, -0.5 * w]])
t, r = self.pose()
imgpts = cv2.projectPoints(axis, r, t, self.opts['cameraMatrix'], self.
opts['distCoeffs'])[0]
mx = int(img.max())
origin = tuple(imgpts[0].ravel())
cv2.line(img, origin, tuple(imgpts[1].ravel()), (0, 0, mx), thickness)
cv2.line(img, origin, tuple(imgpts[2].ravel()), (0, mx, 0), thickness)
cv2.line(img, origin, tuple(imgpts[3].ravel()), (mx, 0, 0), thickness * 2)
return img
|
draw3dCoordAxis
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img=None, thickness=8):\n if img is None:\n img = self.img\n elif img is False:\n img = np.zeros(shape=self.img.shape, dtype=self.img.dtype)\n else:\n img = imread(img)\n w, h = self.opts['new_size']\n axis = np.float32([[0.5 * w, 0.5 * h, 0], [w, 0.5 * h, 0], [0.5 * w, h,\n 0], [0.5 * w, 0.5 * h, -0.5 * w]])\n t, r = self.pose()\n imgpts = cv2.projectPoints(axis, r, t, self.opts['cameraMatrix'], self.\n opts['distCoeffs'])[0]\n mx = int(img.max())\n origin = tuple(imgpts[0].ravel())\n cv2.line(img, origin, tuple(imgpts[1].ravel()), (0, 0, mx), thickness)\n cv2.line(img, origin, tuple(imgpts[2].ravel()), (0, mx, 0), thickness)\n cv2.line(img, origin, tuple(imgpts[3].ravel()), (mx, 0, 0), thickness * 2)\n return img\n",
"role": "user"
},
{
"content": "draw3dCoordAxis",
"role": "assistant"
}
] |
def x(corners, aspectRatio):
if aspectRatio > 1:
x_length = PerspectiveCorrection._quadXLength(corners)
y = x_length / aspectRatio
return x_length, y
else:
y_length = PerspectiveCorrection._quadYLength(corners)
x = y_length * aspectRatio
return x, y_length
|
calcQuadSize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(corners, aspectRatio):\n if aspectRatio > 1:\n x_length = PerspectiveCorrection._quadXLength(corners)\n y = x_length / aspectRatio\n return x_length, y\n else:\n y_length = PerspectiveCorrection._quadYLength(corners)\n x = y_length * aspectRatio\n return x, y_length\n",
"role": "user"
},
{
"content": "calcQuadSize",
"role": "assistant"
}
] |
def x(img, center=None, final_radius=None, initial_radius=None, phase_width
=None, interpolation=cv2.INTER_AREA, maps=None, borderValue=0,
borderMode=cv2.BORDER_REFLECT, **opts):
if maps is None:
mapY, mapX = linearToPolarMaps(img.shape[:2], center, final_radius,
initial_radius, phase_width)
else:
mapY, mapX = maps
o = {'interpolation': interpolation, 'borderValue': borderValue,
'borderMode': borderMode}
o.update(opts)
return cv2.remap(img, mapY, mapX, **o)
|
linearToPolar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, center=None, final_radius=None, initial_radius=None, phase_width\n =None, interpolation=cv2.INTER_AREA, maps=None, borderValue=0,\n borderMode=cv2.BORDER_REFLECT, **opts):\n if maps is None:\n mapY, mapX = linearToPolarMaps(img.shape[:2], center, final_radius,\n initial_radius, phase_width)\n else:\n mapY, mapX = maps\n o = {'interpolation': interpolation, 'borderValue': borderValue,\n 'borderMode': borderMode}\n o.update(opts)\n return cv2.remap(img, mapY, mapX, **o)\n",
"role": "user"
},
{
"content": "linearToPolar",
"role": "assistant"
}
] |
def x(img, shape=None, center=None, maps=None, interpolation=cv2.INTER_AREA,
borderValue=0, borderMode=cv2.BORDER_REFLECT, **opts):
if maps is None:
mapY, mapX = polarToLinearMaps(img.shape[:2], shape, center)
else:
mapY, mapX = maps
o = {'interpolation': interpolation, 'borderValue': borderValue,
'borderMode': borderMode}
o.update(opts)
return cv2.remap(img, mapY, mapX, **o)
|
polarToLinear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, shape=None, center=None, maps=None, interpolation=cv2.INTER_AREA,\n borderValue=0, borderMode=cv2.BORDER_REFLECT, **opts):\n if maps is None:\n mapY, mapX = polarToLinearMaps(img.shape[:2], shape, center)\n else:\n mapY, mapX = maps\n o = {'interpolation': interpolation, 'borderValue': borderValue,\n 'borderMode': borderMode}\n o.update(opts)\n return cv2.remap(img, mapY, mapX, **o)\n",
"role": "user"
},
{
"content": "polarToLinear",
"role": "assistant"
}
] |
def x(img):
M = np.array([-1, 2, -1])
G = cv2.getGaussianKernel(ksize=3, sigma=-1)
Lx = cv2.sepFilter2D(src=img, ddepth=cv2.CV_64F, kernelX=M, kernelY=G)
Ly = cv2.sepFilter2D(src=img, ddepth=cv2.CV_64F, kernelX=G, kernelY=M)
FM = np.abs(Lx) + np.abs(Ly)
return cv2.mean(FM)[0]
|
modifiedLaplacian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n M = np.array([-1, 2, -1])\n G = cv2.getGaussianKernel(ksize=3, sigma=-1)\n Lx = cv2.sepFilter2D(src=img, ddepth=cv2.CV_64F, kernelX=M, kernelY=G)\n Ly = cv2.sepFilter2D(src=img, ddepth=cv2.CV_64F, kernelX=G, kernelY=M)\n FM = np.abs(Lx) + np.abs(Ly)\n return cv2.mean(FM)[0]\n",
"role": "user"
},
{
"content": "modifiedLaplacian",
"role": "assistant"
}
] |
def x(img):
lap = cv2.Laplacian(img, ddepth=-1)
stdev = cv2.meanStdDev(lap)[1]
s = stdev[0] ** 2
return s[0]
|
varianceOfLaplacian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n lap = cv2.Laplacian(img, ddepth=-1)\n stdev = cv2.meanStdDev(lap)[1]\n s = stdev[0] ** 2\n return s[0]\n",
"role": "user"
},
{
"content": "varianceOfLaplacian",
"role": "assistant"
}
] |
def x(img, ksize=3):
Gx = cv2.Sobel(img, ddepth=cv2.CV_64F, dx=1, dy=0, ksize=ksize)
Gy = cv2.Sobel(img, ddepth=cv2.CV_64F, dx=0, dy=1, ksize=ksize)
FM = Gx * Gx + Gy * Gy
mn = cv2.mean(FM)[0]
if np.isnan(mn):
return np.nanmean(FM)
return mn
|
tenengrad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, ksize=3):\n Gx = cv2.Sobel(img, ddepth=cv2.CV_64F, dx=1, dy=0, ksize=ksize)\n Gy = cv2.Sobel(img, ddepth=cv2.CV_64F, dx=0, dy=1, ksize=ksize)\n FM = Gx * Gx + Gy * Gy\n mn = cv2.mean(FM)[0]\n if np.isnan(mn):\n return np.nanmean(FM)\n return mn\n",
"role": "user"
},
{
"content": "tenengrad",
"role": "assistant"
}
] |
def x(img):
mean, stdev = cv2.meanStdDev(img)
s = stdev[0] ** 2 / mean[0]
return s[0]
|
normalizedGraylevelVariance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n mean, stdev = cv2.meanStdDev(img)\n s = stdev[0] ** 2 / mean[0]\n return s[0]\n",
"role": "user"
},
{
"content": "normalizedGraylevelVariance",
"role": "assistant"
}
] |
def x(img, x0, y0, x1, y1, resolution=None, order=3):
if resolution is None:
resolution = int(((x1 - x0) ** 2 + (y1 - y0) ** 2) ** 0.5)
if order == 0:
x = np.linspace(x0, x1, resolution, dtype=int)
y = np.linspace(y0, y1, resolution, dtype=int)
return img[y, x]
x = np.linspace(x0, x1, resolution)
y = np.linspace(y0, y1, resolution)
return map_coordinates(img, np.vstack((y, x)), order=order)
|
linePlot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, x0, y0, x1, y1, resolution=None, order=3):\n if resolution is None:\n resolution = int(((x1 - x0) ** 2 + (y1 - y0) ** 2) ** 0.5)\n if order == 0:\n x = np.linspace(x0, x1, resolution, dtype=int)\n y = np.linspace(y0, y1, resolution, dtype=int)\n return img[y, x]\n x = np.linspace(x0, x1, resolution)\n y = np.linspace(y0, y1, resolution)\n return map_coordinates(img, np.vstack((y, x)), order=order)\n",
"role": "user"
},
{
"content": "linePlot",
"role": "assistant"
}
] |
def x(self):
fitimg, mask = self._prepare()
mask = ~mask
s0, s1 = fitimg.shape
guess = s1 * 0.7, 0, 1, s0 / 2, s1 / 2
fn = lambda xy, f, alpha, fx, cx, cy: vignetting((xy[0] * fx, xy[1]), f,
alpha, cx=cx, cy=cy)
flatfield = fit2dArrayToFn(fitimg, fn, mask=mask, guess=guess,
output_shape=self._orig_shape)[0]
return flatfield, self.bglevel / self._n, fitimg, mask
|
flatFieldFromFunction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fitimg, mask = self._prepare()\n mask = ~mask\n s0, s1 = fitimg.shape\n guess = s1 * 0.7, 0, 1, s0 / 2, s1 / 2\n fn = lambda xy, f, alpha, fx, cx, cy: vignetting((xy[0] * fx, xy[1]), f,\n alpha, cx=cx, cy=cy)\n flatfield = fit2dArrayToFn(fitimg, fn, mask=mask, guess=guess,\n output_shape=self._orig_shape)[0]\n return flatfield, self.bglevel / self._n, fitimg, mask\n",
"role": "user"
},
{
"content": "flatFieldFromFunction",
"role": "assistant"
}
] |
def x(self):
fitimg, mask = self._prepare()
out = fitimg.copy()
lastm = 0
for _ in range(10):
out = polyfit2dGrid(out, mask, 2)
mask = highGrad(out)
m = mask.sum()
if m == lastm:
break
lastm = m
out = np.clip(out, 0.1, 1)
out = resize(out, self._orig_shape, mode='reflect')
return out, self.bglevel / self._n, fitimg, mask
|
flatFieldFromFit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n fitimg, mask = self._prepare()\n out = fitimg.copy()\n lastm = 0\n for _ in range(10):\n out = polyfit2dGrid(out, mask, 2)\n mask = highGrad(out)\n m = mask.sum()\n if m == lastm:\n break\n lastm = m\n out = np.clip(out, 0.1, 1)\n out = resize(out, self._orig_shape, mode='reflect')\n return out, self.bglevel / self._n, fitimg, mask\n",
"role": "user"
},
{
"content": "flatFieldFromFit",
"role": "assistant"
}
] |
def x(fname):
with open(fname, 'rt') as fh:
text = fh.read()
return parse_vhdl(text)
|
parse_vhdl_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n with open(fname, 'rt') as fh:\n text = fh.read()\n return parse_vhdl(text)\n",
"role": "user"
},
{
"content": "parse_vhdl_file",
"role": "assistant"
}
] |
def x(text):
lex = VhdlLexer
name = None
kind = None
saved_type = None
end_param_group = False
cur_package = None
metacomments = []
parameters = []
param_items = []
generics = []
ports = []
sections = []
port_param_index = 0
last_item = None
array_range_start_pos = 0
objects = []
for pos, action, groups in lex.run(text):
if action == 'metacomment':
realigned = re.sub('^#+', lambda m: ' ' * len(m.group(0)),
groups[0])
if last_item is None:
metacomments.append(realigned)
else:
last_item.desc = realigned
if action == 'section_meta':
sections.append((port_param_index, groups[0]))
elif action == 'function':
kind = 'function'
name = groups[0]
param_items = []
parameters = []
elif action == 'procedure':
kind = 'procedure'
name = groups[0]
param_items = []
parameters = []
elif action == 'param':
if end_param_group:
for i in param_items:
parameters.append(i)
param_items = []
end_param_group = False
param_items.append(VhdlParameter(groups[1]))
elif action == 'param_type':
mode, ptype = groups
if mode is not None:
mode = mode.strip()
for i in param_items:
i.mode = mode
i.data_type = ptype
end_param_group = True
elif action == 'param_default':
for i in param_items:
i.default_value = groups[0]
elif action == 'end_subprogram':
for i in param_items:
parameters.append(i)
if kind == 'function':
vobj = VhdlFunction(name, cur_package, parameters, groups[0
], metacomments)
else:
vobj = VhdlProcedure(name, cur_package, parameters,
metacomments)
objects.append(vobj)
metacomments = []
parameters = []
param_items = []
kind = None
name = None
elif action == 'component':
kind = 'component'
name = groups[0]
generics = []
ports = []
param_items = []
sections = []
port_param_index = 0
elif action == 'generic_param':
param_items.append(groups[0])
elif action == 'generic_param_type':
ptype = groups[0]
for i in param_items:
generics.append(VhdlParameter(i, 'in', ptype))
param_items = []
last_item = generics[-1]
elif action == 'port_param':
param_items.append(groups[0])
port_param_index += 1
elif action == 'port_param_type':
mode, ptype = groups
for i in param_items:
ports.append(VhdlParameter(i, mode, ptype))
param_items = []
last_item = ports[-1]
elif action == 'port_array_param_type':
mode, ptype = groups
array_range_start_pos = pos[1]
elif action == 'array_range_end':
arange = text[array_range_start_pos:pos[0] + 1]
for i in param_items:
ports.append(VhdlParameter(i, mode, ptype + arange))
param_items = []
last_item = ports[-1]
elif action == 'end_component':
vobj = VhdlComponent(name, cur_package, ports, generics, dict(
sections), metacomments)
objects.append(vobj)
last_item = None
metacomments = []
elif action == 'package':
objects.append(VhdlPackage(groups[0]))
cur_package = groups[0]
kind = None
name = None
elif action == 'type':
saved_type = groups[0]
elif action in ('array_type', 'file_type', 'access_type',
'record_type', 'range_type', 'enum_type', 'incomplete_type'):
vobj = VhdlType(saved_type, cur_package, action, metacomments)
objects.append(vobj)
kind = None
name = None
metacomments = []
elif action == 'subtype':
vobj = VhdlSubtype(groups[0], cur_package, groups[1], metacomments)
objects.append(vobj)
kind = None
name = None
metacomments = []
elif action == 'constant':
vobj = VhdlConstant(groups[0], cur_package, groups[1], metacomments
)
objects.append(vobj)
kind = None
name = None
metacomments = []
return objects
|
parse_vhdl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n lex = VhdlLexer\n name = None\n kind = None\n saved_type = None\n end_param_group = False\n cur_package = None\n metacomments = []\n parameters = []\n param_items = []\n generics = []\n ports = []\n sections = []\n port_param_index = 0\n last_item = None\n array_range_start_pos = 0\n objects = []\n for pos, action, groups in lex.run(text):\n if action == 'metacomment':\n realigned = re.sub('^#+', lambda m: ' ' * len(m.group(0)),\n groups[0])\n if last_item is None:\n metacomments.append(realigned)\n else:\n last_item.desc = realigned\n if action == 'section_meta':\n sections.append((port_param_index, groups[0]))\n elif action == 'function':\n kind = 'function'\n name = groups[0]\n param_items = []\n parameters = []\n elif action == 'procedure':\n kind = 'procedure'\n name = groups[0]\n param_items = []\n parameters = []\n elif action == 'param':\n if end_param_group:\n for i in param_items:\n parameters.append(i)\n param_items = []\n end_param_group = False\n param_items.append(VhdlParameter(groups[1]))\n elif action == 'param_type':\n mode, ptype = groups\n if mode is not None:\n mode = mode.strip()\n for i in param_items:\n i.mode = mode\n i.data_type = ptype\n end_param_group = True\n elif action == 'param_default':\n for i in param_items:\n i.default_value = groups[0]\n elif action == 'end_subprogram':\n for i in param_items:\n parameters.append(i)\n if kind == 'function':\n vobj = VhdlFunction(name, cur_package, parameters, groups[0\n ], metacomments)\n else:\n vobj = VhdlProcedure(name, cur_package, parameters,\n metacomments)\n objects.append(vobj)\n metacomments = []\n parameters = []\n param_items = []\n kind = None\n name = None\n elif action == 'component':\n kind = 'component'\n name = groups[0]\n generics = []\n ports = []\n param_items = []\n sections = []\n port_param_index = 0\n elif action == 'generic_param':\n param_items.append(groups[0])\n elif action == 'generic_param_type':\n ptype = groups[0]\n for i in param_items:\n generics.append(VhdlParameter(i, 'in', ptype))\n param_items = []\n last_item = generics[-1]\n elif action == 'port_param':\n param_items.append(groups[0])\n port_param_index += 1\n elif action == 'port_param_type':\n mode, ptype = groups\n for i in param_items:\n ports.append(VhdlParameter(i, mode, ptype))\n param_items = []\n last_item = ports[-1]\n elif action == 'port_array_param_type':\n mode, ptype = groups\n array_range_start_pos = pos[1]\n elif action == 'array_range_end':\n arange = text[array_range_start_pos:pos[0] + 1]\n for i in param_items:\n ports.append(VhdlParameter(i, mode, ptype + arange))\n param_items = []\n last_item = ports[-1]\n elif action == 'end_component':\n vobj = VhdlComponent(name, cur_package, ports, generics, dict(\n sections), metacomments)\n objects.append(vobj)\n last_item = None\n metacomments = []\n elif action == 'package':\n objects.append(VhdlPackage(groups[0]))\n cur_package = groups[0]\n kind = None\n name = None\n elif action == 'type':\n saved_type = groups[0]\n elif action in ('array_type', 'file_type', 'access_type',\n 'record_type', 'range_type', 'enum_type', 'incomplete_type'):\n vobj = VhdlType(saved_type, cur_package, action, metacomments)\n objects.append(vobj)\n kind = None\n name = None\n metacomments = []\n elif action == 'subtype':\n vobj = VhdlSubtype(groups[0], cur_package, groups[1], metacomments)\n objects.append(vobj)\n kind = None\n name = None\n metacomments = []\n elif action == 'constant':\n vobj = VhdlConstant(groups[0], cur_package, groups[1], metacomments\n )\n objects.append(vobj)\n kind = None\n name = None\n metacomments = []\n return objects\n",
"role": "user"
},
{
"content": "parse_vhdl",
"role": "assistant"
}
] |
def x(vo):
plist = '; '.join(str(p) for p in vo.parameters)
if isinstance(vo, VhdlFunction):
if len(vo.parameters) > 0:
proto = 'function {}({}) return {};'.format(vo.name, plist, vo.
return_type)
else:
proto = 'function {} return {};'.format(vo.name, vo.return_type)
else:
proto = 'procedure {}({});'.format(vo.name, plist)
return proto
|
subprogram_prototype
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vo):\n plist = '; '.join(str(p) for p in vo.parameters)\n if isinstance(vo, VhdlFunction):\n if len(vo.parameters) > 0:\n proto = 'function {}({}) return {};'.format(vo.name, plist, vo.\n return_type)\n else:\n proto = 'function {} return {};'.format(vo.name, vo.return_type)\n else:\n proto = 'procedure {}({});'.format(vo.name, plist)\n return proto\n",
"role": "user"
},
{
"content": "subprogram_prototype",
"role": "assistant"
}
] |
def x(vo, fullname=None):
if fullname is None:
fullname = vo.name
if isinstance(vo, VhdlFunction):
plist = ','.join(p.data_type for p in vo.parameters)
sig = '{}[{} return {}]'.format(fullname, plist, vo.return_type)
else:
plist = ','.join(p.data_type for p in vo.parameters)
sig = '{}[{}]'.format(fullname, plist)
return sig
|
subprogram_signature
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vo, fullname=None):\n if fullname is None:\n fullname = vo.name\n if isinstance(vo, VhdlFunction):\n plist = ','.join(p.data_type for p in vo.parameters)\n sig = '{}[{} return {}]'.format(fullname, plist, vo.return_type)\n else:\n plist = ','.join(p.data_type for p in vo.parameters)\n sig = '{}[{}]'.format(fullname, plist)\n return sig\n",
"role": "user"
},
{
"content": "subprogram_signature",
"role": "assistant"
}
] |
def x(self, text, type_filter=None):
objects = parse_vhdl(text)
self._register_array_types(objects)
if type_filter:
objects = [o for o in objects if isinstance(o, type_filter)]
return objects
|
extract_objects_from_source
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, type_filter=None):\n objects = parse_vhdl(text)\n self._register_array_types(objects)\n if type_filter:\n objects = [o for o in objects if isinstance(o, type_filter)]\n return objects\n",
"role": "user"
},
{
"content": "extract_objects_from_source",
"role": "assistant"
}
] |
def x(self, data_type):
data_type = data_type.split('[')[0].strip()
return data_type.lower() in self.array_types
|
is_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data_type):\n data_type = data_type.split('[')[0].strip()\n return data_type.lower() in self.array_types\n",
"role": "user"
},
{
"content": "is_array",
"role": "assistant"
}
] |
def x(self, fname):
type_defs = ''
with open(fname, 'rt') as fh:
type_defs = fh.read()
try:
type_defs = ast.literal_eval(type_defs)
except SyntaxError:
type_defs = {}
self._add_array_types(type_defs)
|
load_array_types
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fname):\n type_defs = ''\n with open(fname, 'rt') as fh:\n type_defs = fh.read()\n try:\n type_defs = ast.literal_eval(type_defs)\n except SyntaxError:\n type_defs = {}\n self._add_array_types(type_defs)\n",
"role": "user"
},
{
"content": "load_array_types",
"role": "assistant"
}
] |
def x(self, fname):
type_defs = {'arrays': sorted(list(self.array_types))}
with open(fname, 'wt') as fh:
pprint(type_defs, stream=fh)
|
save_array_types
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fname):\n type_defs = {'arrays': sorted(list(self.array_types))}\n with open(fname, 'wt') as fh:\n pprint(type_defs, stream=fh)\n",
"role": "user"
},
{
"content": "save_array_types",
"role": "assistant"
}
] |
def x(self, objects):
types = [o for o in objects if isinstance(o, VhdlType) and o.type_of ==
'array_type']
for t in types:
self.array_types.add(t.name)
subtypes = {o.name: o.base_type for o in objects if isinstance(o,
VhdlSubtype)}
for k, v in subtypes.iteritems():
while v in subtypes:
v = subtypes[v]
if v in self.array_types:
self.array_types.add(k)
|
register_array_types
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, objects):\n types = [o for o in objects if isinstance(o, VhdlType) and o.type_of ==\n 'array_type']\n for t in types:\n self.array_types.add(t.name)\n subtypes = {o.name: o.base_type for o in objects if isinstance(o,\n VhdlSubtype)}\n for k, v in subtypes.iteritems():\n while v in subtypes:\n v = subtypes[v]\n if v in self.array_types:\n self.array_types.add(k)\n",
"role": "user"
},
{
"content": "register_array_types",
"role": "assistant"
}
] |
def x(self, source_files):
for fname in source_files:
if is_vhdl(fname):
self._register_array_types(self.extract_objects(fname))
|
register_array_types_from_sources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source_files):\n for fname in source_files:\n if is_vhdl(fname):\n self._register_array_types(self.extract_objects(fname))\n",
"role": "user"
},
{
"content": "register_array_types_from_sources",
"role": "assistant"
}
] |
def x(self, text):
stack = ['root']
pos = 0
patterns = self.tokens[stack[-1]]
while True:
for pat, action, new_state in patterns:
m = pat.match(text, pos)
if m:
if action:
yield (pos, m.end() - 1), action, m.groups()
pos = m.end()
if new_state:
if isinstance(new_state, int):
del stack[new_state:]
else:
stack.append(new_state)
patterns = self.tokens[stack[-1]]
break
else:
try:
if text[pos] == '\n':
pos += 1
continue
pos += 1
except IndexError:
break
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text):\n stack = ['root']\n pos = 0\n patterns = self.tokens[stack[-1]]\n while True:\n for pat, action, new_state in patterns:\n m = pat.match(text, pos)\n if m:\n if action:\n yield (pos, m.end() - 1), action, m.groups()\n pos = m.end()\n if new_state:\n if isinstance(new_state, int):\n del stack[new_state:]\n else:\n stack.append(new_state)\n patterns = self.tokens[stack[-1]]\n break\n else:\n try:\n if text[pos] == '\\n':\n pos += 1\n continue\n pos += 1\n except IndexError:\n break\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(verfile):
version = None
with open(verfile) as fh:
try:
version = [line.split('=')[1].strip().strip("'") for line in fh if
line.startswith('__version__')][0]
except IndexError:
pass
return version
|
get_package_version
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(verfile):\n version = None\n with open(verfile) as fh:\n try:\n version = [line.split('=')[1].strip().strip(\"'\") for line in fh if\n line.startswith('__version__')][0]\n except IndexError:\n pass\n return version\n",
"role": "user"
},
{
"content": "get_package_version",
"role": "assistant"
}
] |
def x(fname):
with open(fname, 'rt') as fh:
text = fh.read()
return parse_verilog(text)
|
parse_verilog_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fname):\n with open(fname, 'rt') as fh:\n text = fh.read()\n return parse_verilog(text)\n",
"role": "user"
},
{
"content": "parse_verilog_file",
"role": "assistant"
}
] |
def x(text):
lex = VerilogLexer
name = None
kind = None
saved_type = None
mode = 'input'
ptype = 'wire'
metacomments = []
parameters = []
param_items = []
generics = []
ports = collections.OrderedDict()
sections = []
port_param_index = 0
last_item = None
array_range_start_pos = 0
objects = []
for pos, action, groups in lex.run(text):
if action == 'metacomment':
if last_item is None:
metacomments.append(groups[0])
else:
last_item.desc = groups[0]
if action == 'section_meta':
sections.append((port_param_index, groups[0]))
elif action == 'module':
kind = 'module'
name = groups[0]
generics = []
ports = collections.OrderedDict()
param_items = []
sections = []
port_param_index = 0
elif action == 'parameter_start':
net_type, vec_range = groups
new_ptype = ''
if net_type is not None:
new_ptype += net_type
if vec_range is not None:
new_ptype += ' ' + vec_range
ptype = new_ptype
elif action == 'param_item':
generics.append(VerilogParameter(groups[0], 'in', ptype))
elif action == 'module_port_start':
new_mode, net_type, signed, vec_range = groups
new_ptype = ''
if net_type is not None:
new_ptype += net_type
if signed is not None:
new_ptype += ' ' + signed
if vec_range is not None:
new_ptype += ' ' + vec_range
for i in param_items:
ports[i] = VerilogParameter(i, mode, ptype)
param_items = []
if len(ports) > 0:
last_item = next(reversed(ports))
mode = new_mode
ptype = new_ptype
elif action == 'port_param':
ident = groups[0]
param_items.append(ident)
port_param_index += 1
elif action == 'end_module':
for i in param_items:
ports[i] = VerilogParameter(i, mode, ptype)
vobj = VerilogModule(name, ports.values(), generics, dict(
sections), metacomments)
objects.append(vobj)
last_item = None
metacomments = []
return objects
|
parse_verilog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n lex = VerilogLexer\n name = None\n kind = None\n saved_type = None\n mode = 'input'\n ptype = 'wire'\n metacomments = []\n parameters = []\n param_items = []\n generics = []\n ports = collections.OrderedDict()\n sections = []\n port_param_index = 0\n last_item = None\n array_range_start_pos = 0\n objects = []\n for pos, action, groups in lex.run(text):\n if action == 'metacomment':\n if last_item is None:\n metacomments.append(groups[0])\n else:\n last_item.desc = groups[0]\n if action == 'section_meta':\n sections.append((port_param_index, groups[0]))\n elif action == 'module':\n kind = 'module'\n name = groups[0]\n generics = []\n ports = collections.OrderedDict()\n param_items = []\n sections = []\n port_param_index = 0\n elif action == 'parameter_start':\n net_type, vec_range = groups\n new_ptype = ''\n if net_type is not None:\n new_ptype += net_type\n if vec_range is not None:\n new_ptype += ' ' + vec_range\n ptype = new_ptype\n elif action == 'param_item':\n generics.append(VerilogParameter(groups[0], 'in', ptype))\n elif action == 'module_port_start':\n new_mode, net_type, signed, vec_range = groups\n new_ptype = ''\n if net_type is not None:\n new_ptype += net_type\n if signed is not None:\n new_ptype += ' ' + signed\n if vec_range is not None:\n new_ptype += ' ' + vec_range\n for i in param_items:\n ports[i] = VerilogParameter(i, mode, ptype)\n param_items = []\n if len(ports) > 0:\n last_item = next(reversed(ports))\n mode = new_mode\n ptype = new_ptype\n elif action == 'port_param':\n ident = groups[0]\n param_items.append(ident)\n port_param_index += 1\n elif action == 'end_module':\n for i in param_items:\n ports[i] = VerilogParameter(i, mode, ptype)\n vobj = VerilogModule(name, ports.values(), generics, dict(\n sections), metacomments)\n objects.append(vobj)\n last_item = None\n metacomments = []\n return objects\n",
"role": "user"
},
{
"content": "parse_verilog",
"role": "assistant"
}
] |
def x(self, fname, type_filter=None):
objects = []
if fname in self.object_cache:
objects = self.object_cache[fname]
else:
with io.open(fname, 'rt', encoding='utf-8') as fh:
text = fh.read()
objects = parse_verilog(text)
self.object_cache[fname] = objects
if type_filter:
objects = [o for o in objects if isinstance(o, type_filter)]
return objects
|
extract_objects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fname, type_filter=None):\n objects = []\n if fname in self.object_cache:\n objects = self.object_cache[fname]\n else:\n with io.open(fname, 'rt', encoding='utf-8') as fh:\n text = fh.read()\n objects = parse_verilog(text)\n self.object_cache[fname] = objects\n if type_filter:\n objects = [o for o in objects if isinstance(o, type_filter)]\n return objects\n",
"role": "user"
},
{
"content": "extract_objects",
"role": "assistant"
}
] |
def x(self, text, type_filter=None):
objects = parse_verilog(text)
if type_filter:
objects = [o for o in objects if isinstance(o, type_filter)]
return objects
|
extract_objects_from_source
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, type_filter=None):\n objects = parse_verilog(text)\n if type_filter:\n objects = [o for o in objects if isinstance(o, type_filter)]\n return objects\n",
"role": "user"
},
{
"content": "extract_objects_from_source",
"role": "assistant"
}
] |
def x(file_path):
try:
with open(file_path) as f:
json_data = json.load(f)
except ValueError as e:
raise ValueError('Given file {} is not a valid JSON file: {}'.
format(file_path, e))
else:
return json_data
|
load_json_from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(file_path):\n try:\n with open(file_path) as f:\n json_data = json.load(f)\n except ValueError as e:\n raise ValueError('Given file {} is not a valid JSON file: {}'.\n format(file_path, e))\n else:\n return json_data\n",
"role": "user"
},
{
"content": "load_json_from_file",
"role": "assistant"
}
] |
def x(string):
try:
json_data = json.loads(string)
except ValueError as e:
raise ValueError('Given string is not valid JSON: {}'.format(e))
else:
return json_data
|
load_json_from_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(string):\n try:\n json_data = json.loads(string)\n except ValueError as e:\n raise ValueError('Given string is not valid JSON: {}'.format(e))\n else:\n return json_data\n",
"role": "user"
},
{
"content": "load_json_from_string",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.