source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(img): gx = img.shape[0] gy = img.shape[1] for i in range(gx): for j in range(gy): if img[i, j]: found_neighbour = False for ii in range(max(0, i - 1), min(gx, i + 2)): for jj in range(max(0, j - 1), min(gy, j + 2)): if ii == i and jj == j: continue if img[ii, jj]: found_neighbour = True break if found_neighbour: break if not found_neighbour: img[i, j] = 0
removeSinglePixels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n gx = img.shape[0]\n gy = img.shape[1]\n for i in range(gx):\n for j in range(gy):\n if img[i, j]:\n found_neighbour = False\n for ii in range(max(0, i - 1), min(gx, i + 2)):\n for jj in range(max(0, j - 1), min(gy, j + 2)):\n if ii == i and jj == j:\n continue\n if img[ii, jj]:\n found_neighbour = True\n break\n if found_neighbour:\n break\n if not found_neighbour:\n img[i, j] = 0\n", "role": "user" }, { "content": "removeSinglePixels", "role": "assistant" } ]
def x(grid, mask, kernel=15, power=2, fr=1, fphi=1, cx=0, cy=0): gx = grid.shape[0] gy = grid.shape[0] for i in range(gx): for j in range(gy): if mask[i, j]: xmn = i - kernel if xmn < 0: xmn = 0 xmx = i + kernel if xmx > gx: xmx = gx ymn = j - kernel if ymn < 0: ymn = 0 ymx = j + kernel if ymx > gx: ymx = gy sumWi = 0.0 value = 0.0 R = ((i - cx) ** 2 + (j - cy) ** 2) ** 0.5 PHI = atan2(j - cy, i - cx) for xi in range(xmn, xmx): for yi in range(ymn, ymx): if (xi != i or yi != j) and not mask[xi, yi]: nR = ((xi - cx) ** 2 + (yi - cy) ** 2) ** 0.5 dr = R - nR midR = 0.5 * (R + nR) nphi = atan2(yi - cy, xi - cx) dphi = min(2 * np.pi - abs(PHI - nphi), abs(PHI - nphi)) dphi *= midR dist = ((fr * dr) ** 2 + (fphi * dphi) ** 2) ** 2 wi = 1 / dist ** (0.5 * power) sumWi += wi value += wi * grid[xi, yi] if sumWi: grid[i, j] = value / sumWi return grid
interpolateCircular2dStructuredIDW
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, mask, kernel=15, power=2, fr=1, fphi=1, cx=0, cy=0):\n gx = grid.shape[0]\n gy = grid.shape[0]\n for i in range(gx):\n for j in range(gy):\n if mask[i, j]:\n xmn = i - kernel\n if xmn < 0:\n xmn = 0\n xmx = i + kernel\n if xmx > gx:\n xmx = gx\n ymn = j - kernel\n if ymn < 0:\n ymn = 0\n ymx = j + kernel\n if ymx > gx:\n ymx = gy\n sumWi = 0.0\n value = 0.0\n R = ((i - cx) ** 2 + (j - cy) ** 2) ** 0.5\n PHI = atan2(j - cy, i - cx)\n for xi in range(xmn, xmx):\n for yi in range(ymn, ymx):\n if (xi != i or yi != j) and not mask[xi, yi]:\n nR = ((xi - cx) ** 2 + (yi - cy) ** 2) ** 0.5\n dr = R - nR\n midR = 0.5 * (R + nR)\n nphi = atan2(yi - cy, xi - cx)\n dphi = min(2 * np.pi - abs(PHI - nphi), abs(PHI -\n nphi))\n dphi *= midR\n dist = ((fr * dr) ** 2 + (fphi * dphi) ** 2) ** 2\n wi = 1 / dist ** (0.5 * power)\n sumWi += wi\n value += wi * grid[xi, yi]\n if sumWi:\n grid[i, j] = value / sumWi\n return grid\n", "role": "user" }, { "content": "interpolateCircular2dStructuredIDW", "role": "assistant" } ]
def x(grid, mask, kernel=15, power=2): vals = np.empty(shape=4, dtype=grid.dtype) dist = np.empty(shape=4, dtype=np.uint16) weights = np.empty(shape=4, dtype=np.float32) valid = np.empty(shape=4, dtype=bool) return _calc(grid, mask, power, kernel, vals, dist, weights, valid)
interpolate2dStructuredCrossAvg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, mask, kernel=15, power=2):\n vals = np.empty(shape=4, dtype=grid.dtype)\n dist = np.empty(shape=4, dtype=np.uint16)\n weights = np.empty(shape=4, dtype=np.float32)\n valid = np.empty(shape=4, dtype=bool)\n return _calc(grid, mask, power, kernel, vals, dist, weights, valid)\n", "role": "user" }, { "content": "interpolate2dStructuredCrossAvg", "role": "assistant" } ]
def x(ksize): i = ksize * 2 + 1 kk = np.ones((i, i), dtype=bool) x, y = np.where(kk) pos = np.empty(shape=(i, i, 2), dtype=int) pos[:, :, 0] = x.reshape(i, i) - ksize pos[:, :, 1] = y.reshape(i, i) - ksize dist = np.fromfunction(lambda x, y: ((x - ksize) ** 2 + (y - ksize) ** 2) ** 0.5, (i, i)) pos = np.dstack(np.unravel_index(np.argsort(dist.ravel()), (i, i)))[0, 1:] pos0 = pos[:, 0] pos1 = pos[:, 1] return pos - ksize, dist[pos0, pos1]
growPositions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ksize):\n i = ksize * 2 + 1\n kk = np.ones((i, i), dtype=bool)\n x, y = np.where(kk)\n pos = np.empty(shape=(i, i, 2), dtype=int)\n pos[:, :, 0] = x.reshape(i, i) - ksize\n pos[:, :, 1] = y.reshape(i, i) - ksize\n dist = np.fromfunction(lambda x, y: ((x - ksize) ** 2 + (y - ksize) ** \n 2) ** 0.5, (i, i))\n pos = np.dstack(np.unravel_index(np.argsort(dist.ravel()), (i, i)))[0, 1:]\n pos0 = pos[:, 0]\n pos1 = pos[:, 1]\n return pos - ksize, dist[pos0, pos1]\n", "role": "user" }, { "content": "growPositions", "role": "assistant" } ]
def x(qimage, dtype='array'): result_shape = qimage.height(), qimage.width() temp_shape = qimage.height(), qimage.bytesPerLine() * 8 // qimage.depth() if qimage.format() in (QtGui.QImage.Format_ARGB32_Premultiplied, QtGui. QImage.Format_ARGB32, QtGui.QImage.Format_RGB32): if dtype == 'rec': dtype = np.dtype({'b': (np.uint8, 0), 'g': (np.uint8, 1), 'r': (np.uint8, 2), 'a': (np.uint8, 3)}) elif dtype == 'array': dtype = np.uint8 result_shape += 4, temp_shape += 4, elif qimage.format() == QtGui.QImage.Format_Indexed8: dtype = np.uint8 else: raise ValueError('qimage2numpy only supports 32bit and 8bit images') buf = qimage.bits().asstring(qimage.byteCount()) result = np.frombuffer(buf, dtype).reshape(temp_shape) if result_shape != temp_shape: result = result[:, :result_shape[1]] if qimage.format() == QtGui.QImage.Format_RGB32 and dtype == np.uint8: result = result[..., :3] result = result[..., ::-1] return result
qImageToArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(qimage, dtype='array'):\n result_shape = qimage.height(), qimage.width()\n temp_shape = qimage.height(), qimage.bytesPerLine() * 8 // qimage.depth()\n if qimage.format() in (QtGui.QImage.Format_ARGB32_Premultiplied, QtGui.\n QImage.Format_ARGB32, QtGui.QImage.Format_RGB32):\n if dtype == 'rec':\n dtype = np.dtype({'b': (np.uint8, 0), 'g': (np.uint8, 1), 'r':\n (np.uint8, 2), 'a': (np.uint8, 3)})\n elif dtype == 'array':\n dtype = np.uint8\n result_shape += 4,\n temp_shape += 4,\n elif qimage.format() == QtGui.QImage.Format_Indexed8:\n dtype = np.uint8\n else:\n raise ValueError('qimage2numpy only supports 32bit and 8bit images')\n buf = qimage.bits().asstring(qimage.byteCount())\n result = np.frombuffer(buf, dtype).reshape(temp_shape)\n if result_shape != temp_shape:\n result = result[:, :result_shape[1]]\n if qimage.format() == QtGui.QImage.Format_RGB32 and dtype == np.uint8:\n result = result[..., :3]\n result = result[..., ::-1]\n return result\n", "role": "user" }, { "content": "qImageToArray", "role": "assistant" } ]
def x(arr, stdyrange, stdx=0, modex='wrap', modey='reflect'): assert arr.ndim == 2, 'only works on 2d arrays at the moment' s0 = arr.shape[0] if isinstance(stdyrange, np.ndarray): assert len(stdyrange ) == s0, '[stdyrange] needs to have same length as [arr]' stdys = stdyrange else: if type(stdyrange) not in (list, tuple): stdyrange = 0, stdyrange mn, mx = stdyrange stdys = np.linspace(mn, mx, s0) kx = int(stdx * 2.5) kx += 1 - kx % 2 ky = int(mx * 2.5) ky += 1 - ky % 2 arr2 = extendArrayForConvolution(arr, (kx, ky), modex, modey) inp = np.zeros((ky, kx)) inp[ky // 2, kx // 2] = 1 kernels = np.empty((s0, ky, kx)) for i in range(s0): stdy = stdys[i] kernels[i] = gaussian_filter(inp, (stdy, stdx)) out = np.empty_like(arr) _2dConvolutionYdependentKernel(arr2, out, kernels) return out
varYSizeGaussianFilter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, stdyrange, stdx=0, modex='wrap', modey='reflect'):\n assert arr.ndim == 2, 'only works on 2d arrays at the moment'\n s0 = arr.shape[0]\n if isinstance(stdyrange, np.ndarray):\n assert len(stdyrange\n ) == s0, '[stdyrange] needs to have same length as [arr]'\n stdys = stdyrange\n else:\n if type(stdyrange) not in (list, tuple):\n stdyrange = 0, stdyrange\n mn, mx = stdyrange\n stdys = np.linspace(mn, mx, s0)\n kx = int(stdx * 2.5)\n kx += 1 - kx % 2\n ky = int(mx * 2.5)\n ky += 1 - ky % 2\n arr2 = extendArrayForConvolution(arr, (kx, ky), modex, modey)\n inp = np.zeros((ky, kx))\n inp[ky // 2, kx // 2] = 1\n kernels = np.empty((s0, ky, kx))\n for i in range(s0):\n stdy = stdys[i]\n kernels[i] = gaussian_filter(inp, (stdy, stdx))\n out = np.empty_like(arr)\n _2dConvolutionYdependentKernel(arr2, out, kernels)\n return out\n", "role": "user" }, { "content": "varYSizeGaussianFilter", "role": "assistant" } ]
def x(psf, sy, sx): ps0, ps1 = psf.shape c0, c1 = ps0 // 2, ps1 // 2 ssx = 2 * sx ** 2 ssy = 2 * sy ** 2 for i in range(ps0): for j in range(ps1): psf[i, j] = exp(-((i - c0) ** 2 / ssy + (j - c1) ** 2 / ssx)) psf /= psf.sum()
numbaGaussian2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(psf, sy, sx):\n ps0, ps1 = psf.shape\n c0, c1 = ps0 // 2, ps1 // 2\n ssx = 2 * sx ** 2\n ssy = 2 * sy ** 2\n for i in range(ps0):\n for j in range(ps1):\n psf[i, j] = exp(-((i - c0) ** 2 / ssy + (j - c1) ** 2 / ssx))\n psf /= psf.sum()\n", "role": "user" }, { "content": "numbaGaussian2d", "role": "assistant" } ]
def x(img, image_is_artefact_free=False, min_rel_size=0.05, max_abs_size=11): s0, s1 = img.shape[:2] s = min(max_abs_size, int(max(s0, s1) * min_rel_size)) arr = np.zeros(shape=(s0 - 2 * s, s1 - 2 * s), dtype=img.dtype) _spatialStd(img, arr, s) i, j = np.unravel_index(arr.argmin(), arr.shape) sub = img[int(i + 0.5 * s):int(i + s * 1.5), int(j + s * 0.5):int(j + s * 1.5)] return np.median(sub)
estimateBackgroundLevel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, image_is_artefact_free=False, min_rel_size=0.05, max_abs_size=11):\n s0, s1 = img.shape[:2]\n s = min(max_abs_size, int(max(s0, s1) * min_rel_size))\n arr = np.zeros(shape=(s0 - 2 * s, s1 - 2 * s), dtype=img.dtype)\n _spatialStd(img, arr, s)\n i, j = np.unravel_index(arr.argmin(), arr.shape)\n sub = img[int(i + 0.5 * s):int(i + s * 1.5), int(j + s * 0.5):int(j + s *\n 1.5)]\n return np.median(sub)\n", "role": "user" }, { "content": "estimateBackgroundLevel", "role": "assistant" } ]
def x(): arr = np.array([[2.5, 1.00281], [7.5, 1.00238], [12.5, 1.00174], [17.5, 1.00204], [22.5, 1.00054], [27.5, 0.998255], [32.5, 0.995351], [ 37.5, 0.991246], [42.5, 0.985304], [47.5, 0.975338], [52.5, 0.960455], [57.5, 0.937544], [62.5, 0.900607], [67.5, 0.844636], [ 72.5, 0.735028], [77.5, 0.57492], [82.5, 0.263214], [87.5, 0.123062]]) angles = arr[:, 0] vals = arr[:, 1] vals[vals > 1] = 1 return angles, vals
EL_Si_module
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n arr = np.array([[2.5, 1.00281], [7.5, 1.00238], [12.5, 1.00174], [17.5,\n 1.00204], [22.5, 1.00054], [27.5, 0.998255], [32.5, 0.995351], [\n 37.5, 0.991246], [42.5, 0.985304], [47.5, 0.975338], [52.5, \n 0.960455], [57.5, 0.937544], [62.5, 0.900607], [67.5, 0.844636], [\n 72.5, 0.735028], [77.5, 0.57492], [82.5, 0.263214], [87.5, 0.123062]])\n angles = arr[:, 0]\n vals = arr[:, 1]\n vals[vals > 1] = 1\n return angles, vals\n", "role": "user" }, { "content": "EL_Si_module", "role": "assistant" } ]
def x(): vals = np.array([(80, 0.88), (75, 0.88), (70, 0.88), (65, 0.88), (60, 0.88), (55, 0.88), (50, 0.87), (45, 0.86), (40, 0.85), (35, 0.83), (30, 0.8), (25, 0.76), (20, 0.7), (15, 0.6), (10, 0.44)]) vals[:, 0] = 90 - vals[:, 0] vals[:, 1] /= vals[0, 1] return vals[:, 0], vals[:, 1]
TG_glass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n vals = np.array([(80, 0.88), (75, 0.88), (70, 0.88), (65, 0.88), (60, \n 0.88), (55, 0.88), (50, 0.87), (45, 0.86), (40, 0.85), (35, 0.83),\n (30, 0.8), (25, 0.76), (20, 0.7), (15, 0.6), (10, 0.44)])\n vals[:, 0] = 90 - vals[:, 0]\n vals[:, 1] /= vals[0, 1]\n return vals[:, 0], vals[:, 1]\n", "role": "user" }, { "content": "TG_glass", "role": "assistant" } ]
def x(imgs, bg=None): bg = getBackground(bg) for n, i in enumerate(imgs): i = imread(i, dtype=float) i -= bg smooth = fastMean(median_filter(i, 3)) i /= smooth if n == 0: out = i else: out += i out /= n + 1 return out
sensitivity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(imgs, bg=None):\n bg = getBackground(bg)\n for n, i in enumerate(imgs):\n i = imread(i, dtype=float)\n i -= bg\n smooth = fastMean(median_filter(i, 3))\n i /= smooth\n if n == 0:\n out = i\n else:\n out += i\n out /= n + 1\n return out\n", "role": "user" }, { "content": "sensitivity", "role": "assistant" } ]
def x(u, v, p, dt, nt, rho, nu, boundaryConditionUV, boundardConditionP, nit=100): un = np.empty_like(u) vn = np.empty_like(v) pn = np.empty_like(p) b = np.zeros_like(p) ny, nx = p.shape dx = 2 / (nx - 1) dy = 2 / (ny - 1) for _ in range(nt): un[:] = u vn[:] = v _buildB(b, rho, dt, u, v, dx, dy) for _ in range(nit): _pressurePoisson(p, pn, dx, dy, b) boundardConditionP(p) _calcUV(u, v, un, p, vn, dt, dx, dy, rho, nu) boundaryConditionUV(u, v) return u, v, p
navierStokes2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(u, v, p, dt, nt, rho, nu, boundaryConditionUV, boundardConditionP,\n nit=100):\n un = np.empty_like(u)\n vn = np.empty_like(v)\n pn = np.empty_like(p)\n b = np.zeros_like(p)\n ny, nx = p.shape\n dx = 2 / (nx - 1)\n dy = 2 / (ny - 1)\n for _ in range(nt):\n un[:] = u\n vn[:] = v\n _buildB(b, rho, dt, u, v, dx, dy)\n for _ in range(nit):\n _pressurePoisson(p, pn, dx, dy, b)\n boundardConditionP(p)\n _calcUV(u, v, un, p, vn, dt, dx, dy, rho, nu)\n boundaryConditionUV(u, v)\n return u, v, p\n", "role": "user" }, { "content": "navierStokes2d", "role": "assistant" } ]
def x(u, v, t, img, interpolation=cv2.INTER_LANCZOS4): ny, nx = u.shape sy, sx = np.mgrid[:float(ny):1, :float(nx):1] sx += u * t sy += v * t return cv2.remap(img.astype(np.float32), sx.astype(np.float32), sy. astype(np.float32), interpolation)
shiftImage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(u, v, t, img, interpolation=cv2.INTER_LANCZOS4):\n ny, nx = u.shape\n sy, sx = np.mgrid[:float(ny):1, :float(nx):1]\n sx += u * t\n sy += v * t\n return cv2.remap(img.astype(np.float32), sx.astype(np.float32), sy.\n astype(np.float32), interpolation)\n", "role": "user" }, { "content": "shiftImage", "role": "assistant" } ]
def x(img, snr=25, rShot=0.5): s0, s1 = img.shape[:2] m = img.mean() if np.isnan(m): m = np.nanmean(img) assert m != 0, 'image mean cannot be zero' img = img / m noise = np.random.normal(size=s0 * s1).reshape(s0, s1) if rShot > 0: noise *= rShot * img ** 0.5 + 1 noise /= np.nanstd(noise) noise[np.isnan(noise)] = 0 return m * (img + noise / snr)
addNoise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, snr=25, rShot=0.5):\n s0, s1 = img.shape[:2]\n m = img.mean()\n if np.isnan(m):\n m = np.nanmean(img)\n assert m != 0, 'image mean cannot be zero'\n img = img / m\n noise = np.random.normal(size=s0 * s1).reshape(s0, s1)\n if rShot > 0:\n noise *= rShot * img ** 0.5 + 1\n noise /= np.nanstd(noise)\n noise[np.isnan(noise)] = 0\n return m * (img + noise / snr)\n", "role": "user" }, { "content": "addNoise", "role": "assistant" } ]
def x(arr, shape): ss0, ss1 = shape s0, s1 = arr.shape pos0 = linspace2(0, s0, ss0, dtype=int) pos1 = linspace2(0, s1, ss1, dtype=int) k0 = pos0[0] k1 = pos1[0] out = np.empty(shape, dtype=arr.dtype) _calc(arr, out, pos0, pos1, k0, k1, ss0, ss1) return out
coarseMaximum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, shape):\n ss0, ss1 = shape\n s0, s1 = arr.shape\n pos0 = linspace2(0, s0, ss0, dtype=int)\n pos1 = linspace2(0, s1, ss1, dtype=int)\n k0 = pos0[0]\n k1 = pos1[0]\n out = np.empty(shape, dtype=arr.dtype)\n _calc(arr, out, pos0, pos1, k0, k1, ss0, ss1)\n return out\n", "role": "user" }, { "content": "coarseMaximum", "role": "assistant" } ]
def x(XY, shape=None, a=None, f=None, D=None, center=None): if a is None: assert f is not None and D is not None a = 2 * np.arctan2(D / 2, f) x, y = XY try: c0, c1 = center except: s0, s1 = shape c0, c1 = s0 / 2, s1 / 2 rx = (x - c0) ** 2 ry = (y - c1) ** 2 return 1 / (1 + np.tan(a) * ((rx + ry) / c0)) ** 0.5
angleOfView
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(XY, shape=None, a=None, f=None, D=None, center=None):\n if a is None:\n assert f is not None and D is not None\n a = 2 * np.arctan2(D / 2, f)\n x, y = XY\n try:\n c0, c1 = center\n except:\n s0, s1 = shape\n c0, c1 = s0 / 2, s1 / 2\n rx = (x - c0) ** 2\n ry = (y - c1) ** 2\n return 1 / (1 + np.tan(a) * ((rx + ry) / c0)) ** 0.5\n", "role": "user" }, { "content": "angleOfView", "role": "assistant" } ]
def x(x, y, b, x0=None, y0=None): if x0 is None: x0 = x[-1, -1] if y0 is None: y0 = y[-1, -1] return np.cos(np.arctan(np.sqrt((x - x0 / 2) ** 2 + (y - y0 / 2) ** 2) / b) )
angleOfView2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, b, x0=None, y0=None):\n if x0 is None:\n x0 = x[-1, -1]\n if y0 is None:\n y0 = y[-1, -1]\n return np.cos(np.arctan(np.sqrt((x - x0 / 2) ** 2 + (y - y0 / 2) ** 2) / b)\n )\n", "role": "user" }, { "content": "angleOfView2", "role": "assistant" } ]
def x(edges, nCells, subgrid=None, dtype=float): nx, ny = nCells y, x = np.mgrid[0.0:ny + 1, 0.0:nx + 1] src = np.float32([[0, 0], [nx, 0], [nx, ny], [0, ny]]) dst = sortCorners(edges).astype(np.float32) homography = cv2.getPerspectiveTransform(src, dst) pts = np.float32((x.flatten(), y.flatten())).T pts = pts.reshape(1, *pts.shape) pts2 = cv2.perspectiveTransform(pts, homography)[0] horiz = pts2.reshape(ny + 1, nx + 1, 2) vert = np.swapaxes(horiz, 0, 1) subh, subv = [], [] if subgrid is not None: sh, sv = subgrid if len(sh): subh = np.empty(shape=(ny * len(sh), nx + 1, 2), dtype=np.float32) last_si = 0 for n, si in enumerate(sh): spts = pts[:, :-(nx + 1)] spts[..., 1] += si - last_si last_si = si spts2 = cv2.perspectiveTransform(spts, homography)[0] subh[n::len(sh)] = spts2.reshape(ny, nx + 1, 2) if len(sv): subv = np.empty(shape=(ny + 1, nx * len(sv), 2), dtype=np.float32) last_si = 0 sspts = pts.reshape(1, ny + 1, nx + 1, 2) sspts = sspts[:, :, :-1] sspts = sspts.reshape(1, (ny + 1) * nx, 2) for n, si in enumerate(sv): sspts[..., 0] += si - last_si last_si = si spts2 = cv2.perspectiveTransform(sspts, homography)[0] subv[:, n::len(sv)] = spts2.reshape(ny + 1, nx, 2) subv = np.swapaxes(subv, 0, 1) return [horiz, vert, subh, subv]
gridLinesFromVertices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(edges, nCells, subgrid=None, dtype=float):\n nx, ny = nCells\n y, x = np.mgrid[0.0:ny + 1, 0.0:nx + 1]\n src = np.float32([[0, 0], [nx, 0], [nx, ny], [0, ny]])\n dst = sortCorners(edges).astype(np.float32)\n homography = cv2.getPerspectiveTransform(src, dst)\n pts = np.float32((x.flatten(), y.flatten())).T\n pts = pts.reshape(1, *pts.shape)\n pts2 = cv2.perspectiveTransform(pts, homography)[0]\n horiz = pts2.reshape(ny + 1, nx + 1, 2)\n vert = np.swapaxes(horiz, 0, 1)\n subh, subv = [], []\n if subgrid is not None:\n sh, sv = subgrid\n if len(sh):\n subh = np.empty(shape=(ny * len(sh), nx + 1, 2), dtype=np.float32)\n last_si = 0\n for n, si in enumerate(sh):\n spts = pts[:, :-(nx + 1)]\n spts[..., 1] += si - last_si\n last_si = si\n spts2 = cv2.perspectiveTransform(spts, homography)[0]\n subh[n::len(sh)] = spts2.reshape(ny, nx + 1, 2)\n if len(sv):\n subv = np.empty(shape=(ny + 1, nx * len(sv), 2), dtype=np.float32)\n last_si = 0\n sspts = pts.reshape(1, ny + 1, nx + 1, 2)\n sspts = sspts[:, :, :-1]\n sspts = sspts.reshape(1, (ny + 1) * nx, 2)\n for n, si in enumerate(sv):\n sspts[..., 0] += si - last_si\n last_si = si\n spts2 = cv2.perspectiveTransform(sspts, homography)[0]\n subv[:, n::len(sv)] = spts2.reshape(ny + 1, nx, 2)\n subv = np.swapaxes(subv, 0, 1)\n return [horiz, vert, subh, subv]\n", "role": "user" }, { "content": "gridLinesFromVertices", "role": "assistant" } ]
def x(self, MTFx, MTFy): if self.mtf_x is None: self.MTF() f = UnivariateSpline(self.mtf_x, self.mtf_y - 0.5) return f.roots()[0]
MTF50
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, MTFx, MTFy):\n if self.mtf_x is None:\n self.MTF()\n f = UnivariateSpline(self.mtf_x, self.mtf_y - 0.5)\n return f.roots()[0]\n", "role": "user" }, { "content": "MTF50", "role": "assistant" } ]
def x(self, px_per_mm): res = 100 r = 4 px_size = 1 / px_per_mm std = self.std * px_size x = np.linspace(-r * std, r * std, res) lsf = self.gaussian1d(x, 1, 0, std) y = abs(np.fft.fft(lsf)) y /= np.max(y) dstep = r * std / res freq = np.fft.fftfreq(lsf.size, dstep) i = np.argmax(freq > px_per_mm) self.mtf_x = freq[:i] self.mtf_y = y[:i] return self.mtf_x, self.mtf_y
MTF
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, px_per_mm):\n res = 100\n r = 4\n px_size = 1 / px_per_mm\n std = self.std * px_size\n x = np.linspace(-r * std, r * std, res)\n lsf = self.gaussian1d(x, 1, 0, std)\n y = abs(np.fft.fft(lsf))\n y /= np.max(y)\n dstep = r * std / res\n freq = np.fft.fftfreq(lsf.size, dstep)\n i = np.argmax(freq > px_per_mm)\n self.mtf_x = freq[:i]\n self.mtf_y = y[:i]\n return self.mtf_x, self.mtf_y\n", "role": "user" }, { "content": "MTF", "role": "assistant" } ]
def x(self, psf, method='convolve', fitParams=None): img = scaleSignal(self.img, fitParams=fitParams) if method == 'convolve': blurred = convolve2d(img, psf, 'same') m = abs(img - blurred) / abs(img + blurred) m = np.nan_to_num(m) m *= self.std ** 2 m[m > 1] = 1 self.blur_distortion = m np.save('blurred', blurred) return m else: restored = unsupervised_wiener(img, psf)[0] m = abs(img - restored) / abs(img + restored) m = np.nan_to_num(m) m *= self.std ** 2 m[m > 1] = 1 self.blur_distortion = m return m, restored
uncertaintyMap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, psf, method='convolve', fitParams=None):\n img = scaleSignal(self.img, fitParams=fitParams)\n if method == 'convolve':\n blurred = convolve2d(img, psf, 'same')\n m = abs(img - blurred) / abs(img + blurred)\n m = np.nan_to_num(m)\n m *= self.std ** 2\n m[m > 1] = 1\n self.blur_distortion = m\n np.save('blurred', blurred)\n return m\n else:\n restored = unsupervised_wiener(img, psf)[0]\n m = abs(img - restored) / abs(img + restored)\n m = np.nan_to_num(m)\n m *= self.std ** 2\n m[m > 1] = 1\n self.blur_distortion = m\n return m, restored\n", "role": "user" }, { "content": "uncertaintyMap", "role": "assistant" } ]
def x(self): if self._corrPsf is None: self.psf() p = self._corrPsf.copy() mn = p.min() p[p < 0.05 * p.max()] = mn p -= mn p /= p.sum() x, y = self._psfGridCoords() x = x.flatten() y = y.flatten() guess = 1, 1, 0 param, _ = curve_fit(self._fn, (x, y), p.flatten(), guess) self._fitParam = param stdx, stdy = param[:2] self._std = (stdx + stdy) / 2 return self._std
stdDev
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._corrPsf is None:\n self.psf()\n p = self._corrPsf.copy()\n mn = p.min()\n p[p < 0.05 * p.max()] = mn\n p -= mn\n p /= p.sum()\n x, y = self._psfGridCoords()\n x = x.flatten()\n y = y.flatten()\n guess = 1, 1, 0\n param, _ = curve_fit(self._fn, (x, y), p.flatten(), guess)\n self._fitParam = param\n stdx, stdy = param[:2]\n self._std = (stdx + stdy) / 2\n return self._std\n", "role": "user" }, { "content": "stdDev", "role": "assistant" } ]
def x(grid, mask, kernel=15, power=2, fx=1, fy=1): weights = np.empty(shape=(2 * kernel + 1, 2 * kernel + 1)) for xi in range(-kernel, kernel + 1): for yi in range(-kernel, kernel + 1): dist = (fx * xi) ** 2 + (fy * yi) ** 2 if dist: weights[xi + kernel, yi + kernel] = 1 / dist ** (0.5 * power) return _calc(grid, mask, kernel, weights)
interpolate2dStructuredIDW
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, mask, kernel=15, power=2, fx=1, fy=1):\n weights = np.empty(shape=(2 * kernel + 1, 2 * kernel + 1))\n for xi in range(-kernel, kernel + 1):\n for yi in range(-kernel, kernel + 1):\n dist = (fx * xi) ** 2 + (fy * yi) ** 2\n if dist:\n weights[xi + kernel, yi + kernel] = 1 / dist ** (0.5 * power)\n return _calc(grid, mask, kernel, weights)\n", "role": "user" }, { "content": "interpolate2dStructuredIDW", "role": "assistant" } ]
def x(imgs, times, down_scale_factor=1): imgs = np.asarray(imgs) s0, s1, s2 = imgs.shape if down_scale_factor > 1: s1 //= down_scale_factor s2 //= down_scale_factor imgs2 = np.empty(shape=(s0, s1, s2)) for n, c in enumerate(imgs): imgs2[n] = cv2.resize(c, (s2, s1), interpolation=cv2.INTER_AREA) imgs = imgs2 ascent, offset, error = linRegressUsingMasked2dArrays(times, imgs, calcError=True) fn_imgs = np.array([(offset + t * ascent) for t in times]) diff = imgs - fn_imgs diff = median_filter(diff, 5) error_t = np.tile(error, (s0, 1, 1)) evt = np.abs(diff) > 0.5 * error_t avlen = _calcAvgLen(evt, np.empty(shape=evt.shape[1:])) i = avlen == 0 avlen = maskedFilter(avlen, mask=i, fn='mean', ksize=7, fill_mask=False) i = maximum_filter(i, 3) avlen[i] = 0 avlen = maximum_filter(avlen, 3) i = avlen == 0 avlen = median_filter(avlen, 3) avlen[i] = 0 return error, avlen, ascent, offset
temporalSignalStability
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(imgs, times, down_scale_factor=1):\n imgs = np.asarray(imgs)\n s0, s1, s2 = imgs.shape\n if down_scale_factor > 1:\n s1 //= down_scale_factor\n s2 //= down_scale_factor\n imgs2 = np.empty(shape=(s0, s1, s2))\n for n, c in enumerate(imgs):\n imgs2[n] = cv2.resize(c, (s2, s1), interpolation=cv2.INTER_AREA)\n imgs = imgs2\n ascent, offset, error = linRegressUsingMasked2dArrays(times, imgs,\n calcError=True)\n fn_imgs = np.array([(offset + t * ascent) for t in times])\n diff = imgs - fn_imgs\n diff = median_filter(diff, 5)\n error_t = np.tile(error, (s0, 1, 1))\n evt = np.abs(diff) > 0.5 * error_t\n avlen = _calcAvgLen(evt, np.empty(shape=evt.shape[1:]))\n i = avlen == 0\n avlen = maskedFilter(avlen, mask=i, fn='mean', ksize=7, fill_mask=False)\n i = maximum_filter(i, 3)\n avlen[i] = 0\n avlen = maximum_filter(avlen, 3)\n i = avlen == 0\n avlen = median_filter(avlen, 3)\n avlen[i] = 0\n return error, avlen, ascent, offset\n", "role": "user" }, { "content": "temporalSignalStability", "role": "assistant" } ]
def x(images, bgImages=None, averageSpot=True, thresh=None): fitimg, mask = None, None mx = 0 for c, img in enumerate(images): print('%s/%s' % (c + 1, len(images))) if c == 0: avgBg = getBackground2(bgImages, img) img = imread(img, dtype=float) img -= avgBg if fitimg is None: fitimg = np.zeros_like(img) mask = np.zeros_like(img, dtype=bool) if thresh is None: t = threshold_otsu(img) else: t = thresh spots, n = label(minimum_filter(img > t, 3), background=0, return_num=True) spot_sizes = [(spots == i).sum() for i in range(1, n + 1)] try: spot = spots == np.argmax(spot_sizes) + 1 except ValueError: print("couldn't find spot in image") continue if averageSpot: spot = np.rint(center_of_mass(spot)).astype(int) mx2 = img[spot].max() else: mx2 = img[spot].mean() fitimg[spot] = img[spot] mask[spot] = 1 if mx2 > mx: mx = mx2 fitimg /= mx return fitimg, mask
vignettingFromSpotAverage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(images, bgImages=None, averageSpot=True, thresh=None):\n fitimg, mask = None, None\n mx = 0\n for c, img in enumerate(images):\n print('%s/%s' % (c + 1, len(images)))\n if c == 0:\n avgBg = getBackground2(bgImages, img)\n img = imread(img, dtype=float)\n img -= avgBg\n if fitimg is None:\n fitimg = np.zeros_like(img)\n mask = np.zeros_like(img, dtype=bool)\n if thresh is None:\n t = threshold_otsu(img)\n else:\n t = thresh\n spots, n = label(minimum_filter(img > t, 3), background=0,\n return_num=True)\n spot_sizes = [(spots == i).sum() for i in range(1, n + 1)]\n try:\n spot = spots == np.argmax(spot_sizes) + 1\n except ValueError:\n print(\"couldn't find spot in image\")\n continue\n if averageSpot:\n spot = np.rint(center_of_mass(spot)).astype(int)\n mx2 = img[spot].max()\n else:\n mx2 = img[spot].mean()\n fitimg[spot] = img[spot]\n mask[spot] = 1\n if mx2 > mx:\n mx = mx2\n fitimg /= mx\n return fitimg, mask\n", "role": "user" }, { "content": "vignettingFromSpotAverage", "role": "assistant" } ]
def x(imgDir, posExTime, outDir, show_legend, show_plots, save_to_file, ftype): xvals = [] hist = [] peaks = [] exTimes = [] max_border = 0 if not imgDir.exists(): raise Exception("image dir doesn't exist") for n, f in enumerate(imgDir): print(f) try: img = imgDir.join(f) s = FitHistogramPeaks(img) xvals.append(s.xvals) hist.append(s.yvals) peaks.append(s.fitValues()) if s.border() > max_border: max_border = s.plotBorder() exTimes.append(float(f[posExTime[0]:posExTime[1] + 1])) except: pass nx = 2 ny = int(len(hist) // nx) + len(hist) % nx fig, ax = plt.subplots(ny, nx) if nx > 1: ax = [list(i) for i in zip(*ax)] axx = [] for xa in ax: for ya in xa: axx.append(ya) ax = axx for x, h, p, e, a in zip(xvals, hist, peaks, exTimes, ax): a.plot(x, h, label='histogram', thickness=3) for n, pi in enumerate(p): l2 = a.plot(x, pi, label='peak %s' % n, thickness=6) a.set_xlim(xmin=0, xmax=max_border) a.set_title('%s s' % e) l1 = ax[0].legend() l1.draw_frame(False) plt.xlabel('pixel value') plt.ylabel('number of pixels') fig = plt.gcf() fig.set_size_inches(7 * nx, 3 * ny) if save_to_file: p = PathStr(outDir).join('result').setFiletype(ftype) plt.savefig(p, bbox_inches='tight') if show_plots: plt.show()
plotSet
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(imgDir, posExTime, outDir, show_legend, show_plots, save_to_file, ftype):\n xvals = []\n hist = []\n peaks = []\n exTimes = []\n max_border = 0\n if not imgDir.exists():\n raise Exception(\"image dir doesn't exist\")\n for n, f in enumerate(imgDir):\n print(f)\n try:\n img = imgDir.join(f)\n s = FitHistogramPeaks(img)\n xvals.append(s.xvals)\n hist.append(s.yvals)\n peaks.append(s.fitValues())\n if s.border() > max_border:\n max_border = s.plotBorder()\n exTimes.append(float(f[posExTime[0]:posExTime[1] + 1]))\n except:\n pass\n nx = 2\n ny = int(len(hist) // nx) + len(hist) % nx\n fig, ax = plt.subplots(ny, nx)\n if nx > 1:\n ax = [list(i) for i in zip(*ax)]\n axx = []\n for xa in ax:\n for ya in xa:\n axx.append(ya)\n ax = axx\n for x, h, p, e, a in zip(xvals, hist, peaks, exTimes, ax):\n a.plot(x, h, label='histogram', thickness=3)\n for n, pi in enumerate(p):\n l2 = a.plot(x, pi, label='peak %s' % n, thickness=6)\n a.set_xlim(xmin=0, xmax=max_border)\n a.set_title('%s s' % e)\n l1 = ax[0].legend()\n l1.draw_frame(False)\n plt.xlabel('pixel value')\n plt.ylabel('number of pixels')\n fig = plt.gcf()\n fig.set_size_inches(7 * nx, 3 * ny)\n if save_to_file:\n p = PathStr(outDir).join('result').setFiletype(ftype)\n plt.savefig(p, bbox_inches='tight')\n if show_plots:\n plt.show()\n", "role": "user" }, { "content": "plotSet", "role": "assistant" } ]
def x(imgs, bg_imgs=None): img = imgAverage(imgs) bg = getBackground2(bg_imgs, img) img -= bg img = toGray(img) mx = median_filter(img[::10, ::10], 3).max() img /= mx return img
flatFieldFromCloseDistance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(imgs, bg_imgs=None):\n img = imgAverage(imgs)\n bg = getBackground2(bg_imgs, img)\n img -= bg\n img = toGray(img)\n mx = median_filter(img[::10, ::10], 3).max()\n img /= mx\n return img\n", "role": "user" }, { "content": "flatFieldFromCloseDistance", "role": "assistant" } ]
def x(images, bgImages=None, calcStd=False, nlf=None, nstd=6): if len(images) > 1: def x(img): img = imread(img) s0, s1 = img.shape[:2] return -img[::s0 // 10, ::s1 // 10].min() images = sorted(images, key=lambda i: fn(i)) avgBg = getBackground2(bgImages, images[1]) i0 = imread(images[0], dtype=float) - avgBg i1 = imread(images[1], dtype=float) - avgBg if nlf is None: nlf = oneImageNLF(i0, i1)[0] det = SingleTimeEffectDetection((i0, i1), nlf, nStd=nstd, calcVariance=calcStd) for i in images[1:]: i = imread(i) thresh = det.noSTE - nlf(det.noSTE) * nstd mask = i > thresh det.addImage(i, mask) ma = det.noSTE else: ma = imread(images[0], dtype=float) - avgBg mx = median_filter(ma[::10, ::10], 3).max() if calcStd: return ma / mx, det.mma.var ** 0.5 / mx return ma / mx
flatFieldFromCloseDistance2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(images, bgImages=None, calcStd=False, nlf=None, nstd=6):\n if len(images) > 1:\n\n def x(img):\n img = imread(img)\n s0, s1 = img.shape[:2]\n return -img[::s0 // 10, ::s1 // 10].min()\n images = sorted(images, key=lambda i: fn(i))\n avgBg = getBackground2(bgImages, images[1])\n i0 = imread(images[0], dtype=float) - avgBg\n i1 = imread(images[1], dtype=float) - avgBg\n if nlf is None:\n nlf = oneImageNLF(i0, i1)[0]\n det = SingleTimeEffectDetection((i0, i1), nlf, nStd=nstd,\n calcVariance=calcStd)\n for i in images[1:]:\n i = imread(i)\n thresh = det.noSTE - nlf(det.noSTE) * nstd\n mask = i > thresh\n det.addImage(i, mask)\n ma = det.noSTE\n else:\n ma = imread(images[0], dtype=float) - avgBg\n mx = median_filter(ma[::10, ::10], 3).max()\n if calcStd:\n return ma / mx, det.mma.var ** 0.5 / mx\n return ma / mx\n", "role": "user" }, { "content": "flatFieldFromCloseDistance2", "role": "assistant" } ]
def x(imgs, bg=0, roi=None): mean = None M = len(imgs) if bg is not 0: bg = imread(bg)[roi] if roi is not None: bg = bg[roi] for i in imgs: img = imread(i).asfarray() if roi is not None: img = img[roi] img -= bg if mean is None: mean = np.zeros_like(img) std = np.zeros_like(img) mean += img del img mean /= M for i in imgs: img = imread(i).asfarray() if roi is not None: img = img[roi] img -= bg std += (mean - img) ** 2 del img std = (std / M) ** 0.5 return mean.mean() / std.mean()
SNR_hinken
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(imgs, bg=0, roi=None):\n mean = None\n M = len(imgs)\n if bg is not 0:\n bg = imread(bg)[roi]\n if roi is not None:\n bg = bg[roi]\n for i in imgs:\n img = imread(i).asfarray()\n if roi is not None:\n img = img[roi]\n img -= bg\n if mean is None:\n mean = np.zeros_like(img)\n std = np.zeros_like(img)\n mean += img\n del img\n mean /= M\n for i in imgs:\n img = imread(i).asfarray()\n if roi is not None:\n img = img[roi]\n img -= bg\n std += (mean - img) ** 2\n del img\n std = (std / M) ** 0.5\n return mean.mean() / std.mean()\n", "role": "user" }, { "content": "SNR_hinken", "role": "assistant" } ]
def x(masks): assert len(masks) <= 8, 'can only transform up to 8 masks into image' masks = np.asarray(masks, dtype=np.uint8) assert masks.ndim == 3, 'layers need to be stack of 2d arrays' return np.packbits(masks, axis=0)[0].T
boolMasksToImage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(masks):\n assert len(masks) <= 8, 'can only transform up to 8 masks into image'\n masks = np.asarray(masks, dtype=np.uint8)\n assert masks.ndim == 3, 'layers need to be stack of 2d arrays'\n return np.packbits(masks, axis=0)[0].T\n", "role": "user" }, { "content": "boolMasksToImage", "role": "assistant" } ]
def x(arr): assert arr.dtype == np.uint8, 'image needs to be dtype=uint8' masks = np.unpackbits(arr).reshape(*arr.shape, 8) return np.swapaxes(masks, 2, 0)
imageToBoolMasks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr):\n assert arr.dtype == np.uint8, 'image needs to be dtype=uint8'\n masks = np.unpackbits(arr).reshape(*arr.shape, 8)\n return np.swapaxes(masks, 2, 0)\n", "role": "user" }, { "content": "imageToBoolMasks", "role": "assistant" } ]
def x(corners, in_plane=False): q = corners l0 = [q[0, 0], q[0, 1], q[1, 0], q[1, 1]] l1 = [q[0, 0], q[0, 1], q[-1, 0], q[-1, 1]] l2 = [q[2, 0], q[2, 1], q[3, 0], q[3, 1]] l3 = [q[2, 0], q[2, 1], q[1, 0], q[1, 1]] a1 = line.length(l0) / line.length(l1) a2 = line.length(l2) / line.length(l3) if in_plane: if abs(0.5 * np.pi - abs(line.angle2(l0, l1))) < abs(0.5 * np.pi - abs(line.angle2(l2, l3))): return a1 else: return a2 return 0.5 * (a1 + a2)
calcAspectRatioFromCorners
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(corners, in_plane=False):\n q = corners\n l0 = [q[0, 0], q[0, 1], q[1, 0], q[1, 1]]\n l1 = [q[0, 0], q[0, 1], q[-1, 0], q[-1, 1]]\n l2 = [q[2, 0], q[2, 1], q[3, 0], q[3, 1]]\n l3 = [q[2, 0], q[2, 1], q[1, 0], q[1, 1]]\n a1 = line.length(l0) / line.length(l1)\n a2 = line.length(l2) / line.length(l3)\n if in_plane:\n if abs(0.5 * np.pi - abs(line.angle2(l0, l1))) < abs(0.5 * np.pi -\n abs(line.angle2(l2, l3))):\n return a1\n else:\n return a2\n return 0.5 * (a1 + a2)\n", "role": "user" }, { "content": "calcAspectRatioFromCorners", "role": "assistant" } ]
def x(img, text, alpha, org, fontFace, fontScale, color, thickness): x, y = cv2.getTextSize(text, fontFace, fontScale, thickness)[0] ox, oy = org imgcut = img[oy - y - 3:oy, ox:ox + x] if img.ndim == 3: txtarr = np.zeros(shape=(y + 3, x, 3), dtype=np.uint8) else: txtarr = np.zeros(shape=(y + 3, x), dtype=np.uint8) cv2.putText(txtarr, text, (0, y), fontFace, fontScale, color, thickness =thickness) cv2.addWeighted(txtarr, alpha, imgcut, 1, 0, imgcut, -1) return img
putTextAlpha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, text, alpha, org, fontFace, fontScale, color, thickness):\n x, y = cv2.getTextSize(text, fontFace, fontScale, thickness)[0]\n ox, oy = org\n imgcut = img[oy - y - 3:oy, ox:ox + x]\n if img.ndim == 3:\n txtarr = np.zeros(shape=(y + 3, x, 3), dtype=np.uint8)\n else:\n txtarr = np.zeros(shape=(y + 3, x), dtype=np.uint8)\n cv2.putText(txtarr, text, (0, y), fontFace, fontScale, color, thickness\n =thickness)\n cv2.addWeighted(txtarr, alpha, imgcut, 1, 0, imgcut, -1)\n return img\n", "role": "user" }, { "content": "putTextAlpha", "role": "assistant" } ]
def x(img, f=10, inplace=False): s0, s1 = img.shape[:2] ss0 = int(round(s0 / f)) ss1 = int(round(s1 / f)) small = cv2.resize(img, (ss1, ss0), interpolation=cv2.INTER_AREA) k = {'interpolation': cv2.INTER_LINEAR} if inplace: k['dst'] = img return cv2.resize(small, (s1, s0), **k)
fastMean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, f=10, inplace=False):\n s0, s1 = img.shape[:2]\n ss0 = int(round(s0 / f))\n ss1 = int(round(s1 / f))\n small = cv2.resize(img, (ss1, ss0), interpolation=cv2.INTER_AREA)\n k = {'interpolation': cv2.INTER_LINEAR}\n if inplace:\n k['dst'] = img\n return cv2.resize(small, (s1, s0), **k)\n", "role": "user" }, { "content": "fastMean", "role": "assistant" } ]
def x(*paths): try: f_name = os.path.join(*paths) with open(f_name, 'r') as f: return f.read() except IOError: print('%s not existing ... skipping' % f_name) return ''
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*paths):\n try:\n f_name = os.path.join(*paths)\n with open(f_name, 'r') as f:\n return f.read()\n except IOError:\n print('%s not existing ... skipping' % f_name)\n return ''\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(imgs_path): firsts = imgs_path[:2] imgs = imgs_path[2:] for n, i in enumerate(firsts): firsts[n] = np.asfarray(imread(i)) d = DarkCurrentMap(firsts) for i in imgs: i = imread(i) d.addImg(i) return d.map()
averageSameExpTimes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(imgs_path):\n firsts = imgs_path[:2]\n imgs = imgs_path[2:]\n for n, i in enumerate(firsts):\n firsts[n] = np.asfarray(imread(i))\n d = DarkCurrentMap(firsts)\n for i in imgs:\n i = imread(i)\n d.addImg(i)\n return d.map()\n", "role": "user" }, { "content": "averageSameExpTimes", "role": "assistant" } ]
def x(expTimes, imgs, mxIntensity=65535, min_ascent=0.001): ascent, offset, error = linRegressUsingMasked2dArrays(expTimes, imgs, imgs > mxIntensity) ascent[np.isnan(ascent)] = 0 if min_ascent > 0: i = ascent < min_ascent offset[i] += 0.5 * (np.min(expTimes) + np.max(expTimes)) * ascent[i] ascent[i] = 0 return offset, ascent, error
getLinearityFunction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(expTimes, imgs, mxIntensity=65535, min_ascent=0.001):\n ascent, offset, error = linRegressUsingMasked2dArrays(expTimes, imgs, \n imgs > mxIntensity)\n ascent[np.isnan(ascent)] = 0\n if min_ascent > 0:\n i = ascent < min_ascent\n offset[i] += 0.5 * (np.min(expTimes) + np.max(expTimes)) * ascent[i]\n ascent[i] = 0\n return offset, ascent, error\n", "role": "user" }, { "content": "getLinearityFunction", "role": "assistant" } ]
def x(expTimes, img_paths): d = {} for e, i in zip(expTimes, img_paths): if e not in d: d[e] = [] d[e].append(i) d = OrderedDict(sorted(d.items())) return list(d.keys()), list(d.values())
sortForSameExpTime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(expTimes, img_paths):\n d = {}\n for e, i in zip(expTimes, img_paths):\n if e not in d:\n d[e] = []\n d[e].append(i)\n d = OrderedDict(sorted(d.items()))\n return list(d.keys()), list(d.values())\n", "role": "user" }, { "content": "sortForSameExpTime", "role": "assistant" } ]
def x(exposuretimes, imgs): x, imgs_p = sortForSameExpTime(exposuretimes, imgs) s0, s1 = imgs[0].shape imgs = np.empty(shape=(len(x), s0, s1), dtype=imgs[0].dtype) for i, ip in zip(imgs, imgs_p): if len(ip) == 1: i[:] = ip[0] else: i[:] = averageSameExpTimes(ip) return x, imgs
getDarkCurrentAverages
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(exposuretimes, imgs):\n x, imgs_p = sortForSameExpTime(exposuretimes, imgs)\n s0, s1 = imgs[0].shape\n imgs = np.empty(shape=(len(x), s0, s1), dtype=imgs[0].dtype)\n for i, ip in zip(imgs, imgs_p):\n if len(ip) == 1:\n i[:] = ip[0]\n else:\n i[:] = averageSameExpTimes(ip)\n return x, imgs\n", "role": "user" }, { "content": "getDarkCurrentAverages", "role": "assistant" } ]
def x(exposuretimes, imgs, **kwargs): exposuretimes, imgs = getDarkCurrentAverages(exposuretimes, imgs) offs, ascent, rmse = getLinearityFunction(exposuretimes, imgs, **kwargs) return offs, ascent, rmse
getDarkCurrentFunction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(exposuretimes, imgs, **kwargs):\n exposuretimes, imgs = getDarkCurrentAverages(exposuretimes, imgs)\n offs, ascent, rmse = getLinearityFunction(exposuretimes, imgs, **kwargs)\n return offs, ascent, rmse\n", "role": "user" }, { "content": "getDarkCurrentFunction", "role": "assistant" } ]
def x(img, line, height=15, length=None, zoom=1, fast=False, borderValue=0): height = int(round(height)) if height % 2 == 0: height += 1 if length is None: length = int(round(ln.length(line))) hh = height - 1 ll = length - 1 p0 = np.array(line[0:2], dtype=float) p1 = np.array(line[2:], dtype=float) norm = np.array(ln.normal(line)) if not ln.isHoriz(line): norm *= -1 p2 = (p0 + p1) * 0.5 + norm * hh * 0.5 middleY = hh / 2 pp0 = [0, middleY] pp1 = [ll, middleY] pp2 = [ll * 0.5, hh] pts1 = np.array([p0, p1, p2], dtype=np.float32) pts2 = np.array([pp0, pp1, pp2], dtype=np.float32) if zoom != 1: length = int(round(length * zoom)) height = int(round(height * zoom)) pts2 *= zoom M = cv2.getAffineTransform(pts1, pts2) dst = cv2.warpAffine(img, M, (length, height), flags=cv2.INTER_NEAREST if fast else cv2.INTER_LINEAR, borderValue=borderValue) return dst
alignImageAlongLine
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, line, height=15, length=None, zoom=1, fast=False, borderValue=0):\n height = int(round(height))\n if height % 2 == 0:\n height += 1\n if length is None:\n length = int(round(ln.length(line)))\n hh = height - 1\n ll = length - 1\n p0 = np.array(line[0:2], dtype=float)\n p1 = np.array(line[2:], dtype=float)\n norm = np.array(ln.normal(line))\n if not ln.isHoriz(line):\n norm *= -1\n p2 = (p0 + p1) * 0.5 + norm * hh * 0.5\n middleY = hh / 2\n pp0 = [0, middleY]\n pp1 = [ll, middleY]\n pp2 = [ll * 0.5, hh]\n pts1 = np.array([p0, p1, p2], dtype=np.float32)\n pts2 = np.array([pp0, pp1, pp2], dtype=np.float32)\n if zoom != 1:\n length = int(round(length * zoom))\n height = int(round(height * zoom))\n pts2 *= zoom\n M = cv2.getAffineTransform(pts1, pts2)\n dst = cv2.warpAffine(img, M, (length, height), flags=cv2.INTER_NEAREST if\n fast else cv2.INTER_LINEAR, borderValue=borderValue)\n return dst\n", "role": "user" }, { "content": "alignImageAlongLine", "role": "assistant" } ]
def x(image, sx, sy, kernelSize=None): psf_is_const = not isinstance(sx, np.ndarray) if not psf_is_const: assert image.shape == sx.shape == sy.shape, 'Image and position uncertainty maps need to have same size' if kernelSize is None: kernelSize = _kSizeFromStd(max(sx.max(), sy.max())) else: assert type(sx) in (int, float) and type(sx) in (int, float ), 'Image and position uncertainty values need to be int OR float' if kernelSize is None: kernelSize = _kSizeFromStd(max(sx, sy)) if image.dtype.kind == 'u': image = image.astype(int) size = kernelSize // 2 if size < 1: size = 1 kernelSize = 1 + 2 * size psf = np.zeros((kernelSize, kernelSize)) sint = np.zeros(image.shape) if psf_is_const: _calc_constPSF(image, sint, sx, sy, psf, size) else: _calc_variPSF(image, sint, sx, sy, psf, size) return sint
positionToIntensityUncertainty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, sx, sy, kernelSize=None):\n psf_is_const = not isinstance(sx, np.ndarray)\n if not psf_is_const:\n assert image.shape == sx.shape == sy.shape, 'Image and position uncertainty maps need to have same size'\n if kernelSize is None:\n kernelSize = _kSizeFromStd(max(sx.max(), sy.max()))\n else:\n assert type(sx) in (int, float) and type(sx) in (int, float\n ), 'Image and position uncertainty values need to be int OR float'\n if kernelSize is None:\n kernelSize = _kSizeFromStd(max(sx, sy))\n if image.dtype.kind == 'u':\n image = image.astype(int)\n size = kernelSize // 2\n if size < 1:\n size = 1\n kernelSize = 1 + 2 * size\n psf = np.zeros((kernelSize, kernelSize))\n sint = np.zeros(image.shape)\n if psf_is_const:\n _calc_constPSF(image, sint, sx, sy, psf, size)\n else:\n _calc_variPSF(image, sint, sx, sy, psf, size)\n return sint\n", "role": "user" }, { "content": "positionToIntensityUncertainty", "role": "assistant" } ]
def x(image, f): from skimage.morphology import square from skimage.filters import rank from skimage.transform._warps import rescale selem = square(f) arri = rank.mean(image, selem=selem) return rescale(arri, 1 / f, order=0)
coarsenImage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, f):\n from skimage.morphology import square\n from skimage.filters import rank\n from skimage.transform._warps import rescale\n selem = square(f)\n arri = rank.mean(image, selem=selem)\n return rescale(arri, 1 / f, order=0)\n", "role": "user" }, { "content": "coarsenImage", "role": "assistant" } ]
def x(image, std, y0, y1, x0, x1): fy, fx = y1 - y0, x1 - x0 if fy != fx: raise Exception('averaged area need to be square ATM') image = _coarsenImage(image, fx) k = _kSizeFromStd(std) y0 = int(round(y0 / fy)) x0 = int(round(x0 / fx)) arr = image[y0 - k:y0 + k, x0 - k:x0 + k] U = positionToIntensityUncertainty(arr, std / fx, std / fx) return U[k:-k, k:-k]
positionToIntensityUncertaintyForPxGroup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, std, y0, y1, x0, x1):\n fy, fx = y1 - y0, x1 - x0\n if fy != fx:\n raise Exception('averaged area need to be square ATM')\n image = _coarsenImage(image, fx)\n k = _kSizeFromStd(std)\n y0 = int(round(y0 / fy))\n x0 = int(round(x0 / fx))\n arr = image[y0 - k:y0 + k, x0 - k:x0 + k]\n U = positionToIntensityUncertainty(arr, std / fx, std / fx)\n return U[k:-k, k:-k]\n", "role": "user" }, { "content": "positionToIntensityUncertaintyForPxGroup", "role": "assistant" } ]
def x(arr, ksize): out = np.empty_like(arr) _calc(arr, out, ksize // 2) return out
nan_maximum_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, ksize):\n out = np.empty_like(arr)\n _calc(arr, out, ksize // 2)\n return out\n", "role": "user" }, { "content": "nan_maximum_filter", "role": "assistant" } ]
def x(img, threshold=0.1, size=3, condition='>', copy=True): from scipy.ndimage import median_filter indices = None if threshold > 0: blur = np.asfarray(median_filter(img, size=size)) with np.errstate(divide='ignore', invalid='ignore', over='ignore'): if condition == '>': indices = abs((img - blur) / blur) > threshold else: indices = abs((img - blur) / blur) < threshold if copy: img = img.copy() img[indices] = blur[indices] return img, indices
medianThreshold
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, threshold=0.1, size=3, condition='>', copy=True):\n from scipy.ndimage import median_filter\n indices = None\n if threshold > 0:\n blur = np.asfarray(median_filter(img, size=size))\n with np.errstate(divide='ignore', invalid='ignore', over='ignore'):\n if condition == '>':\n indices = abs((img - blur) / blur) > threshold\n else:\n indices = abs((img - blur) / blur) < threshold\n if copy:\n img = img.copy()\n img[indices] = blur[indices]\n return img, indices\n", "role": "user" }, { "content": "medianThreshold", "role": "assistant" } ]
def x(arr, ksize=30, every=None, resize=True, fn='median', interpolation= cv2.INTER_LANCZOS4, smoothksize=0, borderMode=cv2.BORDER_REFLECT): if every is None: every = max(ksize // 3, 1) else: assert ksize >= 3 * every s0, s1 = arr.shape[:2] ss0 = s0 // every every = s0 // ss0 ss1 = s1 // every out = np.full((ss0 + 1, ss1 + 1), np.nan) c = {'median': _calcMedian, 'nanmedian': _calcNanMedian, 'nanmean': _calcNanMean, 'mean': _calcMean}[fn] ss0, ss1 = c(arr, out, ksize, every) out = out[:ss0, :ss1] if smoothksize: out = gaussian_filter(out, smoothksize) if not resize: return out return cv2.resize(out, arr.shape[:2][::-1], interpolation=interpolation)
fastFilter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, ksize=30, every=None, resize=True, fn='median', interpolation=\n cv2.INTER_LANCZOS4, smoothksize=0, borderMode=cv2.BORDER_REFLECT):\n if every is None:\n every = max(ksize // 3, 1)\n else:\n assert ksize >= 3 * every\n s0, s1 = arr.shape[:2]\n ss0 = s0 // every\n every = s0 // ss0\n ss1 = s1 // every\n out = np.full((ss0 + 1, ss1 + 1), np.nan)\n c = {'median': _calcMedian, 'nanmedian': _calcNanMedian, 'nanmean':\n _calcNanMean, 'mean': _calcMean}[fn]\n ss0, ss1 = c(arr, out, ksize, every)\n out = out[:ss0, :ss1]\n if smoothksize:\n out = gaussian_filter(out, smoothksize)\n if not resize:\n return out\n return cv2.resize(out, arr.shape[:2][::-1], interpolation=interpolation)\n", "role": "user" }, { "content": "fastFilter", "role": "assistant" } ]
def x(filename): labels = [] TIMES = (0.3, 0.4, 0.6, 0.8, 1.2, 1.6, 2.4, 3.2, 4.8, 6.4, 9.6, 12.8, 19.2, 25.6, 38.4, 51.2, 76.8, 102.6, 153.6, 204.6, 307.2, 409.8, 614.4, 819.0, 1228.8, 1638.6, 3276.6, 5400.0, 8100.0, 12168.0, 18216.0, 27324.0, 41004.0, 61488.0, 92268.0) with open(filename, 'rb') as f: height, width, frames = np.frombuffer(f.read(4 * 3), dtype=np.uint32) arrs = np.empty((frames, width, height), dtype=np.uint16) for i in range(frames): current, voltage = np.frombuffer(f.read(8 * 2), dtype=np.float64) i_time = np.frombuffer(f.read(4), dtype=np.uint32)[0] time = TIMES[i_time] arr = np.frombuffer(f.read(width * height * 2), dtype=np.uint16) arrs[i] = arr.reshape(width, height) labels.append({'exposure time[s]': time, 'current[A]': current, 'voltage[V]': voltage}) return arrs, labels
elbin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n labels = []\n TIMES = (0.3, 0.4, 0.6, 0.8, 1.2, 1.6, 2.4, 3.2, 4.8, 6.4, 9.6, 12.8, \n 19.2, 25.6, 38.4, 51.2, 76.8, 102.6, 153.6, 204.6, 307.2, 409.8, \n 614.4, 819.0, 1228.8, 1638.6, 3276.6, 5400.0, 8100.0, 12168.0, \n 18216.0, 27324.0, 41004.0, 61488.0, 92268.0)\n with open(filename, 'rb') as f:\n height, width, frames = np.frombuffer(f.read(4 * 3), dtype=np.uint32)\n arrs = np.empty((frames, width, height), dtype=np.uint16)\n for i in range(frames):\n current, voltage = np.frombuffer(f.read(8 * 2), dtype=np.float64)\n i_time = np.frombuffer(f.read(4), dtype=np.uint32)[0]\n time = TIMES[i_time]\n arr = np.frombuffer(f.read(width * height * 2), dtype=np.uint16)\n arrs[i] = arr.reshape(width, height)\n labels.append({'exposure time[s]': time, 'current[A]': current,\n 'voltage[V]': voltage})\n return arrs, labels\n", "role": "user" }, { "content": "elbin", "role": "assistant" } ]
def x(xy, sx, sy, mx=0, my=0, rho=0, amp=1, offs=0): x, y = xy return offs + amp * (1 / (2 * np.pi * sx * sy * (1 - rho ** 2) ** 0.5) * np.exp(-1 / (2 * (1 - rho ** 2)) * ((x - mx) ** 2 / sx ** 2 + (y - my) ** 2 / sy ** 2 - 2 * rho * (x - mx) * (y - my) / (sx * sy))))
gaussian2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(xy, sx, sy, mx=0, my=0, rho=0, amp=1, offs=0):\n x, y = xy\n return offs + amp * (1 / (2 * np.pi * sx * sy * (1 - rho ** 2) ** 0.5) *\n np.exp(-1 / (2 * (1 - rho ** 2)) * ((x - mx) ** 2 / sx ** 2 + (y -\n my) ** 2 / sy ** 2 - 2 * rho * (x - mx) * (y - my) / (sx * sy))))\n", "role": "user" }, { "content": "gaussian2d", "role": "assistant" } ]
def x(self, img_rgb): H = self.pattern.findHomography(img_rgb)[0] H_inv = self.pattern.invertHomography(H) s = self.img_orig.shape warped = cv2.warpPerspective(img_rgb, H_inv, (s[1], s[0])) return warped
fitImg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img_rgb):\n H = self.pattern.findHomography(img_rgb)[0]\n H_inv = self.pattern.invertHomography(H)\n s = self.img_orig.shape\n warped = cv2.warpPerspective(img_rgb, H_inv, (s[1], s[0]))\n return warped\n", "role": "user" }, { "content": "fitImg", "role": "assistant" } ]
def x(img, ratio, nbins=100): start, stop = scaleSignalCutParams(img, ratio, nbins) img = img - start img /= stop - start return img
scaleSignalCut
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, ratio, nbins=100):\n start, stop = scaleSignalCutParams(img, ratio, nbins)\n img = img - start\n img /= stop - start\n return img\n", "role": "user" }, { "content": "scaleSignalCut", "role": "assistant" } ]
def x(img, fitParams=None, backgroundToZero=False, reference=None): img = imread(img) if reference is not None: low, high = signalRange(img, fitParams) low2, high2 = signalRange(reference) img = np.asfarray(img) ampl = (high2 - low2) / (high - low) img -= low img *= ampl img += low2 return img else: offs, div = scaleParams(img, fitParams, backgroundToZero) img = np.asfarray(img) - offs img /= div print('offset: %s, divident: %s' % (offs, div)) return img
scaleSignal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, fitParams=None, backgroundToZero=False, reference=None):\n img = imread(img)\n if reference is not None:\n low, high = signalRange(img, fitParams)\n low2, high2 = signalRange(reference)\n img = np.asfarray(img)\n ampl = (high2 - low2) / (high - low)\n img -= low\n img *= ampl\n img += low2\n return img\n else:\n offs, div = scaleParams(img, fitParams, backgroundToZero)\n img = np.asfarray(img) - offs\n img /= div\n print('offset: %s, divident: %s' % (offs, div))\n return img\n", "role": "user" }, { "content": "scaleSignal", "role": "assistant" } ]
def x(fitParams): smn, _, _ = getSignalParameters(fitParams) bg = fitParams[0] _, avg, std = bg bgmn = max(0, avg - 3 * std) if avg + 4 * std < smn: bgmx = avg + 4 * std if avg + 3 * std < smn: bgmx = avg + 3 * std if avg + 2 * std < smn: bgmx = avg + 2 * std else: bgmx = avg + std return bgmn, avg, bgmx
getBackgroundRange
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fitParams):\n smn, _, _ = getSignalParameters(fitParams)\n bg = fitParams[0]\n _, avg, std = bg\n bgmn = max(0, avg - 3 * std)\n if avg + 4 * std < smn:\n bgmx = avg + 4 * std\n if avg + 3 * std < smn:\n bgmx = avg + 3 * std\n if avg + 2 * std < smn:\n bgmx = avg + 2 * std\n else:\n bgmx = avg + std\n return bgmn, avg, bgmx\n", "role": "user" }, { "content": "getBackgroundRange", "role": "assistant" } ]
def x(fitParams): signal = getSignalPeak(fitParams) bg = getBackgroundPeak(fitParams) if signal == bg: return False r = signal[0] / bg[0] if r < 1: r = 1 / r return r < 100
hasBackground
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fitParams):\n signal = getSignalPeak(fitParams)\n bg = getBackgroundPeak(fitParams)\n if signal == bg:\n return False\n r = signal[0] / bg[0]\n if r < 1:\n r = 1 / r\n return r < 100\n", "role": "user" }, { "content": "hasBackground", "role": "assistant" } ]
def x(img, bins=None): f = FitHistogramPeaks(img, bins=bins) i = signalPeakIndex(f.fitParams) spos = f.fitParams[i][1] bpos = f.fitParams[i - 1][1] ind = np.logical_and(f.xvals > bpos, f.xvals < spos) try: i = np.argmin(f.yvals[ind]) return f.xvals[ind][i] except ValueError as e: if bins is None: return signalMinimum2(img, bins=400) else: raise e
signalMinimum2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, bins=None):\n f = FitHistogramPeaks(img, bins=bins)\n i = signalPeakIndex(f.fitParams)\n spos = f.fitParams[i][1]\n bpos = f.fitParams[i - 1][1]\n ind = np.logical_and(f.xvals > bpos, f.xvals < spos)\n try:\n i = np.argmin(f.yvals[ind])\n return f.xvals[ind][i]\n except ValueError as e:\n if bins is None:\n return signalMinimum2(img, bins=400)\n else:\n raise e\n", "role": "user" }, { "content": "signalMinimum2", "role": "assistant" } ]
def x(img, fitParams=None, n_std=3): if fitParams is None: fitParams = FitHistogramPeaks(img).fitParams assert len(fitParams) > 1, 'need 2 peaks so get minimum signal' i = signalPeakIndex(fitParams) signal = fitParams[i] bg = getBackgroundPeak(fitParams) smn = signal[1] - n_std * signal[2] bmx = bg[1] + n_std * bg[2] if smn > bmx: return smn def x(p1, p2): s1, m1, std1 = p1 s2, m2, std2 = p2 a = 1 / (2 * std1 ** 2) - 1 / (2 * std2 ** 2) b = m2 / std2 ** 2 - m1 / std1 ** 2 c = m1 ** 2 / (2 * std1 ** 2) - m2 ** 2 / (2 * std2 ** 2) - np.log( std2 * s1 / (std1 * s2)) return np.roots([a, b, c]) i = solve(bg, signal) try: return i[np.logical_and(i > bg[1], i < signal[1])][0] except IndexError: return max(smn, bmx)
signalMinimum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, fitParams=None, n_std=3):\n if fitParams is None:\n fitParams = FitHistogramPeaks(img).fitParams\n assert len(fitParams) > 1, 'need 2 peaks so get minimum signal'\n i = signalPeakIndex(fitParams)\n signal = fitParams[i]\n bg = getBackgroundPeak(fitParams)\n smn = signal[1] - n_std * signal[2]\n bmx = bg[1] + n_std * bg[2]\n if smn > bmx:\n return smn\n\n def x(p1, p2):\n s1, m1, std1 = p1\n s2, m2, std2 = p2\n a = 1 / (2 * std1 ** 2) - 1 / (2 * std2 ** 2)\n b = m2 / std2 ** 2 - m1 / std1 ** 2\n c = m1 ** 2 / (2 * std1 ** 2) - m2 ** 2 / (2 * std2 ** 2) - np.log(\n std2 * s1 / (std1 * s2))\n return np.roots([a, b, c])\n i = solve(bg, signal)\n try:\n return i[np.logical_and(i > bg[1], i < signal[1])][0]\n except IndexError:\n return max(smn, bmx)\n", "role": "user" }, { "content": "signalMinimum", "role": "assistant" } ]
def x(fitParams, n_std=3): signal = getSignalPeak(fitParams) mx = signal[1] + n_std * signal[2] mn = signal[1] - n_std * signal[2] if mn < fitParams[0][1]: mn = fitParams[0][1] return mn, signal[1], mx
getSignalParameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fitParams, n_std=3):\n signal = getSignalPeak(fitParams)\n mx = signal[1] + n_std * signal[2]\n mn = signal[1] - n_std * signal[2]\n if mn < fitParams[0][1]:\n mn = fitParams[0][1]\n return mn, signal[1], mx\n", "role": "user" }, { "content": "getSignalParameters", "role": "assistant" } ]
def x(img, save_path=None, name_additive='_eqHist'): if isinstance(img, string_types): img = PathStr(img) if not img.exists(): raise Exception("image path doesn't exist") img_name = img.basename().replace('.', '%s.' % name_additive) if save_path is None: save_path = img.dirname() img = cv2.imread(img) if img.dtype != np.dtype('uint8'): eqFn = _equalizeHistogram else: eqFn = cv2.equalizeHist if len(img.shape) == 3: for i in range(img.shape[2]): img[:, :, i] = eqFn(img[:, :, i]) else: img = eqFn(img) if save_path: img_name = PathStr(save_path).join(img_name) cv2.imwrite(img_name, img) return img
equalizeImage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, save_path=None, name_additive='_eqHist'):\n if isinstance(img, string_types):\n img = PathStr(img)\n if not img.exists():\n raise Exception(\"image path doesn't exist\")\n img_name = img.basename().replace('.', '%s.' % name_additive)\n if save_path is None:\n save_path = img.dirname()\n img = cv2.imread(img)\n if img.dtype != np.dtype('uint8'):\n eqFn = _equalizeHistogram\n else:\n eqFn = cv2.equalizeHist\n if len(img.shape) == 3:\n for i in range(img.shape[2]):\n img[:, :, i] = eqFn(img[:, :, i])\n else:\n img = eqFn(img)\n if save_path:\n img_name = PathStr(save_path).join(img_name)\n cv2.imwrite(img_name, img)\n return img\n", "role": "user" }, { "content": "equalizeImage", "role": "assistant" } ]
def x(img): intType = None if 'f' not in img.dtype.str: TO_FLOAT_TYPES = {np.dtype('uint8'): np.float16, np.dtype('uint16'): np.float32, np.dtype('uint32'): np.float64, np.dtype('uint64'): np.float64} intType = img.dtype img = img.astype(TO_FLOAT_TYPES[intType], copy=False) DEPTH_TO_NBINS = {np.dtype('float16'): 256, np.dtype('float32'): 32768, np.dtype('float64'): 2147483648} nBins = DEPTH_TO_NBINS[img.dtype] mn, mx = np.amin(img), np.amax(img) if abs(mn) > abs(mx): mx = mn img /= mx img = exposure.equalize_hist(img, nbins=nBins) img *= mx if intType: img = img.astype(intType) return img
equalizeHistogram
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n intType = None\n if 'f' not in img.dtype.str:\n TO_FLOAT_TYPES = {np.dtype('uint8'): np.float16, np.dtype('uint16'):\n np.float32, np.dtype('uint32'): np.float64, np.dtype('uint64'):\n np.float64}\n intType = img.dtype\n img = img.astype(TO_FLOAT_TYPES[intType], copy=False)\n DEPTH_TO_NBINS = {np.dtype('float16'): 256, np.dtype('float32'): 32768,\n np.dtype('float64'): 2147483648}\n nBins = DEPTH_TO_NBINS[img.dtype]\n mn, mx = np.amin(img), np.amax(img)\n if abs(mn) > abs(mx):\n mx = mn\n img /= mx\n img = exposure.equalize_hist(img, nbins=nBins)\n img *= mx\n if intType:\n img = img.astype(intType)\n return img\n", "role": "user" }, { "content": "equalizeHistogram", "role": "assistant" } ]
def x(img, thresh=0, min_increase=0, max_length=0, dtype=bool): out = np.zeros(shape=img.shape, dtype=dtype) _calc(img, out, thresh, min_increase, max_length) _calc(img.T, out.T, thresh, min_increase, max_length) return out
localizedMaximum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, thresh=0, min_increase=0, max_length=0, dtype=bool):\n out = np.zeros(shape=img.shape, dtype=dtype)\n _calc(img, out, thresh, min_increase, max_length)\n _calc(img.T, out.T, thresh, min_increase, max_length)\n return out\n", "role": "user" }, { "content": "localizedMaximum", "role": "assistant" } ]
def x(self, ref): self.quad = None self._camera_position = None self._homography = None self._homography_is_fixed = True self._pose = None if isinstance(ref, np.ndarray) and ref.shape == (3, 3): self._homography = ref elif len(ref) == 4: self.quad = sortCorners(ref) o = self.obj_points else: self.ref = imread(ref) self.pattern = PatternRecognition(self.ref) self._homography_is_fixed = False
setReference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ref):\n self.quad = None\n self._camera_position = None\n self._homography = None\n self._homography_is_fixed = True\n self._pose = None\n if isinstance(ref, np.ndarray) and ref.shape == (3, 3):\n self._homography = ref\n elif len(ref) == 4:\n self.quad = sortCorners(ref)\n o = self.obj_points\n else:\n self.ref = imread(ref)\n self.pattern = PatternRecognition(self.ref)\n self._homography_is_fixed = False\n", "role": "user" }, { "content": "setReference", "role": "assistant" } ]
def x(self, img, rotX=0, rotY=0, quad=None): self.img = imread(img) corr = self.correct(self.img) s = self.img.shape if quad is None: wquad = (self.quad - self.quad.mean(axis=0)).astype(float) win_width = s[1] win_height = s[0] for n, q in enumerate(wquad): p = Point3D(q[0], q[1], 0).rotateX(-rotX).rotateY(-rotY) p = p.project(win_width, win_height, s[1], s[1]) wquad[n] = p.x, p.y wquad = sortCorners(wquad) w = wquad[:, 0].max() - wquad[:, 0].min() h = wquad[:, 1].max() - wquad[:, 1].min() scale = min(s[1] / w, s[0] / h) wquad = (wquad * scale).astype(int) else: wquad = sortCorners(quad) wquad -= wquad.min(axis=0) lx = corr.shape[1] ly = corr.shape[0] objP = np.array([[0, 0], [lx, 0], [lx, ly], [0, ly]], dtype=np.float32) homography = cv2.getPerspectiveTransform(wquad.astype(np.float32), objP) w = wquad[:, 0].max() - wquad[:, 0].min() h = wquad[:, 1].max() - wquad[:, 1].min() dist = cv2.warpPerspective(corr, homography, (int(w), int(h)), flags= cv2.INTER_CUBIC | cv2.WARP_INVERSE_MAP) bg = np.zeros(shape=s) rmn = bg.shape[0] / 2, bg.shape[1] / 2 ss = dist.shape mn = ss[0] / 2, ss[1] / 2 ref = int(rmn[0] - mn[0]), int(rmn[1] - mn[1]) bg[ref[0]:ss[0] + ref[0], ref[1]:ss[1] + ref[1]] = dist self.quad = wquad self.quad += ref[1], ref[0] self.img = bg self._homography = None self._poseFromQuad() if self.opts['do_correctIntensity']: tf = self.tiltFactor() if self.img.ndim == 3: for col in range(self.img.shape[2]): self.img[..., col] *= tf else: self.img = self.img * tf return self.img
distort
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img, rotX=0, rotY=0, quad=None):\n self.img = imread(img)\n corr = self.correct(self.img)\n s = self.img.shape\n if quad is None:\n wquad = (self.quad - self.quad.mean(axis=0)).astype(float)\n win_width = s[1]\n win_height = s[0]\n for n, q in enumerate(wquad):\n p = Point3D(q[0], q[1], 0).rotateX(-rotX).rotateY(-rotY)\n p = p.project(win_width, win_height, s[1], s[1])\n wquad[n] = p.x, p.y\n wquad = sortCorners(wquad)\n w = wquad[:, 0].max() - wquad[:, 0].min()\n h = wquad[:, 1].max() - wquad[:, 1].min()\n scale = min(s[1] / w, s[0] / h)\n wquad = (wquad * scale).astype(int)\n else:\n wquad = sortCorners(quad)\n wquad -= wquad.min(axis=0)\n lx = corr.shape[1]\n ly = corr.shape[0]\n objP = np.array([[0, 0], [lx, 0], [lx, ly], [0, ly]], dtype=np.float32)\n homography = cv2.getPerspectiveTransform(wquad.astype(np.float32), objP)\n w = wquad[:, 0].max() - wquad[:, 0].min()\n h = wquad[:, 1].max() - wquad[:, 1].min()\n dist = cv2.warpPerspective(corr, homography, (int(w), int(h)), flags=\n cv2.INTER_CUBIC | cv2.WARP_INVERSE_MAP)\n bg = np.zeros(shape=s)\n rmn = bg.shape[0] / 2, bg.shape[1] / 2\n ss = dist.shape\n mn = ss[0] / 2, ss[1] / 2\n ref = int(rmn[0] - mn[0]), int(rmn[1] - mn[1])\n bg[ref[0]:ss[0] + ref[0], ref[1]:ss[1] + ref[1]] = dist\n self.quad = wquad\n self.quad += ref[1], ref[0]\n self.img = bg\n self._homography = None\n self._poseFromQuad()\n if self.opts['do_correctIntensity']:\n tf = self.tiltFactor()\n if self.img.ndim == 3:\n for col in range(self.img.shape[2]):\n self.img[..., col] *= tf\n else:\n self.img = self.img * tf\n return self.img\n", "role": "user" }, { "content": "distort", "role": "assistant" } ]
def x(self, img, grid): self.img = imread(img) h = self.homography if self.opts['do_correctIntensity']: self.img = self.img / self._getTiltFactor(self.img.shape) s0, s1 = grid.shape[:2] n0, n1 = s0 - 1, s1 - 1 snew = self._newBorders b = self.opts['border'] sx, sy = (snew[0] - 2 * b) // n0, (snew[1] - 2 * b) // n1 out = np.empty(snew[::-1], dtype=self.img.dtype) def x(ix, iy, objP, outcut): shape = outcut.shape[::-1] quad = grid[ix:ix + 2, iy:iy + 2].reshape(4, 2)[np.array([0, 2, 3, 1])] hcell = cv2.getPerspectiveTransform(quad.astype(np.float32), objP) cv2.warpPerspective(self.img, hcell, shape, outcut, flags=cv2. INTER_LANCZOS4, **self.opts['cv2_opts']) return quad objP = np.array([[0, 0], [sx, 0], [sx, sy], [0, sy]], dtype=np.float32) for ix in range(1, n0 - 1): for iy in range(1, n1 - 1): sub = out[iy * sy + b:(iy + 1) * sy + b, ix * sx + b:(ix + 1) * sx + b] shape = sub.shape[::-1] quad = grid[ix:ix + 2, iy:iy + 2].reshape(4, 2)[np.array([0, 2, 3, 1])] hcell = cv2.getPerspectiveTransform(quad.astype(np.float32), objP) cv2.warpPerspective(self.img, hcell, shape, sub, flags=cv2. INTER_LANCZOS4, **self.opts['cv2_opts']) objP[:, 1] += b for ix in range(1, n0 - 1): warp(ix, 0, objP, out[:sy + b, ix * sx + b:(ix + 1) * sx + b]) objP[:, 1] -= b for ix in range(1, n0 - 1): iy = n1 - 1 y = iy * sy + b x = ix * sx + b warp(ix, iy, objP, out[y:y + sy + b, x:x + sx]) objP[:, 0] += b for iy in range(1, n1 - 1): y = iy * sy + b warp(0, iy, objP, out[y:y + sy, :sx + b]) objP[:, 0] -= b ix = n0 - 1 x = ix * sx + b for iy in range(1, n1 - 1): y = iy * sy + b warp(ix, iy, objP, out[y:y + sy, x:x + sx + b]) warp(n0 - 1, n1 - 1, objP, out[-sy - b - 1:, x:x + sx + b]) objP += b, b warp(0, 0, objP, out[0:sy + b, 0:sx + b]) objP[:, 0] -= b warp(n0 - 1, 0, objP, out[:sy + b, x:x + sx + b]) objP += b, -b warp(0, n1 - 1, objP, out[-sy - b - 1:, :sx + b]) return out
correctGrid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img, grid):\n self.img = imread(img)\n h = self.homography\n if self.opts['do_correctIntensity']:\n self.img = self.img / self._getTiltFactor(self.img.shape)\n s0, s1 = grid.shape[:2]\n n0, n1 = s0 - 1, s1 - 1\n snew = self._newBorders\n b = self.opts['border']\n sx, sy = (snew[0] - 2 * b) // n0, (snew[1] - 2 * b) // n1\n out = np.empty(snew[::-1], dtype=self.img.dtype)\n\n def x(ix, iy, objP, outcut):\n shape = outcut.shape[::-1]\n quad = grid[ix:ix + 2, iy:iy + 2].reshape(4, 2)[np.array([0, 2, 3, 1])]\n hcell = cv2.getPerspectiveTransform(quad.astype(np.float32), objP)\n cv2.warpPerspective(self.img, hcell, shape, outcut, flags=cv2.\n INTER_LANCZOS4, **self.opts['cv2_opts'])\n return quad\n objP = np.array([[0, 0], [sx, 0], [sx, sy], [0, sy]], dtype=np.float32)\n for ix in range(1, n0 - 1):\n for iy in range(1, n1 - 1):\n sub = out[iy * sy + b:(iy + 1) * sy + b, ix * sx + b:(ix + 1) *\n sx + b]\n shape = sub.shape[::-1]\n quad = grid[ix:ix + 2, iy:iy + 2].reshape(4, 2)[np.array([0, 2,\n 3, 1])]\n hcell = cv2.getPerspectiveTransform(quad.astype(np.float32), objP)\n cv2.warpPerspective(self.img, hcell, shape, sub, flags=cv2.\n INTER_LANCZOS4, **self.opts['cv2_opts'])\n objP[:, 1] += b\n for ix in range(1, n0 - 1):\n warp(ix, 0, objP, out[:sy + b, ix * sx + b:(ix + 1) * sx + b])\n objP[:, 1] -= b\n for ix in range(1, n0 - 1):\n iy = n1 - 1\n y = iy * sy + b\n x = ix * sx + b\n warp(ix, iy, objP, out[y:y + sy + b, x:x + sx])\n objP[:, 0] += b\n for iy in range(1, n1 - 1):\n y = iy * sy + b\n warp(0, iy, objP, out[y:y + sy, :sx + b])\n objP[:, 0] -= b\n ix = n0 - 1\n x = ix * sx + b\n for iy in range(1, n1 - 1):\n y = iy * sy + b\n warp(ix, iy, objP, out[y:y + sy, x:x + sx + b])\n warp(n0 - 1, n1 - 1, objP, out[-sy - b - 1:, x:x + sx + b])\n objP += b, b\n warp(0, 0, objP, out[0:sy + b, 0:sx + b])\n objP[:, 0] -= b\n warp(n0 - 1, 0, objP, out[:sy + b, x:x + sx + b])\n objP += b, -b\n warp(0, n1 - 1, objP, out[-sy - b - 1:, :sx + b])\n return out\n", "role": "user" }, { "content": "correctGrid", "role": "assistant" } ]
def x(self, img): print('CORRECT PERSPECTIVE ...') self.img = imread(img) if not self._homography_is_fixed: self._homography = None h = self.homography if self.opts['do_correctIntensity']: tf = self.tiltFactor() self.img = np.asfarray(self.img) if self.img.ndim == 3: for col in range(self.img.shape[2]): self.img[..., col] /= tf else: self.img = self.img / tf warped = cv2.warpPerspective(self.img, h, self._newBorders[::-1], flags =cv2.INTER_LANCZOS4, **self.opts['cv2_opts']) return warped
correct
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img):\n print('CORRECT PERSPECTIVE ...')\n self.img = imread(img)\n if not self._homography_is_fixed:\n self._homography = None\n h = self.homography\n if self.opts['do_correctIntensity']:\n tf = self.tiltFactor()\n self.img = np.asfarray(self.img)\n if self.img.ndim == 3:\n for col in range(self.img.shape[2]):\n self.img[..., col] /= tf\n else:\n self.img = self.img / tf\n warped = cv2.warpPerspective(self.img, h, self._newBorders[::-1], flags\n =cv2.INTER_LANCZOS4, **self.opts['cv2_opts'])\n return warped\n", "role": "user" }, { "content": "correct", "role": "assistant" } ]
def x(self, pose=None): if pose is None: pose = self.pose() t, r = pose return -np.matrix(cv2.Rodrigues(r)[0]).T * np.matrix(t)
camera_position
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pose=None):\n if pose is None:\n pose = self.pose()\n t, r = pose\n return -np.matrix(cv2.Rodrigues(r)[0]).T * np.matrix(t)\n", "role": "user" }, { "content": "camera_position", "role": "assistant" } ]
def x(self, **kwargs): v0 = self.cam2PlaneVectorField(**kwargs) v0[2][v0[2] < 0] = np.nan _t, r = self.pose() n = self.planeSfN(r) n[2] *= -1 beta2 = vectorAngle(v0, n) return beta2
viewAngle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **kwargs):\n v0 = self.cam2PlaneVectorField(**kwargs)\n v0[2][v0[2] < 0] = np.nan\n _t, r = self.pose()\n n = self.planeSfN(r)\n n[2] *= -1\n beta2 = vectorAngle(v0, n)\n return beta2\n", "role": "user" }, { "content": "viewAngle", "role": "assistant" } ]
def x(self, quad=None): fg = np.zeros(shape=self._newBorders[::-1], dtype=np.uint8) if quad is None: quad = self.quad else: quad = quad.astype(np.int32) cv2.fillConvexPoly(fg, quad, 1) return fg.astype(bool)
foreground
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, quad=None):\n fg = np.zeros(shape=self._newBorders[::-1], dtype=np.uint8)\n if quad is None:\n quad = self.quad\n else:\n quad = quad.astype(np.int32)\n cv2.fillConvexPoly(fg, quad, 1)\n return fg.astype(bool)\n", "role": "user" }, { "content": "foreground", "role": "assistant" } ]
def x(self, midpointdepth=None, printAvAngle=False): beta2 = self.viewAngle(midpointdepth=midpointdepth) try: angles, vals = getattr(emissivity_vs_angle, self.opts['material'])() except AttributeError: raise AttributeError( 'material[%s] is not in list of know materials: %s' % (self. opts['material'], [o[0] for o in getmembers(emissivity_vs_angle ) if isfunction(o[1])])) if printAvAngle: avg_angle = beta2[self.foreground()].mean() print('angle: %s DEG' % np.degrees(avg_angle)) normEmissivity = np.clip(InterpolatedUnivariateSpline(np.radians(angles ), vals)(beta2), 0, 1) return normEmissivity
tiltFactor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, midpointdepth=None, printAvAngle=False):\n beta2 = self.viewAngle(midpointdepth=midpointdepth)\n try:\n angles, vals = getattr(emissivity_vs_angle, self.opts['material'])()\n except AttributeError:\n raise AttributeError(\n 'material[%s] is not in list of know materials: %s' % (self.\n opts['material'], [o[0] for o in getmembers(emissivity_vs_angle\n ) if isfunction(o[1])]))\n if printAvAngle:\n avg_angle = beta2[self.foreground()].mean()\n print('angle: %s DEG' % np.degrees(avg_angle))\n normEmissivity = np.clip(InterpolatedUnivariateSpline(np.radians(angles\n ), vals)(beta2), 0, 1)\n return normEmissivity\n", "role": "user" }, { "content": "tiltFactor", "role": "assistant" } ]
def x(self, focal_Length_mm, f_number, midpointdepth=1000, focusAtYX=None, shape=None, uncertainties=(0, 0)): if shape is None: s = self.img.shape else: s = shape depthMap = self.depthMap(midpointdepth) if focusAtYX is None: focusAtYX = s[0] // 2, s[1] // 2 infocusDepth = depthMap[focusAtYX] depthOfField_blur = defocusThroughDepth(depthMap, infocusDepth, focal_Length_mm, f_number, k=2.335) py, px = np.mgrid[0:s[0], 0:s[1]] wx = cv2.warpPerspective(np.asfarray(px), self.homography, self. _newBorders, borderValue=np.nan, flags=cv2.INTER_LANCZOS4) wy = cv2.warpPerspective(np.asfarray(py), self.homography, self. _newBorders, borderValue=np.nan, flags=cv2.INTER_LANCZOS4) pxSizeFactorX = 1 / np.abs(np.gradient(wx)[1]) pxSizeFactorY = 1 / np.abs(np.gradient(wy)[0]) depthOfField_blur = cv2.warpPerspective(depthOfField_blur, self. homography, self._newBorders, borderValue=np.nan) warpedU = [] for u in uncertainties: if isinstance(u, np.ndarray) and u.size > 1: u = cv2.warpPerspective(u, self.homography, self._newBorders, borderValue=np.nan, flags=cv2.INTER_LANCZOS4) else: u *= self.areaRatio warpedU.append(u) ux, uy = warpedU ux = pxSizeFactorX * (ux ** 2 + depthOfField_blur ** 2) ** 0.5 uy = pxSizeFactorY * (uy ** 2 + depthOfField_blur ** 2) ** 0.5 return ux, uy, depthOfField_blur, pxSizeFactorX, pxSizeFactorY
standardUncertainties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, focal_Length_mm, f_number, midpointdepth=1000, focusAtYX=None,\n shape=None, uncertainties=(0, 0)):\n if shape is None:\n s = self.img.shape\n else:\n s = shape\n depthMap = self.depthMap(midpointdepth)\n if focusAtYX is None:\n focusAtYX = s[0] // 2, s[1] // 2\n infocusDepth = depthMap[focusAtYX]\n depthOfField_blur = defocusThroughDepth(depthMap, infocusDepth,\n focal_Length_mm, f_number, k=2.335)\n py, px = np.mgrid[0:s[0], 0:s[1]]\n wx = cv2.warpPerspective(np.asfarray(px), self.homography, self.\n _newBorders, borderValue=np.nan, flags=cv2.INTER_LANCZOS4)\n wy = cv2.warpPerspective(np.asfarray(py), self.homography, self.\n _newBorders, borderValue=np.nan, flags=cv2.INTER_LANCZOS4)\n pxSizeFactorX = 1 / np.abs(np.gradient(wx)[1])\n pxSizeFactorY = 1 / np.abs(np.gradient(wy)[0])\n depthOfField_blur = cv2.warpPerspective(depthOfField_blur, self.\n homography, self._newBorders, borderValue=np.nan)\n warpedU = []\n for u in uncertainties:\n if isinstance(u, np.ndarray) and u.size > 1:\n u = cv2.warpPerspective(u, self.homography, self._newBorders,\n borderValue=np.nan, flags=cv2.INTER_LANCZOS4)\n else:\n u *= self.areaRatio\n warpedU.append(u)\n ux, uy = warpedU\n ux = pxSizeFactorX * (ux ** 2 + depthOfField_blur ** 2) ** 0.5\n uy = pxSizeFactorY * (uy ** 2 + depthOfField_blur ** 2) ** 0.5\n return ux, uy, depthOfField_blur, pxSizeFactorX, pxSizeFactorY\n", "role": "user" }, { "content": "standardUncertainties", "role": "assistant" } ]
def x(self, quad=None): if quad is None: quad = self.quad if quad.ndim == 3: quad = quad[0] img_pn = np.ascontiguousarray(quad[:, :2], dtype=np.float32).reshape((4, 1, 2)) obj_pn = self.obj_points - self.obj_points.mean(axis=0) retval, rvec, tvec = cv2.solvePnP(obj_pn, img_pn, self.opts[ 'cameraMatrix'], self.opts['distCoeffs'], flags=cv2.SOLVEPNP_P3P) if not retval: print("Couln't estimate pose") return tvec, rvec
poseFromQuad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, quad=None):\n if quad is None:\n quad = self.quad\n if quad.ndim == 3:\n quad = quad[0]\n img_pn = np.ascontiguousarray(quad[:, :2], dtype=np.float32).reshape((4,\n 1, 2))\n obj_pn = self.obj_points - self.obj_points.mean(axis=0)\n retval, rvec, tvec = cv2.solvePnP(obj_pn, img_pn, self.opts[\n 'cameraMatrix'], self.opts['distCoeffs'], flags=cv2.SOLVEPNP_P3P)\n if not retval:\n print(\"Couln't estimate pose\")\n return tvec, rvec\n", "role": "user" }, { "content": "poseFromQuad", "role": "assistant" } ]
def x(self, img=None, quad=None, thickness=30): if img is None: img = self.img if quad is None: quad = self.quad q = np.int32(quad) c = int(img.max()) cv2.line(img, tuple(q[0]), tuple(q[1]), c, thickness) cv2.line(img, tuple(q[1]), tuple(q[2]), c, thickness) cv2.line(img, tuple(q[2]), tuple(q[3]), c, thickness) cv2.line(img, tuple(q[3]), tuple(q[0]), c, thickness) return img
drawQuad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img=None, quad=None, thickness=30):\n if img is None:\n img = self.img\n if quad is None:\n quad = self.quad\n q = np.int32(quad)\n c = int(img.max())\n cv2.line(img, tuple(q[0]), tuple(q[1]), c, thickness)\n cv2.line(img, tuple(q[1]), tuple(q[2]), c, thickness)\n cv2.line(img, tuple(q[2]), tuple(q[3]), c, thickness)\n cv2.line(img, tuple(q[3]), tuple(q[0]), c, thickness)\n return img\n", "role": "user" }, { "content": "drawQuad", "role": "assistant" } ]
def x(self, img=None, thickness=8): if img is None: img = self.img elif img is False: img = np.zeros(shape=self.img.shape, dtype=self.img.dtype) else: img = imread(img) w, h = self.opts['new_size'] axis = np.float32([[0.5 * w, 0.5 * h, 0], [w, 0.5 * h, 0], [0.5 * w, h, 0], [0.5 * w, 0.5 * h, -0.5 * w]]) t, r = self.pose() imgpts = cv2.projectPoints(axis, r, t, self.opts['cameraMatrix'], self. opts['distCoeffs'])[0] mx = int(img.max()) origin = tuple(imgpts[0].ravel()) cv2.line(img, origin, tuple(imgpts[1].ravel()), (0, 0, mx), thickness) cv2.line(img, origin, tuple(imgpts[2].ravel()), (0, mx, 0), thickness) cv2.line(img, origin, tuple(imgpts[3].ravel()), (mx, 0, 0), thickness * 2) return img
draw3dCoordAxis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img=None, thickness=8):\n if img is None:\n img = self.img\n elif img is False:\n img = np.zeros(shape=self.img.shape, dtype=self.img.dtype)\n else:\n img = imread(img)\n w, h = self.opts['new_size']\n axis = np.float32([[0.5 * w, 0.5 * h, 0], [w, 0.5 * h, 0], [0.5 * w, h,\n 0], [0.5 * w, 0.5 * h, -0.5 * w]])\n t, r = self.pose()\n imgpts = cv2.projectPoints(axis, r, t, self.opts['cameraMatrix'], self.\n opts['distCoeffs'])[0]\n mx = int(img.max())\n origin = tuple(imgpts[0].ravel())\n cv2.line(img, origin, tuple(imgpts[1].ravel()), (0, 0, mx), thickness)\n cv2.line(img, origin, tuple(imgpts[2].ravel()), (0, mx, 0), thickness)\n cv2.line(img, origin, tuple(imgpts[3].ravel()), (mx, 0, 0), thickness * 2)\n return img\n", "role": "user" }, { "content": "draw3dCoordAxis", "role": "assistant" } ]
def x(corners, aspectRatio): if aspectRatio > 1: x_length = PerspectiveCorrection._quadXLength(corners) y = x_length / aspectRatio return x_length, y else: y_length = PerspectiveCorrection._quadYLength(corners) x = y_length * aspectRatio return x, y_length
calcQuadSize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(corners, aspectRatio):\n if aspectRatio > 1:\n x_length = PerspectiveCorrection._quadXLength(corners)\n y = x_length / aspectRatio\n return x_length, y\n else:\n y_length = PerspectiveCorrection._quadYLength(corners)\n x = y_length * aspectRatio\n return x, y_length\n", "role": "user" }, { "content": "calcQuadSize", "role": "assistant" } ]
def x(img, center=None, final_radius=None, initial_radius=None, phase_width =None, interpolation=cv2.INTER_AREA, maps=None, borderValue=0, borderMode=cv2.BORDER_REFLECT, **opts): if maps is None: mapY, mapX = linearToPolarMaps(img.shape[:2], center, final_radius, initial_radius, phase_width) else: mapY, mapX = maps o = {'interpolation': interpolation, 'borderValue': borderValue, 'borderMode': borderMode} o.update(opts) return cv2.remap(img, mapY, mapX, **o)
linearToPolar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, center=None, final_radius=None, initial_radius=None, phase_width\n =None, interpolation=cv2.INTER_AREA, maps=None, borderValue=0,\n borderMode=cv2.BORDER_REFLECT, **opts):\n if maps is None:\n mapY, mapX = linearToPolarMaps(img.shape[:2], center, final_radius,\n initial_radius, phase_width)\n else:\n mapY, mapX = maps\n o = {'interpolation': interpolation, 'borderValue': borderValue,\n 'borderMode': borderMode}\n o.update(opts)\n return cv2.remap(img, mapY, mapX, **o)\n", "role": "user" }, { "content": "linearToPolar", "role": "assistant" } ]
def x(img, shape=None, center=None, maps=None, interpolation=cv2.INTER_AREA, borderValue=0, borderMode=cv2.BORDER_REFLECT, **opts): if maps is None: mapY, mapX = polarToLinearMaps(img.shape[:2], shape, center) else: mapY, mapX = maps o = {'interpolation': interpolation, 'borderValue': borderValue, 'borderMode': borderMode} o.update(opts) return cv2.remap(img, mapY, mapX, **o)
polarToLinear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, shape=None, center=None, maps=None, interpolation=cv2.INTER_AREA,\n borderValue=0, borderMode=cv2.BORDER_REFLECT, **opts):\n if maps is None:\n mapY, mapX = polarToLinearMaps(img.shape[:2], shape, center)\n else:\n mapY, mapX = maps\n o = {'interpolation': interpolation, 'borderValue': borderValue,\n 'borderMode': borderMode}\n o.update(opts)\n return cv2.remap(img, mapY, mapX, **o)\n", "role": "user" }, { "content": "polarToLinear", "role": "assistant" } ]
def x(img): M = np.array([-1, 2, -1]) G = cv2.getGaussianKernel(ksize=3, sigma=-1) Lx = cv2.sepFilter2D(src=img, ddepth=cv2.CV_64F, kernelX=M, kernelY=G) Ly = cv2.sepFilter2D(src=img, ddepth=cv2.CV_64F, kernelX=G, kernelY=M) FM = np.abs(Lx) + np.abs(Ly) return cv2.mean(FM)[0]
modifiedLaplacian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n M = np.array([-1, 2, -1])\n G = cv2.getGaussianKernel(ksize=3, sigma=-1)\n Lx = cv2.sepFilter2D(src=img, ddepth=cv2.CV_64F, kernelX=M, kernelY=G)\n Ly = cv2.sepFilter2D(src=img, ddepth=cv2.CV_64F, kernelX=G, kernelY=M)\n FM = np.abs(Lx) + np.abs(Ly)\n return cv2.mean(FM)[0]\n", "role": "user" }, { "content": "modifiedLaplacian", "role": "assistant" } ]
def x(img): lap = cv2.Laplacian(img, ddepth=-1) stdev = cv2.meanStdDev(lap)[1] s = stdev[0] ** 2 return s[0]
varianceOfLaplacian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n lap = cv2.Laplacian(img, ddepth=-1)\n stdev = cv2.meanStdDev(lap)[1]\n s = stdev[0] ** 2\n return s[0]\n", "role": "user" }, { "content": "varianceOfLaplacian", "role": "assistant" } ]
def x(img, ksize=3): Gx = cv2.Sobel(img, ddepth=cv2.CV_64F, dx=1, dy=0, ksize=ksize) Gy = cv2.Sobel(img, ddepth=cv2.CV_64F, dx=0, dy=1, ksize=ksize) FM = Gx * Gx + Gy * Gy mn = cv2.mean(FM)[0] if np.isnan(mn): return np.nanmean(FM) return mn
tenengrad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, ksize=3):\n Gx = cv2.Sobel(img, ddepth=cv2.CV_64F, dx=1, dy=0, ksize=ksize)\n Gy = cv2.Sobel(img, ddepth=cv2.CV_64F, dx=0, dy=1, ksize=ksize)\n FM = Gx * Gx + Gy * Gy\n mn = cv2.mean(FM)[0]\n if np.isnan(mn):\n return np.nanmean(FM)\n return mn\n", "role": "user" }, { "content": "tenengrad", "role": "assistant" } ]
def x(img): mean, stdev = cv2.meanStdDev(img) s = stdev[0] ** 2 / mean[0] return s[0]
normalizedGraylevelVariance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n mean, stdev = cv2.meanStdDev(img)\n s = stdev[0] ** 2 / mean[0]\n return s[0]\n", "role": "user" }, { "content": "normalizedGraylevelVariance", "role": "assistant" } ]
def x(img, x0, y0, x1, y1, resolution=None, order=3): if resolution is None: resolution = int(((x1 - x0) ** 2 + (y1 - y0) ** 2) ** 0.5) if order == 0: x = np.linspace(x0, x1, resolution, dtype=int) y = np.linspace(y0, y1, resolution, dtype=int) return img[y, x] x = np.linspace(x0, x1, resolution) y = np.linspace(y0, y1, resolution) return map_coordinates(img, np.vstack((y, x)), order=order)
linePlot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, x0, y0, x1, y1, resolution=None, order=3):\n if resolution is None:\n resolution = int(((x1 - x0) ** 2 + (y1 - y0) ** 2) ** 0.5)\n if order == 0:\n x = np.linspace(x0, x1, resolution, dtype=int)\n y = np.linspace(y0, y1, resolution, dtype=int)\n return img[y, x]\n x = np.linspace(x0, x1, resolution)\n y = np.linspace(y0, y1, resolution)\n return map_coordinates(img, np.vstack((y, x)), order=order)\n", "role": "user" }, { "content": "linePlot", "role": "assistant" } ]
def x(self): fitimg, mask = self._prepare() mask = ~mask s0, s1 = fitimg.shape guess = s1 * 0.7, 0, 1, s0 / 2, s1 / 2 fn = lambda xy, f, alpha, fx, cx, cy: vignetting((xy[0] * fx, xy[1]), f, alpha, cx=cx, cy=cy) flatfield = fit2dArrayToFn(fitimg, fn, mask=mask, guess=guess, output_shape=self._orig_shape)[0] return flatfield, self.bglevel / self._n, fitimg, mask
flatFieldFromFunction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n fitimg, mask = self._prepare()\n mask = ~mask\n s0, s1 = fitimg.shape\n guess = s1 * 0.7, 0, 1, s0 / 2, s1 / 2\n fn = lambda xy, f, alpha, fx, cx, cy: vignetting((xy[0] * fx, xy[1]), f,\n alpha, cx=cx, cy=cy)\n flatfield = fit2dArrayToFn(fitimg, fn, mask=mask, guess=guess,\n output_shape=self._orig_shape)[0]\n return flatfield, self.bglevel / self._n, fitimg, mask\n", "role": "user" }, { "content": "flatFieldFromFunction", "role": "assistant" } ]
def x(self): fitimg, mask = self._prepare() out = fitimg.copy() lastm = 0 for _ in range(10): out = polyfit2dGrid(out, mask, 2) mask = highGrad(out) m = mask.sum() if m == lastm: break lastm = m out = np.clip(out, 0.1, 1) out = resize(out, self._orig_shape, mode='reflect') return out, self.bglevel / self._n, fitimg, mask
flatFieldFromFit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n fitimg, mask = self._prepare()\n out = fitimg.copy()\n lastm = 0\n for _ in range(10):\n out = polyfit2dGrid(out, mask, 2)\n mask = highGrad(out)\n m = mask.sum()\n if m == lastm:\n break\n lastm = m\n out = np.clip(out, 0.1, 1)\n out = resize(out, self._orig_shape, mode='reflect')\n return out, self.bglevel / self._n, fitimg, mask\n", "role": "user" }, { "content": "flatFieldFromFit", "role": "assistant" } ]
def x(fname): with open(fname, 'rt') as fh: text = fh.read() return parse_vhdl(text)
parse_vhdl_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n with open(fname, 'rt') as fh:\n text = fh.read()\n return parse_vhdl(text)\n", "role": "user" }, { "content": "parse_vhdl_file", "role": "assistant" } ]
def x(text): lex = VhdlLexer name = None kind = None saved_type = None end_param_group = False cur_package = None metacomments = [] parameters = [] param_items = [] generics = [] ports = [] sections = [] port_param_index = 0 last_item = None array_range_start_pos = 0 objects = [] for pos, action, groups in lex.run(text): if action == 'metacomment': realigned = re.sub('^#+', lambda m: ' ' * len(m.group(0)), groups[0]) if last_item is None: metacomments.append(realigned) else: last_item.desc = realigned if action == 'section_meta': sections.append((port_param_index, groups[0])) elif action == 'function': kind = 'function' name = groups[0] param_items = [] parameters = [] elif action == 'procedure': kind = 'procedure' name = groups[0] param_items = [] parameters = [] elif action == 'param': if end_param_group: for i in param_items: parameters.append(i) param_items = [] end_param_group = False param_items.append(VhdlParameter(groups[1])) elif action == 'param_type': mode, ptype = groups if mode is not None: mode = mode.strip() for i in param_items: i.mode = mode i.data_type = ptype end_param_group = True elif action == 'param_default': for i in param_items: i.default_value = groups[0] elif action == 'end_subprogram': for i in param_items: parameters.append(i) if kind == 'function': vobj = VhdlFunction(name, cur_package, parameters, groups[0 ], metacomments) else: vobj = VhdlProcedure(name, cur_package, parameters, metacomments) objects.append(vobj) metacomments = [] parameters = [] param_items = [] kind = None name = None elif action == 'component': kind = 'component' name = groups[0] generics = [] ports = [] param_items = [] sections = [] port_param_index = 0 elif action == 'generic_param': param_items.append(groups[0]) elif action == 'generic_param_type': ptype = groups[0] for i in param_items: generics.append(VhdlParameter(i, 'in', ptype)) param_items = [] last_item = generics[-1] elif action == 'port_param': param_items.append(groups[0]) port_param_index += 1 elif action == 'port_param_type': mode, ptype = groups for i in param_items: ports.append(VhdlParameter(i, mode, ptype)) param_items = [] last_item = ports[-1] elif action == 'port_array_param_type': mode, ptype = groups array_range_start_pos = pos[1] elif action == 'array_range_end': arange = text[array_range_start_pos:pos[0] + 1] for i in param_items: ports.append(VhdlParameter(i, mode, ptype + arange)) param_items = [] last_item = ports[-1] elif action == 'end_component': vobj = VhdlComponent(name, cur_package, ports, generics, dict( sections), metacomments) objects.append(vobj) last_item = None metacomments = [] elif action == 'package': objects.append(VhdlPackage(groups[0])) cur_package = groups[0] kind = None name = None elif action == 'type': saved_type = groups[0] elif action in ('array_type', 'file_type', 'access_type', 'record_type', 'range_type', 'enum_type', 'incomplete_type'): vobj = VhdlType(saved_type, cur_package, action, metacomments) objects.append(vobj) kind = None name = None metacomments = [] elif action == 'subtype': vobj = VhdlSubtype(groups[0], cur_package, groups[1], metacomments) objects.append(vobj) kind = None name = None metacomments = [] elif action == 'constant': vobj = VhdlConstant(groups[0], cur_package, groups[1], metacomments ) objects.append(vobj) kind = None name = None metacomments = [] return objects
parse_vhdl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n lex = VhdlLexer\n name = None\n kind = None\n saved_type = None\n end_param_group = False\n cur_package = None\n metacomments = []\n parameters = []\n param_items = []\n generics = []\n ports = []\n sections = []\n port_param_index = 0\n last_item = None\n array_range_start_pos = 0\n objects = []\n for pos, action, groups in lex.run(text):\n if action == 'metacomment':\n realigned = re.sub('^#+', lambda m: ' ' * len(m.group(0)),\n groups[0])\n if last_item is None:\n metacomments.append(realigned)\n else:\n last_item.desc = realigned\n if action == 'section_meta':\n sections.append((port_param_index, groups[0]))\n elif action == 'function':\n kind = 'function'\n name = groups[0]\n param_items = []\n parameters = []\n elif action == 'procedure':\n kind = 'procedure'\n name = groups[0]\n param_items = []\n parameters = []\n elif action == 'param':\n if end_param_group:\n for i in param_items:\n parameters.append(i)\n param_items = []\n end_param_group = False\n param_items.append(VhdlParameter(groups[1]))\n elif action == 'param_type':\n mode, ptype = groups\n if mode is not None:\n mode = mode.strip()\n for i in param_items:\n i.mode = mode\n i.data_type = ptype\n end_param_group = True\n elif action == 'param_default':\n for i in param_items:\n i.default_value = groups[0]\n elif action == 'end_subprogram':\n for i in param_items:\n parameters.append(i)\n if kind == 'function':\n vobj = VhdlFunction(name, cur_package, parameters, groups[0\n ], metacomments)\n else:\n vobj = VhdlProcedure(name, cur_package, parameters,\n metacomments)\n objects.append(vobj)\n metacomments = []\n parameters = []\n param_items = []\n kind = None\n name = None\n elif action == 'component':\n kind = 'component'\n name = groups[0]\n generics = []\n ports = []\n param_items = []\n sections = []\n port_param_index = 0\n elif action == 'generic_param':\n param_items.append(groups[0])\n elif action == 'generic_param_type':\n ptype = groups[0]\n for i in param_items:\n generics.append(VhdlParameter(i, 'in', ptype))\n param_items = []\n last_item = generics[-1]\n elif action == 'port_param':\n param_items.append(groups[0])\n port_param_index += 1\n elif action == 'port_param_type':\n mode, ptype = groups\n for i in param_items:\n ports.append(VhdlParameter(i, mode, ptype))\n param_items = []\n last_item = ports[-1]\n elif action == 'port_array_param_type':\n mode, ptype = groups\n array_range_start_pos = pos[1]\n elif action == 'array_range_end':\n arange = text[array_range_start_pos:pos[0] + 1]\n for i in param_items:\n ports.append(VhdlParameter(i, mode, ptype + arange))\n param_items = []\n last_item = ports[-1]\n elif action == 'end_component':\n vobj = VhdlComponent(name, cur_package, ports, generics, dict(\n sections), metacomments)\n objects.append(vobj)\n last_item = None\n metacomments = []\n elif action == 'package':\n objects.append(VhdlPackage(groups[0]))\n cur_package = groups[0]\n kind = None\n name = None\n elif action == 'type':\n saved_type = groups[0]\n elif action in ('array_type', 'file_type', 'access_type',\n 'record_type', 'range_type', 'enum_type', 'incomplete_type'):\n vobj = VhdlType(saved_type, cur_package, action, metacomments)\n objects.append(vobj)\n kind = None\n name = None\n metacomments = []\n elif action == 'subtype':\n vobj = VhdlSubtype(groups[0], cur_package, groups[1], metacomments)\n objects.append(vobj)\n kind = None\n name = None\n metacomments = []\n elif action == 'constant':\n vobj = VhdlConstant(groups[0], cur_package, groups[1], metacomments\n )\n objects.append(vobj)\n kind = None\n name = None\n metacomments = []\n return objects\n", "role": "user" }, { "content": "parse_vhdl", "role": "assistant" } ]
def x(vo): plist = '; '.join(str(p) for p in vo.parameters) if isinstance(vo, VhdlFunction): if len(vo.parameters) > 0: proto = 'function {}({}) return {};'.format(vo.name, plist, vo. return_type) else: proto = 'function {} return {};'.format(vo.name, vo.return_type) else: proto = 'procedure {}({});'.format(vo.name, plist) return proto
subprogram_prototype
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vo):\n plist = '; '.join(str(p) for p in vo.parameters)\n if isinstance(vo, VhdlFunction):\n if len(vo.parameters) > 0:\n proto = 'function {}({}) return {};'.format(vo.name, plist, vo.\n return_type)\n else:\n proto = 'function {} return {};'.format(vo.name, vo.return_type)\n else:\n proto = 'procedure {}({});'.format(vo.name, plist)\n return proto\n", "role": "user" }, { "content": "subprogram_prototype", "role": "assistant" } ]
def x(vo, fullname=None): if fullname is None: fullname = vo.name if isinstance(vo, VhdlFunction): plist = ','.join(p.data_type for p in vo.parameters) sig = '{}[{} return {}]'.format(fullname, plist, vo.return_type) else: plist = ','.join(p.data_type for p in vo.parameters) sig = '{}[{}]'.format(fullname, plist) return sig
subprogram_signature
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vo, fullname=None):\n if fullname is None:\n fullname = vo.name\n if isinstance(vo, VhdlFunction):\n plist = ','.join(p.data_type for p in vo.parameters)\n sig = '{}[{} return {}]'.format(fullname, plist, vo.return_type)\n else:\n plist = ','.join(p.data_type for p in vo.parameters)\n sig = '{}[{}]'.format(fullname, plist)\n return sig\n", "role": "user" }, { "content": "subprogram_signature", "role": "assistant" } ]
def x(self, text, type_filter=None): objects = parse_vhdl(text) self._register_array_types(objects) if type_filter: objects = [o for o in objects if isinstance(o, type_filter)] return objects
extract_objects_from_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, type_filter=None):\n objects = parse_vhdl(text)\n self._register_array_types(objects)\n if type_filter:\n objects = [o for o in objects if isinstance(o, type_filter)]\n return objects\n", "role": "user" }, { "content": "extract_objects_from_source", "role": "assistant" } ]
def x(self, data_type): data_type = data_type.split('[')[0].strip() return data_type.lower() in self.array_types
is_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data_type):\n data_type = data_type.split('[')[0].strip()\n return data_type.lower() in self.array_types\n", "role": "user" }, { "content": "is_array", "role": "assistant" } ]
def x(self, fname): type_defs = '' with open(fname, 'rt') as fh: type_defs = fh.read() try: type_defs = ast.literal_eval(type_defs) except SyntaxError: type_defs = {} self._add_array_types(type_defs)
load_array_types
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fname):\n type_defs = ''\n with open(fname, 'rt') as fh:\n type_defs = fh.read()\n try:\n type_defs = ast.literal_eval(type_defs)\n except SyntaxError:\n type_defs = {}\n self._add_array_types(type_defs)\n", "role": "user" }, { "content": "load_array_types", "role": "assistant" } ]
def x(self, fname): type_defs = {'arrays': sorted(list(self.array_types))} with open(fname, 'wt') as fh: pprint(type_defs, stream=fh)
save_array_types
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fname):\n type_defs = {'arrays': sorted(list(self.array_types))}\n with open(fname, 'wt') as fh:\n pprint(type_defs, stream=fh)\n", "role": "user" }, { "content": "save_array_types", "role": "assistant" } ]
def x(self, objects): types = [o for o in objects if isinstance(o, VhdlType) and o.type_of == 'array_type'] for t in types: self.array_types.add(t.name) subtypes = {o.name: o.base_type for o in objects if isinstance(o, VhdlSubtype)} for k, v in subtypes.iteritems(): while v in subtypes: v = subtypes[v] if v in self.array_types: self.array_types.add(k)
register_array_types
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, objects):\n types = [o for o in objects if isinstance(o, VhdlType) and o.type_of ==\n 'array_type']\n for t in types:\n self.array_types.add(t.name)\n subtypes = {o.name: o.base_type for o in objects if isinstance(o,\n VhdlSubtype)}\n for k, v in subtypes.iteritems():\n while v in subtypes:\n v = subtypes[v]\n if v in self.array_types:\n self.array_types.add(k)\n", "role": "user" }, { "content": "register_array_types", "role": "assistant" } ]
def x(self, source_files): for fname in source_files: if is_vhdl(fname): self._register_array_types(self.extract_objects(fname))
register_array_types_from_sources
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source_files):\n for fname in source_files:\n if is_vhdl(fname):\n self._register_array_types(self.extract_objects(fname))\n", "role": "user" }, { "content": "register_array_types_from_sources", "role": "assistant" } ]
def x(self, text): stack = ['root'] pos = 0 patterns = self.tokens[stack[-1]] while True: for pat, action, new_state in patterns: m = pat.match(text, pos) if m: if action: yield (pos, m.end() - 1), action, m.groups() pos = m.end() if new_state: if isinstance(new_state, int): del stack[new_state:] else: stack.append(new_state) patterns = self.tokens[stack[-1]] break else: try: if text[pos] == '\n': pos += 1 continue pos += 1 except IndexError: break
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text):\n stack = ['root']\n pos = 0\n patterns = self.tokens[stack[-1]]\n while True:\n for pat, action, new_state in patterns:\n m = pat.match(text, pos)\n if m:\n if action:\n yield (pos, m.end() - 1), action, m.groups()\n pos = m.end()\n if new_state:\n if isinstance(new_state, int):\n del stack[new_state:]\n else:\n stack.append(new_state)\n patterns = self.tokens[stack[-1]]\n break\n else:\n try:\n if text[pos] == '\\n':\n pos += 1\n continue\n pos += 1\n except IndexError:\n break\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(verfile): version = None with open(verfile) as fh: try: version = [line.split('=')[1].strip().strip("'") for line in fh if line.startswith('__version__')][0] except IndexError: pass return version
get_package_version
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(verfile):\n version = None\n with open(verfile) as fh:\n try:\n version = [line.split('=')[1].strip().strip(\"'\") for line in fh if\n line.startswith('__version__')][0]\n except IndexError:\n pass\n return version\n", "role": "user" }, { "content": "get_package_version", "role": "assistant" } ]
def x(fname): with open(fname, 'rt') as fh: text = fh.read() return parse_verilog(text)
parse_verilog_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fname):\n with open(fname, 'rt') as fh:\n text = fh.read()\n return parse_verilog(text)\n", "role": "user" }, { "content": "parse_verilog_file", "role": "assistant" } ]
def x(text): lex = VerilogLexer name = None kind = None saved_type = None mode = 'input' ptype = 'wire' metacomments = [] parameters = [] param_items = [] generics = [] ports = collections.OrderedDict() sections = [] port_param_index = 0 last_item = None array_range_start_pos = 0 objects = [] for pos, action, groups in lex.run(text): if action == 'metacomment': if last_item is None: metacomments.append(groups[0]) else: last_item.desc = groups[0] if action == 'section_meta': sections.append((port_param_index, groups[0])) elif action == 'module': kind = 'module' name = groups[0] generics = [] ports = collections.OrderedDict() param_items = [] sections = [] port_param_index = 0 elif action == 'parameter_start': net_type, vec_range = groups new_ptype = '' if net_type is not None: new_ptype += net_type if vec_range is not None: new_ptype += ' ' + vec_range ptype = new_ptype elif action == 'param_item': generics.append(VerilogParameter(groups[0], 'in', ptype)) elif action == 'module_port_start': new_mode, net_type, signed, vec_range = groups new_ptype = '' if net_type is not None: new_ptype += net_type if signed is not None: new_ptype += ' ' + signed if vec_range is not None: new_ptype += ' ' + vec_range for i in param_items: ports[i] = VerilogParameter(i, mode, ptype) param_items = [] if len(ports) > 0: last_item = next(reversed(ports)) mode = new_mode ptype = new_ptype elif action == 'port_param': ident = groups[0] param_items.append(ident) port_param_index += 1 elif action == 'end_module': for i in param_items: ports[i] = VerilogParameter(i, mode, ptype) vobj = VerilogModule(name, ports.values(), generics, dict( sections), metacomments) objects.append(vobj) last_item = None metacomments = [] return objects
parse_verilog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n lex = VerilogLexer\n name = None\n kind = None\n saved_type = None\n mode = 'input'\n ptype = 'wire'\n metacomments = []\n parameters = []\n param_items = []\n generics = []\n ports = collections.OrderedDict()\n sections = []\n port_param_index = 0\n last_item = None\n array_range_start_pos = 0\n objects = []\n for pos, action, groups in lex.run(text):\n if action == 'metacomment':\n if last_item is None:\n metacomments.append(groups[0])\n else:\n last_item.desc = groups[0]\n if action == 'section_meta':\n sections.append((port_param_index, groups[0]))\n elif action == 'module':\n kind = 'module'\n name = groups[0]\n generics = []\n ports = collections.OrderedDict()\n param_items = []\n sections = []\n port_param_index = 0\n elif action == 'parameter_start':\n net_type, vec_range = groups\n new_ptype = ''\n if net_type is not None:\n new_ptype += net_type\n if vec_range is not None:\n new_ptype += ' ' + vec_range\n ptype = new_ptype\n elif action == 'param_item':\n generics.append(VerilogParameter(groups[0], 'in', ptype))\n elif action == 'module_port_start':\n new_mode, net_type, signed, vec_range = groups\n new_ptype = ''\n if net_type is not None:\n new_ptype += net_type\n if signed is not None:\n new_ptype += ' ' + signed\n if vec_range is not None:\n new_ptype += ' ' + vec_range\n for i in param_items:\n ports[i] = VerilogParameter(i, mode, ptype)\n param_items = []\n if len(ports) > 0:\n last_item = next(reversed(ports))\n mode = new_mode\n ptype = new_ptype\n elif action == 'port_param':\n ident = groups[0]\n param_items.append(ident)\n port_param_index += 1\n elif action == 'end_module':\n for i in param_items:\n ports[i] = VerilogParameter(i, mode, ptype)\n vobj = VerilogModule(name, ports.values(), generics, dict(\n sections), metacomments)\n objects.append(vobj)\n last_item = None\n metacomments = []\n return objects\n", "role": "user" }, { "content": "parse_verilog", "role": "assistant" } ]
def x(self, fname, type_filter=None): objects = [] if fname in self.object_cache: objects = self.object_cache[fname] else: with io.open(fname, 'rt', encoding='utf-8') as fh: text = fh.read() objects = parse_verilog(text) self.object_cache[fname] = objects if type_filter: objects = [o for o in objects if isinstance(o, type_filter)] return objects
extract_objects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fname, type_filter=None):\n objects = []\n if fname in self.object_cache:\n objects = self.object_cache[fname]\n else:\n with io.open(fname, 'rt', encoding='utf-8') as fh:\n text = fh.read()\n objects = parse_verilog(text)\n self.object_cache[fname] = objects\n if type_filter:\n objects = [o for o in objects if isinstance(o, type_filter)]\n return objects\n", "role": "user" }, { "content": "extract_objects", "role": "assistant" } ]
def x(self, text, type_filter=None): objects = parse_verilog(text) if type_filter: objects = [o for o in objects if isinstance(o, type_filter)] return objects
extract_objects_from_source
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, type_filter=None):\n objects = parse_verilog(text)\n if type_filter:\n objects = [o for o in objects if isinstance(o, type_filter)]\n return objects\n", "role": "user" }, { "content": "extract_objects_from_source", "role": "assistant" } ]
def x(file_path): try: with open(file_path) as f: json_data = json.load(f) except ValueError as e: raise ValueError('Given file {} is not a valid JSON file: {}'. format(file_path, e)) else: return json_data
load_json_from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(file_path):\n try:\n with open(file_path) as f:\n json_data = json.load(f)\n except ValueError as e:\n raise ValueError('Given file {} is not a valid JSON file: {}'.\n format(file_path, e))\n else:\n return json_data\n", "role": "user" }, { "content": "load_json_from_file", "role": "assistant" } ]
def x(string): try: json_data = json.loads(string) except ValueError as e: raise ValueError('Given string is not valid JSON: {}'.format(e)) else: return json_data
load_json_from_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(string):\n try:\n json_data = json.loads(string)\n except ValueError as e:\n raise ValueError('Given string is not valid JSON: {}'.format(e))\n else:\n return json_data\n", "role": "user" }, { "content": "load_json_from_string", "role": "assistant" } ]