source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(img):
av = np.mean(img)
std = np.std(img)
mn = av - 3 * std
mx = av + 3 * std
return max(img.min(), mn, 0), min(img.max(), mx)
|
getMinMax
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n av = np.mean(img)\n std = np.std(img)\n mn = av - 3 * std\n mx = av + 3 * std\n return max(img.min(), mn, 0), min(img.max(), mx)\n",
"role": "user"
},
{
"content": "getMinMax",
"role": "assistant"
}
] |
def x(img, img2=None, signal=None, mn_mx_nbins=None, x=None, averageFn=
'AAD', signalFromMultipleImages=False):
F_RMS2AAD = (2 / np.pi) ** -0.5
F_NOISE_WITH_MEDIAN = 1 + 1 / 3 ** 2
N_BINS = 100
MEDIAN_KERNEL_SIZE = 3
def x(d):
return np.mean(np.abs(d)) * F_RMS2AAD
def x(d):
return (d ** 2).mean() ** 0.5
if averageFn == 'AAD':
averageFn = _averageAbsoluteDeviation
else:
averageFn = _rootMeanSquare
img = np.asfarray(img)
if img2 is None:
if signal is None:
signal = median_filter(img, MEDIAN_KERNEL_SIZE)
if signalFromMultipleImages:
diff = img - signal
else:
diff = (img - signal) * F_NOISE_WITH_MEDIAN
else:
img2 = np.asfarray(img2)
diff = img - img2
diff /= 2 ** 0.5
if signal is None:
signal = median_filter(0.5 * (img + img2), MEDIAN_KERNEL_SIZE)
if mn_mx_nbins is not None:
mn, mx, nbins = mn_mx_nbins
min_len = 0
else:
mn, mx = _getMinMax(signal)
s = img.shape
min_len = int(s[0] * s[1] * 0.001)
if min_len < 1:
min_len = 5
nbins = N_BINS
if mx - mn < nbins:
nbins = int(mx - mn)
step = (mx - mn) / nbins
y = np.empty(shape=nbins)
set_x = False
if x is None:
set_x = True
x = np.empty(shape=nbins)
weights = np.zeros(shape=nbins)
m = mn
for n in range(nbins):
ind = np.logical_and(signal >= m, signal <= m + step)
m += step
d = diff[ind]
ld = len(d)
if ld >= min_len:
weights[n] = ld
y[n] = averageFn(d)
if set_x:
x[n] = m - 0.5 * step
return x, y, weights, signal
|
calcNLF
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, img2=None, signal=None, mn_mx_nbins=None, x=None, averageFn=\n 'AAD', signalFromMultipleImages=False):\n F_RMS2AAD = (2 / np.pi) ** -0.5\n F_NOISE_WITH_MEDIAN = 1 + 1 / 3 ** 2\n N_BINS = 100\n MEDIAN_KERNEL_SIZE = 3\n\n def x(d):\n return np.mean(np.abs(d)) * F_RMS2AAD\n\n def x(d):\n return (d ** 2).mean() ** 0.5\n if averageFn == 'AAD':\n averageFn = _averageAbsoluteDeviation\n else:\n averageFn = _rootMeanSquare\n img = np.asfarray(img)\n if img2 is None:\n if signal is None:\n signal = median_filter(img, MEDIAN_KERNEL_SIZE)\n if signalFromMultipleImages:\n diff = img - signal\n else:\n diff = (img - signal) * F_NOISE_WITH_MEDIAN\n else:\n img2 = np.asfarray(img2)\n diff = img - img2\n diff /= 2 ** 0.5\n if signal is None:\n signal = median_filter(0.5 * (img + img2), MEDIAN_KERNEL_SIZE)\n if mn_mx_nbins is not None:\n mn, mx, nbins = mn_mx_nbins\n min_len = 0\n else:\n mn, mx = _getMinMax(signal)\n s = img.shape\n min_len = int(s[0] * s[1] * 0.001)\n if min_len < 1:\n min_len = 5\n nbins = N_BINS\n if mx - mn < nbins:\n nbins = int(mx - mn)\n step = (mx - mn) / nbins\n y = np.empty(shape=nbins)\n set_x = False\n if x is None:\n set_x = True\n x = np.empty(shape=nbins)\n weights = np.zeros(shape=nbins)\n m = mn\n for n in range(nbins):\n ind = np.logical_and(signal >= m, signal <= m + step)\n m += step\n d = diff[ind]\n ld = len(d)\n if ld >= min_len:\n weights[n] = ld\n y[n] = averageFn(d)\n if set_x:\n x[n] = m - 0.5 * step\n return x, y, weights, signal\n",
"role": "user"
},
{
"content": "calcNLF",
"role": "assistant"
}
] |
def x(x, y, z, order=3):
ncols = (order + 1) ** 2
G = np.zeros((x.size, ncols))
ij = itertools.product(list(range(order + 1)), list(range(order + 1)))
for k, (i, j) in enumerate(ij):
G[:, k] = x ** i * y ** j
m = np.linalg.lstsq(G, z)[0]
return m
|
polyfit2d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, z, order=3):\n ncols = (order + 1) ** 2\n G = np.zeros((x.size, ncols))\n ij = itertools.product(list(range(order + 1)), list(range(order + 1)))\n for k, (i, j) in enumerate(ij):\n G[:, k] = x ** i * y ** j\n m = np.linalg.lstsq(G, z)[0]\n return m\n",
"role": "user"
},
{
"content": "polyfit2d",
"role": "assistant"
}
] |
def x(arr, mask=None, order=3, replace_all=False, copy=True, outgrid=None):
s0, s1 = arr.shape
if mask is None:
if outgrid is None:
y, x = np.mgrid[:float(s0), :float(s1)]
p = polyfit2d(x.flatten(), y.flatten(), arr.flatten(), order)
return polyval2d(x, y, p, dtype=arr.dtype)
mask = np.zeros_like(arr, dtype=bool)
elif mask.sum() == 0 and not replace_all and outgrid is None:
return arr
valid = ~mask
y, x = np.where(valid)
z = arr[valid]
p = polyfit2d(x, y, z, order)
if outgrid is not None:
yy, xx = outgrid
elif replace_all:
yy, xx = np.mgrid[:float(s0), :float(s1)]
else:
yy, xx = np.where(mask)
new = polyval2d(xx, yy, p, dtype=arr.dtype)
if outgrid is not None or replace_all:
return new
if copy:
arr = arr.copy()
arr[mask] = new
return arr
|
polyfit2dGrid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, mask=None, order=3, replace_all=False, copy=True, outgrid=None):\n s0, s1 = arr.shape\n if mask is None:\n if outgrid is None:\n y, x = np.mgrid[:float(s0), :float(s1)]\n p = polyfit2d(x.flatten(), y.flatten(), arr.flatten(), order)\n return polyval2d(x, y, p, dtype=arr.dtype)\n mask = np.zeros_like(arr, dtype=bool)\n elif mask.sum() == 0 and not replace_all and outgrid is None:\n return arr\n valid = ~mask\n y, x = np.where(valid)\n z = arr[valid]\n p = polyfit2d(x, y, z, order)\n if outgrid is not None:\n yy, xx = outgrid\n elif replace_all:\n yy, xx = np.mgrid[:float(s0), :float(s1)]\n else:\n yy, xx = np.where(mask)\n new = polyval2d(xx, yy, p, dtype=arr.dtype)\n if outgrid is not None or replace_all:\n return new\n if copy:\n arr = arr.copy()\n arr[mask] = new\n return arr\n",
"role": "user"
},
{
"content": "polyfit2dGrid",
"role": "assistant"
}
] |
def x(arr, relative=False, f=0, refinePosition=True, max_pos=100,
return_pos_arr=False):
s0, s1 = arr.shape[:2]
if max_pos >= s1:
x = np.arange(s1)
else:
x = np.rint(np.linspace(0, s1 - 1, min(max_pos, s1))).astype(int)
res = np.empty((s0, s0), dtype=float)
_lineSumXY(x, res, arr, f)
if return_pos_arr:
return res
i, j = np.unravel_index(np.nanargmin(res), res.shape)
if refinePosition:
try:
sub = res[i - 1:i + 2, j - 1:j + 2]
ii, jj = center_of_mass(sub)
if not np.isnan(ii):
i += ii - 1
if not np.isnan(jj):
j += jj - 1
except TypeError:
pass
if not relative:
return i, j
hs = (s0 - 1) / 2
return i - hs, j - hs
|
minimumLineInArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, relative=False, f=0, refinePosition=True, max_pos=100,\n return_pos_arr=False):\n s0, s1 = arr.shape[:2]\n if max_pos >= s1:\n x = np.arange(s1)\n else:\n x = np.rint(np.linspace(0, s1 - 1, min(max_pos, s1))).astype(int)\n res = np.empty((s0, s0), dtype=float)\n _lineSumXY(x, res, arr, f)\n if return_pos_arr:\n return res\n i, j = np.unravel_index(np.nanargmin(res), res.shape)\n if refinePosition:\n try:\n sub = res[i - 1:i + 2, j - 1:j + 2]\n ii, jj = center_of_mass(sub)\n if not np.isnan(ii):\n i += ii - 1\n if not np.isnan(jj):\n j += jj - 1\n except TypeError:\n pass\n if not relative:\n return i, j\n hs = (s0 - 1) / 2\n return i - hs, j - hs\n",
"role": "user"
},
{
"content": "minimumLineInArray",
"role": "assistant"
}
] |
def x(self, threshold):
if not threshold:
return
rows, cols = self.img.shape
tx = int(cols * threshold)
ty = int(rows * threshold)
crow, ccol = rows // 2, cols // 2
self.fshift[crow - tx:crow + tx, ccol - ty:ccol + ty] = 0
|
highPassFilter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, threshold):\n if not threshold:\n return\n rows, cols = self.img.shape\n tx = int(cols * threshold)\n ty = int(rows * threshold)\n crow, ccol = rows // 2, cols // 2\n self.fshift[crow - tx:crow + tx, ccol - ty:ccol + ty] = 0\n",
"role": "user"
},
{
"content": "highPassFilter",
"role": "assistant"
}
] |
def x(self, threshold):
if not threshold:
return
rows, cols = self.img.shape
tx = int(cols * threshold * 0.25)
ty = int(rows * threshold * 0.25)
self.fshift[rows - tx:rows, :] = 0
self.fshift[0:tx, :] = 0
self.fshift[:, 0:ty] = 0
self.fshift[:, cols - ty:cols] = 0
|
lowPassFilter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, threshold):\n if not threshold:\n return\n rows, cols = self.img.shape\n tx = int(cols * threshold * 0.25)\n ty = int(rows * threshold * 0.25)\n self.fshift[rows - tx:rows, :] = 0\n self.fshift[0:tx, :] = 0\n self.fshift[:, 0:ty] = 0\n self.fshift[:, cols - ty:cols] = 0\n",
"role": "user"
},
{
"content": "lowPassFilter",
"role": "assistant"
}
] |
def x(self):
f_ishift = np.fft.ifftshift(self.fshift)
return np.real(np.fft.ifft2(f_ishift))
|
reconstructImage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n f_ishift = np.fft.ifftshift(self.fshift)\n return np.real(np.fft.ifft2(f_ishift))\n",
"role": "user"
},
{
"content": "reconstructImage",
"role": "assistant"
}
] |
def x(x, y, v, grid, power=2):
n = len(v)
gx = grid.shape[0]
gy = grid.shape[1]
for i in range(gx):
for j in range(gy):
overPx = False
sumWi = 0.0
value = 0.0
for k in range(n):
xx = x[k]
yy = y[k]
vv = v[k]
if xx == i and yy == j:
grid[i, j] = vv
overPx = True
break
wi = 1 / ((xx - i) ** 2 + (yy - j) ** 2) ** (0.5 * power)
sumWi += wi
value += wi * vv
if not overPx:
grid[i, j] = value / sumWi
return grid
|
interpolate2dUnstructuredIDW
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, v, grid, power=2):\n n = len(v)\n gx = grid.shape[0]\n gy = grid.shape[1]\n for i in range(gx):\n for j in range(gy):\n overPx = False\n sumWi = 0.0\n value = 0.0\n for k in range(n):\n xx = x[k]\n yy = y[k]\n vv = v[k]\n if xx == i and yy == j:\n grid[i, j] = vv\n overPx = True\n break\n wi = 1 / ((xx - i) ** 2 + (yy - j) ** 2) ** (0.5 * power)\n sumWi += wi\n value += wi * vv\n if not overPx:\n grid[i, j] = value / sumWi\n return grid\n",
"role": "user"
},
{
"content": "interpolate2dUnstructuredIDW",
"role": "assistant"
}
] |
def x(image, orientations=8, ksize=(5, 5)):
s0, s1 = image.shape[:2]
try:
k = hog.kernels[str(ksize) + str(orientations)]
except KeyError:
k = _mkConvKernel(ksize, orientations)
hog.kernels[str(ksize) + str(orientations)] = k
out = np.empty(shape=(s0, s1, orientations))
image[np.isnan(image)] = 0
for i in range(orientations):
out[:, :, i] = convolve(image, k[i])
return out
|
hog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, orientations=8, ksize=(5, 5)):\n s0, s1 = image.shape[:2]\n try:\n k = hog.kernels[str(ksize) + str(orientations)]\n except KeyError:\n k = _mkConvKernel(ksize, orientations)\n hog.kernels[str(ksize) + str(orientations)] = k\n out = np.empty(shape=(s0, s1, orientations))\n image[np.isnan(image)] = 0\n for i in range(orientations):\n out[:, :, i] = convolve(image, k[i])\n return out\n",
"role": "user"
},
{
"content": "hog",
"role": "assistant"
}
] |
def x(hog, grid=(10, 10), radCircle=None):
s0, s1, nang = hog.shape
angles = np.linspace(0, np.pi, nang + 1)[:-1]
cx, cy = s0 // (2 * grid[0]), s1 // (2 * grid[1])
rx, ry = cx, cy
if radCircle is None:
radCircle = max(1, rx // 10)
out = np.zeros((s0, s1), dtype=np.uint8)
pts = np.empty(shape=(1, 2 * nang, 2), dtype=np.int32)
samplesHOG = subCell2DFnArray(hog, lambda arr: arr[cx, cy], grid)
mxHOG = samplesHOG.max()
slices = list(subCell2DSlices(out, grid))
m = 0
for m, hhh in enumerate(samplesHOG.reshape(grid[0] * grid[1], nang)):
hhmax = hhh.max()
hh = hhh / hhmax
sout = out[slices[m][2:4]]
for n, (o, a) in enumerate(zip(hh, angles)):
pts[0, n, 0] = cx + np.cos(a) * o * rx
pts[0, n, 1] = cy + np.sin(a) * o * ry
pts[0, n + nang, 0] = cx + np.cos(a + np.pi) * o * rx
pts[0, n + nang, 1] = cy + np.sin(a + np.pi) * o * ry
cv2.fillPoly(sout, pts, int(255 * hhmax / mxHOG))
cv2.circle(sout, (cx, cy), radCircle, 0, thickness=-1)
return out
|
visualize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hog, grid=(10, 10), radCircle=None):\n s0, s1, nang = hog.shape\n angles = np.linspace(0, np.pi, nang + 1)[:-1]\n cx, cy = s0 // (2 * grid[0]), s1 // (2 * grid[1])\n rx, ry = cx, cy\n if radCircle is None:\n radCircle = max(1, rx // 10)\n out = np.zeros((s0, s1), dtype=np.uint8)\n pts = np.empty(shape=(1, 2 * nang, 2), dtype=np.int32)\n samplesHOG = subCell2DFnArray(hog, lambda arr: arr[cx, cy], grid)\n mxHOG = samplesHOG.max()\n slices = list(subCell2DSlices(out, grid))\n m = 0\n for m, hhh in enumerate(samplesHOG.reshape(grid[0] * grid[1], nang)):\n hhmax = hhh.max()\n hh = hhh / hhmax\n sout = out[slices[m][2:4]]\n for n, (o, a) in enumerate(zip(hh, angles)):\n pts[0, n, 0] = cx + np.cos(a) * o * rx\n pts[0, n, 1] = cy + np.sin(a) * o * ry\n pts[0, n + nang, 0] = cx + np.cos(a + np.pi) * o * rx\n pts[0, n + nang, 1] = cy + np.sin(a + np.pi) * o * ry\n cv2.fillPoly(sout, pts, int(255 * hhmax / mxHOG))\n cv2.circle(sout, (cx, cy), radCircle, 0, thickness=-1)\n return out\n",
"role": "user"
},
{
"content": "visualize",
"role": "assistant"
}
] |
def x(arr, method='KW replace + Gauss', mask=None):
assert method in ppMETHODS, 'post processing method (%s) must be one of %s' % (
method, ppMETHODS)
if method == 'POLY replace':
return polyfit2dGrid(arr, mask, order=2, replace_all=True)
elif method == 'KW replace':
return function(arr, mask, replace_all=True)
elif method == 'POLY repair':
return polynomial(arr, mask, replace_all=False)
elif method == 'KW repair':
return function(arr, mask, replace_all=False)
elif method == 'KW repair + Median':
return median_filter(function(arr, mask, replace_all=False), min(
method.shape) // 20)
elif method == 'KW repair + Gauss':
return gaussian_filter(function(arr, mask, replace_all=False), min(
arr.shape) // 20)
elif method == 'AoV repair':
return function(arr, mask, fn=lambda XY, a: angleOfView(XY, method.
shape, a=a), guess=0.01, down_scale_factor=1)
elif method == 'AoV replace':
return function(arr, mask, fn=lambda XY, a: angleOfView(XY, arr.
shape, a=a), guess=0.01, replace_all=True, down_scale_factor=1)
|
postProcessing
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, method='KW replace + Gauss', mask=None):\n assert method in ppMETHODS, 'post processing method (%s) must be one of %s' % (\n method, ppMETHODS)\n if method == 'POLY replace':\n return polyfit2dGrid(arr, mask, order=2, replace_all=True)\n elif method == 'KW replace':\n return function(arr, mask, replace_all=True)\n elif method == 'POLY repair':\n return polynomial(arr, mask, replace_all=False)\n elif method == 'KW repair':\n return function(arr, mask, replace_all=False)\n elif method == 'KW repair + Median':\n return median_filter(function(arr, mask, replace_all=False), min(\n method.shape) // 20)\n elif method == 'KW repair + Gauss':\n return gaussian_filter(function(arr, mask, replace_all=False), min(\n arr.shape) // 20)\n elif method == 'AoV repair':\n return function(arr, mask, fn=lambda XY, a: angleOfView(XY, method.\n shape, a=a), guess=0.01, down_scale_factor=1)\n elif method == 'AoV replace':\n return function(arr, mask, fn=lambda XY, a: angleOfView(XY, arr.\n shape, a=a), guess=0.01, replace_all=True, down_scale_factor=1)\n",
"role": "user"
},
{
"content": "postProcessing",
"role": "assistant"
}
] |
def x(img, border=None):
if border is None:
pass
elif len(border) == 2:
s0 = slice(border[0][1], border[1][1])
s1 = slice(border[0][0], border[1][0])
img = img[s0, s1]
elif len(border) == 4:
x = np.unique(border[:, 0])
y = np.unique(border[:, 1])
if len(x) == 2 and len(y) == 2:
s0 = slice(y[0], y[1])
s1 = slice(x[0], x[1])
img = img[s0, s1]
else:
img = simplePerspectiveTransform(img, border)
else:
raise Exception('[border] input wrong')
return img
|
rmBorder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, border=None):\n if border is None:\n pass\n elif len(border) == 2:\n s0 = slice(border[0][1], border[1][1])\n s1 = slice(border[0][0], border[1][0])\n img = img[s0, s1]\n elif len(border) == 4:\n x = np.unique(border[:, 0])\n y = np.unique(border[:, 1])\n if len(x) == 2 and len(y) == 2:\n s0 = slice(y[0], y[1])\n s1 = slice(x[0], x[1])\n img = img[s0, s1]\n else:\n img = simplePerspectiveTransform(img, border)\n else:\n raise Exception('[border] input wrong')\n return img\n",
"role": "user"
},
{
"content": "rmBorder",
"role": "assistant"
}
] |
def x(self, image, mask=None):
self._last_diff = diff = image - self.noSTE
ste = diff > self.threshold
removeSinglePixels(ste)
self.mask_clean = clean = ~ste
if mask is not None:
clean = np.logical_and(mask, clean)
self.mma.update(image, clean)
if self.save_ste_indices:
self.mask_STE += ste
return self
|
addImage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, mask=None):\n self._last_diff = diff = image - self.noSTE\n ste = diff > self.threshold\n removeSinglePixels(ste)\n self.mask_clean = clean = ~ste\n if mask is not None:\n clean = np.logical_and(mask, clean)\n self.mma.update(image, clean)\n if self.save_ste_indices:\n self.mask_STE += ste\n return self\n",
"role": "user"
},
{
"content": "addImage",
"role": "assistant"
}
] |
def x(self):
s = self.noSTE.shape
return np.sum(self.mask_STE) / (s[0] * s[1])
|
relativeAreaSTE
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n s = self.noSTE.shape\n return np.sum(self.mask_STE) / (s[0] * s[1])\n",
"role": "user"
},
{
"content": "relativeAreaSTE",
"role": "assistant"
}
] |
def x(self, bins=10, range=None):
v = np.abs(self._last_diff[self.mask_STE])
return np.histogram(v, bins, range)
|
intensityDistributionSTE
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bins=10, range=None):\n v = np.abs(self._last_diff[self.mask_STE])\n return np.histogram(v, bins, range)\n",
"role": "user"
},
{
"content": "intensityDistributionSTE",
"role": "assistant"
}
] |
def x(img, dtype=None, cutNegative=True, cutHigh=True, range=None, copy=True):
mn, mx = None, None
if range is not None:
mn, mx = range
if dtype is None:
if mx is None:
mx = np.nanmax(img)
dtype = np.uint16 if mx > 255 else np.uint8
dtype = np.dtype(dtype)
if dtype == img.dtype:
return img
b = {'uint8': 255, 'uint16': 65535, 'uint32': 4294967295, 'uint64':
18446744073709551615}[dtype.name]
if copy:
img = img.copy()
if range is not None:
img = np.asfarray(img)
img -= mn
img *= b / (mx - mn)
img = np.clip(img, 0, b)
else:
if cutNegative:
img[img < 0] = 0
else:
mn = np.min(img)
if mn < 0:
img -= mn
if cutHigh:
img[img > b] = b
else:
mx = np.nanmax(img)
img = np.asfarray(img) * (float(b) / mx)
img = img.astype(dtype)
return img
|
toUIntArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, dtype=None, cutNegative=True, cutHigh=True, range=None, copy=True):\n mn, mx = None, None\n if range is not None:\n mn, mx = range\n if dtype is None:\n if mx is None:\n mx = np.nanmax(img)\n dtype = np.uint16 if mx > 255 else np.uint8\n dtype = np.dtype(dtype)\n if dtype == img.dtype:\n return img\n b = {'uint8': 255, 'uint16': 65535, 'uint32': 4294967295, 'uint64': \n 18446744073709551615}[dtype.name]\n if copy:\n img = img.copy()\n if range is not None:\n img = np.asfarray(img)\n img -= mn\n img *= b / (mx - mn)\n img = np.clip(img, 0, b)\n else:\n if cutNegative:\n img[img < 0] = 0\n else:\n mn = np.min(img)\n if mn < 0:\n img -= mn\n if cutHigh:\n img[img > b] = b\n else:\n mx = np.nanmax(img)\n img = np.asfarray(img) * (float(b) / mx)\n img = img.astype(dtype)\n return img\n",
"role": "user"
},
{
"content": "toUIntArray",
"role": "assistant"
}
] |
def x(img):
_D = {(1): np.float32, (2): np.float32, (4): np.float64, (8): np.float64}
return img.astype(_D[img.itemsize])
|
toFloatArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n _D = {(1): np.float32, (2): np.float32, (4): np.float64, (8): np.float64}\n return img.astype(_D[img.itemsize])\n",
"role": "user"
},
{
"content": "toFloatArray",
"role": "assistant"
}
] |
def x(arr):
d = arr.dtype
if d.kind == 'u':
arr = arr.astype({(1): np.int16, (2): np.int32, (4): np.int64}[d.
itemsize])
return arr
|
toNoUintArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr):\n d = arr.dtype\n if d.kind == 'u':\n arr = arr.astype({(1): np.int16, (2): np.int32, (4): np.int64}[d.\n itemsize])\n return arr\n",
"role": "user"
},
{
"content": "toNoUintArray",
"role": "assistant"
}
] |
def x(img):
return np.average(img, axis=-1, weights=(0.299, 0.587, 0.114)).astype(img
.dtype)
|
toGray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n return np.average(img, axis=-1, weights=(0.299, 0.587, 0.114)).astype(img\n .dtype)\n",
"role": "user"
},
{
"content": "toGray",
"role": "assistant"
}
] |
def x(img):
out = _calc(img)
if img.dtype == np.uint8:
out = (255 * out).astype(np.uint8)
return out
|
rgChromaticity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n out = _calc(img)\n if img.dtype == np.uint8:\n out = (255 * out).astype(np.uint8)\n return out\n",
"role": "user"
},
{
"content": "rgChromaticity",
"role": "assistant"
}
] |
def x(img):
out = _calc(img)
peakWavelengths = 570, 540, 440
for n, p in enumerate(peakWavelengths):
out[..., n] *= p
return out.sum(axis=2)
|
monochromaticWavelength
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n out = _calc(img)\n peakWavelengths = 570, 540, 440\n for n, p in enumerate(peakWavelengths):\n out[..., n] *= p\n return out.sum(axis=2)\n",
"role": "user"
},
{
"content": "monochromaticWavelength",
"role": "assistant"
}
] |
def x(img):
s = img.shape
if len(s) == 3:
if s[2] in (3, 4):
out = np.empty((s[1], s[0], s[2]), dtype=img.dtype)
for i in range(s[2]):
out[:, :, i] = np.rot90(img[:, :, i])
else:
out = np.empty((s[0], s[2], s[1]), dtype=img.dtype)
for i in range(s[0]):
out[i] = np.rot90(img[i])
elif len(s) == 2:
out = np.rot90(img)
elif len(s) == 4 and s[3] in (3, 4):
out = np.empty((s[0], s[2], s[1], s[3]), dtype=img.dtype)
for i in range(s[0]):
for j in range(s[3]):
out[i, :, :, j] = np.rot90(img[i, :, :, j])
else:
NotImplemented
return out
|
rot90
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img):\n s = img.shape\n if len(s) == 3:\n if s[2] in (3, 4):\n out = np.empty((s[1], s[0], s[2]), dtype=img.dtype)\n for i in range(s[2]):\n out[:, :, i] = np.rot90(img[:, :, i])\n else:\n out = np.empty((s[0], s[2], s[1]), dtype=img.dtype)\n for i in range(s[0]):\n out[i] = np.rot90(img[i])\n elif len(s) == 2:\n out = np.rot90(img)\n elif len(s) == 4 and s[3] in (3, 4):\n out = np.empty((s[0], s[2], s[1], s[3]), dtype=img.dtype)\n for i in range(s[0]):\n for j in range(s[3]):\n out[i, :, :, j] = np.rot90(img[i, :, :, j])\n else:\n NotImplemented\n return out\n",
"role": "user"
},
{
"content": "rot90",
"role": "assistant"
}
] |
def x(gray, cmap='flame'):
if cmap != 'flame':
raise NotImplemented
mx = 256
lut = np.empty(shape=(256, 3))
cmap = (0, (0, 0, 0)), (0.2, (7, 0, 220)), (0.5, (236, 0, 134)), (0.8,
(246, 246, 0)), (1.0, (255, 255, 255))
lastval, lastcol = cmap[0]
for step, col in cmap[1:]:
val = int(step * mx)
for i in range(3):
lut[lastval:val, i] = np.linspace(lastcol[i], col[i], val - lastval
)
lastcol = col
lastval = val
s0, s1 = gray.shape
out = np.empty(shape=(s0, s1, 3), dtype=np.uint8)
for i in range(3):
out[..., i] = cv2.LUT(gray, lut[:, i])
return out
|
applyColorMap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(gray, cmap='flame'):\n if cmap != 'flame':\n raise NotImplemented\n mx = 256\n lut = np.empty(shape=(256, 3))\n cmap = (0, (0, 0, 0)), (0.2, (7, 0, 220)), (0.5, (236, 0, 134)), (0.8,\n (246, 246, 0)), (1.0, (255, 255, 255))\n lastval, lastcol = cmap[0]\n for step, col in cmap[1:]:\n val = int(step * mx)\n for i in range(3):\n lut[lastval:val, i] = np.linspace(lastcol[i], col[i], val - lastval\n )\n lastcol = col\n lastval = val\n s0, s1 = gray.shape\n out = np.empty(shape=(s0, s1, 3), dtype=np.uint8)\n for i in range(3):\n out[..., i] = cv2.LUT(gray, lut[:, i])\n return out\n",
"role": "user"
},
{
"content": "applyColorMap",
"role": "assistant"
}
] |
def x(date, l):
return next((i for i, n in enumerate(l) if n[0] < date), len(l))
|
insertDateIndex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(date, l):\n return next((i for i, n in enumerate(l) if n[0] < date), len(l))\n",
"role": "user"
},
{
"content": "insertDateIndex",
"role": "assistant"
}
] |
def x(l, date):
try:
date = _toDate(date)
i = _insertDateIndex(date, l) - 1
if i == -1:
return l[0]
return l[i]
except (ValueError, TypeError):
return l[0]
|
getFromDate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l, date):\n try:\n date = _toDate(date)\n i = _insertDateIndex(date, l) - 1\n if i == -1:\n return l[0]\n return l[i]\n except (ValueError, TypeError):\n return l[0]\n",
"role": "user"
},
{
"content": "getFromDate",
"role": "assistant"
}
] |
def x(self, typ, light=None):
try:
d = self._getDate(typ, light)
return [self._toDateStr(c[0]) for c in d]
except KeyError:
return []
|
dates
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, typ, light=None):\n try:\n d = self._getDate(typ, light)\n return [self._toDateStr(c[0]) for c in d]\n except KeyError:\n return []\n",
"role": "user"
},
{
"content": "dates",
"role": "assistant"
}
] |
def x(self, typ, light=None, date=None):
d = self._getDate(typ, light)
if date is None:
return [c[1] for c in d]
return _getFromDate(d, date)[1]
|
infos
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, typ, light=None, date=None):\n d = self._getDate(typ, light)\n if date is None:\n return [c[1] for c in d]\n return _getFromDate(d, date)[1]\n",
"role": "user"
},
{
"content": "infos",
"role": "assistant"
}
] |
def x(self):
c = self.coeffs
out = 'camera name: %s' % c['name']
out += '\nmax value: %s' % c['depth']
out += '\nlight spectra: %s' % c['light spectra']
out += '\ndark current:'
for date, info, (slope, intercept), error in c['dark current']:
out += '\n\t date: %s' % self._toDateStr(date)
out += '\n\t\t info: %s; slope:%s, intercept:%s' % (info, slope.
shape, intercept.shape)
out += '\nflat field:'
for light, vals in c['flat field'].items():
out += '\n\t light: %s' % light
for date, info, arr, error in vals:
out += '\n\t\t date: %s' % self._toDateStr(date)
out += '\n\t\t\t info: %s; array:%s' % (info, arr.shape)
out += '\nlens:'
for light, vals in c['lens'].items():
out += '\n\t light: %s' % light
for date, info, coeffs in vals:
out += '\n\t\t date: %s' % self._toDateStr(date)
out += '\n\t\t\t info: %s; coeffs:%s' % (info, coeffs)
out += '\nnoise:'
for date, info, nlf_coeff, error in c['noise']:
out += '\n\t date: %s' % self._toDateStr(date)
out += '\n\t\t info: %s; coeffs:%s' % (info, nlf_coeff)
out += '\nPoint spread function:'
for light, vals in c['psf'].items():
out += '\n\t light: %s' % light
for date, info, psf in vals:
out += '\n\t\t date: %s' % self._toDateStr(date)
out += '\n\t\t\t info: %s; shape:%s' % (info, psf.shape)
return out
|
overview
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n c = self.coeffs\n out = 'camera name: %s' % c['name']\n out += '\\nmax value: %s' % c['depth']\n out += '\\nlight spectra: %s' % c['light spectra']\n out += '\\ndark current:'\n for date, info, (slope, intercept), error in c['dark current']:\n out += '\\n\\t date: %s' % self._toDateStr(date)\n out += '\\n\\t\\t info: %s; slope:%s, intercept:%s' % (info, slope.\n shape, intercept.shape)\n out += '\\nflat field:'\n for light, vals in c['flat field'].items():\n out += '\\n\\t light: %s' % light\n for date, info, arr, error in vals:\n out += '\\n\\t\\t date: %s' % self._toDateStr(date)\n out += '\\n\\t\\t\\t info: %s; array:%s' % (info, arr.shape)\n out += '\\nlens:'\n for light, vals in c['lens'].items():\n out += '\\n\\t light: %s' % light\n for date, info, coeffs in vals:\n out += '\\n\\t\\t date: %s' % self._toDateStr(date)\n out += '\\n\\t\\t\\t info: %s; coeffs:%s' % (info, coeffs)\n out += '\\nnoise:'\n for date, info, nlf_coeff, error in c['noise']:\n out += '\\n\\t date: %s' % self._toDateStr(date)\n out += '\\n\\t\\t info: %s; coeffs:%s' % (info, nlf_coeff)\n out += '\\nPoint spread function:'\n for light, vals in c['psf'].items():\n out += '\\n\\t light: %s' % light\n for date, info, psf in vals:\n out += '\\n\\t\\t date: %s' % self._toDateStr(date)\n out += '\\n\\t\\t\\t info: %s; shape:%s' % (info, psf.shape)\n return out\n",
"role": "user"
},
{
"content": "overview",
"role": "assistant"
}
] |
def x(self, camera_name, bit_depth=16):
self.coeffs['name'] = camera_name
self.coeffs['depth'] = bit_depth
|
setCamera
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, camera_name, bit_depth=16):\n self.coeffs['name'] = camera_name\n self.coeffs['depth'] = bit_depth\n",
"role": "user"
},
{
"content": "setCamera",
"role": "assistant"
}
] |
def x(self, slope, intercept=None, date=None, info='', error=None):
date = _toDate(date)
self._checkShape(slope)
self._checkShape(intercept)
d = self.coeffs['dark current']
if intercept is None:
data = slope
else:
data = slope, intercept
d.insert(_insertDateIndex(date, d), [date, info, data, error])
|
addDarkCurrent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, slope, intercept=None, date=None, info='', error=None):\n date = _toDate(date)\n self._checkShape(slope)\n self._checkShape(intercept)\n d = self.coeffs['dark current']\n if intercept is None:\n data = slope\n else:\n data = slope, intercept\n d.insert(_insertDateIndex(date, d), [date, info, data, error])\n",
"role": "user"
},
{
"content": "addDarkCurrent",
"role": "assistant"
}
] |
def x(self, nlf_coeff, date=None, info='', error=None):
date = _toDate(date)
d = self.coeffs['noise']
d.insert(_insertDateIndex(date, d), [date, info, nlf_coeff, error])
|
addNoise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nlf_coeff, date=None, info='', error=None):\n date = _toDate(date)\n d = self.coeffs['noise']\n d.insert(_insertDateIndex(date, d), [date, info, nlf_coeff, error])\n",
"role": "user"
},
{
"content": "addNoise",
"role": "assistant"
}
] |
def x(self, psf, date=None, info='', light_spectrum='visible'):
self._registerLight(light_spectrum)
date = _toDate(date)
f = self.coeffs['psf']
if light_spectrum not in f:
f[light_spectrum] = []
f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [
date, info, psf])
|
addPSF
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, psf, date=None, info='', light_spectrum='visible'):\n self._registerLight(light_spectrum)\n date = _toDate(date)\n f = self.coeffs['psf']\n if light_spectrum not in f:\n f[light_spectrum] = []\n f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [\n date, info, psf])\n",
"role": "user"
},
{
"content": "addPSF",
"role": "assistant"
}
] |
def x(self, arr, date=None, info='', error=None, light_spectrum='visible'):
self._registerLight(light_spectrum)
self._checkShape(arr)
date = _toDate(date)
f = self.coeffs['flat field']
if light_spectrum not in f:
f[light_spectrum] = []
f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [
date, info, arr, error])
|
addFlatField
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, arr, date=None, info='', error=None, light_spectrum='visible'):\n self._registerLight(light_spectrum)\n self._checkShape(arr)\n date = _toDate(date)\n f = self.coeffs['flat field']\n if light_spectrum not in f:\n f[light_spectrum] = []\n f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [\n date, info, arr, error])\n",
"role": "user"
},
{
"content": "addFlatField",
"role": "assistant"
}
] |
def x(self, lens, date=None, info='', light_spectrum='visible'):
self._registerLight(light_spectrum)
date = _toDate(date)
if not isinstance(lens, LensDistortion):
l = LensDistortion()
l.readFromFile(lens)
lens = l
f = self.coeffs['lens']
if light_spectrum not in f:
f[light_spectrum] = []
f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [
date, info, lens.coeffs])
|
addLens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lens, date=None, info='', light_spectrum='visible'):\n self._registerLight(light_spectrum)\n date = _toDate(date)\n if not isinstance(lens, LensDistortion):\n l = LensDistortion()\n l.readFromFile(lens)\n lens = l\n f = self.coeffs['lens']\n if light_spectrum not in f:\n f[light_spectrum] = []\n f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [\n date, info, lens.coeffs])\n",
"role": "user"
},
{
"content": "addLens",
"role": "assistant"
}
] |
def x(self, date=None):
self.coeffs['dark current'] = [self.coeffs['dark current'][-1]]
self.coeffs['noise'] = [self.coeffs['noise'][-1]]
for light in self.coeffs['flat field']:
self.coeffs['flat field'][light] = [self.coeffs['flat field'][light
][-1]]
for light in self.coeffs['lens']:
self.coeffs['lens'][light] = [self.coeffs['lens'][light][-1]]
|
clearOldCalibrations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, date=None):\n self.coeffs['dark current'] = [self.coeffs['dark current'][-1]]\n self.coeffs['noise'] = [self.coeffs['noise'][-1]]\n for light in self.coeffs['flat field']:\n self.coeffs['flat field'][light] = [self.coeffs['flat field'][light\n ][-1]]\n for light in self.coeffs['lens']:\n self.coeffs['lens'][light] = [self.coeffs['lens'][light][-1]]\n",
"role": "user"
},
{
"content": "clearOldCalibrations",
"role": "assistant"
}
] |
def x(self):
def x(item):
if type(item) == list:
for n, it in enumerate(item):
if type(it) == tuple:
it = list(it)
item[n] = it
if type(it) == list:
_t(it)
if isinstance(it, np.ndarray) and it.shape == s:
item[n] = it.T
s = self.coeffs['shape']
for item in self.coeffs.values():
if type(item) == dict:
for item2 in item.values():
_t(item2)
else:
_t(item)
self.coeffs['shape'] = s[::-1]
|
transpose
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n\n def x(item):\n if type(item) == list:\n for n, it in enumerate(item):\n if type(it) == tuple:\n it = list(it)\n item[n] = it\n if type(it) == list:\n _t(it)\n if isinstance(it, np.ndarray) and it.shape == s:\n item[n] = it.T\n s = self.coeffs['shape']\n for item in self.coeffs.values():\n if type(item) == dict:\n for item2 in item.values():\n _t(item2)\n else:\n _t(item)\n self.coeffs['shape'] = s[::-1]\n",
"role": "user"
},
{
"content": "transpose",
"role": "assistant"
}
] |
def x(self, images, bgImages=None, exposure_time=None, light_spectrum=None,
threshold=0.1, keep_size=True, date=None, deblur=False, denoise=False):
print('CORRECT CAMERA ...')
if isinstance(date, string_types) or date is None:
date = {'dark current': date, 'flat field': date, 'lens': date,
'noise': date, 'psf': date}
if light_spectrum is None:
try:
light_spectrum = self.coeffs['light spectra'][0]
except IndexError:
pass
if type(images) in (list, tuple) or isinstance(images, np.ndarray
) and images.ndim == 3 and images.shape[-1] not in (3, 4):
if len(images) > 1:
n = self.coeffs['noise']
if self.noise_level_function is None and len(n):
n = _getFromDate(n, date['noise'])[2]
self.noise_level_function = (lambda x: NoiseLevelFunction.
boundedFunction(x, *n))
print('... remove single-time-effects from images ')
ste = SingleTimeEffectDetection(images, nStd=4,
noise_level_function=self.noise_level_function)
image = ste.noSTE
if self.noise_level_function is None:
self.noise_level_function = ste.noise_level_function
else:
image = np.asfarray(imread(images[0], dtype=np.float))
else:
image = np.asfarray(imread(images, dtype=np.float))
self._checkShape(image)
self.last_light_spectrum = light_spectrum
self.last_img = image
try:
self._correctDarkCurrent(image, exposure_time, bgImages, date[
'dark current'])
except Exception as errm:
print('Error: %s' % errm)
try:
self._correctVignetting(image, light_spectrum, date['flat field'])
except Exception as errm:
print('Error: %s' % errm)
if threshold > 0:
print('... remove artefacts')
try:
image = self._correctArtefacts(image, threshold)
except Exception as errm:
print('Error: %s' % errm)
if deblur:
print('... remove blur')
try:
image = self._correctBlur(image, light_spectrum, date['psf'])
except Exception as errm:
print('Error: %s' % errm)
try:
image = self._correctLens(image, light_spectrum, date['lens'],
keep_size)
except TypeError:
"""Error: no lens calibration found"""
except Exception as errm:
print('Error: %s' % errm)
if denoise:
print('... denoise ... this might take some time')
image = self._correctNoise(image)
print('DONE')
return image
|
correct
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, images, bgImages=None, exposure_time=None, light_spectrum=None,\n threshold=0.1, keep_size=True, date=None, deblur=False, denoise=False):\n print('CORRECT CAMERA ...')\n if isinstance(date, string_types) or date is None:\n date = {'dark current': date, 'flat field': date, 'lens': date,\n 'noise': date, 'psf': date}\n if light_spectrum is None:\n try:\n light_spectrum = self.coeffs['light spectra'][0]\n except IndexError:\n pass\n if type(images) in (list, tuple) or isinstance(images, np.ndarray\n ) and images.ndim == 3 and images.shape[-1] not in (3, 4):\n if len(images) > 1:\n n = self.coeffs['noise']\n if self.noise_level_function is None and len(n):\n n = _getFromDate(n, date['noise'])[2]\n self.noise_level_function = (lambda x: NoiseLevelFunction.\n boundedFunction(x, *n))\n print('... remove single-time-effects from images ')\n ste = SingleTimeEffectDetection(images, nStd=4,\n noise_level_function=self.noise_level_function)\n image = ste.noSTE\n if self.noise_level_function is None:\n self.noise_level_function = ste.noise_level_function\n else:\n image = np.asfarray(imread(images[0], dtype=np.float))\n else:\n image = np.asfarray(imread(images, dtype=np.float))\n self._checkShape(image)\n self.last_light_spectrum = light_spectrum\n self.last_img = image\n try:\n self._correctDarkCurrent(image, exposure_time, bgImages, date[\n 'dark current'])\n except Exception as errm:\n print('Error: %s' % errm)\n try:\n self._correctVignetting(image, light_spectrum, date['flat field'])\n except Exception as errm:\n print('Error: %s' % errm)\n if threshold > 0:\n print('... remove artefacts')\n try:\n image = self._correctArtefacts(image, threshold)\n except Exception as errm:\n print('Error: %s' % errm)\n if deblur:\n print('... remove blur')\n try:\n image = self._correctBlur(image, light_spectrum, date['psf'])\n except Exception as errm:\n print('Error: %s' % errm)\n try:\n image = self._correctLens(image, light_spectrum, date['lens'],\n keep_size)\n except TypeError:\n \"\"\"Error: no lens calibration found\"\"\"\n except Exception as errm:\n print('Error: %s' % errm)\n if denoise:\n print('... denoise ... this might take some time')\n image = self._correctNoise(image)\n print('DONE')\n return image\n",
"role": "user"
},
{
"content": "correct",
"role": "assistant"
}
] |
def x(self, image):
from skimage.restoration import denoise_nl_means
image[np.isnan(image)] = 0
out = denoise_nl_means(image, patch_size=7, patch_distance=11)
return out
|
correctNoise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image):\n from skimage.restoration import denoise_nl_means\n image[np.isnan(image)] = 0\n out = denoise_nl_means(image, patch_size=7, patch_distance=11)\n return out\n",
"role": "user"
},
{
"content": "correctNoise",
"role": "assistant"
}
] |
def x(self, image, exposuretime, bgImages, date):
print('... remove dark current')
if bgImages is not None:
if type(bgImages) in (list, tuple) or isinstance(bgImages, np.ndarray
) and bgImages.ndim == 3:
if len(bgImages) > 1:
nlf = self.noise_level_function
bg = SingleTimeEffectDetection(bgImages, nStd=4,
noise_level_function=nlf).noSTE
else:
bg = imread(bgImages[0])
else:
bg = imread(bgImages)
else:
bg = self.calcDarkCurrent(exposuretime, date)
self.temp['bg'] = bg
image -= bg
|
correctDarkCurrent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, exposuretime, bgImages, date):\n print('... remove dark current')\n if bgImages is not None:\n if type(bgImages) in (list, tuple) or isinstance(bgImages, np.ndarray\n ) and bgImages.ndim == 3:\n if len(bgImages) > 1:\n nlf = self.noise_level_function\n bg = SingleTimeEffectDetection(bgImages, nStd=4,\n noise_level_function=nlf).noSTE\n else:\n bg = imread(bgImages[0])\n else:\n bg = imread(bgImages)\n else:\n bg = self.calcDarkCurrent(exposuretime, date)\n self.temp['bg'] = bg\n image -= bg\n",
"role": "user"
},
{
"content": "correctDarkCurrent",
"role": "assistant"
}
] |
def x(self, image, threshold):
image = np.nan_to_num(image)
medianThreshold(image, threshold, copy=False)
return image
|
correctArtefacts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, threshold):\n image = np.nan_to_num(image)\n medianThreshold(image, threshold, copy=False)\n return image\n",
"role": "user"
},
{
"content": "correctArtefacts",
"role": "assistant"
}
] |
def x(self, name, light=None, date=None):
d = self.coeffs[name]
try:
c = d[light]
except KeyError:
try:
k, i = next(iter(d.items()))
if light is not None:
print('no calibration found for [%s] - using [%s] instead' %
(light, k))
except StopIteration:
return None
c = i
except TypeError:
c = d
return _getFromDate(c, date)
|
getCoeff
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, light=None, date=None):\n d = self.coeffs[name]\n try:\n c = d[light]\n except KeyError:\n try:\n k, i = next(iter(d.items()))\n if light is not None:\n print('no calibration found for [%s] - using [%s] instead' %\n (light, k))\n except StopIteration:\n return None\n c = i\n except TypeError:\n c = d\n return _getFromDate(c, date)\n",
"role": "user"
},
{
"content": "getCoeff",
"role": "assistant"
}
] |
def x(imgs, bg, inPlane_scale_factor=None, debugFolder=None, **kwargs):
if debugFolder:
debugFolder = PathStr(debugFolder)
s = ObjectVignettingSeparation(imgs[0], bg, **kwargs)
for img in imgs[1:]:
fit = s.addImg(img)
if debugFolder and fit is not False:
imwrite(debugFolder.join('fit_%s.tiff' % len(s.fits)), fit)
if debugFolder:
imwrite(debugFolder.join('init.tiff'), s.flatField)
smoothed_ff, mask, flatField, obj = s.separate()
if debugFolder:
imwrite(debugFolder.join('object.tiff'), obj)
imwrite(debugFolder.join('flatfield.tiff'), flatField, dtype=float)
imwrite(debugFolder.join('flatfield_smoothed.tiff'), smoothed_ff,
dtype=float)
return smoothed_ff, mask
|
vignettingFromRandomSteps
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(imgs, bg, inPlane_scale_factor=None, debugFolder=None, **kwargs):\n if debugFolder:\n debugFolder = PathStr(debugFolder)\n s = ObjectVignettingSeparation(imgs[0], bg, **kwargs)\n for img in imgs[1:]:\n fit = s.addImg(img)\n if debugFolder and fit is not False:\n imwrite(debugFolder.join('fit_%s.tiff' % len(s.fits)), fit)\n if debugFolder:\n imwrite(debugFolder.join('init.tiff'), s.flatField)\n smoothed_ff, mask, flatField, obj = s.separate()\n if debugFolder:\n imwrite(debugFolder.join('object.tiff'), obj)\n imwrite(debugFolder.join('flatfield.tiff'), flatField, dtype=float)\n imwrite(debugFolder.join('flatfield_smoothed.tiff'), smoothed_ff,\n dtype=float)\n return smoothed_ff, mask\n",
"role": "user"
},
{
"content": "vignettingFromRandomSteps",
"role": "assistant"
}
] |
def x(self, img, maxShear=0.015, maxRot=100, minMatches=12, borderWidth=3):
try:
fit, img, H, H_inv, nmatched = self._fitImg(img)
except Exception as e:
print(e)
return
translation, rotation, scale, shear = decompHomography(H)
print(
'Homography ...\n\ttranslation: %s\n\trotation: %s\n\tscale: %s\n\tshear: %s'
% (translation, rotation, scale, shear))
if nmatched > minMatches and abs(shear) < maxShear and abs(rotation
) < maxRot:
print('==> img added')
self.Hs.append(H)
self.Hinvs.append(H_inv)
self.fits.append(fit)
i = img > self.signal_ranges[-1][0]
i = minimum_filter(i, borderWidth)
self._ff_mma.update(img, i)
mask = fit < self.signal_ranges[-1][0]
mask = maximum_filter(mask, borderWidth)
r = self.remove_border_size
if r:
mask[:r, :] = 1
mask[-r:, :] = 1
mask[:, -r:] = 1
mask[:, :r] = 1
self._fit_masks.append(mask)
return fit
return False
|
addImg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img, maxShear=0.015, maxRot=100, minMatches=12, borderWidth=3):\n try:\n fit, img, H, H_inv, nmatched = self._fitImg(img)\n except Exception as e:\n print(e)\n return\n translation, rotation, scale, shear = decompHomography(H)\n print(\n 'Homography ...\\n\\ttranslation: %s\\n\\trotation: %s\\n\\tscale: %s\\n\\tshear: %s'\n % (translation, rotation, scale, shear))\n if nmatched > minMatches and abs(shear) < maxShear and abs(rotation\n ) < maxRot:\n print('==> img added')\n self.Hs.append(H)\n self.Hinvs.append(H_inv)\n self.fits.append(fit)\n i = img > self.signal_ranges[-1][0]\n i = minimum_filter(i, borderWidth)\n self._ff_mma.update(img, i)\n mask = fit < self.signal_ranges[-1][0]\n mask = maximum_filter(mask, borderWidth)\n r = self.remove_border_size\n if r:\n mask[:r, :] = 1\n mask[-r:, :] = 1\n mask[:, -r:] = 1\n mask[:, :r] = 1\n self._fit_masks.append(mask)\n return fit\n return False\n",
"role": "user"
},
{
"content": "addImg",
"role": "assistant"
}
] |
def x(self, nCells=15):
s0, s1 = self.fits[0].shape
aR = s0 / s1
if aR > 1:
ss0 = int(nCells)
ss1 = int(ss0 / aR)
else:
ss1 = int(nCells)
ss0 = int(ss1 * aR)
L = len(self.fits)
arr = np.array(self.fits)
arr[np.array(self._fit_masks)] = np.nan
avg = np.tile(np.nanmean(arr, axis=0), (L, 1, 1))
arr = (arr - avg) / avg
out = np.empty(shape=(L, ss0, ss1))
with warnings.catch_warnings():
warnings.simplefilter('ignore', category=RuntimeWarning)
for n, f in enumerate(arr):
out[n] = subCell2DFnArray(f, np.nanmean, (ss0, ss1))
return np.nanmean(out ** 2) ** 0.5
|
error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nCells=15):\n s0, s1 = self.fits[0].shape\n aR = s0 / s1\n if aR > 1:\n ss0 = int(nCells)\n ss1 = int(ss0 / aR)\n else:\n ss1 = int(nCells)\n ss0 = int(ss1 * aR)\n L = len(self.fits)\n arr = np.array(self.fits)\n arr[np.array(self._fit_masks)] = np.nan\n avg = np.tile(np.nanmean(arr, axis=0), (L, 1, 1))\n arr = (arr - avg) / avg\n out = np.empty(shape=(L, ss0, ss1))\n with warnings.catch_warnings():\n warnings.simplefilter('ignore', category=RuntimeWarning)\n for n, f in enumerate(arr):\n out[n] = subCell2DFnArray(f, np.nanmean, (ss0, ss1))\n return np.nanmean(out ** 2) ** 0.5\n",
"role": "user"
},
{
"content": "error",
"role": "assistant"
}
] |
def x(self, img):
img = imread(img, 'gray')
if self.bg is not None:
img = cv2.subtract(img, self.bg)
if self.lens is not None:
img = self.lens.correct(img, keepSize=True)
H, _, _, _, _, _, _, n_matches = self.findHomography(img)
H_inv = self.invertHomography(H)
s = self.obj_shape
fit = cv2.warpPerspective(img, H_inv, (s[1], s[0]))
return fit, img, H, H_inv, n_matches
|
fitImg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img):\n img = imread(img, 'gray')\n if self.bg is not None:\n img = cv2.subtract(img, self.bg)\n if self.lens is not None:\n img = self.lens.correct(img, keepSize=True)\n H, _, _, _, _, _, _, n_matches = self.findHomography(img)\n H_inv = self.invertHomography(H)\n s = self.obj_shape\n fit = cv2.warpPerspective(img, H_inv, (s[1], s[0]))\n return fit, img, H, H_inv, n_matches\n",
"role": "user"
},
{
"content": "fitImg",
"role": "assistant"
}
] |
def x(self, img):
from imgProcessor.imgSignal import signalMinimum
i = img > signalMinimum(img)
i = minimum_filter(i, 4)
return boundingBox(i)
|
findObject
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img):\n from imgProcessor.imgSignal import signalMinimum\n i = img > signalMinimum(img)\n i = minimum_filter(i, 4)\n return boundingBox(i)\n",
"role": "user"
},
{
"content": "findObject",
"role": "assistant"
}
] |
def x(arr, min_line_length=4):
gy = arr.shape[0]
gx = arr.shape[1]
mn = min_line_length - 1
for i in range(gy):
for j in range(gx):
if arr[i, j]:
for d in range(min_line_length):
if not arr[i + d, j]:
break
if d == mn:
d = 0
while True:
if not arr[i + d, j]:
break
arr[i + d, j] = 0
d += 1
|
filterVerticalLines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, min_line_length=4):\n gy = arr.shape[0]\n gx = arr.shape[1]\n mn = min_line_length - 1\n for i in range(gy):\n for j in range(gx):\n if arr[i, j]:\n for d in range(min_line_length):\n if not arr[i + d, j]:\n break\n if d == mn:\n d = 0\n while True:\n if not arr[i + d, j]:\n break\n arr[i + d, j] = 0\n d += 1\n",
"role": "user"
},
{
"content": "filterVerticalLines",
"role": "assistant"
}
] |
def x(xy, f=100, alpha=0, rot=0, tilt=0, cx=50, cy=50):
x, y = xy
dist = ((x - cx) ** 2 + (y - cy) ** 2) ** 0.5
A = 1.0 / (1 + (dist / f) ** 2) ** 2
if alpha != 0:
G = 1 - alpha * dist
else:
G = 1
if tilt != 0:
T = tiltFactor((x, y), f, tilt, rot, (cy, cx))
else:
T = 1
return A * G * T
|
vignetting
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xy, f=100, alpha=0, rot=0, tilt=0, cx=50, cy=50):\n x, y = xy\n dist = ((x - cx) ** 2 + (y - cy) ** 2) ** 0.5\n A = 1.0 / (1 + (dist / f) ** 2) ** 2\n if alpha != 0:\n G = 1 - alpha * dist\n else:\n G = 1\n if tilt != 0:\n T = tiltFactor((x, y), f, tilt, rot, (cy, cx))\n else:\n T = 1\n return A * G * T\n",
"role": "user"
},
{
"content": "vignetting",
"role": "assistant"
}
] |
def x(xy, f, tilt, rot, center=None):
x, y = xy
arr = np.cos(tilt) * (1 + np.tan(tilt) / f * (x * np.sin(rot) - y * np.
cos(rot))) ** 3
return arr
|
tiltFactor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xy, f, tilt, rot, center=None):\n x, y = xy\n arr = np.cos(tilt) * (1 + np.tan(tilt) / f * (x * np.sin(rot) - y * np.\n cos(rot))) ** 3\n return arr\n",
"role": "user"
},
{
"content": "tiltFactor",
"role": "assistant"
}
] |
def x(images, copy=True):
i0 = images[0]
out = imread(i0, dtype='float')
if copy and id(i0) == id(out):
out = out.copy()
for i in images[1:]:
out += imread(i, dtype='float')
out /= len(images)
return out
|
imgAverage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(images, copy=True):\n i0 = images[0]\n out = imread(i0, dtype='float')\n if copy and id(i0) == id(out):\n out = out.copy()\n for i in images[1:]:\n out += imread(i, dtype='float')\n out /= len(images)\n return out\n",
"role": "user"
},
{
"content": "imgAverage",
"role": "assistant"
}
] |
def x(offset, grid, shape):
g0, g1 = grid
s0, s1 = shape
o0, o1 = offset
o0 = -o0 / s0 * (g0 - 1)
o1 = -o1 / s1 * (g1 - 1)
xx, yy = np.meshgrid(np.linspace(o1, o1 + g1 - 1, s1), np.linspace(o0,
o0 + g0 - 1, s0))
return yy, xx
|
offsetMeshgrid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(offset, grid, shape):\n g0, g1 = grid\n s0, s1 = shape\n o0, o1 = offset\n o0 = -o0 / s0 * (g0 - 1)\n o1 = -o1 / s1 * (g1 - 1)\n xx, yy = np.meshgrid(np.linspace(o1, o1 + g1 - 1, s1), np.linspace(o0, \n o0 + g0 - 1, s0))\n return yy, xx\n",
"role": "user"
},
{
"content": "offsetMeshgrid",
"role": "assistant"
}
] |
def x(x, a, b, c, d=0):
from scipy.misc import factorial
lamb = 1
X = (x / (2 * c)).astype(int)
return a * (lamb ** X / factorial(X) * np.exp(-lamb)) + d
|
poisson
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, b, c, d=0):\n from scipy.misc import factorial\n lamb = 1\n X = (x / (2 * c)).astype(int)\n return a * (lamb ** X / factorial(X) * np.exp(-lamb)) + d\n",
"role": "user"
},
{
"content": "poisson",
"role": "assistant"
}
] |
def x(image, angle, interpolation=cv2.INTER_CUBIC, borderMode=cv2.
BORDER_REFLECT, borderValue=0):
s0, s1 = image.shape
image_center = (s0 - 1) / 2.0, (s1 - 1) / 2.0
rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
result = cv2.warpAffine(image, rot_mat, image.shape, flags=
interpolation, borderMode=borderMode, borderValue=borderValue)
return result
|
rotate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, angle, interpolation=cv2.INTER_CUBIC, borderMode=cv2.\n BORDER_REFLECT, borderValue=0):\n s0, s1 = image.shape\n image_center = (s0 - 1) / 2.0, (s1 - 1) / 2.0\n rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)\n result = cv2.warpAffine(image, rot_mat, image.shape, flags=\n interpolation, borderMode=borderMode, borderValue=borderValue)\n return result\n",
"role": "user"
},
{
"content": "rotate",
"role": "assistant"
}
] |
def x(facExpTime, uncertMap, evtLenMap):
params = np.array([[2.63017121, 0.305873627, 10.0, 0.278233309], [
2.26467931, 0.286206621, 8.01396977, 0.204089232], [1.27361168,
0.518377189, 3.04180084, 0.261396338], [0.73454604, 0.734549823,
1.86507345, 0.277563156], [0.382715618, 0.932410141, 1.34510254,
0.291228149], [0.171166071, 1.14092885, 1.11243702, 0.307947386], [
0.061345541, 1.4380252, 1.02995065, 0.393920802], [0.0165383071,
1.75605076, 1.00859395, 0.502132321], [0.00455800114, 1.99855711,
0.998819118, 0.599572776]])
dur = np.array([0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0])
a = UnivariateSpline(dur, params[:, 0], k=3, s=0)
b = UnivariateSpline(dur, params[:, 1], k=3, s=0)
start = UnivariateSpline(dur, params[:, 2], k=3, s=0)
end = UnivariateSpline(dur, params[:, 3], k=3, s=0)
p0 = a(evtLenMap), b(evtLenMap), start(evtLenMap), end(evtLenMap)
out = uncertMap * _fitfn(facExpTime, *p0)
i = evtLenMap == 0
out[i] = uncertMap[i] * (1 / facExpTime) ** 0.5
return out
|
adjustUncertToExposureTime
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(facExpTime, uncertMap, evtLenMap):\n params = np.array([[2.63017121, 0.305873627, 10.0, 0.278233309], [\n 2.26467931, 0.286206621, 8.01396977, 0.204089232], [1.27361168, \n 0.518377189, 3.04180084, 0.261396338], [0.73454604, 0.734549823, \n 1.86507345, 0.277563156], [0.382715618, 0.932410141, 1.34510254, \n 0.291228149], [0.171166071, 1.14092885, 1.11243702, 0.307947386], [\n 0.061345541, 1.4380252, 1.02995065, 0.393920802], [0.0165383071, \n 1.75605076, 1.00859395, 0.502132321], [0.00455800114, 1.99855711, \n 0.998819118, 0.599572776]])\n dur = np.array([0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0])\n a = UnivariateSpline(dur, params[:, 0], k=3, s=0)\n b = UnivariateSpline(dur, params[:, 1], k=3, s=0)\n start = UnivariateSpline(dur, params[:, 2], k=3, s=0)\n end = UnivariateSpline(dur, params[:, 3], k=3, s=0)\n p0 = a(evtLenMap), b(evtLenMap), start(evtLenMap), end(evtLenMap)\n out = uncertMap * _fitfn(facExpTime, *p0)\n i = evtLenMap == 0\n out[i] = uncertMap[i] * (1 / facExpTime) ** 0.5\n return out\n",
"role": "user"
},
{
"content": "adjustUncertToExposureTime",
"role": "assistant"
}
] |
def x(x, a, b, c, d=0):
return a * np.exp(-((x - b) ** 2 / (2 * c ** 2))) + d
|
gaussian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, a, b, c, d=0):\n return a * np.exp(-((x - b) ** 2 / (2 * c ** 2))) + d\n",
"role": "user"
},
{
"content": "gaussian",
"role": "assistant"
}
] |
def x(path, imgs, levels=None, shape=None, frames=15, annotate_names=None,
lut=None, updateFn=None):
frames = int(frames)
if annotate_names is not None:
assert len(annotate_names) == len(imgs)
if levels is None:
if imgs[0].dtype == np.uint8:
levels = 0, 255
elif imgs[0].dtype == np.uint16:
levels = 0, 2 ** 16 - 1
else:
levels = np.min(imgs), np.max(imgs)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
h, w = imgs.shape[1:3]
if shape and shape != (h, w):
h, w = shape
imgs = [cv2.resize(i, (w, h)) for i in imgs]
assert path[-3:] in ('avi', 'png'
), 'video export only supports *.avi or *.png'
isVideo = path[-3:] == 'avi'
if isVideo:
cap = cv2.VideoCapture(0)
out = cv2.VideoWriter(path, fourcc, frames, (w, h), isColor=1)
times = np.linspace(0, len(imgs) - 1, len(imgs) * frames)
interpolator = LinearInterpolateImageStack(imgs)
if lut is not None:
lut = lut(imgs[0])
for n, time in enumerate(times):
if updateFn:
updateFn.emit(100 * n / len(times))
image = interpolator(time)
cimg = makeRGBA(image, lut=lut, levels=levels)[0]
cimg = cv2.cvtColor(cimg, cv2.COLOR_RGBA2BGR)
if annotate_names:
text = annotate_names[n // frames]
alpha = 0.5
org = 0, cimg.shape[0]
fontFace = cv2.FONT_HERSHEY_PLAIN
fontScale = 2
thickness = 3
putTextAlpha(cimg, text, alpha, org, fontFace, fontScale, (0,
255, 0), thickness)
if isVideo:
out.write(cimg)
else:
cv2.imwrite('%s_%i_%.3f.png' % (path[:-4], n, time), cimg)
if isVideo:
cap.release()
out.release()
|
videoWrite
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, imgs, levels=None, shape=None, frames=15, annotate_names=None,\n lut=None, updateFn=None):\n frames = int(frames)\n if annotate_names is not None:\n assert len(annotate_names) == len(imgs)\n if levels is None:\n if imgs[0].dtype == np.uint8:\n levels = 0, 255\n elif imgs[0].dtype == np.uint16:\n levels = 0, 2 ** 16 - 1\n else:\n levels = np.min(imgs), np.max(imgs)\n fourcc = cv2.VideoWriter_fourcc(*'XVID')\n h, w = imgs.shape[1:3]\n if shape and shape != (h, w):\n h, w = shape\n imgs = [cv2.resize(i, (w, h)) for i in imgs]\n assert path[-3:] in ('avi', 'png'\n ), 'video export only supports *.avi or *.png'\n isVideo = path[-3:] == 'avi'\n if isVideo:\n cap = cv2.VideoCapture(0)\n out = cv2.VideoWriter(path, fourcc, frames, (w, h), isColor=1)\n times = np.linspace(0, len(imgs) - 1, len(imgs) * frames)\n interpolator = LinearInterpolateImageStack(imgs)\n if lut is not None:\n lut = lut(imgs[0])\n for n, time in enumerate(times):\n if updateFn:\n updateFn.emit(100 * n / len(times))\n image = interpolator(time)\n cimg = makeRGBA(image, lut=lut, levels=levels)[0]\n cimg = cv2.cvtColor(cimg, cv2.COLOR_RGBA2BGR)\n if annotate_names:\n text = annotate_names[n // frames]\n alpha = 0.5\n org = 0, cimg.shape[0]\n fontFace = cv2.FONT_HERSHEY_PLAIN\n fontScale = 2\n thickness = 3\n putTextAlpha(cimg, text, alpha, org, fontFace, fontScale, (0, \n 255, 0), thickness)\n if isVideo:\n out.write(cimg)\n else:\n cv2.imwrite('%s_%i_%.3f.png' % (path[:-4], n, time), cimg)\n if isVideo:\n cap.release()\n out.release()\n",
"role": "user"
},
{
"content": "videoWrite",
"role": "assistant"
}
] |
def x(img, color=None, dtype=None):
COLOR2CV = {'gray': cv2.IMREAD_GRAYSCALE, 'all': cv2.IMREAD_COLOR, None:
cv2.IMREAD_ANYCOLOR}
c = COLOR2CV[color]
if callable(img):
img = img()
elif isinstance(img, string_types):
if dtype in (None, 'noUint') or np.dtype(dtype) != np.uint8:
c |= cv2.IMREAD_ANYDEPTH
img2 = cv2.imread(img, c)
if img2 is None:
raise IOError("image '%s' is not existing" % img)
img = img2
elif color == 'gray' and img.ndim == 3:
img = toGray(img)
if dtype is not None:
if isinstance(img, np.ndarray):
img = _changeArrayDType(img, dtype, cutHigh=False)
return img
|
imread
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, color=None, dtype=None):\n COLOR2CV = {'gray': cv2.IMREAD_GRAYSCALE, 'all': cv2.IMREAD_COLOR, None:\n cv2.IMREAD_ANYCOLOR}\n c = COLOR2CV[color]\n if callable(img):\n img = img()\n elif isinstance(img, string_types):\n if dtype in (None, 'noUint') or np.dtype(dtype) != np.uint8:\n c |= cv2.IMREAD_ANYDEPTH\n img2 = cv2.imread(img, c)\n if img2 is None:\n raise IOError(\"image '%s' is not existing\" % img)\n img = img2\n elif color == 'gray' and img.ndim == 3:\n img = toGray(img)\n if dtype is not None:\n if isinstance(img, np.ndarray):\n img = _changeArrayDType(img, dtype, cutHigh=False)\n return img\n",
"role": "user"
},
{
"content": "imread",
"role": "assistant"
}
] |
def x(self, img, roi=None):
self.img = imread(img, 'gray')
s0, s1 = self.img.shape
if roi is None:
roi = (0, 0), (s0, 0), (s0, s1), (0, s1)
k = self.kernel_size
hk = k // 2
img2 = self.img.copy()
mask = np.zeros(self.img.shape)
cv2.fillConvexPoly(mask, np.asarray(roi, dtype=np.int32), color=1)
mask = mask.astype(bool)
im = img2[mask]
bg = im.mean()
mask = ~mask
img2[mask] = -1
self.points = np.zeros(shape=(self.max_points, 2), dtype=int)
thresh = 0.8 * bg + 0.2 * im.max()
_findPoints(img2, thresh, self.min_dist, self.points)
self.points = self.points[:np.argmin(self.points, axis=0)[0]]
for n, p in enumerate(self.points):
sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1]
i, j = np.unravel_index(np.nanargmax(sub), sub.shape)
self.points[n] += [j - hk, i - hk]
mask = maximum_filter(mask, hk)
i = np.ones(self.points.shape[0], dtype=bool)
for n, p in enumerate(self.points):
if mask[p[1], p[0]]:
i[n] = False
else:
for pp in self.points[n + 1:]:
if norm(p - pp) < hk + 1:
i[n] = False
isum = i.sum()
ll = len(i) - isum
print('found %s points' % isum)
if ll:
print('removed %s points (too close to border or other points)' % ll)
self.points = self.points[i]
xx, yy = np.mgrid[0:k, 0:k]
xx = xx.astype(float)
yy = yy.astype(float)
self.subs = []
for i, p in enumerate(self.points):
sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1
].astype(float)
sub2 = sub.copy()
mean = sub2.mean()
mx = sub2.max()
sub2[sub2 < 0.5 * (mean + mx)] = 0
try:
c0, c1 = center_of_mass(sub2)
coords = np.array([xx + (c0 - hk), yy + (c1 - hk)])
sub = map_coordinates(sub, coords, mode='nearest').reshape(k, k)
bg = 0.25 * (sub[0].mean() + sub[-1].mean() + sub[:, 0].mean() +
sub[:, -1].mean())
sub -= bg
sub /= sub.max()
self._psf += sub
if self.calc_std:
self.subs.append(sub)
except ValueError:
pass
|
addImg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img, roi=None):\n self.img = imread(img, 'gray')\n s0, s1 = self.img.shape\n if roi is None:\n roi = (0, 0), (s0, 0), (s0, s1), (0, s1)\n k = self.kernel_size\n hk = k // 2\n img2 = self.img.copy()\n mask = np.zeros(self.img.shape)\n cv2.fillConvexPoly(mask, np.asarray(roi, dtype=np.int32), color=1)\n mask = mask.astype(bool)\n im = img2[mask]\n bg = im.mean()\n mask = ~mask\n img2[mask] = -1\n self.points = np.zeros(shape=(self.max_points, 2), dtype=int)\n thresh = 0.8 * bg + 0.2 * im.max()\n _findPoints(img2, thresh, self.min_dist, self.points)\n self.points = self.points[:np.argmin(self.points, axis=0)[0]]\n for n, p in enumerate(self.points):\n sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1]\n i, j = np.unravel_index(np.nanargmax(sub), sub.shape)\n self.points[n] += [j - hk, i - hk]\n mask = maximum_filter(mask, hk)\n i = np.ones(self.points.shape[0], dtype=bool)\n for n, p in enumerate(self.points):\n if mask[p[1], p[0]]:\n i[n] = False\n else:\n for pp in self.points[n + 1:]:\n if norm(p - pp) < hk + 1:\n i[n] = False\n isum = i.sum()\n ll = len(i) - isum\n print('found %s points' % isum)\n if ll:\n print('removed %s points (too close to border or other points)' % ll)\n self.points = self.points[i]\n xx, yy = np.mgrid[0:k, 0:k]\n xx = xx.astype(float)\n yy = yy.astype(float)\n self.subs = []\n for i, p in enumerate(self.points):\n sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1\n ].astype(float)\n sub2 = sub.copy()\n mean = sub2.mean()\n mx = sub2.max()\n sub2[sub2 < 0.5 * (mean + mx)] = 0\n try:\n c0, c1 = center_of_mass(sub2)\n coords = np.array([xx + (c0 - hk), yy + (c1 - hk)])\n sub = map_coordinates(sub, coords, mode='nearest').reshape(k, k)\n bg = 0.25 * (sub[0].mean() + sub[-1].mean() + sub[:, 0].mean() +\n sub[:, -1].mean())\n sub -= bg\n sub /= sub.max()\n self._psf += sub\n if self.calc_std:\n self.subs.append(sub)\n except ValueError:\n pass\n",
"role": "user"
},
{
"content": "addImg",
"role": "assistant"
}
] |
def x(grid, mask, kernel=15, power=2, minnvals=5):
indices, dist = growPositions(kernel)
weights = 1 / dist ** (0.5 * power)
return _calc(grid, mask, indices, weights, minnvals - 1)
|
interpolate2dStructuredFastIDW
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, mask, kernel=15, power=2, minnvals=5):\n indices, dist = growPositions(kernel)\n weights = 1 / dist ** (0.5 * power)\n return _calc(grid, mask, indices, weights, minnvals - 1)\n",
"role": "user"
},
{
"content": "interpolate2dStructuredFastIDW",
"role": "assistant"
}
] |
def x(img1, img2, overlap, backgroundColor=None):
sizex, sizey = img1.shape[:2]
overlapping = True
if overlap < 0:
overlapping = False
overlap = -overlap
alpha = np.tile(np.expand_dims(np.linspace(1, 0, overlap), 1), sizey)
if len(img2.shape) == 3:
alpha = np.dstack([alpha for _ in range(img2.shape[2])])
if overlapping:
img1_cut = img1[sizex - overlap:sizex, :]
img2_cut = img2[0:overlap, :]
else:
img1_cut = np.tile(img1[-min(sizex, 5):, :].mean(axis=0), (overlap, 1)
).reshape(alpha.shape)
img2_cut = np.tile(img2[:min(img2.shape[0], 5), :].mean(axis=0), (
overlap, 1)).reshape(alpha.shape)
inter = (img1_cut * alpha + img2_cut * (1 - alpha)).astype(img1.dtype)
if backgroundColor is not None:
mask = np.logical_and(img1_cut == backgroundColor, img2_cut !=
backgroundColor)
inter[mask] = img2_cut[mask]
mask = np.logical_and(img2_cut == backgroundColor, img1_cut !=
backgroundColor)
inter[mask] = img1_cut[mask]
if not overlapping:
overlap = 0
return np.vstack((img1[0:sizex - overlap, :], inter, img2[overlap:, :]))
|
linearBlend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img1, img2, overlap, backgroundColor=None):\n sizex, sizey = img1.shape[:2]\n overlapping = True\n if overlap < 0:\n overlapping = False\n overlap = -overlap\n alpha = np.tile(np.expand_dims(np.linspace(1, 0, overlap), 1), sizey)\n if len(img2.shape) == 3:\n alpha = np.dstack([alpha for _ in range(img2.shape[2])])\n if overlapping:\n img1_cut = img1[sizex - overlap:sizex, :]\n img2_cut = img2[0:overlap, :]\n else:\n img1_cut = np.tile(img1[-min(sizex, 5):, :].mean(axis=0), (overlap, 1)\n ).reshape(alpha.shape)\n img2_cut = np.tile(img2[:min(img2.shape[0], 5), :].mean(axis=0), (\n overlap, 1)).reshape(alpha.shape)\n inter = (img1_cut * alpha + img2_cut * (1 - alpha)).astype(img1.dtype)\n if backgroundColor is not None:\n mask = np.logical_and(img1_cut == backgroundColor, img2_cut !=\n backgroundColor)\n inter[mask] = img2_cut[mask]\n mask = np.logical_and(img2_cut == backgroundColor, img1_cut !=\n backgroundColor)\n inter[mask] = img1_cut[mask]\n if not overlapping:\n overlap = 0\n return np.vstack((img1[0:sizex - overlap, :], inter, img2[overlap:, :]))\n",
"role": "user"
},
{
"content": "linearBlend",
"role": "assistant"
}
] |
def x(grid, mask, kernel=15, power=2, maxIter=100000.0, copy=True):
assert grid.shape == mask.shape, 'grid and mask shape are different'
border = np.zeros(shape=mask.shape, dtype=np.bool)
if copy:
mask = mask.copy()
grid = grid.copy()
return _calc(grid, mask, border, kernel, power, maxIter)
|
interpolate2dStructuredPointSpreadIDW
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, mask, kernel=15, power=2, maxIter=100000.0, copy=True):\n assert grid.shape == mask.shape, 'grid and mask shape are different'\n border = np.zeros(shape=mask.shape, dtype=np.bool)\n if copy:\n mask = mask.copy()\n grid = grid.copy()\n return _calc(grid, mask, border, kernel, power, maxIter)\n",
"role": "user"
},
{
"content": "interpolate2dStructuredPointSpreadIDW",
"role": "assistant"
}
] |
def x(snr, method='average', excludeBackground=True, checkBackground=True,
backgroundLevel=None):
if excludeBackground:
if backgroundLevel is None:
try:
f = FitHistogramPeaks(snr).fitParams
if checkBackground:
if not hasBackground(f):
excludeBackground = False
if excludeBackground:
backgroundLevel = getSignalMinimum(f)
except (ValueError, AssertionError):
backgroundLevel = snr.min()
if excludeBackground:
snr = snr[snr >= backgroundLevel]
if method == 'RMS':
avg = (snr ** 2).mean() ** 0.5
elif method == 'average':
avg = snr.mean()
elif method == 'median':
avg = np.median(snr)
elif method == 'X75':
r = snr.min(), snr.max()
hist, bin_edges = np.histogram(snr, bins=2 * int(r[1] - r[0]), range=r)
hist = np.asfarray(hist) / hist.sum()
cdf = np.cumsum(hist)
i = np.argmax(cdf > 0.25)
avg = bin_edges[i]
else:
raise NotImplemented("given SNR average doesn't exist")
return avg
|
SNRaverage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(snr, method='average', excludeBackground=True, checkBackground=True,\n backgroundLevel=None):\n if excludeBackground:\n if backgroundLevel is None:\n try:\n f = FitHistogramPeaks(snr).fitParams\n if checkBackground:\n if not hasBackground(f):\n excludeBackground = False\n if excludeBackground:\n backgroundLevel = getSignalMinimum(f)\n except (ValueError, AssertionError):\n backgroundLevel = snr.min()\n if excludeBackground:\n snr = snr[snr >= backgroundLevel]\n if method == 'RMS':\n avg = (snr ** 2).mean() ** 0.5\n elif method == 'average':\n avg = snr.mean()\n elif method == 'median':\n avg = np.median(snr)\n elif method == 'X75':\n r = snr.min(), snr.max()\n hist, bin_edges = np.histogram(snr, bins=2 * int(r[1] - r[0]), range=r)\n hist = np.asfarray(hist) / hist.sum()\n cdf = np.cumsum(hist)\n i = np.argmax(cdf > 0.25)\n avg = bin_edges[i]\n else:\n raise NotImplemented(\"given SNR average doesn't exist\")\n return avg\n",
"role": "user"
},
{
"content": "SNRaverage",
"role": "assistant"
}
] |
def x(arr, kernel, mask, mode='reflect'):
arr2 = extendArrayForConvolution(arr, kernel.shape, modex=mode, modey=mode)
print(arr2.shape)
out = np.zeros_like(arr)
return _calc(arr2, kernel, mask, out)
|
maskedConvolve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, kernel, mask, mode='reflect'):\n arr2 = extendArrayForConvolution(arr, kernel.shape, modex=mode, modey=mode)\n print(arr2.shape)\n out = np.zeros_like(arr)\n return _calc(arr2, kernel, mask, out)\n",
"role": "user"
},
{
"content": "maskedConvolve",
"role": "assistant"
}
] |
def x(img1, img2=None, bg=None, noise_level_function=None,
constant_noise_level=False, imgs_to_be_averaged=False):
img1 = np.asfarray(img1)
if bg is not None:
img1 = img1 - bg
if img2 is not None:
img2_exists = True
img2 = np.asfarray(img2) - bg
signal = 0.5 * (img1 + img2)
else:
img2_exists = False
signal = img1
signal = median_filter(signal, 3)
if constant_noise_level:
if img2_exists:
d = img1 - img2
noise = 0.5 ** 0.5 * np.mean(np.abs(d)) * F_RMS2AAD
else:
d = (img1 - signal) * F_NOISE_WITH_MEDIAN
noise = np.mean(np.abs(d)) * F_RMS2AAD
else:
if noise_level_function is None:
noise_level_function, _ = oneImageNLF(img1, img2, signal)
noise = noise_level_function(signal)
noise[noise < 1] = 1
if imgs_to_be_averaged:
noise *= 0.5 ** 0.5
if bg is None:
bg = getBackgroundLevel(img1)
signal -= bg
snr = signal / noise
snr[snr < 1] = 1
return snr
|
SNR
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img1, img2=None, bg=None, noise_level_function=None,\n constant_noise_level=False, imgs_to_be_averaged=False):\n img1 = np.asfarray(img1)\n if bg is not None:\n img1 = img1 - bg\n if img2 is not None:\n img2_exists = True\n img2 = np.asfarray(img2) - bg\n signal = 0.5 * (img1 + img2)\n else:\n img2_exists = False\n signal = img1\n signal = median_filter(signal, 3)\n if constant_noise_level:\n if img2_exists:\n d = img1 - img2\n noise = 0.5 ** 0.5 * np.mean(np.abs(d)) * F_RMS2AAD\n else:\n d = (img1 - signal) * F_NOISE_WITH_MEDIAN\n noise = np.mean(np.abs(d)) * F_RMS2AAD\n else:\n if noise_level_function is None:\n noise_level_function, _ = oneImageNLF(img1, img2, signal)\n noise = noise_level_function(signal)\n noise[noise < 1] = 1\n if imgs_to_be_averaged:\n noise *= 0.5 ** 0.5\n if bg is None:\n bg = getBackgroundLevel(img1)\n signal -= bg\n snr = signal / noise\n snr[snr < 1] = 1\n return snr\n",
"role": "user"
},
{
"content": "SNR",
"role": "assistant"
}
] |
def x(corners):
corners = np.asarray(corners)
corners2 = corners[ConvexHull(corners).vertices]
if len(corners2) == 3:
for c in corners:
if c not in corners2:
break
perimeter = []
for n in range(0, 4):
corners3 = np.insert(corners2, n, c, axis=0)
perimeter.append(np.linalg.norm(np.diff(corners3, axis=0), axis
=1).sum())
n = np.argmin(perimeter)
corners2 = np.insert(corners2, n, c, axis=0)
mn = corners2.mean(axis=0)
d = corners2 - mn
ascent = np.arctan2(d[:, 1], d[:, 0])
bl = np.abs(BL_ANGLE + ascent).argmin()
i = list(range(bl, 4))
i.extend(list(range(0, bl)))
return corners2[i]
|
sortCorners
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(corners):\n corners = np.asarray(corners)\n corners2 = corners[ConvexHull(corners).vertices]\n if len(corners2) == 3:\n for c in corners:\n if c not in corners2:\n break\n perimeter = []\n for n in range(0, 4):\n corners3 = np.insert(corners2, n, c, axis=0)\n perimeter.append(np.linalg.norm(np.diff(corners3, axis=0), axis\n =1).sum())\n n = np.argmin(perimeter)\n corners2 = np.insert(corners2, n, c, axis=0)\n mn = corners2.mean(axis=0)\n d = corners2 - mn\n ascent = np.arctan2(d[:, 1], d[:, 0])\n bl = np.abs(BL_ANGLE + ascent).argmin()\n i = list(range(bl, 4))\n i.extend(list(range(0, bl)))\n return corners2[i]\n",
"role": "user"
},
{
"content": "sortCorners",
"role": "assistant"
}
] |
def x(arr, ksize=30, dtype=np.uint16):
out = np.zeros_like(arr, dtype=dtype)
_calc(out, arr, ksize)
return out
|
closestDirectDistance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, ksize=30, dtype=np.uint16):\n out = np.zeros_like(arr, dtype=dtype)\n _calc(out, arr, ksize)\n return out\n",
"role": "user"
},
{
"content": "closestDirectDistance",
"role": "assistant"
}
] |
def x(target, walls=None, max_len_border_line=500, max_n_path=100,
concentrate_every_n_pixel=1):
c = concentrate_every_n_pixel
assert c >= 1
if walls is None:
walls = np.zeros_like(target, dtype=bool)
s = target.shape
dt = np.uint16
if max(target.shape) < 200:
dt = np.uint8
out = np.zeros((s[0] // c, s[1] // c), dtype=dt)
growth = np.zeros_like(target, dtype=dt)
res = np.empty(shape=3, dtype=dt)
steps = np.empty(shape=(max_len_border_line, 2), dtype=dt)
new_steps = np.empty(shape=(max_len_border_line, 2), dtype=dt)
_calc(growth, out, walls, target, steps, new_steps, res,
concentrate_every_n_pixel)
if c > 1:
interpolate2dStructuredIDW(out, out == 0)
out = cv2.resize(out, s[::-1])
out[walls] = 0
return out
|
closestConnectedDistance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(target, walls=None, max_len_border_line=500, max_n_path=100,\n concentrate_every_n_pixel=1):\n c = concentrate_every_n_pixel\n assert c >= 1\n if walls is None:\n walls = np.zeros_like(target, dtype=bool)\n s = target.shape\n dt = np.uint16\n if max(target.shape) < 200:\n dt = np.uint8\n out = np.zeros((s[0] // c, s[1] // c), dtype=dt)\n growth = np.zeros_like(target, dtype=dt)\n res = np.empty(shape=3, dtype=dt)\n steps = np.empty(shape=(max_len_border_line, 2), dtype=dt)\n new_steps = np.empty(shape=(max_len_border_line, 2), dtype=dt)\n _calc(growth, out, walls, target, steps, new_steps, res,\n concentrate_every_n_pixel)\n if c > 1:\n interpolate2dStructuredIDW(out, out == 0)\n out = cv2.resize(out, s[::-1])\n out[walls] = 0\n return out\n",
"role": "user"
},
{
"content": "closestConnectedDistance",
"role": "assistant"
}
] |
def x(growth, walls, target, i, j, steps, new_steps, res):
growth[:] = 0
if target[i, j]:
res[0] = 1
res[1] = i
res[2] = j
return
step = 1
s0, s1 = growth.shape
step_len = 1
new_step_ind = 0
steps[new_step_ind, 0] = i
steps[new_step_ind, 1] = j
growth[i, j] = 1
while True:
for n in range(step_len):
i, j = steps[n]
for ii, jj in DIRECT_NEIGHBOURS:
pi = i + ii
pj = j + jj
if 0 <= pi < s0 and 0 <= pj < s1:
if growth[pi, pj] == 0 and not walls[pi, pj]:
growth[pi, pj] = step
if target[pi, pj]:
res[0] = 1
res[1] = pi
res[2] = pj
return
new_steps[new_step_ind, 0] = pi
new_steps[new_step_ind, 1] = pj
new_step_ind += 1
if new_step_ind == 0:
res[0] = 0
return
step += 1
steps, new_steps = new_steps, steps
step_len = new_step_ind
new_step_ind = 0
|
grow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(growth, walls, target, i, j, steps, new_steps, res):\n growth[:] = 0\n if target[i, j]:\n res[0] = 1\n res[1] = i\n res[2] = j\n return\n step = 1\n s0, s1 = growth.shape\n step_len = 1\n new_step_ind = 0\n steps[new_step_ind, 0] = i\n steps[new_step_ind, 1] = j\n growth[i, j] = 1\n while True:\n for n in range(step_len):\n i, j = steps[n]\n for ii, jj in DIRECT_NEIGHBOURS:\n pi = i + ii\n pj = j + jj\n if 0 <= pi < s0 and 0 <= pj < s1:\n if growth[pi, pj] == 0 and not walls[pi, pj]:\n growth[pi, pj] = step\n if target[pi, pj]:\n res[0] = 1\n res[1] = pi\n res[2] = pj\n return\n new_steps[new_step_ind, 0] = pi\n new_steps[new_step_ind, 1] = pj\n new_step_ind += 1\n if new_step_ind == 0:\n res[0] = 0\n return\n step += 1\n steps, new_steps = new_steps, steps\n step_len = new_step_ind\n new_step_ind = 0\n",
"role": "user"
},
{
"content": "grow",
"role": "assistant"
}
] |
def x(img, minimum_cluster_size=6, remove_small_obj_size=3, reconnect_size=
3, max_n_contours=None, max_len_contour=None, copy=True):
assert minimum_cluster_size > 1
assert reconnect_size % 2, 'ksize needs to be odd'
if max_n_contours is None:
max_n_contours = max(img.shape)
if max_len_contour is None:
max_len_contour = sum(img.shape[:2])
contours = np.zeros(shape=(max_n_contours, max_len_contour, 2), dtype=
np.uint16)
if img.dtype != np.bool:
img = img.astype(bool)
elif copy:
img = img.copy()
if remove_small_obj_size:
remove_small_objects(img, remove_small_obj_size, connectivity=2,
in_place=True)
if reconnect_size:
maximum_filter(img, reconnect_size, output=img)
img = skeletonize(img)
n_contours = _populateContoursArray(img, contours, minimum_cluster_size)
contours = contours[:n_contours]
l = []
for c in contours:
ind = np.zeros(shape=len(c), dtype=bool)
_getValidInd(c, ind)
l.append(c[ind])
return l
|
polylinesFromBinImage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, minimum_cluster_size=6, remove_small_obj_size=3, reconnect_size=\n 3, max_n_contours=None, max_len_contour=None, copy=True):\n assert minimum_cluster_size > 1\n assert reconnect_size % 2, 'ksize needs to be odd'\n if max_n_contours is None:\n max_n_contours = max(img.shape)\n if max_len_contour is None:\n max_len_contour = sum(img.shape[:2])\n contours = np.zeros(shape=(max_n_contours, max_len_contour, 2), dtype=\n np.uint16)\n if img.dtype != np.bool:\n img = img.astype(bool)\n elif copy:\n img = img.copy()\n if remove_small_obj_size:\n remove_small_objects(img, remove_small_obj_size, connectivity=2,\n in_place=True)\n if reconnect_size:\n maximum_filter(img, reconnect_size, output=img)\n img = skeletonize(img)\n n_contours = _populateContoursArray(img, contours, minimum_cluster_size)\n contours = contours[:n_contours]\n l = []\n for c in contours:\n ind = np.zeros(shape=len(c), dtype=bool)\n _getValidInd(c, ind)\n l.append(c[ind])\n return l\n",
"role": "user"
},
{
"content": "polylinesFromBinImage",
"role": "assistant"
}
] |
def x(arr, pos=None):
r = arr.min(), arr.max()
hist, bin_edges = np.histogram(arr, bins=2 * int(r[1] - r[0]), range=r)
hist = np.asfarray(hist) / hist.sum()
cdf = np.cumsum(hist)
if pos is None:
return cdf
i = np.argmax(cdf > pos)
return bin_edges[i]
|
cdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, pos=None):\n r = arr.min(), arr.max()\n hist, bin_edges = np.histogram(arr, bins=2 * int(r[1] - r[0]), range=r)\n hist = np.asfarray(hist) / hist.sum()\n cdf = np.cumsum(hist)\n if pos is None:\n return cdf\n i = np.argmax(cdf > pos)\n return bin_edges[i]\n",
"role": "user"
},
{
"content": "cdf",
"role": "assistant"
}
] |
def x(arr, shape, d01=None, p01=None):
for i, j, s0, s1 in subCell2DSlices(arr, shape, d01, p01):
yield i, j, arr[s0, s1]
|
subCell2DGenerator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, shape, d01=None, p01=None):\n for i, j, s0, s1 in subCell2DSlices(arr, shape, d01, p01):\n yield i, j, arr[s0, s1]\n",
"role": "user"
},
{
"content": "subCell2DGenerator",
"role": "assistant"
}
] |
def x(arr, shape, d01=None, p01=None):
if p01 is not None:
yinit, xinit = p01
else:
xinit, yinit = 0, 0
x, y = xinit, yinit
g0, g1 = shape
s0, s1 = arr.shape[:2]
if d01 is not None:
d0, d1 = d01
else:
d0, d1 = s0 / g0, s1 / g1
y1 = d0 + yinit
for i in range(g0):
for j in range(g1):
x1 = x + d1
yield i, j, slice(max(0, _rint(y)), max(0, _rint(y1))), slice(max
(0, _rint(x)), max(0, _rint(x1)))
x = x1
y = y1
y1 = y + d0
x = xinit
|
subCell2DSlices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, shape, d01=None, p01=None):\n if p01 is not None:\n yinit, xinit = p01\n else:\n xinit, yinit = 0, 0\n x, y = xinit, yinit\n g0, g1 = shape\n s0, s1 = arr.shape[:2]\n if d01 is not None:\n d0, d1 = d01\n else:\n d0, d1 = s0 / g0, s1 / g1\n y1 = d0 + yinit\n for i in range(g0):\n for j in range(g1):\n x1 = x + d1\n yield i, j, slice(max(0, _rint(y)), max(0, _rint(y1))), slice(max\n (0, _rint(x)), max(0, _rint(x1)))\n x = x1\n y = y1\n y1 = y + d0\n x = xinit\n",
"role": "user"
},
{
"content": "subCell2DSlices",
"role": "assistant"
}
] |
def x(*args, **kwargs):
for _, _, s0, s1 in subCell2DSlices(*args, **kwargs):
yield (s1.start, s1.start, s1.stop), (s0.start, s0.stop, s0.stop)
|
subCell2DCoords
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*args, **kwargs):\n for _, _, s0, s1 in subCell2DSlices(*args, **kwargs):\n yield (s1.start, s1.start, s1.stop), (s0.start, s0.stop, s0.stop)\n",
"role": "user"
},
{
"content": "subCell2DCoords",
"role": "assistant"
}
] |
def x(arr, fn, shape, dtype=None, **kwargs):
sh = list(arr.shape)
sh[:2] = shape
out = np.empty(sh, dtype=dtype)
for i, j, c in subCell2DGenerator(arr, shape, **kwargs):
out[i, j] = fn(c)
return out
|
subCell2DFnArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, fn, shape, dtype=None, **kwargs):\n sh = list(arr.shape)\n sh[:2] = shape\n out = np.empty(sh, dtype=dtype)\n for i, j, c in subCell2DGenerator(arr, shape, **kwargs):\n out[i, j] = fn(c)\n return out\n",
"role": "user"
},
{
"content": "subCell2DFnArray",
"role": "assistant"
}
] |
def x(u, uf, f, fn, k=2.355):
return k / fn * (f ** 2 * abs(u - uf)) / (u * (uf - f))
|
defocusThroughDepth
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(u, uf, f, fn, k=2.355):\n return k / fn * (f ** 2 * abs(u - uf)) / (u * (uf - f))\n",
"role": "user"
},
{
"content": "defocusThroughDepth",
"role": "assistant"
}
] |
def x(arr, kernelXY, modex='reflect', modey='reflect'):
kx, ky = kernelXY
kx //= 2
ky //= 2
nokx = kx == 0
noky = ky == 0
if nokx:
kx = 1
if noky:
ky = 1
s0, s1 = arr.shape
assert ky < s0
assert kx < s1
arr2 = np.zeros((s0 + 2 * ky, s1 + 2 * kx), dtype=arr.dtype)
if kx == 0:
kx = None
arr2[ky:-ky, kx:-kx] = arr
t = arr[:ky]
rb = arr[-1:-ky - 1:-1]
rt = arr[ky - 1::-1]
rr = arr[:, -1:-kx - 1:-1]
l = arr[:, :kx]
tm2 = arr2[:ky, kx:-kx]
bm2 = arr2[-ky:, kx:-kx]
tl2 = arr2[:ky, :kx]
bl2 = arr2[-ky:, :kx]
tr2 = arr2[:ky, -kx:]
br2 = arr2[-ky:, -kx:]
if modey == 'warp':
tm2[:] = t
bm2[:] = rb
tl2[:] = arr2[2 * ky:ky:-1, :kx]
bl2[:] = arr2[-ky - 1:-2 * ky - 1:-1, :kx]
elif modey == 'reflect':
tm2[:] = rt
bm2[:] = rb
if modex == 'reflect':
tl2[:] = arr[ky - 1::-1, kx - 1::-1]
bl2[:] = arr[-1:-ky - 1:-1, kx - 1::-1]
tr2[:] = arr[:ky, -kx:][::-1, ::-1]
br2[:] = arr[-ky:, -kx:][::-1, ::-1]
else:
tl2[:] = arr[ky - 1::-1, -kx:]
bl2[:] = arr[-1:-ky - 1:-1, -kx:]
tr2[:] = arr[ky - 1::-1, :kx]
br2[:] = arr[-1:-ky - 1:-1, :kx]
else:
raise Exception('modey not supported')
if modex == 'wrap':
arr2[ky:-ky, kx - 1::-1] = rr
arr2[ky:-ky, -kx:] = l
elif modex == 'reflect':
arr2[ky:-ky, :kx] = l[:, ::-1]
arr2[ky:-ky, -kx:] = rr
else:
raise Exception('modex not supported')
if nokx:
arr2 = arr2[:, 1:-1]
if noky:
arr2 = arr2[1:-1]
return arr2
|
extendArrayForConvolution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, kernelXY, modex='reflect', modey='reflect'):\n kx, ky = kernelXY\n kx //= 2\n ky //= 2\n nokx = kx == 0\n noky = ky == 0\n if nokx:\n kx = 1\n if noky:\n ky = 1\n s0, s1 = arr.shape\n assert ky < s0\n assert kx < s1\n arr2 = np.zeros((s0 + 2 * ky, s1 + 2 * kx), dtype=arr.dtype)\n if kx == 0:\n kx = None\n arr2[ky:-ky, kx:-kx] = arr\n t = arr[:ky]\n rb = arr[-1:-ky - 1:-1]\n rt = arr[ky - 1::-1]\n rr = arr[:, -1:-kx - 1:-1]\n l = arr[:, :kx]\n tm2 = arr2[:ky, kx:-kx]\n bm2 = arr2[-ky:, kx:-kx]\n tl2 = arr2[:ky, :kx]\n bl2 = arr2[-ky:, :kx]\n tr2 = arr2[:ky, -kx:]\n br2 = arr2[-ky:, -kx:]\n if modey == 'warp':\n tm2[:] = t\n bm2[:] = rb\n tl2[:] = arr2[2 * ky:ky:-1, :kx]\n bl2[:] = arr2[-ky - 1:-2 * ky - 1:-1, :kx]\n elif modey == 'reflect':\n tm2[:] = rt\n bm2[:] = rb\n if modex == 'reflect':\n tl2[:] = arr[ky - 1::-1, kx - 1::-1]\n bl2[:] = arr[-1:-ky - 1:-1, kx - 1::-1]\n tr2[:] = arr[:ky, -kx:][::-1, ::-1]\n br2[:] = arr[-ky:, -kx:][::-1, ::-1]\n else:\n tl2[:] = arr[ky - 1::-1, -kx:]\n bl2[:] = arr[-1:-ky - 1:-1, -kx:]\n tr2[:] = arr[ky - 1::-1, :kx]\n br2[:] = arr[-1:-ky - 1:-1, :kx]\n else:\n raise Exception('modey not supported')\n if modex == 'wrap':\n arr2[ky:-ky, kx - 1::-1] = rr\n arr2[ky:-ky, -kx:] = l\n elif modex == 'reflect':\n arr2[ky:-ky, :kx] = l[:, ::-1]\n arr2[ky:-ky, -kx:] = rr\n else:\n raise Exception('modex not supported')\n if nokx:\n arr2 = arr2[:, 1:-1]\n if noky:\n arr2 = arr2[1:-1]\n return arr2\n",
"role": "user"
},
{
"content": "extendArrayForConvolution",
"role": "assistant"
}
] |
def x(self, board_size=(8, 6), method='Chessboard', images=[], max_images=
100, sensorSize_mm=None, detect_sensible=True):
self._coeffs = {}
self.opts = {'foundPattern': [], 'size': board_size, 'imgs': [],
'imgPoints': []}
self._detect_sensible = detect_sensible
self.method = {'Chessboard': self._findChessboard, 'Symmetric circles':
self._findSymmetricCircles, 'Asymmetric circles': self.
_findAsymmetricCircles, 'Manual': None}[method]
self.max_images = max_images
self.findCount = 0
self.apertureSize = sensorSize_mm
self.objp = self._mkObjPoints(board_size)
if method == 'Asymmetric circles':
i = self.objp[:, 1] % 2 == 1
self.objp[:, 0] *= 2
self.objp[i, 0] += 1
self.objpoints = []
self.mapx, self.mapy = None, None
for n, i in enumerate(images):
print('working on image %s' % n)
if self.addImg(i):
print('OK')
|
calibrate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, board_size=(8, 6), method='Chessboard', images=[], max_images=\n 100, sensorSize_mm=None, detect_sensible=True):\n self._coeffs = {}\n self.opts = {'foundPattern': [], 'size': board_size, 'imgs': [],\n 'imgPoints': []}\n self._detect_sensible = detect_sensible\n self.method = {'Chessboard': self._findChessboard, 'Symmetric circles':\n self._findSymmetricCircles, 'Asymmetric circles': self.\n _findAsymmetricCircles, 'Manual': None}[method]\n self.max_images = max_images\n self.findCount = 0\n self.apertureSize = sensorSize_mm\n self.objp = self._mkObjPoints(board_size)\n if method == 'Asymmetric circles':\n i = self.objp[:, 1] % 2 == 1\n self.objp[:, 0] *= 2\n self.objp[i, 0] += 1\n self.objpoints = []\n self.mapx, self.mapy = None, None\n for n, i in enumerate(images):\n print('working on image %s' % n)\n if self.addImg(i):\n print('OK')\n",
"role": "user"
},
{
"content": "calibrate",
"role": "assistant"
}
] |
def x(self, points, board_size=None):
self.opts['foundPattern'].append(True)
self.findCount += 1
if board_size is not None:
self.objpoints.append(self._mkObjPoints(board_size))
else:
self.objpoints.append(self.objp)
s0 = points.shape[0]
self.opts['imgPoints'].append(np.asarray(points).reshape(s0, 1, 2).
astype(np.float32))
|
addPoints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, points, board_size=None):\n self.opts['foundPattern'].append(True)\n self.findCount += 1\n if board_size is not None:\n self.objpoints.append(self._mkObjPoints(board_size))\n else:\n self.objpoints.append(self.objp)\n s0 = points.shape[0]\n self.opts['imgPoints'].append(np.asarray(points).reshape(s0, 1, 2).\n astype(np.float32))\n",
"role": "user"
},
{
"content": "addPoints",
"role": "assistant"
}
] |
def x(self, shape):
self.img = type('Dummy', (object,), {})
self.img.shape = shape
|
setImgShape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shape):\n self.img = type('Dummy', (object,), {})\n self.img.shape = shape\n",
"role": "user"
},
{
"content": "setImgShape",
"role": "assistant"
}
] |
def x(self, img):
if self.findCount > self.max_images:
raise EnoughImages('have enough images')
return self.addImg(img)
|
addImgStream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img):\n if self.findCount > self.max_images:\n raise EnoughImages('have enough images')\n return self.addImg(img)\n",
"role": "user"
},
{
"content": "addImgStream",
"role": "assistant"
}
] |
def x(self, img):
self.img = imread(img, 'gray', 'uint8')
didFindCorners, corners = self.method()
self.opts['foundPattern'].append(didFindCorners)
if didFindCorners:
self.findCount += 1
self.objpoints.append(self.objp)
self.opts['imgPoints'].append(corners)
return didFindCorners
|
addImg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img):\n self.img = imread(img, 'gray', 'uint8')\n didFindCorners, corners = self.method()\n self.opts['foundPattern'].append(didFindCorners)\n if didFindCorners:\n self.findCount += 1\n self.objpoints.append(self.objp)\n self.opts['imgPoints'].append(corners)\n return didFindCorners\n",
"role": "user"
},
{
"content": "addImg",
"role": "assistant"
}
] |
def x(self):
txt = ''
for key, val in self.coeffs.items():
txt += '%s = %s\n' % (key, val)
return txt
|
getCoeffStr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n txt = ''\n for key, val in self.coeffs.items():\n txt += '%s = %s\\n' % (key, val)\n return txt\n",
"role": "user"
},
{
"content": "getCoeffStr",
"role": "assistant"
}
] |
def x(self, img=None):
assert self.findCount > 0, 'cannot draw chessboard if nothing found'
if img is None:
img = self.img
elif isinstance(img, bool) and not img:
img = np.zeros(shape=self.img.shape, dtype=self.img.dtype)
else:
img = imread(img, dtype='uint8')
gray = False
if img.ndim == 2:
gray = True
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.drawChessboardCorners(img, self.opts['size'], self.opts['imgPoints'
][-1], self.opts['foundPattern'][-1])
if gray:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img
|
drawChessboard
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img=None):\n assert self.findCount > 0, 'cannot draw chessboard if nothing found'\n if img is None:\n img = self.img\n elif isinstance(img, bool) and not img:\n img = np.zeros(shape=self.img.shape, dtype=self.img.dtype)\n else:\n img = imread(img, dtype='uint8')\n gray = False\n if img.ndim == 2:\n gray = True\n img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n cv2.drawChessboardCorners(img, self.opts['size'], self.opts['imgPoints'\n ][-1], self.opts['foundPattern'][-1])\n if gray:\n img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n return img\n",
"role": "user"
},
{
"content": "drawChessboard",
"role": "assistant"
}
] |
def x(self, filename, saveOpts=False):
try:
if not filename.endswith('.%s' % self.ftype):
filename += '.%s' % self.ftype
s = {'coeffs': self.coeffs}
if saveOpts:
s['opts'] = self.opts
np.savez(filename, **s)
return filename
except AttributeError:
raise Exception(
'need to calibrate camera before calibration can be saved to file')
|
writeToFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, saveOpts=False):\n try:\n if not filename.endswith('.%s' % self.ftype):\n filename += '.%s' % self.ftype\n s = {'coeffs': self.coeffs}\n if saveOpts:\n s['opts'] = self.opts\n np.savez(filename, **s)\n return filename\n except AttributeError:\n raise Exception(\n 'need to calibrate camera before calibration can be saved to file')\n",
"role": "user"
},
{
"content": "writeToFile",
"role": "assistant"
}
] |
def x(self, filename):
s = dict(np.load(filename))
try:
self.coeffs = s['coeffs'][()]
except KeyError:
self.coeffs = s
try:
self.opts = s['opts'][()]
except KeyError:
pass
return self.coeffs
|
readFromFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n s = dict(np.load(filename))\n try:\n self.coeffs = s['coeffs'][()]\n except KeyError:\n self.coeffs = s\n try:\n self.opts = s['opts'][()]\n except KeyError:\n pass\n return self.coeffs\n",
"role": "user"
},
{
"content": "readFromFile",
"role": "assistant"
}
] |
def x(self, points, keepSize=False):
s = self.img.shape
cam = self.coeffs['cameraMatrix']
d = self.coeffs['distortionCoeffs']
pts = np.asarray(points, dtype=np.float32)
if pts.ndim == 2:
pts = np.expand_dims(pts, axis=0)
newCameraMatrix, roi = cv2.getOptimalNewCameraMatrix(cam, d, s[::-1], 1,
s[::-1])
if not keepSize:
xx, yy = roi[:2]
pts[0, 0] -= xx
pts[0, 1] -= yy
return cv2.undistortPoints(pts, cam, d, P=newCameraMatrix)
|
undistortPoints
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, points, keepSize=False):\n s = self.img.shape\n cam = self.coeffs['cameraMatrix']\n d = self.coeffs['distortionCoeffs']\n pts = np.asarray(points, dtype=np.float32)\n if pts.ndim == 2:\n pts = np.expand_dims(pts, axis=0)\n newCameraMatrix, roi = cv2.getOptimalNewCameraMatrix(cam, d, s[::-1], 1,\n s[::-1])\n if not keepSize:\n xx, yy = roi[:2]\n pts[0, 0] -= xx\n pts[0, 1] -= yy\n return cv2.undistortPoints(pts, cam, d, P=newCameraMatrix)\n",
"role": "user"
},
{
"content": "undistortPoints",
"role": "assistant"
}
] |
def x(self, image, keepSize=False, borderValue=0):
image = imread(image)
h, w = image.shape[:2]
mapx, mapy = self.getUndistortRectifyMap(w, h)
self.img = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderMode=
cv2.BORDER_CONSTANT, borderValue=borderValue)
if not keepSize:
xx, yy, ww, hh = self.roi
self.img = self.img[yy:yy + hh, xx:xx + ww]
return self.img
|
correct
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, keepSize=False, borderValue=0):\n image = imread(image)\n h, w = image.shape[:2]\n mapx, mapy = self.getUndistortRectifyMap(w, h)\n self.img = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderMode=\n cv2.BORDER_CONSTANT, borderValue=borderValue)\n if not keepSize:\n xx, yy, ww, hh = self.roi\n self.img = self.img[yy:yy + hh, xx:xx + ww]\n return self.img\n",
"role": "user"
},
{
"content": "correct",
"role": "assistant"
}
] |
def x(self, image):
image = imread(image)
imgHeight, imgWidth = image.shape[:2]
mapx, mapy = self.getDistortRectifyMap(imgWidth, imgHeight)
return cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderValue=(0, 0, 0)
)
|
distortImage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image):\n image = imread(image)\n imgHeight, imgWidth = image.shape[:2]\n mapx, mapy = self.getDistortRectifyMap(imgWidth, imgHeight)\n return cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderValue=(0, 0, 0)\n )\n",
"role": "user"
},
{
"content": "distortImage",
"role": "assistant"
}
] |
def x(self):
c = self.coeffs['cameraMatrix']
fx = c[0][0]
fy = c[1][1]
cx = c[0][2]
cy = c[1][2]
k1, k2, p1, p2, k3 = tuple(self.coeffs['distortionCoeffs'].tolist()[0])
return fx, fy, cx, cy, k1, k2, k3, p1, p2
|
getCameraParams
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n c = self.coeffs['cameraMatrix']\n fx = c[0][0]\n fy = c[1][1]\n cx = c[0][2]\n cy = c[1][2]\n k1, k2, p1, p2, k3 = tuple(self.coeffs['distortionCoeffs'].tolist()[0])\n return fx, fy, cx, cy, k1, k2, k3, p1, p2\n",
"role": "user"
},
{
"content": "getCameraParams",
"role": "assistant"
}
] |
def x(self, sharpness=0.5):
height, width = self.coeffs['shape']
fx, fy = self.getDeflection(width, height)
r = self.coeffs['reprojectionError']
t = (sharpness ** 2 + r ** 2) ** 0.5
return fx * t, fy * t
|
standardUncertainties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sharpness=0.5):\n height, width = self.coeffs['shape']\n fx, fy = self.getDeflection(width, height)\n r = self.coeffs['reprojectionError']\n t = (sharpness ** 2 + r ** 2) ** 0.5\n return fx * t, fy * t\n",
"role": "user"
},
{
"content": "standardUncertainties",
"role": "assistant"
}
] |
def x(arr, dtype=None):
out = np.zeros_like(arr, dtype=dtype)
_calc(arr, out)
_calc(arr.T, out.T)
return out
|
edgesFromBoolImg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, dtype=None):\n out = np.zeros_like(arr, dtype=dtype)\n _calc(arr, out)\n _calc(arr.T, out.T)\n return out\n",
"role": "user"
},
{
"content": "edgesFromBoolImg",
"role": "assistant"
}
] |
def x(img1, kp1, img2, kp2, matches, color=None, thickness=2, r=15):
if len(img1.shape) == 3:
new_shape = max(img1.shape[0], img2.shape[0]), img1.shape[1
] + img2.shape[1], img1.shape[2]
elif len(img1.shape) == 2:
new_shape = max(img1.shape[0], img2.shape[0]), img1.shape[1
] + img2.shape[1]
new_img = np.zeros(new_shape, type(img1.flat[0]))
new_img[0:img1.shape[0], 0:img1.shape[1]] = img1
new_img[0:img2.shape[0], img1.shape[1]:img1.shape[1] + img2.shape[1]
] = img2
if color:
c = color
for m in matches:
if not color:
c = np.random.randint(0, 256, 3) if len(img1.shape
) == 3 else np.random.randint(0, 256)
end1 = tuple(np.round(kp1[m.trainIdx].pt).astype(int))
end2 = tuple(np.round(kp2[m.queryIdx].pt).astype(int) + np.array([
img1.shape[1], 0]))
cv2.line(new_img, end1, end2, c, thickness)
cv2.circle(new_img, end1, r, c, thickness)
cv2.circle(new_img, end2, r, c, thickness)
return new_img
|
draw_matches
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img1, kp1, img2, kp2, matches, color=None, thickness=2, r=15):\n if len(img1.shape) == 3:\n new_shape = max(img1.shape[0], img2.shape[0]), img1.shape[1\n ] + img2.shape[1], img1.shape[2]\n elif len(img1.shape) == 2:\n new_shape = max(img1.shape[0], img2.shape[0]), img1.shape[1\n ] + img2.shape[1]\n new_img = np.zeros(new_shape, type(img1.flat[0]))\n new_img[0:img1.shape[0], 0:img1.shape[1]] = img1\n new_img[0:img2.shape[0], img1.shape[1]:img1.shape[1] + img2.shape[1]\n ] = img2\n if color:\n c = color\n for m in matches:\n if not color:\n c = np.random.randint(0, 256, 3) if len(img1.shape\n ) == 3 else np.random.randint(0, 256)\n end1 = tuple(np.round(kp1[m.trainIdx].pt).astype(int))\n end2 = tuple(np.round(kp2[m.queryIdx].pt).astype(int) + np.array([\n img1.shape[1], 0]))\n cv2.line(new_img, end1, end2, c, thickness)\n cv2.circle(new_img, end1, r, c, thickness)\n cv2.circle(new_img, end2, r, c, thickness)\n return new_img\n",
"role": "user"
},
{
"content": "draw_matches",
"role": "assistant"
}
] |
def x(self, img):
r = scaleSignalCutParams(img, 0.02)
self.signal_ranges.append(r)
return toUIntArray(img, dtype=np.uint8, range=r)
|
scaleTo8bit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img):\n r = scaleSignalCutParams(img, 0.02)\n self.signal_ranges.append(r)\n return toUIntArray(img, dtype=np.uint8, range=r)\n",
"role": "user"
},
{
"content": "scaleTo8bit",
"role": "assistant"
}
] |
def x(self, img, drawMatches=False):
print('\t Finding points...')
img = self._prepareImage(img)
features, descs = self.detector.detectAndCompute(img, None)
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches_subset = bf.match(descs, self.base_descs)
if not len(matches_subset):
raise Exception('no matches found')
print('\t Filtered Match Count: ', len(matches_subset))
distance = sum([m.distance for m in matches_subset])
print('\t Distance from Key Image: ', distance)
averagePointDistance = distance / len(matches_subset)
print('\t Average Distance: ', averagePointDistance)
kp1 = []
kp2 = []
for match in matches_subset:
kp1.append(self.base_features[match.trainIdx])
kp2.append(features[match.queryIdx])
p1 = np.array([k.pt for k in kp1])
p2 = np.array([k.pt for k in kp2])
H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
if status is None:
raise Exception('no homography found')
else:
inliers = np.sum(status)
print('%d / %d inliers/matched' % (inliers, len(status)))
inlierRatio = inliers / len(status)
if self.minInlierRatio > inlierRatio or inliers < self.minInliers:
raise Exception('bad fit!')
s = np.eye(3, 3)
s[0, 0] = 1 / self._fH
s[1, 1] = 1 / self._fH
H = s.dot(H).dot(np.linalg.inv(s))
if drawMatches:
img = draw_matches(self.base8bit, self.base_features, img, features,
matches_subset[:20], thickness=5)
return (H, inliers, inlierRatio, averagePointDistance, img, features,
descs, len(matches_subset))
|
findHomography
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, img, drawMatches=False):\n print('\\t Finding points...')\n img = self._prepareImage(img)\n features, descs = self.detector.detectAndCompute(img, None)\n bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)\n matches_subset = bf.match(descs, self.base_descs)\n if not len(matches_subset):\n raise Exception('no matches found')\n print('\\t Filtered Match Count: ', len(matches_subset))\n distance = sum([m.distance for m in matches_subset])\n print('\\t Distance from Key Image: ', distance)\n averagePointDistance = distance / len(matches_subset)\n print('\\t Average Distance: ', averagePointDistance)\n kp1 = []\n kp2 = []\n for match in matches_subset:\n kp1.append(self.base_features[match.trainIdx])\n kp2.append(features[match.queryIdx])\n p1 = np.array([k.pt for k in kp1])\n p2 = np.array([k.pt for k in kp2])\n H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)\n if status is None:\n raise Exception('no homography found')\n else:\n inliers = np.sum(status)\n print('%d / %d inliers/matched' % (inliers, len(status)))\n inlierRatio = inliers / len(status)\n if self.minInlierRatio > inlierRatio or inliers < self.minInliers:\n raise Exception('bad fit!')\n s = np.eye(3, 3)\n s[0, 0] = 1 / self._fH\n s[1, 1] = 1 / self._fH\n H = s.dot(H).dot(np.linalg.inv(s))\n if drawMatches:\n img = draw_matches(self.base8bit, self.base_features, img, features,\n matches_subset[:20], thickness=5)\n return (H, inliers, inlierRatio, averagePointDistance, img, features,\n descs, len(matches_subset))\n",
"role": "user"
},
{
"content": "findHomography",
"role": "assistant"
}
] |
def x(s0):
arr = np.zeros((s0, s0), dtype=np.uint8)
col = 255
for rad in np.linspace(s0, s0 / 7.0, 10):
cv2.circle(arr, (0, 0), int(round(rad)), color=col, thickness=-1,
lineType=cv2.LINE_AA)
if col:
col = 0
else:
col = 255
return arr.astype(float)
|
patCircles
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s0):\n arr = np.zeros((s0, s0), dtype=np.uint8)\n col = 255\n for rad in np.linspace(s0, s0 / 7.0, 10):\n cv2.circle(arr, (0, 0), int(round(rad)), color=col, thickness=-1,\n lineType=cv2.LINE_AA)\n if col:\n col = 0\n else:\n col = 255\n return arr.astype(float)\n",
"role": "user"
},
{
"content": "patCircles",
"role": "assistant"
}
] |
def x(s0):
arr = np.zeros((s0, s0), dtype=np.uint8)
col = 255
t = int(s0 / 100.0)
for pos in np.logspace(0.01, 1, 10):
pos = int(round((pos - 0.5) * s0 / 10.0))
cv2.line(arr, (0, pos), (s0, pos), color=col, thickness=t, lineType
=cv2.LINE_AA)
cv2.line(arr, (pos, 0), (pos, s0), color=col, thickness=t, lineType
=cv2.LINE_AA)
return arr.astype(float)
|
patCrossLines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s0):\n arr = np.zeros((s0, s0), dtype=np.uint8)\n col = 255\n t = int(s0 / 100.0)\n for pos in np.logspace(0.01, 1, 10):\n pos = int(round((pos - 0.5) * s0 / 10.0))\n cv2.line(arr, (0, pos), (s0, pos), color=col, thickness=t, lineType\n =cv2.LINE_AA)\n cv2.line(arr, (pos, 0), (pos, s0), color=col, thickness=t, lineType\n =cv2.LINE_AA)\n return arr.astype(float)\n",
"role": "user"
},
{
"content": "patCrossLines",
"role": "assistant"
}
] |
def x(s0):
arr = np.zeros((s0, s0), dtype=np.uint8)
col = 255
t = int(s0 / 100.0)
for pos in np.linspace(0, np.pi / 2, 15):
p0 = int(round(np.sin(pos) * s0 * 2))
p1 = int(round(np.cos(pos) * s0 * 2))
cv2.line(arr, (0, 0), (p0, p1), color=col, thickness=t, lineType=
cv2.LINE_AA)
return arr.astype(float)
|
patStarLines
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s0):\n arr = np.zeros((s0, s0), dtype=np.uint8)\n col = 255\n t = int(s0 / 100.0)\n for pos in np.linspace(0, np.pi / 2, 15):\n p0 = int(round(np.sin(pos) * s0 * 2))\n p1 = int(round(np.cos(pos) * s0 * 2))\n cv2.line(arr, (0, 0), (p0, p1), color=col, thickness=t, lineType=\n cv2.LINE_AA)\n return arr.astype(float)\n",
"role": "user"
},
{
"content": "patStarLines",
"role": "assistant"
}
] |
def x(s0, n=72, vhigh=255, vlow=0, antiasing=False):
arr = np.full((s0, s0), vlow, dtype=np.uint8)
c = int(round(s0 / 2.0))
s = 2 * np.pi / (2 * n)
step = 0
for i in range(2 * n):
p0 = round(c + np.sin(step) * 2 * s0)
p1 = round(c + np.cos(step) * 2 * s0)
step += s
p2 = round(c + np.sin(step) * 2 * s0)
p3 = round(c + np.cos(step) * 2 * s0)
pts = np.array(((c, c), (p0, p1), (p2, p3)), dtype=int)
cv2.fillConvexPoly(arr, pts, color=vhigh if i % 2 else vlow,
lineType=cv2.LINE_AA if antiasing else 0)
arr[c, c] = 0
return arr.astype(float)
|
patSiemensStar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s0, n=72, vhigh=255, vlow=0, antiasing=False):\n arr = np.full((s0, s0), vlow, dtype=np.uint8)\n c = int(round(s0 / 2.0))\n s = 2 * np.pi / (2 * n)\n step = 0\n for i in range(2 * n):\n p0 = round(c + np.sin(step) * 2 * s0)\n p1 = round(c + np.cos(step) * 2 * s0)\n step += s\n p2 = round(c + np.sin(step) * 2 * s0)\n p3 = round(c + np.cos(step) * 2 * s0)\n pts = np.array(((c, c), (p0, p1), (p2, p3)), dtype=int)\n cv2.fillConvexPoly(arr, pts, color=vhigh if i % 2 else vlow,\n lineType=cv2.LINE_AA if antiasing else 0)\n arr[c, c] = 0\n return arr.astype(float)\n",
"role": "user"
},
{
"content": "patSiemensStar",
"role": "assistant"
}
] |
def x(s0):
arr = np.zeros((s0, s0), dtype=np.uint8)
s = int(round(s0 / 100.0))
p1 = 0
pp1 = int(round(s0 / 10.0))
for pos0 in np.linspace(0, s0, 10):
cv2.putText(arr, 'helloworld', (p1, int(round(pos0))), cv2.
FONT_HERSHEY_COMPLEX_SMALL, fontScale=s, color=255, thickness=s,
lineType=cv2.LINE_AA)
if p1:
p1 = 0
else:
p1 = pp1
return arr.astype(float)
|
patText
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s0):\n arr = np.zeros((s0, s0), dtype=np.uint8)\n s = int(round(s0 / 100.0))\n p1 = 0\n pp1 = int(round(s0 / 10.0))\n for pos0 in np.linspace(0, s0, 10):\n cv2.putText(arr, 'helloworld', (p1, int(round(pos0))), cv2.\n FONT_HERSHEY_COMPLEX_SMALL, fontScale=s, color=255, thickness=s,\n lineType=cv2.LINE_AA)\n if p1:\n p1 = 0\n else:\n p1 = pp1\n return arr.astype(float)\n",
"role": "user"
},
{
"content": "patText",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.