source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(img): av = np.mean(img) std = np.std(img) mn = av - 3 * std mx = av + 3 * std return max(img.min(), mn, 0), min(img.max(), mx)
getMinMax
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n av = np.mean(img)\n std = np.std(img)\n mn = av - 3 * std\n mx = av + 3 * std\n return max(img.min(), mn, 0), min(img.max(), mx)\n", "role": "user" }, { "content": "getMinMax", "role": "assistant" } ]
def x(img, img2=None, signal=None, mn_mx_nbins=None, x=None, averageFn= 'AAD', signalFromMultipleImages=False): F_RMS2AAD = (2 / np.pi) ** -0.5 F_NOISE_WITH_MEDIAN = 1 + 1 / 3 ** 2 N_BINS = 100 MEDIAN_KERNEL_SIZE = 3 def x(d): return np.mean(np.abs(d)) * F_RMS2AAD def x(d): return (d ** 2).mean() ** 0.5 if averageFn == 'AAD': averageFn = _averageAbsoluteDeviation else: averageFn = _rootMeanSquare img = np.asfarray(img) if img2 is None: if signal is None: signal = median_filter(img, MEDIAN_KERNEL_SIZE) if signalFromMultipleImages: diff = img - signal else: diff = (img - signal) * F_NOISE_WITH_MEDIAN else: img2 = np.asfarray(img2) diff = img - img2 diff /= 2 ** 0.5 if signal is None: signal = median_filter(0.5 * (img + img2), MEDIAN_KERNEL_SIZE) if mn_mx_nbins is not None: mn, mx, nbins = mn_mx_nbins min_len = 0 else: mn, mx = _getMinMax(signal) s = img.shape min_len = int(s[0] * s[1] * 0.001) if min_len < 1: min_len = 5 nbins = N_BINS if mx - mn < nbins: nbins = int(mx - mn) step = (mx - mn) / nbins y = np.empty(shape=nbins) set_x = False if x is None: set_x = True x = np.empty(shape=nbins) weights = np.zeros(shape=nbins) m = mn for n in range(nbins): ind = np.logical_and(signal >= m, signal <= m + step) m += step d = diff[ind] ld = len(d) if ld >= min_len: weights[n] = ld y[n] = averageFn(d) if set_x: x[n] = m - 0.5 * step return x, y, weights, signal
calcNLF
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, img2=None, signal=None, mn_mx_nbins=None, x=None, averageFn=\n 'AAD', signalFromMultipleImages=False):\n F_RMS2AAD = (2 / np.pi) ** -0.5\n F_NOISE_WITH_MEDIAN = 1 + 1 / 3 ** 2\n N_BINS = 100\n MEDIAN_KERNEL_SIZE = 3\n\n def x(d):\n return np.mean(np.abs(d)) * F_RMS2AAD\n\n def x(d):\n return (d ** 2).mean() ** 0.5\n if averageFn == 'AAD':\n averageFn = _averageAbsoluteDeviation\n else:\n averageFn = _rootMeanSquare\n img = np.asfarray(img)\n if img2 is None:\n if signal is None:\n signal = median_filter(img, MEDIAN_KERNEL_SIZE)\n if signalFromMultipleImages:\n diff = img - signal\n else:\n diff = (img - signal) * F_NOISE_WITH_MEDIAN\n else:\n img2 = np.asfarray(img2)\n diff = img - img2\n diff /= 2 ** 0.5\n if signal is None:\n signal = median_filter(0.5 * (img + img2), MEDIAN_KERNEL_SIZE)\n if mn_mx_nbins is not None:\n mn, mx, nbins = mn_mx_nbins\n min_len = 0\n else:\n mn, mx = _getMinMax(signal)\n s = img.shape\n min_len = int(s[0] * s[1] * 0.001)\n if min_len < 1:\n min_len = 5\n nbins = N_BINS\n if mx - mn < nbins:\n nbins = int(mx - mn)\n step = (mx - mn) / nbins\n y = np.empty(shape=nbins)\n set_x = False\n if x is None:\n set_x = True\n x = np.empty(shape=nbins)\n weights = np.zeros(shape=nbins)\n m = mn\n for n in range(nbins):\n ind = np.logical_and(signal >= m, signal <= m + step)\n m += step\n d = diff[ind]\n ld = len(d)\n if ld >= min_len:\n weights[n] = ld\n y[n] = averageFn(d)\n if set_x:\n x[n] = m - 0.5 * step\n return x, y, weights, signal\n", "role": "user" }, { "content": "calcNLF", "role": "assistant" } ]
def x(x, y, z, order=3): ncols = (order + 1) ** 2 G = np.zeros((x.size, ncols)) ij = itertools.product(list(range(order + 1)), list(range(order + 1))) for k, (i, j) in enumerate(ij): G[:, k] = x ** i * y ** j m = np.linalg.lstsq(G, z)[0] return m
polyfit2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, z, order=3):\n ncols = (order + 1) ** 2\n G = np.zeros((x.size, ncols))\n ij = itertools.product(list(range(order + 1)), list(range(order + 1)))\n for k, (i, j) in enumerate(ij):\n G[:, k] = x ** i * y ** j\n m = np.linalg.lstsq(G, z)[0]\n return m\n", "role": "user" }, { "content": "polyfit2d", "role": "assistant" } ]
def x(arr, mask=None, order=3, replace_all=False, copy=True, outgrid=None): s0, s1 = arr.shape if mask is None: if outgrid is None: y, x = np.mgrid[:float(s0), :float(s1)] p = polyfit2d(x.flatten(), y.flatten(), arr.flatten(), order) return polyval2d(x, y, p, dtype=arr.dtype) mask = np.zeros_like(arr, dtype=bool) elif mask.sum() == 0 and not replace_all and outgrid is None: return arr valid = ~mask y, x = np.where(valid) z = arr[valid] p = polyfit2d(x, y, z, order) if outgrid is not None: yy, xx = outgrid elif replace_all: yy, xx = np.mgrid[:float(s0), :float(s1)] else: yy, xx = np.where(mask) new = polyval2d(xx, yy, p, dtype=arr.dtype) if outgrid is not None or replace_all: return new if copy: arr = arr.copy() arr[mask] = new return arr
polyfit2dGrid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, mask=None, order=3, replace_all=False, copy=True, outgrid=None):\n s0, s1 = arr.shape\n if mask is None:\n if outgrid is None:\n y, x = np.mgrid[:float(s0), :float(s1)]\n p = polyfit2d(x.flatten(), y.flatten(), arr.flatten(), order)\n return polyval2d(x, y, p, dtype=arr.dtype)\n mask = np.zeros_like(arr, dtype=bool)\n elif mask.sum() == 0 and not replace_all and outgrid is None:\n return arr\n valid = ~mask\n y, x = np.where(valid)\n z = arr[valid]\n p = polyfit2d(x, y, z, order)\n if outgrid is not None:\n yy, xx = outgrid\n elif replace_all:\n yy, xx = np.mgrid[:float(s0), :float(s1)]\n else:\n yy, xx = np.where(mask)\n new = polyval2d(xx, yy, p, dtype=arr.dtype)\n if outgrid is not None or replace_all:\n return new\n if copy:\n arr = arr.copy()\n arr[mask] = new\n return arr\n", "role": "user" }, { "content": "polyfit2dGrid", "role": "assistant" } ]
def x(arr, relative=False, f=0, refinePosition=True, max_pos=100, return_pos_arr=False): s0, s1 = arr.shape[:2] if max_pos >= s1: x = np.arange(s1) else: x = np.rint(np.linspace(0, s1 - 1, min(max_pos, s1))).astype(int) res = np.empty((s0, s0), dtype=float) _lineSumXY(x, res, arr, f) if return_pos_arr: return res i, j = np.unravel_index(np.nanargmin(res), res.shape) if refinePosition: try: sub = res[i - 1:i + 2, j - 1:j + 2] ii, jj = center_of_mass(sub) if not np.isnan(ii): i += ii - 1 if not np.isnan(jj): j += jj - 1 except TypeError: pass if not relative: return i, j hs = (s0 - 1) / 2 return i - hs, j - hs
minimumLineInArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, relative=False, f=0, refinePosition=True, max_pos=100,\n return_pos_arr=False):\n s0, s1 = arr.shape[:2]\n if max_pos >= s1:\n x = np.arange(s1)\n else:\n x = np.rint(np.linspace(0, s1 - 1, min(max_pos, s1))).astype(int)\n res = np.empty((s0, s0), dtype=float)\n _lineSumXY(x, res, arr, f)\n if return_pos_arr:\n return res\n i, j = np.unravel_index(np.nanargmin(res), res.shape)\n if refinePosition:\n try:\n sub = res[i - 1:i + 2, j - 1:j + 2]\n ii, jj = center_of_mass(sub)\n if not np.isnan(ii):\n i += ii - 1\n if not np.isnan(jj):\n j += jj - 1\n except TypeError:\n pass\n if not relative:\n return i, j\n hs = (s0 - 1) / 2\n return i - hs, j - hs\n", "role": "user" }, { "content": "minimumLineInArray", "role": "assistant" } ]
def x(self, threshold): if not threshold: return rows, cols = self.img.shape tx = int(cols * threshold) ty = int(rows * threshold) crow, ccol = rows // 2, cols // 2 self.fshift[crow - tx:crow + tx, ccol - ty:ccol + ty] = 0
highPassFilter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, threshold):\n if not threshold:\n return\n rows, cols = self.img.shape\n tx = int(cols * threshold)\n ty = int(rows * threshold)\n crow, ccol = rows // 2, cols // 2\n self.fshift[crow - tx:crow + tx, ccol - ty:ccol + ty] = 0\n", "role": "user" }, { "content": "highPassFilter", "role": "assistant" } ]
def x(self, threshold): if not threshold: return rows, cols = self.img.shape tx = int(cols * threshold * 0.25) ty = int(rows * threshold * 0.25) self.fshift[rows - tx:rows, :] = 0 self.fshift[0:tx, :] = 0 self.fshift[:, 0:ty] = 0 self.fshift[:, cols - ty:cols] = 0
lowPassFilter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, threshold):\n if not threshold:\n return\n rows, cols = self.img.shape\n tx = int(cols * threshold * 0.25)\n ty = int(rows * threshold * 0.25)\n self.fshift[rows - tx:rows, :] = 0\n self.fshift[0:tx, :] = 0\n self.fshift[:, 0:ty] = 0\n self.fshift[:, cols - ty:cols] = 0\n", "role": "user" }, { "content": "lowPassFilter", "role": "assistant" } ]
def x(self): f_ishift = np.fft.ifftshift(self.fshift) return np.real(np.fft.ifft2(f_ishift))
reconstructImage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n f_ishift = np.fft.ifftshift(self.fshift)\n return np.real(np.fft.ifft2(f_ishift))\n", "role": "user" }, { "content": "reconstructImage", "role": "assistant" } ]
def x(x, y, v, grid, power=2): n = len(v) gx = grid.shape[0] gy = grid.shape[1] for i in range(gx): for j in range(gy): overPx = False sumWi = 0.0 value = 0.0 for k in range(n): xx = x[k] yy = y[k] vv = v[k] if xx == i and yy == j: grid[i, j] = vv overPx = True break wi = 1 / ((xx - i) ** 2 + (yy - j) ** 2) ** (0.5 * power) sumWi += wi value += wi * vv if not overPx: grid[i, j] = value / sumWi return grid
interpolate2dUnstructuredIDW
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, v, grid, power=2):\n n = len(v)\n gx = grid.shape[0]\n gy = grid.shape[1]\n for i in range(gx):\n for j in range(gy):\n overPx = False\n sumWi = 0.0\n value = 0.0\n for k in range(n):\n xx = x[k]\n yy = y[k]\n vv = v[k]\n if xx == i and yy == j:\n grid[i, j] = vv\n overPx = True\n break\n wi = 1 / ((xx - i) ** 2 + (yy - j) ** 2) ** (0.5 * power)\n sumWi += wi\n value += wi * vv\n if not overPx:\n grid[i, j] = value / sumWi\n return grid\n", "role": "user" }, { "content": "interpolate2dUnstructuredIDW", "role": "assistant" } ]
def x(image, orientations=8, ksize=(5, 5)): s0, s1 = image.shape[:2] try: k = hog.kernels[str(ksize) + str(orientations)] except KeyError: k = _mkConvKernel(ksize, orientations) hog.kernels[str(ksize) + str(orientations)] = k out = np.empty(shape=(s0, s1, orientations)) image[np.isnan(image)] = 0 for i in range(orientations): out[:, :, i] = convolve(image, k[i]) return out
hog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, orientations=8, ksize=(5, 5)):\n s0, s1 = image.shape[:2]\n try:\n k = hog.kernels[str(ksize) + str(orientations)]\n except KeyError:\n k = _mkConvKernel(ksize, orientations)\n hog.kernels[str(ksize) + str(orientations)] = k\n out = np.empty(shape=(s0, s1, orientations))\n image[np.isnan(image)] = 0\n for i in range(orientations):\n out[:, :, i] = convolve(image, k[i])\n return out\n", "role": "user" }, { "content": "hog", "role": "assistant" } ]
def x(hog, grid=(10, 10), radCircle=None): s0, s1, nang = hog.shape angles = np.linspace(0, np.pi, nang + 1)[:-1] cx, cy = s0 // (2 * grid[0]), s1 // (2 * grid[1]) rx, ry = cx, cy if radCircle is None: radCircle = max(1, rx // 10) out = np.zeros((s0, s1), dtype=np.uint8) pts = np.empty(shape=(1, 2 * nang, 2), dtype=np.int32) samplesHOG = subCell2DFnArray(hog, lambda arr: arr[cx, cy], grid) mxHOG = samplesHOG.max() slices = list(subCell2DSlices(out, grid)) m = 0 for m, hhh in enumerate(samplesHOG.reshape(grid[0] * grid[1], nang)): hhmax = hhh.max() hh = hhh / hhmax sout = out[slices[m][2:4]] for n, (o, a) in enumerate(zip(hh, angles)): pts[0, n, 0] = cx + np.cos(a) * o * rx pts[0, n, 1] = cy + np.sin(a) * o * ry pts[0, n + nang, 0] = cx + np.cos(a + np.pi) * o * rx pts[0, n + nang, 1] = cy + np.sin(a + np.pi) * o * ry cv2.fillPoly(sout, pts, int(255 * hhmax / mxHOG)) cv2.circle(sout, (cx, cy), radCircle, 0, thickness=-1) return out
visualize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hog, grid=(10, 10), radCircle=None):\n s0, s1, nang = hog.shape\n angles = np.linspace(0, np.pi, nang + 1)[:-1]\n cx, cy = s0 // (2 * grid[0]), s1 // (2 * grid[1])\n rx, ry = cx, cy\n if radCircle is None:\n radCircle = max(1, rx // 10)\n out = np.zeros((s0, s1), dtype=np.uint8)\n pts = np.empty(shape=(1, 2 * nang, 2), dtype=np.int32)\n samplesHOG = subCell2DFnArray(hog, lambda arr: arr[cx, cy], grid)\n mxHOG = samplesHOG.max()\n slices = list(subCell2DSlices(out, grid))\n m = 0\n for m, hhh in enumerate(samplesHOG.reshape(grid[0] * grid[1], nang)):\n hhmax = hhh.max()\n hh = hhh / hhmax\n sout = out[slices[m][2:4]]\n for n, (o, a) in enumerate(zip(hh, angles)):\n pts[0, n, 0] = cx + np.cos(a) * o * rx\n pts[0, n, 1] = cy + np.sin(a) * o * ry\n pts[0, n + nang, 0] = cx + np.cos(a + np.pi) * o * rx\n pts[0, n + nang, 1] = cy + np.sin(a + np.pi) * o * ry\n cv2.fillPoly(sout, pts, int(255 * hhmax / mxHOG))\n cv2.circle(sout, (cx, cy), radCircle, 0, thickness=-1)\n return out\n", "role": "user" }, { "content": "visualize", "role": "assistant" } ]
def x(arr, method='KW replace + Gauss', mask=None): assert method in ppMETHODS, 'post processing method (%s) must be one of %s' % ( method, ppMETHODS) if method == 'POLY replace': return polyfit2dGrid(arr, mask, order=2, replace_all=True) elif method == 'KW replace': return function(arr, mask, replace_all=True) elif method == 'POLY repair': return polynomial(arr, mask, replace_all=False) elif method == 'KW repair': return function(arr, mask, replace_all=False) elif method == 'KW repair + Median': return median_filter(function(arr, mask, replace_all=False), min( method.shape) // 20) elif method == 'KW repair + Gauss': return gaussian_filter(function(arr, mask, replace_all=False), min( arr.shape) // 20) elif method == 'AoV repair': return function(arr, mask, fn=lambda XY, a: angleOfView(XY, method. shape, a=a), guess=0.01, down_scale_factor=1) elif method == 'AoV replace': return function(arr, mask, fn=lambda XY, a: angleOfView(XY, arr. shape, a=a), guess=0.01, replace_all=True, down_scale_factor=1)
postProcessing
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, method='KW replace + Gauss', mask=None):\n assert method in ppMETHODS, 'post processing method (%s) must be one of %s' % (\n method, ppMETHODS)\n if method == 'POLY replace':\n return polyfit2dGrid(arr, mask, order=2, replace_all=True)\n elif method == 'KW replace':\n return function(arr, mask, replace_all=True)\n elif method == 'POLY repair':\n return polynomial(arr, mask, replace_all=False)\n elif method == 'KW repair':\n return function(arr, mask, replace_all=False)\n elif method == 'KW repair + Median':\n return median_filter(function(arr, mask, replace_all=False), min(\n method.shape) // 20)\n elif method == 'KW repair + Gauss':\n return gaussian_filter(function(arr, mask, replace_all=False), min(\n arr.shape) // 20)\n elif method == 'AoV repair':\n return function(arr, mask, fn=lambda XY, a: angleOfView(XY, method.\n shape, a=a), guess=0.01, down_scale_factor=1)\n elif method == 'AoV replace':\n return function(arr, mask, fn=lambda XY, a: angleOfView(XY, arr.\n shape, a=a), guess=0.01, replace_all=True, down_scale_factor=1)\n", "role": "user" }, { "content": "postProcessing", "role": "assistant" } ]
def x(img, border=None): if border is None: pass elif len(border) == 2: s0 = slice(border[0][1], border[1][1]) s1 = slice(border[0][0], border[1][0]) img = img[s0, s1] elif len(border) == 4: x = np.unique(border[:, 0]) y = np.unique(border[:, 1]) if len(x) == 2 and len(y) == 2: s0 = slice(y[0], y[1]) s1 = slice(x[0], x[1]) img = img[s0, s1] else: img = simplePerspectiveTransform(img, border) else: raise Exception('[border] input wrong') return img
rmBorder
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, border=None):\n if border is None:\n pass\n elif len(border) == 2:\n s0 = slice(border[0][1], border[1][1])\n s1 = slice(border[0][0], border[1][0])\n img = img[s0, s1]\n elif len(border) == 4:\n x = np.unique(border[:, 0])\n y = np.unique(border[:, 1])\n if len(x) == 2 and len(y) == 2:\n s0 = slice(y[0], y[1])\n s1 = slice(x[0], x[1])\n img = img[s0, s1]\n else:\n img = simplePerspectiveTransform(img, border)\n else:\n raise Exception('[border] input wrong')\n return img\n", "role": "user" }, { "content": "rmBorder", "role": "assistant" } ]
def x(self, image, mask=None): self._last_diff = diff = image - self.noSTE ste = diff > self.threshold removeSinglePixels(ste) self.mask_clean = clean = ~ste if mask is not None: clean = np.logical_and(mask, clean) self.mma.update(image, clean) if self.save_ste_indices: self.mask_STE += ste return self
addImage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, mask=None):\n self._last_diff = diff = image - self.noSTE\n ste = diff > self.threshold\n removeSinglePixels(ste)\n self.mask_clean = clean = ~ste\n if mask is not None:\n clean = np.logical_and(mask, clean)\n self.mma.update(image, clean)\n if self.save_ste_indices:\n self.mask_STE += ste\n return self\n", "role": "user" }, { "content": "addImage", "role": "assistant" } ]
def x(self): s = self.noSTE.shape return np.sum(self.mask_STE) / (s[0] * s[1])
relativeAreaSTE
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n s = self.noSTE.shape\n return np.sum(self.mask_STE) / (s[0] * s[1])\n", "role": "user" }, { "content": "relativeAreaSTE", "role": "assistant" } ]
def x(self, bins=10, range=None): v = np.abs(self._last_diff[self.mask_STE]) return np.histogram(v, bins, range)
intensityDistributionSTE
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bins=10, range=None):\n v = np.abs(self._last_diff[self.mask_STE])\n return np.histogram(v, bins, range)\n", "role": "user" }, { "content": "intensityDistributionSTE", "role": "assistant" } ]
def x(img, dtype=None, cutNegative=True, cutHigh=True, range=None, copy=True): mn, mx = None, None if range is not None: mn, mx = range if dtype is None: if mx is None: mx = np.nanmax(img) dtype = np.uint16 if mx > 255 else np.uint8 dtype = np.dtype(dtype) if dtype == img.dtype: return img b = {'uint8': 255, 'uint16': 65535, 'uint32': 4294967295, 'uint64': 18446744073709551615}[dtype.name] if copy: img = img.copy() if range is not None: img = np.asfarray(img) img -= mn img *= b / (mx - mn) img = np.clip(img, 0, b) else: if cutNegative: img[img < 0] = 0 else: mn = np.min(img) if mn < 0: img -= mn if cutHigh: img[img > b] = b else: mx = np.nanmax(img) img = np.asfarray(img) * (float(b) / mx) img = img.astype(dtype) return img
toUIntArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, dtype=None, cutNegative=True, cutHigh=True, range=None, copy=True):\n mn, mx = None, None\n if range is not None:\n mn, mx = range\n if dtype is None:\n if mx is None:\n mx = np.nanmax(img)\n dtype = np.uint16 if mx > 255 else np.uint8\n dtype = np.dtype(dtype)\n if dtype == img.dtype:\n return img\n b = {'uint8': 255, 'uint16': 65535, 'uint32': 4294967295, 'uint64': \n 18446744073709551615}[dtype.name]\n if copy:\n img = img.copy()\n if range is not None:\n img = np.asfarray(img)\n img -= mn\n img *= b / (mx - mn)\n img = np.clip(img, 0, b)\n else:\n if cutNegative:\n img[img < 0] = 0\n else:\n mn = np.min(img)\n if mn < 0:\n img -= mn\n if cutHigh:\n img[img > b] = b\n else:\n mx = np.nanmax(img)\n img = np.asfarray(img) * (float(b) / mx)\n img = img.astype(dtype)\n return img\n", "role": "user" }, { "content": "toUIntArray", "role": "assistant" } ]
def x(img): _D = {(1): np.float32, (2): np.float32, (4): np.float64, (8): np.float64} return img.astype(_D[img.itemsize])
toFloatArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n _D = {(1): np.float32, (2): np.float32, (4): np.float64, (8): np.float64}\n return img.astype(_D[img.itemsize])\n", "role": "user" }, { "content": "toFloatArray", "role": "assistant" } ]
def x(arr): d = arr.dtype if d.kind == 'u': arr = arr.astype({(1): np.int16, (2): np.int32, (4): np.int64}[d. itemsize]) return arr
toNoUintArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr):\n d = arr.dtype\n if d.kind == 'u':\n arr = arr.astype({(1): np.int16, (2): np.int32, (4): np.int64}[d.\n itemsize])\n return arr\n", "role": "user" }, { "content": "toNoUintArray", "role": "assistant" } ]
def x(img): return np.average(img, axis=-1, weights=(0.299, 0.587, 0.114)).astype(img .dtype)
toGray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n return np.average(img, axis=-1, weights=(0.299, 0.587, 0.114)).astype(img\n .dtype)\n", "role": "user" }, { "content": "toGray", "role": "assistant" } ]
def x(img): out = _calc(img) if img.dtype == np.uint8: out = (255 * out).astype(np.uint8) return out
rgChromaticity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n out = _calc(img)\n if img.dtype == np.uint8:\n out = (255 * out).astype(np.uint8)\n return out\n", "role": "user" }, { "content": "rgChromaticity", "role": "assistant" } ]
def x(img): out = _calc(img) peakWavelengths = 570, 540, 440 for n, p in enumerate(peakWavelengths): out[..., n] *= p return out.sum(axis=2)
monochromaticWavelength
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n out = _calc(img)\n peakWavelengths = 570, 540, 440\n for n, p in enumerate(peakWavelengths):\n out[..., n] *= p\n return out.sum(axis=2)\n", "role": "user" }, { "content": "monochromaticWavelength", "role": "assistant" } ]
def x(img): s = img.shape if len(s) == 3: if s[2] in (3, 4): out = np.empty((s[1], s[0], s[2]), dtype=img.dtype) for i in range(s[2]): out[:, :, i] = np.rot90(img[:, :, i]) else: out = np.empty((s[0], s[2], s[1]), dtype=img.dtype) for i in range(s[0]): out[i] = np.rot90(img[i]) elif len(s) == 2: out = np.rot90(img) elif len(s) == 4 and s[3] in (3, 4): out = np.empty((s[0], s[2], s[1], s[3]), dtype=img.dtype) for i in range(s[0]): for j in range(s[3]): out[i, :, :, j] = np.rot90(img[i, :, :, j]) else: NotImplemented return out
rot90
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img):\n s = img.shape\n if len(s) == 3:\n if s[2] in (3, 4):\n out = np.empty((s[1], s[0], s[2]), dtype=img.dtype)\n for i in range(s[2]):\n out[:, :, i] = np.rot90(img[:, :, i])\n else:\n out = np.empty((s[0], s[2], s[1]), dtype=img.dtype)\n for i in range(s[0]):\n out[i] = np.rot90(img[i])\n elif len(s) == 2:\n out = np.rot90(img)\n elif len(s) == 4 and s[3] in (3, 4):\n out = np.empty((s[0], s[2], s[1], s[3]), dtype=img.dtype)\n for i in range(s[0]):\n for j in range(s[3]):\n out[i, :, :, j] = np.rot90(img[i, :, :, j])\n else:\n NotImplemented\n return out\n", "role": "user" }, { "content": "rot90", "role": "assistant" } ]
def x(gray, cmap='flame'): if cmap != 'flame': raise NotImplemented mx = 256 lut = np.empty(shape=(256, 3)) cmap = (0, (0, 0, 0)), (0.2, (7, 0, 220)), (0.5, (236, 0, 134)), (0.8, (246, 246, 0)), (1.0, (255, 255, 255)) lastval, lastcol = cmap[0] for step, col in cmap[1:]: val = int(step * mx) for i in range(3): lut[lastval:val, i] = np.linspace(lastcol[i], col[i], val - lastval ) lastcol = col lastval = val s0, s1 = gray.shape out = np.empty(shape=(s0, s1, 3), dtype=np.uint8) for i in range(3): out[..., i] = cv2.LUT(gray, lut[:, i]) return out
applyColorMap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(gray, cmap='flame'):\n if cmap != 'flame':\n raise NotImplemented\n mx = 256\n lut = np.empty(shape=(256, 3))\n cmap = (0, (0, 0, 0)), (0.2, (7, 0, 220)), (0.5, (236, 0, 134)), (0.8,\n (246, 246, 0)), (1.0, (255, 255, 255))\n lastval, lastcol = cmap[0]\n for step, col in cmap[1:]:\n val = int(step * mx)\n for i in range(3):\n lut[lastval:val, i] = np.linspace(lastcol[i], col[i], val - lastval\n )\n lastcol = col\n lastval = val\n s0, s1 = gray.shape\n out = np.empty(shape=(s0, s1, 3), dtype=np.uint8)\n for i in range(3):\n out[..., i] = cv2.LUT(gray, lut[:, i])\n return out\n", "role": "user" }, { "content": "applyColorMap", "role": "assistant" } ]
def x(date, l): return next((i for i, n in enumerate(l) if n[0] < date), len(l))
insertDateIndex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(date, l):\n return next((i for i, n in enumerate(l) if n[0] < date), len(l))\n", "role": "user" }, { "content": "insertDateIndex", "role": "assistant" } ]
def x(l, date): try: date = _toDate(date) i = _insertDateIndex(date, l) - 1 if i == -1: return l[0] return l[i] except (ValueError, TypeError): return l[0]
getFromDate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l, date):\n try:\n date = _toDate(date)\n i = _insertDateIndex(date, l) - 1\n if i == -1:\n return l[0]\n return l[i]\n except (ValueError, TypeError):\n return l[0]\n", "role": "user" }, { "content": "getFromDate", "role": "assistant" } ]
def x(self, typ, light=None): try: d = self._getDate(typ, light) return [self._toDateStr(c[0]) for c in d] except KeyError: return []
dates
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, typ, light=None):\n try:\n d = self._getDate(typ, light)\n return [self._toDateStr(c[0]) for c in d]\n except KeyError:\n return []\n", "role": "user" }, { "content": "dates", "role": "assistant" } ]
def x(self, typ, light=None, date=None): d = self._getDate(typ, light) if date is None: return [c[1] for c in d] return _getFromDate(d, date)[1]
infos
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, typ, light=None, date=None):\n d = self._getDate(typ, light)\n if date is None:\n return [c[1] for c in d]\n return _getFromDate(d, date)[1]\n", "role": "user" }, { "content": "infos", "role": "assistant" } ]
def x(self): c = self.coeffs out = 'camera name: %s' % c['name'] out += '\nmax value: %s' % c['depth'] out += '\nlight spectra: %s' % c['light spectra'] out += '\ndark current:' for date, info, (slope, intercept), error in c['dark current']: out += '\n\t date: %s' % self._toDateStr(date) out += '\n\t\t info: %s; slope:%s, intercept:%s' % (info, slope. shape, intercept.shape) out += '\nflat field:' for light, vals in c['flat field'].items(): out += '\n\t light: %s' % light for date, info, arr, error in vals: out += '\n\t\t date: %s' % self._toDateStr(date) out += '\n\t\t\t info: %s; array:%s' % (info, arr.shape) out += '\nlens:' for light, vals in c['lens'].items(): out += '\n\t light: %s' % light for date, info, coeffs in vals: out += '\n\t\t date: %s' % self._toDateStr(date) out += '\n\t\t\t info: %s; coeffs:%s' % (info, coeffs) out += '\nnoise:' for date, info, nlf_coeff, error in c['noise']: out += '\n\t date: %s' % self._toDateStr(date) out += '\n\t\t info: %s; coeffs:%s' % (info, nlf_coeff) out += '\nPoint spread function:' for light, vals in c['psf'].items(): out += '\n\t light: %s' % light for date, info, psf in vals: out += '\n\t\t date: %s' % self._toDateStr(date) out += '\n\t\t\t info: %s; shape:%s' % (info, psf.shape) return out
overview
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n c = self.coeffs\n out = 'camera name: %s' % c['name']\n out += '\\nmax value: %s' % c['depth']\n out += '\\nlight spectra: %s' % c['light spectra']\n out += '\\ndark current:'\n for date, info, (slope, intercept), error in c['dark current']:\n out += '\\n\\t date: %s' % self._toDateStr(date)\n out += '\\n\\t\\t info: %s; slope:%s, intercept:%s' % (info, slope.\n shape, intercept.shape)\n out += '\\nflat field:'\n for light, vals in c['flat field'].items():\n out += '\\n\\t light: %s' % light\n for date, info, arr, error in vals:\n out += '\\n\\t\\t date: %s' % self._toDateStr(date)\n out += '\\n\\t\\t\\t info: %s; array:%s' % (info, arr.shape)\n out += '\\nlens:'\n for light, vals in c['lens'].items():\n out += '\\n\\t light: %s' % light\n for date, info, coeffs in vals:\n out += '\\n\\t\\t date: %s' % self._toDateStr(date)\n out += '\\n\\t\\t\\t info: %s; coeffs:%s' % (info, coeffs)\n out += '\\nnoise:'\n for date, info, nlf_coeff, error in c['noise']:\n out += '\\n\\t date: %s' % self._toDateStr(date)\n out += '\\n\\t\\t info: %s; coeffs:%s' % (info, nlf_coeff)\n out += '\\nPoint spread function:'\n for light, vals in c['psf'].items():\n out += '\\n\\t light: %s' % light\n for date, info, psf in vals:\n out += '\\n\\t\\t date: %s' % self._toDateStr(date)\n out += '\\n\\t\\t\\t info: %s; shape:%s' % (info, psf.shape)\n return out\n", "role": "user" }, { "content": "overview", "role": "assistant" } ]
def x(self, camera_name, bit_depth=16): self.coeffs['name'] = camera_name self.coeffs['depth'] = bit_depth
setCamera
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, camera_name, bit_depth=16):\n self.coeffs['name'] = camera_name\n self.coeffs['depth'] = bit_depth\n", "role": "user" }, { "content": "setCamera", "role": "assistant" } ]
def x(self, slope, intercept=None, date=None, info='', error=None): date = _toDate(date) self._checkShape(slope) self._checkShape(intercept) d = self.coeffs['dark current'] if intercept is None: data = slope else: data = slope, intercept d.insert(_insertDateIndex(date, d), [date, info, data, error])
addDarkCurrent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, slope, intercept=None, date=None, info='', error=None):\n date = _toDate(date)\n self._checkShape(slope)\n self._checkShape(intercept)\n d = self.coeffs['dark current']\n if intercept is None:\n data = slope\n else:\n data = slope, intercept\n d.insert(_insertDateIndex(date, d), [date, info, data, error])\n", "role": "user" }, { "content": "addDarkCurrent", "role": "assistant" } ]
def x(self, nlf_coeff, date=None, info='', error=None): date = _toDate(date) d = self.coeffs['noise'] d.insert(_insertDateIndex(date, d), [date, info, nlf_coeff, error])
addNoise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nlf_coeff, date=None, info='', error=None):\n date = _toDate(date)\n d = self.coeffs['noise']\n d.insert(_insertDateIndex(date, d), [date, info, nlf_coeff, error])\n", "role": "user" }, { "content": "addNoise", "role": "assistant" } ]
def x(self, psf, date=None, info='', light_spectrum='visible'): self._registerLight(light_spectrum) date = _toDate(date) f = self.coeffs['psf'] if light_spectrum not in f: f[light_spectrum] = [] f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [ date, info, psf])
addPSF
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, psf, date=None, info='', light_spectrum='visible'):\n self._registerLight(light_spectrum)\n date = _toDate(date)\n f = self.coeffs['psf']\n if light_spectrum not in f:\n f[light_spectrum] = []\n f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [\n date, info, psf])\n", "role": "user" }, { "content": "addPSF", "role": "assistant" } ]
def x(self, arr, date=None, info='', error=None, light_spectrum='visible'): self._registerLight(light_spectrum) self._checkShape(arr) date = _toDate(date) f = self.coeffs['flat field'] if light_spectrum not in f: f[light_spectrum] = [] f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [ date, info, arr, error])
addFlatField
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, arr, date=None, info='', error=None, light_spectrum='visible'):\n self._registerLight(light_spectrum)\n self._checkShape(arr)\n date = _toDate(date)\n f = self.coeffs['flat field']\n if light_spectrum not in f:\n f[light_spectrum] = []\n f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [\n date, info, arr, error])\n", "role": "user" }, { "content": "addFlatField", "role": "assistant" } ]
def x(self, lens, date=None, info='', light_spectrum='visible'): self._registerLight(light_spectrum) date = _toDate(date) if not isinstance(lens, LensDistortion): l = LensDistortion() l.readFromFile(lens) lens = l f = self.coeffs['lens'] if light_spectrum not in f: f[light_spectrum] = [] f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [ date, info, lens.coeffs])
addLens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lens, date=None, info='', light_spectrum='visible'):\n self._registerLight(light_spectrum)\n date = _toDate(date)\n if not isinstance(lens, LensDistortion):\n l = LensDistortion()\n l.readFromFile(lens)\n lens = l\n f = self.coeffs['lens']\n if light_spectrum not in f:\n f[light_spectrum] = []\n f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [\n date, info, lens.coeffs])\n", "role": "user" }, { "content": "addLens", "role": "assistant" } ]
def x(self, date=None): self.coeffs['dark current'] = [self.coeffs['dark current'][-1]] self.coeffs['noise'] = [self.coeffs['noise'][-1]] for light in self.coeffs['flat field']: self.coeffs['flat field'][light] = [self.coeffs['flat field'][light ][-1]] for light in self.coeffs['lens']: self.coeffs['lens'][light] = [self.coeffs['lens'][light][-1]]
clearOldCalibrations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, date=None):\n self.coeffs['dark current'] = [self.coeffs['dark current'][-1]]\n self.coeffs['noise'] = [self.coeffs['noise'][-1]]\n for light in self.coeffs['flat field']:\n self.coeffs['flat field'][light] = [self.coeffs['flat field'][light\n ][-1]]\n for light in self.coeffs['lens']:\n self.coeffs['lens'][light] = [self.coeffs['lens'][light][-1]]\n", "role": "user" }, { "content": "clearOldCalibrations", "role": "assistant" } ]
def x(self): def x(item): if type(item) == list: for n, it in enumerate(item): if type(it) == tuple: it = list(it) item[n] = it if type(it) == list: _t(it) if isinstance(it, np.ndarray) and it.shape == s: item[n] = it.T s = self.coeffs['shape'] for item in self.coeffs.values(): if type(item) == dict: for item2 in item.values(): _t(item2) else: _t(item) self.coeffs['shape'] = s[::-1]
transpose
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n\n def x(item):\n if type(item) == list:\n for n, it in enumerate(item):\n if type(it) == tuple:\n it = list(it)\n item[n] = it\n if type(it) == list:\n _t(it)\n if isinstance(it, np.ndarray) and it.shape == s:\n item[n] = it.T\n s = self.coeffs['shape']\n for item in self.coeffs.values():\n if type(item) == dict:\n for item2 in item.values():\n _t(item2)\n else:\n _t(item)\n self.coeffs['shape'] = s[::-1]\n", "role": "user" }, { "content": "transpose", "role": "assistant" } ]
def x(self, images, bgImages=None, exposure_time=None, light_spectrum=None, threshold=0.1, keep_size=True, date=None, deblur=False, denoise=False): print('CORRECT CAMERA ...') if isinstance(date, string_types) or date is None: date = {'dark current': date, 'flat field': date, 'lens': date, 'noise': date, 'psf': date} if light_spectrum is None: try: light_spectrum = self.coeffs['light spectra'][0] except IndexError: pass if type(images) in (list, tuple) or isinstance(images, np.ndarray ) and images.ndim == 3 and images.shape[-1] not in (3, 4): if len(images) > 1: n = self.coeffs['noise'] if self.noise_level_function is None and len(n): n = _getFromDate(n, date['noise'])[2] self.noise_level_function = (lambda x: NoiseLevelFunction. boundedFunction(x, *n)) print('... remove single-time-effects from images ') ste = SingleTimeEffectDetection(images, nStd=4, noise_level_function=self.noise_level_function) image = ste.noSTE if self.noise_level_function is None: self.noise_level_function = ste.noise_level_function else: image = np.asfarray(imread(images[0], dtype=np.float)) else: image = np.asfarray(imread(images, dtype=np.float)) self._checkShape(image) self.last_light_spectrum = light_spectrum self.last_img = image try: self._correctDarkCurrent(image, exposure_time, bgImages, date[ 'dark current']) except Exception as errm: print('Error: %s' % errm) try: self._correctVignetting(image, light_spectrum, date['flat field']) except Exception as errm: print('Error: %s' % errm) if threshold > 0: print('... remove artefacts') try: image = self._correctArtefacts(image, threshold) except Exception as errm: print('Error: %s' % errm) if deblur: print('... remove blur') try: image = self._correctBlur(image, light_spectrum, date['psf']) except Exception as errm: print('Error: %s' % errm) try: image = self._correctLens(image, light_spectrum, date['lens'], keep_size) except TypeError: """Error: no lens calibration found""" except Exception as errm: print('Error: %s' % errm) if denoise: print('... denoise ... this might take some time') image = self._correctNoise(image) print('DONE') return image
correct
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, images, bgImages=None, exposure_time=None, light_spectrum=None,\n threshold=0.1, keep_size=True, date=None, deblur=False, denoise=False):\n print('CORRECT CAMERA ...')\n if isinstance(date, string_types) or date is None:\n date = {'dark current': date, 'flat field': date, 'lens': date,\n 'noise': date, 'psf': date}\n if light_spectrum is None:\n try:\n light_spectrum = self.coeffs['light spectra'][0]\n except IndexError:\n pass\n if type(images) in (list, tuple) or isinstance(images, np.ndarray\n ) and images.ndim == 3 and images.shape[-1] not in (3, 4):\n if len(images) > 1:\n n = self.coeffs['noise']\n if self.noise_level_function is None and len(n):\n n = _getFromDate(n, date['noise'])[2]\n self.noise_level_function = (lambda x: NoiseLevelFunction.\n boundedFunction(x, *n))\n print('... remove single-time-effects from images ')\n ste = SingleTimeEffectDetection(images, nStd=4,\n noise_level_function=self.noise_level_function)\n image = ste.noSTE\n if self.noise_level_function is None:\n self.noise_level_function = ste.noise_level_function\n else:\n image = np.asfarray(imread(images[0], dtype=np.float))\n else:\n image = np.asfarray(imread(images, dtype=np.float))\n self._checkShape(image)\n self.last_light_spectrum = light_spectrum\n self.last_img = image\n try:\n self._correctDarkCurrent(image, exposure_time, bgImages, date[\n 'dark current'])\n except Exception as errm:\n print('Error: %s' % errm)\n try:\n self._correctVignetting(image, light_spectrum, date['flat field'])\n except Exception as errm:\n print('Error: %s' % errm)\n if threshold > 0:\n print('... remove artefacts')\n try:\n image = self._correctArtefacts(image, threshold)\n except Exception as errm:\n print('Error: %s' % errm)\n if deblur:\n print('... remove blur')\n try:\n image = self._correctBlur(image, light_spectrum, date['psf'])\n except Exception as errm:\n print('Error: %s' % errm)\n try:\n image = self._correctLens(image, light_spectrum, date['lens'],\n keep_size)\n except TypeError:\n \"\"\"Error: no lens calibration found\"\"\"\n except Exception as errm:\n print('Error: %s' % errm)\n if denoise:\n print('... denoise ... this might take some time')\n image = self._correctNoise(image)\n print('DONE')\n return image\n", "role": "user" }, { "content": "correct", "role": "assistant" } ]
def x(self, image): from skimage.restoration import denoise_nl_means image[np.isnan(image)] = 0 out = denoise_nl_means(image, patch_size=7, patch_distance=11) return out
correctNoise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image):\n from skimage.restoration import denoise_nl_means\n image[np.isnan(image)] = 0\n out = denoise_nl_means(image, patch_size=7, patch_distance=11)\n return out\n", "role": "user" }, { "content": "correctNoise", "role": "assistant" } ]
def x(self, image, exposuretime, bgImages, date): print('... remove dark current') if bgImages is not None: if type(bgImages) in (list, tuple) or isinstance(bgImages, np.ndarray ) and bgImages.ndim == 3: if len(bgImages) > 1: nlf = self.noise_level_function bg = SingleTimeEffectDetection(bgImages, nStd=4, noise_level_function=nlf).noSTE else: bg = imread(bgImages[0]) else: bg = imread(bgImages) else: bg = self.calcDarkCurrent(exposuretime, date) self.temp['bg'] = bg image -= bg
correctDarkCurrent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, exposuretime, bgImages, date):\n print('... remove dark current')\n if bgImages is not None:\n if type(bgImages) in (list, tuple) or isinstance(bgImages, np.ndarray\n ) and bgImages.ndim == 3:\n if len(bgImages) > 1:\n nlf = self.noise_level_function\n bg = SingleTimeEffectDetection(bgImages, nStd=4,\n noise_level_function=nlf).noSTE\n else:\n bg = imread(bgImages[0])\n else:\n bg = imread(bgImages)\n else:\n bg = self.calcDarkCurrent(exposuretime, date)\n self.temp['bg'] = bg\n image -= bg\n", "role": "user" }, { "content": "correctDarkCurrent", "role": "assistant" } ]
def x(self, image, threshold): image = np.nan_to_num(image) medianThreshold(image, threshold, copy=False) return image
correctArtefacts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, threshold):\n image = np.nan_to_num(image)\n medianThreshold(image, threshold, copy=False)\n return image\n", "role": "user" }, { "content": "correctArtefacts", "role": "assistant" } ]
def x(self, name, light=None, date=None): d = self.coeffs[name] try: c = d[light] except KeyError: try: k, i = next(iter(d.items())) if light is not None: print('no calibration found for [%s] - using [%s] instead' % (light, k)) except StopIteration: return None c = i except TypeError: c = d return _getFromDate(c, date)
getCoeff
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, light=None, date=None):\n d = self.coeffs[name]\n try:\n c = d[light]\n except KeyError:\n try:\n k, i = next(iter(d.items()))\n if light is not None:\n print('no calibration found for [%s] - using [%s] instead' %\n (light, k))\n except StopIteration:\n return None\n c = i\n except TypeError:\n c = d\n return _getFromDate(c, date)\n", "role": "user" }, { "content": "getCoeff", "role": "assistant" } ]
def x(imgs, bg, inPlane_scale_factor=None, debugFolder=None, **kwargs): if debugFolder: debugFolder = PathStr(debugFolder) s = ObjectVignettingSeparation(imgs[0], bg, **kwargs) for img in imgs[1:]: fit = s.addImg(img) if debugFolder and fit is not False: imwrite(debugFolder.join('fit_%s.tiff' % len(s.fits)), fit) if debugFolder: imwrite(debugFolder.join('init.tiff'), s.flatField) smoothed_ff, mask, flatField, obj = s.separate() if debugFolder: imwrite(debugFolder.join('object.tiff'), obj) imwrite(debugFolder.join('flatfield.tiff'), flatField, dtype=float) imwrite(debugFolder.join('flatfield_smoothed.tiff'), smoothed_ff, dtype=float) return smoothed_ff, mask
vignettingFromRandomSteps
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(imgs, bg, inPlane_scale_factor=None, debugFolder=None, **kwargs):\n if debugFolder:\n debugFolder = PathStr(debugFolder)\n s = ObjectVignettingSeparation(imgs[0], bg, **kwargs)\n for img in imgs[1:]:\n fit = s.addImg(img)\n if debugFolder and fit is not False:\n imwrite(debugFolder.join('fit_%s.tiff' % len(s.fits)), fit)\n if debugFolder:\n imwrite(debugFolder.join('init.tiff'), s.flatField)\n smoothed_ff, mask, flatField, obj = s.separate()\n if debugFolder:\n imwrite(debugFolder.join('object.tiff'), obj)\n imwrite(debugFolder.join('flatfield.tiff'), flatField, dtype=float)\n imwrite(debugFolder.join('flatfield_smoothed.tiff'), smoothed_ff,\n dtype=float)\n return smoothed_ff, mask\n", "role": "user" }, { "content": "vignettingFromRandomSteps", "role": "assistant" } ]
def x(self, img, maxShear=0.015, maxRot=100, minMatches=12, borderWidth=3): try: fit, img, H, H_inv, nmatched = self._fitImg(img) except Exception as e: print(e) return translation, rotation, scale, shear = decompHomography(H) print( 'Homography ...\n\ttranslation: %s\n\trotation: %s\n\tscale: %s\n\tshear: %s' % (translation, rotation, scale, shear)) if nmatched > minMatches and abs(shear) < maxShear and abs(rotation ) < maxRot: print('==> img added') self.Hs.append(H) self.Hinvs.append(H_inv) self.fits.append(fit) i = img > self.signal_ranges[-1][0] i = minimum_filter(i, borderWidth) self._ff_mma.update(img, i) mask = fit < self.signal_ranges[-1][0] mask = maximum_filter(mask, borderWidth) r = self.remove_border_size if r: mask[:r, :] = 1 mask[-r:, :] = 1 mask[:, -r:] = 1 mask[:, :r] = 1 self._fit_masks.append(mask) return fit return False
addImg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img, maxShear=0.015, maxRot=100, minMatches=12, borderWidth=3):\n try:\n fit, img, H, H_inv, nmatched = self._fitImg(img)\n except Exception as e:\n print(e)\n return\n translation, rotation, scale, shear = decompHomography(H)\n print(\n 'Homography ...\\n\\ttranslation: %s\\n\\trotation: %s\\n\\tscale: %s\\n\\tshear: %s'\n % (translation, rotation, scale, shear))\n if nmatched > minMatches and abs(shear) < maxShear and abs(rotation\n ) < maxRot:\n print('==> img added')\n self.Hs.append(H)\n self.Hinvs.append(H_inv)\n self.fits.append(fit)\n i = img > self.signal_ranges[-1][0]\n i = minimum_filter(i, borderWidth)\n self._ff_mma.update(img, i)\n mask = fit < self.signal_ranges[-1][0]\n mask = maximum_filter(mask, borderWidth)\n r = self.remove_border_size\n if r:\n mask[:r, :] = 1\n mask[-r:, :] = 1\n mask[:, -r:] = 1\n mask[:, :r] = 1\n self._fit_masks.append(mask)\n return fit\n return False\n", "role": "user" }, { "content": "addImg", "role": "assistant" } ]
def x(self, nCells=15): s0, s1 = self.fits[0].shape aR = s0 / s1 if aR > 1: ss0 = int(nCells) ss1 = int(ss0 / aR) else: ss1 = int(nCells) ss0 = int(ss1 * aR) L = len(self.fits) arr = np.array(self.fits) arr[np.array(self._fit_masks)] = np.nan avg = np.tile(np.nanmean(arr, axis=0), (L, 1, 1)) arr = (arr - avg) / avg out = np.empty(shape=(L, ss0, ss1)) with warnings.catch_warnings(): warnings.simplefilter('ignore', category=RuntimeWarning) for n, f in enumerate(arr): out[n] = subCell2DFnArray(f, np.nanmean, (ss0, ss1)) return np.nanmean(out ** 2) ** 0.5
error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nCells=15):\n s0, s1 = self.fits[0].shape\n aR = s0 / s1\n if aR > 1:\n ss0 = int(nCells)\n ss1 = int(ss0 / aR)\n else:\n ss1 = int(nCells)\n ss0 = int(ss1 * aR)\n L = len(self.fits)\n arr = np.array(self.fits)\n arr[np.array(self._fit_masks)] = np.nan\n avg = np.tile(np.nanmean(arr, axis=0), (L, 1, 1))\n arr = (arr - avg) / avg\n out = np.empty(shape=(L, ss0, ss1))\n with warnings.catch_warnings():\n warnings.simplefilter('ignore', category=RuntimeWarning)\n for n, f in enumerate(arr):\n out[n] = subCell2DFnArray(f, np.nanmean, (ss0, ss1))\n return np.nanmean(out ** 2) ** 0.5\n", "role": "user" }, { "content": "error", "role": "assistant" } ]
def x(self, img): img = imread(img, 'gray') if self.bg is not None: img = cv2.subtract(img, self.bg) if self.lens is not None: img = self.lens.correct(img, keepSize=True) H, _, _, _, _, _, _, n_matches = self.findHomography(img) H_inv = self.invertHomography(H) s = self.obj_shape fit = cv2.warpPerspective(img, H_inv, (s[1], s[0])) return fit, img, H, H_inv, n_matches
fitImg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img):\n img = imread(img, 'gray')\n if self.bg is not None:\n img = cv2.subtract(img, self.bg)\n if self.lens is not None:\n img = self.lens.correct(img, keepSize=True)\n H, _, _, _, _, _, _, n_matches = self.findHomography(img)\n H_inv = self.invertHomography(H)\n s = self.obj_shape\n fit = cv2.warpPerspective(img, H_inv, (s[1], s[0]))\n return fit, img, H, H_inv, n_matches\n", "role": "user" }, { "content": "fitImg", "role": "assistant" } ]
def x(self, img): from imgProcessor.imgSignal import signalMinimum i = img > signalMinimum(img) i = minimum_filter(i, 4) return boundingBox(i)
findObject
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img):\n from imgProcessor.imgSignal import signalMinimum\n i = img > signalMinimum(img)\n i = minimum_filter(i, 4)\n return boundingBox(i)\n", "role": "user" }, { "content": "findObject", "role": "assistant" } ]
def x(arr, min_line_length=4): gy = arr.shape[0] gx = arr.shape[1] mn = min_line_length - 1 for i in range(gy): for j in range(gx): if arr[i, j]: for d in range(min_line_length): if not arr[i + d, j]: break if d == mn: d = 0 while True: if not arr[i + d, j]: break arr[i + d, j] = 0 d += 1
filterVerticalLines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, min_line_length=4):\n gy = arr.shape[0]\n gx = arr.shape[1]\n mn = min_line_length - 1\n for i in range(gy):\n for j in range(gx):\n if arr[i, j]:\n for d in range(min_line_length):\n if not arr[i + d, j]:\n break\n if d == mn:\n d = 0\n while True:\n if not arr[i + d, j]:\n break\n arr[i + d, j] = 0\n d += 1\n", "role": "user" }, { "content": "filterVerticalLines", "role": "assistant" } ]
def x(xy, f=100, alpha=0, rot=0, tilt=0, cx=50, cy=50): x, y = xy dist = ((x - cx) ** 2 + (y - cy) ** 2) ** 0.5 A = 1.0 / (1 + (dist / f) ** 2) ** 2 if alpha != 0: G = 1 - alpha * dist else: G = 1 if tilt != 0: T = tiltFactor((x, y), f, tilt, rot, (cy, cx)) else: T = 1 return A * G * T
vignetting
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(xy, f=100, alpha=0, rot=0, tilt=0, cx=50, cy=50):\n x, y = xy\n dist = ((x - cx) ** 2 + (y - cy) ** 2) ** 0.5\n A = 1.0 / (1 + (dist / f) ** 2) ** 2\n if alpha != 0:\n G = 1 - alpha * dist\n else:\n G = 1\n if tilt != 0:\n T = tiltFactor((x, y), f, tilt, rot, (cy, cx))\n else:\n T = 1\n return A * G * T\n", "role": "user" }, { "content": "vignetting", "role": "assistant" } ]
def x(xy, f, tilt, rot, center=None): x, y = xy arr = np.cos(tilt) * (1 + np.tan(tilt) / f * (x * np.sin(rot) - y * np. cos(rot))) ** 3 return arr
tiltFactor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(xy, f, tilt, rot, center=None):\n x, y = xy\n arr = np.cos(tilt) * (1 + np.tan(tilt) / f * (x * np.sin(rot) - y * np.\n cos(rot))) ** 3\n return arr\n", "role": "user" }, { "content": "tiltFactor", "role": "assistant" } ]
def x(images, copy=True): i0 = images[0] out = imread(i0, dtype='float') if copy and id(i0) == id(out): out = out.copy() for i in images[1:]: out += imread(i, dtype='float') out /= len(images) return out
imgAverage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(images, copy=True):\n i0 = images[0]\n out = imread(i0, dtype='float')\n if copy and id(i0) == id(out):\n out = out.copy()\n for i in images[1:]:\n out += imread(i, dtype='float')\n out /= len(images)\n return out\n", "role": "user" }, { "content": "imgAverage", "role": "assistant" } ]
def x(offset, grid, shape): g0, g1 = grid s0, s1 = shape o0, o1 = offset o0 = -o0 / s0 * (g0 - 1) o1 = -o1 / s1 * (g1 - 1) xx, yy = np.meshgrid(np.linspace(o1, o1 + g1 - 1, s1), np.linspace(o0, o0 + g0 - 1, s0)) return yy, xx
offsetMeshgrid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(offset, grid, shape):\n g0, g1 = grid\n s0, s1 = shape\n o0, o1 = offset\n o0 = -o0 / s0 * (g0 - 1)\n o1 = -o1 / s1 * (g1 - 1)\n xx, yy = np.meshgrid(np.linspace(o1, o1 + g1 - 1, s1), np.linspace(o0, \n o0 + g0 - 1, s0))\n return yy, xx\n", "role": "user" }, { "content": "offsetMeshgrid", "role": "assistant" } ]
def x(x, a, b, c, d=0): from scipy.misc import factorial lamb = 1 X = (x / (2 * c)).astype(int) return a * (lamb ** X / factorial(X) * np.exp(-lamb)) + d
poisson
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, b, c, d=0):\n from scipy.misc import factorial\n lamb = 1\n X = (x / (2 * c)).astype(int)\n return a * (lamb ** X / factorial(X) * np.exp(-lamb)) + d\n", "role": "user" }, { "content": "poisson", "role": "assistant" } ]
def x(image, angle, interpolation=cv2.INTER_CUBIC, borderMode=cv2. BORDER_REFLECT, borderValue=0): s0, s1 = image.shape image_center = (s0 - 1) / 2.0, (s1 - 1) / 2.0 rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) result = cv2.warpAffine(image, rot_mat, image.shape, flags= interpolation, borderMode=borderMode, borderValue=borderValue) return result
rotate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, angle, interpolation=cv2.INTER_CUBIC, borderMode=cv2.\n BORDER_REFLECT, borderValue=0):\n s0, s1 = image.shape\n image_center = (s0 - 1) / 2.0, (s1 - 1) / 2.0\n rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)\n result = cv2.warpAffine(image, rot_mat, image.shape, flags=\n interpolation, borderMode=borderMode, borderValue=borderValue)\n return result\n", "role": "user" }, { "content": "rotate", "role": "assistant" } ]
def x(facExpTime, uncertMap, evtLenMap): params = np.array([[2.63017121, 0.305873627, 10.0, 0.278233309], [ 2.26467931, 0.286206621, 8.01396977, 0.204089232], [1.27361168, 0.518377189, 3.04180084, 0.261396338], [0.73454604, 0.734549823, 1.86507345, 0.277563156], [0.382715618, 0.932410141, 1.34510254, 0.291228149], [0.171166071, 1.14092885, 1.11243702, 0.307947386], [ 0.061345541, 1.4380252, 1.02995065, 0.393920802], [0.0165383071, 1.75605076, 1.00859395, 0.502132321], [0.00455800114, 1.99855711, 0.998819118, 0.599572776]]) dur = np.array([0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0]) a = UnivariateSpline(dur, params[:, 0], k=3, s=0) b = UnivariateSpline(dur, params[:, 1], k=3, s=0) start = UnivariateSpline(dur, params[:, 2], k=3, s=0) end = UnivariateSpline(dur, params[:, 3], k=3, s=0) p0 = a(evtLenMap), b(evtLenMap), start(evtLenMap), end(evtLenMap) out = uncertMap * _fitfn(facExpTime, *p0) i = evtLenMap == 0 out[i] = uncertMap[i] * (1 / facExpTime) ** 0.5 return out
adjustUncertToExposureTime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(facExpTime, uncertMap, evtLenMap):\n params = np.array([[2.63017121, 0.305873627, 10.0, 0.278233309], [\n 2.26467931, 0.286206621, 8.01396977, 0.204089232], [1.27361168, \n 0.518377189, 3.04180084, 0.261396338], [0.73454604, 0.734549823, \n 1.86507345, 0.277563156], [0.382715618, 0.932410141, 1.34510254, \n 0.291228149], [0.171166071, 1.14092885, 1.11243702, 0.307947386], [\n 0.061345541, 1.4380252, 1.02995065, 0.393920802], [0.0165383071, \n 1.75605076, 1.00859395, 0.502132321], [0.00455800114, 1.99855711, \n 0.998819118, 0.599572776]])\n dur = np.array([0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0])\n a = UnivariateSpline(dur, params[:, 0], k=3, s=0)\n b = UnivariateSpline(dur, params[:, 1], k=3, s=0)\n start = UnivariateSpline(dur, params[:, 2], k=3, s=0)\n end = UnivariateSpline(dur, params[:, 3], k=3, s=0)\n p0 = a(evtLenMap), b(evtLenMap), start(evtLenMap), end(evtLenMap)\n out = uncertMap * _fitfn(facExpTime, *p0)\n i = evtLenMap == 0\n out[i] = uncertMap[i] * (1 / facExpTime) ** 0.5\n return out\n", "role": "user" }, { "content": "adjustUncertToExposureTime", "role": "assistant" } ]
def x(x, a, b, c, d=0): return a * np.exp(-((x - b) ** 2 / (2 * c ** 2))) + d
gaussian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, a, b, c, d=0):\n return a * np.exp(-((x - b) ** 2 / (2 * c ** 2))) + d\n", "role": "user" }, { "content": "gaussian", "role": "assistant" } ]
def x(path, imgs, levels=None, shape=None, frames=15, annotate_names=None, lut=None, updateFn=None): frames = int(frames) if annotate_names is not None: assert len(annotate_names) == len(imgs) if levels is None: if imgs[0].dtype == np.uint8: levels = 0, 255 elif imgs[0].dtype == np.uint16: levels = 0, 2 ** 16 - 1 else: levels = np.min(imgs), np.max(imgs) fourcc = cv2.VideoWriter_fourcc(*'XVID') h, w = imgs.shape[1:3] if shape and shape != (h, w): h, w = shape imgs = [cv2.resize(i, (w, h)) for i in imgs] assert path[-3:] in ('avi', 'png' ), 'video export only supports *.avi or *.png' isVideo = path[-3:] == 'avi' if isVideo: cap = cv2.VideoCapture(0) out = cv2.VideoWriter(path, fourcc, frames, (w, h), isColor=1) times = np.linspace(0, len(imgs) - 1, len(imgs) * frames) interpolator = LinearInterpolateImageStack(imgs) if lut is not None: lut = lut(imgs[0]) for n, time in enumerate(times): if updateFn: updateFn.emit(100 * n / len(times)) image = interpolator(time) cimg = makeRGBA(image, lut=lut, levels=levels)[0] cimg = cv2.cvtColor(cimg, cv2.COLOR_RGBA2BGR) if annotate_names: text = annotate_names[n // frames] alpha = 0.5 org = 0, cimg.shape[0] fontFace = cv2.FONT_HERSHEY_PLAIN fontScale = 2 thickness = 3 putTextAlpha(cimg, text, alpha, org, fontFace, fontScale, (0, 255, 0), thickness) if isVideo: out.write(cimg) else: cv2.imwrite('%s_%i_%.3f.png' % (path[:-4], n, time), cimg) if isVideo: cap.release() out.release()
videoWrite
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, imgs, levels=None, shape=None, frames=15, annotate_names=None,\n lut=None, updateFn=None):\n frames = int(frames)\n if annotate_names is not None:\n assert len(annotate_names) == len(imgs)\n if levels is None:\n if imgs[0].dtype == np.uint8:\n levels = 0, 255\n elif imgs[0].dtype == np.uint16:\n levels = 0, 2 ** 16 - 1\n else:\n levels = np.min(imgs), np.max(imgs)\n fourcc = cv2.VideoWriter_fourcc(*'XVID')\n h, w = imgs.shape[1:3]\n if shape and shape != (h, w):\n h, w = shape\n imgs = [cv2.resize(i, (w, h)) for i in imgs]\n assert path[-3:] in ('avi', 'png'\n ), 'video export only supports *.avi or *.png'\n isVideo = path[-3:] == 'avi'\n if isVideo:\n cap = cv2.VideoCapture(0)\n out = cv2.VideoWriter(path, fourcc, frames, (w, h), isColor=1)\n times = np.linspace(0, len(imgs) - 1, len(imgs) * frames)\n interpolator = LinearInterpolateImageStack(imgs)\n if lut is not None:\n lut = lut(imgs[0])\n for n, time in enumerate(times):\n if updateFn:\n updateFn.emit(100 * n / len(times))\n image = interpolator(time)\n cimg = makeRGBA(image, lut=lut, levels=levels)[0]\n cimg = cv2.cvtColor(cimg, cv2.COLOR_RGBA2BGR)\n if annotate_names:\n text = annotate_names[n // frames]\n alpha = 0.5\n org = 0, cimg.shape[0]\n fontFace = cv2.FONT_HERSHEY_PLAIN\n fontScale = 2\n thickness = 3\n putTextAlpha(cimg, text, alpha, org, fontFace, fontScale, (0, \n 255, 0), thickness)\n if isVideo:\n out.write(cimg)\n else:\n cv2.imwrite('%s_%i_%.3f.png' % (path[:-4], n, time), cimg)\n if isVideo:\n cap.release()\n out.release()\n", "role": "user" }, { "content": "videoWrite", "role": "assistant" } ]
def x(img, color=None, dtype=None): COLOR2CV = {'gray': cv2.IMREAD_GRAYSCALE, 'all': cv2.IMREAD_COLOR, None: cv2.IMREAD_ANYCOLOR} c = COLOR2CV[color] if callable(img): img = img() elif isinstance(img, string_types): if dtype in (None, 'noUint') or np.dtype(dtype) != np.uint8: c |= cv2.IMREAD_ANYDEPTH img2 = cv2.imread(img, c) if img2 is None: raise IOError("image '%s' is not existing" % img) img = img2 elif color == 'gray' and img.ndim == 3: img = toGray(img) if dtype is not None: if isinstance(img, np.ndarray): img = _changeArrayDType(img, dtype, cutHigh=False) return img
imread
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, color=None, dtype=None):\n COLOR2CV = {'gray': cv2.IMREAD_GRAYSCALE, 'all': cv2.IMREAD_COLOR, None:\n cv2.IMREAD_ANYCOLOR}\n c = COLOR2CV[color]\n if callable(img):\n img = img()\n elif isinstance(img, string_types):\n if dtype in (None, 'noUint') or np.dtype(dtype) != np.uint8:\n c |= cv2.IMREAD_ANYDEPTH\n img2 = cv2.imread(img, c)\n if img2 is None:\n raise IOError(\"image '%s' is not existing\" % img)\n img = img2\n elif color == 'gray' and img.ndim == 3:\n img = toGray(img)\n if dtype is not None:\n if isinstance(img, np.ndarray):\n img = _changeArrayDType(img, dtype, cutHigh=False)\n return img\n", "role": "user" }, { "content": "imread", "role": "assistant" } ]
def x(self, img, roi=None): self.img = imread(img, 'gray') s0, s1 = self.img.shape if roi is None: roi = (0, 0), (s0, 0), (s0, s1), (0, s1) k = self.kernel_size hk = k // 2 img2 = self.img.copy() mask = np.zeros(self.img.shape) cv2.fillConvexPoly(mask, np.asarray(roi, dtype=np.int32), color=1) mask = mask.astype(bool) im = img2[mask] bg = im.mean() mask = ~mask img2[mask] = -1 self.points = np.zeros(shape=(self.max_points, 2), dtype=int) thresh = 0.8 * bg + 0.2 * im.max() _findPoints(img2, thresh, self.min_dist, self.points) self.points = self.points[:np.argmin(self.points, axis=0)[0]] for n, p in enumerate(self.points): sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1] i, j = np.unravel_index(np.nanargmax(sub), sub.shape) self.points[n] += [j - hk, i - hk] mask = maximum_filter(mask, hk) i = np.ones(self.points.shape[0], dtype=bool) for n, p in enumerate(self.points): if mask[p[1], p[0]]: i[n] = False else: for pp in self.points[n + 1:]: if norm(p - pp) < hk + 1: i[n] = False isum = i.sum() ll = len(i) - isum print('found %s points' % isum) if ll: print('removed %s points (too close to border or other points)' % ll) self.points = self.points[i] xx, yy = np.mgrid[0:k, 0:k] xx = xx.astype(float) yy = yy.astype(float) self.subs = [] for i, p in enumerate(self.points): sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1 ].astype(float) sub2 = sub.copy() mean = sub2.mean() mx = sub2.max() sub2[sub2 < 0.5 * (mean + mx)] = 0 try: c0, c1 = center_of_mass(sub2) coords = np.array([xx + (c0 - hk), yy + (c1 - hk)]) sub = map_coordinates(sub, coords, mode='nearest').reshape(k, k) bg = 0.25 * (sub[0].mean() + sub[-1].mean() + sub[:, 0].mean() + sub[:, -1].mean()) sub -= bg sub /= sub.max() self._psf += sub if self.calc_std: self.subs.append(sub) except ValueError: pass
addImg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img, roi=None):\n self.img = imread(img, 'gray')\n s0, s1 = self.img.shape\n if roi is None:\n roi = (0, 0), (s0, 0), (s0, s1), (0, s1)\n k = self.kernel_size\n hk = k // 2\n img2 = self.img.copy()\n mask = np.zeros(self.img.shape)\n cv2.fillConvexPoly(mask, np.asarray(roi, dtype=np.int32), color=1)\n mask = mask.astype(bool)\n im = img2[mask]\n bg = im.mean()\n mask = ~mask\n img2[mask] = -1\n self.points = np.zeros(shape=(self.max_points, 2), dtype=int)\n thresh = 0.8 * bg + 0.2 * im.max()\n _findPoints(img2, thresh, self.min_dist, self.points)\n self.points = self.points[:np.argmin(self.points, axis=0)[0]]\n for n, p in enumerate(self.points):\n sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1]\n i, j = np.unravel_index(np.nanargmax(sub), sub.shape)\n self.points[n] += [j - hk, i - hk]\n mask = maximum_filter(mask, hk)\n i = np.ones(self.points.shape[0], dtype=bool)\n for n, p in enumerate(self.points):\n if mask[p[1], p[0]]:\n i[n] = False\n else:\n for pp in self.points[n + 1:]:\n if norm(p - pp) < hk + 1:\n i[n] = False\n isum = i.sum()\n ll = len(i) - isum\n print('found %s points' % isum)\n if ll:\n print('removed %s points (too close to border or other points)' % ll)\n self.points = self.points[i]\n xx, yy = np.mgrid[0:k, 0:k]\n xx = xx.astype(float)\n yy = yy.astype(float)\n self.subs = []\n for i, p in enumerate(self.points):\n sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1\n ].astype(float)\n sub2 = sub.copy()\n mean = sub2.mean()\n mx = sub2.max()\n sub2[sub2 < 0.5 * (mean + mx)] = 0\n try:\n c0, c1 = center_of_mass(sub2)\n coords = np.array([xx + (c0 - hk), yy + (c1 - hk)])\n sub = map_coordinates(sub, coords, mode='nearest').reshape(k, k)\n bg = 0.25 * (sub[0].mean() + sub[-1].mean() + sub[:, 0].mean() +\n sub[:, -1].mean())\n sub -= bg\n sub /= sub.max()\n self._psf += sub\n if self.calc_std:\n self.subs.append(sub)\n except ValueError:\n pass\n", "role": "user" }, { "content": "addImg", "role": "assistant" } ]
def x(grid, mask, kernel=15, power=2, minnvals=5): indices, dist = growPositions(kernel) weights = 1 / dist ** (0.5 * power) return _calc(grid, mask, indices, weights, minnvals - 1)
interpolate2dStructuredFastIDW
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, mask, kernel=15, power=2, minnvals=5):\n indices, dist = growPositions(kernel)\n weights = 1 / dist ** (0.5 * power)\n return _calc(grid, mask, indices, weights, minnvals - 1)\n", "role": "user" }, { "content": "interpolate2dStructuredFastIDW", "role": "assistant" } ]
def x(img1, img2, overlap, backgroundColor=None): sizex, sizey = img1.shape[:2] overlapping = True if overlap < 0: overlapping = False overlap = -overlap alpha = np.tile(np.expand_dims(np.linspace(1, 0, overlap), 1), sizey) if len(img2.shape) == 3: alpha = np.dstack([alpha for _ in range(img2.shape[2])]) if overlapping: img1_cut = img1[sizex - overlap:sizex, :] img2_cut = img2[0:overlap, :] else: img1_cut = np.tile(img1[-min(sizex, 5):, :].mean(axis=0), (overlap, 1) ).reshape(alpha.shape) img2_cut = np.tile(img2[:min(img2.shape[0], 5), :].mean(axis=0), ( overlap, 1)).reshape(alpha.shape) inter = (img1_cut * alpha + img2_cut * (1 - alpha)).astype(img1.dtype) if backgroundColor is not None: mask = np.logical_and(img1_cut == backgroundColor, img2_cut != backgroundColor) inter[mask] = img2_cut[mask] mask = np.logical_and(img2_cut == backgroundColor, img1_cut != backgroundColor) inter[mask] = img1_cut[mask] if not overlapping: overlap = 0 return np.vstack((img1[0:sizex - overlap, :], inter, img2[overlap:, :]))
linearBlend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img1, img2, overlap, backgroundColor=None):\n sizex, sizey = img1.shape[:2]\n overlapping = True\n if overlap < 0:\n overlapping = False\n overlap = -overlap\n alpha = np.tile(np.expand_dims(np.linspace(1, 0, overlap), 1), sizey)\n if len(img2.shape) == 3:\n alpha = np.dstack([alpha for _ in range(img2.shape[2])])\n if overlapping:\n img1_cut = img1[sizex - overlap:sizex, :]\n img2_cut = img2[0:overlap, :]\n else:\n img1_cut = np.tile(img1[-min(sizex, 5):, :].mean(axis=0), (overlap, 1)\n ).reshape(alpha.shape)\n img2_cut = np.tile(img2[:min(img2.shape[0], 5), :].mean(axis=0), (\n overlap, 1)).reshape(alpha.shape)\n inter = (img1_cut * alpha + img2_cut * (1 - alpha)).astype(img1.dtype)\n if backgroundColor is not None:\n mask = np.logical_and(img1_cut == backgroundColor, img2_cut !=\n backgroundColor)\n inter[mask] = img2_cut[mask]\n mask = np.logical_and(img2_cut == backgroundColor, img1_cut !=\n backgroundColor)\n inter[mask] = img1_cut[mask]\n if not overlapping:\n overlap = 0\n return np.vstack((img1[0:sizex - overlap, :], inter, img2[overlap:, :]))\n", "role": "user" }, { "content": "linearBlend", "role": "assistant" } ]
def x(grid, mask, kernel=15, power=2, maxIter=100000.0, copy=True): assert grid.shape == mask.shape, 'grid and mask shape are different' border = np.zeros(shape=mask.shape, dtype=np.bool) if copy: mask = mask.copy() grid = grid.copy() return _calc(grid, mask, border, kernel, power, maxIter)
interpolate2dStructuredPointSpreadIDW
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, mask, kernel=15, power=2, maxIter=100000.0, copy=True):\n assert grid.shape == mask.shape, 'grid and mask shape are different'\n border = np.zeros(shape=mask.shape, dtype=np.bool)\n if copy:\n mask = mask.copy()\n grid = grid.copy()\n return _calc(grid, mask, border, kernel, power, maxIter)\n", "role": "user" }, { "content": "interpolate2dStructuredPointSpreadIDW", "role": "assistant" } ]
def x(snr, method='average', excludeBackground=True, checkBackground=True, backgroundLevel=None): if excludeBackground: if backgroundLevel is None: try: f = FitHistogramPeaks(snr).fitParams if checkBackground: if not hasBackground(f): excludeBackground = False if excludeBackground: backgroundLevel = getSignalMinimum(f) except (ValueError, AssertionError): backgroundLevel = snr.min() if excludeBackground: snr = snr[snr >= backgroundLevel] if method == 'RMS': avg = (snr ** 2).mean() ** 0.5 elif method == 'average': avg = snr.mean() elif method == 'median': avg = np.median(snr) elif method == 'X75': r = snr.min(), snr.max() hist, bin_edges = np.histogram(snr, bins=2 * int(r[1] - r[0]), range=r) hist = np.asfarray(hist) / hist.sum() cdf = np.cumsum(hist) i = np.argmax(cdf > 0.25) avg = bin_edges[i] else: raise NotImplemented("given SNR average doesn't exist") return avg
SNRaverage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(snr, method='average', excludeBackground=True, checkBackground=True,\n backgroundLevel=None):\n if excludeBackground:\n if backgroundLevel is None:\n try:\n f = FitHistogramPeaks(snr).fitParams\n if checkBackground:\n if not hasBackground(f):\n excludeBackground = False\n if excludeBackground:\n backgroundLevel = getSignalMinimum(f)\n except (ValueError, AssertionError):\n backgroundLevel = snr.min()\n if excludeBackground:\n snr = snr[snr >= backgroundLevel]\n if method == 'RMS':\n avg = (snr ** 2).mean() ** 0.5\n elif method == 'average':\n avg = snr.mean()\n elif method == 'median':\n avg = np.median(snr)\n elif method == 'X75':\n r = snr.min(), snr.max()\n hist, bin_edges = np.histogram(snr, bins=2 * int(r[1] - r[0]), range=r)\n hist = np.asfarray(hist) / hist.sum()\n cdf = np.cumsum(hist)\n i = np.argmax(cdf > 0.25)\n avg = bin_edges[i]\n else:\n raise NotImplemented(\"given SNR average doesn't exist\")\n return avg\n", "role": "user" }, { "content": "SNRaverage", "role": "assistant" } ]
def x(arr, kernel, mask, mode='reflect'): arr2 = extendArrayForConvolution(arr, kernel.shape, modex=mode, modey=mode) print(arr2.shape) out = np.zeros_like(arr) return _calc(arr2, kernel, mask, out)
maskedConvolve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, kernel, mask, mode='reflect'):\n arr2 = extendArrayForConvolution(arr, kernel.shape, modex=mode, modey=mode)\n print(arr2.shape)\n out = np.zeros_like(arr)\n return _calc(arr2, kernel, mask, out)\n", "role": "user" }, { "content": "maskedConvolve", "role": "assistant" } ]
def x(img1, img2=None, bg=None, noise_level_function=None, constant_noise_level=False, imgs_to_be_averaged=False): img1 = np.asfarray(img1) if bg is not None: img1 = img1 - bg if img2 is not None: img2_exists = True img2 = np.asfarray(img2) - bg signal = 0.5 * (img1 + img2) else: img2_exists = False signal = img1 signal = median_filter(signal, 3) if constant_noise_level: if img2_exists: d = img1 - img2 noise = 0.5 ** 0.5 * np.mean(np.abs(d)) * F_RMS2AAD else: d = (img1 - signal) * F_NOISE_WITH_MEDIAN noise = np.mean(np.abs(d)) * F_RMS2AAD else: if noise_level_function is None: noise_level_function, _ = oneImageNLF(img1, img2, signal) noise = noise_level_function(signal) noise[noise < 1] = 1 if imgs_to_be_averaged: noise *= 0.5 ** 0.5 if bg is None: bg = getBackgroundLevel(img1) signal -= bg snr = signal / noise snr[snr < 1] = 1 return snr
SNR
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img1, img2=None, bg=None, noise_level_function=None,\n constant_noise_level=False, imgs_to_be_averaged=False):\n img1 = np.asfarray(img1)\n if bg is not None:\n img1 = img1 - bg\n if img2 is not None:\n img2_exists = True\n img2 = np.asfarray(img2) - bg\n signal = 0.5 * (img1 + img2)\n else:\n img2_exists = False\n signal = img1\n signal = median_filter(signal, 3)\n if constant_noise_level:\n if img2_exists:\n d = img1 - img2\n noise = 0.5 ** 0.5 * np.mean(np.abs(d)) * F_RMS2AAD\n else:\n d = (img1 - signal) * F_NOISE_WITH_MEDIAN\n noise = np.mean(np.abs(d)) * F_RMS2AAD\n else:\n if noise_level_function is None:\n noise_level_function, _ = oneImageNLF(img1, img2, signal)\n noise = noise_level_function(signal)\n noise[noise < 1] = 1\n if imgs_to_be_averaged:\n noise *= 0.5 ** 0.5\n if bg is None:\n bg = getBackgroundLevel(img1)\n signal -= bg\n snr = signal / noise\n snr[snr < 1] = 1\n return snr\n", "role": "user" }, { "content": "SNR", "role": "assistant" } ]
def x(corners): corners = np.asarray(corners) corners2 = corners[ConvexHull(corners).vertices] if len(corners2) == 3: for c in corners: if c not in corners2: break perimeter = [] for n in range(0, 4): corners3 = np.insert(corners2, n, c, axis=0) perimeter.append(np.linalg.norm(np.diff(corners3, axis=0), axis =1).sum()) n = np.argmin(perimeter) corners2 = np.insert(corners2, n, c, axis=0) mn = corners2.mean(axis=0) d = corners2 - mn ascent = np.arctan2(d[:, 1], d[:, 0]) bl = np.abs(BL_ANGLE + ascent).argmin() i = list(range(bl, 4)) i.extend(list(range(0, bl))) return corners2[i]
sortCorners
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(corners):\n corners = np.asarray(corners)\n corners2 = corners[ConvexHull(corners).vertices]\n if len(corners2) == 3:\n for c in corners:\n if c not in corners2:\n break\n perimeter = []\n for n in range(0, 4):\n corners3 = np.insert(corners2, n, c, axis=0)\n perimeter.append(np.linalg.norm(np.diff(corners3, axis=0), axis\n =1).sum())\n n = np.argmin(perimeter)\n corners2 = np.insert(corners2, n, c, axis=0)\n mn = corners2.mean(axis=0)\n d = corners2 - mn\n ascent = np.arctan2(d[:, 1], d[:, 0])\n bl = np.abs(BL_ANGLE + ascent).argmin()\n i = list(range(bl, 4))\n i.extend(list(range(0, bl)))\n return corners2[i]\n", "role": "user" }, { "content": "sortCorners", "role": "assistant" } ]
def x(arr, ksize=30, dtype=np.uint16): out = np.zeros_like(arr, dtype=dtype) _calc(out, arr, ksize) return out
closestDirectDistance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, ksize=30, dtype=np.uint16):\n out = np.zeros_like(arr, dtype=dtype)\n _calc(out, arr, ksize)\n return out\n", "role": "user" }, { "content": "closestDirectDistance", "role": "assistant" } ]
def x(target, walls=None, max_len_border_line=500, max_n_path=100, concentrate_every_n_pixel=1): c = concentrate_every_n_pixel assert c >= 1 if walls is None: walls = np.zeros_like(target, dtype=bool) s = target.shape dt = np.uint16 if max(target.shape) < 200: dt = np.uint8 out = np.zeros((s[0] // c, s[1] // c), dtype=dt) growth = np.zeros_like(target, dtype=dt) res = np.empty(shape=3, dtype=dt) steps = np.empty(shape=(max_len_border_line, 2), dtype=dt) new_steps = np.empty(shape=(max_len_border_line, 2), dtype=dt) _calc(growth, out, walls, target, steps, new_steps, res, concentrate_every_n_pixel) if c > 1: interpolate2dStructuredIDW(out, out == 0) out = cv2.resize(out, s[::-1]) out[walls] = 0 return out
closestConnectedDistance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(target, walls=None, max_len_border_line=500, max_n_path=100,\n concentrate_every_n_pixel=1):\n c = concentrate_every_n_pixel\n assert c >= 1\n if walls is None:\n walls = np.zeros_like(target, dtype=bool)\n s = target.shape\n dt = np.uint16\n if max(target.shape) < 200:\n dt = np.uint8\n out = np.zeros((s[0] // c, s[1] // c), dtype=dt)\n growth = np.zeros_like(target, dtype=dt)\n res = np.empty(shape=3, dtype=dt)\n steps = np.empty(shape=(max_len_border_line, 2), dtype=dt)\n new_steps = np.empty(shape=(max_len_border_line, 2), dtype=dt)\n _calc(growth, out, walls, target, steps, new_steps, res,\n concentrate_every_n_pixel)\n if c > 1:\n interpolate2dStructuredIDW(out, out == 0)\n out = cv2.resize(out, s[::-1])\n out[walls] = 0\n return out\n", "role": "user" }, { "content": "closestConnectedDistance", "role": "assistant" } ]
def x(growth, walls, target, i, j, steps, new_steps, res): growth[:] = 0 if target[i, j]: res[0] = 1 res[1] = i res[2] = j return step = 1 s0, s1 = growth.shape step_len = 1 new_step_ind = 0 steps[new_step_ind, 0] = i steps[new_step_ind, 1] = j growth[i, j] = 1 while True: for n in range(step_len): i, j = steps[n] for ii, jj in DIRECT_NEIGHBOURS: pi = i + ii pj = j + jj if 0 <= pi < s0 and 0 <= pj < s1: if growth[pi, pj] == 0 and not walls[pi, pj]: growth[pi, pj] = step if target[pi, pj]: res[0] = 1 res[1] = pi res[2] = pj return new_steps[new_step_ind, 0] = pi new_steps[new_step_ind, 1] = pj new_step_ind += 1 if new_step_ind == 0: res[0] = 0 return step += 1 steps, new_steps = new_steps, steps step_len = new_step_ind new_step_ind = 0
grow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(growth, walls, target, i, j, steps, new_steps, res):\n growth[:] = 0\n if target[i, j]:\n res[0] = 1\n res[1] = i\n res[2] = j\n return\n step = 1\n s0, s1 = growth.shape\n step_len = 1\n new_step_ind = 0\n steps[new_step_ind, 0] = i\n steps[new_step_ind, 1] = j\n growth[i, j] = 1\n while True:\n for n in range(step_len):\n i, j = steps[n]\n for ii, jj in DIRECT_NEIGHBOURS:\n pi = i + ii\n pj = j + jj\n if 0 <= pi < s0 and 0 <= pj < s1:\n if growth[pi, pj] == 0 and not walls[pi, pj]:\n growth[pi, pj] = step\n if target[pi, pj]:\n res[0] = 1\n res[1] = pi\n res[2] = pj\n return\n new_steps[new_step_ind, 0] = pi\n new_steps[new_step_ind, 1] = pj\n new_step_ind += 1\n if new_step_ind == 0:\n res[0] = 0\n return\n step += 1\n steps, new_steps = new_steps, steps\n step_len = new_step_ind\n new_step_ind = 0\n", "role": "user" }, { "content": "grow", "role": "assistant" } ]
def x(img, minimum_cluster_size=6, remove_small_obj_size=3, reconnect_size= 3, max_n_contours=None, max_len_contour=None, copy=True): assert minimum_cluster_size > 1 assert reconnect_size % 2, 'ksize needs to be odd' if max_n_contours is None: max_n_contours = max(img.shape) if max_len_contour is None: max_len_contour = sum(img.shape[:2]) contours = np.zeros(shape=(max_n_contours, max_len_contour, 2), dtype= np.uint16) if img.dtype != np.bool: img = img.astype(bool) elif copy: img = img.copy() if remove_small_obj_size: remove_small_objects(img, remove_small_obj_size, connectivity=2, in_place=True) if reconnect_size: maximum_filter(img, reconnect_size, output=img) img = skeletonize(img) n_contours = _populateContoursArray(img, contours, minimum_cluster_size) contours = contours[:n_contours] l = [] for c in contours: ind = np.zeros(shape=len(c), dtype=bool) _getValidInd(c, ind) l.append(c[ind]) return l
polylinesFromBinImage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, minimum_cluster_size=6, remove_small_obj_size=3, reconnect_size=\n 3, max_n_contours=None, max_len_contour=None, copy=True):\n assert minimum_cluster_size > 1\n assert reconnect_size % 2, 'ksize needs to be odd'\n if max_n_contours is None:\n max_n_contours = max(img.shape)\n if max_len_contour is None:\n max_len_contour = sum(img.shape[:2])\n contours = np.zeros(shape=(max_n_contours, max_len_contour, 2), dtype=\n np.uint16)\n if img.dtype != np.bool:\n img = img.astype(bool)\n elif copy:\n img = img.copy()\n if remove_small_obj_size:\n remove_small_objects(img, remove_small_obj_size, connectivity=2,\n in_place=True)\n if reconnect_size:\n maximum_filter(img, reconnect_size, output=img)\n img = skeletonize(img)\n n_contours = _populateContoursArray(img, contours, minimum_cluster_size)\n contours = contours[:n_contours]\n l = []\n for c in contours:\n ind = np.zeros(shape=len(c), dtype=bool)\n _getValidInd(c, ind)\n l.append(c[ind])\n return l\n", "role": "user" }, { "content": "polylinesFromBinImage", "role": "assistant" } ]
def x(arr, pos=None): r = arr.min(), arr.max() hist, bin_edges = np.histogram(arr, bins=2 * int(r[1] - r[0]), range=r) hist = np.asfarray(hist) / hist.sum() cdf = np.cumsum(hist) if pos is None: return cdf i = np.argmax(cdf > pos) return bin_edges[i]
cdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, pos=None):\n r = arr.min(), arr.max()\n hist, bin_edges = np.histogram(arr, bins=2 * int(r[1] - r[0]), range=r)\n hist = np.asfarray(hist) / hist.sum()\n cdf = np.cumsum(hist)\n if pos is None:\n return cdf\n i = np.argmax(cdf > pos)\n return bin_edges[i]\n", "role": "user" }, { "content": "cdf", "role": "assistant" } ]
def x(arr, shape, d01=None, p01=None): for i, j, s0, s1 in subCell2DSlices(arr, shape, d01, p01): yield i, j, arr[s0, s1]
subCell2DGenerator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, shape, d01=None, p01=None):\n for i, j, s0, s1 in subCell2DSlices(arr, shape, d01, p01):\n yield i, j, arr[s0, s1]\n", "role": "user" }, { "content": "subCell2DGenerator", "role": "assistant" } ]
def x(arr, shape, d01=None, p01=None): if p01 is not None: yinit, xinit = p01 else: xinit, yinit = 0, 0 x, y = xinit, yinit g0, g1 = shape s0, s1 = arr.shape[:2] if d01 is not None: d0, d1 = d01 else: d0, d1 = s0 / g0, s1 / g1 y1 = d0 + yinit for i in range(g0): for j in range(g1): x1 = x + d1 yield i, j, slice(max(0, _rint(y)), max(0, _rint(y1))), slice(max (0, _rint(x)), max(0, _rint(x1))) x = x1 y = y1 y1 = y + d0 x = xinit
subCell2DSlices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, shape, d01=None, p01=None):\n if p01 is not None:\n yinit, xinit = p01\n else:\n xinit, yinit = 0, 0\n x, y = xinit, yinit\n g0, g1 = shape\n s0, s1 = arr.shape[:2]\n if d01 is not None:\n d0, d1 = d01\n else:\n d0, d1 = s0 / g0, s1 / g1\n y1 = d0 + yinit\n for i in range(g0):\n for j in range(g1):\n x1 = x + d1\n yield i, j, slice(max(0, _rint(y)), max(0, _rint(y1))), slice(max\n (0, _rint(x)), max(0, _rint(x1)))\n x = x1\n y = y1\n y1 = y + d0\n x = xinit\n", "role": "user" }, { "content": "subCell2DSlices", "role": "assistant" } ]
def x(*args, **kwargs): for _, _, s0, s1 in subCell2DSlices(*args, **kwargs): yield (s1.start, s1.start, s1.stop), (s0.start, s0.stop, s0.stop)
subCell2DCoords
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*args, **kwargs):\n for _, _, s0, s1 in subCell2DSlices(*args, **kwargs):\n yield (s1.start, s1.start, s1.stop), (s0.start, s0.stop, s0.stop)\n", "role": "user" }, { "content": "subCell2DCoords", "role": "assistant" } ]
def x(arr, fn, shape, dtype=None, **kwargs): sh = list(arr.shape) sh[:2] = shape out = np.empty(sh, dtype=dtype) for i, j, c in subCell2DGenerator(arr, shape, **kwargs): out[i, j] = fn(c) return out
subCell2DFnArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, fn, shape, dtype=None, **kwargs):\n sh = list(arr.shape)\n sh[:2] = shape\n out = np.empty(sh, dtype=dtype)\n for i, j, c in subCell2DGenerator(arr, shape, **kwargs):\n out[i, j] = fn(c)\n return out\n", "role": "user" }, { "content": "subCell2DFnArray", "role": "assistant" } ]
def x(u, uf, f, fn, k=2.355): return k / fn * (f ** 2 * abs(u - uf)) / (u * (uf - f))
defocusThroughDepth
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(u, uf, f, fn, k=2.355):\n return k / fn * (f ** 2 * abs(u - uf)) / (u * (uf - f))\n", "role": "user" }, { "content": "defocusThroughDepth", "role": "assistant" } ]
def x(arr, kernelXY, modex='reflect', modey='reflect'): kx, ky = kernelXY kx //= 2 ky //= 2 nokx = kx == 0 noky = ky == 0 if nokx: kx = 1 if noky: ky = 1 s0, s1 = arr.shape assert ky < s0 assert kx < s1 arr2 = np.zeros((s0 + 2 * ky, s1 + 2 * kx), dtype=arr.dtype) if kx == 0: kx = None arr2[ky:-ky, kx:-kx] = arr t = arr[:ky] rb = arr[-1:-ky - 1:-1] rt = arr[ky - 1::-1] rr = arr[:, -1:-kx - 1:-1] l = arr[:, :kx] tm2 = arr2[:ky, kx:-kx] bm2 = arr2[-ky:, kx:-kx] tl2 = arr2[:ky, :kx] bl2 = arr2[-ky:, :kx] tr2 = arr2[:ky, -kx:] br2 = arr2[-ky:, -kx:] if modey == 'warp': tm2[:] = t bm2[:] = rb tl2[:] = arr2[2 * ky:ky:-1, :kx] bl2[:] = arr2[-ky - 1:-2 * ky - 1:-1, :kx] elif modey == 'reflect': tm2[:] = rt bm2[:] = rb if modex == 'reflect': tl2[:] = arr[ky - 1::-1, kx - 1::-1] bl2[:] = arr[-1:-ky - 1:-1, kx - 1::-1] tr2[:] = arr[:ky, -kx:][::-1, ::-1] br2[:] = arr[-ky:, -kx:][::-1, ::-1] else: tl2[:] = arr[ky - 1::-1, -kx:] bl2[:] = arr[-1:-ky - 1:-1, -kx:] tr2[:] = arr[ky - 1::-1, :kx] br2[:] = arr[-1:-ky - 1:-1, :kx] else: raise Exception('modey not supported') if modex == 'wrap': arr2[ky:-ky, kx - 1::-1] = rr arr2[ky:-ky, -kx:] = l elif modex == 'reflect': arr2[ky:-ky, :kx] = l[:, ::-1] arr2[ky:-ky, -kx:] = rr else: raise Exception('modex not supported') if nokx: arr2 = arr2[:, 1:-1] if noky: arr2 = arr2[1:-1] return arr2
extendArrayForConvolution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, kernelXY, modex='reflect', modey='reflect'):\n kx, ky = kernelXY\n kx //= 2\n ky //= 2\n nokx = kx == 0\n noky = ky == 0\n if nokx:\n kx = 1\n if noky:\n ky = 1\n s0, s1 = arr.shape\n assert ky < s0\n assert kx < s1\n arr2 = np.zeros((s0 + 2 * ky, s1 + 2 * kx), dtype=arr.dtype)\n if kx == 0:\n kx = None\n arr2[ky:-ky, kx:-kx] = arr\n t = arr[:ky]\n rb = arr[-1:-ky - 1:-1]\n rt = arr[ky - 1::-1]\n rr = arr[:, -1:-kx - 1:-1]\n l = arr[:, :kx]\n tm2 = arr2[:ky, kx:-kx]\n bm2 = arr2[-ky:, kx:-kx]\n tl2 = arr2[:ky, :kx]\n bl2 = arr2[-ky:, :kx]\n tr2 = arr2[:ky, -kx:]\n br2 = arr2[-ky:, -kx:]\n if modey == 'warp':\n tm2[:] = t\n bm2[:] = rb\n tl2[:] = arr2[2 * ky:ky:-1, :kx]\n bl2[:] = arr2[-ky - 1:-2 * ky - 1:-1, :kx]\n elif modey == 'reflect':\n tm2[:] = rt\n bm2[:] = rb\n if modex == 'reflect':\n tl2[:] = arr[ky - 1::-1, kx - 1::-1]\n bl2[:] = arr[-1:-ky - 1:-1, kx - 1::-1]\n tr2[:] = arr[:ky, -kx:][::-1, ::-1]\n br2[:] = arr[-ky:, -kx:][::-1, ::-1]\n else:\n tl2[:] = arr[ky - 1::-1, -kx:]\n bl2[:] = arr[-1:-ky - 1:-1, -kx:]\n tr2[:] = arr[ky - 1::-1, :kx]\n br2[:] = arr[-1:-ky - 1:-1, :kx]\n else:\n raise Exception('modey not supported')\n if modex == 'wrap':\n arr2[ky:-ky, kx - 1::-1] = rr\n arr2[ky:-ky, -kx:] = l\n elif modex == 'reflect':\n arr2[ky:-ky, :kx] = l[:, ::-1]\n arr2[ky:-ky, -kx:] = rr\n else:\n raise Exception('modex not supported')\n if nokx:\n arr2 = arr2[:, 1:-1]\n if noky:\n arr2 = arr2[1:-1]\n return arr2\n", "role": "user" }, { "content": "extendArrayForConvolution", "role": "assistant" } ]
def x(self, board_size=(8, 6), method='Chessboard', images=[], max_images= 100, sensorSize_mm=None, detect_sensible=True): self._coeffs = {} self.opts = {'foundPattern': [], 'size': board_size, 'imgs': [], 'imgPoints': []} self._detect_sensible = detect_sensible self.method = {'Chessboard': self._findChessboard, 'Symmetric circles': self._findSymmetricCircles, 'Asymmetric circles': self. _findAsymmetricCircles, 'Manual': None}[method] self.max_images = max_images self.findCount = 0 self.apertureSize = sensorSize_mm self.objp = self._mkObjPoints(board_size) if method == 'Asymmetric circles': i = self.objp[:, 1] % 2 == 1 self.objp[:, 0] *= 2 self.objp[i, 0] += 1 self.objpoints = [] self.mapx, self.mapy = None, None for n, i in enumerate(images): print('working on image %s' % n) if self.addImg(i): print('OK')
calibrate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, board_size=(8, 6), method='Chessboard', images=[], max_images=\n 100, sensorSize_mm=None, detect_sensible=True):\n self._coeffs = {}\n self.opts = {'foundPattern': [], 'size': board_size, 'imgs': [],\n 'imgPoints': []}\n self._detect_sensible = detect_sensible\n self.method = {'Chessboard': self._findChessboard, 'Symmetric circles':\n self._findSymmetricCircles, 'Asymmetric circles': self.\n _findAsymmetricCircles, 'Manual': None}[method]\n self.max_images = max_images\n self.findCount = 0\n self.apertureSize = sensorSize_mm\n self.objp = self._mkObjPoints(board_size)\n if method == 'Asymmetric circles':\n i = self.objp[:, 1] % 2 == 1\n self.objp[:, 0] *= 2\n self.objp[i, 0] += 1\n self.objpoints = []\n self.mapx, self.mapy = None, None\n for n, i in enumerate(images):\n print('working on image %s' % n)\n if self.addImg(i):\n print('OK')\n", "role": "user" }, { "content": "calibrate", "role": "assistant" } ]
def x(self, points, board_size=None): self.opts['foundPattern'].append(True) self.findCount += 1 if board_size is not None: self.objpoints.append(self._mkObjPoints(board_size)) else: self.objpoints.append(self.objp) s0 = points.shape[0] self.opts['imgPoints'].append(np.asarray(points).reshape(s0, 1, 2). astype(np.float32))
addPoints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, points, board_size=None):\n self.opts['foundPattern'].append(True)\n self.findCount += 1\n if board_size is not None:\n self.objpoints.append(self._mkObjPoints(board_size))\n else:\n self.objpoints.append(self.objp)\n s0 = points.shape[0]\n self.opts['imgPoints'].append(np.asarray(points).reshape(s0, 1, 2).\n astype(np.float32))\n", "role": "user" }, { "content": "addPoints", "role": "assistant" } ]
def x(self, shape): self.img = type('Dummy', (object,), {}) self.img.shape = shape
setImgShape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shape):\n self.img = type('Dummy', (object,), {})\n self.img.shape = shape\n", "role": "user" }, { "content": "setImgShape", "role": "assistant" } ]
def x(self, img): if self.findCount > self.max_images: raise EnoughImages('have enough images') return self.addImg(img)
addImgStream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img):\n if self.findCount > self.max_images:\n raise EnoughImages('have enough images')\n return self.addImg(img)\n", "role": "user" }, { "content": "addImgStream", "role": "assistant" } ]
def x(self, img): self.img = imread(img, 'gray', 'uint8') didFindCorners, corners = self.method() self.opts['foundPattern'].append(didFindCorners) if didFindCorners: self.findCount += 1 self.objpoints.append(self.objp) self.opts['imgPoints'].append(corners) return didFindCorners
addImg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img):\n self.img = imread(img, 'gray', 'uint8')\n didFindCorners, corners = self.method()\n self.opts['foundPattern'].append(didFindCorners)\n if didFindCorners:\n self.findCount += 1\n self.objpoints.append(self.objp)\n self.opts['imgPoints'].append(corners)\n return didFindCorners\n", "role": "user" }, { "content": "addImg", "role": "assistant" } ]
def x(self): txt = '' for key, val in self.coeffs.items(): txt += '%s = %s\n' % (key, val) return txt
getCoeffStr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n txt = ''\n for key, val in self.coeffs.items():\n txt += '%s = %s\\n' % (key, val)\n return txt\n", "role": "user" }, { "content": "getCoeffStr", "role": "assistant" } ]
def x(self, img=None): assert self.findCount > 0, 'cannot draw chessboard if nothing found' if img is None: img = self.img elif isinstance(img, bool) and not img: img = np.zeros(shape=self.img.shape, dtype=self.img.dtype) else: img = imread(img, dtype='uint8') gray = False if img.ndim == 2: gray = True img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.drawChessboardCorners(img, self.opts['size'], self.opts['imgPoints' ][-1], self.opts['foundPattern'][-1]) if gray: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return img
drawChessboard
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img=None):\n assert self.findCount > 0, 'cannot draw chessboard if nothing found'\n if img is None:\n img = self.img\n elif isinstance(img, bool) and not img:\n img = np.zeros(shape=self.img.shape, dtype=self.img.dtype)\n else:\n img = imread(img, dtype='uint8')\n gray = False\n if img.ndim == 2:\n gray = True\n img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)\n cv2.drawChessboardCorners(img, self.opts['size'], self.opts['imgPoints'\n ][-1], self.opts['foundPattern'][-1])\n if gray:\n img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n return img\n", "role": "user" }, { "content": "drawChessboard", "role": "assistant" } ]
def x(self, filename, saveOpts=False): try: if not filename.endswith('.%s' % self.ftype): filename += '.%s' % self.ftype s = {'coeffs': self.coeffs} if saveOpts: s['opts'] = self.opts np.savez(filename, **s) return filename except AttributeError: raise Exception( 'need to calibrate camera before calibration can be saved to file')
writeToFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, saveOpts=False):\n try:\n if not filename.endswith('.%s' % self.ftype):\n filename += '.%s' % self.ftype\n s = {'coeffs': self.coeffs}\n if saveOpts:\n s['opts'] = self.opts\n np.savez(filename, **s)\n return filename\n except AttributeError:\n raise Exception(\n 'need to calibrate camera before calibration can be saved to file')\n", "role": "user" }, { "content": "writeToFile", "role": "assistant" } ]
def x(self, filename): s = dict(np.load(filename)) try: self.coeffs = s['coeffs'][()] except KeyError: self.coeffs = s try: self.opts = s['opts'][()] except KeyError: pass return self.coeffs
readFromFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n s = dict(np.load(filename))\n try:\n self.coeffs = s['coeffs'][()]\n except KeyError:\n self.coeffs = s\n try:\n self.opts = s['opts'][()]\n except KeyError:\n pass\n return self.coeffs\n", "role": "user" }, { "content": "readFromFile", "role": "assistant" } ]
def x(self, points, keepSize=False): s = self.img.shape cam = self.coeffs['cameraMatrix'] d = self.coeffs['distortionCoeffs'] pts = np.asarray(points, dtype=np.float32) if pts.ndim == 2: pts = np.expand_dims(pts, axis=0) newCameraMatrix, roi = cv2.getOptimalNewCameraMatrix(cam, d, s[::-1], 1, s[::-1]) if not keepSize: xx, yy = roi[:2] pts[0, 0] -= xx pts[0, 1] -= yy return cv2.undistortPoints(pts, cam, d, P=newCameraMatrix)
undistortPoints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, points, keepSize=False):\n s = self.img.shape\n cam = self.coeffs['cameraMatrix']\n d = self.coeffs['distortionCoeffs']\n pts = np.asarray(points, dtype=np.float32)\n if pts.ndim == 2:\n pts = np.expand_dims(pts, axis=0)\n newCameraMatrix, roi = cv2.getOptimalNewCameraMatrix(cam, d, s[::-1], 1,\n s[::-1])\n if not keepSize:\n xx, yy = roi[:2]\n pts[0, 0] -= xx\n pts[0, 1] -= yy\n return cv2.undistortPoints(pts, cam, d, P=newCameraMatrix)\n", "role": "user" }, { "content": "undistortPoints", "role": "assistant" } ]
def x(self, image, keepSize=False, borderValue=0): image = imread(image) h, w = image.shape[:2] mapx, mapy = self.getUndistortRectifyMap(w, h) self.img = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderMode= cv2.BORDER_CONSTANT, borderValue=borderValue) if not keepSize: xx, yy, ww, hh = self.roi self.img = self.img[yy:yy + hh, xx:xx + ww] return self.img
correct
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, keepSize=False, borderValue=0):\n image = imread(image)\n h, w = image.shape[:2]\n mapx, mapy = self.getUndistortRectifyMap(w, h)\n self.img = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderMode=\n cv2.BORDER_CONSTANT, borderValue=borderValue)\n if not keepSize:\n xx, yy, ww, hh = self.roi\n self.img = self.img[yy:yy + hh, xx:xx + ww]\n return self.img\n", "role": "user" }, { "content": "correct", "role": "assistant" } ]
def x(self, image): image = imread(image) imgHeight, imgWidth = image.shape[:2] mapx, mapy = self.getDistortRectifyMap(imgWidth, imgHeight) return cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderValue=(0, 0, 0) )
distortImage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image):\n image = imread(image)\n imgHeight, imgWidth = image.shape[:2]\n mapx, mapy = self.getDistortRectifyMap(imgWidth, imgHeight)\n return cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderValue=(0, 0, 0)\n )\n", "role": "user" }, { "content": "distortImage", "role": "assistant" } ]
def x(self): c = self.coeffs['cameraMatrix'] fx = c[0][0] fy = c[1][1] cx = c[0][2] cy = c[1][2] k1, k2, p1, p2, k3 = tuple(self.coeffs['distortionCoeffs'].tolist()[0]) return fx, fy, cx, cy, k1, k2, k3, p1, p2
getCameraParams
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n c = self.coeffs['cameraMatrix']\n fx = c[0][0]\n fy = c[1][1]\n cx = c[0][2]\n cy = c[1][2]\n k1, k2, p1, p2, k3 = tuple(self.coeffs['distortionCoeffs'].tolist()[0])\n return fx, fy, cx, cy, k1, k2, k3, p1, p2\n", "role": "user" }, { "content": "getCameraParams", "role": "assistant" } ]
def x(self, sharpness=0.5): height, width = self.coeffs['shape'] fx, fy = self.getDeflection(width, height) r = self.coeffs['reprojectionError'] t = (sharpness ** 2 + r ** 2) ** 0.5 return fx * t, fy * t
standardUncertainties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sharpness=0.5):\n height, width = self.coeffs['shape']\n fx, fy = self.getDeflection(width, height)\n r = self.coeffs['reprojectionError']\n t = (sharpness ** 2 + r ** 2) ** 0.5\n return fx * t, fy * t\n", "role": "user" }, { "content": "standardUncertainties", "role": "assistant" } ]
def x(arr, dtype=None): out = np.zeros_like(arr, dtype=dtype) _calc(arr, out) _calc(arr.T, out.T) return out
edgesFromBoolImg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, dtype=None):\n out = np.zeros_like(arr, dtype=dtype)\n _calc(arr, out)\n _calc(arr.T, out.T)\n return out\n", "role": "user" }, { "content": "edgesFromBoolImg", "role": "assistant" } ]
def x(img1, kp1, img2, kp2, matches, color=None, thickness=2, r=15): if len(img1.shape) == 3: new_shape = max(img1.shape[0], img2.shape[0]), img1.shape[1 ] + img2.shape[1], img1.shape[2] elif len(img1.shape) == 2: new_shape = max(img1.shape[0], img2.shape[0]), img1.shape[1 ] + img2.shape[1] new_img = np.zeros(new_shape, type(img1.flat[0])) new_img[0:img1.shape[0], 0:img1.shape[1]] = img1 new_img[0:img2.shape[0], img1.shape[1]:img1.shape[1] + img2.shape[1] ] = img2 if color: c = color for m in matches: if not color: c = np.random.randint(0, 256, 3) if len(img1.shape ) == 3 else np.random.randint(0, 256) end1 = tuple(np.round(kp1[m.trainIdx].pt).astype(int)) end2 = tuple(np.round(kp2[m.queryIdx].pt).astype(int) + np.array([ img1.shape[1], 0])) cv2.line(new_img, end1, end2, c, thickness) cv2.circle(new_img, end1, r, c, thickness) cv2.circle(new_img, end2, r, c, thickness) return new_img
draw_matches
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img1, kp1, img2, kp2, matches, color=None, thickness=2, r=15):\n if len(img1.shape) == 3:\n new_shape = max(img1.shape[0], img2.shape[0]), img1.shape[1\n ] + img2.shape[1], img1.shape[2]\n elif len(img1.shape) == 2:\n new_shape = max(img1.shape[0], img2.shape[0]), img1.shape[1\n ] + img2.shape[1]\n new_img = np.zeros(new_shape, type(img1.flat[0]))\n new_img[0:img1.shape[0], 0:img1.shape[1]] = img1\n new_img[0:img2.shape[0], img1.shape[1]:img1.shape[1] + img2.shape[1]\n ] = img2\n if color:\n c = color\n for m in matches:\n if not color:\n c = np.random.randint(0, 256, 3) if len(img1.shape\n ) == 3 else np.random.randint(0, 256)\n end1 = tuple(np.round(kp1[m.trainIdx].pt).astype(int))\n end2 = tuple(np.round(kp2[m.queryIdx].pt).astype(int) + np.array([\n img1.shape[1], 0]))\n cv2.line(new_img, end1, end2, c, thickness)\n cv2.circle(new_img, end1, r, c, thickness)\n cv2.circle(new_img, end2, r, c, thickness)\n return new_img\n", "role": "user" }, { "content": "draw_matches", "role": "assistant" } ]
def x(self, img): r = scaleSignalCutParams(img, 0.02) self.signal_ranges.append(r) return toUIntArray(img, dtype=np.uint8, range=r)
scaleTo8bit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img):\n r = scaleSignalCutParams(img, 0.02)\n self.signal_ranges.append(r)\n return toUIntArray(img, dtype=np.uint8, range=r)\n", "role": "user" }, { "content": "scaleTo8bit", "role": "assistant" } ]
def x(self, img, drawMatches=False): print('\t Finding points...') img = self._prepareImage(img) features, descs = self.detector.detectAndCompute(img, None) bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches_subset = bf.match(descs, self.base_descs) if not len(matches_subset): raise Exception('no matches found') print('\t Filtered Match Count: ', len(matches_subset)) distance = sum([m.distance for m in matches_subset]) print('\t Distance from Key Image: ', distance) averagePointDistance = distance / len(matches_subset) print('\t Average Distance: ', averagePointDistance) kp1 = [] kp2 = [] for match in matches_subset: kp1.append(self.base_features[match.trainIdx]) kp2.append(features[match.queryIdx]) p1 = np.array([k.pt for k in kp1]) p2 = np.array([k.pt for k in kp2]) H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0) if status is None: raise Exception('no homography found') else: inliers = np.sum(status) print('%d / %d inliers/matched' % (inliers, len(status))) inlierRatio = inliers / len(status) if self.minInlierRatio > inlierRatio or inliers < self.minInliers: raise Exception('bad fit!') s = np.eye(3, 3) s[0, 0] = 1 / self._fH s[1, 1] = 1 / self._fH H = s.dot(H).dot(np.linalg.inv(s)) if drawMatches: img = draw_matches(self.base8bit, self.base_features, img, features, matches_subset[:20], thickness=5) return (H, inliers, inlierRatio, averagePointDistance, img, features, descs, len(matches_subset))
findHomography
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, img, drawMatches=False):\n print('\\t Finding points...')\n img = self._prepareImage(img)\n features, descs = self.detector.detectAndCompute(img, None)\n bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)\n matches_subset = bf.match(descs, self.base_descs)\n if not len(matches_subset):\n raise Exception('no matches found')\n print('\\t Filtered Match Count: ', len(matches_subset))\n distance = sum([m.distance for m in matches_subset])\n print('\\t Distance from Key Image: ', distance)\n averagePointDistance = distance / len(matches_subset)\n print('\\t Average Distance: ', averagePointDistance)\n kp1 = []\n kp2 = []\n for match in matches_subset:\n kp1.append(self.base_features[match.trainIdx])\n kp2.append(features[match.queryIdx])\n p1 = np.array([k.pt for k in kp1])\n p2 = np.array([k.pt for k in kp2])\n H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)\n if status is None:\n raise Exception('no homography found')\n else:\n inliers = np.sum(status)\n print('%d / %d inliers/matched' % (inliers, len(status)))\n inlierRatio = inliers / len(status)\n if self.minInlierRatio > inlierRatio or inliers < self.minInliers:\n raise Exception('bad fit!')\n s = np.eye(3, 3)\n s[0, 0] = 1 / self._fH\n s[1, 1] = 1 / self._fH\n H = s.dot(H).dot(np.linalg.inv(s))\n if drawMatches:\n img = draw_matches(self.base8bit, self.base_features, img, features,\n matches_subset[:20], thickness=5)\n return (H, inliers, inlierRatio, averagePointDistance, img, features,\n descs, len(matches_subset))\n", "role": "user" }, { "content": "findHomography", "role": "assistant" } ]
def x(s0): arr = np.zeros((s0, s0), dtype=np.uint8) col = 255 for rad in np.linspace(s0, s0 / 7.0, 10): cv2.circle(arr, (0, 0), int(round(rad)), color=col, thickness=-1, lineType=cv2.LINE_AA) if col: col = 0 else: col = 255 return arr.astype(float)
patCircles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s0):\n arr = np.zeros((s0, s0), dtype=np.uint8)\n col = 255\n for rad in np.linspace(s0, s0 / 7.0, 10):\n cv2.circle(arr, (0, 0), int(round(rad)), color=col, thickness=-1,\n lineType=cv2.LINE_AA)\n if col:\n col = 0\n else:\n col = 255\n return arr.astype(float)\n", "role": "user" }, { "content": "patCircles", "role": "assistant" } ]
def x(s0): arr = np.zeros((s0, s0), dtype=np.uint8) col = 255 t = int(s0 / 100.0) for pos in np.logspace(0.01, 1, 10): pos = int(round((pos - 0.5) * s0 / 10.0)) cv2.line(arr, (0, pos), (s0, pos), color=col, thickness=t, lineType =cv2.LINE_AA) cv2.line(arr, (pos, 0), (pos, s0), color=col, thickness=t, lineType =cv2.LINE_AA) return arr.astype(float)
patCrossLines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s0):\n arr = np.zeros((s0, s0), dtype=np.uint8)\n col = 255\n t = int(s0 / 100.0)\n for pos in np.logspace(0.01, 1, 10):\n pos = int(round((pos - 0.5) * s0 / 10.0))\n cv2.line(arr, (0, pos), (s0, pos), color=col, thickness=t, lineType\n =cv2.LINE_AA)\n cv2.line(arr, (pos, 0), (pos, s0), color=col, thickness=t, lineType\n =cv2.LINE_AA)\n return arr.astype(float)\n", "role": "user" }, { "content": "patCrossLines", "role": "assistant" } ]
def x(s0): arr = np.zeros((s0, s0), dtype=np.uint8) col = 255 t = int(s0 / 100.0) for pos in np.linspace(0, np.pi / 2, 15): p0 = int(round(np.sin(pos) * s0 * 2)) p1 = int(round(np.cos(pos) * s0 * 2)) cv2.line(arr, (0, 0), (p0, p1), color=col, thickness=t, lineType= cv2.LINE_AA) return arr.astype(float)
patStarLines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s0):\n arr = np.zeros((s0, s0), dtype=np.uint8)\n col = 255\n t = int(s0 / 100.0)\n for pos in np.linspace(0, np.pi / 2, 15):\n p0 = int(round(np.sin(pos) * s0 * 2))\n p1 = int(round(np.cos(pos) * s0 * 2))\n cv2.line(arr, (0, 0), (p0, p1), color=col, thickness=t, lineType=\n cv2.LINE_AA)\n return arr.astype(float)\n", "role": "user" }, { "content": "patStarLines", "role": "assistant" } ]
def x(s0, n=72, vhigh=255, vlow=0, antiasing=False): arr = np.full((s0, s0), vlow, dtype=np.uint8) c = int(round(s0 / 2.0)) s = 2 * np.pi / (2 * n) step = 0 for i in range(2 * n): p0 = round(c + np.sin(step) * 2 * s0) p1 = round(c + np.cos(step) * 2 * s0) step += s p2 = round(c + np.sin(step) * 2 * s0) p3 = round(c + np.cos(step) * 2 * s0) pts = np.array(((c, c), (p0, p1), (p2, p3)), dtype=int) cv2.fillConvexPoly(arr, pts, color=vhigh if i % 2 else vlow, lineType=cv2.LINE_AA if antiasing else 0) arr[c, c] = 0 return arr.astype(float)
patSiemensStar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s0, n=72, vhigh=255, vlow=0, antiasing=False):\n arr = np.full((s0, s0), vlow, dtype=np.uint8)\n c = int(round(s0 / 2.0))\n s = 2 * np.pi / (2 * n)\n step = 0\n for i in range(2 * n):\n p0 = round(c + np.sin(step) * 2 * s0)\n p1 = round(c + np.cos(step) * 2 * s0)\n step += s\n p2 = round(c + np.sin(step) * 2 * s0)\n p3 = round(c + np.cos(step) * 2 * s0)\n pts = np.array(((c, c), (p0, p1), (p2, p3)), dtype=int)\n cv2.fillConvexPoly(arr, pts, color=vhigh if i % 2 else vlow,\n lineType=cv2.LINE_AA if antiasing else 0)\n arr[c, c] = 0\n return arr.astype(float)\n", "role": "user" }, { "content": "patSiemensStar", "role": "assistant" } ]
def x(s0): arr = np.zeros((s0, s0), dtype=np.uint8) s = int(round(s0 / 100.0)) p1 = 0 pp1 = int(round(s0 / 10.0)) for pos0 in np.linspace(0, s0, 10): cv2.putText(arr, 'helloworld', (p1, int(round(pos0))), cv2. FONT_HERSHEY_COMPLEX_SMALL, fontScale=s, color=255, thickness=s, lineType=cv2.LINE_AA) if p1: p1 = 0 else: p1 = pp1 return arr.astype(float)
patText
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s0):\n arr = np.zeros((s0, s0), dtype=np.uint8)\n s = int(round(s0 / 100.0))\n p1 = 0\n pp1 = int(round(s0 / 10.0))\n for pos0 in np.linspace(0, s0, 10):\n cv2.putText(arr, 'helloworld', (p1, int(round(pos0))), cv2.\n FONT_HERSHEY_COMPLEX_SMALL, fontScale=s, color=255, thickness=s,\n lineType=cv2.LINE_AA)\n if p1:\n p1 = 0\n else:\n p1 = pp1\n return arr.astype(float)\n", "role": "user" }, { "content": "patText", "role": "assistant" } ]