source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(container): region = Region(container.maxdepth) for r in container.add_region: logging.info('adding region from {0}'.format(r)) r2 = Region.load(r[0]) region.union(r2) for r in container.rem_region: logging.info('removing region from {0}'.format(r)) r2 = Region.load(r[0]) region.without(r2) if len(container.include_circles) > 0: for c in container.include_circles: circles = np.radians(np.array(c)) if container.galactic: l, b, radii = circles.reshape(3, circles.shape[0] // 3) ras, decs = galactic2fk5(l, b) else: ras, decs, radii = circles.reshape(3, circles.shape[0] // 3) region.add_circles(ras, decs, radii) if len(container.exclude_circles) > 0: for c in container.exclude_circles: r2 = Region(container.maxdepth) circles = np.radians(np.array(c)) if container.galactic: l, b, radii = circles.reshape(3, circles.shape[0] // 3) ras, decs = galactic2fk5(l, b) else: ras, decs, radii = circles.reshape(3, circles.shape[0] // 3) r2.add_circles(ras, decs, radii) region.without(r2) if len(container.include_polygons) > 0: for p in container.include_polygons: poly = np.radians(np.array(p)) poly = poly.reshape((poly.shape[0] // 2, 2)) region.add_poly(poly) if len(container.exclude_polygons) > 0: for p in container.include_polygons: poly = np.array(np.radians(p)) r2 = Region(container.maxdepth) r2.add_poly(poly) region.without(r2) return region
combine_regions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(container):\n region = Region(container.maxdepth)\n for r in container.add_region:\n logging.info('adding region from {0}'.format(r))\n r2 = Region.load(r[0])\n region.union(r2)\n for r in container.rem_region:\n logging.info('removing region from {0}'.format(r))\n r2 = Region.load(r[0])\n region.without(r2)\n if len(container.include_circles) > 0:\n for c in container.include_circles:\n circles = np.radians(np.array(c))\n if container.galactic:\n l, b, radii = circles.reshape(3, circles.shape[0] // 3)\n ras, decs = galactic2fk5(l, b)\n else:\n ras, decs, radii = circles.reshape(3, circles.shape[0] // 3)\n region.add_circles(ras, decs, radii)\n if len(container.exclude_circles) > 0:\n for c in container.exclude_circles:\n r2 = Region(container.maxdepth)\n circles = np.radians(np.array(c))\n if container.galactic:\n l, b, radii = circles.reshape(3, circles.shape[0] // 3)\n ras, decs = galactic2fk5(l, b)\n else:\n ras, decs, radii = circles.reshape(3, circles.shape[0] // 3)\n r2.add_circles(ras, decs, radii)\n region.without(r2)\n if len(container.include_polygons) > 0:\n for p in container.include_polygons:\n poly = np.radians(np.array(p))\n poly = poly.reshape((poly.shape[0] // 2, 2))\n region.add_poly(poly)\n if len(container.exclude_polygons) > 0:\n for p in container.include_polygons:\n poly = np.array(np.radians(p))\n r2 = Region(container.maxdepth)\n r2.add_poly(poly)\n region.without(r2)\n return region\n", "role": "user" }, { "content": "combine_regions", "role": "assistant" } ]
def x(flist): if len(flist) < 2: raise Exception('Require at least two regions to perform intersection') a = Region.load(flist[0]) for b in [Region.load(f) for f in flist[1:]]: a.intersect(b) return a
intersect_regions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(flist):\n if len(flist) < 2:\n raise Exception('Require at least two regions to perform intersection')\n a = Region.load(flist[0])\n for b in [Region.load(f) for f in flist[1:]]:\n a.intersect(b)\n return a\n", "role": "user" }, { "content": "intersect_regions", "role": "assistant" } ]
def x(region, filename): region.save(filename) logging.info('Wrote {0}'.format(filename)) return
save_region
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(region, filename):\n region.save(filename)\n logging.info('Wrote {0}'.format(filename))\n return\n", "role": "user" }, { "content": "save_region", "role": "assistant" } ]
def x(region, filename): import healpy as hp pixels = list(region.get_demoted()) order = region.maxdepth m = np.arange(hp.nside2npix(2 ** order)) m[:] = 0 m[pixels] = 1 hp.write_map(filename, m, nest=True, coord='C') return
save_as_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(region, filename):\n import healpy as hp\n pixels = list(region.get_demoted())\n order = region.maxdepth\n m = np.arange(hp.nside2npix(2 ** order))\n m[:] = 0\n m[pixels] = 1\n hp.write_map(filename, m, nest=True, coord='C')\n return\n", "role": "user" }, { "content": "save_as_image", "role": "assistant" } ]
def x(header): if all(a in header for a in ['CDELT1', 'CDELT2']): pixarea = abs(header['CDELT1'] * header['CDELT2']) pixscale = header['CDELT1'], header['CDELT2'] elif all(a in header for a in ['CD1_1', 'CD1_2', 'CD2_1', 'CD2_2']): pixarea = abs(header['CD1_1'] * header['CD2_2'] - header['CD1_2'] * header['CD2_1']) pixscale = header['CD1_1'], header['CD2_2'] if not (header['CD1_2'] == 0 and header['CD2_1'] == 0): log.warning("Pixels don't appear to be square -> pixscale is wrong" ) elif all(a in header for a in ['CD1_1', 'CD2_2']): pixarea = abs(header['CD1_1'] * header['CD2_2']) pixscale = header['CD1_1'], header['CD2_2'] else: log.critical( 'cannot determine pixel area, using zero EVEN THOUGH THIS IS WRONG!' ) pixarea = 0 pixscale = 0, 0 return pixarea, pixscale
get_pixinfo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(header):\n if all(a in header for a in ['CDELT1', 'CDELT2']):\n pixarea = abs(header['CDELT1'] * header['CDELT2'])\n pixscale = header['CDELT1'], header['CDELT2']\n elif all(a in header for a in ['CD1_1', 'CD1_2', 'CD2_1', 'CD2_2']):\n pixarea = abs(header['CD1_1'] * header['CD2_2'] - header['CD1_2'] *\n header['CD2_1'])\n pixscale = header['CD1_1'], header['CD2_2']\n if not (header['CD1_2'] == 0 and header['CD2_1'] == 0):\n log.warning(\"Pixels don't appear to be square -> pixscale is wrong\"\n )\n elif all(a in header for a in ['CD1_1', 'CD2_2']):\n pixarea = abs(header['CD1_1'] * header['CD2_2'])\n pixscale = header['CD1_1'], header['CD2_2']\n else:\n log.critical(\n 'cannot determine pixel area, using zero EVEN THOUGH THIS IS WRONG!'\n )\n pixarea = 0\n pixscale = 0, 0\n return pixarea, pixscale\n", "role": "user" }, { "content": "get_pixinfo", "role": "assistant" } ]
def x(header): if 'BPA' not in header: log.warning('BPA not present in fits header, using 0') bpa = 0 else: bpa = header['BPA'] if 'BMAJ' not in header: log.warning('BMAJ not present in fits header.') bmaj = None else: bmaj = header['BMAJ'] if 'BMIN' not in header: log.warning('BMIN not present in fits header.') bmin = None else: bmin = header['BMIN'] if None in [bmaj, bmin, bpa]: return None beam = Beam(bmaj, bmin, bpa) return beam
get_beam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(header):\n if 'BPA' not in header:\n log.warning('BPA not present in fits header, using 0')\n bpa = 0\n else:\n bpa = header['BPA']\n if 'BMAJ' not in header:\n log.warning('BMAJ not present in fits header.')\n bmaj = None\n else:\n bmaj = header['BMAJ']\n if 'BMIN' not in header:\n log.warning('BMIN not present in fits header.')\n bmin = None\n else:\n bmin = header['BMIN']\n if None in [bmaj, bmin, bpa]:\n return None\n beam = Beam(bmaj, bmin, bpa)\n return beam\n", "role": "user" }, { "content": "get_beam", "role": "assistant" } ]
def x(header): if 'BMAJ' in header and 'BMIN' in header and 'BPA' in header: return header aips_hist = [a for a in header['HISTORY'] if a.startswith('AIPS')] if len(aips_hist) == 0: return header for a in aips_hist: if 'BMAJ' in a: words = a.split() bmaj = float(words[3]) bmin = float(words[5]) bpa = float(words[7]) break else: return header header['BMAJ'] = bmaj header['BMIN'] = bmin header['BPA'] = bpa header['HISTORY'] = 'Beam information AIPS->fits by AegeanTools' return header
fix_aips_header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(header):\n if 'BMAJ' in header and 'BMIN' in header and 'BPA' in header:\n return header\n aips_hist = [a for a in header['HISTORY'] if a.startswith('AIPS')]\n if len(aips_hist) == 0:\n return header\n for a in aips_hist:\n if 'BMAJ' in a:\n words = a.split()\n bmaj = float(words[3])\n bmin = float(words[5])\n bpa = float(words[7])\n break\n else:\n return header\n header['BMAJ'] = bmaj\n header['BMIN'] = bmin\n header['BPA'] = bpa\n header['HISTORY'] = 'Beam information AIPS->fits by AegeanTools'\n return header\n", "role": "user" }, { "content": "fix_aips_header", "role": "assistant" } ]
def x(self, pixels): if not pixels.shape == self._pixels.shape: raise AssertionError( 'Shape mismatch between pixels supplied {0} and existing image pixels {1}' .format(pixels.shape, self._pixels.shape)) self._pixels = pixels self._rms = None return
set_pixels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pixels):\n if not pixels.shape == self._pixels.shape:\n raise AssertionError(\n 'Shape mismatch between pixels supplied {0} and existing image pixels {1}'\n .format(pixels.shape, self._pixels.shape))\n self._pixels = pixels\n self._rms = None\n return\n", "role": "user" }, { "content": "set_pixels", "role": "assistant" } ]
def x(self): if self._rms is None: data = numpy.extract(self.hdu.data > -9999999, self.hdu.data) p25 = scipy.stats.scoreatpercentile(data, 25) p75 = scipy.stats.scoreatpercentile(data, 75) iqr = p75 - p25 self._rms = iqr / 1.34896 return self._rms
get_background_rms
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self._rms is None:\n data = numpy.extract(self.hdu.data > -9999999, self.hdu.data)\n p25 = scipy.stats.scoreatpercentile(data, 25)\n p75 = scipy.stats.scoreatpercentile(data, 75)\n iqr = p75 - p25\n self._rms = iqr / 1.34896\n return self._rms\n", "role": "user" }, { "content": "get_background_rms", "role": "assistant" } ]
def x(self, pixel): pixbox = numpy.array([pixel, pixel]) skybox = self.wcs.all_pix2world(pixbox, 1) return [float(skybox[0][0]), float(skybox[0][1])]
pix2sky
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pixel):\n pixbox = numpy.array([pixel, pixel])\n skybox = self.wcs.all_pix2world(pixbox, 1)\n return [float(skybox[0][0]), float(skybox[0][1])]\n", "role": "user" }, { "content": "pix2sky", "role": "assistant" } ]
def x(self, skypos): skybox = [skypos, skypos] pixbox = self.wcs.all_world2pix(skybox, 1) return [float(pixbox[0][0]), float(pixbox[0][1])]
sky2pix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, skypos):\n skybox = [skypos, skypos]\n pixbox = self.wcs.all_world2pix(skybox, 1)\n return [float(pixbox[0][0]), float(pixbox[0][1])]\n", "role": "user" }, { "content": "sky2pix", "role": "assistant" } ]
def x(filename): catalog = catalogs.table_to_source_list(catalogs.load_table(filename)) logging.info('read {0} sources from {1}'.format(len(catalog), filename)) return catalog
load_sources
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n catalog = catalogs.table_to_source_list(catalogs.load_table(filename))\n logging.info('read {0} sources from {1}'.format(len(catalog), filename))\n return catalog\n", "role": "user" }, { "content": "load_sources", "role": "assistant" } ]
def x(hdulist): header = hdulist[0].header history = header['HISTORY'] history_str = str(history) if 'BMAJ' in history_str: return True else: return False
search_beam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdulist):\n header = hdulist[0].header\n history = header['HISTORY']\n history_str = str(history)\n if 'BMAJ' in history_str:\n return True\n else:\n return False\n", "role": "user" }, { "content": "search_beam", "role": "assistant" } ]
def x(source): if source.a < source.b: source.a, source.b = source.b, source.a source.err_a, source.err_b = source.err_b, source.err_a source.pa += 90 return
fix_shape
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source):\n if source.a < source.b:\n source.a, source.b = source.b, source.a\n source.err_a, source.err_b = source.err_b, source.err_a\n source.pa += 90\n return\n", "role": "user" }, { "content": "fix_shape", "role": "assistant" } ]
def x(theta): while theta <= -1 * np.pi / 2: theta += np.pi while theta > np.pi / 2: theta -= np.pi return theta
theta_limit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(theta):\n while theta <= -1 * np.pi / 2:\n theta += np.pi\n while theta > np.pi / 2:\n theta -= np.pi\n return theta\n", "role": "user" }, { "content": "theta_limit", "role": "assistant" } ]
def x(telescope): scopes = {'MWA': -26.703319, 'ATCA': -30.3128, 'VLA': 34.079, 'LOFAR': 52.9088, 'KAT7': -30.721, 'MEERKAT': -30.721, 'PAPER': -30.7224, 'GMRT': 19.096516666667, 'OOTY': 11.383404, 'ASKAP': -26.7, 'MOST': -35.3707, 'PARKES': -32.999944, 'WSRT': 52.914722, 'AMILA': 52.16977, 'AMISA': 52.164303, 'ATA': 40.817, 'CHIME': 49.321, 'CARMA': 37.28044, 'DRAO': 49.321, 'GBT': 38.433056, 'LWA': 34.07, 'ALMA': -23.019283, 'FAST': 25.6525} if telescope.upper() in scopes: return scopes[telescope.upper()] else: log = logging.getLogger('Aegean') log.warn('Telescope {0} is unknown'.format(telescope)) log.warn('integrated fluxes may be incorrect') return None
scope2lat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(telescope):\n scopes = {'MWA': -26.703319, 'ATCA': -30.3128, 'VLA': 34.079, 'LOFAR': \n 52.9088, 'KAT7': -30.721, 'MEERKAT': -30.721, 'PAPER': -30.7224,\n 'GMRT': 19.096516666667, 'OOTY': 11.383404, 'ASKAP': -26.7, 'MOST':\n -35.3707, 'PARKES': -32.999944, 'WSRT': 52.914722, 'AMILA': \n 52.16977, 'AMISA': 52.164303, 'ATA': 40.817, 'CHIME': 49.321,\n 'CARMA': 37.28044, 'DRAO': 49.321, 'GBT': 38.433056, 'LWA': 34.07,\n 'ALMA': -23.019283, 'FAST': 25.6525}\n if telescope.upper() in scopes:\n return scopes[telescope.upper()]\n else:\n log = logging.getLogger('Aegean')\n log.warn('Telescope {0} is unknown'.format(telescope))\n log.warn('integrated fluxes may be incorrect')\n return None\n", "role": "user" }, { "content": "scope2lat", "role": "assistant" } ]
def x(cores): cores = min(multiprocessing.cpu_count(), cores) if six.PY3: log = logging.getLogger('Aegean') log.info('Multi-cores not supported in python 3+, using one core') return 1 try: queue = pprocess.Queue(limit=cores, reuse=1) except: cores = 1 else: try: _ = queue.manage(pprocess.MakeReusable(fix_shape)) except: cores = 1 return cores
check_cores
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cores):\n cores = min(multiprocessing.cpu_count(), cores)\n if six.PY3:\n log = logging.getLogger('Aegean')\n log.info('Multi-cores not supported in python 3+, using one core')\n return 1\n try:\n queue = pprocess.Queue(limit=cores, reuse=1)\n except:\n cores = 1\n else:\n try:\n _ = queue.manage(pprocess.MakeReusable(fix_shape))\n except:\n cores = 1\n return cores\n", "role": "user" }, { "content": "check_cores", "role": "assistant" } ]
def x(basename): base = os.path.splitext(basename)[0] files = {'bkg': base + '_bkg.fits', 'rms': base + '_rms.fits', 'mask': base + '.mim', 'cat': base + '_comp.fits', 'psf': base + '_psf.fits'} for k in files.keys(): if not os.path.exists(files[k]): files[k] = None return files
get_aux_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(basename):\n base = os.path.splitext(basename)[0]\n files = {'bkg': base + '_bkg.fits', 'rms': base + '_rms.fits', 'mask': \n base + '.mim', 'cat': base + '_comp.fits', 'psf': base + '_psf.fits'}\n for k in files.keys():\n if not os.path.exists(files[k]):\n files[k] = None\n return files\n", "role": "user" }, { "content": "get_aux_files", "role": "assistant" } ]
def x(self, data, rmsimg, innerclip, outerclip=None, domask=False): if outerclip is None: outerclip = innerclip snr = abs(data) / rmsimg a = snr >= outerclip l, n = label(a) f = find_objects(l) if n == 0: self.log.debug('There are no pixels above the clipping limit') return self.log.debug('{1} Found {0} islands total above flood limit'.format(n, data.shape)) for i in range(n): xmin, xmax = f[i][0].start, f[i][0].stop ymin, ymax = f[i][1].start, f[i][1].stop if np.any(snr[xmin:xmax, ymin:ymax] > innerclip): data_box = copy.copy(data[xmin:xmax, ymin:ymax]) data_box[np.where(snr[xmin:xmax, ymin:ymax] < outerclip)] = np.nan data_box[np.where(l[xmin:xmax, ymin:ymax] != i + 1)] = np.nan if not np.any(np.isfinite(data_box)): continue if domask and self.global_data.region is not None: y, x = np.where(snr[xmin:xmax, ymin:ymax] >= outerclip) yx = list(zip(y + ymin, x + xmin)) ra, dec = self.global_data.wcshelper.wcs.wcs_pix2world(yx, 1 ).transpose() mask = self.global_data.region.sky_within(ra, dec, degin=True) if not np.any(mask): continue self.log.debug('Mask {0}'.format(mask)) yield data_box, xmin, xmax, ymin, ymax
gen_flood_wrap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, rmsimg, innerclip, outerclip=None, domask=False):\n if outerclip is None:\n outerclip = innerclip\n snr = abs(data) / rmsimg\n a = snr >= outerclip\n l, n = label(a)\n f = find_objects(l)\n if n == 0:\n self.log.debug('There are no pixels above the clipping limit')\n return\n self.log.debug('{1} Found {0} islands total above flood limit'.format(n,\n data.shape))\n for i in range(n):\n xmin, xmax = f[i][0].start, f[i][0].stop\n ymin, ymax = f[i][1].start, f[i][1].stop\n if np.any(snr[xmin:xmax, ymin:ymax] > innerclip):\n data_box = copy.copy(data[xmin:xmax, ymin:ymax])\n data_box[np.where(snr[xmin:xmax, ymin:ymax] < outerclip)] = np.nan\n data_box[np.where(l[xmin:xmax, ymin:ymax] != i + 1)] = np.nan\n if not np.any(np.isfinite(data_box)):\n continue\n if domask and self.global_data.region is not None:\n y, x = np.where(snr[xmin:xmax, ymin:ymax] >= outerclip)\n yx = list(zip(y + ymin, x + xmin))\n ra, dec = self.global_data.wcshelper.wcs.wcs_pix2world(yx, 1\n ).transpose()\n mask = self.global_data.region.sky_within(ra, dec, degin=True)\n if not np.any(mask):\n continue\n self.log.debug('Mask {0}'.format(mask))\n yield data_box, xmin, xmax, ymin, ymax\n", "role": "user" }, { "content": "gen_flood_wrap", "role": "assistant" } ]
def x(self, filename, hdu_index=0, bkgin=None, rmsin=None, beam=None, verb= False, rms=None, bkg=None, cores=1, do_curve=True, mask=None, lat=None, psf=None, blank=False, docov=True, cube_index=None): if self.global_data.img is not None: return img = FitsImage(filename, hdu_index=hdu_index, beam=beam, cube_index= cube_index) beam = img.beam debug = logging.getLogger('Aegean').isEnabledFor(logging.DEBUG) if mask is None: self.global_data.region = None elif isinstance(mask, Region): self.global_data.region = mask elif os.path.exists(mask): self.log.info('Loading mask from {0}'.format(mask)) self.global_data.region = Region.load(mask) else: self.log.error('File {0} not found for loading'.format(mask)) self.global_data.region = None self.global_data.wcshelper = WCSHelper.from_header(img.get_hdu_header(), beam, lat) self.global_data.psfhelper = PSFHelper(psf, self.global_data.wcshelper) self.global_data.beam = self.global_data.wcshelper.beam self.global_data.img = img self.global_data.data_pix = img.get_pixels() self.global_data.dtype = type(self.global_data.data_pix[0][0]) self.global_data.bkgimg = np.zeros(self.global_data.data_pix.shape, dtype=self.global_data.dtype) self.global_data.rmsimg = np.zeros(self.global_data.data_pix.shape, dtype=self.global_data.dtype) self.global_data.pixarea = img.pixarea self.global_data.dcurve = None if do_curve: self.log.info('Calculating curvature') dcurve = np.zeros(self.global_data.data_pix.shape, dtype=np.int8) peaks = scipy.ndimage.filters.maximum_filter(self.global_data. data_pix, size=3) troughs = scipy.ndimage.filters.minimum_filter(self.global_data. data_pix, size=3) pmask = np.where(self.global_data.data_pix == peaks) tmask = np.where(self.global_data.data_pix == troughs) dcurve[pmask] = -1 dcurve[tmask] = 1 self.global_data.dcurve = dcurve if not (rmsin and bkgin): if verb: self.log.info('Calculating background and rms data') self._make_bkg_rms(mesh_size=20, forced_rms=rms, forced_bkg=bkg, cores=cores) if bkgin: if verb: self.log.info('Loading background data from file {0}'.format(bkgin) ) self.global_data.bkgimg = self._load_aux_image(img, bkgin) if rmsin: if verb: self.log.info('Loading rms data from file {0}'.format(rmsin)) self.global_data.rmsimg = self._load_aux_image(img, rmsin) if verb and debug: self.log.debug('Data max is {0}'.format(img.get_pixels()[np. isfinite(img.get_pixels())].max())) self.log.debug('Doing background subtraction') img.set_pixels(img.get_pixels() - self.global_data.bkgimg) self.global_data.data_pix = img.get_pixels() if verb and debug: self.log.debug('Data max is {0}'.format(img.get_pixels()[np. isfinite(img.get_pixels())].max())) self.global_data.blank = blank self.global_data.docov = docov self.global_data.dobias = False if 'lon' in self.global_data.img._header['CTYPE1'].lower(): self.log.info('Galactic coordinates detected and noted') SimpleSource.galactic = True return
load_globals
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, hdu_index=0, bkgin=None, rmsin=None, beam=None, verb=\n False, rms=None, bkg=None, cores=1, do_curve=True, mask=None, lat=None,\n psf=None, blank=False, docov=True, cube_index=None):\n if self.global_data.img is not None:\n return\n img = FitsImage(filename, hdu_index=hdu_index, beam=beam, cube_index=\n cube_index)\n beam = img.beam\n debug = logging.getLogger('Aegean').isEnabledFor(logging.DEBUG)\n if mask is None:\n self.global_data.region = None\n elif isinstance(mask, Region):\n self.global_data.region = mask\n elif os.path.exists(mask):\n self.log.info('Loading mask from {0}'.format(mask))\n self.global_data.region = Region.load(mask)\n else:\n self.log.error('File {0} not found for loading'.format(mask))\n self.global_data.region = None\n self.global_data.wcshelper = WCSHelper.from_header(img.get_hdu_header(),\n beam, lat)\n self.global_data.psfhelper = PSFHelper(psf, self.global_data.wcshelper)\n self.global_data.beam = self.global_data.wcshelper.beam\n self.global_data.img = img\n self.global_data.data_pix = img.get_pixels()\n self.global_data.dtype = type(self.global_data.data_pix[0][0])\n self.global_data.bkgimg = np.zeros(self.global_data.data_pix.shape,\n dtype=self.global_data.dtype)\n self.global_data.rmsimg = np.zeros(self.global_data.data_pix.shape,\n dtype=self.global_data.dtype)\n self.global_data.pixarea = img.pixarea\n self.global_data.dcurve = None\n if do_curve:\n self.log.info('Calculating curvature')\n dcurve = np.zeros(self.global_data.data_pix.shape, dtype=np.int8)\n peaks = scipy.ndimage.filters.maximum_filter(self.global_data.\n data_pix, size=3)\n troughs = scipy.ndimage.filters.minimum_filter(self.global_data.\n data_pix, size=3)\n pmask = np.where(self.global_data.data_pix == peaks)\n tmask = np.where(self.global_data.data_pix == troughs)\n dcurve[pmask] = -1\n dcurve[tmask] = 1\n self.global_data.dcurve = dcurve\n if not (rmsin and bkgin):\n if verb:\n self.log.info('Calculating background and rms data')\n self._make_bkg_rms(mesh_size=20, forced_rms=rms, forced_bkg=bkg,\n cores=cores)\n if bkgin:\n if verb:\n self.log.info('Loading background data from file {0}'.format(bkgin)\n )\n self.global_data.bkgimg = self._load_aux_image(img, bkgin)\n if rmsin:\n if verb:\n self.log.info('Loading rms data from file {0}'.format(rmsin))\n self.global_data.rmsimg = self._load_aux_image(img, rmsin)\n if verb and debug:\n self.log.debug('Data max is {0}'.format(img.get_pixels()[np.\n isfinite(img.get_pixels())].max()))\n self.log.debug('Doing background subtraction')\n img.set_pixels(img.get_pixels() - self.global_data.bkgimg)\n self.global_data.data_pix = img.get_pixels()\n if verb and debug:\n self.log.debug('Data max is {0}'.format(img.get_pixels()[np.\n isfinite(img.get_pixels())].max()))\n self.global_data.blank = blank\n self.global_data.docov = docov\n self.global_data.dobias = False\n if 'lon' in self.global_data.img._header['CTYPE1'].lower():\n self.log.info('Galactic coordinates detected and noted')\n SimpleSource.galactic = True\n return\n", "role": "user" }, { "content": "load_globals", "role": "assistant" } ]
def x(self, image_filename, hdu_index=0, bkgin=None, rmsin=None, beam=None, rms=None, bkg=None, cores=1, outbase=None): self.log.info('Saving background / RMS maps') self.load_globals(image_filename, hdu_index=hdu_index, bkgin=bkgin, rmsin=rmsin, beam=beam, verb=True, rms=rms, bkg=bkg, cores=cores, do_curve=True) img = self.global_data.img bkgimg, rmsimg = self.global_data.bkgimg, self.global_data.rmsimg curve = np.array(self.global_data.dcurve, dtype=bkgimg.dtype) mask = np.where(np.isnan(self.global_data.data_pix)) bkgimg[mask] = np.NaN rmsimg[mask] = np.NaN curve[mask] = np.NaN new_hdu = img.hdu new_hdu.header['ORIGIN'] = 'Aegean {0}-({1})'.format(__version__, __date__) for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4', 'CTYPE3', 'CTYPE4']: if c in new_hdu.header: del new_hdu.header[c] if outbase is None: outbase, _ = os.path.splitext(os.path.basename(image_filename)) noise_out = outbase + '_rms.fits' background_out = outbase + '_bkg.fits' curve_out = outbase + '_crv.fits' snr_out = outbase + '_snr.fits' new_hdu.data = bkgimg new_hdu.writeto(background_out, overwrite=True) self.log.info('Wrote {0}'.format(background_out)) new_hdu.data = rmsimg new_hdu.writeto(noise_out, overwrite=True) self.log.info('Wrote {0}'.format(noise_out)) new_hdu.data = curve new_hdu.writeto(curve_out, overwrite=True) self.log.info('Wrote {0}'.format(curve_out)) new_hdu.data = self.global_data.data_pix / rmsimg new_hdu.writeto(snr_out, overwrite=True) self.log.info('Wrote {0}'.format(snr_out)) return
save_background_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image_filename, hdu_index=0, bkgin=None, rmsin=None, beam=None,\n rms=None, bkg=None, cores=1, outbase=None):\n self.log.info('Saving background / RMS maps')\n self.load_globals(image_filename, hdu_index=hdu_index, bkgin=bkgin,\n rmsin=rmsin, beam=beam, verb=True, rms=rms, bkg=bkg, cores=cores,\n do_curve=True)\n img = self.global_data.img\n bkgimg, rmsimg = self.global_data.bkgimg, self.global_data.rmsimg\n curve = np.array(self.global_data.dcurve, dtype=bkgimg.dtype)\n mask = np.where(np.isnan(self.global_data.data_pix))\n bkgimg[mask] = np.NaN\n rmsimg[mask] = np.NaN\n curve[mask] = np.NaN\n new_hdu = img.hdu\n new_hdu.header['ORIGIN'] = 'Aegean {0}-({1})'.format(__version__, __date__)\n for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4',\n 'CTYPE3', 'CTYPE4']:\n if c in new_hdu.header:\n del new_hdu.header[c]\n if outbase is None:\n outbase, _ = os.path.splitext(os.path.basename(image_filename))\n noise_out = outbase + '_rms.fits'\n background_out = outbase + '_bkg.fits'\n curve_out = outbase + '_crv.fits'\n snr_out = outbase + '_snr.fits'\n new_hdu.data = bkgimg\n new_hdu.writeto(background_out, overwrite=True)\n self.log.info('Wrote {0}'.format(background_out))\n new_hdu.data = rmsimg\n new_hdu.writeto(noise_out, overwrite=True)\n self.log.info('Wrote {0}'.format(noise_out))\n new_hdu.data = curve\n new_hdu.writeto(curve_out, overwrite=True)\n self.log.info('Wrote {0}'.format(curve_out))\n new_hdu.data = self.global_data.data_pix / rmsimg\n new_hdu.writeto(snr_out, overwrite=True)\n self.log.info('Wrote {0}'.format(snr_out))\n return\n", "role": "user" }, { "content": "save_background_files", "role": "assistant" } ]
def x(self, outname): hdu = self.global_data.img.hdu hdu.data = self.global_data.img._pixels hdu.header['ORIGIN'] = 'Aegean {0}-({1})'.format(__version__, __date__) for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4', 'CTYPE3', 'CTYPE4']: if c in hdu.header: del hdu.header[c] hdu.writeto(outname, overwrite=True) self.log.info('Wrote {0}'.format(outname)) return
save_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, outname):\n hdu = self.global_data.img.hdu\n hdu.data = self.global_data.img._pixels\n hdu.header['ORIGIN'] = 'Aegean {0}-({1})'.format(__version__, __date__)\n for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4',\n 'CTYPE3', 'CTYPE4']:\n if c in hdu.header:\n del hdu.header[c]\n hdu.writeto(outname, overwrite=True)\n self.log.info('Wrote {0}'.format(outname))\n return\n", "role": "user" }, { "content": "save_image", "role": "assistant" } ]
def x(self, mesh_size=20, forced_rms=None, forced_bkg=None, cores=None): if forced_rms is not None: self.log.info('Forcing rms = {0}'.format(forced_rms)) self.global_data.rmsimg[:] = forced_rms if forced_bkg is not None: self.log.info('Forcing bkg = {0}'.format(forced_bkg)) self.global_data.bkgimg[:] = forced_bkg if forced_rms is not None and forced_bkg is not None: return data = self.global_data.data_pix beam = self.global_data.beam img_x, img_y = data.shape xcen = int(img_x / 2) ycen = int(img_y / 2) pixbeam = self.global_data.psfhelper.get_pixbeam_pixel(xcen, ycen) if pixbeam is None: self.log.error('Cannot determine the beam shape at the image center') sys.exit(1) width_x = mesh_size * max(abs(math.cos(np.radians(pixbeam.pa)) * pixbeam.a), abs(math.sin(np.radians(pixbeam.pa)) * pixbeam.b)) width_x = int(width_x) width_y = mesh_size * max(abs(math.sin(np.radians(pixbeam.pa)) * pixbeam.a), abs(math.cos(np.radians(pixbeam.pa)) * pixbeam.b)) width_y = int(width_y) self.log.debug('image size x,y:{0},{1}'.format(img_x, img_y)) self.log.debug('beam: {0}'.format(beam)) self.log.debug('mesh width (pix) x,y: {0},{1}'.format(width_x, width_y)) xstart = int(xcen - width_x / 2) % width_x ystart = int(ycen - width_y / 2) % width_y xend = img_x - int(img_x - xstart) % width_x yend = img_y - int(img_y - ystart) % width_y xmins = [0] xmins.extend(list(range(xstart, xend, width_x))) xmins.append(xend) xmaxs = [xstart] xmaxs.extend(list(range(xstart + width_x, xend + 1, width_x))) xmaxs.append(img_x) ymins = [0] ymins.extend(list(range(ystart, yend, width_y))) ymins.append(yend) ymaxs = [ystart] ymaxs.extend(list(range(ystart + width_y, yend + 1, width_y))) ymaxs.append(img_y) if width_x >= img_x: xmins = [0] xmaxs = [img_x] if width_y >= img_y: ymins = [0] ymaxs = [img_y] if cores > 1: queue = pprocess.Queue(limit=cores, reuse=1) estimate = queue.manage(pprocess.MakeReusable(self._estimate_bkg_rms)) for xmin, xmax in zip(xmins, xmaxs): for ymin, ymax in zip(ymins, ymaxs): estimate(ymin, ymax, xmin, xmax) else: queue = [] for xmin, xmax in zip(xmins, xmaxs): for ymin, ymax in zip(ymins, ymaxs): queue.append(self._estimate_bkg_rms(xmin, xmax, ymin, ymax)) for ymin, ymax, xmin, xmax, bkg, rms in queue: if forced_rms is None: self.global_data.rmsimg[ymin:ymax, xmin:xmax] = rms if forced_rms is None: self.global_data.bkgimg[ymin:ymax, xmin:xmax] = bkg return
make_bkg_rms
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mesh_size=20, forced_rms=None, forced_bkg=None, cores=None):\n if forced_rms is not None:\n self.log.info('Forcing rms = {0}'.format(forced_rms))\n self.global_data.rmsimg[:] = forced_rms\n if forced_bkg is not None:\n self.log.info('Forcing bkg = {0}'.format(forced_bkg))\n self.global_data.bkgimg[:] = forced_bkg\n if forced_rms is not None and forced_bkg is not None:\n return\n data = self.global_data.data_pix\n beam = self.global_data.beam\n img_x, img_y = data.shape\n xcen = int(img_x / 2)\n ycen = int(img_y / 2)\n pixbeam = self.global_data.psfhelper.get_pixbeam_pixel(xcen, ycen)\n if pixbeam is None:\n self.log.error('Cannot determine the beam shape at the image center')\n sys.exit(1)\n width_x = mesh_size * max(abs(math.cos(np.radians(pixbeam.pa)) *\n pixbeam.a), abs(math.sin(np.radians(pixbeam.pa)) * pixbeam.b))\n width_x = int(width_x)\n width_y = mesh_size * max(abs(math.sin(np.radians(pixbeam.pa)) *\n pixbeam.a), abs(math.cos(np.radians(pixbeam.pa)) * pixbeam.b))\n width_y = int(width_y)\n self.log.debug('image size x,y:{0},{1}'.format(img_x, img_y))\n self.log.debug('beam: {0}'.format(beam))\n self.log.debug('mesh width (pix) x,y: {0},{1}'.format(width_x, width_y))\n xstart = int(xcen - width_x / 2) % width_x\n ystart = int(ycen - width_y / 2) % width_y\n xend = img_x - int(img_x - xstart) % width_x\n yend = img_y - int(img_y - ystart) % width_y\n xmins = [0]\n xmins.extend(list(range(xstart, xend, width_x)))\n xmins.append(xend)\n xmaxs = [xstart]\n xmaxs.extend(list(range(xstart + width_x, xend + 1, width_x)))\n xmaxs.append(img_x)\n ymins = [0]\n ymins.extend(list(range(ystart, yend, width_y)))\n ymins.append(yend)\n ymaxs = [ystart]\n ymaxs.extend(list(range(ystart + width_y, yend + 1, width_y)))\n ymaxs.append(img_y)\n if width_x >= img_x:\n xmins = [0]\n xmaxs = [img_x]\n if width_y >= img_y:\n ymins = [0]\n ymaxs = [img_y]\n if cores > 1:\n queue = pprocess.Queue(limit=cores, reuse=1)\n estimate = queue.manage(pprocess.MakeReusable(self._estimate_bkg_rms))\n for xmin, xmax in zip(xmins, xmaxs):\n for ymin, ymax in zip(ymins, ymaxs):\n estimate(ymin, ymax, xmin, xmax)\n else:\n queue = []\n for xmin, xmax in zip(xmins, xmaxs):\n for ymin, ymax in zip(ymins, ymaxs):\n queue.append(self._estimate_bkg_rms(xmin, xmax, ymin, ymax))\n for ymin, ymax, xmin, xmax, bkg, rms in queue:\n if forced_rms is None:\n self.global_data.rmsimg[ymin:ymax, xmin:xmax] = rms\n if forced_rms is None:\n self.global_data.bkgimg[ymin:ymax, xmin:xmax] = bkg\n return\n", "role": "user" }, { "content": "make_bkg_rms", "role": "assistant" } ]
def x(self, xmin, xmax, ymin, ymax): data = self.global_data.data_pix[ymin:ymax, xmin:xmax] pixels = np.extract(np.isfinite(data), data).ravel() if len(pixels) < 4: bkg, rms = np.NaN, np.NaN else: pixels.sort() p25 = pixels[int(pixels.size / 4)] p50 = pixels[int(pixels.size / 2)] p75 = pixels[int(pixels.size / 4 * 3)] iqr = p75 - p25 bkg, rms = p50, iqr / 1.34896 return ymin, ymax, xmin, xmax, bkg, rms
estimate_bkg_rms
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, xmin, xmax, ymin, ymax):\n data = self.global_data.data_pix[ymin:ymax, xmin:xmax]\n pixels = np.extract(np.isfinite(data), data).ravel()\n if len(pixels) < 4:\n bkg, rms = np.NaN, np.NaN\n else:\n pixels.sort()\n p25 = pixels[int(pixels.size / 4)]\n p50 = pixels[int(pixels.size / 2)]\n p75 = pixels[int(pixels.size / 4 * 3)]\n iqr = p75 - p25\n bkg, rms = p50, iqr / 1.34896\n return ymin, ymax, xmin, xmax, bkg, rms\n", "role": "user" }, { "content": "estimate_bkg_rms", "role": "assistant" } ]
def x(self, image, auxfile): auximg = FitsImage(auxfile, beam=self.global_data.beam).get_pixels() if auximg.shape != image.get_pixels().shape: self.log.error('file {0} is not the same size as the image map'. format(auxfile)) self.log.error('{0}= {1}, image = {2}'.format(auxfile, auximg.shape, image.get_pixels().shape)) sys.exit(1) return auximg
load_aux_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, image, auxfile):\n auximg = FitsImage(auxfile, beam=self.global_data.beam).get_pixels()\n if auximg.shape != image.get_pixels().shape:\n self.log.error('file {0} is not the same size as the image map'.\n format(auxfile))\n self.log.error('{0}= {1}, image = {2}'.format(auxfile, auximg.shape,\n image.get_pixels().shape))\n sys.exit(1)\n return auximg\n", "role": "user" }, { "content": "load_aux_image", "role": "assistant" } ]
def x(self, island_data): global_data = self.global_data dcurve = global_data.dcurve rmsimg = global_data.rmsimg isle_num = island_data.isle_num idata = island_data.i innerclip, outerclip, max_summits = island_data.scalars xmin, xmax, ymin, ymax = island_data.offsets midra, middec = global_data.wcshelper.pix2sky([0.5 * (xmax + xmin), 0.5 * (ymax + ymin)]) beam = global_data.psfhelper.get_psf_pix(midra, middec) del middec, midra icurve = dcurve[xmin:xmax, ymin:ymax] rms = rmsimg[xmin:xmax, ymin:ymax] is_flag = 0 pixbeam = global_data.psfhelper.get_pixbeam_pixel((xmin + xmax) / 2.0, (ymin + ymax) / 2.0) if pixbeam is None: return [] self.log.debug('=====') self.log.debug('Island ({0})'.format(isle_num)) params = self.estimate_lmfit_parinfo(idata, rms, icurve, beam, innerclip, outerclip, offsets=[xmin, ymin], max_summits=max_summits) if params is None or params['components'].value < 1: return [] self.log.debug('Rms is {0}'.format(np.shape(rms))) self.log.debug('Isle is {0}'.format(np.shape(idata))) self.log.debug(' of which {0} are masked'.format(sum(np.isnan(idata). ravel() * 1))) mx, my = np.where(np.isfinite(idata)) non_blank_pix = len(mx) free_vars = len([(1) for a in params.keys() if params[a].vary]) if non_blank_pix < free_vars or free_vars == 0: self.log.debug( "Island {0} doesn't have enough pixels to fit the given model". format(isle_num)) self.log.debug('non_blank_pix {0}, free_vars {1}'.format( non_blank_pix, free_vars)) result = DummyLM() model = params is_flag |= flags.NOTFIT else: fac = 1 / np.sqrt(2) if self.global_data.docov: C = Cmatrix(mx, my, pixbeam.a * FWHM2CC * fac, pixbeam.b * FWHM2CC * fac, pixbeam.pa) B = Bmatrix(C) else: C = B = None self.log.debug('C({0},{1},{2},{3},{4})'.format(len(mx), len(my), pixbeam.a * FWHM2CC, pixbeam.b * FWHM2CC, pixbeam.pa)) errs = np.nanmax(rms) self.log.debug('Initial params') self.log.debug(params) result, _ = do_lmfit(idata, params, B=B) if not result.errorbars: is_flag |= flags.FITERR model = covar_errors(result.params, idata, errs=errs, B=B, C=C) if self.global_data.dobias and self.global_data.docov: x, y = np.indices(idata.shape) acf = elliptical_gaussian(x, y, 1, 0, 0, pixbeam.a * FWHM2CC * fac, pixbeam.b * FWHM2CC * fac, pixbeam.pa) bias_correct(model, idata, acf=acf * errs ** 2) if not result.success: is_flag |= flags.FITERR self.log.debug('Final params') self.log.debug(model) sources = self.result_to_components(result, model, island_data, is_flag) return sources
fit_island
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, island_data):\n global_data = self.global_data\n dcurve = global_data.dcurve\n rmsimg = global_data.rmsimg\n isle_num = island_data.isle_num\n idata = island_data.i\n innerclip, outerclip, max_summits = island_data.scalars\n xmin, xmax, ymin, ymax = island_data.offsets\n midra, middec = global_data.wcshelper.pix2sky([0.5 * (xmax + xmin), 0.5 *\n (ymax + ymin)])\n beam = global_data.psfhelper.get_psf_pix(midra, middec)\n del middec, midra\n icurve = dcurve[xmin:xmax, ymin:ymax]\n rms = rmsimg[xmin:xmax, ymin:ymax]\n is_flag = 0\n pixbeam = global_data.psfhelper.get_pixbeam_pixel((xmin + xmax) / 2.0, \n (ymin + ymax) / 2.0)\n if pixbeam is None:\n return []\n self.log.debug('=====')\n self.log.debug('Island ({0})'.format(isle_num))\n params = self.estimate_lmfit_parinfo(idata, rms, icurve, beam,\n innerclip, outerclip, offsets=[xmin, ymin], max_summits=max_summits)\n if params is None or params['components'].value < 1:\n return []\n self.log.debug('Rms is {0}'.format(np.shape(rms)))\n self.log.debug('Isle is {0}'.format(np.shape(idata)))\n self.log.debug(' of which {0} are masked'.format(sum(np.isnan(idata).\n ravel() * 1)))\n mx, my = np.where(np.isfinite(idata))\n non_blank_pix = len(mx)\n free_vars = len([(1) for a in params.keys() if params[a].vary])\n if non_blank_pix < free_vars or free_vars == 0:\n self.log.debug(\n \"Island {0} doesn't have enough pixels to fit the given model\".\n format(isle_num))\n self.log.debug('non_blank_pix {0}, free_vars {1}'.format(\n non_blank_pix, free_vars))\n result = DummyLM()\n model = params\n is_flag |= flags.NOTFIT\n else:\n fac = 1 / np.sqrt(2)\n if self.global_data.docov:\n C = Cmatrix(mx, my, pixbeam.a * FWHM2CC * fac, pixbeam.b *\n FWHM2CC * fac, pixbeam.pa)\n B = Bmatrix(C)\n else:\n C = B = None\n self.log.debug('C({0},{1},{2},{3},{4})'.format(len(mx), len(my), \n pixbeam.a * FWHM2CC, pixbeam.b * FWHM2CC, pixbeam.pa))\n errs = np.nanmax(rms)\n self.log.debug('Initial params')\n self.log.debug(params)\n result, _ = do_lmfit(idata, params, B=B)\n if not result.errorbars:\n is_flag |= flags.FITERR\n model = covar_errors(result.params, idata, errs=errs, B=B, C=C)\n if self.global_data.dobias and self.global_data.docov:\n x, y = np.indices(idata.shape)\n acf = elliptical_gaussian(x, y, 1, 0, 0, pixbeam.a * FWHM2CC *\n fac, pixbeam.b * FWHM2CC * fac, pixbeam.pa)\n bias_correct(model, idata, acf=acf * errs ** 2)\n if not result.success:\n is_flag |= flags.FITERR\n self.log.debug('Final params')\n self.log.debug(model)\n sources = self.result_to_components(result, model, island_data, is_flag)\n return sources\n", "role": "user" }, { "content": "fit_island", "role": "assistant" } ]
def x(self, islands): self.log.debug('Fitting group of {0} islands'.format(len(islands))) sources = [] for island in islands: res = self._fit_island(island) sources.extend(res) return sources
fit_islands
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, islands):\n self.log.debug('Fitting group of {0} islands'.format(len(islands)))\n sources = []\n for island in islands:\n res = self._fit_island(island)\n sources.extend(res)\n return sources\n", "role": "user" }, { "content": "fit_islands", "role": "assistant" } ]
def x(self, filename, hdu_index=0, outfile=None, rms=None, bkg=None, max_summits=None, innerclip=5, outerclip=4, cores=None, rmsin=None, bkgin=None, beam=None, doislandflux=False, nopositive=False, nonegative =False, mask=None, lat=None, imgpsf=None, blank=False, docov=True, cube_index=None): np.seterr(invalid='ignore') if cores is not None: if not cores >= 1: raise AssertionError('cores must be one or more') self.load_globals(filename, hdu_index=hdu_index, bkgin=bkgin, rmsin= rmsin, beam=beam, rms=rms, bkg=bkg, cores=cores, verb=True, mask= mask, lat=lat, psf=imgpsf, blank=blank, docov=docov, cube_index= cube_index) global_data = self.global_data rmsimg = global_data.rmsimg data = global_data.data_pix self.log.info("beam = {0:5.2f}'' x {1:5.2f}'' at {2:5.2f}deg".format( global_data.beam.a * 3600, global_data.beam.b * 3600, global_data. beam.pa)) if outerclip > innerclip: outerclip = innerclip self.log.info('seedclip={0}'.format(innerclip)) self.log.info('floodclip={0}'.format(outerclip)) isle_num = 0 if cores == 1: queue = [] else: queue = pprocess.Queue(limit=cores, reuse=1) fit_parallel = queue.manage(pprocess.MakeReusable(self._fit_islands)) island_group = [] group_size = 20 for i, xmin, xmax, ymin, ymax in self._gen_flood_wrap(data, rmsimg, innerclip, outerclip, domask=True): if np.size(i) < 1: self.log.warn('Empty island detected, this should be imposisble.') continue isle_num += 1 scalars = innerclip, outerclip, max_summits offsets = xmin, xmax, ymin, ymax island_data = IslandFittingData(isle_num, i, scalars, offsets, doislandflux) if cores == 1: res = self._fit_island(island_data) queue.append(res) else: island_group.append(island_data) if len(island_group) >= group_size: fit_parallel(island_group) island_group = [] if len(island_group) > 0: fit_parallel(island_group) if outfile: print(header.format('{0}-({1})'.format(__version__, __date__), filename), file=outfile) print(OutputSource.header, file=outfile) sources = [] for srcs in queue: if srcs: for src in srcs: if (src.peak_flux > 0 and nopositive or src.peak_flux < 0 and nonegative): continue sources.append(src) if outfile: print(str(src), file=outfile) self.sources.extend(sources) return sources
find_sources_in_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, hdu_index=0, outfile=None, rms=None, bkg=None,\n max_summits=None, innerclip=5, outerclip=4, cores=None, rmsin=None,\n bkgin=None, beam=None, doislandflux=False, nopositive=False, nonegative\n =False, mask=None, lat=None, imgpsf=None, blank=False, docov=True,\n cube_index=None):\n np.seterr(invalid='ignore')\n if cores is not None:\n if not cores >= 1:\n raise AssertionError('cores must be one or more')\n self.load_globals(filename, hdu_index=hdu_index, bkgin=bkgin, rmsin=\n rmsin, beam=beam, rms=rms, bkg=bkg, cores=cores, verb=True, mask=\n mask, lat=lat, psf=imgpsf, blank=blank, docov=docov, cube_index=\n cube_index)\n global_data = self.global_data\n rmsimg = global_data.rmsimg\n data = global_data.data_pix\n self.log.info(\"beam = {0:5.2f}'' x {1:5.2f}'' at {2:5.2f}deg\".format(\n global_data.beam.a * 3600, global_data.beam.b * 3600, global_data.\n beam.pa))\n if outerclip > innerclip:\n outerclip = innerclip\n self.log.info('seedclip={0}'.format(innerclip))\n self.log.info('floodclip={0}'.format(outerclip))\n isle_num = 0\n if cores == 1:\n queue = []\n else:\n queue = pprocess.Queue(limit=cores, reuse=1)\n fit_parallel = queue.manage(pprocess.MakeReusable(self._fit_islands))\n island_group = []\n group_size = 20\n for i, xmin, xmax, ymin, ymax in self._gen_flood_wrap(data, rmsimg,\n innerclip, outerclip, domask=True):\n if np.size(i) < 1:\n self.log.warn('Empty island detected, this should be imposisble.')\n continue\n isle_num += 1\n scalars = innerclip, outerclip, max_summits\n offsets = xmin, xmax, ymin, ymax\n island_data = IslandFittingData(isle_num, i, scalars, offsets,\n doislandflux)\n if cores == 1:\n res = self._fit_island(island_data)\n queue.append(res)\n else:\n island_group.append(island_data)\n if len(island_group) >= group_size:\n fit_parallel(island_group)\n island_group = []\n if len(island_group) > 0:\n fit_parallel(island_group)\n if outfile:\n print(header.format('{0}-({1})'.format(__version__, __date__),\n filename), file=outfile)\n print(OutputSource.header, file=outfile)\n sources = []\n for srcs in queue:\n if srcs:\n for src in srcs:\n if (src.peak_flux > 0 and nopositive or src.peak_flux < 0 and\n nonegative):\n continue\n sources.append(src)\n if outfile:\n print(str(src), file=outfile)\n self.sources.extend(sources)\n return sources\n", "role": "user" }, { "content": "find_sources_in_image", "role": "assistant" } ]
def x(files): cont = True formats = get_table_formats() for t in files.split(','): _, ext = os.path.splitext(t) ext = ext[1:].lower() if ext not in formats: cont = False log.warn('Format not supported for {0} ({1})'.format(t, ext)) if not cont: log.error('Invalid table format specified.') return cont
check_table_formats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(files):\n cont = True\n formats = get_table_formats()\n for t in files.split(','):\n _, ext = os.path.splitext(t)\n ext = ext[1:].lower()\n if ext not in formats:\n cont = False\n log.warn('Format not supported for {0} ({1})'.format(t, ext))\n if not cont:\n log.error('Invalid table format specified.')\n return cont\n", "role": "user" }, { "content": "check_table_formats", "role": "assistant" } ]
def x(): fmts = {'ann': 'Kvis annotation', 'reg': 'DS9 regions file', 'fits': 'FITS Binary Table', 'csv': 'Comma separated values', 'tab': 'tabe separated values', 'tex': 'LaTeX table format', 'html': 'HTML table', 'vot': 'VO-Table', 'xml': 'VO-Table', 'db': 'Sqlite3 database', 'sqlite': 'Sqlite3 database'} supported = get_table_formats() print('Extension | Description | Supported?') for k in sorted(fmts.keys()): print('{0:10s} {1:24s} {2}'.format(k, fmts[k], k in supported)) return
show_formats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n fmts = {'ann': 'Kvis annotation', 'reg': 'DS9 regions file', 'fits':\n 'FITS Binary Table', 'csv': 'Comma separated values', 'tab':\n 'tabe separated values', 'tex': 'LaTeX table format', 'html':\n 'HTML table', 'vot': 'VO-Table', 'xml': 'VO-Table', 'db':\n 'Sqlite3 database', 'sqlite': 'Sqlite3 database'}\n supported = get_table_formats()\n print('Extension | Description | Supported?')\n for k in sorted(fmts.keys()):\n print('{0:10s} {1:24s} {2}'.format(k, fmts[k], k in supported))\n return\n", "role": "user" }, { "content": "show_formats", "role": "assistant" } ]
def x(meta=None): if meta is None: meta = {} if 'DATE' not in meta: meta['DATE'] = strftime('%Y-%m-%d %H:%M:%S', gmtime()) if 'PROGRAM' not in meta: meta['PROGRAM'] = 'AegeanTools.catalogs' meta['PROGVER'] = '{0}-({1})'.format(__version__, __date__) return meta
update_meta_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meta=None):\n if meta is None:\n meta = {}\n if 'DATE' not in meta:\n meta['DATE'] = strftime('%Y-%m-%d %H:%M:%S', gmtime())\n if 'PROGRAM' not in meta:\n meta['PROGRAM'] = 'AegeanTools.catalogs'\n meta['PROGVER'] = '{0}-({1})'.format(__version__, __date__)\n return meta\n", "role": "user" }, { "content": "update_meta_data", "role": "assistant" } ]
def x(filename, catalog, meta=None, prefix=None): ascii_table_formats = {'csv': 'csv', 'tab': 'tab', 'tex': 'latex', 'html': 'html'} meta = update_meta_data(meta) extension = os.path.splitext(filename)[1][1:].lower() if extension in ['ann', 'reg']: writeAnn(filename, catalog, extension) elif extension in ['db', 'sqlite']: writeDB(filename, catalog, meta) elif extension in ['hdf5', 'fits', 'vo', 'vot', 'xml']: write_catalog(filename, catalog, extension, meta, prefix=prefix) elif extension in ascii_table_formats.keys(): write_catalog(filename, catalog, fmt=ascii_table_formats[extension], meta=meta, prefix=prefix) else: log.warning('extension not recognised {0}'.format(extension)) log.warning('You get tab format') write_catalog(filename, catalog, fmt='tab', prefix=prefix) return
save_catalog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, catalog, meta=None, prefix=None):\n ascii_table_formats = {'csv': 'csv', 'tab': 'tab', 'tex': 'latex',\n 'html': 'html'}\n meta = update_meta_data(meta)\n extension = os.path.splitext(filename)[1][1:].lower()\n if extension in ['ann', 'reg']:\n writeAnn(filename, catalog, extension)\n elif extension in ['db', 'sqlite']:\n writeDB(filename, catalog, meta)\n elif extension in ['hdf5', 'fits', 'vo', 'vot', 'xml']:\n write_catalog(filename, catalog, extension, meta, prefix=prefix)\n elif extension in ascii_table_formats.keys():\n write_catalog(filename, catalog, fmt=ascii_table_formats[extension],\n meta=meta, prefix=prefix)\n else:\n log.warning('extension not recognised {0}'.format(extension))\n log.warning('You get tab format')\n write_catalog(filename, catalog, fmt='tab', prefix=prefix)\n return\n", "role": "user" }, { "content": "save_catalog", "role": "assistant" } ]
def x(filename): supported = get_table_formats() fmt = os.path.splitext(filename)[-1][1:].lower() if fmt in ['csv', 'tab', 'tex'] and fmt in supported: log.info('Reading file {0}'.format(filename)) t = ascii.read(filename) catalog = list(zip(t.columns['ra'], t.columns['dec'])) elif fmt in ['vo', 'vot', 'xml'] and fmt in supported: log.info('Reading file {0}'.format(filename)) t = parse_single_table(filename) catalog = list(zip(t.array['ra'].tolist(), t.array['dec'].tolist())) else: log.info('Assuming ascii format, reading first two columns') lines = [a.strip().split() for a in open(filename, 'r').readlines() if not a.startswith('#')] try: catalog = [(float(a[0]), float(a[1])) for a in lines] except: log.error('Expecting two columns of floats but failed to parse') log.error('Catalog file {0} not loaded'.format(filename)) raise Exception('Could not determine file format') return catalog
load_catalog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n supported = get_table_formats()\n fmt = os.path.splitext(filename)[-1][1:].lower()\n if fmt in ['csv', 'tab', 'tex'] and fmt in supported:\n log.info('Reading file {0}'.format(filename))\n t = ascii.read(filename)\n catalog = list(zip(t.columns['ra'], t.columns['dec']))\n elif fmt in ['vo', 'vot', 'xml'] and fmt in supported:\n log.info('Reading file {0}'.format(filename))\n t = parse_single_table(filename)\n catalog = list(zip(t.array['ra'].tolist(), t.array['dec'].tolist()))\n else:\n log.info('Assuming ascii format, reading first two columns')\n lines = [a.strip().split() for a in open(filename, 'r').readlines() if\n not a.startswith('#')]\n try:\n catalog = [(float(a[0]), float(a[1])) for a in lines]\n except:\n log.error('Expecting two columns of floats but failed to parse')\n log.error('Catalog file {0} not loaded'.format(filename))\n raise Exception('Could not determine file format')\n return catalog\n", "role": "user" }, { "content": "load_catalog", "role": "assistant" } ]
def x(filename): supported = get_table_formats() fmt = os.path.splitext(filename)[-1][1:].lower() if fmt in ['csv', 'tab', 'tex'] and fmt in supported: log.info('Reading file {0}'.format(filename)) t = ascii.read(filename) elif fmt in ['vo', 'vot', 'xml', 'fits', 'hdf5'] and fmt in supported: log.info('Reading file {0}'.format(filename)) t = Table.read(filename) else: log.error('Table format not recognized or supported') log.error('{0} [{1}]'.format(filename, fmt)) raise Exception('Table format not recognized or supported') return t
load_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n supported = get_table_formats()\n fmt = os.path.splitext(filename)[-1][1:].lower()\n if fmt in ['csv', 'tab', 'tex'] and fmt in supported:\n log.info('Reading file {0}'.format(filename))\n t = ascii.read(filename)\n elif fmt in ['vo', 'vot', 'xml', 'fits', 'hdf5'] and fmt in supported:\n log.info('Reading file {0}'.format(filename))\n t = Table.read(filename)\n else:\n log.error('Table format not recognized or supported')\n log.error('{0} [{1}]'.format(filename, fmt))\n raise Exception('Table format not recognized or supported')\n return t\n", "role": "user" }, { "content": "load_table", "role": "assistant" } ]
def x(table, filename): try: if os.path.exists(filename): os.remove(filename) table.write(filename) log.info('Wrote {0}'.format(filename)) except Exception as e: if 'Format could not be identified' not in e.message: raise e else: fmt = os.path.splitext(filename)[-1][1:].lower() raise Exception('Cannot auto-determine format for {0}'.format(fmt)) return
write_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(table, filename):\n try:\n if os.path.exists(filename):\n os.remove(filename)\n table.write(filename)\n log.info('Wrote {0}'.format(filename))\n except Exception as e:\n if 'Format could not be identified' not in e.message:\n raise e\n else:\n fmt = os.path.splitext(filename)[-1][1:].lower()\n raise Exception('Cannot auto-determine format for {0}'.format(fmt))\n return\n", "role": "user" }, { "content": "write_table", "role": "assistant" } ]
def x(table, src_type=OutputSource): source_list = [] if table is None: return source_list for row in table: src = src_type() for param in src_type.names: if param in table.colnames: val = row[param] if isinstance(val, np.float32): val = np.float64(val) setattr(src, param, val) source_list.append(src) return source_list
table_to_source_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(table, src_type=OutputSource):\n source_list = []\n if table is None:\n return source_list\n for row in table:\n src = src_type()\n for param in src_type.names:\n if param in table.colnames:\n val = row[param]\n if isinstance(val, np.float32):\n val = np.float64(val)\n setattr(src, param, val)\n source_list.append(src)\n return source_list\n", "role": "user" }, { "content": "table_to_source_list", "role": "assistant" } ]
def x(filename, catalog, fmt=None, meta=None, prefix=None): if meta is None: meta = {} if prefix is None: pre = '' else: pre = prefix + '_' def x(filename, catalog, fmt=None): tab_dict = {} name_list = [] for name in catalog[0].names: col_name = name if catalog[0].galactic: if name.startswith('ra'): col_name = 'lon' + name[2:] elif name.endswith('ra'): col_name = name[:-2] + 'lon' elif name.startswith('dec'): col_name = 'lat' + name[3:] elif name.endswith('dec'): col_name = name[:-3] + 'lat' col_name = pre + col_name tab_dict[col_name] = [getattr(c, name, None) for c in catalog] name_list.append(col_name) t = Table(tab_dict, meta=meta) t = t[[n for n in name_list]] if fmt is not None: if fmt in ['vot', 'vo', 'xml']: vot = from_table(t) vot.description = repr(meta) writetoVO(vot, filename) elif fmt in ['hdf5']: t.write(filename, path='data', overwrite=True) elif fmt in ['fits']: writeFITSTable(filename, t) else: ascii.write(t, filename, fmt, overwrite=True) else: ascii.write(t, filename, overwrite=True) return components, islands, simples = classify_catalog(catalog) if len(components) > 0: new_name = '{1}{0}{2}'.format('_comp', *os.path.splitext(filename)) writer(new_name, components, fmt) log.info('wrote {0}'.format(new_name)) if len(islands) > 0: new_name = '{1}{0}{2}'.format('_isle', *os.path.splitext(filename)) writer(new_name, islands, fmt) log.info('wrote {0}'.format(new_name)) if len(simples) > 0: new_name = '{1}{0}{2}'.format('_simp', *os.path.splitext(filename)) writer(new_name, simples, fmt) log.info('wrote {0}'.format(new_name)) return
write_catalog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, catalog, fmt=None, meta=None, prefix=None):\n if meta is None:\n meta = {}\n if prefix is None:\n pre = ''\n else:\n pre = prefix + '_'\n\n def x(filename, catalog, fmt=None):\n tab_dict = {}\n name_list = []\n for name in catalog[0].names:\n col_name = name\n if catalog[0].galactic:\n if name.startswith('ra'):\n col_name = 'lon' + name[2:]\n elif name.endswith('ra'):\n col_name = name[:-2] + 'lon'\n elif name.startswith('dec'):\n col_name = 'lat' + name[3:]\n elif name.endswith('dec'):\n col_name = name[:-3] + 'lat'\n col_name = pre + col_name\n tab_dict[col_name] = [getattr(c, name, None) for c in catalog]\n name_list.append(col_name)\n t = Table(tab_dict, meta=meta)\n t = t[[n for n in name_list]]\n if fmt is not None:\n if fmt in ['vot', 'vo', 'xml']:\n vot = from_table(t)\n vot.description = repr(meta)\n writetoVO(vot, filename)\n elif fmt in ['hdf5']:\n t.write(filename, path='data', overwrite=True)\n elif fmt in ['fits']:\n writeFITSTable(filename, t)\n else:\n ascii.write(t, filename, fmt, overwrite=True)\n else:\n ascii.write(t, filename, overwrite=True)\n return\n components, islands, simples = classify_catalog(catalog)\n if len(components) > 0:\n new_name = '{1}{0}{2}'.format('_comp', *os.path.splitext(filename))\n writer(new_name, components, fmt)\n log.info('wrote {0}'.format(new_name))\n if len(islands) > 0:\n new_name = '{1}{0}{2}'.format('_isle', *os.path.splitext(filename))\n writer(new_name, islands, fmt)\n log.info('wrote {0}'.format(new_name))\n if len(simples) > 0:\n new_name = '{1}{0}{2}'.format('_simp', *os.path.splitext(filename))\n writer(new_name, simples, fmt)\n log.info('wrote {0}'.format(new_name))\n return\n", "role": "user" }, { "content": "write_catalog", "role": "assistant" } ]
def x(filename, table): def x(val): if isinstance(val, bool): types = 'L' elif isinstance(val, (int, np.int64, np.int32)): types = 'J' elif isinstance(val, (float, np.float64, np.float32)): types = 'E' elif isinstance(val, six.string_types): types = '{0}A'.format(len(val)) else: log.warning('Column {0} is of unknown type {1}'.format(val, type(val))) log.warning('Using 5A') types = '5A' return types cols = [] for name in table.colnames: cols.append(fits.Column(name=name, format=FITSTableType(table[name] [0]), array=table[name])) cols = fits.ColDefs(cols) tbhdu = fits.BinTableHDU.from_columns(cols) for k in table.meta: tbhdu.header['HISTORY'] = ':'.join((k, table.meta[k])) tbhdu.writeto(filename, overwrite=True)
writeFITSTable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, table):\n\n def x(val):\n if isinstance(val, bool):\n types = 'L'\n elif isinstance(val, (int, np.int64, np.int32)):\n types = 'J'\n elif isinstance(val, (float, np.float64, np.float32)):\n types = 'E'\n elif isinstance(val, six.string_types):\n types = '{0}A'.format(len(val))\n else:\n log.warning('Column {0} is of unknown type {1}'.format(val,\n type(val)))\n log.warning('Using 5A')\n types = '5A'\n return types\n cols = []\n for name in table.colnames:\n cols.append(fits.Column(name=name, format=FITSTableType(table[name]\n [0]), array=table[name]))\n cols = fits.ColDefs(cols)\n tbhdu = fits.BinTableHDU.from_columns(cols)\n for k in table.meta:\n tbhdu.header['HISTORY'] = ':'.join((k, table.meta[k]))\n tbhdu.writeto(filename, overwrite=True)\n", "role": "user" }, { "content": "writeFITSTable", "role": "assistant" } ]
def x(filename, catalog, fmt='reg'): if fmt != 'reg': log.warning('Format {0} not yet supported'.format(fmt)) log.warning('not writing anything') return out = open(filename, 'w') print('#Aegean island contours', file=out) print('#AegeanTools.catalogs version {0}-({1})'.format(__version__, __date__), file=out) line_fmt = 'image;line({0},{1},{2},{3})' text_fmt = 'fk5; text({0},{1}) # text={{{2}}}' mas_fmt = 'image; line({1},{0},{3},{2}) #color = yellow' x_fmt = 'image; point({1},{0}) # point=x' for c in catalog: contour = c.contour if len(contour) > 1: for p1, p2 in zip(contour[:-1], contour[1:]): print(line_fmt.format(p1[1] + 0.5, p1[0] + 0.5, p2[1] + 0.5, p2[0] + 0.5), file=out) print(line_fmt.format(contour[-1][1] + 0.5, contour[-1][0] + 0.5, contour[0][1] + 0.5, contour[0][0] + 0.5), file=out) if np.nan in [c.ra, c.dec]: print('#', end=' ', file=out) if len(c.max_angular_size_anchors) == 4: print(text_fmt.format(c.ra, c.dec, c.island), file=out) print(mas_fmt.format(*[(a + 0.5) for a in c. max_angular_size_anchors]), file=out) for p1, p2 in c.pix_mask: print(x_fmt.format(p1 + 1, p2 + 1), file=out) out.close() return
writeIslandContours
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, catalog, fmt='reg'):\n if fmt != 'reg':\n log.warning('Format {0} not yet supported'.format(fmt))\n log.warning('not writing anything')\n return\n out = open(filename, 'w')\n print('#Aegean island contours', file=out)\n print('#AegeanTools.catalogs version {0}-({1})'.format(__version__,\n __date__), file=out)\n line_fmt = 'image;line({0},{1},{2},{3})'\n text_fmt = 'fk5; text({0},{1}) # text={{{2}}}'\n mas_fmt = 'image; line({1},{0},{3},{2}) #color = yellow'\n x_fmt = 'image; point({1},{0}) # point=x'\n for c in catalog:\n contour = c.contour\n if len(contour) > 1:\n for p1, p2 in zip(contour[:-1], contour[1:]):\n print(line_fmt.format(p1[1] + 0.5, p1[0] + 0.5, p2[1] + 0.5,\n p2[0] + 0.5), file=out)\n print(line_fmt.format(contour[-1][1] + 0.5, contour[-1][0] + \n 0.5, contour[0][1] + 0.5, contour[0][0] + 0.5), file=out)\n if np.nan in [c.ra, c.dec]:\n print('#', end=' ', file=out)\n if len(c.max_angular_size_anchors) == 4:\n print(text_fmt.format(c.ra, c.dec, c.island), file=out)\n print(mas_fmt.format(*[(a + 0.5) for a in c.\n max_angular_size_anchors]), file=out)\n for p1, p2 in c.pix_mask:\n print(x_fmt.format(p1 + 1, p2 + 1), file=out)\n out.close()\n return\n", "role": "user" }, { "content": "writeIslandContours", "role": "assistant" } ]
def x(filename, catalog, fmt): if fmt not in ['reg', 'ann']: log.warning('Format not supported for island boxes{0}'.format(fmt)) return out = open(filename, 'w') print('#Aegean Islands', file=out) print('#Aegean version {0}-({1})'.format(__version__, __date__), file=out) if fmt == 'reg': print('IMAGE', file=out) box_fmt = 'box({0},{1},{2},{3}) #{4}' else: print('COORD P', file=out) box_fmt = 'box P {0} {1} {2} {3} #{4}' for c in catalog: ymin, ymax, xmin, xmax = c.extent xcen = (xmin + xmax) / 2.0 + 1 xwidth = xmax - xmin + 1 ycen = (ymin + ymax) / 2.0 + 1 ywidth = ymax - ymin + 1 print(box_fmt.format(xcen, ycen, xwidth, ywidth, c.island), file=out) out.close() return
writeIslandBoxes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, catalog, fmt):\n if fmt not in ['reg', 'ann']:\n log.warning('Format not supported for island boxes{0}'.format(fmt))\n return\n out = open(filename, 'w')\n print('#Aegean Islands', file=out)\n print('#Aegean version {0}-({1})'.format(__version__, __date__), file=out)\n if fmt == 'reg':\n print('IMAGE', file=out)\n box_fmt = 'box({0},{1},{2},{3}) #{4}'\n else:\n print('COORD P', file=out)\n box_fmt = 'box P {0} {1} {2} {3} #{4}'\n for c in catalog:\n ymin, ymax, xmin, xmax = c.extent\n xcen = (xmin + xmax) / 2.0 + 1\n xwidth = xmax - xmin + 1\n ycen = (ymin + ymax) / 2.0 + 1\n ywidth = ymax - ymin + 1\n print(box_fmt.format(xcen, ycen, xwidth, ywidth, c.island), file=out)\n out.close()\n return\n", "role": "user" }, { "content": "writeIslandBoxes", "role": "assistant" } ]
def x(filename, catalog, fmt): if fmt not in ['reg', 'ann']: log.warning('Format not supported for island boxes{0}'.format(fmt)) return components, islands, simples = classify_catalog(catalog) if len(components) > 0: cat = sorted(components) suffix = 'comp' elif len(simples) > 0: cat = simples suffix = 'simp' else: cat = [] if len(cat) > 0: ras = [a.ra for a in cat] decs = [a.dec for a in cat] if not hasattr(cat[0], 'a'): bmajs = [(30 / 3600.0) for a in cat] bmins = bmajs pas = [(0) for a in cat] else: bmajs = [(a.a / 3600.0) for a in cat] bmins = [(a.b / 3600.0) for a in cat] pas = [a.pa for a in cat] names = [a.__repr__() for a in cat] if fmt == 'ann': new_file = re.sub('.ann$', '_{0}.ann'.format(suffix), filename) out = open(new_file, 'w') print('#Aegean version {0}-({1})'.format(__version__, __date__), file=out) print('PA SKY', file=out) print('FONT hershey12', file=out) print('COORD W', file=out) formatter = ( 'ELLIPSE W {0} {1} {2} {3} {4:+07.3f} #{5}\nTEXT W {0} {1} {5}' ) else: new_file = re.sub('.reg$', '_{0}.reg'.format(suffix), filename) out = open(new_file, 'w') print('#Aegean version {0}-({1})'.format(__version__, __date__), file=out) print('fk5', file=out) formatter = ( 'ellipse {0} {1} {2:.9f}d {3:.9f}d {4:+07.3f}d # text="{5}"') pas = [(a - 90) for a in pas] for ra, dec, bmaj, bmin, pa, name in zip(ras, decs, bmajs, bmins, pas, names): if np.nan in [ra, dec, bmaj, bmin, pa] or bmaj >= 180: print('#', end=' ', file=out) print(formatter.format(ra, dec, bmaj, bmin, pa, name), file=out) out.close() log.info('wrote {0}'.format(new_file)) if len(islands) > 0: if fmt == 'reg': new_file = re.sub('.reg$', '_isle.reg', filename) elif fmt == 'ann': log.warning('kvis islands are currently not working') return else: log.warning('format {0} not supported for island annotations'. format(fmt)) return writeIslandContours(new_file, islands, fmt) log.info('wrote {0}'.format(new_file)) return
writeAnn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, catalog, fmt):\n if fmt not in ['reg', 'ann']:\n log.warning('Format not supported for island boxes{0}'.format(fmt))\n return\n components, islands, simples = classify_catalog(catalog)\n if len(components) > 0:\n cat = sorted(components)\n suffix = 'comp'\n elif len(simples) > 0:\n cat = simples\n suffix = 'simp'\n else:\n cat = []\n if len(cat) > 0:\n ras = [a.ra for a in cat]\n decs = [a.dec for a in cat]\n if not hasattr(cat[0], 'a'):\n bmajs = [(30 / 3600.0) for a in cat]\n bmins = bmajs\n pas = [(0) for a in cat]\n else:\n bmajs = [(a.a / 3600.0) for a in cat]\n bmins = [(a.b / 3600.0) for a in cat]\n pas = [a.pa for a in cat]\n names = [a.__repr__() for a in cat]\n if fmt == 'ann':\n new_file = re.sub('.ann$', '_{0}.ann'.format(suffix), filename)\n out = open(new_file, 'w')\n print('#Aegean version {0}-({1})'.format(__version__, __date__),\n file=out)\n print('PA SKY', file=out)\n print('FONT hershey12', file=out)\n print('COORD W', file=out)\n formatter = (\n 'ELLIPSE W {0} {1} {2} {3} {4:+07.3f} #{5}\\nTEXT W {0} {1} {5}'\n )\n else:\n new_file = re.sub('.reg$', '_{0}.reg'.format(suffix), filename)\n out = open(new_file, 'w')\n print('#Aegean version {0}-({1})'.format(__version__, __date__),\n file=out)\n print('fk5', file=out)\n formatter = (\n 'ellipse {0} {1} {2:.9f}d {3:.9f}d {4:+07.3f}d # text=\"{5}\"')\n pas = [(a - 90) for a in pas]\n for ra, dec, bmaj, bmin, pa, name in zip(ras, decs, bmajs, bmins,\n pas, names):\n if np.nan in [ra, dec, bmaj, bmin, pa] or bmaj >= 180:\n print('#', end=' ', file=out)\n print(formatter.format(ra, dec, bmaj, bmin, pa, name), file=out)\n out.close()\n log.info('wrote {0}'.format(new_file))\n if len(islands) > 0:\n if fmt == 'reg':\n new_file = re.sub('.reg$', '_isle.reg', filename)\n elif fmt == 'ann':\n log.warning('kvis islands are currently not working')\n return\n else:\n log.warning('format {0} not supported for island annotations'.\n format(fmt))\n return\n writeIslandContours(new_file, islands, fmt)\n log.info('wrote {0}'.format(new_file))\n return\n", "role": "user" }, { "content": "writeAnn", "role": "assistant" } ]
def x(filename, catalog, meta=None): def x(obj, names): types = [] for n in names: val = getattr(obj, n) if isinstance(val, bool): types.append('BOOL') elif isinstance(val, (int, np.int64, np.int32)): types.append('INT') elif isinstance(val, (float, np.float64, np.float32)): types.append('FLOAT') elif isinstance(val, six.string_types): types.append('VARCHAR') else: log.warning('Column {0} is of unknown type {1}'.format(n, type(n))) log.warning('Using VARCHAR') types.append('VARCHAR') return types if os.path.exists(filename): log.warning('overwriting {0}'.format(filename)) os.remove(filename) conn = sqlite3.connect(filename) db = conn.cursor() for t, tn in zip(classify_catalog(catalog), ['components', 'islands', 'simples']): if len(t) < 1: continue col_names = t[0].names col_types = sqlTypes(t[0], col_names) stmnt = ','.join(['{0} {1}'.format(a, b) for a, b in zip(col_names, col_types)]) db.execute('CREATE TABLE {0} ({1})'.format(tn, stmnt)) stmnt = 'INSERT INTO {0} ({1}) VALUES ({2})'.format(tn, ','.join( col_names), ','.join(['?' for i in col_names])) data = list(map(nulls, list(r.as_list() for r in t))) db.executemany(stmnt, data) log.info('Created table {0}'.format(tn)) db.execute('CREATE TABLE meta (key VARCHAR, val VARCHAR)') for k in meta: db.execute('INSERT INTO meta (key, val) VALUES (?,?)', (k, meta[k])) conn.commit() log.info(db.execute( "SELECT name FROM sqlite_master WHERE type='table';").fetchall()) conn.close() log.info('Wrote file {0}'.format(filename)) return
writeDB
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, catalog, meta=None):\n\n def x(obj, names):\n types = []\n for n in names:\n val = getattr(obj, n)\n if isinstance(val, bool):\n types.append('BOOL')\n elif isinstance(val, (int, np.int64, np.int32)):\n types.append('INT')\n elif isinstance(val, (float, np.float64, np.float32)):\n types.append('FLOAT')\n elif isinstance(val, six.string_types):\n types.append('VARCHAR')\n else:\n log.warning('Column {0} is of unknown type {1}'.format(n,\n type(n)))\n log.warning('Using VARCHAR')\n types.append('VARCHAR')\n return types\n if os.path.exists(filename):\n log.warning('overwriting {0}'.format(filename))\n os.remove(filename)\n conn = sqlite3.connect(filename)\n db = conn.cursor()\n for t, tn in zip(classify_catalog(catalog), ['components', 'islands',\n 'simples']):\n if len(t) < 1:\n continue\n col_names = t[0].names\n col_types = sqlTypes(t[0], col_names)\n stmnt = ','.join(['{0} {1}'.format(a, b) for a, b in zip(col_names,\n col_types)])\n db.execute('CREATE TABLE {0} ({1})'.format(tn, stmnt))\n stmnt = 'INSERT INTO {0} ({1}) VALUES ({2})'.format(tn, ','.join(\n col_names), ','.join(['?' for i in col_names]))\n data = list(map(nulls, list(r.as_list() for r in t)))\n db.executemany(stmnt, data)\n log.info('Created table {0}'.format(tn))\n db.execute('CREATE TABLE meta (key VARCHAR, val VARCHAR)')\n for k in meta:\n db.execute('INSERT INTO meta (key, val) VALUES (?,?)', (k, meta[k]))\n conn.commit()\n log.info(db.execute(\n \"SELECT name FROM sqlite_master WHERE type='table';\").fetchall())\n conn.close()\n log.info('Wrote file {0}'.format(filename))\n return\n", "role": "user" }, { "content": "writeDB", "role": "assistant" } ]
def x(src1, src2): if np.all(src1 == src2): return 0 dist = gcd(src1.ra, src1.dec, src2.ra, src2.dec) phi = bear(src1.ra, src1.dec, src2.ra, src2.dec) r1 = src1.a * src1.b / np.hypot(src1.a * np.sin(np.radians(phi - src1. pa)), src1.b * np.cos(np.radians(phi - src1.pa))) r2 = src2.a * src2.b / np.hypot(src2.a * np.sin(np.radians(180 + phi - src2.pa)), src2.b * np.cos(np.radians(180 + phi - src2.pa))) R = dist / (np.hypot(r1, r2) / 3600) return R
norm_dist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src1, src2):\n if np.all(src1 == src2):\n return 0\n dist = gcd(src1.ra, src1.dec, src2.ra, src2.dec)\n phi = bear(src1.ra, src1.dec, src2.ra, src2.dec)\n r1 = src1.a * src1.b / np.hypot(src1.a * np.sin(np.radians(phi - src1.\n pa)), src1.b * np.cos(np.radians(phi - src1.pa)))\n r2 = src2.a * src2.b / np.hypot(src2.a * np.sin(np.radians(180 + phi -\n src2.pa)), src2.b * np.cos(np.radians(180 + phi - src2.pa)))\n R = dist / (np.hypot(r1, r2) / 3600)\n return R\n", "role": "user" }, { "content": "norm_dist", "role": "assistant" } ]
def x(src1, src2): if np.all(src1 == src2): return 0 return gcd(src1.ra, src1.dec, src2.ra, src2.dec)
sky_dist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src1, src2):\n if np.all(src1 == src2):\n return 0\n return gcd(src1.ra, src1.dec, src2.ra, src2.dec)\n", "role": "user" }, { "content": "sky_dist", "role": "assistant" } ]
def x(sources, eps, far=None): if far is None: far = max(a.a / 3600 for a in sources) l = len(sources) distances = np.zeros((l, l), dtype=bool) for i in range(l): for j in range(i, l): if i == j: distances[i, j] = False continue src1 = sources[i] src2 = sources[j] if src2.dec - src1.dec > far: break if abs(src2.ra - src1.ra) * np.cos(np.radians(src1.dec)) > far: continue distances[i, j] = norm_dist(src1, src2) > eps distances[j, i] = distances[i, j] return distances
pairwise_ellpitical_binary
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sources, eps, far=None):\n if far is None:\n far = max(a.a / 3600 for a in sources)\n l = len(sources)\n distances = np.zeros((l, l), dtype=bool)\n for i in range(l):\n for j in range(i, l):\n if i == j:\n distances[i, j] = False\n continue\n src1 = sources[i]\n src2 = sources[j]\n if src2.dec - src1.dec > far:\n break\n if abs(src2.ra - src1.ra) * np.cos(np.radians(src1.dec)) > far:\n continue\n distances[i, j] = norm_dist(src1, src2) > eps\n distances[j, i] = distances[i, j]\n return distances\n", "role": "user" }, { "content": "pairwise_ellpitical_binary", "role": "assistant" } ]
def x(srccat, eps, far=None, dist=norm_dist): if far is None: far = 0.5 order = np.argsort(srccat.dec, kind='mergesort')[::-1] groups = [[order[0]]] for idx in order[1:]: rec = srccat[idx] decmin = rec.dec - far for group in reversed(groups): if srccat.dec[group[-1]] < decmin: groups.append([idx]) rafar = far / np.cos(np.radians(rec.dec)) group_recs = np.take(srccat, group, mode='clip') group_recs = group_recs[abs(rec.ra - group_recs.ra) <= rafar] if len(group_recs) and dist(rec, group_recs).min() < eps: group.append(idx) break else: groups.append([idx]) return groups
regroup_vectorized
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(srccat, eps, far=None, dist=norm_dist):\n if far is None:\n far = 0.5\n order = np.argsort(srccat.dec, kind='mergesort')[::-1]\n groups = [[order[0]]]\n for idx in order[1:]:\n rec = srccat[idx]\n decmin = rec.dec - far\n for group in reversed(groups):\n if srccat.dec[group[-1]] < decmin:\n groups.append([idx])\n rafar = far / np.cos(np.radians(rec.dec))\n group_recs = np.take(srccat, group, mode='clip')\n group_recs = group_recs[abs(rec.ra - group_recs.ra) <= rafar]\n if len(group_recs) and dist(rec, group_recs).min() < eps:\n group.append(idx)\n break\n else:\n groups.append([idx])\n return groups\n", "role": "user" }, { "content": "regroup_vectorized", "role": "assistant" } ]
def x(catalog, eps, far=None, dist=norm_dist): if isinstance(catalog, str): table = load_table(catalog) srccat = table_to_source_list(table) else: try: srccat = catalog _ = catalog[0].ra, catalog[0].dec, catalog[0].a, catalog[0 ].b, catalog[0].pa, catalog[0].peak_flux except AttributeError as e: log.error('catalog is not understood.') log.error( """catalog: Should be a list of objects with the following properties[units]: """ + 'ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any]' ) raise e log.info('Regrouping islands within catalog') log.debug('Calculating distances') if far is None: far = 0.5 srccat_array = np.rec.fromrecords([(s.ra, s.dec, s.a, s.b, s.pa, s. peak_flux) for s in srccat], names=['ra', 'dec', 'a', 'b', 'pa', 'peak_flux']) groups = regroup_vectorized(srccat_array, eps=eps, far=far, dist=dist) groups = [[srccat[idx] for idx in group] for group in groups] islands = [] for isle, group in enumerate(groups): for comp, src in enumerate(sorted(group, key=lambda x: -1 * x. peak_flux)): src.island = isle src.source = comp islands.append(group) return islands
regroup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog, eps, far=None, dist=norm_dist):\n if isinstance(catalog, str):\n table = load_table(catalog)\n srccat = table_to_source_list(table)\n else:\n try:\n srccat = catalog\n _ = catalog[0].ra, catalog[0].dec, catalog[0].a, catalog[0\n ].b, catalog[0].pa, catalog[0].peak_flux\n except AttributeError as e:\n log.error('catalog is not understood.')\n log.error(\n \"\"\"catalog: Should be a list of objects with the following properties[units]:\n\"\"\"\n +\n 'ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any]'\n )\n raise e\n log.info('Regrouping islands within catalog')\n log.debug('Calculating distances')\n if far is None:\n far = 0.5\n srccat_array = np.rec.fromrecords([(s.ra, s.dec, s.a, s.b, s.pa, s.\n peak_flux) for s in srccat], names=['ra', 'dec', 'a', 'b', 'pa',\n 'peak_flux'])\n groups = regroup_vectorized(srccat_array, eps=eps, far=far, dist=dist)\n groups = [[srccat[idx] for idx in group] for group in groups]\n islands = []\n for isle, group in enumerate(groups):\n for comp, src in enumerate(sorted(group, key=lambda x: -1 * x.\n peak_flux)):\n src.island = isle\n src.source = comp\n islands.append(group)\n return islands\n", "role": "user" }, { "content": "regroup", "role": "assistant" } ]
def x(filename): if isinstance(filename, fits.HDUList): hdulist = filename else: hdulist = fits.open(filename, ignore_missing_end=True) return hdulist
load_file_or_hdu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n if isinstance(filename, fits.HDUList):\n hdulist = filename\n else:\n hdulist = fits.open(filename, ignore_missing_end=True)\n return hdulist\n", "role": "user" }, { "content": "load_file_or_hdu", "role": "assistant" } ]
def x(datafile, factor, outfile=None): if not (factor > 0 and isinstance(factor, int)): logging.error('factor must be a positive integer') return None hdulist = load_file_or_hdu(datafile) header = hdulist[0].header data = np.squeeze(hdulist[0].data) cx, cy = data.shape[0], data.shape[1] nx = cx // factor ny = cy // factor lcx = cx % factor lcy = cy % factor if lcx > 0: nx += 1 if lcy > 0: ny += 1 new_data = np.empty((nx + 1, ny + 1)) new_data[:nx, :ny] = data[::factor, ::factor] new_data[-1, :ny] = data[-1, ::factor] new_data[:nx, -1] = data[::factor, -1] new_data[-1, -1] = data[-1, -1] if 'CDELT1' in header: header['CDELT1'] *= factor elif 'CD1_1' in header: header['CD1_1'] *= factor else: logging.error("Error: Can't find CDELT1 or CD1_1") return None if 'CDELT2' in header: header['CDELT2'] *= factor elif 'CD2_2' in header: header['CD2_2'] *= factor else: logging.error("Error: Can't find CDELT2 or CD2_2") return None header['CRPIX1'] = (header['CRPIX1'] + factor - 1) / factor header['CRPIX2'] = (header['CRPIX2'] + factor - 1) / factor header['BN_CFAC'] = factor, 'Compression factor (grid size) used by BANE' header['BN_NPX1'] = header['NAXIS1'], 'original NAXIS1 value' header['BN_NPX2'] = header['NAXIS2'], 'original NAXIS2 value' header['BN_RPX1'] = lcx, 'Residual on axis 1' header['BN_RPX2'] = lcy, 'Residual on axis 2' header['HISTORY'] = 'Compressed by a factor of {0}'.format(factor) hdulist[0].data = np.array(new_data, dtype=np.float32) hdulist[0].header = header if outfile is not None: hdulist.writeto(outfile, overwrite=True) logging.info('Wrote: {0}'.format(outfile)) return hdulist
compress
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(datafile, factor, outfile=None):\n if not (factor > 0 and isinstance(factor, int)):\n logging.error('factor must be a positive integer')\n return None\n hdulist = load_file_or_hdu(datafile)\n header = hdulist[0].header\n data = np.squeeze(hdulist[0].data)\n cx, cy = data.shape[0], data.shape[1]\n nx = cx // factor\n ny = cy // factor\n lcx = cx % factor\n lcy = cy % factor\n if lcx > 0:\n nx += 1\n if lcy > 0:\n ny += 1\n new_data = np.empty((nx + 1, ny + 1))\n new_data[:nx, :ny] = data[::factor, ::factor]\n new_data[-1, :ny] = data[-1, ::factor]\n new_data[:nx, -1] = data[::factor, -1]\n new_data[-1, -1] = data[-1, -1]\n if 'CDELT1' in header:\n header['CDELT1'] *= factor\n elif 'CD1_1' in header:\n header['CD1_1'] *= factor\n else:\n logging.error(\"Error: Can't find CDELT1 or CD1_1\")\n return None\n if 'CDELT2' in header:\n header['CDELT2'] *= factor\n elif 'CD2_2' in header:\n header['CD2_2'] *= factor\n else:\n logging.error(\"Error: Can't find CDELT2 or CD2_2\")\n return None\n header['CRPIX1'] = (header['CRPIX1'] + factor - 1) / factor\n header['CRPIX2'] = (header['CRPIX2'] + factor - 1) / factor\n header['BN_CFAC'] = factor, 'Compression factor (grid size) used by BANE'\n header['BN_NPX1'] = header['NAXIS1'], 'original NAXIS1 value'\n header['BN_NPX2'] = header['NAXIS2'], 'original NAXIS2 value'\n header['BN_RPX1'] = lcx, 'Residual on axis 1'\n header['BN_RPX2'] = lcy, 'Residual on axis 2'\n header['HISTORY'] = 'Compressed by a factor of {0}'.format(factor)\n hdulist[0].data = np.array(new_data, dtype=np.float32)\n hdulist[0].header = header\n if outfile is not None:\n hdulist.writeto(outfile, overwrite=True)\n logging.info('Wrote: {0}'.format(outfile))\n return hdulist\n", "role": "user" }, { "content": "compress", "role": "assistant" } ]
def x(datafile, outfile=None): hdulist = load_file_or_hdu(datafile) header = hdulist[0].header data = hdulist[0].data if not all(a in header for a in ['BN_CFAC', 'BN_NPX1', 'BN_NPX2', 'BN_RPX1', 'BN_RPX2']): return hdulist factor = header['BN_CFAC'] gx, gy = np.mgrid[0:header['BN_NPX2'], 0:header['BN_NPX1']] lcx = header['BN_RPX2'] lcy = header['BN_RPX1'] rows = (np.arange(data.shape[0]) + int(lcx / factor)) * factor cols = (np.arange(data.shape[1]) + int(lcy / factor)) * factor hdulist[0].data = np.array(RegularGridInterpolator((rows, cols), data)( (gx, gy)), dtype=np.float32) header['CRPIX1'] = (header['CRPIX1'] - 1) * factor + 1 header['CRPIX2'] = (header['CRPIX2'] - 1) * factor + 1 if 'CDELT1' in header: header['CDELT1'] /= factor elif 'CD1_1' in header: header['CD1_1'] /= factor else: logging.error("Error: Can't find CD1_1 or CDELT1") return None if 'CDELT2' in header: header['CDELT2'] /= factor elif 'CD2_2' in header: header['CD2_2'] /= factor else: logging.error("Error: Can't find CDELT2 or CD2_2") return None header['HISTORY'] = 'Expanded by factor {0}'.format(factor) del header['BN_CFAC'], header['BN_NPX1'], header['BN_NPX2'], header[ 'BN_RPX1'], header['BN_RPX2'] hdulist[0].header = header if outfile is not None: hdulist.writeto(outfile, overwrite=True) logging.info('Wrote: {0}'.format(outfile)) return hdulist
expand
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(datafile, outfile=None):\n hdulist = load_file_or_hdu(datafile)\n header = hdulist[0].header\n data = hdulist[0].data\n if not all(a in header for a in ['BN_CFAC', 'BN_NPX1', 'BN_NPX2',\n 'BN_RPX1', 'BN_RPX2']):\n return hdulist\n factor = header['BN_CFAC']\n gx, gy = np.mgrid[0:header['BN_NPX2'], 0:header['BN_NPX1']]\n lcx = header['BN_RPX2']\n lcy = header['BN_RPX1']\n rows = (np.arange(data.shape[0]) + int(lcx / factor)) * factor\n cols = (np.arange(data.shape[1]) + int(lcy / factor)) * factor\n hdulist[0].data = np.array(RegularGridInterpolator((rows, cols), data)(\n (gx, gy)), dtype=np.float32)\n header['CRPIX1'] = (header['CRPIX1'] - 1) * factor + 1\n header['CRPIX2'] = (header['CRPIX2'] - 1) * factor + 1\n if 'CDELT1' in header:\n header['CDELT1'] /= factor\n elif 'CD1_1' in header:\n header['CD1_1'] /= factor\n else:\n logging.error(\"Error: Can't find CD1_1 or CDELT1\")\n return None\n if 'CDELT2' in header:\n header['CDELT2'] /= factor\n elif 'CD2_2' in header:\n header['CD2_2'] /= factor\n else:\n logging.error(\"Error: Can't find CDELT2 or CD2_2\")\n return None\n header['HISTORY'] = 'Expanded by factor {0}'.format(factor)\n del header['BN_CFAC'], header['BN_NPX1'], header['BN_NPX2'], header[\n 'BN_RPX1'], header['BN_RPX2']\n hdulist[0].header = header\n if outfile is not None:\n hdulist.writeto(outfile, overwrite=True)\n logging.info('Wrote: {0}'.format(outfile))\n return hdulist\n", "role": "user" }, { "content": "expand", "role": "assistant" } ]
def x(self, switch): parsed_switch = switch.strip().lower() if not parsed_switch in ['true', 'false']: self.send_response(self.iopub_socket, 'stream', {'name': 'stderr', 'text': """autocommit must be true or false. """}) switch_bool = parsed_switch == 'true' committed = self.switch_autocommit(switch_bool) message = ('committed current transaction & ' if committed else '' + 'switched autocommit mode to ' + str(self._autocommit)) self.send_response(self.iopub_socket, 'stream', {'name': 'stderr', 'text': message})
change_autocommit_mode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, switch):\n parsed_switch = switch.strip().lower()\n if not parsed_switch in ['true', 'false']:\n self.send_response(self.iopub_socket, 'stream', {'name': 'stderr',\n 'text': \"\"\"autocommit must be true or false.\n\n\"\"\"})\n switch_bool = parsed_switch == 'true'\n committed = self.switch_autocommit(switch_bool)\n message = ('committed current transaction & ' if committed else '' +\n 'switched autocommit mode to ' + str(self._autocommit))\n self.send_response(self.iopub_socket, 'stream', {'name': 'stderr',\n 'text': message})\n", "role": "user" }, { "content": "change_autocommit_mode", "role": "assistant" } ]
def x(data, versioned=True): template = """-----BEGIN PGP MESSAGE----- %(headers)s%(body)s =%(crc)s -----END PGP MESSAGE-----""" body = base64.b64encode(data) crc = base64.b64encode(struct.pack('>L', crc24(data))[1:]) return template % {'headers': 'Version: django-pgcrypto %s\n\n' % __version__ if versioned else '\n', 'body': body.decode('ascii'), 'crc': crc.decode('ascii')}
armor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, versioned=True):\n template = \"\"\"-----BEGIN PGP MESSAGE-----\n%(headers)s%(body)s\n=%(crc)s\n-----END PGP MESSAGE-----\"\"\"\n body = base64.b64encode(data)\n crc = base64.b64encode(struct.pack('>L', crc24(data))[1:])\n return template % {'headers': 'Version: django-pgcrypto %s\\n\\n' %\n __version__ if versioned else '\\n', 'body': body.decode('ascii'),\n 'crc': crc.decode('ascii')}\n", "role": "user" }, { "content": "armor", "role": "assistant" } ]
def x(text, verify=True): lines = text.strip().split('\n') data_lines = [] check_data = None started = False in_body = False for line in lines: if line.startswith('-----BEGIN'): started = True elif line.startswith('-----END'): break elif started: if in_body: if line.startswith('='): check_data = line[1:5].encode('ascii') break else: data_lines.append(line) elif line.strip(): pass else: in_body = True b64_str = ''.join(data_lines) data = base64.b64decode(b64_str.encode('ascii')) if verify and check_data: crc = struct.unpack('>L', b'\x00' + base64.b64decode(check_data))[0] if crc != crc24(data): raise BadChecksumError() return data
dearmor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, verify=True):\n lines = text.strip().split('\\n')\n data_lines = []\n check_data = None\n started = False\n in_body = False\n for line in lines:\n if line.startswith('-----BEGIN'):\n started = True\n elif line.startswith('-----END'):\n break\n elif started:\n if in_body:\n if line.startswith('='):\n check_data = line[1:5].encode('ascii')\n break\n else:\n data_lines.append(line)\n elif line.strip():\n pass\n else:\n in_body = True\n b64_str = ''.join(data_lines)\n data = base64.b64decode(b64_str.encode('ascii'))\n if verify and check_data:\n crc = struct.unpack('>L', b'\\x00' + base64.b64decode(check_data))[0]\n if crc != crc24(data):\n raise BadChecksumError()\n return data\n", "role": "user" }, { "content": "dearmor", "role": "assistant" } ]
def x(text, block_size): end = len(text) if end == 0: return text padch = ord_safe(text[end - 1]) if padch > block_size: return text while end > 0 and ord_safe(text[end - 1]) in (0, padch): end -= 1 return text[:end]
unpad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, block_size):\n end = len(text)\n if end == 0:\n return text\n padch = ord_safe(text[end - 1])\n if padch > block_size:\n return text\n while end > 0 and ord_safe(text[end - 1]) in (0, padch):\n end -= 1\n return text[:end]\n", "role": "user" }, { "content": "unpad", "role": "assistant" } ]
def x(text, block_size, zero=False): num = block_size - len(text) % block_size ch = b'\x00' if zero else chr(num).encode('latin-1') return text + ch * num
pad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text, block_size, zero=False):\n num = block_size - len(text) % block_size\n ch = b'\\x00' if zero else chr(num).encode('latin-1')\n return text + ch * num\n", "role": "user" }, { "content": "pad", "role": "assistant" } ]
def x(key): if len(key) in (16, 24, 32): return key if len(key) < 16: return pad(key, 16, zero=True) elif len(key) < 24: return pad(key, 24, zero=True) else: return pad(key[:32], 32, zero=True)
aes_pad_key
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(key):\n if len(key) in (16, 24, 32):\n return key\n if len(key) < 16:\n return pad(key, 16, zero=True)\n elif len(key) < 24:\n return pad(key, 24, zero=True)\n else:\n return pad(key[:32], 32, zero=True)\n", "role": "user" }, { "content": "aes_pad_key", "role": "assistant" } ]
def x(self): name, path, args, kwargs = super(BaseEncryptedField, self).deconstruct() kwargs.update({'cipher': self.cipher_name, 'charset': self.charset, 'check_armor': self.check_armor, 'versioned': self.versioned}) return name, path, args, kwargs
deconstruct
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n name, path, args, kwargs = super(BaseEncryptedField, self).deconstruct()\n kwargs.update({'cipher': self.cipher_name, 'charset': self.charset,\n 'check_armor': self.check_armor, 'versioned': self.versioned})\n return name, path, args, kwargs\n", "role": "user" }, { "content": "deconstruct", "role": "assistant" } ]
def x(self): return self.cipher_class.new(self.cipher_key, self.cipher_class. MODE_CBC, b'\x00' * self.cipher_class.block_size)
get_cipher
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self.cipher_class.new(self.cipher_key, self.cipher_class.\n MODE_CBC, b'\\x00' * self.cipher_class.block_size)\n", "role": "user" }, { "content": "get_cipher", "role": "assistant" } ]
def x(where): root_package = os.path.basename(where) packages = [('%s.%s' % (root_package, sub_package)) for sub_package in find_packages(where)] packages.insert(0, root_package) return packages
find_packages_by_root_package
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(where):\n root_package = os.path.basename(where)\n packages = [('%s.%s' % (root_package, sub_package)) for sub_package in\n find_packages(where)]\n packages.insert(0, root_package)\n return packages\n", "role": "user" }, { "content": "find_packages_by_root_package", "role": "assistant" } ]
def x(marker=None, intro=None): if intro is None: intro = inspect.getdoc(make_long_description) with open('README.rst', 'r') as infile: line = infile.readline() while not line.strip().startswith(marker): line = infile.readline() contents = infile.read() text = intro + '\n' + contents return text
make_long_description
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(marker=None, intro=None):\n if intro is None:\n intro = inspect.getdoc(make_long_description)\n with open('README.rst', 'r') as infile:\n line = infile.readline()\n while not line.strip().startswith(marker):\n line = infile.readline()\n contents = infile.read()\n text = intro + '\\n' + contents\n return text\n", "role": "user" }, { "content": "make_long_description", "role": "assistant" } ]
def x(self, deadline=None): if not self.subscribed: excep = ClientError( 'you must subscribe before using pubsub_pop_message') raise tornado.gen.Return(excep) reply = None try: reply = self._reply_list.pop(0) raise tornado.gen.Return(reply) except IndexError: pass if deadline is not None: td = timedelta(seconds=deadline) yield self._condition.wait(timeout=td) else: yield self._condition.wait() try: reply = self._reply_list.pop(0) except IndexError: pass raise tornado.gen.Return(reply)
pubsub_pop_message
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, deadline=None):\n if not self.subscribed:\n excep = ClientError(\n 'you must subscribe before using pubsub_pop_message')\n raise tornado.gen.Return(excep)\n reply = None\n try:\n reply = self._reply_list.pop(0)\n raise tornado.gen.Return(reply)\n except IndexError:\n pass\n if deadline is not None:\n td = timedelta(seconds=deadline)\n yield self._condition.wait(timeout=td)\n else:\n yield self._condition.wait()\n try:\n reply = self._reply_list.pop(0)\n except IndexError:\n pass\n raise tornado.gen.Return(reply)\n", "role": "user" }, { "content": "pubsub_pop_message", "role": "assistant" } ]
def x(assigned): ids_labels = np.arange(len(assigned.ravel()), 'int64') I = ids_labels[assigned.ravel().astype(bool)] labels = assigned.ravel()[I] sort_id = np.argsort(labels) labels = labels[sort_id] I = I[sort_id] region_ids = np.where(labels[1:] - labels[:-1] > 0)[0] + 1 region_ids = np.concatenate(([0], region_ids, [len(labels)])) return [I, region_ids, labels]
get_flat_ids
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(assigned):\n ids_labels = np.arange(len(assigned.ravel()), 'int64')\n I = ids_labels[assigned.ravel().astype(bool)]\n labels = assigned.ravel()[I]\n sort_id = np.argsort(labels)\n labels = labels[sort_id]\n I = I[sort_id]\n region_ids = np.where(labels[1:] - labels[:-1] > 0)[0] + 1\n region_ids = np.concatenate(([0], region_ids, [len(labels)]))\n return [I, region_ids, labels]\n", "role": "user" }, { "content": "get_flat_ids", "role": "assistant" } ]
def x(dX, dY, ind, e1, e2, shp, topbot=None): if topbot == None: if ind in [0, 3, 4, 7]: d1 = dX[slice((e2[0] + 1) / 2, shp[0] + (e2[0] - 1) / 2)] d2 = dY[slice((e2[0] + 1) / 2, shp[0] + (e2[0] - 1) / 2)] if d1.size == 0: d1 = np.array([dX[0]]) d2 = np.array([dY[0]]) else: d2 = dX[slice((e1[0] + 1) / 2, shp[0] + (e1[0] - 1) / 2)] d1 = dY[slice((e1[0] + 1) / 2, shp[0] + (e1[0] - 1) / 2)] if d1.size == 0: d2 = dX[0] d1 = dY[0] elif topbot == 'top': if ind in [0, 3, 4, 7]: d1, d2 = dX[0], dY[0] else: d2, d1 = dX[0], dY[0] elif topbot == 'bot': if ind in [0, 3, 4, 7]: d1, d2 = dX[-1], dY[-1] else: d2, d1 = dX[-1], dY[-1] theta = np.arctan2(d2, d1) return d1.reshape(d1.size, 1), d2.reshape(d2.size, 1), theta.reshape(theta .size, 1)
get_d1_d2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dX, dY, ind, e1, e2, shp, topbot=None):\n if topbot == None:\n if ind in [0, 3, 4, 7]:\n d1 = dX[slice((e2[0] + 1) / 2, shp[0] + (e2[0] - 1) / 2)]\n d2 = dY[slice((e2[0] + 1) / 2, shp[0] + (e2[0] - 1) / 2)]\n if d1.size == 0:\n d1 = np.array([dX[0]])\n d2 = np.array([dY[0]])\n else:\n d2 = dX[slice((e1[0] + 1) / 2, shp[0] + (e1[0] - 1) / 2)]\n d1 = dY[slice((e1[0] + 1) / 2, shp[0] + (e1[0] - 1) / 2)]\n if d1.size == 0:\n d2 = dX[0]\n d1 = dY[0]\n elif topbot == 'top':\n if ind in [0, 3, 4, 7]:\n d1, d2 = dX[0], dY[0]\n else:\n d2, d1 = dX[0], dY[0]\n elif topbot == 'bot':\n if ind in [0, 3, 4, 7]:\n d1, d2 = dX[-1], dY[-1]\n else:\n d2, d1 = dX[-1], dY[-1]\n theta = np.arctan2(d2, d1)\n return d1.reshape(d1.size, 1), d2.reshape(d2.size, 1), theta.reshape(theta\n .size, 1)\n", "role": "user" }, { "content": "get_d1_d2", "role": "assistant" } ]
def x(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2): data0 = data[slc0] data1 = data[slc1] data2 = data[slc2] s1 = (data0 - data1) / d1 s2 = (data1 - data2) / d2 s1_2 = s1 ** 2 sd = (data0 - data2) / np.sqrt(d1 ** 2 + d2 ** 2) r = np.arctan2(s2, s1) rad2 = s1_2 + s2 ** 2 b_s1_lte0 = s1 <= 0 b_s2_lte0 = s2 <= 0 b_s1_gt0 = s1 > 0 b_s2_gt0 = s2 > 0 I1 = b_s1_lte0 & b_s2_gt0 | (r > theta) if I1.any(): rad2[I1] = sd[I1] ** 2 r[I1] = theta.repeat(I1.shape[1], 1)[I1] I2 = b_s1_gt0 & b_s2_lte0 | (r < 0) if I2.any(): rad2[I2] = s1_2[I2] r[I2] = 0 I3 = b_s1_lte0 & (b_s2_lte0 | b_s2_gt0 & (sd <= 0)) rad2[I3] = -1 I4 = rad2 > mag[slc0] if I4.any(): mag[slc0][I4] = rad2[I4] direction[slc0][I4] = r[I4] * ang[1] + ang[0] * np.pi / 2 return mag, direction
calc_direction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2):\n data0 = data[slc0]\n data1 = data[slc1]\n data2 = data[slc2]\n s1 = (data0 - data1) / d1\n s2 = (data1 - data2) / d2\n s1_2 = s1 ** 2\n sd = (data0 - data2) / np.sqrt(d1 ** 2 + d2 ** 2)\n r = np.arctan2(s2, s1)\n rad2 = s1_2 + s2 ** 2\n b_s1_lte0 = s1 <= 0\n b_s2_lte0 = s2 <= 0\n b_s1_gt0 = s1 > 0\n b_s2_gt0 = s2 > 0\n I1 = b_s1_lte0 & b_s2_gt0 | (r > theta)\n if I1.any():\n rad2[I1] = sd[I1] ** 2\n r[I1] = theta.repeat(I1.shape[1], 1)[I1]\n I2 = b_s1_gt0 & b_s2_lte0 | (r < 0)\n if I2.any():\n rad2[I2] = s1_2[I2]\n r[I2] = 0\n I3 = b_s1_lte0 & (b_s2_lte0 | b_s2_gt0 & (sd <= 0))\n rad2[I3] = -1\n I4 = rad2 > mag[slc0]\n if I4.any():\n mag[slc0][I4] = rad2[I4]\n direction[slc0][I4] = r[I4] * ang[1] + ang[0] * np.pi / 2\n return mag, direction\n", "role": "user" }, { "content": "calc_direction", "role": "assistant" } ]
def x(self, key, side): return getattr(self, side).ravel()[self.keys[key]]
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, side):\n return getattr(self, side).ravel()[self.keys[key]]\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, i, data, field, side): edge = self.get_i(i, side) setattr(edge, field, data[edge.slice])
set_i
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i, data, field, side):\n edge = self.get_i(i, side)\n setattr(edge, field, data[edge.slice])\n", "role": "user" }, { "content": "set_i", "role": "assistant" } ]
def x(self, key, data, field, local=False): for side in ['left', 'right', 'top', 'bottom']: self.set(key, data, field, side, local)
set_sides
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, data, field, local=False):\n for side in ['left', 'right', 'top', 'bottom']:\n self.set(key, data, field, side, local)\n", "role": "user" }, { "content": "set_sides", "role": "assistant" } ]
def x(self, data, done, key): for side in ['left', 'right', 'top', 'bottom', 'topleft', 'topright', 'bottomleft', 'bottomright']: self.set_neighbor_data(side, data, key, 'data') self.set_neighbor_data(side, done, key, 'done')
set_all_neighbors_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, done, key):\n for side in ['left', 'right', 'top', 'bottom', 'topleft', 'topright',\n 'bottomleft', 'bottomright']:\n self.set_neighbor_data(side, data, key, 'data')\n self.set_neighbor_data(side, done, key, 'done')\n", "role": "user" }, { "content": "set_all_neighbors_data", "role": "assistant" } ]
def x(self): left = self.left right = self.right top = self.top bottom = self.bottom for i in xrange(self.n_chunks): self.n_todo.ravel()[i] = np.sum([left.ravel()[i].n_todo, right. ravel()[i].n_todo, top.ravel()[i].n_todo, bottom.ravel()[i].n_todo] )
fill_n_todo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n left = self.left\n right = self.right\n top = self.top\n bottom = self.bottom\n for i in xrange(self.n_chunks):\n self.n_todo.ravel()[i] = np.sum([left.ravel()[i].n_todo, right.\n ravel()[i].n_todo, top.ravel()[i].n_todo, bottom.ravel()[i].n_todo]\n )\n", "role": "user" }, { "content": "fill_n_todo", "role": "assistant" } ]
def x(self): left = self.left right = self.right top = self.top bottom = self.bottom for i in xrange(self.n_chunks): self.n_done.ravel()[i] = np.sum([left.ravel()[i].n_done, right. ravel()[i].n_done, top.ravel()[i].n_done, bottom.ravel()[i].n_done] )
fill_n_done
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n left = self.left\n right = self.right\n top = self.top\n bottom = self.bottom\n for i in xrange(self.n_chunks):\n self.n_done.ravel()[i] = np.sum([left.ravel()[i].n_done, right.\n ravel()[i].n_done, top.ravel()[i].n_done, bottom.ravel()[i].n_done]\n )\n", "role": "user" }, { "content": "fill_n_done", "role": "assistant" } ]
def x(self): left = self.left right = self.right top = self.top bottom = self.bottom for i in xrange(self.n_chunks): self.percent_done.ravel()[i] = np.sum([left.ravel()[i].percent_done, right.ravel()[i].percent_done, top.ravel()[i].percent_done, bottom.ravel()[i].percent_done]) self.percent_done.ravel()[i] /= np.sum([left.ravel()[i]. percent_done > 0, right.ravel()[i].percent_done > 0, top.ravel( )[i].percent_done > 0, bottom.ravel()[i].percent_done > 0, 1e-16])
fill_percent_done
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n left = self.left\n right = self.right\n top = self.top\n bottom = self.bottom\n for i in xrange(self.n_chunks):\n self.percent_done.ravel()[i] = np.sum([left.ravel()[i].percent_done,\n right.ravel()[i].percent_done, top.ravel()[i].percent_done,\n bottom.ravel()[i].percent_done])\n self.percent_done.ravel()[i] /= np.sum([left.ravel()[i].\n percent_done > 0, right.ravel()[i].percent_done > 0, top.ravel(\n )[i].percent_done > 0, bottom.ravel()[i].percent_done > 0, 1e-16])\n", "role": "user" }, { "content": "fill_percent_done", "role": "assistant" } ]
def x(self, array, field, add=False, maximize=False): self.fix_shapes() for i in xrange(self.n_chunks): for side in ['left', 'right', 'top', 'bottom']: edge = getattr(self, side).ravel()[i] if add: array[edge.slice] += getattr(edge, field) elif maximize: array[edge.slice] = np.maximum(array[edge.slice], getattr( edge, field)) else: array[edge.slice] = getattr(edge, field) return array
fill_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, array, field, add=False, maximize=False):\n self.fix_shapes()\n for i in xrange(self.n_chunks):\n for side in ['left', 'right', 'top', 'bottom']:\n edge = getattr(self, side).ravel()[i]\n if add:\n array[edge.slice] += getattr(edge, field)\n elif maximize:\n array[edge.slice] = np.maximum(array[edge.slice], getattr(\n edge, field))\n else:\n array[edge.slice] = getattr(edge, field)\n return array\n", "role": "user" }, { "content": "fill_array", "role": "assistant" } ]
def x(self): for i in xrange(self.n_chunks): for side in ['left', 'right', 'top', 'bottom']: edge = getattr(self, side).ravel()[i] if side in ['left', 'right']: shp = [edge.todo.size, 1] else: shp = [1, edge.todo.size] edge.done = edge.done.reshape(shp) edge.data = edge.data.reshape(shp) edge.todo = edge.todo.reshape(shp)
fix_shapes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for i in xrange(self.n_chunks):\n for side in ['left', 'right', 'top', 'bottom']:\n edge = getattr(self, side).ravel()[i]\n if side in ['left', 'right']:\n shp = [edge.todo.size, 1]\n else:\n shp = [1, edge.todo.size]\n edge.done = edge.done.reshape(shp)\n edge.data = edge.data.reshape(shp)\n edge.todo = edge.todo.reshape(shp)\n", "role": "user" }, { "content": "fix_shapes", "role": "assistant" } ]
def x(self): self.fill_percent_done() i_b = np.argmax(self.percent_done.ravel()) if self.percent_done.ravel()[i_b] <= 0: return None I = self.percent_done.ravel() == self.percent_done.ravel()[i_b] if I.sum() == 1: return i_b else: I2 = np.argmax(self.max_elev.ravel()[I]) return I.nonzero()[0][I2]
find_best_candidate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.fill_percent_done()\n i_b = np.argmax(self.percent_done.ravel())\n if self.percent_done.ravel()[i_b] <= 0:\n return None\n I = self.percent_done.ravel() == self.percent_done.ravel()[i_b]\n if I.sum() == 1:\n return i_b\n else:\n I2 = np.argmax(self.max_elev.ravel()[I])\n return I.nonzero()[0][I2]\n", "role": "user" }, { "content": "find_best_candidate", "role": "assistant" } ]
def x(self, rootpath, raw=False, as_int=False): self.save_array(self.uca, None, 'uca', rootpath, raw, as_int=as_int)
save_uca
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rootpath, raw=False, as_int=False):\n self.save_array(self.uca, None, 'uca', rootpath, raw, as_int=as_int)\n", "role": "user" }, { "content": "save_uca", "role": "assistant" } ]
def x(self, rootpath, raw=False, as_int=True): self.twi = np.ma.masked_array(self.twi, mask=self.twi <= 0, fill_value= -9999) self.twi[self.flats] = 0 self.twi.mask[self.flats] = True self.save_array(self.twi, None, 'twi', rootpath, raw, as_int=as_int)
save_twi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rootpath, raw=False, as_int=True):\n self.twi = np.ma.masked_array(self.twi, mask=self.twi <= 0, fill_value=\n -9999)\n self.twi[self.flats] = 0\n self.twi.mask[self.flats] = True\n self.save_array(self.twi, None, 'twi', rootpath, raw, as_int=as_int)\n", "role": "user" }, { "content": "save_twi", "role": "assistant" } ]
def x(self, rootpath, raw=False, as_int=False): self.save_array(self.mag, None, 'mag', rootpath, raw, as_int=as_int)
save_slope
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rootpath, raw=False, as_int=False):\n self.save_array(self.mag, None, 'mag', rootpath, raw, as_int=as_int)\n", "role": "user" }, { "content": "save_slope", "role": "assistant" } ]
def x(self, rootpath, raw=False, as_int=False): self.save_array(self.direction, None, 'ang', rootpath, raw, as_int=as_int)
save_direction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rootpath, raw=False, as_int=False):\n self.save_array(self.direction, None, 'ang', rootpath, raw, as_int=as_int)\n", "role": "user" }, { "content": "save_direction", "role": "assistant" } ]
def x(self, rootpath='.', raw=False): self.save_twi(rootpath, raw) self.save_uca(rootpath, raw) self.save_slope(rootpath, raw) self.save_direction(rootpath, raw)
save_outputs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rootpath='.', raw=False):\n self.save_twi(rootpath, raw)\n self.save_uca(rootpath, raw)\n self.save_slope(rootpath, raw)\n self.save_direction(rootpath, raw)\n", "role": "user" }, { "content": "save_outputs", "role": "assistant" } ]
def x(self, NN, chunk_size, chunk_overlap): left_edge = np.arange(0, NN - chunk_overlap, chunk_size) left_edge[1:] -= chunk_overlap right_edge = np.arange(0, NN - chunk_overlap, chunk_size) right_edge[:-1] = right_edge[1:] + chunk_overlap right_edge[-1] = NN right_edge = np.minimum(right_edge, NN) return left_edge, right_edge
get_chunk_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, NN, chunk_size, chunk_overlap):\n left_edge = np.arange(0, NN - chunk_overlap, chunk_size)\n left_edge[1:] -= chunk_overlap\n right_edge = np.arange(0, NN - chunk_overlap, chunk_size)\n right_edge[:-1] = right_edge[1:] + chunk_overlap\n right_edge[-1] = NN\n right_edge = np.minimum(right_edge, NN)\n return left_edge, right_edge\n", "role": "user" }, { "content": "get_chunk_edges", "role": "assistant" } ]
def x(self, data, arr1, arr2, te, be, le, re, ovr, add=False): if te == 0: i1 = 0 else: i1 = ovr if be == data.shape[0]: i2 = 0 i2b = None else: i2 = -ovr i2b = -ovr if le == 0: j1 = 0 else: j1 = ovr if re == data.shape[1]: j2 = 0 j2b = None else: j2 = -ovr j2b = -ovr if add: arr1[te + i1:be + i2, le + j1:re + j2] += arr2[i1:i2b, j1:j2b] else: arr1[te + i1:be + i2, le + j1:re + j2] = arr2[i1:i2b, j1:j2b]
assign_chunk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, arr1, arr2, te, be, le, re, ovr, add=False):\n if te == 0:\n i1 = 0\n else:\n i1 = ovr\n if be == data.shape[0]:\n i2 = 0\n i2b = None\n else:\n i2 = -ovr\n i2b = -ovr\n if le == 0:\n j1 = 0\n else:\n j1 = ovr\n if re == data.shape[1]:\n j2 = 0\n j2b = None\n else:\n j2 = -ovr\n j2b = -ovr\n if add:\n arr1[te + i1:be + i2, le + j1:re + j2] += arr2[i1:i2b, j1:j2b]\n else:\n arr1[te + i1:be + i2, le + j1:re + j2] = arr2[i1:i2b, j1:j2b]\n", "role": "user" }, { "content": "assign_chunk", "role": "assistant" } ]
def x(self, data, dX, dY, method='tarboton'): if method == 'tarboton': return self._tarboton_slopes_directions(data, dX, dY) elif method == 'central': return self._central_slopes_directions(data, dX, dY)
slopes_directions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, dX, dY, method='tarboton'):\n if method == 'tarboton':\n return self._tarboton_slopes_directions(data, dX, dY)\n elif method == 'central':\n return self._central_slopes_directions(data, dX, dY)\n", "role": "user" }, { "content": "slopes_directions", "role": "assistant" } ]
def x(self, data, dX, dY): return _tarboton_slopes_directions(data, dX, dY, self.facets, self.ang_adj)
tarboton_slopes_directions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, dX, dY):\n return _tarboton_slopes_directions(data, dX, dY, self.facets, self.ang_adj)\n", "role": "user" }, { "content": "tarboton_slopes_directions", "role": "assistant" } ]
def x(self, data, dX, dY): shp = np.array(data.shape) - 1 direction = np.full(data.shape, FLAT_ID_INT, 'float64') mag = np.full(direction, FLAT_ID_INT, 'float64') ind = 0 d1, d2, theta = _get_d1_d2(dX, dY, ind, [0, 1], [1, 1], shp) s2 = (data[0:-2, 1:-1] - data[2:, 1:-1]) / d2 s1 = -(data[1:-1, 0:-2] - data[1:-1, 2:]) / d1 direction[1:-1, 1:-1] = np.arctan2(s2, s1) + np.pi mag = np.sqrt(s1 ** 2 + s2 ** 2) return mag, direction
central_slopes_directions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, dX, dY):\n shp = np.array(data.shape) - 1\n direction = np.full(data.shape, FLAT_ID_INT, 'float64')\n mag = np.full(direction, FLAT_ID_INT, 'float64')\n ind = 0\n d1, d2, theta = _get_d1_d2(dX, dY, ind, [0, 1], [1, 1], shp)\n s2 = (data[0:-2, 1:-1] - data[2:, 1:-1]) / d2\n s1 = -(data[1:-1, 0:-2] - data[1:-1, 2:]) / d1\n direction[1:-1, 1:-1] = np.arctan2(s2, s1) + np.pi\n mag = np.sqrt(s1 ** 2 + s2 ** 2)\n return mag, direction\n", "role": "user" }, { "content": "central_slopes_directions", "role": "assistant" } ]
def x(self, data, mag, direction): i12 = np.arange(data.size).reshape(data.shape) flat = mag == FLAT_ID_INT flats, n = spndi.label(flat, structure=FLATS_KERNEL3) objs = spndi.find_objects(flats) f = flat.ravel() d = data.ravel() for i, _obj in enumerate(objs): region = flats[_obj] == i + 1 I = i12[_obj][region] J = get_adjacent_index(I, data.shape, data.size) f[J] = d[J] == d[I[0]] flat = f.reshape(data.shape) return flat
find_flats_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, mag, direction):\n i12 = np.arange(data.size).reshape(data.shape)\n flat = mag == FLAT_ID_INT\n flats, n = spndi.label(flat, structure=FLATS_KERNEL3)\n objs = spndi.find_objects(flats)\n f = flat.ravel()\n d = data.ravel()\n for i, _obj in enumerate(objs):\n region = flats[_obj] == i + 1\n I = i12[_obj][region]\n J = get_adjacent_index(I, data.shape, data.size)\n f[J] = d[J] == d[I[0]]\n flat = f.reshape(data.shape)\n return flat\n", "role": "user" }, { "content": "find_flats_edges", "role": "assistant" } ]
def x(self, edge_init_data, edge_init_done, edge_init_todo): data, dX, dY, direction, flats = (self.data, self.dX, self.dY, self. direction, self.flats) sides = ['left', 'right', 'top', 'bottom'] slices_o = [[slice(None), slice(1, 2)], [slice(None), slice(-2, -1)], [ slice(1, 2), slice(None)], [slice(-2, -1), slice(None)]] slices_d = [[slice(None), slice(0, 1)], [slice(None), slice(-1, None)], [slice(0, 1), slice(None)], [slice(-1, None), slice(None)]] indices = {'left': [[3, 4], [2, 5]], 'right': [[0, 7], [1, 6]], 'top': [[1, 2], [0, 3]], 'bottom': [[5, 6], [4, 7]]} for side, slice_o, slice_d in zip(sides, slices_o, slices_d): section, proportion = self._calc_uca_section_proportion(data[ slice_o], dX[slice_o[0]], dY[slice_o[0]], direction[slice_o], flats[slice_o]) if side in ['left', 'right']: self.uca[slice_d] = np.concatenate(([dX[slice_d[0]][0] * dY[ slice_d[0]][0]], dX[slice_d[0]] * dY[slice_d[0]])).reshape(self .uca[slice_d].shape) else: self.uca[slice_d] = dX[slice_d[0]][0] * dY[slice_d[0]][0] for e in range(2): for i in indices[side][e]: ed = self.facets[i][2] ids = section == i if e == 0: self.uca[slice_d][ids] += self.uca[slice_o][ids ] * proportion[ids] self.uca[slice_d][ids] += np.roll(np.roll(self.uca[slice_o] * (1 - proportion), ed[0], 0), ed[1], 1)[ids] if e == 1: self.uca[slice_d][ids] += np.roll(np.roll(self.uca[ slice_o] * proportion, ed[0], 0), ed[1], 1)[ids] if edge_init_done is not None: ids = edge_init_done[side] if side in ['left', 'right']: self.uca[slice_d][ids, :] = edge_init_data[side][ids][:, None] else: self.uca[slice_d][:, ids] = edge_init_data[side][ids]
fix_edge_pixels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, edge_init_data, edge_init_done, edge_init_todo):\n data, dX, dY, direction, flats = (self.data, self.dX, self.dY, self.\n direction, self.flats)\n sides = ['left', 'right', 'top', 'bottom']\n slices_o = [[slice(None), slice(1, 2)], [slice(None), slice(-2, -1)], [\n slice(1, 2), slice(None)], [slice(-2, -1), slice(None)]]\n slices_d = [[slice(None), slice(0, 1)], [slice(None), slice(-1, None)],\n [slice(0, 1), slice(None)], [slice(-1, None), slice(None)]]\n indices = {'left': [[3, 4], [2, 5]], 'right': [[0, 7], [1, 6]], 'top':\n [[1, 2], [0, 3]], 'bottom': [[5, 6], [4, 7]]}\n for side, slice_o, slice_d in zip(sides, slices_o, slices_d):\n section, proportion = self._calc_uca_section_proportion(data[\n slice_o], dX[slice_o[0]], dY[slice_o[0]], direction[slice_o],\n flats[slice_o])\n if side in ['left', 'right']:\n self.uca[slice_d] = np.concatenate(([dX[slice_d[0]][0] * dY[\n slice_d[0]][0]], dX[slice_d[0]] * dY[slice_d[0]])).reshape(self\n .uca[slice_d].shape)\n else:\n self.uca[slice_d] = dX[slice_d[0]][0] * dY[slice_d[0]][0]\n for e in range(2):\n for i in indices[side][e]:\n ed = self.facets[i][2]\n ids = section == i\n if e == 0:\n self.uca[slice_d][ids] += self.uca[slice_o][ids\n ] * proportion[ids]\n self.uca[slice_d][ids] += np.roll(np.roll(self.uca[slice_o] *\n (1 - proportion), ed[0], 0), ed[1], 1)[ids]\n if e == 1:\n self.uca[slice_d][ids] += np.roll(np.roll(self.uca[\n slice_o] * proportion, ed[0], 0), ed[1], 1)[ids]\n if edge_init_done is not None:\n ids = edge_init_done[side]\n if side in ['left', 'right']:\n self.uca[slice_d][ids, :] = edge_init_data[side][ids][:, None]\n else:\n self.uca[slice_d][:, ids] = edge_init_data[side][ids]\n", "role": "user" }, { "content": "fix_edge_pixels", "role": "assistant" } ]
def x(self, A, ids, area, done, edge_todo): A_todo = A[:, ids.ravel()] colsum = np.array(A_todo.sum(1)).ravel() ids_new = colsum != 0 area.ravel()[ids_new] += A_todo[ids_new, :] * area.ravel()[ids].ravel() edge_todo.ravel()[ids_new] += A_todo[ids_new, :] * edge_todo.ravel()[ids ].ravel() done.ravel()[ids] = True colsum = A * ~done.ravel() ids = colsum == 0 ids = ids & ~done.ravel() return ids, area, done, edge_todo
drain_step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, A, ids, area, done, edge_todo):\n A_todo = A[:, ids.ravel()]\n colsum = np.array(A_todo.sum(1)).ravel()\n ids_new = colsum != 0\n area.ravel()[ids_new] += A_todo[ids_new, :] * area.ravel()[ids].ravel()\n edge_todo.ravel()[ids_new] += A_todo[ids_new, :] * edge_todo.ravel()[ids\n ].ravel()\n done.ravel()[ids] = True\n colsum = A * ~done.ravel()\n ids = colsum == 0\n ids = ids & ~done.ravel()\n return ids, area, done, edge_todo\n", "role": "user" }, { "content": "drain_step", "role": "assistant" } ]
def x(self, data, dX, dY, direction, flats): shp = np.array(data.shape) - 1 facets = self.facets adjust = self.ang_adj[:, 1] d1, d2, theta = _get_d1_d2(dX, dY, 0, facets[0][1], facets[0][2], shp) if dX.size > 1: theta = np.row_stack((theta[0, :], theta, theta[-1, :])) section = (direction / np.pi * 2.0 // 1).astype('int8') quadrant = direction - np.pi / 2.0 * section proportion = np.full_like(quadrant, np.nan) section = section * 2 + (quadrant > theta.repeat(data.shape[1], 1)) * ( section % 2 == 0) + (quadrant > np.pi / 2 - theta.repeat(data.shape [1], 1)) * (section % 2 == 1) I1 = (section == 0) | (section == 1) | (section == 4) | (section == 5) I = I1 & (quadrant <= theta.repeat(data.shape[1], 1)) proportion[I] = quadrant[I] / theta.repeat(data.shape[1], 1)[I] I = I1 & (quadrant > theta.repeat(data.shape[1], 1)) proportion[I] = (quadrant[I] - theta.repeat(data.shape[1], 1)[I]) / (np .pi / 2 - theta.repeat(data.shape[1], 1)[I]) I = ~I1 & (quadrant <= np.pi / 2 - theta.repeat(data.shape[1], 1)) proportion[I] = quadrant[I] / (np.pi / 2 - theta.repeat(data.shape[1], 1)[I]) I = ~I1 & (quadrant > np.pi / 2 - theta.repeat(data.shape[1], 1)) proportion[I] = (quadrant[I] - (np.pi / 2 - theta.repeat(data.shape[1], 1)[I])) / theta.repeat(data.shape[1], 1)[I] section[flats] = FLAT_ID_INT proportion[flats] = FLAT_ID section[section == 8] = 0 proportion = (1 + adjust[section]) / 2.0 - adjust[section] * proportion return section, proportion
calc_uca_section_proportion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, dX, dY, direction, flats):\n shp = np.array(data.shape) - 1\n facets = self.facets\n adjust = self.ang_adj[:, 1]\n d1, d2, theta = _get_d1_d2(dX, dY, 0, facets[0][1], facets[0][2], shp)\n if dX.size > 1:\n theta = np.row_stack((theta[0, :], theta, theta[-1, :]))\n section = (direction / np.pi * 2.0 // 1).astype('int8')\n quadrant = direction - np.pi / 2.0 * section\n proportion = np.full_like(quadrant, np.nan)\n section = section * 2 + (quadrant > theta.repeat(data.shape[1], 1)) * (\n section % 2 == 0) + (quadrant > np.pi / 2 - theta.repeat(data.shape\n [1], 1)) * (section % 2 == 1)\n I1 = (section == 0) | (section == 1) | (section == 4) | (section == 5)\n I = I1 & (quadrant <= theta.repeat(data.shape[1], 1))\n proportion[I] = quadrant[I] / theta.repeat(data.shape[1], 1)[I]\n I = I1 & (quadrant > theta.repeat(data.shape[1], 1))\n proportion[I] = (quadrant[I] - theta.repeat(data.shape[1], 1)[I]) / (np\n .pi / 2 - theta.repeat(data.shape[1], 1)[I])\n I = ~I1 & (quadrant <= np.pi / 2 - theta.repeat(data.shape[1], 1))\n proportion[I] = quadrant[I] / (np.pi / 2 - theta.repeat(data.shape[1], \n 1)[I])\n I = ~I1 & (quadrant > np.pi / 2 - theta.repeat(data.shape[1], 1))\n proportion[I] = (quadrant[I] - (np.pi / 2 - theta.repeat(data.shape[1],\n 1)[I])) / theta.repeat(data.shape[1], 1)[I]\n section[flats] = FLAT_ID_INT\n proportion[flats] = FLAT_ID\n section[section == 8] = 0\n proportion = (1 + adjust[section]) / 2.0 - adjust[section] * proportion\n return section, proportion\n", "role": "user" }, { "content": "calc_uca_section_proportion", "role": "assistant" } ]
def x(self, section, proportion, flats, elev, mag, dX, dY): shp = section.shape mat_data = np.row_stack((proportion, 1 - proportion)) NN = np.prod(shp) i12 = np.arange(NN).reshape(shp) j1 = -np.ones_like(i12) j2 = -np.ones_like(i12) j1, j2 = self._mk_connectivity(section, i12, j1, j2) j = np.row_stack((j1, j2)) i = np.row_stack((i12, i12)) if self.drain_pits: pit_i, pit_j, pit_prop, flats, mag = self._mk_connectivity_pits(i12, flats, elev, mag, dX, dY) j = np.concatenate([j.ravel(), pit_j]).astype('int64') i = np.concatenate([i.ravel(), pit_i]).astype('int64') mat_data = np.concatenate([mat_data.ravel(), pit_prop]) elif self.drain_flats: j1, j2, mat_data, flat_i, flat_j, flat_prop = (self. _mk_connectivity_flats(i12, j1, j2, mat_data, flats, elev, mag)) j = np.concatenate([j.ravel(), flat_j]).astype('int64') i = np.concatenate([i.ravel(), flat_j]).astype('int64') mat_data = np.concatenate([mat_data.ravel(), flat_prop]) I = ~np.isnan(mat_data) & (j != -1) & (mat_data > 1e-08) & (elev.ravel( )[j] <= elev.ravel()[i]) mat_data = mat_data[I] j = j[I] i = i[I] A = sps.csc_matrix((mat_data.ravel(), np.row_stack((j.ravel(), i.ravel( )))), shape=(NN, NN)) normalize = np.array(A.sum(0) + 1e-16).squeeze() A = np.dot(A, sps.diags(1 / normalize, 0)) return A
mk_adjacency_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, section, proportion, flats, elev, mag, dX, dY):\n shp = section.shape\n mat_data = np.row_stack((proportion, 1 - proportion))\n NN = np.prod(shp)\n i12 = np.arange(NN).reshape(shp)\n j1 = -np.ones_like(i12)\n j2 = -np.ones_like(i12)\n j1, j2 = self._mk_connectivity(section, i12, j1, j2)\n j = np.row_stack((j1, j2))\n i = np.row_stack((i12, i12))\n if self.drain_pits:\n pit_i, pit_j, pit_prop, flats, mag = self._mk_connectivity_pits(i12,\n flats, elev, mag, dX, dY)\n j = np.concatenate([j.ravel(), pit_j]).astype('int64')\n i = np.concatenate([i.ravel(), pit_i]).astype('int64')\n mat_data = np.concatenate([mat_data.ravel(), pit_prop])\n elif self.drain_flats:\n j1, j2, mat_data, flat_i, flat_j, flat_prop = (self.\n _mk_connectivity_flats(i12, j1, j2, mat_data, flats, elev, mag))\n j = np.concatenate([j.ravel(), flat_j]).astype('int64')\n i = np.concatenate([i.ravel(), flat_j]).astype('int64')\n mat_data = np.concatenate([mat_data.ravel(), flat_prop])\n I = ~np.isnan(mat_data) & (j != -1) & (mat_data > 1e-08) & (elev.ravel(\n )[j] <= elev.ravel()[i])\n mat_data = mat_data[I]\n j = j[I]\n i = i[I]\n A = sps.csc_matrix((mat_data.ravel(), np.row_stack((j.ravel(), i.ravel(\n )))), shape=(NN, NN))\n normalize = np.array(A.sum(0) + 1e-16).squeeze()\n A = np.dot(A, sps.diags(1 / normalize, 0))\n return A\n", "role": "user" }, { "content": "mk_adjacency_matrix", "role": "assistant" } ]
def x(self, section, i12, j1, j2): shp = np.array(section.shape) - 1 facets = self.facets for ii, facet in enumerate(facets): e1 = facet[1] e2 = facet[2] I = section[1:-1, 1:-1] == ii j1[1:-1, 1:-1][I] = i12[1 + e1[0]:shp[0] + e1[0], 1 + e1[1]:shp[1] + e1[1]][I] j2[1:-1, 1:-1][I] = i12[1 + e2[0]:shp[0] + e2[0], 1 + e2[1]:shp[1] + e2[1]][I] slc0 = [slice(1, -1), slice(0, 1)] for ind in [0, 1, 6, 7]: e1 = facets[ind][1] e2 = facets[ind][2] I = section[slc0] == ind j1[slc0][I] = i12[1 + e1[0]:shp[0] + e1[0], e1[1]][I.ravel()] j2[slc0][I] = i12[1 + e2[0]:shp[0] + e2[0], e2[1]][I.ravel()] slc0 = [slice(1, -1), slice(-1, None)] for ind in [2, 3, 4, 5]: e1 = facets[ind][1] e2 = facets[ind][2] I = section[slc0] == ind j1[slc0][I] = i12[1 + e1[0]:shp[0] + e1[0], shp[1] + e1[1]][I.ravel()] j2[slc0][I] = i12[1 + e2[0]:shp[0] + e2[0], shp[1] + e2[1]][I.ravel()] slc0 = [slice(0, 1), slice(1, -1)] for ind in [4, 5, 6, 7]: e1 = facets[ind][1] e2 = facets[ind][2] I = section[slc0] == ind j1[slc0][I] = i12[e1[0], 1 + e1[1]:shp[1] + e1[1]][I.ravel()] j2[slc0][I] = i12[e2[0], 1 + e2[1]:shp[1] + e2[1]][I.ravel()] slc0 = [slice(-1, None), slice(1, -1)] for ind in [0, 1, 2, 3]: e1 = facets[ind][1] e2 = facets[ind][2] I = section[slc0] == ind j1[slc0][I] = i12[shp[0] + e1[0], 1 + e1[1]:shp[1] + e1[1]][I.ravel()] j2[slc0][I] = i12[shp[0] + e2[0], 1 + e2[1]:shp[1] + e2[1]][I.ravel()] slc0 = [slice(0, 1), slice(0, 1)] for ind in [6, 7]: e1 = facets[ind][1] e2 = facets[ind][2] if section[slc0] == ind: j1[slc0] = i12[e1[0], e1[1]] j2[slc0] = i12[e2[0], e2[1]] slc0 = [slice(0, 1), slice(-1, None)] for ind in [4, 5]: e1 = facets[ind][1] e2 = facets[ind][2] if section[slc0] == ind: j1[slc0] = i12[e1[0], shp[1] + e1[1]] j2[slc0] = i12[e2[0], shp[1] + e2[1]] slc0 = [slice(-1, None), slice(0, 1)] for ind in [0, 1]: e1 = facets[ind][1] e2 = facets[ind][2] if section[slc0] == ind: j1[slc0] = i12[shp[0] + e1[0], e1[1]] j2[slc0] = i12[shp[0] + e2[0], e2[1]] slc0 = [slice(-1, None), slice(-1, None)] for ind in [2, 3]: e1 = facets[ind][1] e2 = facets[ind][2] if section[slc0] == ind: j1[slc0] = i12[e1[0] + shp[0], shp[1] + e1[1]] j2[slc0] = i12[e2[0] + shp[0], shp[1] + e2[1]] return j1, j2
mk_connectivity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, section, i12, j1, j2):\n shp = np.array(section.shape) - 1\n facets = self.facets\n for ii, facet in enumerate(facets):\n e1 = facet[1]\n e2 = facet[2]\n I = section[1:-1, 1:-1] == ii\n j1[1:-1, 1:-1][I] = i12[1 + e1[0]:shp[0] + e1[0], 1 + e1[1]:shp[1] +\n e1[1]][I]\n j2[1:-1, 1:-1][I] = i12[1 + e2[0]:shp[0] + e2[0], 1 + e2[1]:shp[1] +\n e2[1]][I]\n slc0 = [slice(1, -1), slice(0, 1)]\n for ind in [0, 1, 6, 7]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n I = section[slc0] == ind\n j1[slc0][I] = i12[1 + e1[0]:shp[0] + e1[0], e1[1]][I.ravel()]\n j2[slc0][I] = i12[1 + e2[0]:shp[0] + e2[0], e2[1]][I.ravel()]\n slc0 = [slice(1, -1), slice(-1, None)]\n for ind in [2, 3, 4, 5]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n I = section[slc0] == ind\n j1[slc0][I] = i12[1 + e1[0]:shp[0] + e1[0], shp[1] + e1[1]][I.ravel()]\n j2[slc0][I] = i12[1 + e2[0]:shp[0] + e2[0], shp[1] + e2[1]][I.ravel()]\n slc0 = [slice(0, 1), slice(1, -1)]\n for ind in [4, 5, 6, 7]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n I = section[slc0] == ind\n j1[slc0][I] = i12[e1[0], 1 + e1[1]:shp[1] + e1[1]][I.ravel()]\n j2[slc0][I] = i12[e2[0], 1 + e2[1]:shp[1] + e2[1]][I.ravel()]\n slc0 = [slice(-1, None), slice(1, -1)]\n for ind in [0, 1, 2, 3]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n I = section[slc0] == ind\n j1[slc0][I] = i12[shp[0] + e1[0], 1 + e1[1]:shp[1] + e1[1]][I.ravel()]\n j2[slc0][I] = i12[shp[0] + e2[0], 1 + e2[1]:shp[1] + e2[1]][I.ravel()]\n slc0 = [slice(0, 1), slice(0, 1)]\n for ind in [6, 7]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n if section[slc0] == ind:\n j1[slc0] = i12[e1[0], e1[1]]\n j2[slc0] = i12[e2[0], e2[1]]\n slc0 = [slice(0, 1), slice(-1, None)]\n for ind in [4, 5]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n if section[slc0] == ind:\n j1[slc0] = i12[e1[0], shp[1] + e1[1]]\n j2[slc0] = i12[e2[0], shp[1] + e2[1]]\n slc0 = [slice(-1, None), slice(0, 1)]\n for ind in [0, 1]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n if section[slc0] == ind:\n j1[slc0] = i12[shp[0] + e1[0], e1[1]]\n j2[slc0] = i12[shp[0] + e2[0], e2[1]]\n slc0 = [slice(-1, None), slice(-1, None)]\n for ind in [2, 3]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n if section[slc0] == ind:\n j1[slc0] = i12[e1[0] + shp[0], shp[1] + e1[1]]\n j2[slc0] = i12[e2[0] + shp[0], shp[1] + e2[1]]\n return j1, j2\n", "role": "user" }, { "content": "mk_connectivity", "role": "assistant" } ]
def x(self, i12, flats, elev, mag, dX, dY): e = elev.data.ravel() pit_i = [] pit_j = [] pit_prop = [] warn_pits = [] pits = i12[flats & (elev > 0)] I = np.argsort(e[pits]) for pit in pits[I]: pit_area = np.array([pit], 'int64') drain = None epit = e[pit] for it in range(self.drain_pits_max_iter): border = get_border_index(pit_area, elev.shape, elev.size) eborder = e[border] emin = eborder.min() if emin < epit: drain = border[eborder < epit] break pit_area = np.concatenate([pit_area, border[eborder == emin]]) if drain is None: warn_pits.append(pit) continue ipit, jpit = np.unravel_index(pit, elev.shape) Idrain, Jdrain = np.unravel_index(drain, elev.shape) if self.drain_pits_max_dist: dij = np.sqrt((ipit - Idrain) ** 2 + (jpit - Jdrain) ** 2) b = dij <= self.drain_pits_max_dist if not b.any(): warn_pits.append(pit) continue drain = drain[b] Idrain = Idrain[b] Jdrain = Jdrain[b] dx = [(_get_dX_mean(dX, ipit, idrain) * (jpit - jdrain)) for idrain, jdrain in zip(Idrain, Jdrain)] dy = [dY[make_slice(ipit, idrain)].sum() for idrain in Idrain] dxy = np.sqrt(np.array(dx) ** 2 + np.array(dy) ** 2) if self.drain_pits_max_dist_XY: b = dxy <= self.drain_pits_max_dist_XY if not b.any(): warn_pits.append(pit) continue drain = drain[b] dxy = dxy[b] s = (e[pit] - e[drain]) / dxy pit_i += [pit for i in drain] pit_j += drain.tolist() pit_prop += s.tolist() mag[ipit, jpit] = np.mean(s) flats[ipit, jpit] = False if warn_pits: warnings.warn( 'Warning %d pits had no place to drain to in this chunk' % len( warn_pits)) return np.array(pit_i, 'int64'), np.array(pit_j, 'int64'), np.array( pit_prop, 'float64'), flats, mag
mk_connectivity_pits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i12, flats, elev, mag, dX, dY):\n e = elev.data.ravel()\n pit_i = []\n pit_j = []\n pit_prop = []\n warn_pits = []\n pits = i12[flats & (elev > 0)]\n I = np.argsort(e[pits])\n for pit in pits[I]:\n pit_area = np.array([pit], 'int64')\n drain = None\n epit = e[pit]\n for it in range(self.drain_pits_max_iter):\n border = get_border_index(pit_area, elev.shape, elev.size)\n eborder = e[border]\n emin = eborder.min()\n if emin < epit:\n drain = border[eborder < epit]\n break\n pit_area = np.concatenate([pit_area, border[eborder == emin]])\n if drain is None:\n warn_pits.append(pit)\n continue\n ipit, jpit = np.unravel_index(pit, elev.shape)\n Idrain, Jdrain = np.unravel_index(drain, elev.shape)\n if self.drain_pits_max_dist:\n dij = np.sqrt((ipit - Idrain) ** 2 + (jpit - Jdrain) ** 2)\n b = dij <= self.drain_pits_max_dist\n if not b.any():\n warn_pits.append(pit)\n continue\n drain = drain[b]\n Idrain = Idrain[b]\n Jdrain = Jdrain[b]\n dx = [(_get_dX_mean(dX, ipit, idrain) * (jpit - jdrain)) for idrain,\n jdrain in zip(Idrain, Jdrain)]\n dy = [dY[make_slice(ipit, idrain)].sum() for idrain in Idrain]\n dxy = np.sqrt(np.array(dx) ** 2 + np.array(dy) ** 2)\n if self.drain_pits_max_dist_XY:\n b = dxy <= self.drain_pits_max_dist_XY\n if not b.any():\n warn_pits.append(pit)\n continue\n drain = drain[b]\n dxy = dxy[b]\n s = (e[pit] - e[drain]) / dxy\n pit_i += [pit for i in drain]\n pit_j += drain.tolist()\n pit_prop += s.tolist()\n mag[ipit, jpit] = np.mean(s)\n flats[ipit, jpit] = False\n if warn_pits:\n warnings.warn(\n 'Warning %d pits had no place to drain to in this chunk' % len(\n warn_pits))\n return np.array(pit_i, 'int64'), np.array(pit_j, 'int64'), np.array(\n pit_prop, 'float64'), flats, mag\n", "role": "user" }, { "content": "mk_connectivity_pits", "role": "assistant" } ]
def x(self, i12, j1, j2, mat_data, flats, elev, mag): nn, mm = flats.shape NN = np.prod(flats.shape) assigned, n_flats = spndi.label(flats, FLATS_KERNEL3) flat_ids, flat_coords, flat_labelsf = _get_flat_ids(assigned) flat_j = [None] * n_flats flat_prop = [None] * n_flats flat_i = [None] * n_flats edges = np.zeros_like(flats) warn_flats = [] for ii in xrange(n_flats): ids_flats = flat_ids[flat_coords[ii]:flat_coords[ii + 1]] edges[:] = 0 j = ids_flats % mm i = ids_flats // mm for iii in [-1, 0, 1]: for jjj in [-1, 0, 1]: i_2 = i + iii j_2 = j + jjj ids_tmp = (i_2 >= 0) & (j_2 >= 0) & (i_2 < nn) & (j_2 < mm) edges[i_2[ids_tmp], j_2[ids_tmp]] += FLATS_KERNEL3[iii + 1, jjj + 1] edges.ravel()[ids_flats] = 0 ids_edge = np.argwhere(edges.ravel()).squeeze() flat_elev_loc = elev.ravel()[ids_flats] flat_elev = flat_elev_loc.min() loc_elev = elev.ravel()[ids_edge] I_filt = loc_elev < flat_elev try: loc_elev = loc_elev[I_filt] loc_slope = mag.ravel()[ids_edge][I_filt] except: loc_elev = np.array([]) loc_slope = np.array([]) loc_dx = self.dX.mean() n = len(loc_slope) if n == 0: ids_flat_on_edge = (ids_flats % mag.shape[1] == 0) | (ids_flats % mag.shape[1] == mag.shape[1] - 1) | (ids_flats <= mag.shape[1] ) | (ids_flats >= mag.shape[1] * (mag.shape[0] - 1)) if ids_flat_on_edge.sum() == 0: warn_flats.append(ii) continue drain_ids = ids_flats[ids_flat_on_edge] loc_proportions = mag.ravel()[ids_flats[ids_flat_on_edge]] loc_proportions /= loc_proportions.sum() ids_flats = ids_flats[~ids_flat_on_edge] if len(ids_flats) == 0: continue flat_elev_loc = flat_elev_loc[~ids_flat_on_edge] else: min_edges = np.zeros(loc_slope.shape, bool) min_edges[np.argmin(loc_slope)] = True min_edges = loc_slope + loc_slope * loc_dx / 2 >= loc_slope[ min_edges] drain_ids = ids_edge[I_filt][min_edges] loc_proportions = loc_slope[min_edges] loc_proportions /= loc_proportions.sum() one_id = np.zeros(ids_flats.size, bool) one_id[np.argmin(flat_elev_loc)] = True j1.ravel()[ids_flats[~one_id]] = ids_flats[one_id] mat_data.ravel()[ids_flats[~one_id]] = 1 j2.ravel()[ids_flats[~one_id]] = -1 mat_data.ravel()[ids_flats[~one_id] + NN] = 0 j1.ravel()[ids_flats[one_id]] = drain_ids[0] mat_data.ravel()[ids_flats[one_id]] = loc_proportions[0] if len(drain_ids) > 1: j2.ravel()[ids_flats[one_id]] = drain_ids[1] mat_data.ravel()[ids_flats[one_id] + NN] = loc_proportions[1] if len(loc_proportions > 2): flat_j[ii] = drain_ids[2:] flat_prop[ii] = loc_proportions[2:] flat_i[ii] = np.ones(drain_ids[2:].size, 'int64') * ids_flats[ one_id] try: flat_j = np.concatenate([fj for fj in flat_j if fj is not None]) flat_prop = np.concatenate([fp for fp in flat_prop if fp is not None]) flat_i = np.concatenate([fi for fi in flat_i if fi is not None]) except: flat_j = np.array([], 'int64') flat_prop = np.array([], 'float64') flat_i = np.array([], 'int64') if len(warn_flats) > 0: warnings.warn('Warning %d flats had no place' % len(warn_flats) + ' to drain to --> these are pits (check pit-removealgorithm).') return j1, j2, mat_data, flat_i, flat_j, flat_prop
mk_connectivity_flats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i12, j1, j2, mat_data, flats, elev, mag):\n nn, mm = flats.shape\n NN = np.prod(flats.shape)\n assigned, n_flats = spndi.label(flats, FLATS_KERNEL3)\n flat_ids, flat_coords, flat_labelsf = _get_flat_ids(assigned)\n flat_j = [None] * n_flats\n flat_prop = [None] * n_flats\n flat_i = [None] * n_flats\n edges = np.zeros_like(flats)\n warn_flats = []\n for ii in xrange(n_flats):\n ids_flats = flat_ids[flat_coords[ii]:flat_coords[ii + 1]]\n edges[:] = 0\n j = ids_flats % mm\n i = ids_flats // mm\n for iii in [-1, 0, 1]:\n for jjj in [-1, 0, 1]:\n i_2 = i + iii\n j_2 = j + jjj\n ids_tmp = (i_2 >= 0) & (j_2 >= 0) & (i_2 < nn) & (j_2 < mm)\n edges[i_2[ids_tmp], j_2[ids_tmp]] += FLATS_KERNEL3[iii + 1,\n jjj + 1]\n edges.ravel()[ids_flats] = 0\n ids_edge = np.argwhere(edges.ravel()).squeeze()\n flat_elev_loc = elev.ravel()[ids_flats]\n flat_elev = flat_elev_loc.min()\n loc_elev = elev.ravel()[ids_edge]\n I_filt = loc_elev < flat_elev\n try:\n loc_elev = loc_elev[I_filt]\n loc_slope = mag.ravel()[ids_edge][I_filt]\n except:\n loc_elev = np.array([])\n loc_slope = np.array([])\n loc_dx = self.dX.mean()\n n = len(loc_slope)\n if n == 0:\n ids_flat_on_edge = (ids_flats % mag.shape[1] == 0) | (ids_flats %\n mag.shape[1] == mag.shape[1] - 1) | (ids_flats <= mag.shape[1]\n ) | (ids_flats >= mag.shape[1] * (mag.shape[0] - 1))\n if ids_flat_on_edge.sum() == 0:\n warn_flats.append(ii)\n continue\n drain_ids = ids_flats[ids_flat_on_edge]\n loc_proportions = mag.ravel()[ids_flats[ids_flat_on_edge]]\n loc_proportions /= loc_proportions.sum()\n ids_flats = ids_flats[~ids_flat_on_edge]\n if len(ids_flats) == 0:\n continue\n flat_elev_loc = flat_elev_loc[~ids_flat_on_edge]\n else:\n min_edges = np.zeros(loc_slope.shape, bool)\n min_edges[np.argmin(loc_slope)] = True\n min_edges = loc_slope + loc_slope * loc_dx / 2 >= loc_slope[\n min_edges]\n drain_ids = ids_edge[I_filt][min_edges]\n loc_proportions = loc_slope[min_edges]\n loc_proportions /= loc_proportions.sum()\n one_id = np.zeros(ids_flats.size, bool)\n one_id[np.argmin(flat_elev_loc)] = True\n j1.ravel()[ids_flats[~one_id]] = ids_flats[one_id]\n mat_data.ravel()[ids_flats[~one_id]] = 1\n j2.ravel()[ids_flats[~one_id]] = -1\n mat_data.ravel()[ids_flats[~one_id] + NN] = 0\n j1.ravel()[ids_flats[one_id]] = drain_ids[0]\n mat_data.ravel()[ids_flats[one_id]] = loc_proportions[0]\n if len(drain_ids) > 1:\n j2.ravel()[ids_flats[one_id]] = drain_ids[1]\n mat_data.ravel()[ids_flats[one_id] + NN] = loc_proportions[1]\n if len(loc_proportions > 2):\n flat_j[ii] = drain_ids[2:]\n flat_prop[ii] = loc_proportions[2:]\n flat_i[ii] = np.ones(drain_ids[2:].size, 'int64') * ids_flats[\n one_id]\n try:\n flat_j = np.concatenate([fj for fj in flat_j if fj is not None])\n flat_prop = np.concatenate([fp for fp in flat_prop if fp is not None])\n flat_i = np.concatenate([fi for fi in flat_i if fi is not None])\n except:\n flat_j = np.array([], 'int64')\n flat_prop = np.array([], 'float64')\n flat_i = np.array([], 'int64')\n if len(warn_flats) > 0:\n warnings.warn('Warning %d flats had no place' % len(warn_flats) +\n ' to drain to --> these are pits (check pit-removealgorithm).')\n return j1, j2, mat_data, flat_i, flat_j, flat_prop\n", "role": "user" }, { "content": "mk_connectivity_flats", "role": "assistant" } ]
def x(self): if self.uca is None: self.calc_uca() gc.collect() min_area = self.twi_min_area min_slope = self.twi_min_slope twi = self.uca.copy() if self.apply_twi_limits_on_uca: twi[twi > self.uca_saturation_limit * min_area ] = self.uca_saturation_limit * min_area gc.collect() twi = np.log(twi / (self.mag + min_slope)) if self.apply_twi_limits: twi_sat_value = np.log(self.uca_saturation_limit * min_area / min_slope ) twi[twi > twi_sat_value] = twi_sat_value self.twi = twi * 10 gc.collect() return twi
calc_twi
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.uca is None:\n self.calc_uca()\n gc.collect()\n min_area = self.twi_min_area\n min_slope = self.twi_min_slope\n twi = self.uca.copy()\n if self.apply_twi_limits_on_uca:\n twi[twi > self.uca_saturation_limit * min_area\n ] = self.uca_saturation_limit * min_area\n gc.collect()\n twi = np.log(twi / (self.mag + min_slope))\n if self.apply_twi_limits:\n twi_sat_value = np.log(self.uca_saturation_limit * min_area / min_slope\n )\n twi[twi > twi_sat_value] = twi_sat_value\n self.twi = twi * 10\n gc.collect()\n return twi\n", "role": "user" }, { "content": "calc_twi", "role": "assistant" } ]
def x(self, A, data=None, lims=[None, None]): if data is None: data = self.data B = A.tocoo() self._plot_connectivity_helper(B.col, B.row, B.data, data, lims)
plot_connectivity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, A, data=None, lims=[None, None]):\n if data is None:\n data = self.data\n B = A.tocoo()\n self._plot_connectivity_helper(B.col, B.row, B.data, data, lims)\n", "role": "user" }, { "content": "plot_connectivity", "role": "assistant" } ]
def x(self, ii, ji, mat_datai, data, lims=[1, 8]): from matplotlib.pyplot import quiver, colorbar, clim, matshow I = ~np.isnan(mat_datai) & (ji != -1) & (mat_datai >= 0) mat_data = mat_datai[I] j = ji[I] i = ii[I] x = i.astype(float) % data.shape[1] y = i.astype(float) // data.shape[1] x1 = (j.astype(float) % data.shape[1]).ravel() y1 = (j.astype(float) // data.shape[1]).ravel() nx = x1 - x ny = y1 - y matshow(data, cmap='gist_rainbow') colorbar() clim(lims) quiver(x, y, nx, ny, mat_data.ravel(), angles='xy', scale_units='xy', scale=1, cmap='bone') colorbar() clim([0, 1])
plot_connectivity_helper
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ii, ji, mat_datai, data, lims=[1, 8]):\n from matplotlib.pyplot import quiver, colorbar, clim, matshow\n I = ~np.isnan(mat_datai) & (ji != -1) & (mat_datai >= 0)\n mat_data = mat_datai[I]\n j = ji[I]\n i = ii[I]\n x = i.astype(float) % data.shape[1]\n y = i.astype(float) // data.shape[1]\n x1 = (j.astype(float) % data.shape[1]).ravel()\n y1 = (j.astype(float) // data.shape[1]).ravel()\n nx = x1 - x\n ny = y1 - y\n matshow(data, cmap='gist_rainbow')\n colorbar()\n clim(lims)\n quiver(x, y, nx, ny, mat_data.ravel(), angles='xy', scale_units='xy',\n scale=1, cmap='bone')\n colorbar()\n clim([0, 1])\n", "role": "user" }, { "content": "plot_connectivity_helper", "role": "assistant" } ]
def x(self): from matplotlib.pyplot import matshow, colorbar, clim, title matshow(self.direction / np.pi * 180) colorbar() clim(0, 360) title('Direction') mag2, direction2 = self._central_slopes_directions() matshow(direction2 / np.pi * 180.0) colorbar() clim(0, 360) title('Direction (central difference)') matshow(self.mag) colorbar() title('Magnitude') matshow(mag2) colorbar() title('Magnitude (Central difference)') filename = self.file_name os.chdir('testtiff') try: os.remove('test_ang.tif') os.remove('test_slp.tif') except: pass cmd = 'dinfflowdir -fel "%s" -ang "%s" -slp "%s"' % (os.path.split( filename)[-1], 'test_ang.tif', 'test_slp.tif') taudem._run(cmd) td_file = GdalReader(file_name='test_ang.tif') td_ang, = td_file.raster_layers td_file2 = GdalReader(file_name='test_slp.tif') td_mag, = td_file2.raster_layers os.chdir('..') matshow(td_ang.raster_data / np.pi * 180) clim(0, 360) colorbar() title('Taudem direction') matshow(td_mag.raster_data) colorbar() title('Taudem magnitude') matshow(self.data) colorbar() title('The test data (elevation)') diff = (td_ang.raster_data - self.direction) / np.pi * 180.0 diff[np.abs(diff) > 300] = np.nan matshow(diff) colorbar() clim([-1, 1]) title('Taudem direction - calculated Direction') mag2 = td_mag.raster_data mag2 /= np.nanmax(mag2) mag = self.mag.copy() mag /= np.nanmax(mag) matshow(mag - mag2) colorbar() title('Taudem magnitude - calculated magnitude') del td_file del td_file2 del td_ang del td_mag
plot_debug_slopes_directions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from matplotlib.pyplot import matshow, colorbar, clim, title\n matshow(self.direction / np.pi * 180)\n colorbar()\n clim(0, 360)\n title('Direction')\n mag2, direction2 = self._central_slopes_directions()\n matshow(direction2 / np.pi * 180.0)\n colorbar()\n clim(0, 360)\n title('Direction (central difference)')\n matshow(self.mag)\n colorbar()\n title('Magnitude')\n matshow(mag2)\n colorbar()\n title('Magnitude (Central difference)')\n filename = self.file_name\n os.chdir('testtiff')\n try:\n os.remove('test_ang.tif')\n os.remove('test_slp.tif')\n except:\n pass\n cmd = 'dinfflowdir -fel \"%s\" -ang \"%s\" -slp \"%s\"' % (os.path.split(\n filename)[-1], 'test_ang.tif', 'test_slp.tif')\n taudem._run(cmd)\n td_file = GdalReader(file_name='test_ang.tif')\n td_ang, = td_file.raster_layers\n td_file2 = GdalReader(file_name='test_slp.tif')\n td_mag, = td_file2.raster_layers\n os.chdir('..')\n matshow(td_ang.raster_data / np.pi * 180)\n clim(0, 360)\n colorbar()\n title('Taudem direction')\n matshow(td_mag.raster_data)\n colorbar()\n title('Taudem magnitude')\n matshow(self.data)\n colorbar()\n title('The test data (elevation)')\n diff = (td_ang.raster_data - self.direction) / np.pi * 180.0\n diff[np.abs(diff) > 300] = np.nan\n matshow(diff)\n colorbar()\n clim([-1, 1])\n title('Taudem direction - calculated Direction')\n mag2 = td_mag.raster_data\n mag2 /= np.nanmax(mag2)\n mag = self.mag.copy()\n mag /= np.nanmax(mag)\n matshow(mag - mag2)\n colorbar()\n title('Taudem magnitude - calculated magnitude')\n del td_file\n del td_file2\n del td_ang\n del td_mag\n", "role": "user" }, { "content": "plot_debug_slopes_directions", "role": "assistant" } ]
def x(ctx, dry_run=False): basedir = ctx.sphinx.destdir or 'build/docs' cleanup_dirs([basedir], dry_run=dry_run)
clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, dry_run=False):\n basedir = ctx.sphinx.destdir or 'build/docs'\n cleanup_dirs([basedir], dry_run=dry_run)\n", "role": "user" }, { "content": "clean", "role": "assistant" } ]
def x(ctx, builder='html', options=''): sourcedir = ctx.config.sphinx.sourcedir destdir = Path(ctx.config.sphinx.destdir or 'build') / builder destdir = destdir.abspath() with cd(sourcedir): destdir_relative = Path('.').relpathto(destdir) command = ('sphinx-build {opts} -b {builder} {sourcedir} {destdir}' .format(builder=builder, sourcedir='.', destdir= destdir_relative, opts=options)) ctx.run(command)
build
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, builder='html', options=''):\n sourcedir = ctx.config.sphinx.sourcedir\n destdir = Path(ctx.config.sphinx.destdir or 'build') / builder\n destdir = destdir.abspath()\n with cd(sourcedir):\n destdir_relative = Path('.').relpathto(destdir)\n command = ('sphinx-build {opts} -b {builder} {sourcedir} {destdir}'\n .format(builder=builder, sourcedir='.', destdir=\n destdir_relative, opts=options))\n ctx.run(command)\n", "role": "user" }, { "content": "build", "role": "assistant" } ]
def x(ctx): page_html = Path(ctx.config.sphinx.destdir) / 'html' / 'index.html' if not page_html.exists(): build(ctx, builder='html') assert page_html.exists() open_cmd = 'open' if sys.platform.startswith('win'): open_cmd = 'start' ctx.run('{open} {page_html}'.format(open=open_cmd, page_html=page_html))
browse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx):\n page_html = Path(ctx.config.sphinx.destdir) / 'html' / 'index.html'\n if not page_html.exists():\n build(ctx, builder='html')\n assert page_html.exists()\n open_cmd = 'open'\n if sys.platform.startswith('win'):\n open_cmd = 'start'\n ctx.run('{open} {page_html}'.format(open=open_cmd, page_html=page_html))\n", "role": "user" }, { "content": "browse", "role": "assistant" } ]
def x(ctx, dest='docs.html', format='html'): print('STEP: Generate docs in HTML format') build(ctx, builder=format) print('STEP: Save docs under %s/' % dest) source_dir = Path(ctx.config.sphinx.destdir) / format Path(dest).rmtree_p() source_dir.copytree(dest) for part in ['.buildinfo', '.doctrees']: partpath = Path(dest) / part if partpath.isdir(): partpath.rmtree_p() elif partpath.exists(): partpath.remove_p()
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ctx, dest='docs.html', format='html'):\n print('STEP: Generate docs in HTML format')\n build(ctx, builder=format)\n print('STEP: Save docs under %s/' % dest)\n source_dir = Path(ctx.config.sphinx.destdir) / format\n Path(dest).rmtree_p()\n source_dir.copytree(dest)\n for part in ['.buildinfo', '.doctrees']:\n partpath = Path(dest) / part\n if partpath.isdir():\n partpath.rmtree_p()\n elif partpath.exists():\n partpath.remove_p()\n", "role": "user" }, { "content": "save", "role": "assistant" } ]