source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(container):
region = Region(container.maxdepth)
for r in container.add_region:
logging.info('adding region from {0}'.format(r))
r2 = Region.load(r[0])
region.union(r2)
for r in container.rem_region:
logging.info('removing region from {0}'.format(r))
r2 = Region.load(r[0])
region.without(r2)
if len(container.include_circles) > 0:
for c in container.include_circles:
circles = np.radians(np.array(c))
if container.galactic:
l, b, radii = circles.reshape(3, circles.shape[0] // 3)
ras, decs = galactic2fk5(l, b)
else:
ras, decs, radii = circles.reshape(3, circles.shape[0] // 3)
region.add_circles(ras, decs, radii)
if len(container.exclude_circles) > 0:
for c in container.exclude_circles:
r2 = Region(container.maxdepth)
circles = np.radians(np.array(c))
if container.galactic:
l, b, radii = circles.reshape(3, circles.shape[0] // 3)
ras, decs = galactic2fk5(l, b)
else:
ras, decs, radii = circles.reshape(3, circles.shape[0] // 3)
r2.add_circles(ras, decs, radii)
region.without(r2)
if len(container.include_polygons) > 0:
for p in container.include_polygons:
poly = np.radians(np.array(p))
poly = poly.reshape((poly.shape[0] // 2, 2))
region.add_poly(poly)
if len(container.exclude_polygons) > 0:
for p in container.include_polygons:
poly = np.array(np.radians(p))
r2 = Region(container.maxdepth)
r2.add_poly(poly)
region.without(r2)
return region
|
combine_regions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(container):\n region = Region(container.maxdepth)\n for r in container.add_region:\n logging.info('adding region from {0}'.format(r))\n r2 = Region.load(r[0])\n region.union(r2)\n for r in container.rem_region:\n logging.info('removing region from {0}'.format(r))\n r2 = Region.load(r[0])\n region.without(r2)\n if len(container.include_circles) > 0:\n for c in container.include_circles:\n circles = np.radians(np.array(c))\n if container.galactic:\n l, b, radii = circles.reshape(3, circles.shape[0] // 3)\n ras, decs = galactic2fk5(l, b)\n else:\n ras, decs, radii = circles.reshape(3, circles.shape[0] // 3)\n region.add_circles(ras, decs, radii)\n if len(container.exclude_circles) > 0:\n for c in container.exclude_circles:\n r2 = Region(container.maxdepth)\n circles = np.radians(np.array(c))\n if container.galactic:\n l, b, radii = circles.reshape(3, circles.shape[0] // 3)\n ras, decs = galactic2fk5(l, b)\n else:\n ras, decs, radii = circles.reshape(3, circles.shape[0] // 3)\n r2.add_circles(ras, decs, radii)\n region.without(r2)\n if len(container.include_polygons) > 0:\n for p in container.include_polygons:\n poly = np.radians(np.array(p))\n poly = poly.reshape((poly.shape[0] // 2, 2))\n region.add_poly(poly)\n if len(container.exclude_polygons) > 0:\n for p in container.include_polygons:\n poly = np.array(np.radians(p))\n r2 = Region(container.maxdepth)\n r2.add_poly(poly)\n region.without(r2)\n return region\n",
"role": "user"
},
{
"content": "combine_regions",
"role": "assistant"
}
] |
def x(flist):
if len(flist) < 2:
raise Exception('Require at least two regions to perform intersection')
a = Region.load(flist[0])
for b in [Region.load(f) for f in flist[1:]]:
a.intersect(b)
return a
|
intersect_regions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(flist):\n if len(flist) < 2:\n raise Exception('Require at least two regions to perform intersection')\n a = Region.load(flist[0])\n for b in [Region.load(f) for f in flist[1:]]:\n a.intersect(b)\n return a\n",
"role": "user"
},
{
"content": "intersect_regions",
"role": "assistant"
}
] |
def x(region, filename):
region.save(filename)
logging.info('Wrote {0}'.format(filename))
return
|
save_region
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(region, filename):\n region.save(filename)\n logging.info('Wrote {0}'.format(filename))\n return\n",
"role": "user"
},
{
"content": "save_region",
"role": "assistant"
}
] |
def x(region, filename):
import healpy as hp
pixels = list(region.get_demoted())
order = region.maxdepth
m = np.arange(hp.nside2npix(2 ** order))
m[:] = 0
m[pixels] = 1
hp.write_map(filename, m, nest=True, coord='C')
return
|
save_as_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(region, filename):\n import healpy as hp\n pixels = list(region.get_demoted())\n order = region.maxdepth\n m = np.arange(hp.nside2npix(2 ** order))\n m[:] = 0\n m[pixels] = 1\n hp.write_map(filename, m, nest=True, coord='C')\n return\n",
"role": "user"
},
{
"content": "save_as_image",
"role": "assistant"
}
] |
def x(header):
if all(a in header for a in ['CDELT1', 'CDELT2']):
pixarea = abs(header['CDELT1'] * header['CDELT2'])
pixscale = header['CDELT1'], header['CDELT2']
elif all(a in header for a in ['CD1_1', 'CD1_2', 'CD2_1', 'CD2_2']):
pixarea = abs(header['CD1_1'] * header['CD2_2'] - header['CD1_2'] *
header['CD2_1'])
pixscale = header['CD1_1'], header['CD2_2']
if not (header['CD1_2'] == 0 and header['CD2_1'] == 0):
log.warning("Pixels don't appear to be square -> pixscale is wrong"
)
elif all(a in header for a in ['CD1_1', 'CD2_2']):
pixarea = abs(header['CD1_1'] * header['CD2_2'])
pixscale = header['CD1_1'], header['CD2_2']
else:
log.critical(
'cannot determine pixel area, using zero EVEN THOUGH THIS IS WRONG!'
)
pixarea = 0
pixscale = 0, 0
return pixarea, pixscale
|
get_pixinfo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(header):\n if all(a in header for a in ['CDELT1', 'CDELT2']):\n pixarea = abs(header['CDELT1'] * header['CDELT2'])\n pixscale = header['CDELT1'], header['CDELT2']\n elif all(a in header for a in ['CD1_1', 'CD1_2', 'CD2_1', 'CD2_2']):\n pixarea = abs(header['CD1_1'] * header['CD2_2'] - header['CD1_2'] *\n header['CD2_1'])\n pixscale = header['CD1_1'], header['CD2_2']\n if not (header['CD1_2'] == 0 and header['CD2_1'] == 0):\n log.warning(\"Pixels don't appear to be square -> pixscale is wrong\"\n )\n elif all(a in header for a in ['CD1_1', 'CD2_2']):\n pixarea = abs(header['CD1_1'] * header['CD2_2'])\n pixscale = header['CD1_1'], header['CD2_2']\n else:\n log.critical(\n 'cannot determine pixel area, using zero EVEN THOUGH THIS IS WRONG!'\n )\n pixarea = 0\n pixscale = 0, 0\n return pixarea, pixscale\n",
"role": "user"
},
{
"content": "get_pixinfo",
"role": "assistant"
}
] |
def x(header):
if 'BPA' not in header:
log.warning('BPA not present in fits header, using 0')
bpa = 0
else:
bpa = header['BPA']
if 'BMAJ' not in header:
log.warning('BMAJ not present in fits header.')
bmaj = None
else:
bmaj = header['BMAJ']
if 'BMIN' not in header:
log.warning('BMIN not present in fits header.')
bmin = None
else:
bmin = header['BMIN']
if None in [bmaj, bmin, bpa]:
return None
beam = Beam(bmaj, bmin, bpa)
return beam
|
get_beam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(header):\n if 'BPA' not in header:\n log.warning('BPA not present in fits header, using 0')\n bpa = 0\n else:\n bpa = header['BPA']\n if 'BMAJ' not in header:\n log.warning('BMAJ not present in fits header.')\n bmaj = None\n else:\n bmaj = header['BMAJ']\n if 'BMIN' not in header:\n log.warning('BMIN not present in fits header.')\n bmin = None\n else:\n bmin = header['BMIN']\n if None in [bmaj, bmin, bpa]:\n return None\n beam = Beam(bmaj, bmin, bpa)\n return beam\n",
"role": "user"
},
{
"content": "get_beam",
"role": "assistant"
}
] |
def x(header):
if 'BMAJ' in header and 'BMIN' in header and 'BPA' in header:
return header
aips_hist = [a for a in header['HISTORY'] if a.startswith('AIPS')]
if len(aips_hist) == 0:
return header
for a in aips_hist:
if 'BMAJ' in a:
words = a.split()
bmaj = float(words[3])
bmin = float(words[5])
bpa = float(words[7])
break
else:
return header
header['BMAJ'] = bmaj
header['BMIN'] = bmin
header['BPA'] = bpa
header['HISTORY'] = 'Beam information AIPS->fits by AegeanTools'
return header
|
fix_aips_header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(header):\n if 'BMAJ' in header and 'BMIN' in header and 'BPA' in header:\n return header\n aips_hist = [a for a in header['HISTORY'] if a.startswith('AIPS')]\n if len(aips_hist) == 0:\n return header\n for a in aips_hist:\n if 'BMAJ' in a:\n words = a.split()\n bmaj = float(words[3])\n bmin = float(words[5])\n bpa = float(words[7])\n break\n else:\n return header\n header['BMAJ'] = bmaj\n header['BMIN'] = bmin\n header['BPA'] = bpa\n header['HISTORY'] = 'Beam information AIPS->fits by AegeanTools'\n return header\n",
"role": "user"
},
{
"content": "fix_aips_header",
"role": "assistant"
}
] |
def x(self, pixels):
if not pixels.shape == self._pixels.shape:
raise AssertionError(
'Shape mismatch between pixels supplied {0} and existing image pixels {1}'
.format(pixels.shape, self._pixels.shape))
self._pixels = pixels
self._rms = None
return
|
set_pixels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pixels):\n if not pixels.shape == self._pixels.shape:\n raise AssertionError(\n 'Shape mismatch between pixels supplied {0} and existing image pixels {1}'\n .format(pixels.shape, self._pixels.shape))\n self._pixels = pixels\n self._rms = None\n return\n",
"role": "user"
},
{
"content": "set_pixels",
"role": "assistant"
}
] |
def x(self):
if self._rms is None:
data = numpy.extract(self.hdu.data > -9999999, self.hdu.data)
p25 = scipy.stats.scoreatpercentile(data, 25)
p75 = scipy.stats.scoreatpercentile(data, 75)
iqr = p75 - p25
self._rms = iqr / 1.34896
return self._rms
|
get_background_rms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self._rms is None:\n data = numpy.extract(self.hdu.data > -9999999, self.hdu.data)\n p25 = scipy.stats.scoreatpercentile(data, 25)\n p75 = scipy.stats.scoreatpercentile(data, 75)\n iqr = p75 - p25\n self._rms = iqr / 1.34896\n return self._rms\n",
"role": "user"
},
{
"content": "get_background_rms",
"role": "assistant"
}
] |
def x(self, pixel):
pixbox = numpy.array([pixel, pixel])
skybox = self.wcs.all_pix2world(pixbox, 1)
return [float(skybox[0][0]), float(skybox[0][1])]
|
pix2sky
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pixel):\n pixbox = numpy.array([pixel, pixel])\n skybox = self.wcs.all_pix2world(pixbox, 1)\n return [float(skybox[0][0]), float(skybox[0][1])]\n",
"role": "user"
},
{
"content": "pix2sky",
"role": "assistant"
}
] |
def x(self, skypos):
skybox = [skypos, skypos]
pixbox = self.wcs.all_world2pix(skybox, 1)
return [float(pixbox[0][0]), float(pixbox[0][1])]
|
sky2pix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, skypos):\n skybox = [skypos, skypos]\n pixbox = self.wcs.all_world2pix(skybox, 1)\n return [float(pixbox[0][0]), float(pixbox[0][1])]\n",
"role": "user"
},
{
"content": "sky2pix",
"role": "assistant"
}
] |
def x(filename):
catalog = catalogs.table_to_source_list(catalogs.load_table(filename))
logging.info('read {0} sources from {1}'.format(len(catalog), filename))
return catalog
|
load_sources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n catalog = catalogs.table_to_source_list(catalogs.load_table(filename))\n logging.info('read {0} sources from {1}'.format(len(catalog), filename))\n return catalog\n",
"role": "user"
},
{
"content": "load_sources",
"role": "assistant"
}
] |
def x(hdulist):
header = hdulist[0].header
history = header['HISTORY']
history_str = str(history)
if 'BMAJ' in history_str:
return True
else:
return False
|
search_beam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdulist):\n header = hdulist[0].header\n history = header['HISTORY']\n history_str = str(history)\n if 'BMAJ' in history_str:\n return True\n else:\n return False\n",
"role": "user"
},
{
"content": "search_beam",
"role": "assistant"
}
] |
def x(source):
if source.a < source.b:
source.a, source.b = source.b, source.a
source.err_a, source.err_b = source.err_b, source.err_a
source.pa += 90
return
|
fix_shape
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source):\n if source.a < source.b:\n source.a, source.b = source.b, source.a\n source.err_a, source.err_b = source.err_b, source.err_a\n source.pa += 90\n return\n",
"role": "user"
},
{
"content": "fix_shape",
"role": "assistant"
}
] |
def x(theta):
while theta <= -1 * np.pi / 2:
theta += np.pi
while theta > np.pi / 2:
theta -= np.pi
return theta
|
theta_limit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(theta):\n while theta <= -1 * np.pi / 2:\n theta += np.pi\n while theta > np.pi / 2:\n theta -= np.pi\n return theta\n",
"role": "user"
},
{
"content": "theta_limit",
"role": "assistant"
}
] |
def x(telescope):
scopes = {'MWA': -26.703319, 'ATCA': -30.3128, 'VLA': 34.079, 'LOFAR':
52.9088, 'KAT7': -30.721, 'MEERKAT': -30.721, 'PAPER': -30.7224,
'GMRT': 19.096516666667, 'OOTY': 11.383404, 'ASKAP': -26.7, 'MOST':
-35.3707, 'PARKES': -32.999944, 'WSRT': 52.914722, 'AMILA':
52.16977, 'AMISA': 52.164303, 'ATA': 40.817, 'CHIME': 49.321,
'CARMA': 37.28044, 'DRAO': 49.321, 'GBT': 38.433056, 'LWA': 34.07,
'ALMA': -23.019283, 'FAST': 25.6525}
if telescope.upper() in scopes:
return scopes[telescope.upper()]
else:
log = logging.getLogger('Aegean')
log.warn('Telescope {0} is unknown'.format(telescope))
log.warn('integrated fluxes may be incorrect')
return None
|
scope2lat
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(telescope):\n scopes = {'MWA': -26.703319, 'ATCA': -30.3128, 'VLA': 34.079, 'LOFAR': \n 52.9088, 'KAT7': -30.721, 'MEERKAT': -30.721, 'PAPER': -30.7224,\n 'GMRT': 19.096516666667, 'OOTY': 11.383404, 'ASKAP': -26.7, 'MOST':\n -35.3707, 'PARKES': -32.999944, 'WSRT': 52.914722, 'AMILA': \n 52.16977, 'AMISA': 52.164303, 'ATA': 40.817, 'CHIME': 49.321,\n 'CARMA': 37.28044, 'DRAO': 49.321, 'GBT': 38.433056, 'LWA': 34.07,\n 'ALMA': -23.019283, 'FAST': 25.6525}\n if telescope.upper() in scopes:\n return scopes[telescope.upper()]\n else:\n log = logging.getLogger('Aegean')\n log.warn('Telescope {0} is unknown'.format(telescope))\n log.warn('integrated fluxes may be incorrect')\n return None\n",
"role": "user"
},
{
"content": "scope2lat",
"role": "assistant"
}
] |
def x(cores):
cores = min(multiprocessing.cpu_count(), cores)
if six.PY3:
log = logging.getLogger('Aegean')
log.info('Multi-cores not supported in python 3+, using one core')
return 1
try:
queue = pprocess.Queue(limit=cores, reuse=1)
except:
cores = 1
else:
try:
_ = queue.manage(pprocess.MakeReusable(fix_shape))
except:
cores = 1
return cores
|
check_cores
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cores):\n cores = min(multiprocessing.cpu_count(), cores)\n if six.PY3:\n log = logging.getLogger('Aegean')\n log.info('Multi-cores not supported in python 3+, using one core')\n return 1\n try:\n queue = pprocess.Queue(limit=cores, reuse=1)\n except:\n cores = 1\n else:\n try:\n _ = queue.manage(pprocess.MakeReusable(fix_shape))\n except:\n cores = 1\n return cores\n",
"role": "user"
},
{
"content": "check_cores",
"role": "assistant"
}
] |
def x(basename):
base = os.path.splitext(basename)[0]
files = {'bkg': base + '_bkg.fits', 'rms': base + '_rms.fits', 'mask':
base + '.mim', 'cat': base + '_comp.fits', 'psf': base + '_psf.fits'}
for k in files.keys():
if not os.path.exists(files[k]):
files[k] = None
return files
|
get_aux_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(basename):\n base = os.path.splitext(basename)[0]\n files = {'bkg': base + '_bkg.fits', 'rms': base + '_rms.fits', 'mask': \n base + '.mim', 'cat': base + '_comp.fits', 'psf': base + '_psf.fits'}\n for k in files.keys():\n if not os.path.exists(files[k]):\n files[k] = None\n return files\n",
"role": "user"
},
{
"content": "get_aux_files",
"role": "assistant"
}
] |
def x(self, data, rmsimg, innerclip, outerclip=None, domask=False):
if outerclip is None:
outerclip = innerclip
snr = abs(data) / rmsimg
a = snr >= outerclip
l, n = label(a)
f = find_objects(l)
if n == 0:
self.log.debug('There are no pixels above the clipping limit')
return
self.log.debug('{1} Found {0} islands total above flood limit'.format(n,
data.shape))
for i in range(n):
xmin, xmax = f[i][0].start, f[i][0].stop
ymin, ymax = f[i][1].start, f[i][1].stop
if np.any(snr[xmin:xmax, ymin:ymax] > innerclip):
data_box = copy.copy(data[xmin:xmax, ymin:ymax])
data_box[np.where(snr[xmin:xmax, ymin:ymax] < outerclip)] = np.nan
data_box[np.where(l[xmin:xmax, ymin:ymax] != i + 1)] = np.nan
if not np.any(np.isfinite(data_box)):
continue
if domask and self.global_data.region is not None:
y, x = np.where(snr[xmin:xmax, ymin:ymax] >= outerclip)
yx = list(zip(y + ymin, x + xmin))
ra, dec = self.global_data.wcshelper.wcs.wcs_pix2world(yx, 1
).transpose()
mask = self.global_data.region.sky_within(ra, dec, degin=True)
if not np.any(mask):
continue
self.log.debug('Mask {0}'.format(mask))
yield data_box, xmin, xmax, ymin, ymax
|
gen_flood_wrap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, rmsimg, innerclip, outerclip=None, domask=False):\n if outerclip is None:\n outerclip = innerclip\n snr = abs(data) / rmsimg\n a = snr >= outerclip\n l, n = label(a)\n f = find_objects(l)\n if n == 0:\n self.log.debug('There are no pixels above the clipping limit')\n return\n self.log.debug('{1} Found {0} islands total above flood limit'.format(n,\n data.shape))\n for i in range(n):\n xmin, xmax = f[i][0].start, f[i][0].stop\n ymin, ymax = f[i][1].start, f[i][1].stop\n if np.any(snr[xmin:xmax, ymin:ymax] > innerclip):\n data_box = copy.copy(data[xmin:xmax, ymin:ymax])\n data_box[np.where(snr[xmin:xmax, ymin:ymax] < outerclip)] = np.nan\n data_box[np.where(l[xmin:xmax, ymin:ymax] != i + 1)] = np.nan\n if not np.any(np.isfinite(data_box)):\n continue\n if domask and self.global_data.region is not None:\n y, x = np.where(snr[xmin:xmax, ymin:ymax] >= outerclip)\n yx = list(zip(y + ymin, x + xmin))\n ra, dec = self.global_data.wcshelper.wcs.wcs_pix2world(yx, 1\n ).transpose()\n mask = self.global_data.region.sky_within(ra, dec, degin=True)\n if not np.any(mask):\n continue\n self.log.debug('Mask {0}'.format(mask))\n yield data_box, xmin, xmax, ymin, ymax\n",
"role": "user"
},
{
"content": "gen_flood_wrap",
"role": "assistant"
}
] |
def x(self, filename, hdu_index=0, bkgin=None, rmsin=None, beam=None, verb=
False, rms=None, bkg=None, cores=1, do_curve=True, mask=None, lat=None,
psf=None, blank=False, docov=True, cube_index=None):
if self.global_data.img is not None:
return
img = FitsImage(filename, hdu_index=hdu_index, beam=beam, cube_index=
cube_index)
beam = img.beam
debug = logging.getLogger('Aegean').isEnabledFor(logging.DEBUG)
if mask is None:
self.global_data.region = None
elif isinstance(mask, Region):
self.global_data.region = mask
elif os.path.exists(mask):
self.log.info('Loading mask from {0}'.format(mask))
self.global_data.region = Region.load(mask)
else:
self.log.error('File {0} not found for loading'.format(mask))
self.global_data.region = None
self.global_data.wcshelper = WCSHelper.from_header(img.get_hdu_header(),
beam, lat)
self.global_data.psfhelper = PSFHelper(psf, self.global_data.wcshelper)
self.global_data.beam = self.global_data.wcshelper.beam
self.global_data.img = img
self.global_data.data_pix = img.get_pixels()
self.global_data.dtype = type(self.global_data.data_pix[0][0])
self.global_data.bkgimg = np.zeros(self.global_data.data_pix.shape,
dtype=self.global_data.dtype)
self.global_data.rmsimg = np.zeros(self.global_data.data_pix.shape,
dtype=self.global_data.dtype)
self.global_data.pixarea = img.pixarea
self.global_data.dcurve = None
if do_curve:
self.log.info('Calculating curvature')
dcurve = np.zeros(self.global_data.data_pix.shape, dtype=np.int8)
peaks = scipy.ndimage.filters.maximum_filter(self.global_data.
data_pix, size=3)
troughs = scipy.ndimage.filters.minimum_filter(self.global_data.
data_pix, size=3)
pmask = np.where(self.global_data.data_pix == peaks)
tmask = np.where(self.global_data.data_pix == troughs)
dcurve[pmask] = -1
dcurve[tmask] = 1
self.global_data.dcurve = dcurve
if not (rmsin and bkgin):
if verb:
self.log.info('Calculating background and rms data')
self._make_bkg_rms(mesh_size=20, forced_rms=rms, forced_bkg=bkg,
cores=cores)
if bkgin:
if verb:
self.log.info('Loading background data from file {0}'.format(bkgin)
)
self.global_data.bkgimg = self._load_aux_image(img, bkgin)
if rmsin:
if verb:
self.log.info('Loading rms data from file {0}'.format(rmsin))
self.global_data.rmsimg = self._load_aux_image(img, rmsin)
if verb and debug:
self.log.debug('Data max is {0}'.format(img.get_pixels()[np.
isfinite(img.get_pixels())].max()))
self.log.debug('Doing background subtraction')
img.set_pixels(img.get_pixels() - self.global_data.bkgimg)
self.global_data.data_pix = img.get_pixels()
if verb and debug:
self.log.debug('Data max is {0}'.format(img.get_pixels()[np.
isfinite(img.get_pixels())].max()))
self.global_data.blank = blank
self.global_data.docov = docov
self.global_data.dobias = False
if 'lon' in self.global_data.img._header['CTYPE1'].lower():
self.log.info('Galactic coordinates detected and noted')
SimpleSource.galactic = True
return
|
load_globals
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, hdu_index=0, bkgin=None, rmsin=None, beam=None, verb=\n False, rms=None, bkg=None, cores=1, do_curve=True, mask=None, lat=None,\n psf=None, blank=False, docov=True, cube_index=None):\n if self.global_data.img is not None:\n return\n img = FitsImage(filename, hdu_index=hdu_index, beam=beam, cube_index=\n cube_index)\n beam = img.beam\n debug = logging.getLogger('Aegean').isEnabledFor(logging.DEBUG)\n if mask is None:\n self.global_data.region = None\n elif isinstance(mask, Region):\n self.global_data.region = mask\n elif os.path.exists(mask):\n self.log.info('Loading mask from {0}'.format(mask))\n self.global_data.region = Region.load(mask)\n else:\n self.log.error('File {0} not found for loading'.format(mask))\n self.global_data.region = None\n self.global_data.wcshelper = WCSHelper.from_header(img.get_hdu_header(),\n beam, lat)\n self.global_data.psfhelper = PSFHelper(psf, self.global_data.wcshelper)\n self.global_data.beam = self.global_data.wcshelper.beam\n self.global_data.img = img\n self.global_data.data_pix = img.get_pixels()\n self.global_data.dtype = type(self.global_data.data_pix[0][0])\n self.global_data.bkgimg = np.zeros(self.global_data.data_pix.shape,\n dtype=self.global_data.dtype)\n self.global_data.rmsimg = np.zeros(self.global_data.data_pix.shape,\n dtype=self.global_data.dtype)\n self.global_data.pixarea = img.pixarea\n self.global_data.dcurve = None\n if do_curve:\n self.log.info('Calculating curvature')\n dcurve = np.zeros(self.global_data.data_pix.shape, dtype=np.int8)\n peaks = scipy.ndimage.filters.maximum_filter(self.global_data.\n data_pix, size=3)\n troughs = scipy.ndimage.filters.minimum_filter(self.global_data.\n data_pix, size=3)\n pmask = np.where(self.global_data.data_pix == peaks)\n tmask = np.where(self.global_data.data_pix == troughs)\n dcurve[pmask] = -1\n dcurve[tmask] = 1\n self.global_data.dcurve = dcurve\n if not (rmsin and bkgin):\n if verb:\n self.log.info('Calculating background and rms data')\n self._make_bkg_rms(mesh_size=20, forced_rms=rms, forced_bkg=bkg,\n cores=cores)\n if bkgin:\n if verb:\n self.log.info('Loading background data from file {0}'.format(bkgin)\n )\n self.global_data.bkgimg = self._load_aux_image(img, bkgin)\n if rmsin:\n if verb:\n self.log.info('Loading rms data from file {0}'.format(rmsin))\n self.global_data.rmsimg = self._load_aux_image(img, rmsin)\n if verb and debug:\n self.log.debug('Data max is {0}'.format(img.get_pixels()[np.\n isfinite(img.get_pixels())].max()))\n self.log.debug('Doing background subtraction')\n img.set_pixels(img.get_pixels() - self.global_data.bkgimg)\n self.global_data.data_pix = img.get_pixels()\n if verb and debug:\n self.log.debug('Data max is {0}'.format(img.get_pixels()[np.\n isfinite(img.get_pixels())].max()))\n self.global_data.blank = blank\n self.global_data.docov = docov\n self.global_data.dobias = False\n if 'lon' in self.global_data.img._header['CTYPE1'].lower():\n self.log.info('Galactic coordinates detected and noted')\n SimpleSource.galactic = True\n return\n",
"role": "user"
},
{
"content": "load_globals",
"role": "assistant"
}
] |
def x(self, image_filename, hdu_index=0, bkgin=None, rmsin=None, beam=None,
rms=None, bkg=None, cores=1, outbase=None):
self.log.info('Saving background / RMS maps')
self.load_globals(image_filename, hdu_index=hdu_index, bkgin=bkgin,
rmsin=rmsin, beam=beam, verb=True, rms=rms, bkg=bkg, cores=cores,
do_curve=True)
img = self.global_data.img
bkgimg, rmsimg = self.global_data.bkgimg, self.global_data.rmsimg
curve = np.array(self.global_data.dcurve, dtype=bkgimg.dtype)
mask = np.where(np.isnan(self.global_data.data_pix))
bkgimg[mask] = np.NaN
rmsimg[mask] = np.NaN
curve[mask] = np.NaN
new_hdu = img.hdu
new_hdu.header['ORIGIN'] = 'Aegean {0}-({1})'.format(__version__, __date__)
for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4',
'CTYPE3', 'CTYPE4']:
if c in new_hdu.header:
del new_hdu.header[c]
if outbase is None:
outbase, _ = os.path.splitext(os.path.basename(image_filename))
noise_out = outbase + '_rms.fits'
background_out = outbase + '_bkg.fits'
curve_out = outbase + '_crv.fits'
snr_out = outbase + '_snr.fits'
new_hdu.data = bkgimg
new_hdu.writeto(background_out, overwrite=True)
self.log.info('Wrote {0}'.format(background_out))
new_hdu.data = rmsimg
new_hdu.writeto(noise_out, overwrite=True)
self.log.info('Wrote {0}'.format(noise_out))
new_hdu.data = curve
new_hdu.writeto(curve_out, overwrite=True)
self.log.info('Wrote {0}'.format(curve_out))
new_hdu.data = self.global_data.data_pix / rmsimg
new_hdu.writeto(snr_out, overwrite=True)
self.log.info('Wrote {0}'.format(snr_out))
return
|
save_background_files
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image_filename, hdu_index=0, bkgin=None, rmsin=None, beam=None,\n rms=None, bkg=None, cores=1, outbase=None):\n self.log.info('Saving background / RMS maps')\n self.load_globals(image_filename, hdu_index=hdu_index, bkgin=bkgin,\n rmsin=rmsin, beam=beam, verb=True, rms=rms, bkg=bkg, cores=cores,\n do_curve=True)\n img = self.global_data.img\n bkgimg, rmsimg = self.global_data.bkgimg, self.global_data.rmsimg\n curve = np.array(self.global_data.dcurve, dtype=bkgimg.dtype)\n mask = np.where(np.isnan(self.global_data.data_pix))\n bkgimg[mask] = np.NaN\n rmsimg[mask] = np.NaN\n curve[mask] = np.NaN\n new_hdu = img.hdu\n new_hdu.header['ORIGIN'] = 'Aegean {0}-({1})'.format(__version__, __date__)\n for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4',\n 'CTYPE3', 'CTYPE4']:\n if c in new_hdu.header:\n del new_hdu.header[c]\n if outbase is None:\n outbase, _ = os.path.splitext(os.path.basename(image_filename))\n noise_out = outbase + '_rms.fits'\n background_out = outbase + '_bkg.fits'\n curve_out = outbase + '_crv.fits'\n snr_out = outbase + '_snr.fits'\n new_hdu.data = bkgimg\n new_hdu.writeto(background_out, overwrite=True)\n self.log.info('Wrote {0}'.format(background_out))\n new_hdu.data = rmsimg\n new_hdu.writeto(noise_out, overwrite=True)\n self.log.info('Wrote {0}'.format(noise_out))\n new_hdu.data = curve\n new_hdu.writeto(curve_out, overwrite=True)\n self.log.info('Wrote {0}'.format(curve_out))\n new_hdu.data = self.global_data.data_pix / rmsimg\n new_hdu.writeto(snr_out, overwrite=True)\n self.log.info('Wrote {0}'.format(snr_out))\n return\n",
"role": "user"
},
{
"content": "save_background_files",
"role": "assistant"
}
] |
def x(self, outname):
hdu = self.global_data.img.hdu
hdu.data = self.global_data.img._pixels
hdu.header['ORIGIN'] = 'Aegean {0}-({1})'.format(__version__, __date__)
for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4',
'CTYPE3', 'CTYPE4']:
if c in hdu.header:
del hdu.header[c]
hdu.writeto(outname, overwrite=True)
self.log.info('Wrote {0}'.format(outname))
return
|
save_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, outname):\n hdu = self.global_data.img.hdu\n hdu.data = self.global_data.img._pixels\n hdu.header['ORIGIN'] = 'Aegean {0}-({1})'.format(__version__, __date__)\n for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4',\n 'CTYPE3', 'CTYPE4']:\n if c in hdu.header:\n del hdu.header[c]\n hdu.writeto(outname, overwrite=True)\n self.log.info('Wrote {0}'.format(outname))\n return\n",
"role": "user"
},
{
"content": "save_image",
"role": "assistant"
}
] |
def x(self, mesh_size=20, forced_rms=None, forced_bkg=None, cores=None):
if forced_rms is not None:
self.log.info('Forcing rms = {0}'.format(forced_rms))
self.global_data.rmsimg[:] = forced_rms
if forced_bkg is not None:
self.log.info('Forcing bkg = {0}'.format(forced_bkg))
self.global_data.bkgimg[:] = forced_bkg
if forced_rms is not None and forced_bkg is not None:
return
data = self.global_data.data_pix
beam = self.global_data.beam
img_x, img_y = data.shape
xcen = int(img_x / 2)
ycen = int(img_y / 2)
pixbeam = self.global_data.psfhelper.get_pixbeam_pixel(xcen, ycen)
if pixbeam is None:
self.log.error('Cannot determine the beam shape at the image center')
sys.exit(1)
width_x = mesh_size * max(abs(math.cos(np.radians(pixbeam.pa)) *
pixbeam.a), abs(math.sin(np.radians(pixbeam.pa)) * pixbeam.b))
width_x = int(width_x)
width_y = mesh_size * max(abs(math.sin(np.radians(pixbeam.pa)) *
pixbeam.a), abs(math.cos(np.radians(pixbeam.pa)) * pixbeam.b))
width_y = int(width_y)
self.log.debug('image size x,y:{0},{1}'.format(img_x, img_y))
self.log.debug('beam: {0}'.format(beam))
self.log.debug('mesh width (pix) x,y: {0},{1}'.format(width_x, width_y))
xstart = int(xcen - width_x / 2) % width_x
ystart = int(ycen - width_y / 2) % width_y
xend = img_x - int(img_x - xstart) % width_x
yend = img_y - int(img_y - ystart) % width_y
xmins = [0]
xmins.extend(list(range(xstart, xend, width_x)))
xmins.append(xend)
xmaxs = [xstart]
xmaxs.extend(list(range(xstart + width_x, xend + 1, width_x)))
xmaxs.append(img_x)
ymins = [0]
ymins.extend(list(range(ystart, yend, width_y)))
ymins.append(yend)
ymaxs = [ystart]
ymaxs.extend(list(range(ystart + width_y, yend + 1, width_y)))
ymaxs.append(img_y)
if width_x >= img_x:
xmins = [0]
xmaxs = [img_x]
if width_y >= img_y:
ymins = [0]
ymaxs = [img_y]
if cores > 1:
queue = pprocess.Queue(limit=cores, reuse=1)
estimate = queue.manage(pprocess.MakeReusable(self._estimate_bkg_rms))
for xmin, xmax in zip(xmins, xmaxs):
for ymin, ymax in zip(ymins, ymaxs):
estimate(ymin, ymax, xmin, xmax)
else:
queue = []
for xmin, xmax in zip(xmins, xmaxs):
for ymin, ymax in zip(ymins, ymaxs):
queue.append(self._estimate_bkg_rms(xmin, xmax, ymin, ymax))
for ymin, ymax, xmin, xmax, bkg, rms in queue:
if forced_rms is None:
self.global_data.rmsimg[ymin:ymax, xmin:xmax] = rms
if forced_rms is None:
self.global_data.bkgimg[ymin:ymax, xmin:xmax] = bkg
return
|
make_bkg_rms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mesh_size=20, forced_rms=None, forced_bkg=None, cores=None):\n if forced_rms is not None:\n self.log.info('Forcing rms = {0}'.format(forced_rms))\n self.global_data.rmsimg[:] = forced_rms\n if forced_bkg is not None:\n self.log.info('Forcing bkg = {0}'.format(forced_bkg))\n self.global_data.bkgimg[:] = forced_bkg\n if forced_rms is not None and forced_bkg is not None:\n return\n data = self.global_data.data_pix\n beam = self.global_data.beam\n img_x, img_y = data.shape\n xcen = int(img_x / 2)\n ycen = int(img_y / 2)\n pixbeam = self.global_data.psfhelper.get_pixbeam_pixel(xcen, ycen)\n if pixbeam is None:\n self.log.error('Cannot determine the beam shape at the image center')\n sys.exit(1)\n width_x = mesh_size * max(abs(math.cos(np.radians(pixbeam.pa)) *\n pixbeam.a), abs(math.sin(np.radians(pixbeam.pa)) * pixbeam.b))\n width_x = int(width_x)\n width_y = mesh_size * max(abs(math.sin(np.radians(pixbeam.pa)) *\n pixbeam.a), abs(math.cos(np.radians(pixbeam.pa)) * pixbeam.b))\n width_y = int(width_y)\n self.log.debug('image size x,y:{0},{1}'.format(img_x, img_y))\n self.log.debug('beam: {0}'.format(beam))\n self.log.debug('mesh width (pix) x,y: {0},{1}'.format(width_x, width_y))\n xstart = int(xcen - width_x / 2) % width_x\n ystart = int(ycen - width_y / 2) % width_y\n xend = img_x - int(img_x - xstart) % width_x\n yend = img_y - int(img_y - ystart) % width_y\n xmins = [0]\n xmins.extend(list(range(xstart, xend, width_x)))\n xmins.append(xend)\n xmaxs = [xstart]\n xmaxs.extend(list(range(xstart + width_x, xend + 1, width_x)))\n xmaxs.append(img_x)\n ymins = [0]\n ymins.extend(list(range(ystart, yend, width_y)))\n ymins.append(yend)\n ymaxs = [ystart]\n ymaxs.extend(list(range(ystart + width_y, yend + 1, width_y)))\n ymaxs.append(img_y)\n if width_x >= img_x:\n xmins = [0]\n xmaxs = [img_x]\n if width_y >= img_y:\n ymins = [0]\n ymaxs = [img_y]\n if cores > 1:\n queue = pprocess.Queue(limit=cores, reuse=1)\n estimate = queue.manage(pprocess.MakeReusable(self._estimate_bkg_rms))\n for xmin, xmax in zip(xmins, xmaxs):\n for ymin, ymax in zip(ymins, ymaxs):\n estimate(ymin, ymax, xmin, xmax)\n else:\n queue = []\n for xmin, xmax in zip(xmins, xmaxs):\n for ymin, ymax in zip(ymins, ymaxs):\n queue.append(self._estimate_bkg_rms(xmin, xmax, ymin, ymax))\n for ymin, ymax, xmin, xmax, bkg, rms in queue:\n if forced_rms is None:\n self.global_data.rmsimg[ymin:ymax, xmin:xmax] = rms\n if forced_rms is None:\n self.global_data.bkgimg[ymin:ymax, xmin:xmax] = bkg\n return\n",
"role": "user"
},
{
"content": "make_bkg_rms",
"role": "assistant"
}
] |
def x(self, xmin, xmax, ymin, ymax):
data = self.global_data.data_pix[ymin:ymax, xmin:xmax]
pixels = np.extract(np.isfinite(data), data).ravel()
if len(pixels) < 4:
bkg, rms = np.NaN, np.NaN
else:
pixels.sort()
p25 = pixels[int(pixels.size / 4)]
p50 = pixels[int(pixels.size / 2)]
p75 = pixels[int(pixels.size / 4 * 3)]
iqr = p75 - p25
bkg, rms = p50, iqr / 1.34896
return ymin, ymax, xmin, xmax, bkg, rms
|
estimate_bkg_rms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, xmin, xmax, ymin, ymax):\n data = self.global_data.data_pix[ymin:ymax, xmin:xmax]\n pixels = np.extract(np.isfinite(data), data).ravel()\n if len(pixels) < 4:\n bkg, rms = np.NaN, np.NaN\n else:\n pixels.sort()\n p25 = pixels[int(pixels.size / 4)]\n p50 = pixels[int(pixels.size / 2)]\n p75 = pixels[int(pixels.size / 4 * 3)]\n iqr = p75 - p25\n bkg, rms = p50, iqr / 1.34896\n return ymin, ymax, xmin, xmax, bkg, rms\n",
"role": "user"
},
{
"content": "estimate_bkg_rms",
"role": "assistant"
}
] |
def x(self, image, auxfile):
auximg = FitsImage(auxfile, beam=self.global_data.beam).get_pixels()
if auximg.shape != image.get_pixels().shape:
self.log.error('file {0} is not the same size as the image map'.
format(auxfile))
self.log.error('{0}= {1}, image = {2}'.format(auxfile, auximg.shape,
image.get_pixels().shape))
sys.exit(1)
return auximg
|
load_aux_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, image, auxfile):\n auximg = FitsImage(auxfile, beam=self.global_data.beam).get_pixels()\n if auximg.shape != image.get_pixels().shape:\n self.log.error('file {0} is not the same size as the image map'.\n format(auxfile))\n self.log.error('{0}= {1}, image = {2}'.format(auxfile, auximg.shape,\n image.get_pixels().shape))\n sys.exit(1)\n return auximg\n",
"role": "user"
},
{
"content": "load_aux_image",
"role": "assistant"
}
] |
def x(self, island_data):
global_data = self.global_data
dcurve = global_data.dcurve
rmsimg = global_data.rmsimg
isle_num = island_data.isle_num
idata = island_data.i
innerclip, outerclip, max_summits = island_data.scalars
xmin, xmax, ymin, ymax = island_data.offsets
midra, middec = global_data.wcshelper.pix2sky([0.5 * (xmax + xmin), 0.5 *
(ymax + ymin)])
beam = global_data.psfhelper.get_psf_pix(midra, middec)
del middec, midra
icurve = dcurve[xmin:xmax, ymin:ymax]
rms = rmsimg[xmin:xmax, ymin:ymax]
is_flag = 0
pixbeam = global_data.psfhelper.get_pixbeam_pixel((xmin + xmax) / 2.0,
(ymin + ymax) / 2.0)
if pixbeam is None:
return []
self.log.debug('=====')
self.log.debug('Island ({0})'.format(isle_num))
params = self.estimate_lmfit_parinfo(idata, rms, icurve, beam,
innerclip, outerclip, offsets=[xmin, ymin], max_summits=max_summits)
if params is None or params['components'].value < 1:
return []
self.log.debug('Rms is {0}'.format(np.shape(rms)))
self.log.debug('Isle is {0}'.format(np.shape(idata)))
self.log.debug(' of which {0} are masked'.format(sum(np.isnan(idata).
ravel() * 1)))
mx, my = np.where(np.isfinite(idata))
non_blank_pix = len(mx)
free_vars = len([(1) for a in params.keys() if params[a].vary])
if non_blank_pix < free_vars or free_vars == 0:
self.log.debug(
"Island {0} doesn't have enough pixels to fit the given model".
format(isle_num))
self.log.debug('non_blank_pix {0}, free_vars {1}'.format(
non_blank_pix, free_vars))
result = DummyLM()
model = params
is_flag |= flags.NOTFIT
else:
fac = 1 / np.sqrt(2)
if self.global_data.docov:
C = Cmatrix(mx, my, pixbeam.a * FWHM2CC * fac, pixbeam.b *
FWHM2CC * fac, pixbeam.pa)
B = Bmatrix(C)
else:
C = B = None
self.log.debug('C({0},{1},{2},{3},{4})'.format(len(mx), len(my),
pixbeam.a * FWHM2CC, pixbeam.b * FWHM2CC, pixbeam.pa))
errs = np.nanmax(rms)
self.log.debug('Initial params')
self.log.debug(params)
result, _ = do_lmfit(idata, params, B=B)
if not result.errorbars:
is_flag |= flags.FITERR
model = covar_errors(result.params, idata, errs=errs, B=B, C=C)
if self.global_data.dobias and self.global_data.docov:
x, y = np.indices(idata.shape)
acf = elliptical_gaussian(x, y, 1, 0, 0, pixbeam.a * FWHM2CC *
fac, pixbeam.b * FWHM2CC * fac, pixbeam.pa)
bias_correct(model, idata, acf=acf * errs ** 2)
if not result.success:
is_flag |= flags.FITERR
self.log.debug('Final params')
self.log.debug(model)
sources = self.result_to_components(result, model, island_data, is_flag)
return sources
|
fit_island
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, island_data):\n global_data = self.global_data\n dcurve = global_data.dcurve\n rmsimg = global_data.rmsimg\n isle_num = island_data.isle_num\n idata = island_data.i\n innerclip, outerclip, max_summits = island_data.scalars\n xmin, xmax, ymin, ymax = island_data.offsets\n midra, middec = global_data.wcshelper.pix2sky([0.5 * (xmax + xmin), 0.5 *\n (ymax + ymin)])\n beam = global_data.psfhelper.get_psf_pix(midra, middec)\n del middec, midra\n icurve = dcurve[xmin:xmax, ymin:ymax]\n rms = rmsimg[xmin:xmax, ymin:ymax]\n is_flag = 0\n pixbeam = global_data.psfhelper.get_pixbeam_pixel((xmin + xmax) / 2.0, \n (ymin + ymax) / 2.0)\n if pixbeam is None:\n return []\n self.log.debug('=====')\n self.log.debug('Island ({0})'.format(isle_num))\n params = self.estimate_lmfit_parinfo(idata, rms, icurve, beam,\n innerclip, outerclip, offsets=[xmin, ymin], max_summits=max_summits)\n if params is None or params['components'].value < 1:\n return []\n self.log.debug('Rms is {0}'.format(np.shape(rms)))\n self.log.debug('Isle is {0}'.format(np.shape(idata)))\n self.log.debug(' of which {0} are masked'.format(sum(np.isnan(idata).\n ravel() * 1)))\n mx, my = np.where(np.isfinite(idata))\n non_blank_pix = len(mx)\n free_vars = len([(1) for a in params.keys() if params[a].vary])\n if non_blank_pix < free_vars or free_vars == 0:\n self.log.debug(\n \"Island {0} doesn't have enough pixels to fit the given model\".\n format(isle_num))\n self.log.debug('non_blank_pix {0}, free_vars {1}'.format(\n non_blank_pix, free_vars))\n result = DummyLM()\n model = params\n is_flag |= flags.NOTFIT\n else:\n fac = 1 / np.sqrt(2)\n if self.global_data.docov:\n C = Cmatrix(mx, my, pixbeam.a * FWHM2CC * fac, pixbeam.b *\n FWHM2CC * fac, pixbeam.pa)\n B = Bmatrix(C)\n else:\n C = B = None\n self.log.debug('C({0},{1},{2},{3},{4})'.format(len(mx), len(my), \n pixbeam.a * FWHM2CC, pixbeam.b * FWHM2CC, pixbeam.pa))\n errs = np.nanmax(rms)\n self.log.debug('Initial params')\n self.log.debug(params)\n result, _ = do_lmfit(idata, params, B=B)\n if not result.errorbars:\n is_flag |= flags.FITERR\n model = covar_errors(result.params, idata, errs=errs, B=B, C=C)\n if self.global_data.dobias and self.global_data.docov:\n x, y = np.indices(idata.shape)\n acf = elliptical_gaussian(x, y, 1, 0, 0, pixbeam.a * FWHM2CC *\n fac, pixbeam.b * FWHM2CC * fac, pixbeam.pa)\n bias_correct(model, idata, acf=acf * errs ** 2)\n if not result.success:\n is_flag |= flags.FITERR\n self.log.debug('Final params')\n self.log.debug(model)\n sources = self.result_to_components(result, model, island_data, is_flag)\n return sources\n",
"role": "user"
},
{
"content": "fit_island",
"role": "assistant"
}
] |
def x(self, islands):
self.log.debug('Fitting group of {0} islands'.format(len(islands)))
sources = []
for island in islands:
res = self._fit_island(island)
sources.extend(res)
return sources
|
fit_islands
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, islands):\n self.log.debug('Fitting group of {0} islands'.format(len(islands)))\n sources = []\n for island in islands:\n res = self._fit_island(island)\n sources.extend(res)\n return sources\n",
"role": "user"
},
{
"content": "fit_islands",
"role": "assistant"
}
] |
def x(self, filename, hdu_index=0, outfile=None, rms=None, bkg=None,
max_summits=None, innerclip=5, outerclip=4, cores=None, rmsin=None,
bkgin=None, beam=None, doislandflux=False, nopositive=False, nonegative
=False, mask=None, lat=None, imgpsf=None, blank=False, docov=True,
cube_index=None):
np.seterr(invalid='ignore')
if cores is not None:
if not cores >= 1:
raise AssertionError('cores must be one or more')
self.load_globals(filename, hdu_index=hdu_index, bkgin=bkgin, rmsin=
rmsin, beam=beam, rms=rms, bkg=bkg, cores=cores, verb=True, mask=
mask, lat=lat, psf=imgpsf, blank=blank, docov=docov, cube_index=
cube_index)
global_data = self.global_data
rmsimg = global_data.rmsimg
data = global_data.data_pix
self.log.info("beam = {0:5.2f}'' x {1:5.2f}'' at {2:5.2f}deg".format(
global_data.beam.a * 3600, global_data.beam.b * 3600, global_data.
beam.pa))
if outerclip > innerclip:
outerclip = innerclip
self.log.info('seedclip={0}'.format(innerclip))
self.log.info('floodclip={0}'.format(outerclip))
isle_num = 0
if cores == 1:
queue = []
else:
queue = pprocess.Queue(limit=cores, reuse=1)
fit_parallel = queue.manage(pprocess.MakeReusable(self._fit_islands))
island_group = []
group_size = 20
for i, xmin, xmax, ymin, ymax in self._gen_flood_wrap(data, rmsimg,
innerclip, outerclip, domask=True):
if np.size(i) < 1:
self.log.warn('Empty island detected, this should be imposisble.')
continue
isle_num += 1
scalars = innerclip, outerclip, max_summits
offsets = xmin, xmax, ymin, ymax
island_data = IslandFittingData(isle_num, i, scalars, offsets,
doislandflux)
if cores == 1:
res = self._fit_island(island_data)
queue.append(res)
else:
island_group.append(island_data)
if len(island_group) >= group_size:
fit_parallel(island_group)
island_group = []
if len(island_group) > 0:
fit_parallel(island_group)
if outfile:
print(header.format('{0}-({1})'.format(__version__, __date__),
filename), file=outfile)
print(OutputSource.header, file=outfile)
sources = []
for srcs in queue:
if srcs:
for src in srcs:
if (src.peak_flux > 0 and nopositive or src.peak_flux < 0 and
nonegative):
continue
sources.append(src)
if outfile:
print(str(src), file=outfile)
self.sources.extend(sources)
return sources
|
find_sources_in_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, hdu_index=0, outfile=None, rms=None, bkg=None,\n max_summits=None, innerclip=5, outerclip=4, cores=None, rmsin=None,\n bkgin=None, beam=None, doislandflux=False, nopositive=False, nonegative\n =False, mask=None, lat=None, imgpsf=None, blank=False, docov=True,\n cube_index=None):\n np.seterr(invalid='ignore')\n if cores is not None:\n if not cores >= 1:\n raise AssertionError('cores must be one or more')\n self.load_globals(filename, hdu_index=hdu_index, bkgin=bkgin, rmsin=\n rmsin, beam=beam, rms=rms, bkg=bkg, cores=cores, verb=True, mask=\n mask, lat=lat, psf=imgpsf, blank=blank, docov=docov, cube_index=\n cube_index)\n global_data = self.global_data\n rmsimg = global_data.rmsimg\n data = global_data.data_pix\n self.log.info(\"beam = {0:5.2f}'' x {1:5.2f}'' at {2:5.2f}deg\".format(\n global_data.beam.a * 3600, global_data.beam.b * 3600, global_data.\n beam.pa))\n if outerclip > innerclip:\n outerclip = innerclip\n self.log.info('seedclip={0}'.format(innerclip))\n self.log.info('floodclip={0}'.format(outerclip))\n isle_num = 0\n if cores == 1:\n queue = []\n else:\n queue = pprocess.Queue(limit=cores, reuse=1)\n fit_parallel = queue.manage(pprocess.MakeReusable(self._fit_islands))\n island_group = []\n group_size = 20\n for i, xmin, xmax, ymin, ymax in self._gen_flood_wrap(data, rmsimg,\n innerclip, outerclip, domask=True):\n if np.size(i) < 1:\n self.log.warn('Empty island detected, this should be imposisble.')\n continue\n isle_num += 1\n scalars = innerclip, outerclip, max_summits\n offsets = xmin, xmax, ymin, ymax\n island_data = IslandFittingData(isle_num, i, scalars, offsets,\n doislandflux)\n if cores == 1:\n res = self._fit_island(island_data)\n queue.append(res)\n else:\n island_group.append(island_data)\n if len(island_group) >= group_size:\n fit_parallel(island_group)\n island_group = []\n if len(island_group) > 0:\n fit_parallel(island_group)\n if outfile:\n print(header.format('{0}-({1})'.format(__version__, __date__),\n filename), file=outfile)\n print(OutputSource.header, file=outfile)\n sources = []\n for srcs in queue:\n if srcs:\n for src in srcs:\n if (src.peak_flux > 0 and nopositive or src.peak_flux < 0 and\n nonegative):\n continue\n sources.append(src)\n if outfile:\n print(str(src), file=outfile)\n self.sources.extend(sources)\n return sources\n",
"role": "user"
},
{
"content": "find_sources_in_image",
"role": "assistant"
}
] |
def x(files):
cont = True
formats = get_table_formats()
for t in files.split(','):
_, ext = os.path.splitext(t)
ext = ext[1:].lower()
if ext not in formats:
cont = False
log.warn('Format not supported for {0} ({1})'.format(t, ext))
if not cont:
log.error('Invalid table format specified.')
return cont
|
check_table_formats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(files):\n cont = True\n formats = get_table_formats()\n for t in files.split(','):\n _, ext = os.path.splitext(t)\n ext = ext[1:].lower()\n if ext not in formats:\n cont = False\n log.warn('Format not supported for {0} ({1})'.format(t, ext))\n if not cont:\n log.error('Invalid table format specified.')\n return cont\n",
"role": "user"
},
{
"content": "check_table_formats",
"role": "assistant"
}
] |
def x():
fmts = {'ann': 'Kvis annotation', 'reg': 'DS9 regions file', 'fits':
'FITS Binary Table', 'csv': 'Comma separated values', 'tab':
'tabe separated values', 'tex': 'LaTeX table format', 'html':
'HTML table', 'vot': 'VO-Table', 'xml': 'VO-Table', 'db':
'Sqlite3 database', 'sqlite': 'Sqlite3 database'}
supported = get_table_formats()
print('Extension | Description | Supported?')
for k in sorted(fmts.keys()):
print('{0:10s} {1:24s} {2}'.format(k, fmts[k], k in supported))
return
|
show_formats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n fmts = {'ann': 'Kvis annotation', 'reg': 'DS9 regions file', 'fits':\n 'FITS Binary Table', 'csv': 'Comma separated values', 'tab':\n 'tabe separated values', 'tex': 'LaTeX table format', 'html':\n 'HTML table', 'vot': 'VO-Table', 'xml': 'VO-Table', 'db':\n 'Sqlite3 database', 'sqlite': 'Sqlite3 database'}\n supported = get_table_formats()\n print('Extension | Description | Supported?')\n for k in sorted(fmts.keys()):\n print('{0:10s} {1:24s} {2}'.format(k, fmts[k], k in supported))\n return\n",
"role": "user"
},
{
"content": "show_formats",
"role": "assistant"
}
] |
def x(meta=None):
if meta is None:
meta = {}
if 'DATE' not in meta:
meta['DATE'] = strftime('%Y-%m-%d %H:%M:%S', gmtime())
if 'PROGRAM' not in meta:
meta['PROGRAM'] = 'AegeanTools.catalogs'
meta['PROGVER'] = '{0}-({1})'.format(__version__, __date__)
return meta
|
update_meta_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(meta=None):\n if meta is None:\n meta = {}\n if 'DATE' not in meta:\n meta['DATE'] = strftime('%Y-%m-%d %H:%M:%S', gmtime())\n if 'PROGRAM' not in meta:\n meta['PROGRAM'] = 'AegeanTools.catalogs'\n meta['PROGVER'] = '{0}-({1})'.format(__version__, __date__)\n return meta\n",
"role": "user"
},
{
"content": "update_meta_data",
"role": "assistant"
}
] |
def x(filename, catalog, meta=None, prefix=None):
ascii_table_formats = {'csv': 'csv', 'tab': 'tab', 'tex': 'latex',
'html': 'html'}
meta = update_meta_data(meta)
extension = os.path.splitext(filename)[1][1:].lower()
if extension in ['ann', 'reg']:
writeAnn(filename, catalog, extension)
elif extension in ['db', 'sqlite']:
writeDB(filename, catalog, meta)
elif extension in ['hdf5', 'fits', 'vo', 'vot', 'xml']:
write_catalog(filename, catalog, extension, meta, prefix=prefix)
elif extension in ascii_table_formats.keys():
write_catalog(filename, catalog, fmt=ascii_table_formats[extension],
meta=meta, prefix=prefix)
else:
log.warning('extension not recognised {0}'.format(extension))
log.warning('You get tab format')
write_catalog(filename, catalog, fmt='tab', prefix=prefix)
return
|
save_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, catalog, meta=None, prefix=None):\n ascii_table_formats = {'csv': 'csv', 'tab': 'tab', 'tex': 'latex',\n 'html': 'html'}\n meta = update_meta_data(meta)\n extension = os.path.splitext(filename)[1][1:].lower()\n if extension in ['ann', 'reg']:\n writeAnn(filename, catalog, extension)\n elif extension in ['db', 'sqlite']:\n writeDB(filename, catalog, meta)\n elif extension in ['hdf5', 'fits', 'vo', 'vot', 'xml']:\n write_catalog(filename, catalog, extension, meta, prefix=prefix)\n elif extension in ascii_table_formats.keys():\n write_catalog(filename, catalog, fmt=ascii_table_formats[extension],\n meta=meta, prefix=prefix)\n else:\n log.warning('extension not recognised {0}'.format(extension))\n log.warning('You get tab format')\n write_catalog(filename, catalog, fmt='tab', prefix=prefix)\n return\n",
"role": "user"
},
{
"content": "save_catalog",
"role": "assistant"
}
] |
def x(filename):
supported = get_table_formats()
fmt = os.path.splitext(filename)[-1][1:].lower()
if fmt in ['csv', 'tab', 'tex'] and fmt in supported:
log.info('Reading file {0}'.format(filename))
t = ascii.read(filename)
catalog = list(zip(t.columns['ra'], t.columns['dec']))
elif fmt in ['vo', 'vot', 'xml'] and fmt in supported:
log.info('Reading file {0}'.format(filename))
t = parse_single_table(filename)
catalog = list(zip(t.array['ra'].tolist(), t.array['dec'].tolist()))
else:
log.info('Assuming ascii format, reading first two columns')
lines = [a.strip().split() for a in open(filename, 'r').readlines() if
not a.startswith('#')]
try:
catalog = [(float(a[0]), float(a[1])) for a in lines]
except:
log.error('Expecting two columns of floats but failed to parse')
log.error('Catalog file {0} not loaded'.format(filename))
raise Exception('Could not determine file format')
return catalog
|
load_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n supported = get_table_formats()\n fmt = os.path.splitext(filename)[-1][1:].lower()\n if fmt in ['csv', 'tab', 'tex'] and fmt in supported:\n log.info('Reading file {0}'.format(filename))\n t = ascii.read(filename)\n catalog = list(zip(t.columns['ra'], t.columns['dec']))\n elif fmt in ['vo', 'vot', 'xml'] and fmt in supported:\n log.info('Reading file {0}'.format(filename))\n t = parse_single_table(filename)\n catalog = list(zip(t.array['ra'].tolist(), t.array['dec'].tolist()))\n else:\n log.info('Assuming ascii format, reading first two columns')\n lines = [a.strip().split() for a in open(filename, 'r').readlines() if\n not a.startswith('#')]\n try:\n catalog = [(float(a[0]), float(a[1])) for a in lines]\n except:\n log.error('Expecting two columns of floats but failed to parse')\n log.error('Catalog file {0} not loaded'.format(filename))\n raise Exception('Could not determine file format')\n return catalog\n",
"role": "user"
},
{
"content": "load_catalog",
"role": "assistant"
}
] |
def x(filename):
supported = get_table_formats()
fmt = os.path.splitext(filename)[-1][1:].lower()
if fmt in ['csv', 'tab', 'tex'] and fmt in supported:
log.info('Reading file {0}'.format(filename))
t = ascii.read(filename)
elif fmt in ['vo', 'vot', 'xml', 'fits', 'hdf5'] and fmt in supported:
log.info('Reading file {0}'.format(filename))
t = Table.read(filename)
else:
log.error('Table format not recognized or supported')
log.error('{0} [{1}]'.format(filename, fmt))
raise Exception('Table format not recognized or supported')
return t
|
load_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n supported = get_table_formats()\n fmt = os.path.splitext(filename)[-1][1:].lower()\n if fmt in ['csv', 'tab', 'tex'] and fmt in supported:\n log.info('Reading file {0}'.format(filename))\n t = ascii.read(filename)\n elif fmt in ['vo', 'vot', 'xml', 'fits', 'hdf5'] and fmt in supported:\n log.info('Reading file {0}'.format(filename))\n t = Table.read(filename)\n else:\n log.error('Table format not recognized or supported')\n log.error('{0} [{1}]'.format(filename, fmt))\n raise Exception('Table format not recognized or supported')\n return t\n",
"role": "user"
},
{
"content": "load_table",
"role": "assistant"
}
] |
def x(table, filename):
try:
if os.path.exists(filename):
os.remove(filename)
table.write(filename)
log.info('Wrote {0}'.format(filename))
except Exception as e:
if 'Format could not be identified' not in e.message:
raise e
else:
fmt = os.path.splitext(filename)[-1][1:].lower()
raise Exception('Cannot auto-determine format for {0}'.format(fmt))
return
|
write_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(table, filename):\n try:\n if os.path.exists(filename):\n os.remove(filename)\n table.write(filename)\n log.info('Wrote {0}'.format(filename))\n except Exception as e:\n if 'Format could not be identified' not in e.message:\n raise e\n else:\n fmt = os.path.splitext(filename)[-1][1:].lower()\n raise Exception('Cannot auto-determine format for {0}'.format(fmt))\n return\n",
"role": "user"
},
{
"content": "write_table",
"role": "assistant"
}
] |
def x(table, src_type=OutputSource):
source_list = []
if table is None:
return source_list
for row in table:
src = src_type()
for param in src_type.names:
if param in table.colnames:
val = row[param]
if isinstance(val, np.float32):
val = np.float64(val)
setattr(src, param, val)
source_list.append(src)
return source_list
|
table_to_source_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(table, src_type=OutputSource):\n source_list = []\n if table is None:\n return source_list\n for row in table:\n src = src_type()\n for param in src_type.names:\n if param in table.colnames:\n val = row[param]\n if isinstance(val, np.float32):\n val = np.float64(val)\n setattr(src, param, val)\n source_list.append(src)\n return source_list\n",
"role": "user"
},
{
"content": "table_to_source_list",
"role": "assistant"
}
] |
def x(filename, catalog, fmt=None, meta=None, prefix=None):
if meta is None:
meta = {}
if prefix is None:
pre = ''
else:
pre = prefix + '_'
def x(filename, catalog, fmt=None):
tab_dict = {}
name_list = []
for name in catalog[0].names:
col_name = name
if catalog[0].galactic:
if name.startswith('ra'):
col_name = 'lon' + name[2:]
elif name.endswith('ra'):
col_name = name[:-2] + 'lon'
elif name.startswith('dec'):
col_name = 'lat' + name[3:]
elif name.endswith('dec'):
col_name = name[:-3] + 'lat'
col_name = pre + col_name
tab_dict[col_name] = [getattr(c, name, None) for c in catalog]
name_list.append(col_name)
t = Table(tab_dict, meta=meta)
t = t[[n for n in name_list]]
if fmt is not None:
if fmt in ['vot', 'vo', 'xml']:
vot = from_table(t)
vot.description = repr(meta)
writetoVO(vot, filename)
elif fmt in ['hdf5']:
t.write(filename, path='data', overwrite=True)
elif fmt in ['fits']:
writeFITSTable(filename, t)
else:
ascii.write(t, filename, fmt, overwrite=True)
else:
ascii.write(t, filename, overwrite=True)
return
components, islands, simples = classify_catalog(catalog)
if len(components) > 0:
new_name = '{1}{0}{2}'.format('_comp', *os.path.splitext(filename))
writer(new_name, components, fmt)
log.info('wrote {0}'.format(new_name))
if len(islands) > 0:
new_name = '{1}{0}{2}'.format('_isle', *os.path.splitext(filename))
writer(new_name, islands, fmt)
log.info('wrote {0}'.format(new_name))
if len(simples) > 0:
new_name = '{1}{0}{2}'.format('_simp', *os.path.splitext(filename))
writer(new_name, simples, fmt)
log.info('wrote {0}'.format(new_name))
return
|
write_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, catalog, fmt=None, meta=None, prefix=None):\n if meta is None:\n meta = {}\n if prefix is None:\n pre = ''\n else:\n pre = prefix + '_'\n\n def x(filename, catalog, fmt=None):\n tab_dict = {}\n name_list = []\n for name in catalog[0].names:\n col_name = name\n if catalog[0].galactic:\n if name.startswith('ra'):\n col_name = 'lon' + name[2:]\n elif name.endswith('ra'):\n col_name = name[:-2] + 'lon'\n elif name.startswith('dec'):\n col_name = 'lat' + name[3:]\n elif name.endswith('dec'):\n col_name = name[:-3] + 'lat'\n col_name = pre + col_name\n tab_dict[col_name] = [getattr(c, name, None) for c in catalog]\n name_list.append(col_name)\n t = Table(tab_dict, meta=meta)\n t = t[[n for n in name_list]]\n if fmt is not None:\n if fmt in ['vot', 'vo', 'xml']:\n vot = from_table(t)\n vot.description = repr(meta)\n writetoVO(vot, filename)\n elif fmt in ['hdf5']:\n t.write(filename, path='data', overwrite=True)\n elif fmt in ['fits']:\n writeFITSTable(filename, t)\n else:\n ascii.write(t, filename, fmt, overwrite=True)\n else:\n ascii.write(t, filename, overwrite=True)\n return\n components, islands, simples = classify_catalog(catalog)\n if len(components) > 0:\n new_name = '{1}{0}{2}'.format('_comp', *os.path.splitext(filename))\n writer(new_name, components, fmt)\n log.info('wrote {0}'.format(new_name))\n if len(islands) > 0:\n new_name = '{1}{0}{2}'.format('_isle', *os.path.splitext(filename))\n writer(new_name, islands, fmt)\n log.info('wrote {0}'.format(new_name))\n if len(simples) > 0:\n new_name = '{1}{0}{2}'.format('_simp', *os.path.splitext(filename))\n writer(new_name, simples, fmt)\n log.info('wrote {0}'.format(new_name))\n return\n",
"role": "user"
},
{
"content": "write_catalog",
"role": "assistant"
}
] |
def x(filename, table):
def x(val):
if isinstance(val, bool):
types = 'L'
elif isinstance(val, (int, np.int64, np.int32)):
types = 'J'
elif isinstance(val, (float, np.float64, np.float32)):
types = 'E'
elif isinstance(val, six.string_types):
types = '{0}A'.format(len(val))
else:
log.warning('Column {0} is of unknown type {1}'.format(val,
type(val)))
log.warning('Using 5A')
types = '5A'
return types
cols = []
for name in table.colnames:
cols.append(fits.Column(name=name, format=FITSTableType(table[name]
[0]), array=table[name]))
cols = fits.ColDefs(cols)
tbhdu = fits.BinTableHDU.from_columns(cols)
for k in table.meta:
tbhdu.header['HISTORY'] = ':'.join((k, table.meta[k]))
tbhdu.writeto(filename, overwrite=True)
|
writeFITSTable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, table):\n\n def x(val):\n if isinstance(val, bool):\n types = 'L'\n elif isinstance(val, (int, np.int64, np.int32)):\n types = 'J'\n elif isinstance(val, (float, np.float64, np.float32)):\n types = 'E'\n elif isinstance(val, six.string_types):\n types = '{0}A'.format(len(val))\n else:\n log.warning('Column {0} is of unknown type {1}'.format(val,\n type(val)))\n log.warning('Using 5A')\n types = '5A'\n return types\n cols = []\n for name in table.colnames:\n cols.append(fits.Column(name=name, format=FITSTableType(table[name]\n [0]), array=table[name]))\n cols = fits.ColDefs(cols)\n tbhdu = fits.BinTableHDU.from_columns(cols)\n for k in table.meta:\n tbhdu.header['HISTORY'] = ':'.join((k, table.meta[k]))\n tbhdu.writeto(filename, overwrite=True)\n",
"role": "user"
},
{
"content": "writeFITSTable",
"role": "assistant"
}
] |
def x(filename, catalog, fmt='reg'):
if fmt != 'reg':
log.warning('Format {0} not yet supported'.format(fmt))
log.warning('not writing anything')
return
out = open(filename, 'w')
print('#Aegean island contours', file=out)
print('#AegeanTools.catalogs version {0}-({1})'.format(__version__,
__date__), file=out)
line_fmt = 'image;line({0},{1},{2},{3})'
text_fmt = 'fk5; text({0},{1}) # text={{{2}}}'
mas_fmt = 'image; line({1},{0},{3},{2}) #color = yellow'
x_fmt = 'image; point({1},{0}) # point=x'
for c in catalog:
contour = c.contour
if len(contour) > 1:
for p1, p2 in zip(contour[:-1], contour[1:]):
print(line_fmt.format(p1[1] + 0.5, p1[0] + 0.5, p2[1] + 0.5,
p2[0] + 0.5), file=out)
print(line_fmt.format(contour[-1][1] + 0.5, contour[-1][0] +
0.5, contour[0][1] + 0.5, contour[0][0] + 0.5), file=out)
if np.nan in [c.ra, c.dec]:
print('#', end=' ', file=out)
if len(c.max_angular_size_anchors) == 4:
print(text_fmt.format(c.ra, c.dec, c.island), file=out)
print(mas_fmt.format(*[(a + 0.5) for a in c.
max_angular_size_anchors]), file=out)
for p1, p2 in c.pix_mask:
print(x_fmt.format(p1 + 1, p2 + 1), file=out)
out.close()
return
|
writeIslandContours
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, catalog, fmt='reg'):\n if fmt != 'reg':\n log.warning('Format {0} not yet supported'.format(fmt))\n log.warning('not writing anything')\n return\n out = open(filename, 'w')\n print('#Aegean island contours', file=out)\n print('#AegeanTools.catalogs version {0}-({1})'.format(__version__,\n __date__), file=out)\n line_fmt = 'image;line({0},{1},{2},{3})'\n text_fmt = 'fk5; text({0},{1}) # text={{{2}}}'\n mas_fmt = 'image; line({1},{0},{3},{2}) #color = yellow'\n x_fmt = 'image; point({1},{0}) # point=x'\n for c in catalog:\n contour = c.contour\n if len(contour) > 1:\n for p1, p2 in zip(contour[:-1], contour[1:]):\n print(line_fmt.format(p1[1] + 0.5, p1[0] + 0.5, p2[1] + 0.5,\n p2[0] + 0.5), file=out)\n print(line_fmt.format(contour[-1][1] + 0.5, contour[-1][0] + \n 0.5, contour[0][1] + 0.5, contour[0][0] + 0.5), file=out)\n if np.nan in [c.ra, c.dec]:\n print('#', end=' ', file=out)\n if len(c.max_angular_size_anchors) == 4:\n print(text_fmt.format(c.ra, c.dec, c.island), file=out)\n print(mas_fmt.format(*[(a + 0.5) for a in c.\n max_angular_size_anchors]), file=out)\n for p1, p2 in c.pix_mask:\n print(x_fmt.format(p1 + 1, p2 + 1), file=out)\n out.close()\n return\n",
"role": "user"
},
{
"content": "writeIslandContours",
"role": "assistant"
}
] |
def x(filename, catalog, fmt):
if fmt not in ['reg', 'ann']:
log.warning('Format not supported for island boxes{0}'.format(fmt))
return
out = open(filename, 'w')
print('#Aegean Islands', file=out)
print('#Aegean version {0}-({1})'.format(__version__, __date__), file=out)
if fmt == 'reg':
print('IMAGE', file=out)
box_fmt = 'box({0},{1},{2},{3}) #{4}'
else:
print('COORD P', file=out)
box_fmt = 'box P {0} {1} {2} {3} #{4}'
for c in catalog:
ymin, ymax, xmin, xmax = c.extent
xcen = (xmin + xmax) / 2.0 + 1
xwidth = xmax - xmin + 1
ycen = (ymin + ymax) / 2.0 + 1
ywidth = ymax - ymin + 1
print(box_fmt.format(xcen, ycen, xwidth, ywidth, c.island), file=out)
out.close()
return
|
writeIslandBoxes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, catalog, fmt):\n if fmt not in ['reg', 'ann']:\n log.warning('Format not supported for island boxes{0}'.format(fmt))\n return\n out = open(filename, 'w')\n print('#Aegean Islands', file=out)\n print('#Aegean version {0}-({1})'.format(__version__, __date__), file=out)\n if fmt == 'reg':\n print('IMAGE', file=out)\n box_fmt = 'box({0},{1},{2},{3}) #{4}'\n else:\n print('COORD P', file=out)\n box_fmt = 'box P {0} {1} {2} {3} #{4}'\n for c in catalog:\n ymin, ymax, xmin, xmax = c.extent\n xcen = (xmin + xmax) / 2.0 + 1\n xwidth = xmax - xmin + 1\n ycen = (ymin + ymax) / 2.0 + 1\n ywidth = ymax - ymin + 1\n print(box_fmt.format(xcen, ycen, xwidth, ywidth, c.island), file=out)\n out.close()\n return\n",
"role": "user"
},
{
"content": "writeIslandBoxes",
"role": "assistant"
}
] |
def x(filename, catalog, fmt):
if fmt not in ['reg', 'ann']:
log.warning('Format not supported for island boxes{0}'.format(fmt))
return
components, islands, simples = classify_catalog(catalog)
if len(components) > 0:
cat = sorted(components)
suffix = 'comp'
elif len(simples) > 0:
cat = simples
suffix = 'simp'
else:
cat = []
if len(cat) > 0:
ras = [a.ra for a in cat]
decs = [a.dec for a in cat]
if not hasattr(cat[0], 'a'):
bmajs = [(30 / 3600.0) for a in cat]
bmins = bmajs
pas = [(0) for a in cat]
else:
bmajs = [(a.a / 3600.0) for a in cat]
bmins = [(a.b / 3600.0) for a in cat]
pas = [a.pa for a in cat]
names = [a.__repr__() for a in cat]
if fmt == 'ann':
new_file = re.sub('.ann$', '_{0}.ann'.format(suffix), filename)
out = open(new_file, 'w')
print('#Aegean version {0}-({1})'.format(__version__, __date__),
file=out)
print('PA SKY', file=out)
print('FONT hershey12', file=out)
print('COORD W', file=out)
formatter = (
'ELLIPSE W {0} {1} {2} {3} {4:+07.3f} #{5}\nTEXT W {0} {1} {5}'
)
else:
new_file = re.sub('.reg$', '_{0}.reg'.format(suffix), filename)
out = open(new_file, 'w')
print('#Aegean version {0}-({1})'.format(__version__, __date__),
file=out)
print('fk5', file=out)
formatter = (
'ellipse {0} {1} {2:.9f}d {3:.9f}d {4:+07.3f}d # text="{5}"')
pas = [(a - 90) for a in pas]
for ra, dec, bmaj, bmin, pa, name in zip(ras, decs, bmajs, bmins,
pas, names):
if np.nan in [ra, dec, bmaj, bmin, pa] or bmaj >= 180:
print('#', end=' ', file=out)
print(formatter.format(ra, dec, bmaj, bmin, pa, name), file=out)
out.close()
log.info('wrote {0}'.format(new_file))
if len(islands) > 0:
if fmt == 'reg':
new_file = re.sub('.reg$', '_isle.reg', filename)
elif fmt == 'ann':
log.warning('kvis islands are currently not working')
return
else:
log.warning('format {0} not supported for island annotations'.
format(fmt))
return
writeIslandContours(new_file, islands, fmt)
log.info('wrote {0}'.format(new_file))
return
|
writeAnn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, catalog, fmt):\n if fmt not in ['reg', 'ann']:\n log.warning('Format not supported for island boxes{0}'.format(fmt))\n return\n components, islands, simples = classify_catalog(catalog)\n if len(components) > 0:\n cat = sorted(components)\n suffix = 'comp'\n elif len(simples) > 0:\n cat = simples\n suffix = 'simp'\n else:\n cat = []\n if len(cat) > 0:\n ras = [a.ra for a in cat]\n decs = [a.dec for a in cat]\n if not hasattr(cat[0], 'a'):\n bmajs = [(30 / 3600.0) for a in cat]\n bmins = bmajs\n pas = [(0) for a in cat]\n else:\n bmajs = [(a.a / 3600.0) for a in cat]\n bmins = [(a.b / 3600.0) for a in cat]\n pas = [a.pa for a in cat]\n names = [a.__repr__() for a in cat]\n if fmt == 'ann':\n new_file = re.sub('.ann$', '_{0}.ann'.format(suffix), filename)\n out = open(new_file, 'w')\n print('#Aegean version {0}-({1})'.format(__version__, __date__),\n file=out)\n print('PA SKY', file=out)\n print('FONT hershey12', file=out)\n print('COORD W', file=out)\n formatter = (\n 'ELLIPSE W {0} {1} {2} {3} {4:+07.3f} #{5}\\nTEXT W {0} {1} {5}'\n )\n else:\n new_file = re.sub('.reg$', '_{0}.reg'.format(suffix), filename)\n out = open(new_file, 'w')\n print('#Aegean version {0}-({1})'.format(__version__, __date__),\n file=out)\n print('fk5', file=out)\n formatter = (\n 'ellipse {0} {1} {2:.9f}d {3:.9f}d {4:+07.3f}d # text=\"{5}\"')\n pas = [(a - 90) for a in pas]\n for ra, dec, bmaj, bmin, pa, name in zip(ras, decs, bmajs, bmins,\n pas, names):\n if np.nan in [ra, dec, bmaj, bmin, pa] or bmaj >= 180:\n print('#', end=' ', file=out)\n print(formatter.format(ra, dec, bmaj, bmin, pa, name), file=out)\n out.close()\n log.info('wrote {0}'.format(new_file))\n if len(islands) > 0:\n if fmt == 'reg':\n new_file = re.sub('.reg$', '_isle.reg', filename)\n elif fmt == 'ann':\n log.warning('kvis islands are currently not working')\n return\n else:\n log.warning('format {0} not supported for island annotations'.\n format(fmt))\n return\n writeIslandContours(new_file, islands, fmt)\n log.info('wrote {0}'.format(new_file))\n return\n",
"role": "user"
},
{
"content": "writeAnn",
"role": "assistant"
}
] |
def x(filename, catalog, meta=None):
def x(obj, names):
types = []
for n in names:
val = getattr(obj, n)
if isinstance(val, bool):
types.append('BOOL')
elif isinstance(val, (int, np.int64, np.int32)):
types.append('INT')
elif isinstance(val, (float, np.float64, np.float32)):
types.append('FLOAT')
elif isinstance(val, six.string_types):
types.append('VARCHAR')
else:
log.warning('Column {0} is of unknown type {1}'.format(n,
type(n)))
log.warning('Using VARCHAR')
types.append('VARCHAR')
return types
if os.path.exists(filename):
log.warning('overwriting {0}'.format(filename))
os.remove(filename)
conn = sqlite3.connect(filename)
db = conn.cursor()
for t, tn in zip(classify_catalog(catalog), ['components', 'islands',
'simples']):
if len(t) < 1:
continue
col_names = t[0].names
col_types = sqlTypes(t[0], col_names)
stmnt = ','.join(['{0} {1}'.format(a, b) for a, b in zip(col_names,
col_types)])
db.execute('CREATE TABLE {0} ({1})'.format(tn, stmnt))
stmnt = 'INSERT INTO {0} ({1}) VALUES ({2})'.format(tn, ','.join(
col_names), ','.join(['?' for i in col_names]))
data = list(map(nulls, list(r.as_list() for r in t)))
db.executemany(stmnt, data)
log.info('Created table {0}'.format(tn))
db.execute('CREATE TABLE meta (key VARCHAR, val VARCHAR)')
for k in meta:
db.execute('INSERT INTO meta (key, val) VALUES (?,?)', (k, meta[k]))
conn.commit()
log.info(db.execute(
"SELECT name FROM sqlite_master WHERE type='table';").fetchall())
conn.close()
log.info('Wrote file {0}'.format(filename))
return
|
writeDB
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, catalog, meta=None):\n\n def x(obj, names):\n types = []\n for n in names:\n val = getattr(obj, n)\n if isinstance(val, bool):\n types.append('BOOL')\n elif isinstance(val, (int, np.int64, np.int32)):\n types.append('INT')\n elif isinstance(val, (float, np.float64, np.float32)):\n types.append('FLOAT')\n elif isinstance(val, six.string_types):\n types.append('VARCHAR')\n else:\n log.warning('Column {0} is of unknown type {1}'.format(n,\n type(n)))\n log.warning('Using VARCHAR')\n types.append('VARCHAR')\n return types\n if os.path.exists(filename):\n log.warning('overwriting {0}'.format(filename))\n os.remove(filename)\n conn = sqlite3.connect(filename)\n db = conn.cursor()\n for t, tn in zip(classify_catalog(catalog), ['components', 'islands',\n 'simples']):\n if len(t) < 1:\n continue\n col_names = t[0].names\n col_types = sqlTypes(t[0], col_names)\n stmnt = ','.join(['{0} {1}'.format(a, b) for a, b in zip(col_names,\n col_types)])\n db.execute('CREATE TABLE {0} ({1})'.format(tn, stmnt))\n stmnt = 'INSERT INTO {0} ({1}) VALUES ({2})'.format(tn, ','.join(\n col_names), ','.join(['?' for i in col_names]))\n data = list(map(nulls, list(r.as_list() for r in t)))\n db.executemany(stmnt, data)\n log.info('Created table {0}'.format(tn))\n db.execute('CREATE TABLE meta (key VARCHAR, val VARCHAR)')\n for k in meta:\n db.execute('INSERT INTO meta (key, val) VALUES (?,?)', (k, meta[k]))\n conn.commit()\n log.info(db.execute(\n \"SELECT name FROM sqlite_master WHERE type='table';\").fetchall())\n conn.close()\n log.info('Wrote file {0}'.format(filename))\n return\n",
"role": "user"
},
{
"content": "writeDB",
"role": "assistant"
}
] |
def x(src1, src2):
if np.all(src1 == src2):
return 0
dist = gcd(src1.ra, src1.dec, src2.ra, src2.dec)
phi = bear(src1.ra, src1.dec, src2.ra, src2.dec)
r1 = src1.a * src1.b / np.hypot(src1.a * np.sin(np.radians(phi - src1.
pa)), src1.b * np.cos(np.radians(phi - src1.pa)))
r2 = src2.a * src2.b / np.hypot(src2.a * np.sin(np.radians(180 + phi -
src2.pa)), src2.b * np.cos(np.radians(180 + phi - src2.pa)))
R = dist / (np.hypot(r1, r2) / 3600)
return R
|
norm_dist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src1, src2):\n if np.all(src1 == src2):\n return 0\n dist = gcd(src1.ra, src1.dec, src2.ra, src2.dec)\n phi = bear(src1.ra, src1.dec, src2.ra, src2.dec)\n r1 = src1.a * src1.b / np.hypot(src1.a * np.sin(np.radians(phi - src1.\n pa)), src1.b * np.cos(np.radians(phi - src1.pa)))\n r2 = src2.a * src2.b / np.hypot(src2.a * np.sin(np.radians(180 + phi -\n src2.pa)), src2.b * np.cos(np.radians(180 + phi - src2.pa)))\n R = dist / (np.hypot(r1, r2) / 3600)\n return R\n",
"role": "user"
},
{
"content": "norm_dist",
"role": "assistant"
}
] |
def x(src1, src2):
if np.all(src1 == src2):
return 0
return gcd(src1.ra, src1.dec, src2.ra, src2.dec)
|
sky_dist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src1, src2):\n if np.all(src1 == src2):\n return 0\n return gcd(src1.ra, src1.dec, src2.ra, src2.dec)\n",
"role": "user"
},
{
"content": "sky_dist",
"role": "assistant"
}
] |
def x(sources, eps, far=None):
if far is None:
far = max(a.a / 3600 for a in sources)
l = len(sources)
distances = np.zeros((l, l), dtype=bool)
for i in range(l):
for j in range(i, l):
if i == j:
distances[i, j] = False
continue
src1 = sources[i]
src2 = sources[j]
if src2.dec - src1.dec > far:
break
if abs(src2.ra - src1.ra) * np.cos(np.radians(src1.dec)) > far:
continue
distances[i, j] = norm_dist(src1, src2) > eps
distances[j, i] = distances[i, j]
return distances
|
pairwise_ellpitical_binary
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sources, eps, far=None):\n if far is None:\n far = max(a.a / 3600 for a in sources)\n l = len(sources)\n distances = np.zeros((l, l), dtype=bool)\n for i in range(l):\n for j in range(i, l):\n if i == j:\n distances[i, j] = False\n continue\n src1 = sources[i]\n src2 = sources[j]\n if src2.dec - src1.dec > far:\n break\n if abs(src2.ra - src1.ra) * np.cos(np.radians(src1.dec)) > far:\n continue\n distances[i, j] = norm_dist(src1, src2) > eps\n distances[j, i] = distances[i, j]\n return distances\n",
"role": "user"
},
{
"content": "pairwise_ellpitical_binary",
"role": "assistant"
}
] |
def x(srccat, eps, far=None, dist=norm_dist):
if far is None:
far = 0.5
order = np.argsort(srccat.dec, kind='mergesort')[::-1]
groups = [[order[0]]]
for idx in order[1:]:
rec = srccat[idx]
decmin = rec.dec - far
for group in reversed(groups):
if srccat.dec[group[-1]] < decmin:
groups.append([idx])
rafar = far / np.cos(np.radians(rec.dec))
group_recs = np.take(srccat, group, mode='clip')
group_recs = group_recs[abs(rec.ra - group_recs.ra) <= rafar]
if len(group_recs) and dist(rec, group_recs).min() < eps:
group.append(idx)
break
else:
groups.append([idx])
return groups
|
regroup_vectorized
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(srccat, eps, far=None, dist=norm_dist):\n if far is None:\n far = 0.5\n order = np.argsort(srccat.dec, kind='mergesort')[::-1]\n groups = [[order[0]]]\n for idx in order[1:]:\n rec = srccat[idx]\n decmin = rec.dec - far\n for group in reversed(groups):\n if srccat.dec[group[-1]] < decmin:\n groups.append([idx])\n rafar = far / np.cos(np.radians(rec.dec))\n group_recs = np.take(srccat, group, mode='clip')\n group_recs = group_recs[abs(rec.ra - group_recs.ra) <= rafar]\n if len(group_recs) and dist(rec, group_recs).min() < eps:\n group.append(idx)\n break\n else:\n groups.append([idx])\n return groups\n",
"role": "user"
},
{
"content": "regroup_vectorized",
"role": "assistant"
}
] |
def x(catalog, eps, far=None, dist=norm_dist):
if isinstance(catalog, str):
table = load_table(catalog)
srccat = table_to_source_list(table)
else:
try:
srccat = catalog
_ = catalog[0].ra, catalog[0].dec, catalog[0].a, catalog[0
].b, catalog[0].pa, catalog[0].peak_flux
except AttributeError as e:
log.error('catalog is not understood.')
log.error(
"""catalog: Should be a list of objects with the following properties[units]:
"""
+
'ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any]'
)
raise e
log.info('Regrouping islands within catalog')
log.debug('Calculating distances')
if far is None:
far = 0.5
srccat_array = np.rec.fromrecords([(s.ra, s.dec, s.a, s.b, s.pa, s.
peak_flux) for s in srccat], names=['ra', 'dec', 'a', 'b', 'pa',
'peak_flux'])
groups = regroup_vectorized(srccat_array, eps=eps, far=far, dist=dist)
groups = [[srccat[idx] for idx in group] for group in groups]
islands = []
for isle, group in enumerate(groups):
for comp, src in enumerate(sorted(group, key=lambda x: -1 * x.
peak_flux)):
src.island = isle
src.source = comp
islands.append(group)
return islands
|
regroup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog, eps, far=None, dist=norm_dist):\n if isinstance(catalog, str):\n table = load_table(catalog)\n srccat = table_to_source_list(table)\n else:\n try:\n srccat = catalog\n _ = catalog[0].ra, catalog[0].dec, catalog[0].a, catalog[0\n ].b, catalog[0].pa, catalog[0].peak_flux\n except AttributeError as e:\n log.error('catalog is not understood.')\n log.error(\n \"\"\"catalog: Should be a list of objects with the following properties[units]:\n\"\"\"\n +\n 'ra[deg],dec[deg], a[arcsec],b[arcsec],pa[deg], peak_flux[any]'\n )\n raise e\n log.info('Regrouping islands within catalog')\n log.debug('Calculating distances')\n if far is None:\n far = 0.5\n srccat_array = np.rec.fromrecords([(s.ra, s.dec, s.a, s.b, s.pa, s.\n peak_flux) for s in srccat], names=['ra', 'dec', 'a', 'b', 'pa',\n 'peak_flux'])\n groups = regroup_vectorized(srccat_array, eps=eps, far=far, dist=dist)\n groups = [[srccat[idx] for idx in group] for group in groups]\n islands = []\n for isle, group in enumerate(groups):\n for comp, src in enumerate(sorted(group, key=lambda x: -1 * x.\n peak_flux)):\n src.island = isle\n src.source = comp\n islands.append(group)\n return islands\n",
"role": "user"
},
{
"content": "regroup",
"role": "assistant"
}
] |
def x(filename):
if isinstance(filename, fits.HDUList):
hdulist = filename
else:
hdulist = fits.open(filename, ignore_missing_end=True)
return hdulist
|
load_file_or_hdu
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n if isinstance(filename, fits.HDUList):\n hdulist = filename\n else:\n hdulist = fits.open(filename, ignore_missing_end=True)\n return hdulist\n",
"role": "user"
},
{
"content": "load_file_or_hdu",
"role": "assistant"
}
] |
def x(datafile, factor, outfile=None):
if not (factor > 0 and isinstance(factor, int)):
logging.error('factor must be a positive integer')
return None
hdulist = load_file_or_hdu(datafile)
header = hdulist[0].header
data = np.squeeze(hdulist[0].data)
cx, cy = data.shape[0], data.shape[1]
nx = cx // factor
ny = cy // factor
lcx = cx % factor
lcy = cy % factor
if lcx > 0:
nx += 1
if lcy > 0:
ny += 1
new_data = np.empty((nx + 1, ny + 1))
new_data[:nx, :ny] = data[::factor, ::factor]
new_data[-1, :ny] = data[-1, ::factor]
new_data[:nx, -1] = data[::factor, -1]
new_data[-1, -1] = data[-1, -1]
if 'CDELT1' in header:
header['CDELT1'] *= factor
elif 'CD1_1' in header:
header['CD1_1'] *= factor
else:
logging.error("Error: Can't find CDELT1 or CD1_1")
return None
if 'CDELT2' in header:
header['CDELT2'] *= factor
elif 'CD2_2' in header:
header['CD2_2'] *= factor
else:
logging.error("Error: Can't find CDELT2 or CD2_2")
return None
header['CRPIX1'] = (header['CRPIX1'] + factor - 1) / factor
header['CRPIX2'] = (header['CRPIX2'] + factor - 1) / factor
header['BN_CFAC'] = factor, 'Compression factor (grid size) used by BANE'
header['BN_NPX1'] = header['NAXIS1'], 'original NAXIS1 value'
header['BN_NPX2'] = header['NAXIS2'], 'original NAXIS2 value'
header['BN_RPX1'] = lcx, 'Residual on axis 1'
header['BN_RPX2'] = lcy, 'Residual on axis 2'
header['HISTORY'] = 'Compressed by a factor of {0}'.format(factor)
hdulist[0].data = np.array(new_data, dtype=np.float32)
hdulist[0].header = header
if outfile is not None:
hdulist.writeto(outfile, overwrite=True)
logging.info('Wrote: {0}'.format(outfile))
return hdulist
|
compress
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(datafile, factor, outfile=None):\n if not (factor > 0 and isinstance(factor, int)):\n logging.error('factor must be a positive integer')\n return None\n hdulist = load_file_or_hdu(datafile)\n header = hdulist[0].header\n data = np.squeeze(hdulist[0].data)\n cx, cy = data.shape[0], data.shape[1]\n nx = cx // factor\n ny = cy // factor\n lcx = cx % factor\n lcy = cy % factor\n if lcx > 0:\n nx += 1\n if lcy > 0:\n ny += 1\n new_data = np.empty((nx + 1, ny + 1))\n new_data[:nx, :ny] = data[::factor, ::factor]\n new_data[-1, :ny] = data[-1, ::factor]\n new_data[:nx, -1] = data[::factor, -1]\n new_data[-1, -1] = data[-1, -1]\n if 'CDELT1' in header:\n header['CDELT1'] *= factor\n elif 'CD1_1' in header:\n header['CD1_1'] *= factor\n else:\n logging.error(\"Error: Can't find CDELT1 or CD1_1\")\n return None\n if 'CDELT2' in header:\n header['CDELT2'] *= factor\n elif 'CD2_2' in header:\n header['CD2_2'] *= factor\n else:\n logging.error(\"Error: Can't find CDELT2 or CD2_2\")\n return None\n header['CRPIX1'] = (header['CRPIX1'] + factor - 1) / factor\n header['CRPIX2'] = (header['CRPIX2'] + factor - 1) / factor\n header['BN_CFAC'] = factor, 'Compression factor (grid size) used by BANE'\n header['BN_NPX1'] = header['NAXIS1'], 'original NAXIS1 value'\n header['BN_NPX2'] = header['NAXIS2'], 'original NAXIS2 value'\n header['BN_RPX1'] = lcx, 'Residual on axis 1'\n header['BN_RPX2'] = lcy, 'Residual on axis 2'\n header['HISTORY'] = 'Compressed by a factor of {0}'.format(factor)\n hdulist[0].data = np.array(new_data, dtype=np.float32)\n hdulist[0].header = header\n if outfile is not None:\n hdulist.writeto(outfile, overwrite=True)\n logging.info('Wrote: {0}'.format(outfile))\n return hdulist\n",
"role": "user"
},
{
"content": "compress",
"role": "assistant"
}
] |
def x(datafile, outfile=None):
hdulist = load_file_or_hdu(datafile)
header = hdulist[0].header
data = hdulist[0].data
if not all(a in header for a in ['BN_CFAC', 'BN_NPX1', 'BN_NPX2',
'BN_RPX1', 'BN_RPX2']):
return hdulist
factor = header['BN_CFAC']
gx, gy = np.mgrid[0:header['BN_NPX2'], 0:header['BN_NPX1']]
lcx = header['BN_RPX2']
lcy = header['BN_RPX1']
rows = (np.arange(data.shape[0]) + int(lcx / factor)) * factor
cols = (np.arange(data.shape[1]) + int(lcy / factor)) * factor
hdulist[0].data = np.array(RegularGridInterpolator((rows, cols), data)(
(gx, gy)), dtype=np.float32)
header['CRPIX1'] = (header['CRPIX1'] - 1) * factor + 1
header['CRPIX2'] = (header['CRPIX2'] - 1) * factor + 1
if 'CDELT1' in header:
header['CDELT1'] /= factor
elif 'CD1_1' in header:
header['CD1_1'] /= factor
else:
logging.error("Error: Can't find CD1_1 or CDELT1")
return None
if 'CDELT2' in header:
header['CDELT2'] /= factor
elif 'CD2_2' in header:
header['CD2_2'] /= factor
else:
logging.error("Error: Can't find CDELT2 or CD2_2")
return None
header['HISTORY'] = 'Expanded by factor {0}'.format(factor)
del header['BN_CFAC'], header['BN_NPX1'], header['BN_NPX2'], header[
'BN_RPX1'], header['BN_RPX2']
hdulist[0].header = header
if outfile is not None:
hdulist.writeto(outfile, overwrite=True)
logging.info('Wrote: {0}'.format(outfile))
return hdulist
|
expand
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(datafile, outfile=None):\n hdulist = load_file_or_hdu(datafile)\n header = hdulist[0].header\n data = hdulist[0].data\n if not all(a in header for a in ['BN_CFAC', 'BN_NPX1', 'BN_NPX2',\n 'BN_RPX1', 'BN_RPX2']):\n return hdulist\n factor = header['BN_CFAC']\n gx, gy = np.mgrid[0:header['BN_NPX2'], 0:header['BN_NPX1']]\n lcx = header['BN_RPX2']\n lcy = header['BN_RPX1']\n rows = (np.arange(data.shape[0]) + int(lcx / factor)) * factor\n cols = (np.arange(data.shape[1]) + int(lcy / factor)) * factor\n hdulist[0].data = np.array(RegularGridInterpolator((rows, cols), data)(\n (gx, gy)), dtype=np.float32)\n header['CRPIX1'] = (header['CRPIX1'] - 1) * factor + 1\n header['CRPIX2'] = (header['CRPIX2'] - 1) * factor + 1\n if 'CDELT1' in header:\n header['CDELT1'] /= factor\n elif 'CD1_1' in header:\n header['CD1_1'] /= factor\n else:\n logging.error(\"Error: Can't find CD1_1 or CDELT1\")\n return None\n if 'CDELT2' in header:\n header['CDELT2'] /= factor\n elif 'CD2_2' in header:\n header['CD2_2'] /= factor\n else:\n logging.error(\"Error: Can't find CDELT2 or CD2_2\")\n return None\n header['HISTORY'] = 'Expanded by factor {0}'.format(factor)\n del header['BN_CFAC'], header['BN_NPX1'], header['BN_NPX2'], header[\n 'BN_RPX1'], header['BN_RPX2']\n hdulist[0].header = header\n if outfile is not None:\n hdulist.writeto(outfile, overwrite=True)\n logging.info('Wrote: {0}'.format(outfile))\n return hdulist\n",
"role": "user"
},
{
"content": "expand",
"role": "assistant"
}
] |
def x(self, switch):
parsed_switch = switch.strip().lower()
if not parsed_switch in ['true', 'false']:
self.send_response(self.iopub_socket, 'stream', {'name': 'stderr',
'text': """autocommit must be true or false.
"""})
switch_bool = parsed_switch == 'true'
committed = self.switch_autocommit(switch_bool)
message = ('committed current transaction & ' if committed else '' +
'switched autocommit mode to ' + str(self._autocommit))
self.send_response(self.iopub_socket, 'stream', {'name': 'stderr',
'text': message})
|
change_autocommit_mode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, switch):\n parsed_switch = switch.strip().lower()\n if not parsed_switch in ['true', 'false']:\n self.send_response(self.iopub_socket, 'stream', {'name': 'stderr',\n 'text': \"\"\"autocommit must be true or false.\n\n\"\"\"})\n switch_bool = parsed_switch == 'true'\n committed = self.switch_autocommit(switch_bool)\n message = ('committed current transaction & ' if committed else '' +\n 'switched autocommit mode to ' + str(self._autocommit))\n self.send_response(self.iopub_socket, 'stream', {'name': 'stderr',\n 'text': message})\n",
"role": "user"
},
{
"content": "change_autocommit_mode",
"role": "assistant"
}
] |
def x(data, versioned=True):
template = """-----BEGIN PGP MESSAGE-----
%(headers)s%(body)s
=%(crc)s
-----END PGP MESSAGE-----"""
body = base64.b64encode(data)
crc = base64.b64encode(struct.pack('>L', crc24(data))[1:])
return template % {'headers': 'Version: django-pgcrypto %s\n\n' %
__version__ if versioned else '\n', 'body': body.decode('ascii'),
'crc': crc.decode('ascii')}
|
armor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, versioned=True):\n template = \"\"\"-----BEGIN PGP MESSAGE-----\n%(headers)s%(body)s\n=%(crc)s\n-----END PGP MESSAGE-----\"\"\"\n body = base64.b64encode(data)\n crc = base64.b64encode(struct.pack('>L', crc24(data))[1:])\n return template % {'headers': 'Version: django-pgcrypto %s\\n\\n' %\n __version__ if versioned else '\\n', 'body': body.decode('ascii'),\n 'crc': crc.decode('ascii')}\n",
"role": "user"
},
{
"content": "armor",
"role": "assistant"
}
] |
def x(text, verify=True):
lines = text.strip().split('\n')
data_lines = []
check_data = None
started = False
in_body = False
for line in lines:
if line.startswith('-----BEGIN'):
started = True
elif line.startswith('-----END'):
break
elif started:
if in_body:
if line.startswith('='):
check_data = line[1:5].encode('ascii')
break
else:
data_lines.append(line)
elif line.strip():
pass
else:
in_body = True
b64_str = ''.join(data_lines)
data = base64.b64decode(b64_str.encode('ascii'))
if verify and check_data:
crc = struct.unpack('>L', b'\x00' + base64.b64decode(check_data))[0]
if crc != crc24(data):
raise BadChecksumError()
return data
|
dearmor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, verify=True):\n lines = text.strip().split('\\n')\n data_lines = []\n check_data = None\n started = False\n in_body = False\n for line in lines:\n if line.startswith('-----BEGIN'):\n started = True\n elif line.startswith('-----END'):\n break\n elif started:\n if in_body:\n if line.startswith('='):\n check_data = line[1:5].encode('ascii')\n break\n else:\n data_lines.append(line)\n elif line.strip():\n pass\n else:\n in_body = True\n b64_str = ''.join(data_lines)\n data = base64.b64decode(b64_str.encode('ascii'))\n if verify and check_data:\n crc = struct.unpack('>L', b'\\x00' + base64.b64decode(check_data))[0]\n if crc != crc24(data):\n raise BadChecksumError()\n return data\n",
"role": "user"
},
{
"content": "dearmor",
"role": "assistant"
}
] |
def x(text, block_size):
end = len(text)
if end == 0:
return text
padch = ord_safe(text[end - 1])
if padch > block_size:
return text
while end > 0 and ord_safe(text[end - 1]) in (0, padch):
end -= 1
return text[:end]
|
unpad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, block_size):\n end = len(text)\n if end == 0:\n return text\n padch = ord_safe(text[end - 1])\n if padch > block_size:\n return text\n while end > 0 and ord_safe(text[end - 1]) in (0, padch):\n end -= 1\n return text[:end]\n",
"role": "user"
},
{
"content": "unpad",
"role": "assistant"
}
] |
def x(text, block_size, zero=False):
num = block_size - len(text) % block_size
ch = b'\x00' if zero else chr(num).encode('latin-1')
return text + ch * num
|
pad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, block_size, zero=False):\n num = block_size - len(text) % block_size\n ch = b'\\x00' if zero else chr(num).encode('latin-1')\n return text + ch * num\n",
"role": "user"
},
{
"content": "pad",
"role": "assistant"
}
] |
def x(key):
if len(key) in (16, 24, 32):
return key
if len(key) < 16:
return pad(key, 16, zero=True)
elif len(key) < 24:
return pad(key, 24, zero=True)
else:
return pad(key[:32], 32, zero=True)
|
aes_pad_key
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(key):\n if len(key) in (16, 24, 32):\n return key\n if len(key) < 16:\n return pad(key, 16, zero=True)\n elif len(key) < 24:\n return pad(key, 24, zero=True)\n else:\n return pad(key[:32], 32, zero=True)\n",
"role": "user"
},
{
"content": "aes_pad_key",
"role": "assistant"
}
] |
def x(self):
name, path, args, kwargs = super(BaseEncryptedField, self).deconstruct()
kwargs.update({'cipher': self.cipher_name, 'charset': self.charset,
'check_armor': self.check_armor, 'versioned': self.versioned})
return name, path, args, kwargs
|
deconstruct
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n name, path, args, kwargs = super(BaseEncryptedField, self).deconstruct()\n kwargs.update({'cipher': self.cipher_name, 'charset': self.charset,\n 'check_armor': self.check_armor, 'versioned': self.versioned})\n return name, path, args, kwargs\n",
"role": "user"
},
{
"content": "deconstruct",
"role": "assistant"
}
] |
def x(self):
return self.cipher_class.new(self.cipher_key, self.cipher_class.
MODE_CBC, b'\x00' * self.cipher_class.block_size)
|
get_cipher
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self.cipher_class.new(self.cipher_key, self.cipher_class.\n MODE_CBC, b'\\x00' * self.cipher_class.block_size)\n",
"role": "user"
},
{
"content": "get_cipher",
"role": "assistant"
}
] |
def x(where):
root_package = os.path.basename(where)
packages = [('%s.%s' % (root_package, sub_package)) for sub_package in
find_packages(where)]
packages.insert(0, root_package)
return packages
|
find_packages_by_root_package
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(where):\n root_package = os.path.basename(where)\n packages = [('%s.%s' % (root_package, sub_package)) for sub_package in\n find_packages(where)]\n packages.insert(0, root_package)\n return packages\n",
"role": "user"
},
{
"content": "find_packages_by_root_package",
"role": "assistant"
}
] |
def x(marker=None, intro=None):
if intro is None:
intro = inspect.getdoc(make_long_description)
with open('README.rst', 'r') as infile:
line = infile.readline()
while not line.strip().startswith(marker):
line = infile.readline()
contents = infile.read()
text = intro + '\n' + contents
return text
|
make_long_description
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(marker=None, intro=None):\n if intro is None:\n intro = inspect.getdoc(make_long_description)\n with open('README.rst', 'r') as infile:\n line = infile.readline()\n while not line.strip().startswith(marker):\n line = infile.readline()\n contents = infile.read()\n text = intro + '\\n' + contents\n return text\n",
"role": "user"
},
{
"content": "make_long_description",
"role": "assistant"
}
] |
def x(self, deadline=None):
if not self.subscribed:
excep = ClientError(
'you must subscribe before using pubsub_pop_message')
raise tornado.gen.Return(excep)
reply = None
try:
reply = self._reply_list.pop(0)
raise tornado.gen.Return(reply)
except IndexError:
pass
if deadline is not None:
td = timedelta(seconds=deadline)
yield self._condition.wait(timeout=td)
else:
yield self._condition.wait()
try:
reply = self._reply_list.pop(0)
except IndexError:
pass
raise tornado.gen.Return(reply)
|
pubsub_pop_message
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, deadline=None):\n if not self.subscribed:\n excep = ClientError(\n 'you must subscribe before using pubsub_pop_message')\n raise tornado.gen.Return(excep)\n reply = None\n try:\n reply = self._reply_list.pop(0)\n raise tornado.gen.Return(reply)\n except IndexError:\n pass\n if deadline is not None:\n td = timedelta(seconds=deadline)\n yield self._condition.wait(timeout=td)\n else:\n yield self._condition.wait()\n try:\n reply = self._reply_list.pop(0)\n except IndexError:\n pass\n raise tornado.gen.Return(reply)\n",
"role": "user"
},
{
"content": "pubsub_pop_message",
"role": "assistant"
}
] |
def x(assigned):
ids_labels = np.arange(len(assigned.ravel()), 'int64')
I = ids_labels[assigned.ravel().astype(bool)]
labels = assigned.ravel()[I]
sort_id = np.argsort(labels)
labels = labels[sort_id]
I = I[sort_id]
region_ids = np.where(labels[1:] - labels[:-1] > 0)[0] + 1
region_ids = np.concatenate(([0], region_ids, [len(labels)]))
return [I, region_ids, labels]
|
get_flat_ids
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(assigned):\n ids_labels = np.arange(len(assigned.ravel()), 'int64')\n I = ids_labels[assigned.ravel().astype(bool)]\n labels = assigned.ravel()[I]\n sort_id = np.argsort(labels)\n labels = labels[sort_id]\n I = I[sort_id]\n region_ids = np.where(labels[1:] - labels[:-1] > 0)[0] + 1\n region_ids = np.concatenate(([0], region_ids, [len(labels)]))\n return [I, region_ids, labels]\n",
"role": "user"
},
{
"content": "get_flat_ids",
"role": "assistant"
}
] |
def x(dX, dY, ind, e1, e2, shp, topbot=None):
if topbot == None:
if ind in [0, 3, 4, 7]:
d1 = dX[slice((e2[0] + 1) / 2, shp[0] + (e2[0] - 1) / 2)]
d2 = dY[slice((e2[0] + 1) / 2, shp[0] + (e2[0] - 1) / 2)]
if d1.size == 0:
d1 = np.array([dX[0]])
d2 = np.array([dY[0]])
else:
d2 = dX[slice((e1[0] + 1) / 2, shp[0] + (e1[0] - 1) / 2)]
d1 = dY[slice((e1[0] + 1) / 2, shp[0] + (e1[0] - 1) / 2)]
if d1.size == 0:
d2 = dX[0]
d1 = dY[0]
elif topbot == 'top':
if ind in [0, 3, 4, 7]:
d1, d2 = dX[0], dY[0]
else:
d2, d1 = dX[0], dY[0]
elif topbot == 'bot':
if ind in [0, 3, 4, 7]:
d1, d2 = dX[-1], dY[-1]
else:
d2, d1 = dX[-1], dY[-1]
theta = np.arctan2(d2, d1)
return d1.reshape(d1.size, 1), d2.reshape(d2.size, 1), theta.reshape(theta
.size, 1)
|
get_d1_d2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dX, dY, ind, e1, e2, shp, topbot=None):\n if topbot == None:\n if ind in [0, 3, 4, 7]:\n d1 = dX[slice((e2[0] + 1) / 2, shp[0] + (e2[0] - 1) / 2)]\n d2 = dY[slice((e2[0] + 1) / 2, shp[0] + (e2[0] - 1) / 2)]\n if d1.size == 0:\n d1 = np.array([dX[0]])\n d2 = np.array([dY[0]])\n else:\n d2 = dX[slice((e1[0] + 1) / 2, shp[0] + (e1[0] - 1) / 2)]\n d1 = dY[slice((e1[0] + 1) / 2, shp[0] + (e1[0] - 1) / 2)]\n if d1.size == 0:\n d2 = dX[0]\n d1 = dY[0]\n elif topbot == 'top':\n if ind in [0, 3, 4, 7]:\n d1, d2 = dX[0], dY[0]\n else:\n d2, d1 = dX[0], dY[0]\n elif topbot == 'bot':\n if ind in [0, 3, 4, 7]:\n d1, d2 = dX[-1], dY[-1]\n else:\n d2, d1 = dX[-1], dY[-1]\n theta = np.arctan2(d2, d1)\n return d1.reshape(d1.size, 1), d2.reshape(d2.size, 1), theta.reshape(theta\n .size, 1)\n",
"role": "user"
},
{
"content": "get_d1_d2",
"role": "assistant"
}
] |
def x(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2):
data0 = data[slc0]
data1 = data[slc1]
data2 = data[slc2]
s1 = (data0 - data1) / d1
s2 = (data1 - data2) / d2
s1_2 = s1 ** 2
sd = (data0 - data2) / np.sqrt(d1 ** 2 + d2 ** 2)
r = np.arctan2(s2, s1)
rad2 = s1_2 + s2 ** 2
b_s1_lte0 = s1 <= 0
b_s2_lte0 = s2 <= 0
b_s1_gt0 = s1 > 0
b_s2_gt0 = s2 > 0
I1 = b_s1_lte0 & b_s2_gt0 | (r > theta)
if I1.any():
rad2[I1] = sd[I1] ** 2
r[I1] = theta.repeat(I1.shape[1], 1)[I1]
I2 = b_s1_gt0 & b_s2_lte0 | (r < 0)
if I2.any():
rad2[I2] = s1_2[I2]
r[I2] = 0
I3 = b_s1_lte0 & (b_s2_lte0 | b_s2_gt0 & (sd <= 0))
rad2[I3] = -1
I4 = rad2 > mag[slc0]
if I4.any():
mag[slc0][I4] = rad2[I4]
direction[slc0][I4] = r[I4] * ang[1] + ang[0] * np.pi / 2
return mag, direction
|
calc_direction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, mag, direction, ang, d1, d2, theta, slc0, slc1, slc2):\n data0 = data[slc0]\n data1 = data[slc1]\n data2 = data[slc2]\n s1 = (data0 - data1) / d1\n s2 = (data1 - data2) / d2\n s1_2 = s1 ** 2\n sd = (data0 - data2) / np.sqrt(d1 ** 2 + d2 ** 2)\n r = np.arctan2(s2, s1)\n rad2 = s1_2 + s2 ** 2\n b_s1_lte0 = s1 <= 0\n b_s2_lte0 = s2 <= 0\n b_s1_gt0 = s1 > 0\n b_s2_gt0 = s2 > 0\n I1 = b_s1_lte0 & b_s2_gt0 | (r > theta)\n if I1.any():\n rad2[I1] = sd[I1] ** 2\n r[I1] = theta.repeat(I1.shape[1], 1)[I1]\n I2 = b_s1_gt0 & b_s2_lte0 | (r < 0)\n if I2.any():\n rad2[I2] = s1_2[I2]\n r[I2] = 0\n I3 = b_s1_lte0 & (b_s2_lte0 | b_s2_gt0 & (sd <= 0))\n rad2[I3] = -1\n I4 = rad2 > mag[slc0]\n if I4.any():\n mag[slc0][I4] = rad2[I4]\n direction[slc0][I4] = r[I4] * ang[1] + ang[0] * np.pi / 2\n return mag, direction\n",
"role": "user"
},
{
"content": "calc_direction",
"role": "assistant"
}
] |
def x(self, key, side):
return getattr(self, side).ravel()[self.keys[key]]
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, side):\n return getattr(self, side).ravel()[self.keys[key]]\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, i, data, field, side):
edge = self.get_i(i, side)
setattr(edge, field, data[edge.slice])
|
set_i
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i, data, field, side):\n edge = self.get_i(i, side)\n setattr(edge, field, data[edge.slice])\n",
"role": "user"
},
{
"content": "set_i",
"role": "assistant"
}
] |
def x(self, key, data, field, local=False):
for side in ['left', 'right', 'top', 'bottom']:
self.set(key, data, field, side, local)
|
set_sides
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, data, field, local=False):\n for side in ['left', 'right', 'top', 'bottom']:\n self.set(key, data, field, side, local)\n",
"role": "user"
},
{
"content": "set_sides",
"role": "assistant"
}
] |
def x(self, data, done, key):
for side in ['left', 'right', 'top', 'bottom', 'topleft', 'topright',
'bottomleft', 'bottomright']:
self.set_neighbor_data(side, data, key, 'data')
self.set_neighbor_data(side, done, key, 'done')
|
set_all_neighbors_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, done, key):\n for side in ['left', 'right', 'top', 'bottom', 'topleft', 'topright',\n 'bottomleft', 'bottomright']:\n self.set_neighbor_data(side, data, key, 'data')\n self.set_neighbor_data(side, done, key, 'done')\n",
"role": "user"
},
{
"content": "set_all_neighbors_data",
"role": "assistant"
}
] |
def x(self):
left = self.left
right = self.right
top = self.top
bottom = self.bottom
for i in xrange(self.n_chunks):
self.n_todo.ravel()[i] = np.sum([left.ravel()[i].n_todo, right.
ravel()[i].n_todo, top.ravel()[i].n_todo, bottom.ravel()[i].n_todo]
)
|
fill_n_todo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n left = self.left\n right = self.right\n top = self.top\n bottom = self.bottom\n for i in xrange(self.n_chunks):\n self.n_todo.ravel()[i] = np.sum([left.ravel()[i].n_todo, right.\n ravel()[i].n_todo, top.ravel()[i].n_todo, bottom.ravel()[i].n_todo]\n )\n",
"role": "user"
},
{
"content": "fill_n_todo",
"role": "assistant"
}
] |
def x(self):
left = self.left
right = self.right
top = self.top
bottom = self.bottom
for i in xrange(self.n_chunks):
self.n_done.ravel()[i] = np.sum([left.ravel()[i].n_done, right.
ravel()[i].n_done, top.ravel()[i].n_done, bottom.ravel()[i].n_done]
)
|
fill_n_done
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n left = self.left\n right = self.right\n top = self.top\n bottom = self.bottom\n for i in xrange(self.n_chunks):\n self.n_done.ravel()[i] = np.sum([left.ravel()[i].n_done, right.\n ravel()[i].n_done, top.ravel()[i].n_done, bottom.ravel()[i].n_done]\n )\n",
"role": "user"
},
{
"content": "fill_n_done",
"role": "assistant"
}
] |
def x(self):
left = self.left
right = self.right
top = self.top
bottom = self.bottom
for i in xrange(self.n_chunks):
self.percent_done.ravel()[i] = np.sum([left.ravel()[i].percent_done,
right.ravel()[i].percent_done, top.ravel()[i].percent_done,
bottom.ravel()[i].percent_done])
self.percent_done.ravel()[i] /= np.sum([left.ravel()[i].
percent_done > 0, right.ravel()[i].percent_done > 0, top.ravel(
)[i].percent_done > 0, bottom.ravel()[i].percent_done > 0, 1e-16])
|
fill_percent_done
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n left = self.left\n right = self.right\n top = self.top\n bottom = self.bottom\n for i in xrange(self.n_chunks):\n self.percent_done.ravel()[i] = np.sum([left.ravel()[i].percent_done,\n right.ravel()[i].percent_done, top.ravel()[i].percent_done,\n bottom.ravel()[i].percent_done])\n self.percent_done.ravel()[i] /= np.sum([left.ravel()[i].\n percent_done > 0, right.ravel()[i].percent_done > 0, top.ravel(\n )[i].percent_done > 0, bottom.ravel()[i].percent_done > 0, 1e-16])\n",
"role": "user"
},
{
"content": "fill_percent_done",
"role": "assistant"
}
] |
def x(self, array, field, add=False, maximize=False):
self.fix_shapes()
for i in xrange(self.n_chunks):
for side in ['left', 'right', 'top', 'bottom']:
edge = getattr(self, side).ravel()[i]
if add:
array[edge.slice] += getattr(edge, field)
elif maximize:
array[edge.slice] = np.maximum(array[edge.slice], getattr(
edge, field))
else:
array[edge.slice] = getattr(edge, field)
return array
|
fill_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, array, field, add=False, maximize=False):\n self.fix_shapes()\n for i in xrange(self.n_chunks):\n for side in ['left', 'right', 'top', 'bottom']:\n edge = getattr(self, side).ravel()[i]\n if add:\n array[edge.slice] += getattr(edge, field)\n elif maximize:\n array[edge.slice] = np.maximum(array[edge.slice], getattr(\n edge, field))\n else:\n array[edge.slice] = getattr(edge, field)\n return array\n",
"role": "user"
},
{
"content": "fill_array",
"role": "assistant"
}
] |
def x(self):
for i in xrange(self.n_chunks):
for side in ['left', 'right', 'top', 'bottom']:
edge = getattr(self, side).ravel()[i]
if side in ['left', 'right']:
shp = [edge.todo.size, 1]
else:
shp = [1, edge.todo.size]
edge.done = edge.done.reshape(shp)
edge.data = edge.data.reshape(shp)
edge.todo = edge.todo.reshape(shp)
|
fix_shapes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for i in xrange(self.n_chunks):\n for side in ['left', 'right', 'top', 'bottom']:\n edge = getattr(self, side).ravel()[i]\n if side in ['left', 'right']:\n shp = [edge.todo.size, 1]\n else:\n shp = [1, edge.todo.size]\n edge.done = edge.done.reshape(shp)\n edge.data = edge.data.reshape(shp)\n edge.todo = edge.todo.reshape(shp)\n",
"role": "user"
},
{
"content": "fix_shapes",
"role": "assistant"
}
] |
def x(self):
self.fill_percent_done()
i_b = np.argmax(self.percent_done.ravel())
if self.percent_done.ravel()[i_b] <= 0:
return None
I = self.percent_done.ravel() == self.percent_done.ravel()[i_b]
if I.sum() == 1:
return i_b
else:
I2 = np.argmax(self.max_elev.ravel()[I])
return I.nonzero()[0][I2]
|
find_best_candidate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.fill_percent_done()\n i_b = np.argmax(self.percent_done.ravel())\n if self.percent_done.ravel()[i_b] <= 0:\n return None\n I = self.percent_done.ravel() == self.percent_done.ravel()[i_b]\n if I.sum() == 1:\n return i_b\n else:\n I2 = np.argmax(self.max_elev.ravel()[I])\n return I.nonzero()[0][I2]\n",
"role": "user"
},
{
"content": "find_best_candidate",
"role": "assistant"
}
] |
def x(self, rootpath, raw=False, as_int=False):
self.save_array(self.uca, None, 'uca', rootpath, raw, as_int=as_int)
|
save_uca
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rootpath, raw=False, as_int=False):\n self.save_array(self.uca, None, 'uca', rootpath, raw, as_int=as_int)\n",
"role": "user"
},
{
"content": "save_uca",
"role": "assistant"
}
] |
def x(self, rootpath, raw=False, as_int=True):
self.twi = np.ma.masked_array(self.twi, mask=self.twi <= 0, fill_value=
-9999)
self.twi[self.flats] = 0
self.twi.mask[self.flats] = True
self.save_array(self.twi, None, 'twi', rootpath, raw, as_int=as_int)
|
save_twi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rootpath, raw=False, as_int=True):\n self.twi = np.ma.masked_array(self.twi, mask=self.twi <= 0, fill_value=\n -9999)\n self.twi[self.flats] = 0\n self.twi.mask[self.flats] = True\n self.save_array(self.twi, None, 'twi', rootpath, raw, as_int=as_int)\n",
"role": "user"
},
{
"content": "save_twi",
"role": "assistant"
}
] |
def x(self, rootpath, raw=False, as_int=False):
self.save_array(self.mag, None, 'mag', rootpath, raw, as_int=as_int)
|
save_slope
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rootpath, raw=False, as_int=False):\n self.save_array(self.mag, None, 'mag', rootpath, raw, as_int=as_int)\n",
"role": "user"
},
{
"content": "save_slope",
"role": "assistant"
}
] |
def x(self, rootpath, raw=False, as_int=False):
self.save_array(self.direction, None, 'ang', rootpath, raw, as_int=as_int)
|
save_direction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rootpath, raw=False, as_int=False):\n self.save_array(self.direction, None, 'ang', rootpath, raw, as_int=as_int)\n",
"role": "user"
},
{
"content": "save_direction",
"role": "assistant"
}
] |
def x(self, rootpath='.', raw=False):
self.save_twi(rootpath, raw)
self.save_uca(rootpath, raw)
self.save_slope(rootpath, raw)
self.save_direction(rootpath, raw)
|
save_outputs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rootpath='.', raw=False):\n self.save_twi(rootpath, raw)\n self.save_uca(rootpath, raw)\n self.save_slope(rootpath, raw)\n self.save_direction(rootpath, raw)\n",
"role": "user"
},
{
"content": "save_outputs",
"role": "assistant"
}
] |
def x(self, NN, chunk_size, chunk_overlap):
left_edge = np.arange(0, NN - chunk_overlap, chunk_size)
left_edge[1:] -= chunk_overlap
right_edge = np.arange(0, NN - chunk_overlap, chunk_size)
right_edge[:-1] = right_edge[1:] + chunk_overlap
right_edge[-1] = NN
right_edge = np.minimum(right_edge, NN)
return left_edge, right_edge
|
get_chunk_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, NN, chunk_size, chunk_overlap):\n left_edge = np.arange(0, NN - chunk_overlap, chunk_size)\n left_edge[1:] -= chunk_overlap\n right_edge = np.arange(0, NN - chunk_overlap, chunk_size)\n right_edge[:-1] = right_edge[1:] + chunk_overlap\n right_edge[-1] = NN\n right_edge = np.minimum(right_edge, NN)\n return left_edge, right_edge\n",
"role": "user"
},
{
"content": "get_chunk_edges",
"role": "assistant"
}
] |
def x(self, data, arr1, arr2, te, be, le, re, ovr, add=False):
if te == 0:
i1 = 0
else:
i1 = ovr
if be == data.shape[0]:
i2 = 0
i2b = None
else:
i2 = -ovr
i2b = -ovr
if le == 0:
j1 = 0
else:
j1 = ovr
if re == data.shape[1]:
j2 = 0
j2b = None
else:
j2 = -ovr
j2b = -ovr
if add:
arr1[te + i1:be + i2, le + j1:re + j2] += arr2[i1:i2b, j1:j2b]
else:
arr1[te + i1:be + i2, le + j1:re + j2] = arr2[i1:i2b, j1:j2b]
|
assign_chunk
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, arr1, arr2, te, be, le, re, ovr, add=False):\n if te == 0:\n i1 = 0\n else:\n i1 = ovr\n if be == data.shape[0]:\n i2 = 0\n i2b = None\n else:\n i2 = -ovr\n i2b = -ovr\n if le == 0:\n j1 = 0\n else:\n j1 = ovr\n if re == data.shape[1]:\n j2 = 0\n j2b = None\n else:\n j2 = -ovr\n j2b = -ovr\n if add:\n arr1[te + i1:be + i2, le + j1:re + j2] += arr2[i1:i2b, j1:j2b]\n else:\n arr1[te + i1:be + i2, le + j1:re + j2] = arr2[i1:i2b, j1:j2b]\n",
"role": "user"
},
{
"content": "assign_chunk",
"role": "assistant"
}
] |
def x(self, data, dX, dY, method='tarboton'):
if method == 'tarboton':
return self._tarboton_slopes_directions(data, dX, dY)
elif method == 'central':
return self._central_slopes_directions(data, dX, dY)
|
slopes_directions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, dX, dY, method='tarboton'):\n if method == 'tarboton':\n return self._tarboton_slopes_directions(data, dX, dY)\n elif method == 'central':\n return self._central_slopes_directions(data, dX, dY)\n",
"role": "user"
},
{
"content": "slopes_directions",
"role": "assistant"
}
] |
def x(self, data, dX, dY):
return _tarboton_slopes_directions(data, dX, dY, self.facets, self.ang_adj)
|
tarboton_slopes_directions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, dX, dY):\n return _tarboton_slopes_directions(data, dX, dY, self.facets, self.ang_adj)\n",
"role": "user"
},
{
"content": "tarboton_slopes_directions",
"role": "assistant"
}
] |
def x(self, data, dX, dY):
shp = np.array(data.shape) - 1
direction = np.full(data.shape, FLAT_ID_INT, 'float64')
mag = np.full(direction, FLAT_ID_INT, 'float64')
ind = 0
d1, d2, theta = _get_d1_d2(dX, dY, ind, [0, 1], [1, 1], shp)
s2 = (data[0:-2, 1:-1] - data[2:, 1:-1]) / d2
s1 = -(data[1:-1, 0:-2] - data[1:-1, 2:]) / d1
direction[1:-1, 1:-1] = np.arctan2(s2, s1) + np.pi
mag = np.sqrt(s1 ** 2 + s2 ** 2)
return mag, direction
|
central_slopes_directions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, dX, dY):\n shp = np.array(data.shape) - 1\n direction = np.full(data.shape, FLAT_ID_INT, 'float64')\n mag = np.full(direction, FLAT_ID_INT, 'float64')\n ind = 0\n d1, d2, theta = _get_d1_d2(dX, dY, ind, [0, 1], [1, 1], shp)\n s2 = (data[0:-2, 1:-1] - data[2:, 1:-1]) / d2\n s1 = -(data[1:-1, 0:-2] - data[1:-1, 2:]) / d1\n direction[1:-1, 1:-1] = np.arctan2(s2, s1) + np.pi\n mag = np.sqrt(s1 ** 2 + s2 ** 2)\n return mag, direction\n",
"role": "user"
},
{
"content": "central_slopes_directions",
"role": "assistant"
}
] |
def x(self, data, mag, direction):
i12 = np.arange(data.size).reshape(data.shape)
flat = mag == FLAT_ID_INT
flats, n = spndi.label(flat, structure=FLATS_KERNEL3)
objs = spndi.find_objects(flats)
f = flat.ravel()
d = data.ravel()
for i, _obj in enumerate(objs):
region = flats[_obj] == i + 1
I = i12[_obj][region]
J = get_adjacent_index(I, data.shape, data.size)
f[J] = d[J] == d[I[0]]
flat = f.reshape(data.shape)
return flat
|
find_flats_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, mag, direction):\n i12 = np.arange(data.size).reshape(data.shape)\n flat = mag == FLAT_ID_INT\n flats, n = spndi.label(flat, structure=FLATS_KERNEL3)\n objs = spndi.find_objects(flats)\n f = flat.ravel()\n d = data.ravel()\n for i, _obj in enumerate(objs):\n region = flats[_obj] == i + 1\n I = i12[_obj][region]\n J = get_adjacent_index(I, data.shape, data.size)\n f[J] = d[J] == d[I[0]]\n flat = f.reshape(data.shape)\n return flat\n",
"role": "user"
},
{
"content": "find_flats_edges",
"role": "assistant"
}
] |
def x(self, edge_init_data, edge_init_done, edge_init_todo):
data, dX, dY, direction, flats = (self.data, self.dX, self.dY, self.
direction, self.flats)
sides = ['left', 'right', 'top', 'bottom']
slices_o = [[slice(None), slice(1, 2)], [slice(None), slice(-2, -1)], [
slice(1, 2), slice(None)], [slice(-2, -1), slice(None)]]
slices_d = [[slice(None), slice(0, 1)], [slice(None), slice(-1, None)],
[slice(0, 1), slice(None)], [slice(-1, None), slice(None)]]
indices = {'left': [[3, 4], [2, 5]], 'right': [[0, 7], [1, 6]], 'top':
[[1, 2], [0, 3]], 'bottom': [[5, 6], [4, 7]]}
for side, slice_o, slice_d in zip(sides, slices_o, slices_d):
section, proportion = self._calc_uca_section_proportion(data[
slice_o], dX[slice_o[0]], dY[slice_o[0]], direction[slice_o],
flats[slice_o])
if side in ['left', 'right']:
self.uca[slice_d] = np.concatenate(([dX[slice_d[0]][0] * dY[
slice_d[0]][0]], dX[slice_d[0]] * dY[slice_d[0]])).reshape(self
.uca[slice_d].shape)
else:
self.uca[slice_d] = dX[slice_d[0]][0] * dY[slice_d[0]][0]
for e in range(2):
for i in indices[side][e]:
ed = self.facets[i][2]
ids = section == i
if e == 0:
self.uca[slice_d][ids] += self.uca[slice_o][ids
] * proportion[ids]
self.uca[slice_d][ids] += np.roll(np.roll(self.uca[slice_o] *
(1 - proportion), ed[0], 0), ed[1], 1)[ids]
if e == 1:
self.uca[slice_d][ids] += np.roll(np.roll(self.uca[
slice_o] * proportion, ed[0], 0), ed[1], 1)[ids]
if edge_init_done is not None:
ids = edge_init_done[side]
if side in ['left', 'right']:
self.uca[slice_d][ids, :] = edge_init_data[side][ids][:, None]
else:
self.uca[slice_d][:, ids] = edge_init_data[side][ids]
|
fix_edge_pixels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, edge_init_data, edge_init_done, edge_init_todo):\n data, dX, dY, direction, flats = (self.data, self.dX, self.dY, self.\n direction, self.flats)\n sides = ['left', 'right', 'top', 'bottom']\n slices_o = [[slice(None), slice(1, 2)], [slice(None), slice(-2, -1)], [\n slice(1, 2), slice(None)], [slice(-2, -1), slice(None)]]\n slices_d = [[slice(None), slice(0, 1)], [slice(None), slice(-1, None)],\n [slice(0, 1), slice(None)], [slice(-1, None), slice(None)]]\n indices = {'left': [[3, 4], [2, 5]], 'right': [[0, 7], [1, 6]], 'top':\n [[1, 2], [0, 3]], 'bottom': [[5, 6], [4, 7]]}\n for side, slice_o, slice_d in zip(sides, slices_o, slices_d):\n section, proportion = self._calc_uca_section_proportion(data[\n slice_o], dX[slice_o[0]], dY[slice_o[0]], direction[slice_o],\n flats[slice_o])\n if side in ['left', 'right']:\n self.uca[slice_d] = np.concatenate(([dX[slice_d[0]][0] * dY[\n slice_d[0]][0]], dX[slice_d[0]] * dY[slice_d[0]])).reshape(self\n .uca[slice_d].shape)\n else:\n self.uca[slice_d] = dX[slice_d[0]][0] * dY[slice_d[0]][0]\n for e in range(2):\n for i in indices[side][e]:\n ed = self.facets[i][2]\n ids = section == i\n if e == 0:\n self.uca[slice_d][ids] += self.uca[slice_o][ids\n ] * proportion[ids]\n self.uca[slice_d][ids] += np.roll(np.roll(self.uca[slice_o] *\n (1 - proportion), ed[0], 0), ed[1], 1)[ids]\n if e == 1:\n self.uca[slice_d][ids] += np.roll(np.roll(self.uca[\n slice_o] * proportion, ed[0], 0), ed[1], 1)[ids]\n if edge_init_done is not None:\n ids = edge_init_done[side]\n if side in ['left', 'right']:\n self.uca[slice_d][ids, :] = edge_init_data[side][ids][:, None]\n else:\n self.uca[slice_d][:, ids] = edge_init_data[side][ids]\n",
"role": "user"
},
{
"content": "fix_edge_pixels",
"role": "assistant"
}
] |
def x(self, A, ids, area, done, edge_todo):
A_todo = A[:, ids.ravel()]
colsum = np.array(A_todo.sum(1)).ravel()
ids_new = colsum != 0
area.ravel()[ids_new] += A_todo[ids_new, :] * area.ravel()[ids].ravel()
edge_todo.ravel()[ids_new] += A_todo[ids_new, :] * edge_todo.ravel()[ids
].ravel()
done.ravel()[ids] = True
colsum = A * ~done.ravel()
ids = colsum == 0
ids = ids & ~done.ravel()
return ids, area, done, edge_todo
|
drain_step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, A, ids, area, done, edge_todo):\n A_todo = A[:, ids.ravel()]\n colsum = np.array(A_todo.sum(1)).ravel()\n ids_new = colsum != 0\n area.ravel()[ids_new] += A_todo[ids_new, :] * area.ravel()[ids].ravel()\n edge_todo.ravel()[ids_new] += A_todo[ids_new, :] * edge_todo.ravel()[ids\n ].ravel()\n done.ravel()[ids] = True\n colsum = A * ~done.ravel()\n ids = colsum == 0\n ids = ids & ~done.ravel()\n return ids, area, done, edge_todo\n",
"role": "user"
},
{
"content": "drain_step",
"role": "assistant"
}
] |
def x(self, data, dX, dY, direction, flats):
shp = np.array(data.shape) - 1
facets = self.facets
adjust = self.ang_adj[:, 1]
d1, d2, theta = _get_d1_d2(dX, dY, 0, facets[0][1], facets[0][2], shp)
if dX.size > 1:
theta = np.row_stack((theta[0, :], theta, theta[-1, :]))
section = (direction / np.pi * 2.0 // 1).astype('int8')
quadrant = direction - np.pi / 2.0 * section
proportion = np.full_like(quadrant, np.nan)
section = section * 2 + (quadrant > theta.repeat(data.shape[1], 1)) * (
section % 2 == 0) + (quadrant > np.pi / 2 - theta.repeat(data.shape
[1], 1)) * (section % 2 == 1)
I1 = (section == 0) | (section == 1) | (section == 4) | (section == 5)
I = I1 & (quadrant <= theta.repeat(data.shape[1], 1))
proportion[I] = quadrant[I] / theta.repeat(data.shape[1], 1)[I]
I = I1 & (quadrant > theta.repeat(data.shape[1], 1))
proportion[I] = (quadrant[I] - theta.repeat(data.shape[1], 1)[I]) / (np
.pi / 2 - theta.repeat(data.shape[1], 1)[I])
I = ~I1 & (quadrant <= np.pi / 2 - theta.repeat(data.shape[1], 1))
proportion[I] = quadrant[I] / (np.pi / 2 - theta.repeat(data.shape[1],
1)[I])
I = ~I1 & (quadrant > np.pi / 2 - theta.repeat(data.shape[1], 1))
proportion[I] = (quadrant[I] - (np.pi / 2 - theta.repeat(data.shape[1],
1)[I])) / theta.repeat(data.shape[1], 1)[I]
section[flats] = FLAT_ID_INT
proportion[flats] = FLAT_ID
section[section == 8] = 0
proportion = (1 + adjust[section]) / 2.0 - adjust[section] * proportion
return section, proportion
|
calc_uca_section_proportion
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, dX, dY, direction, flats):\n shp = np.array(data.shape) - 1\n facets = self.facets\n adjust = self.ang_adj[:, 1]\n d1, d2, theta = _get_d1_d2(dX, dY, 0, facets[0][1], facets[0][2], shp)\n if dX.size > 1:\n theta = np.row_stack((theta[0, :], theta, theta[-1, :]))\n section = (direction / np.pi * 2.0 // 1).astype('int8')\n quadrant = direction - np.pi / 2.0 * section\n proportion = np.full_like(quadrant, np.nan)\n section = section * 2 + (quadrant > theta.repeat(data.shape[1], 1)) * (\n section % 2 == 0) + (quadrant > np.pi / 2 - theta.repeat(data.shape\n [1], 1)) * (section % 2 == 1)\n I1 = (section == 0) | (section == 1) | (section == 4) | (section == 5)\n I = I1 & (quadrant <= theta.repeat(data.shape[1], 1))\n proportion[I] = quadrant[I] / theta.repeat(data.shape[1], 1)[I]\n I = I1 & (quadrant > theta.repeat(data.shape[1], 1))\n proportion[I] = (quadrant[I] - theta.repeat(data.shape[1], 1)[I]) / (np\n .pi / 2 - theta.repeat(data.shape[1], 1)[I])\n I = ~I1 & (quadrant <= np.pi / 2 - theta.repeat(data.shape[1], 1))\n proportion[I] = quadrant[I] / (np.pi / 2 - theta.repeat(data.shape[1], \n 1)[I])\n I = ~I1 & (quadrant > np.pi / 2 - theta.repeat(data.shape[1], 1))\n proportion[I] = (quadrant[I] - (np.pi / 2 - theta.repeat(data.shape[1],\n 1)[I])) / theta.repeat(data.shape[1], 1)[I]\n section[flats] = FLAT_ID_INT\n proportion[flats] = FLAT_ID\n section[section == 8] = 0\n proportion = (1 + adjust[section]) / 2.0 - adjust[section] * proportion\n return section, proportion\n",
"role": "user"
},
{
"content": "calc_uca_section_proportion",
"role": "assistant"
}
] |
def x(self, section, proportion, flats, elev, mag, dX, dY):
shp = section.shape
mat_data = np.row_stack((proportion, 1 - proportion))
NN = np.prod(shp)
i12 = np.arange(NN).reshape(shp)
j1 = -np.ones_like(i12)
j2 = -np.ones_like(i12)
j1, j2 = self._mk_connectivity(section, i12, j1, j2)
j = np.row_stack((j1, j2))
i = np.row_stack((i12, i12))
if self.drain_pits:
pit_i, pit_j, pit_prop, flats, mag = self._mk_connectivity_pits(i12,
flats, elev, mag, dX, dY)
j = np.concatenate([j.ravel(), pit_j]).astype('int64')
i = np.concatenate([i.ravel(), pit_i]).astype('int64')
mat_data = np.concatenate([mat_data.ravel(), pit_prop])
elif self.drain_flats:
j1, j2, mat_data, flat_i, flat_j, flat_prop = (self.
_mk_connectivity_flats(i12, j1, j2, mat_data, flats, elev, mag))
j = np.concatenate([j.ravel(), flat_j]).astype('int64')
i = np.concatenate([i.ravel(), flat_j]).astype('int64')
mat_data = np.concatenate([mat_data.ravel(), flat_prop])
I = ~np.isnan(mat_data) & (j != -1) & (mat_data > 1e-08) & (elev.ravel(
)[j] <= elev.ravel()[i])
mat_data = mat_data[I]
j = j[I]
i = i[I]
A = sps.csc_matrix((mat_data.ravel(), np.row_stack((j.ravel(), i.ravel(
)))), shape=(NN, NN))
normalize = np.array(A.sum(0) + 1e-16).squeeze()
A = np.dot(A, sps.diags(1 / normalize, 0))
return A
|
mk_adjacency_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, section, proportion, flats, elev, mag, dX, dY):\n shp = section.shape\n mat_data = np.row_stack((proportion, 1 - proportion))\n NN = np.prod(shp)\n i12 = np.arange(NN).reshape(shp)\n j1 = -np.ones_like(i12)\n j2 = -np.ones_like(i12)\n j1, j2 = self._mk_connectivity(section, i12, j1, j2)\n j = np.row_stack((j1, j2))\n i = np.row_stack((i12, i12))\n if self.drain_pits:\n pit_i, pit_j, pit_prop, flats, mag = self._mk_connectivity_pits(i12,\n flats, elev, mag, dX, dY)\n j = np.concatenate([j.ravel(), pit_j]).astype('int64')\n i = np.concatenate([i.ravel(), pit_i]).astype('int64')\n mat_data = np.concatenate([mat_data.ravel(), pit_prop])\n elif self.drain_flats:\n j1, j2, mat_data, flat_i, flat_j, flat_prop = (self.\n _mk_connectivity_flats(i12, j1, j2, mat_data, flats, elev, mag))\n j = np.concatenate([j.ravel(), flat_j]).astype('int64')\n i = np.concatenate([i.ravel(), flat_j]).astype('int64')\n mat_data = np.concatenate([mat_data.ravel(), flat_prop])\n I = ~np.isnan(mat_data) & (j != -1) & (mat_data > 1e-08) & (elev.ravel(\n )[j] <= elev.ravel()[i])\n mat_data = mat_data[I]\n j = j[I]\n i = i[I]\n A = sps.csc_matrix((mat_data.ravel(), np.row_stack((j.ravel(), i.ravel(\n )))), shape=(NN, NN))\n normalize = np.array(A.sum(0) + 1e-16).squeeze()\n A = np.dot(A, sps.diags(1 / normalize, 0))\n return A\n",
"role": "user"
},
{
"content": "mk_adjacency_matrix",
"role": "assistant"
}
] |
def x(self, section, i12, j1, j2):
shp = np.array(section.shape) - 1
facets = self.facets
for ii, facet in enumerate(facets):
e1 = facet[1]
e2 = facet[2]
I = section[1:-1, 1:-1] == ii
j1[1:-1, 1:-1][I] = i12[1 + e1[0]:shp[0] + e1[0], 1 + e1[1]:shp[1] +
e1[1]][I]
j2[1:-1, 1:-1][I] = i12[1 + e2[0]:shp[0] + e2[0], 1 + e2[1]:shp[1] +
e2[1]][I]
slc0 = [slice(1, -1), slice(0, 1)]
for ind in [0, 1, 6, 7]:
e1 = facets[ind][1]
e2 = facets[ind][2]
I = section[slc0] == ind
j1[slc0][I] = i12[1 + e1[0]:shp[0] + e1[0], e1[1]][I.ravel()]
j2[slc0][I] = i12[1 + e2[0]:shp[0] + e2[0], e2[1]][I.ravel()]
slc0 = [slice(1, -1), slice(-1, None)]
for ind in [2, 3, 4, 5]:
e1 = facets[ind][1]
e2 = facets[ind][2]
I = section[slc0] == ind
j1[slc0][I] = i12[1 + e1[0]:shp[0] + e1[0], shp[1] + e1[1]][I.ravel()]
j2[slc0][I] = i12[1 + e2[0]:shp[0] + e2[0], shp[1] + e2[1]][I.ravel()]
slc0 = [slice(0, 1), slice(1, -1)]
for ind in [4, 5, 6, 7]:
e1 = facets[ind][1]
e2 = facets[ind][2]
I = section[slc0] == ind
j1[slc0][I] = i12[e1[0], 1 + e1[1]:shp[1] + e1[1]][I.ravel()]
j2[slc0][I] = i12[e2[0], 1 + e2[1]:shp[1] + e2[1]][I.ravel()]
slc0 = [slice(-1, None), slice(1, -1)]
for ind in [0, 1, 2, 3]:
e1 = facets[ind][1]
e2 = facets[ind][2]
I = section[slc0] == ind
j1[slc0][I] = i12[shp[0] + e1[0], 1 + e1[1]:shp[1] + e1[1]][I.ravel()]
j2[slc0][I] = i12[shp[0] + e2[0], 1 + e2[1]:shp[1] + e2[1]][I.ravel()]
slc0 = [slice(0, 1), slice(0, 1)]
for ind in [6, 7]:
e1 = facets[ind][1]
e2 = facets[ind][2]
if section[slc0] == ind:
j1[slc0] = i12[e1[0], e1[1]]
j2[slc0] = i12[e2[0], e2[1]]
slc0 = [slice(0, 1), slice(-1, None)]
for ind in [4, 5]:
e1 = facets[ind][1]
e2 = facets[ind][2]
if section[slc0] == ind:
j1[slc0] = i12[e1[0], shp[1] + e1[1]]
j2[slc0] = i12[e2[0], shp[1] + e2[1]]
slc0 = [slice(-1, None), slice(0, 1)]
for ind in [0, 1]:
e1 = facets[ind][1]
e2 = facets[ind][2]
if section[slc0] == ind:
j1[slc0] = i12[shp[0] + e1[0], e1[1]]
j2[slc0] = i12[shp[0] + e2[0], e2[1]]
slc0 = [slice(-1, None), slice(-1, None)]
for ind in [2, 3]:
e1 = facets[ind][1]
e2 = facets[ind][2]
if section[slc0] == ind:
j1[slc0] = i12[e1[0] + shp[0], shp[1] + e1[1]]
j2[slc0] = i12[e2[0] + shp[0], shp[1] + e2[1]]
return j1, j2
|
mk_connectivity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, section, i12, j1, j2):\n shp = np.array(section.shape) - 1\n facets = self.facets\n for ii, facet in enumerate(facets):\n e1 = facet[1]\n e2 = facet[2]\n I = section[1:-1, 1:-1] == ii\n j1[1:-1, 1:-1][I] = i12[1 + e1[0]:shp[0] + e1[0], 1 + e1[1]:shp[1] +\n e1[1]][I]\n j2[1:-1, 1:-1][I] = i12[1 + e2[0]:shp[0] + e2[0], 1 + e2[1]:shp[1] +\n e2[1]][I]\n slc0 = [slice(1, -1), slice(0, 1)]\n for ind in [0, 1, 6, 7]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n I = section[slc0] == ind\n j1[slc0][I] = i12[1 + e1[0]:shp[0] + e1[0], e1[1]][I.ravel()]\n j2[slc0][I] = i12[1 + e2[0]:shp[0] + e2[0], e2[1]][I.ravel()]\n slc0 = [slice(1, -1), slice(-1, None)]\n for ind in [2, 3, 4, 5]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n I = section[slc0] == ind\n j1[slc0][I] = i12[1 + e1[0]:shp[0] + e1[0], shp[1] + e1[1]][I.ravel()]\n j2[slc0][I] = i12[1 + e2[0]:shp[0] + e2[0], shp[1] + e2[1]][I.ravel()]\n slc0 = [slice(0, 1), slice(1, -1)]\n for ind in [4, 5, 6, 7]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n I = section[slc0] == ind\n j1[slc0][I] = i12[e1[0], 1 + e1[1]:shp[1] + e1[1]][I.ravel()]\n j2[slc0][I] = i12[e2[0], 1 + e2[1]:shp[1] + e2[1]][I.ravel()]\n slc0 = [slice(-1, None), slice(1, -1)]\n for ind in [0, 1, 2, 3]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n I = section[slc0] == ind\n j1[slc0][I] = i12[shp[0] + e1[0], 1 + e1[1]:shp[1] + e1[1]][I.ravel()]\n j2[slc0][I] = i12[shp[0] + e2[0], 1 + e2[1]:shp[1] + e2[1]][I.ravel()]\n slc0 = [slice(0, 1), slice(0, 1)]\n for ind in [6, 7]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n if section[slc0] == ind:\n j1[slc0] = i12[e1[0], e1[1]]\n j2[slc0] = i12[e2[0], e2[1]]\n slc0 = [slice(0, 1), slice(-1, None)]\n for ind in [4, 5]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n if section[slc0] == ind:\n j1[slc0] = i12[e1[0], shp[1] + e1[1]]\n j2[slc0] = i12[e2[0], shp[1] + e2[1]]\n slc0 = [slice(-1, None), slice(0, 1)]\n for ind in [0, 1]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n if section[slc0] == ind:\n j1[slc0] = i12[shp[0] + e1[0], e1[1]]\n j2[slc0] = i12[shp[0] + e2[0], e2[1]]\n slc0 = [slice(-1, None), slice(-1, None)]\n for ind in [2, 3]:\n e1 = facets[ind][1]\n e2 = facets[ind][2]\n if section[slc0] == ind:\n j1[slc0] = i12[e1[0] + shp[0], shp[1] + e1[1]]\n j2[slc0] = i12[e2[0] + shp[0], shp[1] + e2[1]]\n return j1, j2\n",
"role": "user"
},
{
"content": "mk_connectivity",
"role": "assistant"
}
] |
def x(self, i12, flats, elev, mag, dX, dY):
e = elev.data.ravel()
pit_i = []
pit_j = []
pit_prop = []
warn_pits = []
pits = i12[flats & (elev > 0)]
I = np.argsort(e[pits])
for pit in pits[I]:
pit_area = np.array([pit], 'int64')
drain = None
epit = e[pit]
for it in range(self.drain_pits_max_iter):
border = get_border_index(pit_area, elev.shape, elev.size)
eborder = e[border]
emin = eborder.min()
if emin < epit:
drain = border[eborder < epit]
break
pit_area = np.concatenate([pit_area, border[eborder == emin]])
if drain is None:
warn_pits.append(pit)
continue
ipit, jpit = np.unravel_index(pit, elev.shape)
Idrain, Jdrain = np.unravel_index(drain, elev.shape)
if self.drain_pits_max_dist:
dij = np.sqrt((ipit - Idrain) ** 2 + (jpit - Jdrain) ** 2)
b = dij <= self.drain_pits_max_dist
if not b.any():
warn_pits.append(pit)
continue
drain = drain[b]
Idrain = Idrain[b]
Jdrain = Jdrain[b]
dx = [(_get_dX_mean(dX, ipit, idrain) * (jpit - jdrain)) for idrain,
jdrain in zip(Idrain, Jdrain)]
dy = [dY[make_slice(ipit, idrain)].sum() for idrain in Idrain]
dxy = np.sqrt(np.array(dx) ** 2 + np.array(dy) ** 2)
if self.drain_pits_max_dist_XY:
b = dxy <= self.drain_pits_max_dist_XY
if not b.any():
warn_pits.append(pit)
continue
drain = drain[b]
dxy = dxy[b]
s = (e[pit] - e[drain]) / dxy
pit_i += [pit for i in drain]
pit_j += drain.tolist()
pit_prop += s.tolist()
mag[ipit, jpit] = np.mean(s)
flats[ipit, jpit] = False
if warn_pits:
warnings.warn(
'Warning %d pits had no place to drain to in this chunk' % len(
warn_pits))
return np.array(pit_i, 'int64'), np.array(pit_j, 'int64'), np.array(
pit_prop, 'float64'), flats, mag
|
mk_connectivity_pits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i12, flats, elev, mag, dX, dY):\n e = elev.data.ravel()\n pit_i = []\n pit_j = []\n pit_prop = []\n warn_pits = []\n pits = i12[flats & (elev > 0)]\n I = np.argsort(e[pits])\n for pit in pits[I]:\n pit_area = np.array([pit], 'int64')\n drain = None\n epit = e[pit]\n for it in range(self.drain_pits_max_iter):\n border = get_border_index(pit_area, elev.shape, elev.size)\n eborder = e[border]\n emin = eborder.min()\n if emin < epit:\n drain = border[eborder < epit]\n break\n pit_area = np.concatenate([pit_area, border[eborder == emin]])\n if drain is None:\n warn_pits.append(pit)\n continue\n ipit, jpit = np.unravel_index(pit, elev.shape)\n Idrain, Jdrain = np.unravel_index(drain, elev.shape)\n if self.drain_pits_max_dist:\n dij = np.sqrt((ipit - Idrain) ** 2 + (jpit - Jdrain) ** 2)\n b = dij <= self.drain_pits_max_dist\n if not b.any():\n warn_pits.append(pit)\n continue\n drain = drain[b]\n Idrain = Idrain[b]\n Jdrain = Jdrain[b]\n dx = [(_get_dX_mean(dX, ipit, idrain) * (jpit - jdrain)) for idrain,\n jdrain in zip(Idrain, Jdrain)]\n dy = [dY[make_slice(ipit, idrain)].sum() for idrain in Idrain]\n dxy = np.sqrt(np.array(dx) ** 2 + np.array(dy) ** 2)\n if self.drain_pits_max_dist_XY:\n b = dxy <= self.drain_pits_max_dist_XY\n if not b.any():\n warn_pits.append(pit)\n continue\n drain = drain[b]\n dxy = dxy[b]\n s = (e[pit] - e[drain]) / dxy\n pit_i += [pit for i in drain]\n pit_j += drain.tolist()\n pit_prop += s.tolist()\n mag[ipit, jpit] = np.mean(s)\n flats[ipit, jpit] = False\n if warn_pits:\n warnings.warn(\n 'Warning %d pits had no place to drain to in this chunk' % len(\n warn_pits))\n return np.array(pit_i, 'int64'), np.array(pit_j, 'int64'), np.array(\n pit_prop, 'float64'), flats, mag\n",
"role": "user"
},
{
"content": "mk_connectivity_pits",
"role": "assistant"
}
] |
def x(self, i12, j1, j2, mat_data, flats, elev, mag):
nn, mm = flats.shape
NN = np.prod(flats.shape)
assigned, n_flats = spndi.label(flats, FLATS_KERNEL3)
flat_ids, flat_coords, flat_labelsf = _get_flat_ids(assigned)
flat_j = [None] * n_flats
flat_prop = [None] * n_flats
flat_i = [None] * n_flats
edges = np.zeros_like(flats)
warn_flats = []
for ii in xrange(n_flats):
ids_flats = flat_ids[flat_coords[ii]:flat_coords[ii + 1]]
edges[:] = 0
j = ids_flats % mm
i = ids_flats // mm
for iii in [-1, 0, 1]:
for jjj in [-1, 0, 1]:
i_2 = i + iii
j_2 = j + jjj
ids_tmp = (i_2 >= 0) & (j_2 >= 0) & (i_2 < nn) & (j_2 < mm)
edges[i_2[ids_tmp], j_2[ids_tmp]] += FLATS_KERNEL3[iii + 1,
jjj + 1]
edges.ravel()[ids_flats] = 0
ids_edge = np.argwhere(edges.ravel()).squeeze()
flat_elev_loc = elev.ravel()[ids_flats]
flat_elev = flat_elev_loc.min()
loc_elev = elev.ravel()[ids_edge]
I_filt = loc_elev < flat_elev
try:
loc_elev = loc_elev[I_filt]
loc_slope = mag.ravel()[ids_edge][I_filt]
except:
loc_elev = np.array([])
loc_slope = np.array([])
loc_dx = self.dX.mean()
n = len(loc_slope)
if n == 0:
ids_flat_on_edge = (ids_flats % mag.shape[1] == 0) | (ids_flats %
mag.shape[1] == mag.shape[1] - 1) | (ids_flats <= mag.shape[1]
) | (ids_flats >= mag.shape[1] * (mag.shape[0] - 1))
if ids_flat_on_edge.sum() == 0:
warn_flats.append(ii)
continue
drain_ids = ids_flats[ids_flat_on_edge]
loc_proportions = mag.ravel()[ids_flats[ids_flat_on_edge]]
loc_proportions /= loc_proportions.sum()
ids_flats = ids_flats[~ids_flat_on_edge]
if len(ids_flats) == 0:
continue
flat_elev_loc = flat_elev_loc[~ids_flat_on_edge]
else:
min_edges = np.zeros(loc_slope.shape, bool)
min_edges[np.argmin(loc_slope)] = True
min_edges = loc_slope + loc_slope * loc_dx / 2 >= loc_slope[
min_edges]
drain_ids = ids_edge[I_filt][min_edges]
loc_proportions = loc_slope[min_edges]
loc_proportions /= loc_proportions.sum()
one_id = np.zeros(ids_flats.size, bool)
one_id[np.argmin(flat_elev_loc)] = True
j1.ravel()[ids_flats[~one_id]] = ids_flats[one_id]
mat_data.ravel()[ids_flats[~one_id]] = 1
j2.ravel()[ids_flats[~one_id]] = -1
mat_data.ravel()[ids_flats[~one_id] + NN] = 0
j1.ravel()[ids_flats[one_id]] = drain_ids[0]
mat_data.ravel()[ids_flats[one_id]] = loc_proportions[0]
if len(drain_ids) > 1:
j2.ravel()[ids_flats[one_id]] = drain_ids[1]
mat_data.ravel()[ids_flats[one_id] + NN] = loc_proportions[1]
if len(loc_proportions > 2):
flat_j[ii] = drain_ids[2:]
flat_prop[ii] = loc_proportions[2:]
flat_i[ii] = np.ones(drain_ids[2:].size, 'int64') * ids_flats[
one_id]
try:
flat_j = np.concatenate([fj for fj in flat_j if fj is not None])
flat_prop = np.concatenate([fp for fp in flat_prop if fp is not None])
flat_i = np.concatenate([fi for fi in flat_i if fi is not None])
except:
flat_j = np.array([], 'int64')
flat_prop = np.array([], 'float64')
flat_i = np.array([], 'int64')
if len(warn_flats) > 0:
warnings.warn('Warning %d flats had no place' % len(warn_flats) +
' to drain to --> these are pits (check pit-removealgorithm).')
return j1, j2, mat_data, flat_i, flat_j, flat_prop
|
mk_connectivity_flats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i12, j1, j2, mat_data, flats, elev, mag):\n nn, mm = flats.shape\n NN = np.prod(flats.shape)\n assigned, n_flats = spndi.label(flats, FLATS_KERNEL3)\n flat_ids, flat_coords, flat_labelsf = _get_flat_ids(assigned)\n flat_j = [None] * n_flats\n flat_prop = [None] * n_flats\n flat_i = [None] * n_flats\n edges = np.zeros_like(flats)\n warn_flats = []\n for ii in xrange(n_flats):\n ids_flats = flat_ids[flat_coords[ii]:flat_coords[ii + 1]]\n edges[:] = 0\n j = ids_flats % mm\n i = ids_flats // mm\n for iii in [-1, 0, 1]:\n for jjj in [-1, 0, 1]:\n i_2 = i + iii\n j_2 = j + jjj\n ids_tmp = (i_2 >= 0) & (j_2 >= 0) & (i_2 < nn) & (j_2 < mm)\n edges[i_2[ids_tmp], j_2[ids_tmp]] += FLATS_KERNEL3[iii + 1,\n jjj + 1]\n edges.ravel()[ids_flats] = 0\n ids_edge = np.argwhere(edges.ravel()).squeeze()\n flat_elev_loc = elev.ravel()[ids_flats]\n flat_elev = flat_elev_loc.min()\n loc_elev = elev.ravel()[ids_edge]\n I_filt = loc_elev < flat_elev\n try:\n loc_elev = loc_elev[I_filt]\n loc_slope = mag.ravel()[ids_edge][I_filt]\n except:\n loc_elev = np.array([])\n loc_slope = np.array([])\n loc_dx = self.dX.mean()\n n = len(loc_slope)\n if n == 0:\n ids_flat_on_edge = (ids_flats % mag.shape[1] == 0) | (ids_flats %\n mag.shape[1] == mag.shape[1] - 1) | (ids_flats <= mag.shape[1]\n ) | (ids_flats >= mag.shape[1] * (mag.shape[0] - 1))\n if ids_flat_on_edge.sum() == 0:\n warn_flats.append(ii)\n continue\n drain_ids = ids_flats[ids_flat_on_edge]\n loc_proportions = mag.ravel()[ids_flats[ids_flat_on_edge]]\n loc_proportions /= loc_proportions.sum()\n ids_flats = ids_flats[~ids_flat_on_edge]\n if len(ids_flats) == 0:\n continue\n flat_elev_loc = flat_elev_loc[~ids_flat_on_edge]\n else:\n min_edges = np.zeros(loc_slope.shape, bool)\n min_edges[np.argmin(loc_slope)] = True\n min_edges = loc_slope + loc_slope * loc_dx / 2 >= loc_slope[\n min_edges]\n drain_ids = ids_edge[I_filt][min_edges]\n loc_proportions = loc_slope[min_edges]\n loc_proportions /= loc_proportions.sum()\n one_id = np.zeros(ids_flats.size, bool)\n one_id[np.argmin(flat_elev_loc)] = True\n j1.ravel()[ids_flats[~one_id]] = ids_flats[one_id]\n mat_data.ravel()[ids_flats[~one_id]] = 1\n j2.ravel()[ids_flats[~one_id]] = -1\n mat_data.ravel()[ids_flats[~one_id] + NN] = 0\n j1.ravel()[ids_flats[one_id]] = drain_ids[0]\n mat_data.ravel()[ids_flats[one_id]] = loc_proportions[0]\n if len(drain_ids) > 1:\n j2.ravel()[ids_flats[one_id]] = drain_ids[1]\n mat_data.ravel()[ids_flats[one_id] + NN] = loc_proportions[1]\n if len(loc_proportions > 2):\n flat_j[ii] = drain_ids[2:]\n flat_prop[ii] = loc_proportions[2:]\n flat_i[ii] = np.ones(drain_ids[2:].size, 'int64') * ids_flats[\n one_id]\n try:\n flat_j = np.concatenate([fj for fj in flat_j if fj is not None])\n flat_prop = np.concatenate([fp for fp in flat_prop if fp is not None])\n flat_i = np.concatenate([fi for fi in flat_i if fi is not None])\n except:\n flat_j = np.array([], 'int64')\n flat_prop = np.array([], 'float64')\n flat_i = np.array([], 'int64')\n if len(warn_flats) > 0:\n warnings.warn('Warning %d flats had no place' % len(warn_flats) +\n ' to drain to --> these are pits (check pit-removealgorithm).')\n return j1, j2, mat_data, flat_i, flat_j, flat_prop\n",
"role": "user"
},
{
"content": "mk_connectivity_flats",
"role": "assistant"
}
] |
def x(self):
if self.uca is None:
self.calc_uca()
gc.collect()
min_area = self.twi_min_area
min_slope = self.twi_min_slope
twi = self.uca.copy()
if self.apply_twi_limits_on_uca:
twi[twi > self.uca_saturation_limit * min_area
] = self.uca_saturation_limit * min_area
gc.collect()
twi = np.log(twi / (self.mag + min_slope))
if self.apply_twi_limits:
twi_sat_value = np.log(self.uca_saturation_limit * min_area / min_slope
)
twi[twi > twi_sat_value] = twi_sat_value
self.twi = twi * 10
gc.collect()
return twi
|
calc_twi
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.uca is None:\n self.calc_uca()\n gc.collect()\n min_area = self.twi_min_area\n min_slope = self.twi_min_slope\n twi = self.uca.copy()\n if self.apply_twi_limits_on_uca:\n twi[twi > self.uca_saturation_limit * min_area\n ] = self.uca_saturation_limit * min_area\n gc.collect()\n twi = np.log(twi / (self.mag + min_slope))\n if self.apply_twi_limits:\n twi_sat_value = np.log(self.uca_saturation_limit * min_area / min_slope\n )\n twi[twi > twi_sat_value] = twi_sat_value\n self.twi = twi * 10\n gc.collect()\n return twi\n",
"role": "user"
},
{
"content": "calc_twi",
"role": "assistant"
}
] |
def x(self, A, data=None, lims=[None, None]):
if data is None:
data = self.data
B = A.tocoo()
self._plot_connectivity_helper(B.col, B.row, B.data, data, lims)
|
plot_connectivity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, A, data=None, lims=[None, None]):\n if data is None:\n data = self.data\n B = A.tocoo()\n self._plot_connectivity_helper(B.col, B.row, B.data, data, lims)\n",
"role": "user"
},
{
"content": "plot_connectivity",
"role": "assistant"
}
] |
def x(self, ii, ji, mat_datai, data, lims=[1, 8]):
from matplotlib.pyplot import quiver, colorbar, clim, matshow
I = ~np.isnan(mat_datai) & (ji != -1) & (mat_datai >= 0)
mat_data = mat_datai[I]
j = ji[I]
i = ii[I]
x = i.astype(float) % data.shape[1]
y = i.astype(float) // data.shape[1]
x1 = (j.astype(float) % data.shape[1]).ravel()
y1 = (j.astype(float) // data.shape[1]).ravel()
nx = x1 - x
ny = y1 - y
matshow(data, cmap='gist_rainbow')
colorbar()
clim(lims)
quiver(x, y, nx, ny, mat_data.ravel(), angles='xy', scale_units='xy',
scale=1, cmap='bone')
colorbar()
clim([0, 1])
|
plot_connectivity_helper
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ii, ji, mat_datai, data, lims=[1, 8]):\n from matplotlib.pyplot import quiver, colorbar, clim, matshow\n I = ~np.isnan(mat_datai) & (ji != -1) & (mat_datai >= 0)\n mat_data = mat_datai[I]\n j = ji[I]\n i = ii[I]\n x = i.astype(float) % data.shape[1]\n y = i.astype(float) // data.shape[1]\n x1 = (j.astype(float) % data.shape[1]).ravel()\n y1 = (j.astype(float) // data.shape[1]).ravel()\n nx = x1 - x\n ny = y1 - y\n matshow(data, cmap='gist_rainbow')\n colorbar()\n clim(lims)\n quiver(x, y, nx, ny, mat_data.ravel(), angles='xy', scale_units='xy',\n scale=1, cmap='bone')\n colorbar()\n clim([0, 1])\n",
"role": "user"
},
{
"content": "plot_connectivity_helper",
"role": "assistant"
}
] |
def x(self):
from matplotlib.pyplot import matshow, colorbar, clim, title
matshow(self.direction / np.pi * 180)
colorbar()
clim(0, 360)
title('Direction')
mag2, direction2 = self._central_slopes_directions()
matshow(direction2 / np.pi * 180.0)
colorbar()
clim(0, 360)
title('Direction (central difference)')
matshow(self.mag)
colorbar()
title('Magnitude')
matshow(mag2)
colorbar()
title('Magnitude (Central difference)')
filename = self.file_name
os.chdir('testtiff')
try:
os.remove('test_ang.tif')
os.remove('test_slp.tif')
except:
pass
cmd = 'dinfflowdir -fel "%s" -ang "%s" -slp "%s"' % (os.path.split(
filename)[-1], 'test_ang.tif', 'test_slp.tif')
taudem._run(cmd)
td_file = GdalReader(file_name='test_ang.tif')
td_ang, = td_file.raster_layers
td_file2 = GdalReader(file_name='test_slp.tif')
td_mag, = td_file2.raster_layers
os.chdir('..')
matshow(td_ang.raster_data / np.pi * 180)
clim(0, 360)
colorbar()
title('Taudem direction')
matshow(td_mag.raster_data)
colorbar()
title('Taudem magnitude')
matshow(self.data)
colorbar()
title('The test data (elevation)')
diff = (td_ang.raster_data - self.direction) / np.pi * 180.0
diff[np.abs(diff) > 300] = np.nan
matshow(diff)
colorbar()
clim([-1, 1])
title('Taudem direction - calculated Direction')
mag2 = td_mag.raster_data
mag2 /= np.nanmax(mag2)
mag = self.mag.copy()
mag /= np.nanmax(mag)
matshow(mag - mag2)
colorbar()
title('Taudem magnitude - calculated magnitude')
del td_file
del td_file2
del td_ang
del td_mag
|
plot_debug_slopes_directions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from matplotlib.pyplot import matshow, colorbar, clim, title\n matshow(self.direction / np.pi * 180)\n colorbar()\n clim(0, 360)\n title('Direction')\n mag2, direction2 = self._central_slopes_directions()\n matshow(direction2 / np.pi * 180.0)\n colorbar()\n clim(0, 360)\n title('Direction (central difference)')\n matshow(self.mag)\n colorbar()\n title('Magnitude')\n matshow(mag2)\n colorbar()\n title('Magnitude (Central difference)')\n filename = self.file_name\n os.chdir('testtiff')\n try:\n os.remove('test_ang.tif')\n os.remove('test_slp.tif')\n except:\n pass\n cmd = 'dinfflowdir -fel \"%s\" -ang \"%s\" -slp \"%s\"' % (os.path.split(\n filename)[-1], 'test_ang.tif', 'test_slp.tif')\n taudem._run(cmd)\n td_file = GdalReader(file_name='test_ang.tif')\n td_ang, = td_file.raster_layers\n td_file2 = GdalReader(file_name='test_slp.tif')\n td_mag, = td_file2.raster_layers\n os.chdir('..')\n matshow(td_ang.raster_data / np.pi * 180)\n clim(0, 360)\n colorbar()\n title('Taudem direction')\n matshow(td_mag.raster_data)\n colorbar()\n title('Taudem magnitude')\n matshow(self.data)\n colorbar()\n title('The test data (elevation)')\n diff = (td_ang.raster_data - self.direction) / np.pi * 180.0\n diff[np.abs(diff) > 300] = np.nan\n matshow(diff)\n colorbar()\n clim([-1, 1])\n title('Taudem direction - calculated Direction')\n mag2 = td_mag.raster_data\n mag2 /= np.nanmax(mag2)\n mag = self.mag.copy()\n mag /= np.nanmax(mag)\n matshow(mag - mag2)\n colorbar()\n title('Taudem magnitude - calculated magnitude')\n del td_file\n del td_file2\n del td_ang\n del td_mag\n",
"role": "user"
},
{
"content": "plot_debug_slopes_directions",
"role": "assistant"
}
] |
def x(ctx, dry_run=False):
basedir = ctx.sphinx.destdir or 'build/docs'
cleanup_dirs([basedir], dry_run=dry_run)
|
clean
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, dry_run=False):\n basedir = ctx.sphinx.destdir or 'build/docs'\n cleanup_dirs([basedir], dry_run=dry_run)\n",
"role": "user"
},
{
"content": "clean",
"role": "assistant"
}
] |
def x(ctx, builder='html', options=''):
sourcedir = ctx.config.sphinx.sourcedir
destdir = Path(ctx.config.sphinx.destdir or 'build') / builder
destdir = destdir.abspath()
with cd(sourcedir):
destdir_relative = Path('.').relpathto(destdir)
command = ('sphinx-build {opts} -b {builder} {sourcedir} {destdir}'
.format(builder=builder, sourcedir='.', destdir=
destdir_relative, opts=options))
ctx.run(command)
|
build
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, builder='html', options=''):\n sourcedir = ctx.config.sphinx.sourcedir\n destdir = Path(ctx.config.sphinx.destdir or 'build') / builder\n destdir = destdir.abspath()\n with cd(sourcedir):\n destdir_relative = Path('.').relpathto(destdir)\n command = ('sphinx-build {opts} -b {builder} {sourcedir} {destdir}'\n .format(builder=builder, sourcedir='.', destdir=\n destdir_relative, opts=options))\n ctx.run(command)\n",
"role": "user"
},
{
"content": "build",
"role": "assistant"
}
] |
def x(ctx):
page_html = Path(ctx.config.sphinx.destdir) / 'html' / 'index.html'
if not page_html.exists():
build(ctx, builder='html')
assert page_html.exists()
open_cmd = 'open'
if sys.platform.startswith('win'):
open_cmd = 'start'
ctx.run('{open} {page_html}'.format(open=open_cmd, page_html=page_html))
|
browse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx):\n page_html = Path(ctx.config.sphinx.destdir) / 'html' / 'index.html'\n if not page_html.exists():\n build(ctx, builder='html')\n assert page_html.exists()\n open_cmd = 'open'\n if sys.platform.startswith('win'):\n open_cmd = 'start'\n ctx.run('{open} {page_html}'.format(open=open_cmd, page_html=page_html))\n",
"role": "user"
},
{
"content": "browse",
"role": "assistant"
}
] |
def x(ctx, dest='docs.html', format='html'):
print('STEP: Generate docs in HTML format')
build(ctx, builder=format)
print('STEP: Save docs under %s/' % dest)
source_dir = Path(ctx.config.sphinx.destdir) / format
Path(dest).rmtree_p()
source_dir.copytree(dest)
for part in ['.buildinfo', '.doctrees']:
partpath = Path(dest) / part
if partpath.isdir():
partpath.rmtree_p()
elif partpath.exists():
partpath.remove_p()
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ctx, dest='docs.html', format='html'):\n print('STEP: Generate docs in HTML format')\n build(ctx, builder=format)\n print('STEP: Save docs under %s/' % dest)\n source_dir = Path(ctx.config.sphinx.destdir) / format\n Path(dest).rmtree_p()\n source_dir.copytree(dest)\n for part in ['.buildinfo', '.doctrees']:\n partpath = Path(dest) / part\n if partpath.isdir():\n partpath.rmtree_p()\n elif partpath.exists():\n partpath.remove_p()\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.