source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, new=True): url = (self._imgur._base_url + '/3/account/{0}/notifications/replies'. format(self.name)) return self._imgur._send_request(url, needs_auth=True)
get_replies
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, new=True):\n url = (self._imgur._base_url + '/3/account/{0}/notifications/replies'.\n format(self.name))\n return self._imgur._send_request(url, needs_auth=True)\n", "role": "user" }, { "content": "get_replies", "role": "assistant" } ]
def x(self): url = self._imgur._base_url + '/3/account/{0}/settings'.format(self.name) return self._imgur._send_request(url)
get_settings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n url = self._imgur._base_url + '/3/account/{0}/settings'.format(self.name)\n return self._imgur._send_request(url)\n", "role": "user" }, { "content": "get_settings", "role": "assistant" } ]
def x(self, limit=None): url = self._imgur._base_url + '/3/account/{0}/submissions/{1}'.format(self .name, '{}') resp = self._imgur._send_request(url, limit=limit) return [_get_album_or_image(thing, self._imgur) for thing in resp]
get_submissions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, limit=None):\n url = self._imgur._base_url + '/3/account/{0}/submissions/{1}'.format(self\n .name, '{}')\n resp = self._imgur._send_request(url, limit=limit)\n return [_get_album_or_image(thing, self._imgur) for thing in resp]\n", "role": "user" }, { "content": "get_submissions", "role": "assistant" } ]
def x(self, body, subject=None, reply_to=None): url = self._imgur._base_url + '/3/message' parent_id = reply_to.id if isinstance(reply_to, Message) else reply_to payload = {'recipient': self.name, 'body': body, 'subject': subject, 'parent_id': parent_id} self._imgur._send_request(url, params=payload, needs_auth=True, method= 'POST')
send_message
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, body, subject=None, reply_to=None):\n url = self._imgur._base_url + '/3/message'\n parent_id = reply_to.id if isinstance(reply_to, Message) else reply_to\n payload = {'recipient': self.name, 'body': body, 'subject': subject,\n 'parent_id': parent_id}\n self._imgur._send_request(url, params=payload, needs_auth=True, method=\n 'POST')\n", "role": "user" }, { "content": "send_message", "role": "assistant" } ]
def x(self): url = self._imgur._base_url + '/3/account/{0}/verifyemail'.format(self.name ) self._imgur._send_request(url, needs_auth=True, method='POST')
send_verification_email
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n url = self._imgur._base_url + '/3/account/{0}/verifyemail'.format(self.name\n )\n self._imgur._send_request(url, needs_auth=True, method='POST')\n", "role": "user" }, { "content": "send_verification_email", "role": "assistant" } ]
def x(reverse=False, align=False, strip_path=False, enable_on_envvar_only= False, on_tty=False, conservative=False, styles=None, tb=None, tpe=None, value=None): if enable_on_envvar_only and 'ENABLE_BACKTRACE' not in os.environ: return isatty = getattr(sys.stderr, 'isatty', lambda : False) if on_tty and not isatty(): return if conservative: styles = CONVERVATIVE_STYLES align = align or False elif styles: for k in STYLES.keys(): styles[k] = styles.get(k, STYLES[k]) else: styles = STYLES colorama.init() def x(tpe, value, tb=None): try: traceback_entries = traceback.extract_tb(tb) except AttributeError: traceback_entries = tb parser = _Hook(traceback_entries, align, strip_path, conservative) tpe = tpe if isinstance(tpe, str) else tpe.__name__ tb_message = styles['backtrace'].format('Traceback ({0}):'.format( 'Most recent call ' + ('first' if reverse else 'last')) ) + Style.RESET_ALL err_message = styles['error'].format(tpe + ': ' + str(value) ) + Style.RESET_ALL if reverse: parser.reverse() _flush(tb_message) backtrace = parser.generate_backtrace(styles) backtrace.insert(0 if reverse else len(backtrace), err_message) for entry in backtrace: _flush(entry) if tb: backtrace_excepthook(tpe=tpe, value=value, tb=tb) else: sys.excepthook = backtrace_excepthook
hook
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(reverse=False, align=False, strip_path=False, enable_on_envvar_only=\n False, on_tty=False, conservative=False, styles=None, tb=None, tpe=None,\n value=None):\n if enable_on_envvar_only and 'ENABLE_BACKTRACE' not in os.environ:\n return\n isatty = getattr(sys.stderr, 'isatty', lambda : False)\n if on_tty and not isatty():\n return\n if conservative:\n styles = CONVERVATIVE_STYLES\n align = align or False\n elif styles:\n for k in STYLES.keys():\n styles[k] = styles.get(k, STYLES[k])\n else:\n styles = STYLES\n colorama.init()\n\n def x(tpe, value, tb=None):\n try:\n traceback_entries = traceback.extract_tb(tb)\n except AttributeError:\n traceback_entries = tb\n parser = _Hook(traceback_entries, align, strip_path, conservative)\n tpe = tpe if isinstance(tpe, str) else tpe.__name__\n tb_message = styles['backtrace'].format('Traceback ({0}):'.format(\n 'Most recent call ' + ('first' if reverse else 'last'))\n ) + Style.RESET_ALL\n err_message = styles['error'].format(tpe + ': ' + str(value)\n ) + Style.RESET_ALL\n if reverse:\n parser.reverse()\n _flush(tb_message)\n backtrace = parser.generate_backtrace(styles)\n backtrace.insert(0 if reverse else len(backtrace), err_message)\n for entry in backtrace:\n _flush(entry)\n if tb:\n backtrace_excepthook(tpe=tpe, value=value, tb=tb)\n else:\n sys.excepthook = backtrace_excepthook\n", "role": "user" }, { "content": "hook", "role": "assistant" } ]
def x(text): capture = False entries = [] all_else = [] ignore_trace = False if text.count(TRACEBACK_IDENTIFIER) == 2: ignore_trace = True for index, line in enumerate(text): if TRACEBACK_IDENTIFIER in line: if ignore_trace: ignore_trace = False continue capture = True elif capture and line.startswith(' '): if index % 2 == 0: line = line.strip().strip('\n') next_line = text[index + 1].strip('\n') entries.append(line + ', ' + next_line) elif capture: entries.append(line) break else: all_else.append(line) traceback_entries = [] for index, line in enumerate(entries[:-2]): element = line.split(',') element[0] = element[0].strip().lstrip('File').strip(' "') element[1] = element[1].strip().lstrip('line').strip() element[2] = element[2].strip().lstrip('in').strip() traceback_entries.append(tuple(element)) return traceback_entries, all_else
extract_traceback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(text):\n capture = False\n entries = []\n all_else = []\n ignore_trace = False\n if text.count(TRACEBACK_IDENTIFIER) == 2:\n ignore_trace = True\n for index, line in enumerate(text):\n if TRACEBACK_IDENTIFIER in line:\n if ignore_trace:\n ignore_trace = False\n continue\n capture = True\n elif capture and line.startswith(' '):\n if index % 2 == 0:\n line = line.strip().strip('\\n')\n next_line = text[index + 1].strip('\\n')\n entries.append(line + ', ' + next_line)\n elif capture:\n entries.append(line)\n break\n else:\n all_else.append(line)\n traceback_entries = []\n for index, line in enumerate(entries[:-2]):\n element = line.split(',')\n element[0] = element[0].strip().lstrip('File').strip(' \"')\n element[1] = element[1].strip().lstrip('line').strip()\n element[2] = element[2].strip().lstrip('in').strip()\n traceback_entries.append(tuple(element))\n return traceback_entries, all_else\n", "role": "user" }, { "content": "extract_traceback", "role": "assistant" } ]
def x(self, styles): backtrace = [] for entry in self.entries: backtrace.append(self.rebuild_entry(entry, styles)) lengths = self.align_all(backtrace) if self.align else [1, 1, 1, 1] aligned_backtrace = [] for entry in backtrace: aligned_backtrace.append(self.align_entry(entry, lengths)) return aligned_backtrace
generate_backtrace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, styles):\n backtrace = []\n for entry in self.entries:\n backtrace.append(self.rebuild_entry(entry, styles))\n lengths = self.align_all(backtrace) if self.align else [1, 1, 1, 1]\n aligned_backtrace = []\n for entry in backtrace:\n aligned_backtrace.append(self.align_entry(entry, lengths))\n return aligned_backtrace\n", "role": "user" }, { "content": "generate_backtrace", "role": "assistant" } ]
def x(catalog): components = [] islands = [] simples = [] for source in catalog: if isinstance(source, OutputSource): components.append(source) elif isinstance(source, IslandSource): islands.append(source) elif isinstance(source, SimpleSource): simples.append(source) return components, islands, simples
classify_catalog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog):\n components = []\n islands = []\n simples = []\n for source in catalog:\n if isinstance(source, OutputSource):\n components.append(source)\n elif isinstance(source, IslandSource):\n islands.append(source)\n elif isinstance(source, SimpleSource):\n simples.append(source)\n return components, islands, simples\n", "role": "user" }, { "content": "classify_catalog", "role": "assistant" } ]
def x(catalog): catalog = sorted(catalog) catalog.reverse() group = [] src = catalog.pop() c_len = len(catalog) isle_num = src.island while c_len >= 0: if src.island == isle_num: group.append(src) c_len -= 1 if c_len < 0: yield group else: src = catalog.pop() else: isle_num += 1 if group == []: continue yield group group = [] return
island_itergen
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(catalog):\n catalog = sorted(catalog)\n catalog.reverse()\n group = []\n src = catalog.pop()\n c_len = len(catalog)\n isle_num = src.island\n while c_len >= 0:\n if src.island == isle_num:\n group.append(src)\n c_len -= 1\n if c_len < 0:\n yield group\n else:\n src = catalog.pop()\n else:\n isle_num += 1\n if group == []:\n continue\n yield group\n group = []\n return\n", "role": "user" }, { "content": "island_itergen", "role": "assistant" } ]
def x(self): for k in self.__dict__: if isinstance(self.__dict__[k], np.float32): self.__dict__[k] = np.float64(self.__dict__[k])
sanitise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for k in self.__dict__:\n if isinstance(self.__dict__[k], np.float32):\n self.__dict__[k] = np.float64(self.__dict__[k])\n", "role": "user" }, { "content": "sanitise", "role": "assistant" } ]
def x(self): self._sanitise() l = [] for name in self.names: l.append(getattr(self, name)) return l
as_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._sanitise()\n l = []\n for name in self.names:\n l.append(getattr(self, name))\n return l\n", "role": "user" }, { "content": "as_list", "role": "assistant" } ]
def x(self, ra_cen, dec_cen, radius, depth=None): if depth is None or depth > self.maxdepth: depth = self.maxdepth try: sky = list(zip(ra_cen, dec_cen)) rad = radius except TypeError: sky = [[ra_cen, dec_cen]] rad = [radius] sky = np.array(sky) rad = np.array(rad) vectors = self.sky2vec(sky) for vec, r in zip(vectors, rad): pix = hp.query_disc(2 ** depth, vec, r, inclusive=True, nest=True) self.add_pixels(pix, depth) self._renorm() return
add_circles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra_cen, dec_cen, radius, depth=None):\n if depth is None or depth > self.maxdepth:\n depth = self.maxdepth\n try:\n sky = list(zip(ra_cen, dec_cen))\n rad = radius\n except TypeError:\n sky = [[ra_cen, dec_cen]]\n rad = [radius]\n sky = np.array(sky)\n rad = np.array(rad)\n vectors = self.sky2vec(sky)\n for vec, r in zip(vectors, rad):\n pix = hp.query_disc(2 ** depth, vec, r, inclusive=True, nest=True)\n self.add_pixels(pix, depth)\n self._renorm()\n return\n", "role": "user" }, { "content": "add_circles", "role": "assistant" } ]
def x(self, positions, depth=None): if not len(positions) >= 3: raise AssertionError('A minimum of three coordinate pairs are required' ) if depth is None or depth > self.maxdepth: depth = self.maxdepth ras, decs = np.array(list(zip(*positions))) sky = self.radec2sky(ras, decs) pix = hp.query_polygon(2 ** depth, self.sky2vec(sky), inclusive=True, nest=True) self.add_pixels(pix, depth) self._renorm() return
add_poly
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, positions, depth=None):\n if not len(positions) >= 3:\n raise AssertionError('A minimum of three coordinate pairs are required'\n )\n if depth is None or depth > self.maxdepth:\n depth = self.maxdepth\n ras, decs = np.array(list(zip(*positions)))\n sky = self.radec2sky(ras, decs)\n pix = hp.query_polygon(2 ** depth, self.sky2vec(sky), inclusive=True,\n nest=True)\n self.add_pixels(pix, depth)\n self._renorm()\n return\n", "role": "user" }, { "content": "add_poly", "role": "assistant" } ]
def x(self, pix, depth): if depth not in self.pixeldict: self.pixeldict[depth] = set() self.pixeldict[depth].update(set(pix))
add_pixels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pix, depth):\n if depth not in self.pixeldict:\n self.pixeldict[depth] = set()\n self.pixeldict[depth].update(set(pix))\n", "role": "user" }, { "content": "add_pixels", "role": "assistant" } ]
def x(self, degrees=True): area = 0 for d in range(1, self.maxdepth + 1): area += len(self.pixeldict[d]) * hp.nside2pixarea(2 ** d, degrees= degrees) return area
get_area
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, degrees=True):\n area = 0\n for d in range(1, self.maxdepth + 1):\n area += len(self.pixeldict[d]) * hp.nside2pixarea(2 ** d, degrees=\n degrees)\n return area\n", "role": "user" }, { "content": "get_area", "role": "assistant" } ]
def x(self): if len(self.demoted) == 0: pd = self.pixeldict for d in range(1, self.maxdepth): for p in pd[d]: pd[d + 1].update(set((4 * p, 4 * p + 1, 4 * p + 2, 4 * p + 3))) pd[d] = set() self.demoted = pd[d + 1] return
demote_all
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if len(self.demoted) == 0:\n pd = self.pixeldict\n for d in range(1, self.maxdepth):\n for p in pd[d]:\n pd[d + 1].update(set((4 * p, 4 * p + 1, 4 * p + 2, 4 * p + 3)))\n pd[d] = set()\n self.demoted = pd[d + 1]\n return\n", "role": "user" }, { "content": "demote_all", "role": "assistant" } ]
def x(self): self.demoted = set() self._demote_all() for d in range(self.maxdepth, 2, -1): plist = self.pixeldict[d].copy() for p in plist: if p % 4 == 0: nset = set((p, p + 1, p + 2, p + 3)) if p + 1 in plist and p + 2 in plist and p + 3 in plist: self.pixeldict[d].difference_update(nset) self.pixeldict[d - 1].add(p / 4) self.demoted = set() return
renorm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.demoted = set()\n self._demote_all()\n for d in range(self.maxdepth, 2, -1):\n plist = self.pixeldict[d].copy()\n for p in plist:\n if p % 4 == 0:\n nset = set((p, p + 1, p + 2, p + 3))\n if p + 1 in plist and p + 2 in plist and p + 3 in plist:\n self.pixeldict[d].difference_update(nset)\n self.pixeldict[d - 1].add(p / 4)\n self.demoted = set()\n return\n", "role": "user" }, { "content": "renorm", "role": "assistant" } ]
def x(self, ra, dec, degin=False): sky = self.radec2sky(ra, dec) if degin: sky = np.radians(sky) theta_phi = self.sky2ang(sky) mask = np.bitwise_not(np.logical_and.reduce(np.isfinite(theta_phi), axis=1) ) theta_phi[mask, :] = 0 theta, phi = theta_phi.transpose() pix = hp.ang2pix(2 ** self.maxdepth, theta, phi, nest=True) pixelset = self.get_demoted() result = np.in1d(pix, list(pixelset)) result[mask] = False return result
sky_within
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec, degin=False):\n sky = self.radec2sky(ra, dec)\n if degin:\n sky = np.radians(sky)\n theta_phi = self.sky2ang(sky)\n mask = np.bitwise_not(np.logical_and.reduce(np.isfinite(theta_phi), axis=1)\n )\n theta_phi[mask, :] = 0\n theta, phi = theta_phi.transpose()\n pix = hp.ang2pix(2 ** self.maxdepth, theta, phi, nest=True)\n pixelset = self.get_demoted()\n result = np.in1d(pix, list(pixelset))\n result[mask] = False\n return result\n", "role": "user" }, { "content": "sky_within", "role": "assistant" } ]
def x(self, other, renorm=True): for d in range(1, min(self.maxdepth, other.maxdepth) + 1): self.add_pixels(other.pixeldict[d], d) if self.maxdepth < other.maxdepth: for d in range(self.maxdepth + 1, other.maxdepth + 1): for p in other.pixeldict[d]: pp = p / 4 ** (d - self.maxdepth) self.pixeldict[self.maxdepth].add(pp) if renorm: self._renorm() return
union
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other, renorm=True):\n for d in range(1, min(self.maxdepth, other.maxdepth) + 1):\n self.add_pixels(other.pixeldict[d], d)\n if self.maxdepth < other.maxdepth:\n for d in range(self.maxdepth + 1, other.maxdepth + 1):\n for p in other.pixeldict[d]:\n pp = p / 4 ** (d - self.maxdepth)\n self.pixeldict[self.maxdepth].add(pp)\n if renorm:\n self._renorm()\n return\n", "role": "user" }, { "content": "union", "role": "assistant" } ]
def x(self, other): if not self.maxdepth == other.maxdepth: raise AssertionError('Regions must have the same maxdepth') self._demote_all() opd = set(other.get_demoted()) self.pixeldict[self.maxdepth].difference_update(opd) self._renorm() return
without
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n if not self.maxdepth == other.maxdepth:\n raise AssertionError('Regions must have the same maxdepth')\n self._demote_all()\n opd = set(other.get_demoted())\n self.pixeldict[self.maxdepth].difference_update(opd)\n self._renorm()\n return\n", "role": "user" }, { "content": "without", "role": "assistant" } ]
def x(self, other): if not self.maxdepth == other.maxdepth: raise AssertionError('Regions must have the same maxdepth') self._demote_all() opd = set(other.get_demoted()) self.pixeldict[self.maxdepth].intersection_update(opd) self._renorm() return
intersect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n if not self.maxdepth == other.maxdepth:\n raise AssertionError('Regions must have the same maxdepth')\n self._demote_all()\n opd = set(other.get_demoted())\n self.pixeldict[self.maxdepth].intersection_update(opd)\n self._renorm()\n return\n", "role": "user" }, { "content": "intersect", "role": "assistant" } ]
def x(self, other): if not self.maxdepth == other.maxdepth: raise AssertionError('Regions must have the same maxdepth') self._demote_all() opd = set(other.get_demoted()) self.pixeldict[self.maxdepth].symmetric_difference_update(opd) self._renorm() return
symmetric_difference
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, other):\n if not self.maxdepth == other.maxdepth:\n raise AssertionError('Regions must have the same maxdepth')\n self._demote_all()\n opd = set(other.get_demoted())\n self.pixeldict[self.maxdepth].symmetric_difference_update(opd)\n self._renorm()\n return\n", "role": "user" }, { "content": "symmetric_difference", "role": "assistant" } ]
def x(self, filename): with open(filename, 'w') as out: for d in range(1, self.maxdepth + 1): for p in self.pixeldict[d]: line = 'fk5; polygon(' vectors = list(zip(*hp.boundaries(2 ** d, int(p), step=1, nest=True))) positions = [] for sky in self.vec2sky(np.array(vectors), degrees=True): ra, dec = sky pos = SkyCoord(ra / 15, dec, unit=(u.degree, u.degree)) positions.append(pos.ra.to_string(sep=':', precision=2)) positions.append(pos.dec.to_string(sep=':', precision=2)) line += ','.join(positions) line += ')' print(line, file=out) return
write_reg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n with open(filename, 'w') as out:\n for d in range(1, self.maxdepth + 1):\n for p in self.pixeldict[d]:\n line = 'fk5; polygon('\n vectors = list(zip(*hp.boundaries(2 ** d, int(p), step=1,\n nest=True)))\n positions = []\n for sky in self.vec2sky(np.array(vectors), degrees=True):\n ra, dec = sky\n pos = SkyCoord(ra / 15, dec, unit=(u.degree, u.degree))\n positions.append(pos.ra.to_string(sep=':', precision=2))\n positions.append(pos.dec.to_string(sep=':', precision=2))\n line += ','.join(positions)\n line += ')'\n print(line, file=out)\n return\n", "role": "user" }, { "content": "write_reg", "role": "assistant" } ]
def x(self, filename, moctool=''): datafile = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'MOC.fits') hdulist = fits.open(datafile) cols = fits.Column(name='NPIX', array=self._uniq(), format='1K') tbhdu = fits.BinTableHDU.from_columns([cols]) hdulist[1] = tbhdu hdulist[1].header['PIXTYPE'] = 'HEALPIX ', 'HEALPix magic code' hdulist[1].header['ORDERING'] = 'NUNIQ ', 'NUNIQ coding method' hdulist[1].header['COORDSYS'] = 'C ', 'ICRS reference frame' hdulist[1].header['MOCORDER' ] = self.maxdepth, 'MOC resolution (best order)' hdulist[1].header['MOCTOOL'] = moctool, 'Name of the MOC generator' hdulist[1].header['MOCTYPE'] = 'CATALOG', 'Source type (IMAGE or CATALOG)' hdulist[1].header['MOCID'] = ' ', 'Identifier of the collection' hdulist[1].header['ORIGIN'] = ' ', 'MOC origin' time = datetime.datetime.utcnow() hdulist[1].header['DATE'] = datetime.datetime.strftime(time, format= '%Y-%m-%dT%H:%m:%SZ'), 'MOC creation date' hdulist.writeto(filename, overwrite=True) return
write_fits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, moctool=''):\n datafile = os.path.join(os.path.dirname(os.path.abspath(__file__)),\n 'data', 'MOC.fits')\n hdulist = fits.open(datafile)\n cols = fits.Column(name='NPIX', array=self._uniq(), format='1K')\n tbhdu = fits.BinTableHDU.from_columns([cols])\n hdulist[1] = tbhdu\n hdulist[1].header['PIXTYPE'] = 'HEALPIX ', 'HEALPix magic code'\n hdulist[1].header['ORDERING'] = 'NUNIQ ', 'NUNIQ coding method'\n hdulist[1].header['COORDSYS'] = 'C ', 'ICRS reference frame'\n hdulist[1].header['MOCORDER'\n ] = self.maxdepth, 'MOC resolution (best order)'\n hdulist[1].header['MOCTOOL'] = moctool, 'Name of the MOC generator'\n hdulist[1].header['MOCTYPE'] = 'CATALOG', 'Source type (IMAGE or CATALOG)'\n hdulist[1].header['MOCID'] = ' ', 'Identifier of the collection'\n hdulist[1].header['ORIGIN'] = ' ', 'MOC origin'\n time = datetime.datetime.utcnow()\n hdulist[1].header['DATE'] = datetime.datetime.strftime(time, format=\n '%Y-%m-%dT%H:%m:%SZ'), 'MOC creation date'\n hdulist.writeto(filename, overwrite=True)\n return\n", "role": "user" }, { "content": "write_fits", "role": "assistant" } ]
def x(self): pd = [] for d in range(1, self.maxdepth): pd.extend(map(lambda x: int(4 ** (d + 1) + x), self.pixeldict[d])) return sorted(pd)
uniq
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n pd = []\n for d in range(1, self.maxdepth):\n pd.extend(map(lambda x: int(4 ** (d + 1) + x), self.pixeldict[d]))\n return sorted(pd)\n", "role": "user" }, { "content": "uniq", "role": "assistant" } ]
def x(ra, dec): try: sky = np.array(list(zip(ra, dec))) except TypeError: sky = np.array([(ra, dec)]) return sky
radec2sky
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ra, dec):\n try:\n sky = np.array(list(zip(ra, dec)))\n except TypeError:\n sky = np.array([(ra, dec)])\n return sky\n", "role": "user" }, { "content": "radec2sky", "role": "assistant" } ]
def x(sky): try: theta_phi = sky.copy() except AttributeError as _: theta_phi = np.array(sky) theta_phi[:, [1, 0]] = theta_phi[:, [0, 1]] theta_phi[:, 0] = np.pi / 2 - theta_phi[:, 0] return theta_phi
sky2ang
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sky):\n try:\n theta_phi = sky.copy()\n except AttributeError as _:\n theta_phi = np.array(sky)\n theta_phi[:, [1, 0]] = theta_phi[:, [0, 1]]\n theta_phi[:, 0] = np.pi / 2 - theta_phi[:, 0]\n return theta_phi\n", "role": "user" }, { "content": "sky2ang", "role": "assistant" } ]
def x(cls, sky): theta_phi = cls.sky2ang(sky) theta, phi = map(np.array, list(zip(*theta_phi))) vec = hp.ang2vec(theta, phi) return vec
sky2vec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, sky):\n theta_phi = cls.sky2ang(sky)\n theta, phi = map(np.array, list(zip(*theta_phi)))\n vec = hp.ang2vec(theta, phi)\n return vec\n", "role": "user" }, { "content": "sky2vec", "role": "assistant" } ]
def x(cls, vec, degrees=False): theta, phi = hp.vec2ang(vec) ra = phi dec = np.pi / 2 - theta if degrees: ra = np.degrees(ra) dec = np.degrees(dec) return cls.radec2sky(ra, dec)
vec2sky
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, vec, degrees=False):\n theta, phi = hp.vec2ang(vec)\n ra = phi\n dec = np.pi / 2 - theta\n if degrees:\n ra = np.degrees(ra)\n dec = np.degrees(dec)\n return cls.radec2sky(ra, dec)\n", "role": "user" }, { "content": "vec2sky", "role": "assistant" } ]
def x(cls, header, beam=None, lat=None): try: wcs = pywcs.WCS(header, naxis=2) except: wcs = pywcs.WCS(str(header), naxis=2) if beam is None: beam = get_beam(header) else: beam = beam if beam is None: logging.critical('Cannot determine beam information') _, pixscale = get_pixinfo(header) refpix = header['CRPIX1'], header['CRPIX2'] return cls(wcs, beam, pixscale, refpix, lat)
from_header
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, header, beam=None, lat=None):\n try:\n wcs = pywcs.WCS(header, naxis=2)\n except:\n wcs = pywcs.WCS(str(header), naxis=2)\n if beam is None:\n beam = get_beam(header)\n else:\n beam = beam\n if beam is None:\n logging.critical('Cannot determine beam information')\n _, pixscale = get_pixinfo(header)\n refpix = header['CRPIX1'], header['CRPIX2']\n return cls(wcs, beam, pixscale, refpix, lat)\n", "role": "user" }, { "content": "from_header", "role": "assistant" } ]
def x(cls, filename, beam=None): header = fits.getheader(filename) return cls.from_header(header, beam)
from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, filename, beam=None):\n header = fits.getheader(filename)\n return cls.from_header(header, beam)\n", "role": "user" }, { "content": "from_file", "role": "assistant" } ]
def x(self, pixel): x, y = pixel return self.wcs.wcs_pix2world([[y, x]], 1)[0]
pix2sky
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pixel):\n x, y = pixel\n return self.wcs.wcs_pix2world([[y, x]], 1)[0]\n", "role": "user" }, { "content": "pix2sky", "role": "assistant" } ]
def x(self, pos): pixel = self.wcs.wcs_world2pix([pos], 1) return [pixel[0][1], pixel[0][0]]
sky2pix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pos):\n pixel = self.wcs.wcs_world2pix([pos], 1)\n return [pixel[0][1], pixel[0][0]]\n", "role": "user" }, { "content": "sky2pix", "role": "assistant" } ]
def x(self, pos, r, pa): ra, dec = pos x, y = self.sky2pix(pos) a = translate(ra, dec, r, pa) locations = self.sky2pix(a) x_off, y_off = locations a = np.sqrt((x - x_off) ** 2 + (y - y_off) ** 2) theta = np.degrees(np.arctan2(y_off - y, x_off - x)) return x, y, a, theta
sky2pix_vec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pos, r, pa):\n ra, dec = pos\n x, y = self.sky2pix(pos)\n a = translate(ra, dec, r, pa)\n locations = self.sky2pix(a)\n x_off, y_off = locations\n a = np.sqrt((x - x_off) ** 2 + (y - y_off) ** 2)\n theta = np.degrees(np.arctan2(y_off - y, x_off - x))\n return x, y, a, theta\n", "role": "user" }, { "content": "sky2pix_vec", "role": "assistant" } ]
def x(self, pixel, r, theta): ra1, dec1 = self.pix2sky(pixel) x, y = pixel a = [x + r * np.cos(np.radians(theta)), y + r * np.sin(np.radians(theta))] locations = self.pix2sky(a) ra2, dec2 = locations a = gcd(ra1, dec1, ra2, dec2) pa = bear(ra1, dec1, ra2, dec2) return ra1, dec1, a, pa
pix2sky_vec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pixel, r, theta):\n ra1, dec1 = self.pix2sky(pixel)\n x, y = pixel\n a = [x + r * np.cos(np.radians(theta)), y + r * np.sin(np.radians(theta))]\n locations = self.pix2sky(a)\n ra2, dec2 = locations\n a = gcd(ra1, dec1, ra2, dec2)\n pa = bear(ra1, dec1, ra2, dec2)\n return ra1, dec1, a, pa\n", "role": "user" }, { "content": "pix2sky_vec", "role": "assistant" } ]
def x(self, pos, a, b, pa): ra, dec = pos x, y = self.sky2pix(pos) x_off, y_off = self.sky2pix(translate(ra, dec, a, pa)) sx = np.hypot(x - x_off, y - y_off) theta = np.arctan2(y_off - y, x_off - x) x_off, y_off = self.sky2pix(translate(ra, dec, b, pa - 90)) sy = np.hypot(x - x_off, y - y_off) theta2 = np.arctan2(y_off - y, x_off - x) - np.pi / 2 defect = theta - theta2 sy *= abs(np.cos(defect)) return x, y, sx, sy, np.degrees(theta)
sky2pix_ellipse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pos, a, b, pa):\n ra, dec = pos\n x, y = self.sky2pix(pos)\n x_off, y_off = self.sky2pix(translate(ra, dec, a, pa))\n sx = np.hypot(x - x_off, y - y_off)\n theta = np.arctan2(y_off - y, x_off - x)\n x_off, y_off = self.sky2pix(translate(ra, dec, b, pa - 90))\n sy = np.hypot(x - x_off, y - y_off)\n theta2 = np.arctan2(y_off - y, x_off - x) - np.pi / 2\n defect = theta - theta2\n sy *= abs(np.cos(defect))\n return x, y, sx, sy, np.degrees(theta)\n", "role": "user" }, { "content": "sky2pix_ellipse", "role": "assistant" } ]
def x(self, pixel, sx, sy, theta): ra, dec = self.pix2sky(pixel) x, y = pixel v_sx = [x + sx * np.cos(np.radians(theta)), y + sx * np.sin(np.radians( theta))] ra2, dec2 = self.pix2sky(v_sx) major = gcd(ra, dec, ra2, dec2) pa = bear(ra, dec, ra2, dec2) v_sy = [x + sy * np.cos(np.radians(theta - 90)), y + sy * np.sin(np. radians(theta - 90))] ra2, dec2 = self.pix2sky(v_sy) minor = gcd(ra, dec, ra2, dec2) pa2 = bear(ra, dec, ra2, dec2) - 90 defect = pa - pa2 minor *= abs(np.cos(np.radians(defect))) return ra, dec, major, minor, pa
pix2sky_ellipse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pixel, sx, sy, theta):\n ra, dec = self.pix2sky(pixel)\n x, y = pixel\n v_sx = [x + sx * np.cos(np.radians(theta)), y + sx * np.sin(np.radians(\n theta))]\n ra2, dec2 = self.pix2sky(v_sx)\n major = gcd(ra, dec, ra2, dec2)\n pa = bear(ra, dec, ra2, dec2)\n v_sy = [x + sy * np.cos(np.radians(theta - 90)), y + sy * np.sin(np.\n radians(theta - 90))]\n ra2, dec2 = self.pix2sky(v_sy)\n minor = gcd(ra, dec, ra2, dec2)\n pa2 = bear(ra, dec, ra2, dec2) - 90\n defect = pa - pa2\n minor *= abs(np.cos(np.radians(defect)))\n return ra, dec, major, minor, pa\n", "role": "user" }, { "content": "pix2sky_ellipse", "role": "assistant" } ]
def x(self, x, y): ra, dec = self.pix2sky((x, y)) return self.get_pixbeam(ra, dec)
get_pixbeam_pixel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y):\n ra, dec = self.pix2sky((x, y))\n return self.get_pixbeam(ra, dec)\n", "role": "user" }, { "content": "get_pixbeam_pixel", "role": "assistant" } ]
def x(self, ra, dec): if self.lat is None: factor = 1 else: factor = np.cos(np.radians(dec - self.lat)) return Beam(self.beam.a / factor, self.beam.b, self.beam.pa)
get_beam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec):\n if self.lat is None:\n factor = 1\n else:\n factor = np.cos(np.radians(dec - self.lat))\n return Beam(self.beam.a / factor, self.beam.b, self.beam.pa)\n", "role": "user" }, { "content": "get_beam", "role": "assistant" } ]
def x(self, ra, dec): if ra is None: ra, dec = self.pix2sky(self.refpix) pos = [ra, dec] beam = self.get_beam(ra, dec) _, _, major, minor, theta = self.sky2pix_ellipse(pos, beam.a, beam.b, beam.pa) if major < minor: major, minor = minor, major theta -= 90 if theta < -180: theta += 180 if not np.isfinite(theta): theta = 0 if not all(np.isfinite([major, minor, theta])): beam = None else: beam = Beam(major, minor, theta) return beam
get_pixbeam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec):\n if ra is None:\n ra, dec = self.pix2sky(self.refpix)\n pos = [ra, dec]\n beam = self.get_beam(ra, dec)\n _, _, major, minor, theta = self.sky2pix_ellipse(pos, beam.a, beam.b,\n beam.pa)\n if major < minor:\n major, minor = minor, major\n theta -= 90\n if theta < -180:\n theta += 180\n if not np.isfinite(theta):\n theta = 0\n if not all(np.isfinite([major, minor, theta])):\n beam = None\n else:\n beam = Beam(major, minor, theta)\n return beam\n", "role": "user" }, { "content": "get_pixbeam", "role": "assistant" } ]
def x(self, ra, dec): barea = abs(self.beam.a * self.beam.b * np.pi) if self.lat is not None: barea /= np.cos(np.radians(dec - self.lat)) return barea
get_beamarea_deg2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec):\n barea = abs(self.beam.a * self.beam.b * np.pi)\n if self.lat is not None:\n barea /= np.cos(np.radians(dec - self.lat))\n return barea\n", "role": "user" }, { "content": "get_beamarea_deg2", "role": "assistant" } ]
def x(self, ra, dec): parea = abs(self.pixscale[0] * self.pixscale[1]) barea = self.get_beamarea_deg2(ra, dec) return barea / parea
get_beamarea_pix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec):\n parea = abs(self.pixscale[0] * self.pixscale[1])\n barea = self.get_beamarea_deg2(ra, dec)\n return barea / parea\n", "role": "user" }, { "content": "get_beamarea_pix", "role": "assistant" } ]
def x(self, pix1, pix2): pos1 = self.pix2sky(pix1) pos2 = self.pix2sky(pix2) sep = gcd(pos1[0], pos1[1], pos2[0], pos2[1]) return sep
sky_sep
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pix1, pix2):\n pos1 = self.pix2sky(pix1)\n pos2 = self.pix2sky(pix2)\n sep = gcd(pos1[0], pos1[1], pos2[0], pos2[1])\n return sep\n", "role": "user" }, { "content": "sky_sep", "role": "assistant" } ]
def x(self, ra, dec): if self.data is None: beam = self.wcshelper.get_beam(ra, dec) return beam.a, beam.b, beam.pa x, y = self.sky2pix([ra, dec]) x = int(np.clip(x, 0, self.data.shape[1] - 1)) y = int(np.clip(y, 0, self.data.shape[2] - 1)) psf_sky = self.data[:, x, y] return psf_sky
get_psf_sky
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec):\n if self.data is None:\n beam = self.wcshelper.get_beam(ra, dec)\n return beam.a, beam.b, beam.pa\n x, y = self.sky2pix([ra, dec])\n x = int(np.clip(x, 0, self.data.shape[1] - 1))\n y = int(np.clip(y, 0, self.data.shape[2] - 1))\n psf_sky = self.data[:, x, y]\n return psf_sky\n", "role": "user" }, { "content": "get_psf_sky", "role": "assistant" } ]
def x(self, ra, dec): psf_sky = self.get_psf_sky(ra, dec) psf_pix = self.wcshelper.sky2pix_ellipse([ra, dec], psf_sky[0], psf_sky [1], psf_sky[2])[2:] return psf_pix
get_psf_pix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec):\n psf_sky = self.get_psf_sky(ra, dec)\n psf_pix = self.wcshelper.sky2pix_ellipse([ra, dec], psf_sky[0], psf_sky\n [1], psf_sky[2])[2:]\n return psf_pix\n", "role": "user" }, { "content": "get_psf_pix", "role": "assistant" } ]
def x(self, ra, dec): if self.data is None: return self.wcshelper.get_pixbeam(ra, dec) psf = self.get_psf_pix(ra, dec) if not np.all(np.isfinite(psf)): log.warn('PSF requested, returned Null') return None return Beam(psf[0], psf[1], psf[2])
get_pixbeam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec):\n if self.data is None:\n return self.wcshelper.get_pixbeam(ra, dec)\n psf = self.get_psf_pix(ra, dec)\n if not np.all(np.isfinite(psf)):\n log.warn('PSF requested, returned Null')\n return None\n return Beam(psf[0], psf[1], psf[2])\n", "role": "user" }, { "content": "get_pixbeam", "role": "assistant" } ]
def x(self, ra, dec): if self.data is None: return self.wcshelper.beam else: psf = self.get_psf_sky(ra, dec) if not all(np.isfinite(psf)): return None return Beam(psf[0], psf[1], psf[2])
get_beam
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec):\n if self.data is None:\n return self.wcshelper.beam\n else:\n psf = self.get_psf_sky(ra, dec)\n if not all(np.isfinite(psf)):\n return None\n return Beam(psf[0], psf[1], psf[2])\n", "role": "user" }, { "content": "get_beam", "role": "assistant" } ]
def x(self, ra, dec): beam = self.get_pixbeam(ra, dec) if beam is None: return 0 return beam.a * beam.b * np.pi
get_beamarea_pix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec):\n beam = self.get_pixbeam(ra, dec)\n if beam is None:\n return 0\n return beam.a * beam.b * np.pi\n", "role": "user" }, { "content": "get_beamarea_pix", "role": "assistant" } ]
def x(self, ra, dec): beam = self.get_beam(ra, dec) if beam is None: return 0 return beam.a * beam.b * np.pi
get_beamarea_deg2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ra, dec):\n beam = self.get_beam(ra, dec)\n if beam is None:\n return 0\n return beam.a * beam.b * np.pi\n", "role": "user" }, { "content": "get_beamarea_deg2", "role": "assistant" } ]
def x(self): for i, row in enumerate(self.data): for j, _ in enumerate(row): if self.data[i, j] != 0: return i, j
find_start_point
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for i, row in enumerate(self.data):\n for j, _ in enumerate(row):\n if self.data[i, j] != 0:\n return i, j\n", "role": "user" }, { "content": "find_start_point", "role": "assistant" } ]
def x(self, x, y): up_left = self.solid(x - 1, y - 1) up_right = self.solid(x, y - 1) down_left = self.solid(x - 1, y) down_right = self.solid(x, y) state = 0 self.prev = self.next if up_left: state |= 1 if up_right: state |= 2 if down_left: state |= 4 if down_right: state |= 8 if state in [1, 5, 13]: self.next = self.UP elif state in [2, 3, 7]: self.next = self.RIGHT elif state in [4, 12, 14]: self.next = self.LEFT elif state in [8, 10, 11]: self.next = self.DOWN elif state == 6: if self.prev == self.UP: self.next = self.LEFT else: self.next = self.RIGHT elif state == 9: if self.prev == self.RIGHT: self.next = self.UP else: self.next = self.DOWN else: self.next = self.NOWHERE return
step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y):\n up_left = self.solid(x - 1, y - 1)\n up_right = self.solid(x, y - 1)\n down_left = self.solid(x - 1, y)\n down_right = self.solid(x, y)\n state = 0\n self.prev = self.next\n if up_left:\n state |= 1\n if up_right:\n state |= 2\n if down_left:\n state |= 4\n if down_right:\n state |= 8\n if state in [1, 5, 13]:\n self.next = self.UP\n elif state in [2, 3, 7]:\n self.next = self.RIGHT\n elif state in [4, 12, 14]:\n self.next = self.LEFT\n elif state in [8, 10, 11]:\n self.next = self.DOWN\n elif state == 6:\n if self.prev == self.UP:\n self.next = self.LEFT\n else:\n self.next = self.RIGHT\n elif state == 9:\n if self.prev == self.RIGHT:\n self.next = self.UP\n else:\n self.next = self.DOWN\n else:\n self.next = self.NOWHERE\n return\n", "role": "user" }, { "content": "step", "role": "assistant" } ]
def x(self, x, y): if not 0 <= x < self.xsize or not 0 <= y < self.ysize: return False if self.data[x, y] == 0: return False return True
solid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y):\n if not 0 <= x < self.xsize or not 0 <= y < self.ysize:\n return False\n if self.data[x, y] == 0:\n return False\n return True\n", "role": "user" }, { "content": "solid", "role": "assistant" } ]
def x(self, startx, starty): startx = max(startx, 0) startx = min(startx, self.xsize) starty = max(starty, 0) starty = min(starty, self.ysize) points = [] x, y = startx, starty while True: self.step(x, y) if 0 <= x <= self.xsize and 0 <= y <= self.ysize: points.append((x, y)) if self.next == self.UP: y -= 1 elif self.next == self.LEFT: x -= 1 elif self.next == self.DOWN: y += 1 elif self.next == self.RIGHT: x += 1 elif self.next == self.NOWHERE: break if x == startx and y == starty: break return points
walk_perimeter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, startx, starty):\n startx = max(startx, 0)\n startx = min(startx, self.xsize)\n starty = max(starty, 0)\n starty = min(starty, self.ysize)\n points = []\n x, y = startx, starty\n while True:\n self.step(x, y)\n if 0 <= x <= self.xsize and 0 <= y <= self.ysize:\n points.append((x, y))\n if self.next == self.UP:\n y -= 1\n elif self.next == self.LEFT:\n x -= 1\n elif self.next == self.DOWN:\n y += 1\n elif self.next == self.RIGHT:\n x += 1\n elif self.next == self.NOWHERE:\n break\n if x == startx and y == starty:\n break\n return points\n", "role": "user" }, { "content": "walk_perimeter", "role": "assistant" } ]
def x(self): x, y = self.find_start_point() perimeter = self.walk_perimeter(x, y) return perimeter
do_march
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n x, y = self.find_start_point()\n perimeter = self.walk_perimeter(x, y)\n return perimeter\n", "role": "user" }, { "content": "do_march", "role": "assistant" } ]
def x(self, perimeter): for p in perimeter: if p[0] >= self.data.shape[0] or p[1] >= self.data.shape[1]: continue if self.data[p] == 0: continue self.data[p] = 0 for i in range(p[1] + 1, self.data.shape[1]): q = p[0], i if q in perimeter: break self.data[q] = 0 return
blank_within
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, perimeter):\n for p in perimeter:\n if p[0] >= self.data.shape[0] or p[1] >= self.data.shape[1]:\n continue\n if self.data[p] == 0:\n continue\n self.data[p] = 0\n for i in range(p[1] + 1, self.data.shape[1]):\n q = p[0], i\n if q in perimeter:\n break\n self.data[q] = 0\n return\n", "role": "user" }, { "content": "blank_within", "role": "assistant" } ]
def x(self): data_copy = copy(self.data) perimeters = [] p = self.find_start_point() while p is not None: x, y = p perim = self.walk_perimeter(x, y) perimeters.append(perim) self._blank_within(perim) p = self.find_start_point() self.data = data_copy return perimeters
do_march_all
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n data_copy = copy(self.data)\n perimeters = []\n p = self.find_start_point()\n while p is not None:\n x, y = p\n perim = self.walk_perimeter(x, y)\n perimeters.append(perim)\n self._blank_within(perim)\n p = self.find_start_point()\n self.data = data_copy\n return perimeters\n", "role": "user" }, { "content": "do_march_all", "role": "assistant" } ]
def x(x, y, amp, xo, yo, sx, sy, theta): try: sint, cost = math.sin(np.radians(theta)), math.cos(np.radians(theta)) except ValueError as e: if 'math domain error' in e.args: sint, cost = np.nan, np.nan xxo = x - xo yyo = y - yo exp = (xxo * cost + yyo * sint) ** 2 / sx ** 2 + (xxo * sint - yyo * cost ) ** 2 / sy ** 2 exp *= -1.0 / 2 return amp * np.exp(exp)
elliptical_gaussian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, amp, xo, yo, sx, sy, theta):\n try:\n sint, cost = math.sin(np.radians(theta)), math.cos(np.radians(theta))\n except ValueError as e:\n if 'math domain error' in e.args:\n sint, cost = np.nan, np.nan\n xxo = x - xo\n yyo = y - yo\n exp = (xxo * cost + yyo * sint) ** 2 / sx ** 2 + (xxo * sint - yyo * cost\n ) ** 2 / sy ** 2\n exp *= -1.0 / 2\n return amp * np.exp(exp)\n", "role": "user" }, { "content": "elliptical_gaussian", "role": "assistant" } ]
def x(x, y, sx, sy, theta): C = np.vstack([elliptical_gaussian(x, y, 1, i, j, sx, sy, theta) for i, j in zip(x, y)]) return C
Cmatrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, sx, sy, theta):\n C = np.vstack([elliptical_gaussian(x, y, 1, i, j, sx, sy, theta) for i,\n j in zip(x, y)])\n return C\n", "role": "user" }, { "content": "Cmatrix", "role": "assistant" } ]
def x(C): L, Q = eigh(C) minL = 1e-09 * L[-1] L[L < minL] = minL S = np.diag(1 / np.sqrt(L)) B = Q.dot(S) return B
Bmatrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(C):\n L, Q = eigh(C)\n minL = 1e-09 * L[-1]\n L[L < minL] = minL\n S = np.diag(1 / np.sqrt(L))\n B = Q.dot(S)\n return B\n", "role": "user" }, { "content": "Bmatrix", "role": "assistant" } ]
def x(pars, x, y): matrix = [] for i in range(pars['components'].value): prefix = 'c{0}_'.format(i) amp = pars[prefix + 'amp'].value xo = pars[prefix + 'xo'].value yo = pars[prefix + 'yo'].value sx = pars[prefix + 'sx'].value sy = pars[prefix + 'sy'].value theta = pars[prefix + 'theta'].value model = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) sint = np.sin(np.radians(theta)) cost = np.cos(np.radians(theta)) xxo = x - xo yyo = y - yo xcos, ycos = xxo * cost, yyo * cost xsin, ysin = xxo * sint, yyo * sint if pars[prefix + 'amp'].vary: dmds = model / amp matrix.append(dmds) if pars[prefix + 'xo'].vary: dmdxo = cost * (xcos + ysin) / sx ** 2 + sint * (xsin - ycos ) / sy ** 2 dmdxo *= model matrix.append(dmdxo) if pars[prefix + 'yo'].vary: dmdyo = sint * (xcos + ysin) / sx ** 2 - cost * (xsin - ycos ) / sy ** 2 dmdyo *= model matrix.append(dmdyo) if pars[prefix + 'sx'].vary: dmdsx = model / sx ** 3 * (xcos + ysin) ** 2 matrix.append(dmdsx) if pars[prefix + 'sy'].vary: dmdsy = model / sy ** 3 * (xsin - ycos) ** 2 matrix.append(dmdsy) if pars[prefix + 'theta'].vary: dmdtheta = model * (sy ** 2 - sx ** 2) * (xsin - ycos) * (xcos + ysin) / sx ** 2 / sy ** 2 matrix.append(dmdtheta) return np.array(matrix)
jacobian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pars, x, y):\n matrix = []\n for i in range(pars['components'].value):\n prefix = 'c{0}_'.format(i)\n amp = pars[prefix + 'amp'].value\n xo = pars[prefix + 'xo'].value\n yo = pars[prefix + 'yo'].value\n sx = pars[prefix + 'sx'].value\n sy = pars[prefix + 'sy'].value\n theta = pars[prefix + 'theta'].value\n model = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta)\n sint = np.sin(np.radians(theta))\n cost = np.cos(np.radians(theta))\n xxo = x - xo\n yyo = y - yo\n xcos, ycos = xxo * cost, yyo * cost\n xsin, ysin = xxo * sint, yyo * sint\n if pars[prefix + 'amp'].vary:\n dmds = model / amp\n matrix.append(dmds)\n if pars[prefix + 'xo'].vary:\n dmdxo = cost * (xcos + ysin) / sx ** 2 + sint * (xsin - ycos\n ) / sy ** 2\n dmdxo *= model\n matrix.append(dmdxo)\n if pars[prefix + 'yo'].vary:\n dmdyo = sint * (xcos + ysin) / sx ** 2 - cost * (xsin - ycos\n ) / sy ** 2\n dmdyo *= model\n matrix.append(dmdyo)\n if pars[prefix + 'sx'].vary:\n dmdsx = model / sx ** 3 * (xcos + ysin) ** 2\n matrix.append(dmdsx)\n if pars[prefix + 'sy'].vary:\n dmdsy = model / sy ** 3 * (xsin - ycos) ** 2\n matrix.append(dmdsy)\n if pars[prefix + 'theta'].vary:\n dmdtheta = model * (sy ** 2 - sx ** 2) * (xsin - ycos) * (xcos +\n ysin) / sx ** 2 / sy ** 2\n matrix.append(dmdtheta)\n return np.array(matrix)\n", "role": "user" }, { "content": "jacobian", "role": "assistant" } ]
def x(pars, x, y, errs=None, B=None, emp=False): if emp: matrix = emp_jacobian(pars, x, y) else: matrix = jacobian(pars, x, y) matrix = np.vstack(matrix) if errs is not None: matrix /= errs if B is not None: matrix = matrix.dot(B) matrix = np.transpose(matrix) return matrix
lmfit_jacobian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pars, x, y, errs=None, B=None, emp=False):\n if emp:\n matrix = emp_jacobian(pars, x, y)\n else:\n matrix = jacobian(pars, x, y)\n matrix = np.vstack(matrix)\n if errs is not None:\n matrix /= errs\n if B is not None:\n matrix = matrix.dot(B)\n matrix = np.transpose(matrix)\n return matrix\n", "role": "user" }, { "content": "lmfit_jacobian", "role": "assistant" } ]
def x(pars, x, y): eps = 1e-05 matrix = [] for i in range(pars['components'].value): model = emp_jacobian(pars, x, y) prefix = 'c{0}_'.format(i) for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']: if pars[prefix + p].vary: pars[prefix + p].value += eps dm2didj = emp_jacobian(pars, x, y) - model matrix.append(dm2didj / eps) pars[prefix + p].value -= eps matrix = np.array(matrix) return matrix
emp_hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pars, x, y):\n eps = 1e-05\n matrix = []\n for i in range(pars['components'].value):\n model = emp_jacobian(pars, x, y)\n prefix = 'c{0}_'.format(i)\n for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']:\n if pars[prefix + p].vary:\n pars[prefix + p].value += eps\n dm2didj = emp_jacobian(pars, x, y) - model\n matrix.append(dm2didj / eps)\n pars[prefix + p].value -= eps\n matrix = np.array(matrix)\n return matrix\n", "role": "user" }, { "content": "emp_hessian", "role": "assistant" } ]
def x(noise): corr = np.zeros(noise.shape) ix, jx = noise.shape for i in range(ix): si_min = slice(i, None, None) si_max = slice(None, ix - i, None) for j in range(jx): sj_min = slice(j, None, None) sj_max = slice(None, jx - j, None) if np.all(np.isnan(noise[si_min, sj_min])) or np.all(np.isnan( noise[si_max, sj_max])): corr[i, j] = np.nan else: corr[i, j] = np.nansum(noise[si_min, sj_min] * noise[si_max, sj_max]) return corr / np.nanmax(corr)
nan_acf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(noise):\n corr = np.zeros(noise.shape)\n ix, jx = noise.shape\n for i in range(ix):\n si_min = slice(i, None, None)\n si_max = slice(None, ix - i, None)\n for j in range(jx):\n sj_min = slice(j, None, None)\n sj_max = slice(None, jx - j, None)\n if np.all(np.isnan(noise[si_min, sj_min])) or np.all(np.isnan(\n noise[si_max, sj_max])):\n corr[i, j] = np.nan\n else:\n corr[i, j] = np.nansum(noise[si_min, sj_min] * noise[si_max,\n sj_max])\n return corr / np.nanmax(corr)\n", "role": "user" }, { "content": "nan_acf", "role": "assistant" } ]
def x(noise, acf=None): if acf is None: acf = nan_acf(noise) s = np.count_nonzero(np.isfinite(noise)) xm, ym = np.where(np.isfinite(noise)) ita = np.zeros((s, s)) for i, (x1, y1) in enumerate(zip(xm, ym)): for j, (x2, y2) in enumerate(zip(xm, ym)): k = abs(x1 - x2) l = abs(y1 - y2) ita[i, j] = acf[k, l] return ita
make_ita
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(noise, acf=None):\n if acf is None:\n acf = nan_acf(noise)\n s = np.count_nonzero(np.isfinite(noise))\n xm, ym = np.where(np.isfinite(noise))\n ita = np.zeros((s, s))\n for i, (x1, y1) in enumerate(zip(xm, ym)):\n for j, (x2, y2) in enumerate(zip(xm, ym)):\n k = abs(x1 - x2)\n l = abs(y1 - y2)\n ita[i, j] = acf[k, l]\n return ita\n", "role": "user" }, { "content": "make_ita", "role": "assistant" } ]
def x(data, pars, ita=None, acf=None): log.info('data {0}'.format(data.shape)) nparams = np.sum([pars[k].vary for k in pars.keys() if k != 'components']) xm, ym = np.where(np.isfinite(data)) x, y = np.indices(data.shape) j = np.array(np.vsplit(lmfit_jacobian(pars, xm, ym).T, nparams)).reshape( nparams, -1) h = hessian(pars, x, y) h = h[:, :, xm, ym] Hij = np.einsum('ik,jk', j, j) Dij = np.linalg.inv(Hij) Bijk = np.einsum('ip,jkp', j, h) Eilkm = np.einsum('il,km', Dij, Dij) Cimn_1 = -1 * np.einsum('krj,ir,km,jn', Bijk, Dij, Dij, Dij) Cimn_2 = -1.0 / 2 * np.einsum('rkj,ir,km,jn', Bijk, Dij, Dij, Dij) Cimn = Cimn_1 + Cimn_2 if ita is None: N = data - ntwodgaussian_lmfit(pars)(x, y) if acf is None: acf = nan_acf(N) ita = make_ita(N, acf=acf) log.info('acf.shape {0}'.format(acf.shape)) log.info('acf[0] {0}'.format(acf[0])) log.info('ita.shape {0}'.format(ita.shape)) log.info('ita[0] {0}'.format(ita[0])) Vij = np.einsum('ip,jq,pq', j, j, ita) Uijk = np.einsum('ip,jkq,pq', j, h, ita) bias_1 = np.einsum('imn, mn', Cimn, Vij) bias_2 = np.einsum('ilkm, mlk', Eilkm, Uijk) bias = bias_1 + bias_2 log.info('bias {0}'.format(bias)) return bias
RB_bias
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, pars, ita=None, acf=None):\n log.info('data {0}'.format(data.shape))\n nparams = np.sum([pars[k].vary for k in pars.keys() if k != 'components'])\n xm, ym = np.where(np.isfinite(data))\n x, y = np.indices(data.shape)\n j = np.array(np.vsplit(lmfit_jacobian(pars, xm, ym).T, nparams)).reshape(\n nparams, -1)\n h = hessian(pars, x, y)\n h = h[:, :, xm, ym]\n Hij = np.einsum('ik,jk', j, j)\n Dij = np.linalg.inv(Hij)\n Bijk = np.einsum('ip,jkp', j, h)\n Eilkm = np.einsum('il,km', Dij, Dij)\n Cimn_1 = -1 * np.einsum('krj,ir,km,jn', Bijk, Dij, Dij, Dij)\n Cimn_2 = -1.0 / 2 * np.einsum('rkj,ir,km,jn', Bijk, Dij, Dij, Dij)\n Cimn = Cimn_1 + Cimn_2\n if ita is None:\n N = data - ntwodgaussian_lmfit(pars)(x, y)\n if acf is None:\n acf = nan_acf(N)\n ita = make_ita(N, acf=acf)\n log.info('acf.shape {0}'.format(acf.shape))\n log.info('acf[0] {0}'.format(acf[0]))\n log.info('ita.shape {0}'.format(ita.shape))\n log.info('ita[0] {0}'.format(ita[0]))\n Vij = np.einsum('ip,jq,pq', j, j, ita)\n Uijk = np.einsum('ip,jkq,pq', j, h, ita)\n bias_1 = np.einsum('imn, mn', Cimn, Vij)\n bias_2 = np.einsum('ilkm, mlk', Eilkm, Uijk)\n bias = bias_1 + bias_2\n log.info('bias {0}'.format(bias))\n return bias\n", "role": "user" }, { "content": "RB_bias", "role": "assistant" } ]
def x(params, data, acf=None): bias = RB_bias(data, params, acf=acf) i = 0 for p in params: if 'theta' in p: continue if params[p].vary: params[p].value -= bias[i] i += 1 return
bias_correct
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params, data, acf=None):\n bias = RB_bias(data, params, acf=acf)\n i = 0\n for p in params:\n if 'theta' in p:\n continue\n if params[p].vary:\n params[p].value -= bias[i]\n i += 1\n return\n", "role": "user" }, { "content": "bias_correct", "role": "assistant" } ]
def x(source, theta_n, psf=None): alphas = {'amp': (3.0 / 2, 3.0 / 2), 'major': (5.0 / 2, 1.0 / 2), 'xo': (5.0 / 2, 1.0 / 2), 'minor': (1.0 / 2, 5.0 / 2), 'yo': (1.0 / 2, 5.0 / 2), 'pa': (1.0 / 2, 5.0 / 2)} major = source.a / 3600.0 minor = source.b / 3600.0 phi = np.radians(source.pa) if psf is not None: beam = psf.get_beam(source.ra, source.dec) if beam is not None: theta_n = np.hypot(beam.a, beam.b) print(beam, theta_n) if theta_n is None: (source.err_a) = (source.err_b) = (source.err_peak_flux) = (source. err_pa) = (source.err_int_flux) = 0.0 return smoothing = major * minor / theta_n ** 2 factor1 = 1 + major / theta_n factor2 = 1 + minor / theta_n snr = source.peak_flux / source.local_rms rho2 = lambda x: smoothing / 4 * factor1 ** alphas[x][0 ] * factor2 ** alphas[x][1] * snr ** 2 source.err_peak_flux = source.peak_flux * np.sqrt(2 / rho2('amp')) source.err_a = major * np.sqrt(2 / rho2('major')) * 3600.0 source.err_b = minor * np.sqrt(2 / rho2('minor')) * 3600.0 err_xo2 = 2.0 / rho2('xo') * major ** 2 / (8 * np.log(2)) err_yo2 = 2.0 / rho2('yo') * minor ** 2 / (8 * np.log(2)) source.err_ra = np.sqrt(err_xo2 * np.sin(phi) ** 2 + err_yo2 * np.cos( phi) ** 2) source.err_dec = np.sqrt(err_xo2 * np.cos(phi) ** 2 + err_yo2 * np.sin( phi) ** 2) if major == 0 or minor == 0: source.err_pa = ERR_MASK elif abs(2 * (major - minor) / (major + minor)) < 0.01: source.err_pa = ERR_MASK else: source.err_pa = np.degrees(np.sqrt(4 / rho2('pa')) * (major * minor / (major ** 2 - minor ** 2))) err2 = (source.err_peak_flux / source.peak_flux) ** 2 err2 += theta_n ** 2 / (major * minor) * ((source.err_a / source.a) ** 2 + (source.err_b / source.b) ** 2) source.err_int_flux = source.int_flux * np.sqrt(err2) return
condon_errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source, theta_n, psf=None):\n alphas = {'amp': (3.0 / 2, 3.0 / 2), 'major': (5.0 / 2, 1.0 / 2), 'xo':\n (5.0 / 2, 1.0 / 2), 'minor': (1.0 / 2, 5.0 / 2), 'yo': (1.0 / 2, \n 5.0 / 2), 'pa': (1.0 / 2, 5.0 / 2)}\n major = source.a / 3600.0\n minor = source.b / 3600.0\n phi = np.radians(source.pa)\n if psf is not None:\n beam = psf.get_beam(source.ra, source.dec)\n if beam is not None:\n theta_n = np.hypot(beam.a, beam.b)\n print(beam, theta_n)\n if theta_n is None:\n (source.err_a) = (source.err_b) = (source.err_peak_flux) = (source.\n err_pa) = (source.err_int_flux) = 0.0\n return\n smoothing = major * minor / theta_n ** 2\n factor1 = 1 + major / theta_n\n factor2 = 1 + minor / theta_n\n snr = source.peak_flux / source.local_rms\n rho2 = lambda x: smoothing / 4 * factor1 ** alphas[x][0\n ] * factor2 ** alphas[x][1] * snr ** 2\n source.err_peak_flux = source.peak_flux * np.sqrt(2 / rho2('amp'))\n source.err_a = major * np.sqrt(2 / rho2('major')) * 3600.0\n source.err_b = minor * np.sqrt(2 / rho2('minor')) * 3600.0\n err_xo2 = 2.0 / rho2('xo') * major ** 2 / (8 * np.log(2))\n err_yo2 = 2.0 / rho2('yo') * minor ** 2 / (8 * np.log(2))\n source.err_ra = np.sqrt(err_xo2 * np.sin(phi) ** 2 + err_yo2 * np.cos(\n phi) ** 2)\n source.err_dec = np.sqrt(err_xo2 * np.cos(phi) ** 2 + err_yo2 * np.sin(\n phi) ** 2)\n if major == 0 or minor == 0:\n source.err_pa = ERR_MASK\n elif abs(2 * (major - minor) / (major + minor)) < 0.01:\n source.err_pa = ERR_MASK\n else:\n source.err_pa = np.degrees(np.sqrt(4 / rho2('pa')) * (major * minor /\n (major ** 2 - minor ** 2)))\n err2 = (source.err_peak_flux / source.peak_flux) ** 2\n err2 += theta_n ** 2 / (major * minor) * ((source.err_a / source.a) ** \n 2 + (source.err_b / source.b) ** 2)\n source.err_int_flux = source.int_flux * np.sqrt(err2)\n return\n", "role": "user" }, { "content": "condon_errors", "role": "assistant" } ]
def x(source, model, wcshelper): if source.flags & (flags.NOTFIT | flags.FITERR): (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source. err_pa) = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source prefix = 'c{0}_'.format(source.source) err_amp = model[prefix + 'amp'].stderr xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value err_xo = model[prefix + 'xo'].stderr err_yo = model[prefix + 'yo'].stderr sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value err_sx = model[prefix + 'sx'].stderr err_sy = model[prefix + 'sy'].stderr theta = model[prefix + 'theta'].value err_theta = model[prefix + 'theta'].stderr source.err_peak_flux = err_amp pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta] log.debug('Pix errs: {0}'.format(pix_errs)) ref = wcshelper.pix2sky([xo, yo]) if not all(np.isfinite(ref)): source.flags |= flags.WCSERR (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source. err_pa) = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary and all(np. isfinite([err_xo, err_yo])): offset = wcshelper.pix2sky([xo + err_xo, yo + err_yo]) source.err_ra = gcd(ref[0], ref[1], offset[0], ref[1]) source.err_dec = gcd(ref[0], ref[1], ref[0], offset[1]) else: source.err_ra = source.err_dec = -1 if model[prefix + 'theta'].vary and np.isfinite(err_theta): off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) off2 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + err_theta)), yo + sy * np.sin(np.radians(theta + err_theta))]) source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear( ref[0], ref[1], off2[0], off2[1])) else: source.err_pa = ERR_MASK if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary and all(np. isfinite([err_sx, err_sy])): ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) offset = wcshelper.pix2sky([xo + (sx + err_sx) * np.cos(np.radians( theta)), yo + sy * np.sin(np.radians(theta))]) source.err_a = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600 ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)), yo + sy * np.sin(np.radians(theta + 90))]) offset = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90) ), yo + (sy + err_sy) * np.sin(np.radians(theta + 90))]) source.err_b = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600 else: source.err_a = source.err_b = ERR_MASK sqerr = 0 sqerr += (source.err_peak_flux / source.peak_flux ) ** 2 if source.err_peak_flux > 0 else 0 sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0 sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0 if sqerr == 0: source.err_int_flux = ERR_MASK else: source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr)) return source
errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source, model, wcshelper):\n if source.flags & (flags.NOTFIT | flags.FITERR):\n (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.\n err_pa) = ERR_MASK\n source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK\n return source\n prefix = 'c{0}_'.format(source.source)\n err_amp = model[prefix + 'amp'].stderr\n xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value\n err_xo = model[prefix + 'xo'].stderr\n err_yo = model[prefix + 'yo'].stderr\n sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value\n err_sx = model[prefix + 'sx'].stderr\n err_sy = model[prefix + 'sy'].stderr\n theta = model[prefix + 'theta'].value\n err_theta = model[prefix + 'theta'].stderr\n source.err_peak_flux = err_amp\n pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta]\n log.debug('Pix errs: {0}'.format(pix_errs))\n ref = wcshelper.pix2sky([xo, yo])\n if not all(np.isfinite(ref)):\n source.flags |= flags.WCSERR\n (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.\n err_pa) = ERR_MASK\n source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK\n return source\n if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary and all(np.\n isfinite([err_xo, err_yo])):\n offset = wcshelper.pix2sky([xo + err_xo, yo + err_yo])\n source.err_ra = gcd(ref[0], ref[1], offset[0], ref[1])\n source.err_dec = gcd(ref[0], ref[1], ref[0], offset[1])\n else:\n source.err_ra = source.err_dec = -1\n if model[prefix + 'theta'].vary and np.isfinite(err_theta):\n off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo +\n sy * np.sin(np.radians(theta))])\n off2 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta +\n err_theta)), yo + sy * np.sin(np.radians(theta + err_theta))])\n source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear(\n ref[0], ref[1], off2[0], off2[1]))\n else:\n source.err_pa = ERR_MASK\n if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary and all(np.\n isfinite([err_sx, err_sy])):\n ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + \n sy * np.sin(np.radians(theta))])\n offset = wcshelper.pix2sky([xo + (sx + err_sx) * np.cos(np.radians(\n theta)), yo + sy * np.sin(np.radians(theta))])\n source.err_a = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600\n ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)), \n yo + sy * np.sin(np.radians(theta + 90))])\n offset = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)\n ), yo + (sy + err_sy) * np.sin(np.radians(theta + 90))])\n source.err_b = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600\n else:\n source.err_a = source.err_b = ERR_MASK\n sqerr = 0\n sqerr += (source.err_peak_flux / source.peak_flux\n ) ** 2 if source.err_peak_flux > 0 else 0\n sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0\n sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0\n if sqerr == 0:\n source.err_int_flux = ERR_MASK\n else:\n source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr))\n return source\n", "role": "user" }, { "content": "errors", "role": "assistant" } ]
def x(source, model, wcshelper): if source.flags & (flags.NOTFIT | flags.FITERR): (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source. err_pa) = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source prefix = 'c{0}_'.format(source.source) err_amp = model[prefix + 'amp'].stderr xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value err_xo = model[prefix + 'xo'].stderr err_yo = model[prefix + 'yo'].stderr sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value err_sx = model[prefix + 'sx'].stderr err_sy = model[prefix + 'sy'].stderr theta = model[prefix + 'theta'].value err_theta = model[prefix + 'theta'].stderr source.err_peak_flux = err_amp pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta] if not all(a is not None and np.isfinite(a) for a in pix_errs): source.flags |= flags.FITERR (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source. err_pa) = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source ref = wcshelper.pix2sky([xo, yo]) if not all(np.isfinite(ref)): source.flags |= flags.WCSERR (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source. err_pa) = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary: mat = model.covar[1:3, 1:3] if not np.all(np.isfinite(mat)): source.err_ra = source.err_dec = ERR_MASK else: (a, b), e = np.linalg.eig(mat) pa = np.degrees(np.arctan2(*e[0])) _, _, major, minor, pa = wcshelper.pix2sky_ellipse([xo, yo], a, b, pa) source.err_ra = major * minor / np.hypot(major * np.sin(np. radians(pa)), minor * np.cos(np.radians(pa))) source.err_dec = major * minor / np.hypot(major * np.cos(np. radians(pa)), minor * np.sin(np.radians(pa))) else: source.err_ra = source.err_dec = -1 if model[prefix + 'theta'].vary: off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) off2 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 1)), yo + sy * np.sin(np.radians(theta + 1))]) source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear( ref[0], ref[1], off2[0], off2[1])) * err_theta else: source.err_pa = ERR_MASK if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary: ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) offset = wcshelper.pix2sky([xo + (sx + 0.1) * np.cos(np.radians( theta)), yo + sy * np.sin(np.radians(theta))]) source.err_a = gcd(ref[0], ref[1], offset[0], offset[1] ) / 0.1 * err_sx * 3600 ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)), yo + sy * np.sin(np.radians(theta + 90))]) offset = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90) ), yo + (sy + 0.1) * np.sin(np.radians(theta + 90))]) source.err_b = gcd(ref[0], ref[1], offset[0], offset[1] ) / 0.1 * err_sy * 3600 else: source.err_a = source.err_b = ERR_MASK sqerr = 0 sqerr += (source.err_peak_flux / source.peak_flux ) ** 2 if source.err_peak_flux > 0 else 0 sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0 sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0 source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr)) return source
new_errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source, model, wcshelper):\n if source.flags & (flags.NOTFIT | flags.FITERR):\n (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.\n err_pa) = ERR_MASK\n source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK\n return source\n prefix = 'c{0}_'.format(source.source)\n err_amp = model[prefix + 'amp'].stderr\n xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value\n err_xo = model[prefix + 'xo'].stderr\n err_yo = model[prefix + 'yo'].stderr\n sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value\n err_sx = model[prefix + 'sx'].stderr\n err_sy = model[prefix + 'sy'].stderr\n theta = model[prefix + 'theta'].value\n err_theta = model[prefix + 'theta'].stderr\n source.err_peak_flux = err_amp\n pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta]\n if not all(a is not None and np.isfinite(a) for a in pix_errs):\n source.flags |= flags.FITERR\n (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.\n err_pa) = ERR_MASK\n source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK\n return source\n ref = wcshelper.pix2sky([xo, yo])\n if not all(np.isfinite(ref)):\n source.flags |= flags.WCSERR\n (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.\n err_pa) = ERR_MASK\n source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK\n return source\n if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary:\n mat = model.covar[1:3, 1:3]\n if not np.all(np.isfinite(mat)):\n source.err_ra = source.err_dec = ERR_MASK\n else:\n (a, b), e = np.linalg.eig(mat)\n pa = np.degrees(np.arctan2(*e[0]))\n _, _, major, minor, pa = wcshelper.pix2sky_ellipse([xo, yo], a,\n b, pa)\n source.err_ra = major * minor / np.hypot(major * np.sin(np.\n radians(pa)), minor * np.cos(np.radians(pa)))\n source.err_dec = major * minor / np.hypot(major * np.cos(np.\n radians(pa)), minor * np.sin(np.radians(pa)))\n else:\n source.err_ra = source.err_dec = -1\n if model[prefix + 'theta'].vary:\n off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo +\n sy * np.sin(np.radians(theta))])\n off2 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 1)), \n yo + sy * np.sin(np.radians(theta + 1))])\n source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear(\n ref[0], ref[1], off2[0], off2[1])) * err_theta\n else:\n source.err_pa = ERR_MASK\n if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary:\n ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + \n sy * np.sin(np.radians(theta))])\n offset = wcshelper.pix2sky([xo + (sx + 0.1) * np.cos(np.radians(\n theta)), yo + sy * np.sin(np.radians(theta))])\n source.err_a = gcd(ref[0], ref[1], offset[0], offset[1]\n ) / 0.1 * err_sx * 3600\n ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)), \n yo + sy * np.sin(np.radians(theta + 90))])\n offset = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)\n ), yo + (sy + 0.1) * np.sin(np.radians(theta + 90))])\n source.err_b = gcd(ref[0], ref[1], offset[0], offset[1]\n ) / 0.1 * err_sy * 3600\n else:\n source.err_a = source.err_b = ERR_MASK\n sqerr = 0\n sqerr += (source.err_peak_flux / source.peak_flux\n ) ** 2 if source.err_peak_flux > 0 else 0\n sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0\n sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0\n source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr))\n return source\n", "role": "user" }, { "content": "new_errors", "role": "assistant" } ]
def x(params): def x(x, y): result = None for i in range(params['components'].value): prefix = 'c{0}_'.format(i) amp = np.nan_to_num(params[prefix + 'amp'].value) xo = params[prefix + 'xo'].value yo = params[prefix + 'yo'].value sx = params[prefix + 'sx'].value sy = params[prefix + 'sy'].value theta = params[prefix + 'theta'].value if result is not None: result += elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) else: result = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) return result return rfunc
ntwodgaussian_lmfit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params):\n\n def x(x, y):\n result = None\n for i in range(params['components'].value):\n prefix = 'c{0}_'.format(i)\n amp = np.nan_to_num(params[prefix + 'amp'].value)\n xo = params[prefix + 'xo'].value\n yo = params[prefix + 'yo'].value\n sx = params[prefix + 'sx'].value\n sy = params[prefix + 'sy'].value\n theta = params[prefix + 'theta'].value\n if result is not None:\n result += elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta)\n else:\n result = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta)\n return result\n return rfunc\n", "role": "user" }, { "content": "ntwodgaussian_lmfit", "role": "assistant" } ]
def x(data, params, B=None, errs=None, dojac=True): params = copy.deepcopy(params) data = np.array(data) mask = np.where(np.isfinite(data)) def x(params, **kwargs): f = ntwodgaussian_lmfit(params) model = f(*mask) if B is None: return model - data[mask] else: return (model - data[mask]).dot(B) if dojac: result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y': mask[1], 'B': B, 'errs': errs}, Dfun=lmfit_jacobian) else: result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y': mask[1], 'B': B, 'errs': errs}) if B is not None: result.residual = result.residual.dot(inv(B)) return result, params
do_lmfit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, params, B=None, errs=None, dojac=True):\n params = copy.deepcopy(params)\n data = np.array(data)\n mask = np.where(np.isfinite(data))\n\n def x(params, **kwargs):\n f = ntwodgaussian_lmfit(params)\n model = f(*mask)\n if B is None:\n return model - data[mask]\n else:\n return (model - data[mask]).dot(B)\n if dojac:\n result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y':\n mask[1], 'B': B, 'errs': errs}, Dfun=lmfit_jacobian)\n else:\n result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y':\n mask[1], 'B': B, 'errs': errs})\n if B is not None:\n result.residual = result.residual.dot(inv(B))\n return result, params\n", "role": "user" }, { "content": "do_lmfit", "role": "assistant" } ]
def x(params, data, errs, B, C=None): mask = np.where(np.isfinite(data)) if C is not None: try: J = lmfit_jacobian(params, mask[0], mask[1], errs=errs) covar = np.transpose(J).dot(inv(C)).dot(J) onesigma = np.sqrt(np.diag(inv(covar))) except (np.linalg.linalg.LinAlgError, ValueError) as _: C = None if C is None: try: J = lmfit_jacobian(params, mask[0], mask[1], B=B, errs=errs) covar = np.transpose(J).dot(J) onesigma = np.sqrt(np.diag(inv(covar))) except (np.linalg.linalg.LinAlgError, ValueError) as _: onesigma = [-2] * len(mask[0]) for i in range(params['components'].value): prefix = 'c{0}_'.format(i) j = 0 for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']: if params[prefix + p].vary: params[prefix + p].stderr = onesigma[j] j += 1 return params
covar_errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params, data, errs, B, C=None):\n mask = np.where(np.isfinite(data))\n if C is not None:\n try:\n J = lmfit_jacobian(params, mask[0], mask[1], errs=errs)\n covar = np.transpose(J).dot(inv(C)).dot(J)\n onesigma = np.sqrt(np.diag(inv(covar)))\n except (np.linalg.linalg.LinAlgError, ValueError) as _:\n C = None\n if C is None:\n try:\n J = lmfit_jacobian(params, mask[0], mask[1], B=B, errs=errs)\n covar = np.transpose(J).dot(J)\n onesigma = np.sqrt(np.diag(inv(covar)))\n except (np.linalg.linalg.LinAlgError, ValueError) as _:\n onesigma = [-2] * len(mask[0])\n for i in range(params['components'].value):\n prefix = 'c{0}_'.format(i)\n j = 0\n for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']:\n if params[prefix + p].vary:\n params[prefix + p].stderr = onesigma[j]\n j += 1\n return params\n", "role": "user" }, { "content": "covar_errors", "role": "assistant" } ]
def x(events, sid, kind='neighbour'): events[sid].set() if kind == 'neighbour': if sid > 0: logging.debug('{0} is waiting for {1}'.format(sid, sid - 1)) events[sid - 1].wait() if sid < len(bkg_events) - 1: logging.debug('{0} is waiting for {1}'.format(sid, sid + 1)) events[sid + 1].wait() else: [e.wait() for e in events] return
barrier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(events, sid, kind='neighbour'):\n events[sid].set()\n if kind == 'neighbour':\n if sid > 0:\n logging.debug('{0} is waiting for {1}'.format(sid, sid - 1))\n events[sid - 1].wait()\n if sid < len(bkg_events) - 1:\n logging.debug('{0} is waiting for {1}'.format(sid, sid + 1))\n events[sid + 1].wait()\n else:\n [e.wait() for e in events]\n return\n", "role": "user" }, { "content": "barrier", "role": "assistant" } ]
def x(arr, lo, hi, reps=3): clipped = np.array(arr)[np.isfinite(arr)] if len(clipped) < 1: return np.nan, np.nan std = np.std(clipped) mean = np.mean(clipped) for _ in range(int(reps)): clipped = clipped[np.where(clipped > mean - std * lo)] clipped = clipped[np.where(clipped < mean + std * hi)] pstd = std if len(clipped) < 1: break std = np.std(clipped) mean = np.mean(clipped) if 2 * abs(pstd - std) / (pstd + std) < 0.2: break return mean, std
sigmaclip
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, lo, hi, reps=3):\n clipped = np.array(arr)[np.isfinite(arr)]\n if len(clipped) < 1:\n return np.nan, np.nan\n std = np.std(clipped)\n mean = np.mean(clipped)\n for _ in range(int(reps)):\n clipped = clipped[np.where(clipped > mean - std * lo)]\n clipped = clipped[np.where(clipped < mean + std * hi)]\n pstd = std\n if len(clipped) < 1:\n break\n std = np.std(clipped)\n mean = np.mean(clipped)\n if 2 * abs(pstd - std) / (pstd + std) < 0.2:\n break\n return mean, std\n", "role": "user" }, { "content": "sigmaclip", "role": "assistant" } ]
def x(args): try: return sigma_filter(*args) except: import traceback raise Exception(''.join(traceback.format_exception(*sys.exc_info())))
sf2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(args):\n try:\n return sigma_filter(*args)\n except:\n import traceback\n raise Exception(''.join(traceback.format_exception(*sys.exc_info())))\n", "role": "user" }, { "content": "sf2", "role": "assistant" } ]
def x(filename, region, step_size, box_size, shape, domask, sid): ymin, ymax = region logging.debug('rows {0}-{1} starting at {2}'.format(ymin, ymax, strftime('%Y-%m-%d %H:%M:%S', gmtime()))) data_row_min = max(0, ymin - box_size[0] // 2) data_row_max = min(shape[0], ymax + box_size[0] // 2) NAXIS = fits.getheader(filename)['NAXIS'] with fits.open(filename, memmap=True) as a: if NAXIS == 2: data = a[0].section[data_row_min:data_row_max, 0:shape[1]] elif NAXIS == 3: data = a[0].section[0, data_row_min:data_row_max, 0:shape[1]] elif NAXIS == 4: data = a[0].section[0, 0, data_row_min:data_row_max, 0:shape[1]] else: logging.error('Too many NAXIS for me {0}'.format(NAXIS)) logging.error('fix your file to be more sane') raise Exception('Too many NAXIS') row_len = shape[1] logging.debug('data size is {0}'.format(data.shape)) def x(r, c): r_min = max(0, r - box_size[0] // 2) r_max = min(data.shape[0] - 1, r + box_size[0] // 2) c_min = max(0, c - box_size[1] // 2) c_max = min(data.shape[1] - 1, c + box_size[1] // 2) return r_min, r_max, c_min, c_max rows = list(range(ymin - data_row_min, ymax - data_row_min, step_size[0])) rows.append(ymax - data_row_min) cols = list(range(0, shape[1], step_size[1])) cols.append(shape[1]) vals = np.zeros(shape=(len(rows), len(cols))) for i, row in enumerate(rows): for j, col in enumerate(cols): r_min, r_max, c_min, c_max = box(row, col) new = data[r_min:r_max, c_min:c_max] new = np.ravel(new) bkg, _ = sigmaclip(new, 3, 3) vals[i, j] = bkg gr, gc = np.mgrid[ymin - data_row_min:ymax - data_row_min, 0:shape[1]] logging.debug('Interpolating bkg to sharemem') ifunc = RegularGridInterpolator((rows, cols), vals) for i in range(gr.shape[0]): row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32) start_idx = np.ravel_multi_index((ymin + i, 0), shape) end_idx = start_idx + row_len ibkg[start_idx:end_idx] = row del ifunc logging.debug(' ... done writing bkg') barrier(bkg_events, sid) logging.debug('{0} background subtraction'.format(sid)) for i in range(data_row_max - data_row_min): start_idx = np.ravel_multi_index((data_row_min + i, 0), shape) end_idx = start_idx + row_len data[i, :] = data[i, :] - ibkg[start_idx:end_idx] vals[:] = 0 for i, row in enumerate(rows): for j, col in enumerate(cols): r_min, r_max, c_min, c_max = box(row, col) new = data[r_min:r_max, c_min:c_max] new = np.ravel(new) _, rms = sigmaclip(new, 3, 3) vals[i, j] = rms logging.debug('Interpolating rm to sharemem rms') ifunc = RegularGridInterpolator((rows, cols), vals) for i in range(gr.shape[0]): row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32) start_idx = np.ravel_multi_index((ymin + i, 0), shape) end_idx = start_idx + row_len irms[start_idx:end_idx] = row del ifunc logging.debug(' .. done writing rms') if domask: barrier(mask_events, sid) logging.debug('applying mask') for i in range(gr.shape[0]): mask = np.where(np.bitwise_not(np.isfinite(data[i + ymin - data_row_min, :])))[0] for j in mask: idx = np.ravel_multi_index((i + ymin, j), shape) ibkg[idx] = np.nan irms[idx] = np.nan logging.debug(' ... done applying mask') logging.debug('rows {0}-{1} finished at {2}'.format(ymin, ymax, strftime('%Y-%m-%d %H:%M:%S', gmtime()))) return
sigma_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, region, step_size, box_size, shape, domask, sid):\n ymin, ymax = region\n logging.debug('rows {0}-{1} starting at {2}'.format(ymin, ymax,\n strftime('%Y-%m-%d %H:%M:%S', gmtime())))\n data_row_min = max(0, ymin - box_size[0] // 2)\n data_row_max = min(shape[0], ymax + box_size[0] // 2)\n NAXIS = fits.getheader(filename)['NAXIS']\n with fits.open(filename, memmap=True) as a:\n if NAXIS == 2:\n data = a[0].section[data_row_min:data_row_max, 0:shape[1]]\n elif NAXIS == 3:\n data = a[0].section[0, data_row_min:data_row_max, 0:shape[1]]\n elif NAXIS == 4:\n data = a[0].section[0, 0, data_row_min:data_row_max, 0:shape[1]]\n else:\n logging.error('Too many NAXIS for me {0}'.format(NAXIS))\n logging.error('fix your file to be more sane')\n raise Exception('Too many NAXIS')\n row_len = shape[1]\n logging.debug('data size is {0}'.format(data.shape))\n\n def x(r, c):\n r_min = max(0, r - box_size[0] // 2)\n r_max = min(data.shape[0] - 1, r + box_size[0] // 2)\n c_min = max(0, c - box_size[1] // 2)\n c_max = min(data.shape[1] - 1, c + box_size[1] // 2)\n return r_min, r_max, c_min, c_max\n rows = list(range(ymin - data_row_min, ymax - data_row_min, step_size[0]))\n rows.append(ymax - data_row_min)\n cols = list(range(0, shape[1], step_size[1]))\n cols.append(shape[1])\n vals = np.zeros(shape=(len(rows), len(cols)))\n for i, row in enumerate(rows):\n for j, col in enumerate(cols):\n r_min, r_max, c_min, c_max = box(row, col)\n new = data[r_min:r_max, c_min:c_max]\n new = np.ravel(new)\n bkg, _ = sigmaclip(new, 3, 3)\n vals[i, j] = bkg\n gr, gc = np.mgrid[ymin - data_row_min:ymax - data_row_min, 0:shape[1]]\n logging.debug('Interpolating bkg to sharemem')\n ifunc = RegularGridInterpolator((rows, cols), vals)\n for i in range(gr.shape[0]):\n row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32)\n start_idx = np.ravel_multi_index((ymin + i, 0), shape)\n end_idx = start_idx + row_len\n ibkg[start_idx:end_idx] = row\n del ifunc\n logging.debug(' ... done writing bkg')\n barrier(bkg_events, sid)\n logging.debug('{0} background subtraction'.format(sid))\n for i in range(data_row_max - data_row_min):\n start_idx = np.ravel_multi_index((data_row_min + i, 0), shape)\n end_idx = start_idx + row_len\n data[i, :] = data[i, :] - ibkg[start_idx:end_idx]\n vals[:] = 0\n for i, row in enumerate(rows):\n for j, col in enumerate(cols):\n r_min, r_max, c_min, c_max = box(row, col)\n new = data[r_min:r_max, c_min:c_max]\n new = np.ravel(new)\n _, rms = sigmaclip(new, 3, 3)\n vals[i, j] = rms\n logging.debug('Interpolating rm to sharemem rms')\n ifunc = RegularGridInterpolator((rows, cols), vals)\n for i in range(gr.shape[0]):\n row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32)\n start_idx = np.ravel_multi_index((ymin + i, 0), shape)\n end_idx = start_idx + row_len\n irms[start_idx:end_idx] = row\n del ifunc\n logging.debug(' .. done writing rms')\n if domask:\n barrier(mask_events, sid)\n logging.debug('applying mask')\n for i in range(gr.shape[0]):\n mask = np.where(np.bitwise_not(np.isfinite(data[i + ymin -\n data_row_min, :])))[0]\n for j in mask:\n idx = np.ravel_multi_index((i + ymin, j), shape)\n ibkg[idx] = np.nan\n irms[idx] = np.nan\n logging.debug(' ... done applying mask')\n logging.debug('rows {0}-{1} finished at {2}'.format(ymin, ymax,\n strftime('%Y-%m-%d %H:%M:%S', gmtime())))\n return\n", "role": "user" }, { "content": "sigma_filter", "role": "assistant" } ]
def x(filename, step_size, box_size, cores, shape, nslice=None, domask=True): if cores is None: cores = multiprocessing.cpu_count() if nslice is None or cores == 1: nslice = cores img_y, img_x = shape global ibkg ibkg = multiprocessing.Array('f', img_y * img_x) global irms irms = multiprocessing.Array('f', img_y * img_x) logging.info('using {0} cores'.format(cores)) logging.info('using {0} stripes'.format(nslice)) if nslice > 1: width_y = int(max(img_y / nslice / step_size[1], 1) * step_size[1]) ymins = list(range(0, img_y, width_y)) ymaxs = list(range(width_y, img_y, width_y)) ymaxs.append(img_y) else: ymins = [0] ymaxs = [img_y] logging.debug('ymins {0}'.format(ymins)) logging.debug('ymaxs {0}'.format(ymaxs)) global bkg_events, mask_events bkg_events = [multiprocessing.Event() for _ in range(len(ymaxs))] mask_events = [multiprocessing.Event() for _ in range(len(ymaxs))] args = [] for i, region in enumerate(zip(ymins, ymaxs)): args.append((filename, region, step_size, box_size, shape, domask, i)) pool = multiprocessing.Pool(processes=cores, maxtasksperchild=1) try: pool.map_async(_sf2, args, chunksize=1).get(timeout=10000000) except KeyboardInterrupt: logging.error('Caught keyboard interrupt') pool.close() sys.exit(1) pool.close() pool.join() bkg = np.reshape(np.array(ibkg[:], dtype=np.float32), shape) rms = np.reshape(np.array(irms[:], dtype=np.float32), shape) del ibkg, irms return bkg, rms
filter_mc_sharemem
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, step_size, box_size, cores, shape, nslice=None, domask=True):\n if cores is None:\n cores = multiprocessing.cpu_count()\n if nslice is None or cores == 1:\n nslice = cores\n img_y, img_x = shape\n global ibkg\n ibkg = multiprocessing.Array('f', img_y * img_x)\n global irms\n irms = multiprocessing.Array('f', img_y * img_x)\n logging.info('using {0} cores'.format(cores))\n logging.info('using {0} stripes'.format(nslice))\n if nslice > 1:\n width_y = int(max(img_y / nslice / step_size[1], 1) * step_size[1])\n ymins = list(range(0, img_y, width_y))\n ymaxs = list(range(width_y, img_y, width_y))\n ymaxs.append(img_y)\n else:\n ymins = [0]\n ymaxs = [img_y]\n logging.debug('ymins {0}'.format(ymins))\n logging.debug('ymaxs {0}'.format(ymaxs))\n global bkg_events, mask_events\n bkg_events = [multiprocessing.Event() for _ in range(len(ymaxs))]\n mask_events = [multiprocessing.Event() for _ in range(len(ymaxs))]\n args = []\n for i, region in enumerate(zip(ymins, ymaxs)):\n args.append((filename, region, step_size, box_size, shape, domask, i))\n pool = multiprocessing.Pool(processes=cores, maxtasksperchild=1)\n try:\n pool.map_async(_sf2, args, chunksize=1).get(timeout=10000000)\n except KeyboardInterrupt:\n logging.error('Caught keyboard interrupt')\n pool.close()\n sys.exit(1)\n pool.close()\n pool.join()\n bkg = np.reshape(np.array(ibkg[:], dtype=np.float32), shape)\n rms = np.reshape(np.array(irms[:], dtype=np.float32), shape)\n del ibkg, irms\n return bkg, rms\n", "role": "user" }, { "content": "filter_mc_sharemem", "role": "assistant" } ]
def x(im_name, out_base, step_size=None, box_size=None, twopass=False, cores=None, mask=True, compressed=False, nslice=None): header = fits.getheader(im_name) shape = header['NAXIS2'], header['NAXIS1'] if step_size is None: if 'BMAJ' in header and 'BMIN' in header: beam_size = np.sqrt(abs(header['BMAJ'] * header['BMIN'])) if 'CDELT1' in header: pix_scale = np.sqrt(abs(header['CDELT1'] * header['CDELT2'])) elif 'CD1_1' in header: pix_scale = np.sqrt(abs(header['CD1_1'] * header['CD2_2'])) if 'CD1_2' in header and 'CD2_1' in header: if header['CD1_2'] != 0 or header['CD2_1'] != 0: logging.warning( "CD1_2 and/or CD2_1 are non-zero and I don't know what to do with them" ) logging.warning('Ingoring them') else: logging.warning( 'Cannot determine pixel scale, assuming 4 pixels per beam') pix_scale = beam_size / 4.0 step_size = int(np.ceil(4 * beam_size / pix_scale)) else: logging.info('BMAJ and/or BMIN not in fits header.') logging.info( 'Assuming 4 pix/beam, so we have step_size = 16 pixels') step_size = 16 step_size = step_size, step_size if box_size is None: box_size = step_size[0] * 6, step_size[1] * 6 if compressed: if not step_size[0] == step_size[1]: step_size = min(step_size), min(step_size) logging.info( 'Changing grid to be {0} so we can compress the output'. format(step_size)) logging.info('using grid_size {0}, box_size {1}'.format(step_size, box_size)) logging.info('on data shape {0}'.format(shape)) bkg, rms = filter_mc_sharemem(im_name, step_size=step_size, box_size= box_size, cores=cores, shape=shape, nslice=nslice, domask=mask) logging.info('done') bkg_out = '_'.join([os.path.expanduser(out_base), 'bkg.fits']) rms_out = '_'.join([os.path.expanduser(out_base), 'rms.fits']) header['HISTORY'] = 'BANE {0}-({1})'.format(__version__, __date__) if compressed: hdu = fits.PrimaryHDU(bkg) hdu.header = copy.deepcopy(header) hdulist = fits.HDUList([hdu]) compress(hdulist, step_size[0], bkg_out) hdulist[0].header = copy.deepcopy(header) hdulist[0].data = rms compress(hdulist, step_size[0], rms_out) return write_fits(bkg, header, bkg_out) write_fits(rms, header, rms_out)
filter_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(im_name, out_base, step_size=None, box_size=None, twopass=False,\n cores=None, mask=True, compressed=False, nslice=None):\n header = fits.getheader(im_name)\n shape = header['NAXIS2'], header['NAXIS1']\n if step_size is None:\n if 'BMAJ' in header and 'BMIN' in header:\n beam_size = np.sqrt(abs(header['BMAJ'] * header['BMIN']))\n if 'CDELT1' in header:\n pix_scale = np.sqrt(abs(header['CDELT1'] * header['CDELT2']))\n elif 'CD1_1' in header:\n pix_scale = np.sqrt(abs(header['CD1_1'] * header['CD2_2']))\n if 'CD1_2' in header and 'CD2_1' in header:\n if header['CD1_2'] != 0 or header['CD2_1'] != 0:\n logging.warning(\n \"CD1_2 and/or CD2_1 are non-zero and I don't know what to do with them\"\n )\n logging.warning('Ingoring them')\n else:\n logging.warning(\n 'Cannot determine pixel scale, assuming 4 pixels per beam')\n pix_scale = beam_size / 4.0\n step_size = int(np.ceil(4 * beam_size / pix_scale))\n else:\n logging.info('BMAJ and/or BMIN not in fits header.')\n logging.info(\n 'Assuming 4 pix/beam, so we have step_size = 16 pixels')\n step_size = 16\n step_size = step_size, step_size\n if box_size is None:\n box_size = step_size[0] * 6, step_size[1] * 6\n if compressed:\n if not step_size[0] == step_size[1]:\n step_size = min(step_size), min(step_size)\n logging.info(\n 'Changing grid to be {0} so we can compress the output'.\n format(step_size))\n logging.info('using grid_size {0}, box_size {1}'.format(step_size,\n box_size))\n logging.info('on data shape {0}'.format(shape))\n bkg, rms = filter_mc_sharemem(im_name, step_size=step_size, box_size=\n box_size, cores=cores, shape=shape, nslice=nslice, domask=mask)\n logging.info('done')\n bkg_out = '_'.join([os.path.expanduser(out_base), 'bkg.fits'])\n rms_out = '_'.join([os.path.expanduser(out_base), 'rms.fits'])\n header['HISTORY'] = 'BANE {0}-({1})'.format(__version__, __date__)\n if compressed:\n hdu = fits.PrimaryHDU(bkg)\n hdu.header = copy.deepcopy(header)\n hdulist = fits.HDUList([hdu])\n compress(hdulist, step_size[0], bkg_out)\n hdulist[0].header = copy.deepcopy(header)\n hdulist[0].data = rms\n compress(hdulist, step_size[0], rms_out)\n return\n write_fits(bkg, header, bkg_out)\n write_fits(rms, header, rms_out)\n", "role": "user" }, { "content": "filter_image", "role": "assistant" } ]
def x(data, header, file_name): hdu = fits.PrimaryHDU(data) hdu.header = header hdulist = fits.HDUList([hdu]) hdulist.writeto(file_name, overwrite=True) logging.info('Wrote {0}'.format(file_name)) return
write_fits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, header, file_name):\n hdu = fits.PrimaryHDU(data)\n hdu.header = header\n hdulist = fits.HDUList([hdu])\n hdulist.writeto(file_name, overwrite=True)\n logging.info('Wrote {0}'.format(file_name))\n return\n", "role": "user" }, { "content": "write_fits", "role": "assistant" } ]
def x(dec): d = dec.replace(':', ' ').split() if len(d) == 2: d.append(0.0) if d[0].startswith('-') or float(d[0]) < 0: return float(d[0]) - float(d[1]) / 60.0 - float(d[2]) / 3600.0 return float(d[0]) + float(d[1]) / 60.0 + float(d[2]) / 3600.0
dec2dec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dec):\n d = dec.replace(':', ' ').split()\n if len(d) == 2:\n d.append(0.0)\n if d[0].startswith('-') or float(d[0]) < 0:\n return float(d[0]) - float(d[1]) / 60.0 - float(d[2]) / 3600.0\n return float(d[0]) + float(d[1]) / 60.0 + float(d[2]) / 3600.0\n", "role": "user" }, { "content": "dec2dec", "role": "assistant" } ]
def x(x): if not np.isfinite(x): return 'XX:XX:XX.XX' if x < 0: sign = '-' else: sign = '+' x = abs(x) d = int(math.floor(x)) m = int(math.floor((x - d) * 60)) s = float(((x - d) * 60 - m) * 60) return '{0}{1:02d}:{2:02d}:{3:05.2f}'.format(sign, d, m, s)
dec2dms
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if not np.isfinite(x):\n return 'XX:XX:XX.XX'\n if x < 0:\n sign = '-'\n else:\n sign = '+'\n x = abs(x)\n d = int(math.floor(x))\n m = int(math.floor((x - d) * 60))\n s = float(((x - d) * 60 - m) * 60)\n return '{0}{1:02d}:{2:02d}:{3:05.2f}'.format(sign, d, m, s)\n", "role": "user" }, { "content": "dec2dms", "role": "assistant" } ]
def x(x): if not np.isfinite(x): return 'XX:XX:XX.XX' if x < 0: x += 360 x /= 15.0 h = int(x) x = (x - h) * 60 m = int(x) s = (x - m) * 60 return '{0:02d}:{1:02d}:{2:05.2f}'.format(h, m, s)
dec2hms
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n if not np.isfinite(x):\n return 'XX:XX:XX.XX'\n if x < 0:\n x += 360\n x /= 15.0\n h = int(x)\n x = (x - h) * 60\n m = int(x)\n s = (x - m) * 60\n return '{0:02d}:{1:02d}:{2:05.2f}'.format(h, m, s)\n", "role": "user" }, { "content": "dec2hms", "role": "assistant" } ]
def x(ra1, dec1, ra2, dec2): dlon = ra2 - ra1 dlat = dec2 - dec1 a = np.sin(np.radians(dlat) / 2) ** 2 a += np.cos(np.radians(dec1)) * np.cos(np.radians(dec2)) * np.sin(np. radians(dlon) / 2) ** 2 sep = np.degrees(2 * np.arcsin(np.minimum(1, np.sqrt(a)))) return sep
gcd
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ra1, dec1, ra2, dec2):\n dlon = ra2 - ra1\n dlat = dec2 - dec1\n a = np.sin(np.radians(dlat) / 2) ** 2\n a += np.cos(np.radians(dec1)) * np.cos(np.radians(dec2)) * np.sin(np.\n radians(dlon) / 2) ** 2\n sep = np.degrees(2 * np.arcsin(np.minimum(1, np.sqrt(a))))\n return sep\n", "role": "user" }, { "content": "gcd", "role": "assistant" } ]
def x(ra1, dec1, ra2, dec2): rdec1 = np.radians(dec1) rdec2 = np.radians(dec2) rdlon = np.radians(ra2 - ra1) y = np.sin(rdlon) * np.cos(rdec2) x = np.cos(rdec1) * np.sin(rdec2) x -= np.sin(rdec1) * np.cos(rdec2) * np.cos(rdlon) return np.degrees(np.arctan2(y, x))
bear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ra1, dec1, ra2, dec2):\n rdec1 = np.radians(dec1)\n rdec2 = np.radians(dec2)\n rdlon = np.radians(ra2 - ra1)\n y = np.sin(rdlon) * np.cos(rdec2)\n x = np.cos(rdec1) * np.sin(rdec2)\n x -= np.sin(rdec1) * np.cos(rdec2) * np.cos(rdlon)\n return np.degrees(np.arctan2(y, x))\n", "role": "user" }, { "content": "bear", "role": "assistant" } ]
def x(ra, dec, r, theta): factor = np.sin(np.radians(dec)) * np.cos(np.radians(r)) factor += np.cos(np.radians(dec)) * np.sin(np.radians(r)) * np.cos(np. radians(theta)) dec_out = np.degrees(np.arcsin(factor)) y = np.sin(np.radians(theta)) * np.sin(np.radians(r)) * np.cos(np. radians(dec)) x = np.cos(np.radians(r)) - np.sin(np.radians(dec)) * np.sin(np.radians (dec_out)) ra_out = ra + np.degrees(np.arctan2(y, x)) return ra_out, dec_out
translate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ra, dec, r, theta):\n factor = np.sin(np.radians(dec)) * np.cos(np.radians(r))\n factor += np.cos(np.radians(dec)) * np.sin(np.radians(r)) * np.cos(np.\n radians(theta))\n dec_out = np.degrees(np.arcsin(factor))\n y = np.sin(np.radians(theta)) * np.sin(np.radians(r)) * np.cos(np.\n radians(dec))\n x = np.cos(np.radians(r)) - np.sin(np.radians(dec)) * np.sin(np.radians\n (dec_out))\n ra_out = ra + np.degrees(np.arctan2(y, x))\n return ra_out, dec_out\n", "role": "user" }, { "content": "translate", "role": "assistant" } ]
def x(ra1, dec1, ra2, dec2): phi1 = np.radians(dec1) phi2 = np.radians(dec2) dphi = phi2 - phi1 lambda1 = np.radians(ra1) lambda2 = np.radians(ra2) dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2)) if dpsi < 1e-12: q = np.cos(phi1) else: q = dpsi / dphi dlambda = lambda2 - lambda1 if dlambda > np.pi: dlambda -= 2 * np.pi dist = np.hypot(dphi, q * dlambda) return np.degrees(dist)
dist_rhumb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ra1, dec1, ra2, dec2):\n phi1 = np.radians(dec1)\n phi2 = np.radians(dec2)\n dphi = phi2 - phi1\n lambda1 = np.radians(ra1)\n lambda2 = np.radians(ra2)\n dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2))\n if dpsi < 1e-12:\n q = np.cos(phi1)\n else:\n q = dpsi / dphi\n dlambda = lambda2 - lambda1\n if dlambda > np.pi:\n dlambda -= 2 * np.pi\n dist = np.hypot(dphi, q * dlambda)\n return np.degrees(dist)\n", "role": "user" }, { "content": "dist_rhumb", "role": "assistant" } ]
def x(ra1, dec1, ra2, dec2): phi1 = np.radians(dec1) phi2 = np.radians(dec2) lambda1 = np.radians(ra1) lambda2 = np.radians(ra2) dlambda = lambda2 - lambda1 dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2)) theta = np.arctan2(dlambda, dpsi) return np.degrees(theta)
bear_rhumb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ra1, dec1, ra2, dec2):\n phi1 = np.radians(dec1)\n phi2 = np.radians(dec2)\n lambda1 = np.radians(ra1)\n lambda2 = np.radians(ra2)\n dlambda = lambda2 - lambda1\n dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2))\n theta = np.arctan2(dlambda, dpsi)\n return np.degrees(theta)\n", "role": "user" }, { "content": "bear_rhumb", "role": "assistant" } ]
def x(ra, dec, r, theta): delta = np.radians(r) phi1 = np.radians(dec) phi2 = phi1 + delta * np.cos(np.radians(theta)) dphi = phi2 - phi1 if abs(dphi) < 1e-09: q = np.cos(phi1) else: dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2)) q = dphi / dpsi lambda1 = np.radians(ra) dlambda = delta * np.sin(np.radians(theta)) / q lambda2 = lambda1 + dlambda ra_out = np.degrees(lambda2) dec_out = np.degrees(phi2) return ra_out, dec_out
translate_rhumb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ra, dec, r, theta):\n delta = np.radians(r)\n phi1 = np.radians(dec)\n phi2 = phi1 + delta * np.cos(np.radians(theta))\n dphi = phi2 - phi1\n if abs(dphi) < 1e-09:\n q = np.cos(phi1)\n else:\n dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + \n phi1 / 2))\n q = dphi / dpsi\n lambda1 = np.radians(ra)\n dlambda = delta * np.sin(np.radians(theta)) / q\n lambda2 = lambda1 + dlambda\n ra_out = np.degrees(lambda2)\n dec_out = np.degrees(phi2)\n return ra_out, dec_out\n", "role": "user" }, { "content": "translate_rhumb", "role": "assistant" } ]
def x(l, b): a = SkyCoord(l, b, unit=(u.radian, u.radian), frame='galactic') return a.fk5.ra.radian, a.fk5.dec.radian
galactic2fk5
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l, b):\n a = SkyCoord(l, b, unit=(u.radian, u.radian), frame='galactic')\n return a.fk5.ra.radian, a.fk5.dec.radian\n", "role": "user" }, { "content": "galactic2fk5", "role": "assistant" } ]
def x(data, wcs, region, negate=False): indexes = np.empty((data.shape[0] * data.shape[1], 2), dtype=int) idx = np.array([(j, 0) for j in range(data.shape[1])]) j = data.shape[1] for i in range(data.shape[0]): idx[:, 1] = i indexes[i * j:(i + 1) * j] = idx ra, dec = wcs.wcs_pix2world(indexes, 1).transpose() bigmask = region.sky_within(ra, dec, degin=True) if not negate: bigmask = np.bitwise_not(bigmask) bigmask = bigmask.reshape(data.shape) data[bigmask] = np.nan return data
mask_plane
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, wcs, region, negate=False):\n indexes = np.empty((data.shape[0] * data.shape[1], 2), dtype=int)\n idx = np.array([(j, 0) for j in range(data.shape[1])])\n j = data.shape[1]\n for i in range(data.shape[0]):\n idx[:, 1] = i\n indexes[i * j:(i + 1) * j] = idx\n ra, dec = wcs.wcs_pix2world(indexes, 1).transpose()\n bigmask = region.sky_within(ra, dec, degin=True)\n if not negate:\n bigmask = np.bitwise_not(bigmask)\n bigmask = bigmask.reshape(data.shape)\n data[bigmask] = np.nan\n return data\n", "role": "user" }, { "content": "mask_plane", "role": "assistant" } ]
def x(regionfile, infile, outfile, negate=False): if not os.path.exists(infile): raise AssertionError('Cannot locate fits file {0}'.format(infile)) im = pyfits.open(infile) if not os.path.exists(regionfile): raise AssertionError('Cannot locate region file {0}'.format(regionfile) ) region = Region.load(regionfile) try: wcs = pywcs.WCS(im[0].header, naxis=2) except: wcs = pywcs.WCS(str(im[0].header), naxis=2) if len(im[0].data.shape) > 2: data = np.squeeze(im[0].data) else: data = im[0].data print(data.shape) if len(data.shape) == 3: for plane in range(data.shape[0]): mask_plane(data[plane], wcs, region, negate) else: mask_plane(data, wcs, region, negate) im[0].data = data im.writeto(outfile, overwrite=True) logging.info('Wrote {0}'.format(outfile)) return
mask_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(regionfile, infile, outfile, negate=False):\n if not os.path.exists(infile):\n raise AssertionError('Cannot locate fits file {0}'.format(infile))\n im = pyfits.open(infile)\n if not os.path.exists(regionfile):\n raise AssertionError('Cannot locate region file {0}'.format(regionfile)\n )\n region = Region.load(regionfile)\n try:\n wcs = pywcs.WCS(im[0].header, naxis=2)\n except:\n wcs = pywcs.WCS(str(im[0].header), naxis=2)\n if len(im[0].data.shape) > 2:\n data = np.squeeze(im[0].data)\n else:\n data = im[0].data\n print(data.shape)\n if len(data.shape) == 3:\n for plane in range(data.shape[0]):\n mask_plane(data[plane], wcs, region, negate)\n else:\n mask_plane(data, wcs, region, negate)\n im[0].data = data\n im.writeto(outfile, overwrite=True)\n logging.info('Wrote {0}'.format(outfile))\n return\n", "role": "user" }, { "content": "mask_file", "role": "assistant" } ]
def x(region, table, negate=False, racol='ra', deccol='dec'): inside = region.sky_within(table[racol], table[deccol], degin=True) if not negate: mask = np.bitwise_not(inside) else: mask = inside return table[mask]
mask_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(region, table, negate=False, racol='ra', deccol='dec'):\n inside = region.sky_within(table[racol], table[deccol], degin=True)\n if not negate:\n mask = np.bitwise_not(inside)\n else:\n mask = inside\n return table[mask]\n", "role": "user" }, { "content": "mask_table", "role": "assistant" } ]
def x(regionfile, infile, outfile, negate=False, racol='ra', deccol='dec'): logging.info('Loading region from {0}'.format(regionfile)) region = Region.load(regionfile) logging.info('Loading catalog from {0}'.format(infile)) table = load_table(infile) masked_table = mask_table(region, table, negate=negate, racol=racol, deccol=deccol) write_table(masked_table, outfile) return
mask_catalog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(regionfile, infile, outfile, negate=False, racol='ra', deccol='dec'):\n logging.info('Loading region from {0}'.format(regionfile))\n region = Region.load(regionfile)\n logging.info('Loading catalog from {0}'.format(infile))\n table = load_table(infile)\n masked_table = mask_table(region, table, negate=negate, racol=racol,\n deccol=deccol)\n write_table(masked_table, outfile)\n return\n", "role": "user" }, { "content": "mask_catalog", "role": "assistant" } ]
def x(mimfile, regfile): region = Region.load(mimfile) region.write_reg(regfile) logging.info('Converted {0} -> {1}'.format(mimfile, regfile)) return
mim2reg
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mimfile, regfile):\n region = Region.load(mimfile)\n region.write_reg(regfile)\n logging.info('Converted {0} -> {1}'.format(mimfile, regfile))\n return\n", "role": "user" }, { "content": "mim2reg", "role": "assistant" } ]
def x(mimfile, fitsfile): region = Region.load(mimfile) region.write_fits(fitsfile, moctool='MIMAS {0}-{1}'.format(__version__, __date__)) logging.info('Converted {0} -> {1}'.format(mimfile, fitsfile)) return
mim2fits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mimfile, fitsfile):\n region = Region.load(mimfile)\n region.write_fits(fitsfile, moctool='MIMAS {0}-{1}'.format(__version__,\n __date__))\n logging.info('Converted {0} -> {1}'.format(mimfile, fitsfile))\n return\n", "role": "user" }, { "content": "mim2fits", "role": "assistant" } ]
def x(line): words = re.split('[(\\s,)]', line) ra = words[1] dec = words[2] width = words[3] height = words[4] if ':' in ra: ra = Angle(ra, unit=u.hour) else: ra = Angle(ra, unit=u.degree) dec = Angle(dec, unit=u.degree) width = Angle(float(width[:-1]) / 2, unit=u.arcsecond) height = Angle(float(height[:-1]) / 2, unit=u.arcsecond) center = SkyCoord(ra, dec) tl = center.ra.degree + width.degree, center.dec.degree + height.degree tr = center.ra.degree - width.degree, center.dec.degree + height.degree bl = center.ra.degree + width.degree, center.dec.degree - height.degree br = center.ra.degree - width.degree, center.dec.degree - height.degree return np.ravel([tl, tr, br, bl]).tolist()
box2poly
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line):\n words = re.split('[(\\\\s,)]', line)\n ra = words[1]\n dec = words[2]\n width = words[3]\n height = words[4]\n if ':' in ra:\n ra = Angle(ra, unit=u.hour)\n else:\n ra = Angle(ra, unit=u.degree)\n dec = Angle(dec, unit=u.degree)\n width = Angle(float(width[:-1]) / 2, unit=u.arcsecond)\n height = Angle(float(height[:-1]) / 2, unit=u.arcsecond)\n center = SkyCoord(ra, dec)\n tl = center.ra.degree + width.degree, center.dec.degree + height.degree\n tr = center.ra.degree - width.degree, center.dec.degree + height.degree\n bl = center.ra.degree + width.degree, center.dec.degree - height.degree\n br = center.ra.degree - width.degree, center.dec.degree - height.degree\n return np.ravel([tl, tr, br, bl]).tolist()\n", "role": "user" }, { "content": "box2poly", "role": "assistant" } ]
def x(line): words = re.split('[(,\\s)]', line) ra = words[1] dec = words[2] radius = words[3][:-1] if ':' in ra: ra = Angle(ra, unit=u.hour) else: ra = Angle(ra, unit=u.degree) dec = Angle(dec, unit=u.degree) radius = Angle(radius, unit=u.arcsecond) return [ra.degree, dec.degree, radius.degree]
circle2circle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line):\n words = re.split('[(,\\\\s)]', line)\n ra = words[1]\n dec = words[2]\n radius = words[3][:-1]\n if ':' in ra:\n ra = Angle(ra, unit=u.hour)\n else:\n ra = Angle(ra, unit=u.degree)\n dec = Angle(dec, unit=u.degree)\n radius = Angle(radius, unit=u.arcsecond)\n return [ra.degree, dec.degree, radius.degree]\n", "role": "user" }, { "content": "circle2circle", "role": "assistant" } ]
def x(line): words = re.split('[(\\s,)]', line) ras = np.array(words[1::2]) decs = np.array(words[2::2]) coords = [] for ra, dec in zip(ras, decs): if ra.strip() == '' or dec.strip() == '': continue if ':' in ra: pos = SkyCoord(Angle(ra, unit=u.hour), Angle(dec, unit=u.degree)) else: pos = SkyCoord(Angle(ra, unit=u.degree), Angle(dec, unit=u.degree)) coords.extend([pos.ra.degree, pos.dec.degree]) return coords
poly2poly
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(line):\n words = re.split('[(\\\\s,)]', line)\n ras = np.array(words[1::2])\n decs = np.array(words[2::2])\n coords = []\n for ra, dec in zip(ras, decs):\n if ra.strip() == '' or dec.strip() == '':\n continue\n if ':' in ra:\n pos = SkyCoord(Angle(ra, unit=u.hour), Angle(dec, unit=u.degree))\n else:\n pos = SkyCoord(Angle(ra, unit=u.degree), Angle(dec, unit=u.degree))\n coords.extend([pos.ra.degree, pos.dec.degree])\n return coords\n", "role": "user" }, { "content": "poly2poly", "role": "assistant" } ]
def x(regfile, mimfile, maxdepth): logging.info('Reading regions from {0}'.format(regfile)) lines = (l for l in open(regfile, 'r') if not l.startswith('#')) poly = [] circles = [] for line in lines: if line.startswith('box'): poly.append(box2poly(line)) elif line.startswith('circle'): circles.append(circle2circle(line)) elif line.startswith('polygon'): logging.warning( "Polygons break a lot, but I'll try this one anyway.") poly.append(poly2poly(line)) else: logging.warning('Not sure what to do with {0}'.format(line[:-1])) container = Dummy(maxdepth=maxdepth) container.include_circles = circles container.include_polygons = poly region = combine_regions(container) save_region(region, mimfile) return
reg2mim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(regfile, mimfile, maxdepth):\n logging.info('Reading regions from {0}'.format(regfile))\n lines = (l for l in open(regfile, 'r') if not l.startswith('#'))\n poly = []\n circles = []\n for line in lines:\n if line.startswith('box'):\n poly.append(box2poly(line))\n elif line.startswith('circle'):\n circles.append(circle2circle(line))\n elif line.startswith('polygon'):\n logging.warning(\n \"Polygons break a lot, but I'll try this one anyway.\")\n poly.append(poly2poly(line))\n else:\n logging.warning('Not sure what to do with {0}'.format(line[:-1]))\n container = Dummy(maxdepth=maxdepth)\n container.include_circles = circles\n container.include_polygons = poly\n region = combine_regions(container)\n save_region(region, mimfile)\n return\n", "role": "user" }, { "content": "reg2mim", "role": "assistant" } ]