source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, new=True):
url = (self._imgur._base_url + '/3/account/{0}/notifications/replies'.
format(self.name))
return self._imgur._send_request(url, needs_auth=True)
|
get_replies
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, new=True):\n url = (self._imgur._base_url + '/3/account/{0}/notifications/replies'.\n format(self.name))\n return self._imgur._send_request(url, needs_auth=True)\n",
"role": "user"
},
{
"content": "get_replies",
"role": "assistant"
}
] |
def x(self):
url = self._imgur._base_url + '/3/account/{0}/settings'.format(self.name)
return self._imgur._send_request(url)
|
get_settings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n url = self._imgur._base_url + '/3/account/{0}/settings'.format(self.name)\n return self._imgur._send_request(url)\n",
"role": "user"
},
{
"content": "get_settings",
"role": "assistant"
}
] |
def x(self, limit=None):
url = self._imgur._base_url + '/3/account/{0}/submissions/{1}'.format(self
.name, '{}')
resp = self._imgur._send_request(url, limit=limit)
return [_get_album_or_image(thing, self._imgur) for thing in resp]
|
get_submissions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, limit=None):\n url = self._imgur._base_url + '/3/account/{0}/submissions/{1}'.format(self\n .name, '{}')\n resp = self._imgur._send_request(url, limit=limit)\n return [_get_album_or_image(thing, self._imgur) for thing in resp]\n",
"role": "user"
},
{
"content": "get_submissions",
"role": "assistant"
}
] |
def x(self, body, subject=None, reply_to=None):
url = self._imgur._base_url + '/3/message'
parent_id = reply_to.id if isinstance(reply_to, Message) else reply_to
payload = {'recipient': self.name, 'body': body, 'subject': subject,
'parent_id': parent_id}
self._imgur._send_request(url, params=payload, needs_auth=True, method=
'POST')
|
send_message
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, body, subject=None, reply_to=None):\n url = self._imgur._base_url + '/3/message'\n parent_id = reply_to.id if isinstance(reply_to, Message) else reply_to\n payload = {'recipient': self.name, 'body': body, 'subject': subject,\n 'parent_id': parent_id}\n self._imgur._send_request(url, params=payload, needs_auth=True, method=\n 'POST')\n",
"role": "user"
},
{
"content": "send_message",
"role": "assistant"
}
] |
def x(self):
url = self._imgur._base_url + '/3/account/{0}/verifyemail'.format(self.name
)
self._imgur._send_request(url, needs_auth=True, method='POST')
|
send_verification_email
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n url = self._imgur._base_url + '/3/account/{0}/verifyemail'.format(self.name\n )\n self._imgur._send_request(url, needs_auth=True, method='POST')\n",
"role": "user"
},
{
"content": "send_verification_email",
"role": "assistant"
}
] |
def x(reverse=False, align=False, strip_path=False, enable_on_envvar_only=
False, on_tty=False, conservative=False, styles=None, tb=None, tpe=None,
value=None):
if enable_on_envvar_only and 'ENABLE_BACKTRACE' not in os.environ:
return
isatty = getattr(sys.stderr, 'isatty', lambda : False)
if on_tty and not isatty():
return
if conservative:
styles = CONVERVATIVE_STYLES
align = align or False
elif styles:
for k in STYLES.keys():
styles[k] = styles.get(k, STYLES[k])
else:
styles = STYLES
colorama.init()
def x(tpe, value, tb=None):
try:
traceback_entries = traceback.extract_tb(tb)
except AttributeError:
traceback_entries = tb
parser = _Hook(traceback_entries, align, strip_path, conservative)
tpe = tpe if isinstance(tpe, str) else tpe.__name__
tb_message = styles['backtrace'].format('Traceback ({0}):'.format(
'Most recent call ' + ('first' if reverse else 'last'))
) + Style.RESET_ALL
err_message = styles['error'].format(tpe + ': ' + str(value)
) + Style.RESET_ALL
if reverse:
parser.reverse()
_flush(tb_message)
backtrace = parser.generate_backtrace(styles)
backtrace.insert(0 if reverse else len(backtrace), err_message)
for entry in backtrace:
_flush(entry)
if tb:
backtrace_excepthook(tpe=tpe, value=value, tb=tb)
else:
sys.excepthook = backtrace_excepthook
|
hook
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(reverse=False, align=False, strip_path=False, enable_on_envvar_only=\n False, on_tty=False, conservative=False, styles=None, tb=None, tpe=None,\n value=None):\n if enable_on_envvar_only and 'ENABLE_BACKTRACE' not in os.environ:\n return\n isatty = getattr(sys.stderr, 'isatty', lambda : False)\n if on_tty and not isatty():\n return\n if conservative:\n styles = CONVERVATIVE_STYLES\n align = align or False\n elif styles:\n for k in STYLES.keys():\n styles[k] = styles.get(k, STYLES[k])\n else:\n styles = STYLES\n colorama.init()\n\n def x(tpe, value, tb=None):\n try:\n traceback_entries = traceback.extract_tb(tb)\n except AttributeError:\n traceback_entries = tb\n parser = _Hook(traceback_entries, align, strip_path, conservative)\n tpe = tpe if isinstance(tpe, str) else tpe.__name__\n tb_message = styles['backtrace'].format('Traceback ({0}):'.format(\n 'Most recent call ' + ('first' if reverse else 'last'))\n ) + Style.RESET_ALL\n err_message = styles['error'].format(tpe + ': ' + str(value)\n ) + Style.RESET_ALL\n if reverse:\n parser.reverse()\n _flush(tb_message)\n backtrace = parser.generate_backtrace(styles)\n backtrace.insert(0 if reverse else len(backtrace), err_message)\n for entry in backtrace:\n _flush(entry)\n if tb:\n backtrace_excepthook(tpe=tpe, value=value, tb=tb)\n else:\n sys.excepthook = backtrace_excepthook\n",
"role": "user"
},
{
"content": "hook",
"role": "assistant"
}
] |
def x(text):
capture = False
entries = []
all_else = []
ignore_trace = False
if text.count(TRACEBACK_IDENTIFIER) == 2:
ignore_trace = True
for index, line in enumerate(text):
if TRACEBACK_IDENTIFIER in line:
if ignore_trace:
ignore_trace = False
continue
capture = True
elif capture and line.startswith(' '):
if index % 2 == 0:
line = line.strip().strip('\n')
next_line = text[index + 1].strip('\n')
entries.append(line + ', ' + next_line)
elif capture:
entries.append(line)
break
else:
all_else.append(line)
traceback_entries = []
for index, line in enumerate(entries[:-2]):
element = line.split(',')
element[0] = element[0].strip().lstrip('File').strip(' "')
element[1] = element[1].strip().lstrip('line').strip()
element[2] = element[2].strip().lstrip('in').strip()
traceback_entries.append(tuple(element))
return traceback_entries, all_else
|
extract_traceback
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n capture = False\n entries = []\n all_else = []\n ignore_trace = False\n if text.count(TRACEBACK_IDENTIFIER) == 2:\n ignore_trace = True\n for index, line in enumerate(text):\n if TRACEBACK_IDENTIFIER in line:\n if ignore_trace:\n ignore_trace = False\n continue\n capture = True\n elif capture and line.startswith(' '):\n if index % 2 == 0:\n line = line.strip().strip('\\n')\n next_line = text[index + 1].strip('\\n')\n entries.append(line + ', ' + next_line)\n elif capture:\n entries.append(line)\n break\n else:\n all_else.append(line)\n traceback_entries = []\n for index, line in enumerate(entries[:-2]):\n element = line.split(',')\n element[0] = element[0].strip().lstrip('File').strip(' \"')\n element[1] = element[1].strip().lstrip('line').strip()\n element[2] = element[2].strip().lstrip('in').strip()\n traceback_entries.append(tuple(element))\n return traceback_entries, all_else\n",
"role": "user"
},
{
"content": "extract_traceback",
"role": "assistant"
}
] |
def x(self, styles):
backtrace = []
for entry in self.entries:
backtrace.append(self.rebuild_entry(entry, styles))
lengths = self.align_all(backtrace) if self.align else [1, 1, 1, 1]
aligned_backtrace = []
for entry in backtrace:
aligned_backtrace.append(self.align_entry(entry, lengths))
return aligned_backtrace
|
generate_backtrace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, styles):\n backtrace = []\n for entry in self.entries:\n backtrace.append(self.rebuild_entry(entry, styles))\n lengths = self.align_all(backtrace) if self.align else [1, 1, 1, 1]\n aligned_backtrace = []\n for entry in backtrace:\n aligned_backtrace.append(self.align_entry(entry, lengths))\n return aligned_backtrace\n",
"role": "user"
},
{
"content": "generate_backtrace",
"role": "assistant"
}
] |
def x(catalog):
components = []
islands = []
simples = []
for source in catalog:
if isinstance(source, OutputSource):
components.append(source)
elif isinstance(source, IslandSource):
islands.append(source)
elif isinstance(source, SimpleSource):
simples.append(source)
return components, islands, simples
|
classify_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog):\n components = []\n islands = []\n simples = []\n for source in catalog:\n if isinstance(source, OutputSource):\n components.append(source)\n elif isinstance(source, IslandSource):\n islands.append(source)\n elif isinstance(source, SimpleSource):\n simples.append(source)\n return components, islands, simples\n",
"role": "user"
},
{
"content": "classify_catalog",
"role": "assistant"
}
] |
def x(catalog):
catalog = sorted(catalog)
catalog.reverse()
group = []
src = catalog.pop()
c_len = len(catalog)
isle_num = src.island
while c_len >= 0:
if src.island == isle_num:
group.append(src)
c_len -= 1
if c_len < 0:
yield group
else:
src = catalog.pop()
else:
isle_num += 1
if group == []:
continue
yield group
group = []
return
|
island_itergen
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(catalog):\n catalog = sorted(catalog)\n catalog.reverse()\n group = []\n src = catalog.pop()\n c_len = len(catalog)\n isle_num = src.island\n while c_len >= 0:\n if src.island == isle_num:\n group.append(src)\n c_len -= 1\n if c_len < 0:\n yield group\n else:\n src = catalog.pop()\n else:\n isle_num += 1\n if group == []:\n continue\n yield group\n group = []\n return\n",
"role": "user"
},
{
"content": "island_itergen",
"role": "assistant"
}
] |
def x(self):
for k in self.__dict__:
if isinstance(self.__dict__[k], np.float32):
self.__dict__[k] = np.float64(self.__dict__[k])
|
sanitise
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for k in self.__dict__:\n if isinstance(self.__dict__[k], np.float32):\n self.__dict__[k] = np.float64(self.__dict__[k])\n",
"role": "user"
},
{
"content": "sanitise",
"role": "assistant"
}
] |
def x(self):
self._sanitise()
l = []
for name in self.names:
l.append(getattr(self, name))
return l
|
as_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._sanitise()\n l = []\n for name in self.names:\n l.append(getattr(self, name))\n return l\n",
"role": "user"
},
{
"content": "as_list",
"role": "assistant"
}
] |
def x(self, ra_cen, dec_cen, radius, depth=None):
if depth is None or depth > self.maxdepth:
depth = self.maxdepth
try:
sky = list(zip(ra_cen, dec_cen))
rad = radius
except TypeError:
sky = [[ra_cen, dec_cen]]
rad = [radius]
sky = np.array(sky)
rad = np.array(rad)
vectors = self.sky2vec(sky)
for vec, r in zip(vectors, rad):
pix = hp.query_disc(2 ** depth, vec, r, inclusive=True, nest=True)
self.add_pixels(pix, depth)
self._renorm()
return
|
add_circles
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra_cen, dec_cen, radius, depth=None):\n if depth is None or depth > self.maxdepth:\n depth = self.maxdepth\n try:\n sky = list(zip(ra_cen, dec_cen))\n rad = radius\n except TypeError:\n sky = [[ra_cen, dec_cen]]\n rad = [radius]\n sky = np.array(sky)\n rad = np.array(rad)\n vectors = self.sky2vec(sky)\n for vec, r in zip(vectors, rad):\n pix = hp.query_disc(2 ** depth, vec, r, inclusive=True, nest=True)\n self.add_pixels(pix, depth)\n self._renorm()\n return\n",
"role": "user"
},
{
"content": "add_circles",
"role": "assistant"
}
] |
def x(self, positions, depth=None):
if not len(positions) >= 3:
raise AssertionError('A minimum of three coordinate pairs are required'
)
if depth is None or depth > self.maxdepth:
depth = self.maxdepth
ras, decs = np.array(list(zip(*positions)))
sky = self.radec2sky(ras, decs)
pix = hp.query_polygon(2 ** depth, self.sky2vec(sky), inclusive=True,
nest=True)
self.add_pixels(pix, depth)
self._renorm()
return
|
add_poly
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, positions, depth=None):\n if not len(positions) >= 3:\n raise AssertionError('A minimum of three coordinate pairs are required'\n )\n if depth is None or depth > self.maxdepth:\n depth = self.maxdepth\n ras, decs = np.array(list(zip(*positions)))\n sky = self.radec2sky(ras, decs)\n pix = hp.query_polygon(2 ** depth, self.sky2vec(sky), inclusive=True,\n nest=True)\n self.add_pixels(pix, depth)\n self._renorm()\n return\n",
"role": "user"
},
{
"content": "add_poly",
"role": "assistant"
}
] |
def x(self, pix, depth):
if depth not in self.pixeldict:
self.pixeldict[depth] = set()
self.pixeldict[depth].update(set(pix))
|
add_pixels
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pix, depth):\n if depth not in self.pixeldict:\n self.pixeldict[depth] = set()\n self.pixeldict[depth].update(set(pix))\n",
"role": "user"
},
{
"content": "add_pixels",
"role": "assistant"
}
] |
def x(self, degrees=True):
area = 0
for d in range(1, self.maxdepth + 1):
area += len(self.pixeldict[d]) * hp.nside2pixarea(2 ** d, degrees=
degrees)
return area
|
get_area
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, degrees=True):\n area = 0\n for d in range(1, self.maxdepth + 1):\n area += len(self.pixeldict[d]) * hp.nside2pixarea(2 ** d, degrees=\n degrees)\n return area\n",
"role": "user"
},
{
"content": "get_area",
"role": "assistant"
}
] |
def x(self):
if len(self.demoted) == 0:
pd = self.pixeldict
for d in range(1, self.maxdepth):
for p in pd[d]:
pd[d + 1].update(set((4 * p, 4 * p + 1, 4 * p + 2, 4 * p + 3)))
pd[d] = set()
self.demoted = pd[d + 1]
return
|
demote_all
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if len(self.demoted) == 0:\n pd = self.pixeldict\n for d in range(1, self.maxdepth):\n for p in pd[d]:\n pd[d + 1].update(set((4 * p, 4 * p + 1, 4 * p + 2, 4 * p + 3)))\n pd[d] = set()\n self.demoted = pd[d + 1]\n return\n",
"role": "user"
},
{
"content": "demote_all",
"role": "assistant"
}
] |
def x(self):
self.demoted = set()
self._demote_all()
for d in range(self.maxdepth, 2, -1):
plist = self.pixeldict[d].copy()
for p in plist:
if p % 4 == 0:
nset = set((p, p + 1, p + 2, p + 3))
if p + 1 in plist and p + 2 in plist and p + 3 in plist:
self.pixeldict[d].difference_update(nset)
self.pixeldict[d - 1].add(p / 4)
self.demoted = set()
return
|
renorm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.demoted = set()\n self._demote_all()\n for d in range(self.maxdepth, 2, -1):\n plist = self.pixeldict[d].copy()\n for p in plist:\n if p % 4 == 0:\n nset = set((p, p + 1, p + 2, p + 3))\n if p + 1 in plist and p + 2 in plist and p + 3 in plist:\n self.pixeldict[d].difference_update(nset)\n self.pixeldict[d - 1].add(p / 4)\n self.demoted = set()\n return\n",
"role": "user"
},
{
"content": "renorm",
"role": "assistant"
}
] |
def x(self, ra, dec, degin=False):
sky = self.radec2sky(ra, dec)
if degin:
sky = np.radians(sky)
theta_phi = self.sky2ang(sky)
mask = np.bitwise_not(np.logical_and.reduce(np.isfinite(theta_phi), axis=1)
)
theta_phi[mask, :] = 0
theta, phi = theta_phi.transpose()
pix = hp.ang2pix(2 ** self.maxdepth, theta, phi, nest=True)
pixelset = self.get_demoted()
result = np.in1d(pix, list(pixelset))
result[mask] = False
return result
|
sky_within
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec, degin=False):\n sky = self.radec2sky(ra, dec)\n if degin:\n sky = np.radians(sky)\n theta_phi = self.sky2ang(sky)\n mask = np.bitwise_not(np.logical_and.reduce(np.isfinite(theta_phi), axis=1)\n )\n theta_phi[mask, :] = 0\n theta, phi = theta_phi.transpose()\n pix = hp.ang2pix(2 ** self.maxdepth, theta, phi, nest=True)\n pixelset = self.get_demoted()\n result = np.in1d(pix, list(pixelset))\n result[mask] = False\n return result\n",
"role": "user"
},
{
"content": "sky_within",
"role": "assistant"
}
] |
def x(self, other, renorm=True):
for d in range(1, min(self.maxdepth, other.maxdepth) + 1):
self.add_pixels(other.pixeldict[d], d)
if self.maxdepth < other.maxdepth:
for d in range(self.maxdepth + 1, other.maxdepth + 1):
for p in other.pixeldict[d]:
pp = p / 4 ** (d - self.maxdepth)
self.pixeldict[self.maxdepth].add(pp)
if renorm:
self._renorm()
return
|
union
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other, renorm=True):\n for d in range(1, min(self.maxdepth, other.maxdepth) + 1):\n self.add_pixels(other.pixeldict[d], d)\n if self.maxdepth < other.maxdepth:\n for d in range(self.maxdepth + 1, other.maxdepth + 1):\n for p in other.pixeldict[d]:\n pp = p / 4 ** (d - self.maxdepth)\n self.pixeldict[self.maxdepth].add(pp)\n if renorm:\n self._renorm()\n return\n",
"role": "user"
},
{
"content": "union",
"role": "assistant"
}
] |
def x(self, other):
if not self.maxdepth == other.maxdepth:
raise AssertionError('Regions must have the same maxdepth')
self._demote_all()
opd = set(other.get_demoted())
self.pixeldict[self.maxdepth].difference_update(opd)
self._renorm()
return
|
without
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other):\n if not self.maxdepth == other.maxdepth:\n raise AssertionError('Regions must have the same maxdepth')\n self._demote_all()\n opd = set(other.get_demoted())\n self.pixeldict[self.maxdepth].difference_update(opd)\n self._renorm()\n return\n",
"role": "user"
},
{
"content": "without",
"role": "assistant"
}
] |
def x(self, other):
if not self.maxdepth == other.maxdepth:
raise AssertionError('Regions must have the same maxdepth')
self._demote_all()
opd = set(other.get_demoted())
self.pixeldict[self.maxdepth].intersection_update(opd)
self._renorm()
return
|
intersect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other):\n if not self.maxdepth == other.maxdepth:\n raise AssertionError('Regions must have the same maxdepth')\n self._demote_all()\n opd = set(other.get_demoted())\n self.pixeldict[self.maxdepth].intersection_update(opd)\n self._renorm()\n return\n",
"role": "user"
},
{
"content": "intersect",
"role": "assistant"
}
] |
def x(self, other):
if not self.maxdepth == other.maxdepth:
raise AssertionError('Regions must have the same maxdepth')
self._demote_all()
opd = set(other.get_demoted())
self.pixeldict[self.maxdepth].symmetric_difference_update(opd)
self._renorm()
return
|
symmetric_difference
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, other):\n if not self.maxdepth == other.maxdepth:\n raise AssertionError('Regions must have the same maxdepth')\n self._demote_all()\n opd = set(other.get_demoted())\n self.pixeldict[self.maxdepth].symmetric_difference_update(opd)\n self._renorm()\n return\n",
"role": "user"
},
{
"content": "symmetric_difference",
"role": "assistant"
}
] |
def x(self, filename):
with open(filename, 'w') as out:
for d in range(1, self.maxdepth + 1):
for p in self.pixeldict[d]:
line = 'fk5; polygon('
vectors = list(zip(*hp.boundaries(2 ** d, int(p), step=1,
nest=True)))
positions = []
for sky in self.vec2sky(np.array(vectors), degrees=True):
ra, dec = sky
pos = SkyCoord(ra / 15, dec, unit=(u.degree, u.degree))
positions.append(pos.ra.to_string(sep=':', precision=2))
positions.append(pos.dec.to_string(sep=':', precision=2))
line += ','.join(positions)
line += ')'
print(line, file=out)
return
|
write_reg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n with open(filename, 'w') as out:\n for d in range(1, self.maxdepth + 1):\n for p in self.pixeldict[d]:\n line = 'fk5; polygon('\n vectors = list(zip(*hp.boundaries(2 ** d, int(p), step=1,\n nest=True)))\n positions = []\n for sky in self.vec2sky(np.array(vectors), degrees=True):\n ra, dec = sky\n pos = SkyCoord(ra / 15, dec, unit=(u.degree, u.degree))\n positions.append(pos.ra.to_string(sep=':', precision=2))\n positions.append(pos.dec.to_string(sep=':', precision=2))\n line += ','.join(positions)\n line += ')'\n print(line, file=out)\n return\n",
"role": "user"
},
{
"content": "write_reg",
"role": "assistant"
}
] |
def x(self, filename, moctool=''):
datafile = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'data', 'MOC.fits')
hdulist = fits.open(datafile)
cols = fits.Column(name='NPIX', array=self._uniq(), format='1K')
tbhdu = fits.BinTableHDU.from_columns([cols])
hdulist[1] = tbhdu
hdulist[1].header['PIXTYPE'] = 'HEALPIX ', 'HEALPix magic code'
hdulist[1].header['ORDERING'] = 'NUNIQ ', 'NUNIQ coding method'
hdulist[1].header['COORDSYS'] = 'C ', 'ICRS reference frame'
hdulist[1].header['MOCORDER'
] = self.maxdepth, 'MOC resolution (best order)'
hdulist[1].header['MOCTOOL'] = moctool, 'Name of the MOC generator'
hdulist[1].header['MOCTYPE'] = 'CATALOG', 'Source type (IMAGE or CATALOG)'
hdulist[1].header['MOCID'] = ' ', 'Identifier of the collection'
hdulist[1].header['ORIGIN'] = ' ', 'MOC origin'
time = datetime.datetime.utcnow()
hdulist[1].header['DATE'] = datetime.datetime.strftime(time, format=
'%Y-%m-%dT%H:%m:%SZ'), 'MOC creation date'
hdulist.writeto(filename, overwrite=True)
return
|
write_fits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, moctool=''):\n datafile = os.path.join(os.path.dirname(os.path.abspath(__file__)),\n 'data', 'MOC.fits')\n hdulist = fits.open(datafile)\n cols = fits.Column(name='NPIX', array=self._uniq(), format='1K')\n tbhdu = fits.BinTableHDU.from_columns([cols])\n hdulist[1] = tbhdu\n hdulist[1].header['PIXTYPE'] = 'HEALPIX ', 'HEALPix magic code'\n hdulist[1].header['ORDERING'] = 'NUNIQ ', 'NUNIQ coding method'\n hdulist[1].header['COORDSYS'] = 'C ', 'ICRS reference frame'\n hdulist[1].header['MOCORDER'\n ] = self.maxdepth, 'MOC resolution (best order)'\n hdulist[1].header['MOCTOOL'] = moctool, 'Name of the MOC generator'\n hdulist[1].header['MOCTYPE'] = 'CATALOG', 'Source type (IMAGE or CATALOG)'\n hdulist[1].header['MOCID'] = ' ', 'Identifier of the collection'\n hdulist[1].header['ORIGIN'] = ' ', 'MOC origin'\n time = datetime.datetime.utcnow()\n hdulist[1].header['DATE'] = datetime.datetime.strftime(time, format=\n '%Y-%m-%dT%H:%m:%SZ'), 'MOC creation date'\n hdulist.writeto(filename, overwrite=True)\n return\n",
"role": "user"
},
{
"content": "write_fits",
"role": "assistant"
}
] |
def x(self):
pd = []
for d in range(1, self.maxdepth):
pd.extend(map(lambda x: int(4 ** (d + 1) + x), self.pixeldict[d]))
return sorted(pd)
|
uniq
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n pd = []\n for d in range(1, self.maxdepth):\n pd.extend(map(lambda x: int(4 ** (d + 1) + x), self.pixeldict[d]))\n return sorted(pd)\n",
"role": "user"
},
{
"content": "uniq",
"role": "assistant"
}
] |
def x(ra, dec):
try:
sky = np.array(list(zip(ra, dec)))
except TypeError:
sky = np.array([(ra, dec)])
return sky
|
radec2sky
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ra, dec):\n try:\n sky = np.array(list(zip(ra, dec)))\n except TypeError:\n sky = np.array([(ra, dec)])\n return sky\n",
"role": "user"
},
{
"content": "radec2sky",
"role": "assistant"
}
] |
def x(sky):
try:
theta_phi = sky.copy()
except AttributeError as _:
theta_phi = np.array(sky)
theta_phi[:, [1, 0]] = theta_phi[:, [0, 1]]
theta_phi[:, 0] = np.pi / 2 - theta_phi[:, 0]
return theta_phi
|
sky2ang
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sky):\n try:\n theta_phi = sky.copy()\n except AttributeError as _:\n theta_phi = np.array(sky)\n theta_phi[:, [1, 0]] = theta_phi[:, [0, 1]]\n theta_phi[:, 0] = np.pi / 2 - theta_phi[:, 0]\n return theta_phi\n",
"role": "user"
},
{
"content": "sky2ang",
"role": "assistant"
}
] |
def x(cls, sky):
theta_phi = cls.sky2ang(sky)
theta, phi = map(np.array, list(zip(*theta_phi)))
vec = hp.ang2vec(theta, phi)
return vec
|
sky2vec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, sky):\n theta_phi = cls.sky2ang(sky)\n theta, phi = map(np.array, list(zip(*theta_phi)))\n vec = hp.ang2vec(theta, phi)\n return vec\n",
"role": "user"
},
{
"content": "sky2vec",
"role": "assistant"
}
] |
def x(cls, vec, degrees=False):
theta, phi = hp.vec2ang(vec)
ra = phi
dec = np.pi / 2 - theta
if degrees:
ra = np.degrees(ra)
dec = np.degrees(dec)
return cls.radec2sky(ra, dec)
|
vec2sky
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, vec, degrees=False):\n theta, phi = hp.vec2ang(vec)\n ra = phi\n dec = np.pi / 2 - theta\n if degrees:\n ra = np.degrees(ra)\n dec = np.degrees(dec)\n return cls.radec2sky(ra, dec)\n",
"role": "user"
},
{
"content": "vec2sky",
"role": "assistant"
}
] |
def x(cls, header, beam=None, lat=None):
try:
wcs = pywcs.WCS(header, naxis=2)
except:
wcs = pywcs.WCS(str(header), naxis=2)
if beam is None:
beam = get_beam(header)
else:
beam = beam
if beam is None:
logging.critical('Cannot determine beam information')
_, pixscale = get_pixinfo(header)
refpix = header['CRPIX1'], header['CRPIX2']
return cls(wcs, beam, pixscale, refpix, lat)
|
from_header
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, header, beam=None, lat=None):\n try:\n wcs = pywcs.WCS(header, naxis=2)\n except:\n wcs = pywcs.WCS(str(header), naxis=2)\n if beam is None:\n beam = get_beam(header)\n else:\n beam = beam\n if beam is None:\n logging.critical('Cannot determine beam information')\n _, pixscale = get_pixinfo(header)\n refpix = header['CRPIX1'], header['CRPIX2']\n return cls(wcs, beam, pixscale, refpix, lat)\n",
"role": "user"
},
{
"content": "from_header",
"role": "assistant"
}
] |
def x(cls, filename, beam=None):
header = fits.getheader(filename)
return cls.from_header(header, beam)
|
from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, filename, beam=None):\n header = fits.getheader(filename)\n return cls.from_header(header, beam)\n",
"role": "user"
},
{
"content": "from_file",
"role": "assistant"
}
] |
def x(self, pixel):
x, y = pixel
return self.wcs.wcs_pix2world([[y, x]], 1)[0]
|
pix2sky
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pixel):\n x, y = pixel\n return self.wcs.wcs_pix2world([[y, x]], 1)[0]\n",
"role": "user"
},
{
"content": "pix2sky",
"role": "assistant"
}
] |
def x(self, pos):
pixel = self.wcs.wcs_world2pix([pos], 1)
return [pixel[0][1], pixel[0][0]]
|
sky2pix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pos):\n pixel = self.wcs.wcs_world2pix([pos], 1)\n return [pixel[0][1], pixel[0][0]]\n",
"role": "user"
},
{
"content": "sky2pix",
"role": "assistant"
}
] |
def x(self, pos, r, pa):
ra, dec = pos
x, y = self.sky2pix(pos)
a = translate(ra, dec, r, pa)
locations = self.sky2pix(a)
x_off, y_off = locations
a = np.sqrt((x - x_off) ** 2 + (y - y_off) ** 2)
theta = np.degrees(np.arctan2(y_off - y, x_off - x))
return x, y, a, theta
|
sky2pix_vec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pos, r, pa):\n ra, dec = pos\n x, y = self.sky2pix(pos)\n a = translate(ra, dec, r, pa)\n locations = self.sky2pix(a)\n x_off, y_off = locations\n a = np.sqrt((x - x_off) ** 2 + (y - y_off) ** 2)\n theta = np.degrees(np.arctan2(y_off - y, x_off - x))\n return x, y, a, theta\n",
"role": "user"
},
{
"content": "sky2pix_vec",
"role": "assistant"
}
] |
def x(self, pixel, r, theta):
ra1, dec1 = self.pix2sky(pixel)
x, y = pixel
a = [x + r * np.cos(np.radians(theta)), y + r * np.sin(np.radians(theta))]
locations = self.pix2sky(a)
ra2, dec2 = locations
a = gcd(ra1, dec1, ra2, dec2)
pa = bear(ra1, dec1, ra2, dec2)
return ra1, dec1, a, pa
|
pix2sky_vec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pixel, r, theta):\n ra1, dec1 = self.pix2sky(pixel)\n x, y = pixel\n a = [x + r * np.cos(np.radians(theta)), y + r * np.sin(np.radians(theta))]\n locations = self.pix2sky(a)\n ra2, dec2 = locations\n a = gcd(ra1, dec1, ra2, dec2)\n pa = bear(ra1, dec1, ra2, dec2)\n return ra1, dec1, a, pa\n",
"role": "user"
},
{
"content": "pix2sky_vec",
"role": "assistant"
}
] |
def x(self, pos, a, b, pa):
ra, dec = pos
x, y = self.sky2pix(pos)
x_off, y_off = self.sky2pix(translate(ra, dec, a, pa))
sx = np.hypot(x - x_off, y - y_off)
theta = np.arctan2(y_off - y, x_off - x)
x_off, y_off = self.sky2pix(translate(ra, dec, b, pa - 90))
sy = np.hypot(x - x_off, y - y_off)
theta2 = np.arctan2(y_off - y, x_off - x) - np.pi / 2
defect = theta - theta2
sy *= abs(np.cos(defect))
return x, y, sx, sy, np.degrees(theta)
|
sky2pix_ellipse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pos, a, b, pa):\n ra, dec = pos\n x, y = self.sky2pix(pos)\n x_off, y_off = self.sky2pix(translate(ra, dec, a, pa))\n sx = np.hypot(x - x_off, y - y_off)\n theta = np.arctan2(y_off - y, x_off - x)\n x_off, y_off = self.sky2pix(translate(ra, dec, b, pa - 90))\n sy = np.hypot(x - x_off, y - y_off)\n theta2 = np.arctan2(y_off - y, x_off - x) - np.pi / 2\n defect = theta - theta2\n sy *= abs(np.cos(defect))\n return x, y, sx, sy, np.degrees(theta)\n",
"role": "user"
},
{
"content": "sky2pix_ellipse",
"role": "assistant"
}
] |
def x(self, pixel, sx, sy, theta):
ra, dec = self.pix2sky(pixel)
x, y = pixel
v_sx = [x + sx * np.cos(np.radians(theta)), y + sx * np.sin(np.radians(
theta))]
ra2, dec2 = self.pix2sky(v_sx)
major = gcd(ra, dec, ra2, dec2)
pa = bear(ra, dec, ra2, dec2)
v_sy = [x + sy * np.cos(np.radians(theta - 90)), y + sy * np.sin(np.
radians(theta - 90))]
ra2, dec2 = self.pix2sky(v_sy)
minor = gcd(ra, dec, ra2, dec2)
pa2 = bear(ra, dec, ra2, dec2) - 90
defect = pa - pa2
minor *= abs(np.cos(np.radians(defect)))
return ra, dec, major, minor, pa
|
pix2sky_ellipse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pixel, sx, sy, theta):\n ra, dec = self.pix2sky(pixel)\n x, y = pixel\n v_sx = [x + sx * np.cos(np.radians(theta)), y + sx * np.sin(np.radians(\n theta))]\n ra2, dec2 = self.pix2sky(v_sx)\n major = gcd(ra, dec, ra2, dec2)\n pa = bear(ra, dec, ra2, dec2)\n v_sy = [x + sy * np.cos(np.radians(theta - 90)), y + sy * np.sin(np.\n radians(theta - 90))]\n ra2, dec2 = self.pix2sky(v_sy)\n minor = gcd(ra, dec, ra2, dec2)\n pa2 = bear(ra, dec, ra2, dec2) - 90\n defect = pa - pa2\n minor *= abs(np.cos(np.radians(defect)))\n return ra, dec, major, minor, pa\n",
"role": "user"
},
{
"content": "pix2sky_ellipse",
"role": "assistant"
}
] |
def x(self, x, y):
ra, dec = self.pix2sky((x, y))
return self.get_pixbeam(ra, dec)
|
get_pixbeam_pixel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y):\n ra, dec = self.pix2sky((x, y))\n return self.get_pixbeam(ra, dec)\n",
"role": "user"
},
{
"content": "get_pixbeam_pixel",
"role": "assistant"
}
] |
def x(self, ra, dec):
if self.lat is None:
factor = 1
else:
factor = np.cos(np.radians(dec - self.lat))
return Beam(self.beam.a / factor, self.beam.b, self.beam.pa)
|
get_beam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec):\n if self.lat is None:\n factor = 1\n else:\n factor = np.cos(np.radians(dec - self.lat))\n return Beam(self.beam.a / factor, self.beam.b, self.beam.pa)\n",
"role": "user"
},
{
"content": "get_beam",
"role": "assistant"
}
] |
def x(self, ra, dec):
if ra is None:
ra, dec = self.pix2sky(self.refpix)
pos = [ra, dec]
beam = self.get_beam(ra, dec)
_, _, major, minor, theta = self.sky2pix_ellipse(pos, beam.a, beam.b,
beam.pa)
if major < minor:
major, minor = minor, major
theta -= 90
if theta < -180:
theta += 180
if not np.isfinite(theta):
theta = 0
if not all(np.isfinite([major, minor, theta])):
beam = None
else:
beam = Beam(major, minor, theta)
return beam
|
get_pixbeam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec):\n if ra is None:\n ra, dec = self.pix2sky(self.refpix)\n pos = [ra, dec]\n beam = self.get_beam(ra, dec)\n _, _, major, minor, theta = self.sky2pix_ellipse(pos, beam.a, beam.b,\n beam.pa)\n if major < minor:\n major, minor = minor, major\n theta -= 90\n if theta < -180:\n theta += 180\n if not np.isfinite(theta):\n theta = 0\n if not all(np.isfinite([major, minor, theta])):\n beam = None\n else:\n beam = Beam(major, minor, theta)\n return beam\n",
"role": "user"
},
{
"content": "get_pixbeam",
"role": "assistant"
}
] |
def x(self, ra, dec):
barea = abs(self.beam.a * self.beam.b * np.pi)
if self.lat is not None:
barea /= np.cos(np.radians(dec - self.lat))
return barea
|
get_beamarea_deg2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec):\n barea = abs(self.beam.a * self.beam.b * np.pi)\n if self.lat is not None:\n barea /= np.cos(np.radians(dec - self.lat))\n return barea\n",
"role": "user"
},
{
"content": "get_beamarea_deg2",
"role": "assistant"
}
] |
def x(self, ra, dec):
parea = abs(self.pixscale[0] * self.pixscale[1])
barea = self.get_beamarea_deg2(ra, dec)
return barea / parea
|
get_beamarea_pix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec):\n parea = abs(self.pixscale[0] * self.pixscale[1])\n barea = self.get_beamarea_deg2(ra, dec)\n return barea / parea\n",
"role": "user"
},
{
"content": "get_beamarea_pix",
"role": "assistant"
}
] |
def x(self, pix1, pix2):
pos1 = self.pix2sky(pix1)
pos2 = self.pix2sky(pix2)
sep = gcd(pos1[0], pos1[1], pos2[0], pos2[1])
return sep
|
sky_sep
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pix1, pix2):\n pos1 = self.pix2sky(pix1)\n pos2 = self.pix2sky(pix2)\n sep = gcd(pos1[0], pos1[1], pos2[0], pos2[1])\n return sep\n",
"role": "user"
},
{
"content": "sky_sep",
"role": "assistant"
}
] |
def x(self, ra, dec):
if self.data is None:
beam = self.wcshelper.get_beam(ra, dec)
return beam.a, beam.b, beam.pa
x, y = self.sky2pix([ra, dec])
x = int(np.clip(x, 0, self.data.shape[1] - 1))
y = int(np.clip(y, 0, self.data.shape[2] - 1))
psf_sky = self.data[:, x, y]
return psf_sky
|
get_psf_sky
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec):\n if self.data is None:\n beam = self.wcshelper.get_beam(ra, dec)\n return beam.a, beam.b, beam.pa\n x, y = self.sky2pix([ra, dec])\n x = int(np.clip(x, 0, self.data.shape[1] - 1))\n y = int(np.clip(y, 0, self.data.shape[2] - 1))\n psf_sky = self.data[:, x, y]\n return psf_sky\n",
"role": "user"
},
{
"content": "get_psf_sky",
"role": "assistant"
}
] |
def x(self, ra, dec):
psf_sky = self.get_psf_sky(ra, dec)
psf_pix = self.wcshelper.sky2pix_ellipse([ra, dec], psf_sky[0], psf_sky
[1], psf_sky[2])[2:]
return psf_pix
|
get_psf_pix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec):\n psf_sky = self.get_psf_sky(ra, dec)\n psf_pix = self.wcshelper.sky2pix_ellipse([ra, dec], psf_sky[0], psf_sky\n [1], psf_sky[2])[2:]\n return psf_pix\n",
"role": "user"
},
{
"content": "get_psf_pix",
"role": "assistant"
}
] |
def x(self, ra, dec):
if self.data is None:
return self.wcshelper.get_pixbeam(ra, dec)
psf = self.get_psf_pix(ra, dec)
if not np.all(np.isfinite(psf)):
log.warn('PSF requested, returned Null')
return None
return Beam(psf[0], psf[1], psf[2])
|
get_pixbeam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec):\n if self.data is None:\n return self.wcshelper.get_pixbeam(ra, dec)\n psf = self.get_psf_pix(ra, dec)\n if not np.all(np.isfinite(psf)):\n log.warn('PSF requested, returned Null')\n return None\n return Beam(psf[0], psf[1], psf[2])\n",
"role": "user"
},
{
"content": "get_pixbeam",
"role": "assistant"
}
] |
def x(self, ra, dec):
if self.data is None:
return self.wcshelper.beam
else:
psf = self.get_psf_sky(ra, dec)
if not all(np.isfinite(psf)):
return None
return Beam(psf[0], psf[1], psf[2])
|
get_beam
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec):\n if self.data is None:\n return self.wcshelper.beam\n else:\n psf = self.get_psf_sky(ra, dec)\n if not all(np.isfinite(psf)):\n return None\n return Beam(psf[0], psf[1], psf[2])\n",
"role": "user"
},
{
"content": "get_beam",
"role": "assistant"
}
] |
def x(self, ra, dec):
beam = self.get_pixbeam(ra, dec)
if beam is None:
return 0
return beam.a * beam.b * np.pi
|
get_beamarea_pix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec):\n beam = self.get_pixbeam(ra, dec)\n if beam is None:\n return 0\n return beam.a * beam.b * np.pi\n",
"role": "user"
},
{
"content": "get_beamarea_pix",
"role": "assistant"
}
] |
def x(self, ra, dec):
beam = self.get_beam(ra, dec)
if beam is None:
return 0
return beam.a * beam.b * np.pi
|
get_beamarea_deg2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ra, dec):\n beam = self.get_beam(ra, dec)\n if beam is None:\n return 0\n return beam.a * beam.b * np.pi\n",
"role": "user"
},
{
"content": "get_beamarea_deg2",
"role": "assistant"
}
] |
def x(self):
for i, row in enumerate(self.data):
for j, _ in enumerate(row):
if self.data[i, j] != 0:
return i, j
|
find_start_point
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for i, row in enumerate(self.data):\n for j, _ in enumerate(row):\n if self.data[i, j] != 0:\n return i, j\n",
"role": "user"
},
{
"content": "find_start_point",
"role": "assistant"
}
] |
def x(self, x, y):
up_left = self.solid(x - 1, y - 1)
up_right = self.solid(x, y - 1)
down_left = self.solid(x - 1, y)
down_right = self.solid(x, y)
state = 0
self.prev = self.next
if up_left:
state |= 1
if up_right:
state |= 2
if down_left:
state |= 4
if down_right:
state |= 8
if state in [1, 5, 13]:
self.next = self.UP
elif state in [2, 3, 7]:
self.next = self.RIGHT
elif state in [4, 12, 14]:
self.next = self.LEFT
elif state in [8, 10, 11]:
self.next = self.DOWN
elif state == 6:
if self.prev == self.UP:
self.next = self.LEFT
else:
self.next = self.RIGHT
elif state == 9:
if self.prev == self.RIGHT:
self.next = self.UP
else:
self.next = self.DOWN
else:
self.next = self.NOWHERE
return
|
step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y):\n up_left = self.solid(x - 1, y - 1)\n up_right = self.solid(x, y - 1)\n down_left = self.solid(x - 1, y)\n down_right = self.solid(x, y)\n state = 0\n self.prev = self.next\n if up_left:\n state |= 1\n if up_right:\n state |= 2\n if down_left:\n state |= 4\n if down_right:\n state |= 8\n if state in [1, 5, 13]:\n self.next = self.UP\n elif state in [2, 3, 7]:\n self.next = self.RIGHT\n elif state in [4, 12, 14]:\n self.next = self.LEFT\n elif state in [8, 10, 11]:\n self.next = self.DOWN\n elif state == 6:\n if self.prev == self.UP:\n self.next = self.LEFT\n else:\n self.next = self.RIGHT\n elif state == 9:\n if self.prev == self.RIGHT:\n self.next = self.UP\n else:\n self.next = self.DOWN\n else:\n self.next = self.NOWHERE\n return\n",
"role": "user"
},
{
"content": "step",
"role": "assistant"
}
] |
def x(self, x, y):
if not 0 <= x < self.xsize or not 0 <= y < self.ysize:
return False
if self.data[x, y] == 0:
return False
return True
|
solid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y):\n if not 0 <= x < self.xsize or not 0 <= y < self.ysize:\n return False\n if self.data[x, y] == 0:\n return False\n return True\n",
"role": "user"
},
{
"content": "solid",
"role": "assistant"
}
] |
def x(self, startx, starty):
startx = max(startx, 0)
startx = min(startx, self.xsize)
starty = max(starty, 0)
starty = min(starty, self.ysize)
points = []
x, y = startx, starty
while True:
self.step(x, y)
if 0 <= x <= self.xsize and 0 <= y <= self.ysize:
points.append((x, y))
if self.next == self.UP:
y -= 1
elif self.next == self.LEFT:
x -= 1
elif self.next == self.DOWN:
y += 1
elif self.next == self.RIGHT:
x += 1
elif self.next == self.NOWHERE:
break
if x == startx and y == starty:
break
return points
|
walk_perimeter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, startx, starty):\n startx = max(startx, 0)\n startx = min(startx, self.xsize)\n starty = max(starty, 0)\n starty = min(starty, self.ysize)\n points = []\n x, y = startx, starty\n while True:\n self.step(x, y)\n if 0 <= x <= self.xsize and 0 <= y <= self.ysize:\n points.append((x, y))\n if self.next == self.UP:\n y -= 1\n elif self.next == self.LEFT:\n x -= 1\n elif self.next == self.DOWN:\n y += 1\n elif self.next == self.RIGHT:\n x += 1\n elif self.next == self.NOWHERE:\n break\n if x == startx and y == starty:\n break\n return points\n",
"role": "user"
},
{
"content": "walk_perimeter",
"role": "assistant"
}
] |
def x(self):
x, y = self.find_start_point()
perimeter = self.walk_perimeter(x, y)
return perimeter
|
do_march
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n x, y = self.find_start_point()\n perimeter = self.walk_perimeter(x, y)\n return perimeter\n",
"role": "user"
},
{
"content": "do_march",
"role": "assistant"
}
] |
def x(self, perimeter):
for p in perimeter:
if p[0] >= self.data.shape[0] or p[1] >= self.data.shape[1]:
continue
if self.data[p] == 0:
continue
self.data[p] = 0
for i in range(p[1] + 1, self.data.shape[1]):
q = p[0], i
if q in perimeter:
break
self.data[q] = 0
return
|
blank_within
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, perimeter):\n for p in perimeter:\n if p[0] >= self.data.shape[0] or p[1] >= self.data.shape[1]:\n continue\n if self.data[p] == 0:\n continue\n self.data[p] = 0\n for i in range(p[1] + 1, self.data.shape[1]):\n q = p[0], i\n if q in perimeter:\n break\n self.data[q] = 0\n return\n",
"role": "user"
},
{
"content": "blank_within",
"role": "assistant"
}
] |
def x(self):
data_copy = copy(self.data)
perimeters = []
p = self.find_start_point()
while p is not None:
x, y = p
perim = self.walk_perimeter(x, y)
perimeters.append(perim)
self._blank_within(perim)
p = self.find_start_point()
self.data = data_copy
return perimeters
|
do_march_all
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n data_copy = copy(self.data)\n perimeters = []\n p = self.find_start_point()\n while p is not None:\n x, y = p\n perim = self.walk_perimeter(x, y)\n perimeters.append(perim)\n self._blank_within(perim)\n p = self.find_start_point()\n self.data = data_copy\n return perimeters\n",
"role": "user"
},
{
"content": "do_march_all",
"role": "assistant"
}
] |
def x(x, y, amp, xo, yo, sx, sy, theta):
try:
sint, cost = math.sin(np.radians(theta)), math.cos(np.radians(theta))
except ValueError as e:
if 'math domain error' in e.args:
sint, cost = np.nan, np.nan
xxo = x - xo
yyo = y - yo
exp = (xxo * cost + yyo * sint) ** 2 / sx ** 2 + (xxo * sint - yyo * cost
) ** 2 / sy ** 2
exp *= -1.0 / 2
return amp * np.exp(exp)
|
elliptical_gaussian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, amp, xo, yo, sx, sy, theta):\n try:\n sint, cost = math.sin(np.radians(theta)), math.cos(np.radians(theta))\n except ValueError as e:\n if 'math domain error' in e.args:\n sint, cost = np.nan, np.nan\n xxo = x - xo\n yyo = y - yo\n exp = (xxo * cost + yyo * sint) ** 2 / sx ** 2 + (xxo * sint - yyo * cost\n ) ** 2 / sy ** 2\n exp *= -1.0 / 2\n return amp * np.exp(exp)\n",
"role": "user"
},
{
"content": "elliptical_gaussian",
"role": "assistant"
}
] |
def x(x, y, sx, sy, theta):
C = np.vstack([elliptical_gaussian(x, y, 1, i, j, sx, sy, theta) for i,
j in zip(x, y)])
return C
|
Cmatrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, sx, sy, theta):\n C = np.vstack([elliptical_gaussian(x, y, 1, i, j, sx, sy, theta) for i,\n j in zip(x, y)])\n return C\n",
"role": "user"
},
{
"content": "Cmatrix",
"role": "assistant"
}
] |
def x(C):
L, Q = eigh(C)
minL = 1e-09 * L[-1]
L[L < minL] = minL
S = np.diag(1 / np.sqrt(L))
B = Q.dot(S)
return B
|
Bmatrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(C):\n L, Q = eigh(C)\n minL = 1e-09 * L[-1]\n L[L < minL] = minL\n S = np.diag(1 / np.sqrt(L))\n B = Q.dot(S)\n return B\n",
"role": "user"
},
{
"content": "Bmatrix",
"role": "assistant"
}
] |
def x(pars, x, y):
matrix = []
for i in range(pars['components'].value):
prefix = 'c{0}_'.format(i)
amp = pars[prefix + 'amp'].value
xo = pars[prefix + 'xo'].value
yo = pars[prefix + 'yo'].value
sx = pars[prefix + 'sx'].value
sy = pars[prefix + 'sy'].value
theta = pars[prefix + 'theta'].value
model = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta)
sint = np.sin(np.radians(theta))
cost = np.cos(np.radians(theta))
xxo = x - xo
yyo = y - yo
xcos, ycos = xxo * cost, yyo * cost
xsin, ysin = xxo * sint, yyo * sint
if pars[prefix + 'amp'].vary:
dmds = model / amp
matrix.append(dmds)
if pars[prefix + 'xo'].vary:
dmdxo = cost * (xcos + ysin) / sx ** 2 + sint * (xsin - ycos
) / sy ** 2
dmdxo *= model
matrix.append(dmdxo)
if pars[prefix + 'yo'].vary:
dmdyo = sint * (xcos + ysin) / sx ** 2 - cost * (xsin - ycos
) / sy ** 2
dmdyo *= model
matrix.append(dmdyo)
if pars[prefix + 'sx'].vary:
dmdsx = model / sx ** 3 * (xcos + ysin) ** 2
matrix.append(dmdsx)
if pars[prefix + 'sy'].vary:
dmdsy = model / sy ** 3 * (xsin - ycos) ** 2
matrix.append(dmdsy)
if pars[prefix + 'theta'].vary:
dmdtheta = model * (sy ** 2 - sx ** 2) * (xsin - ycos) * (xcos +
ysin) / sx ** 2 / sy ** 2
matrix.append(dmdtheta)
return np.array(matrix)
|
jacobian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pars, x, y):\n matrix = []\n for i in range(pars['components'].value):\n prefix = 'c{0}_'.format(i)\n amp = pars[prefix + 'amp'].value\n xo = pars[prefix + 'xo'].value\n yo = pars[prefix + 'yo'].value\n sx = pars[prefix + 'sx'].value\n sy = pars[prefix + 'sy'].value\n theta = pars[prefix + 'theta'].value\n model = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta)\n sint = np.sin(np.radians(theta))\n cost = np.cos(np.radians(theta))\n xxo = x - xo\n yyo = y - yo\n xcos, ycos = xxo * cost, yyo * cost\n xsin, ysin = xxo * sint, yyo * sint\n if pars[prefix + 'amp'].vary:\n dmds = model / amp\n matrix.append(dmds)\n if pars[prefix + 'xo'].vary:\n dmdxo = cost * (xcos + ysin) / sx ** 2 + sint * (xsin - ycos\n ) / sy ** 2\n dmdxo *= model\n matrix.append(dmdxo)\n if pars[prefix + 'yo'].vary:\n dmdyo = sint * (xcos + ysin) / sx ** 2 - cost * (xsin - ycos\n ) / sy ** 2\n dmdyo *= model\n matrix.append(dmdyo)\n if pars[prefix + 'sx'].vary:\n dmdsx = model / sx ** 3 * (xcos + ysin) ** 2\n matrix.append(dmdsx)\n if pars[prefix + 'sy'].vary:\n dmdsy = model / sy ** 3 * (xsin - ycos) ** 2\n matrix.append(dmdsy)\n if pars[prefix + 'theta'].vary:\n dmdtheta = model * (sy ** 2 - sx ** 2) * (xsin - ycos) * (xcos +\n ysin) / sx ** 2 / sy ** 2\n matrix.append(dmdtheta)\n return np.array(matrix)\n",
"role": "user"
},
{
"content": "jacobian",
"role": "assistant"
}
] |
def x(pars, x, y, errs=None, B=None, emp=False):
if emp:
matrix = emp_jacobian(pars, x, y)
else:
matrix = jacobian(pars, x, y)
matrix = np.vstack(matrix)
if errs is not None:
matrix /= errs
if B is not None:
matrix = matrix.dot(B)
matrix = np.transpose(matrix)
return matrix
|
lmfit_jacobian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pars, x, y, errs=None, B=None, emp=False):\n if emp:\n matrix = emp_jacobian(pars, x, y)\n else:\n matrix = jacobian(pars, x, y)\n matrix = np.vstack(matrix)\n if errs is not None:\n matrix /= errs\n if B is not None:\n matrix = matrix.dot(B)\n matrix = np.transpose(matrix)\n return matrix\n",
"role": "user"
},
{
"content": "lmfit_jacobian",
"role": "assistant"
}
] |
def x(pars, x, y):
eps = 1e-05
matrix = []
for i in range(pars['components'].value):
model = emp_jacobian(pars, x, y)
prefix = 'c{0}_'.format(i)
for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']:
if pars[prefix + p].vary:
pars[prefix + p].value += eps
dm2didj = emp_jacobian(pars, x, y) - model
matrix.append(dm2didj / eps)
pars[prefix + p].value -= eps
matrix = np.array(matrix)
return matrix
|
emp_hessian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pars, x, y):\n eps = 1e-05\n matrix = []\n for i in range(pars['components'].value):\n model = emp_jacobian(pars, x, y)\n prefix = 'c{0}_'.format(i)\n for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']:\n if pars[prefix + p].vary:\n pars[prefix + p].value += eps\n dm2didj = emp_jacobian(pars, x, y) - model\n matrix.append(dm2didj / eps)\n pars[prefix + p].value -= eps\n matrix = np.array(matrix)\n return matrix\n",
"role": "user"
},
{
"content": "emp_hessian",
"role": "assistant"
}
] |
def x(noise):
corr = np.zeros(noise.shape)
ix, jx = noise.shape
for i in range(ix):
si_min = slice(i, None, None)
si_max = slice(None, ix - i, None)
for j in range(jx):
sj_min = slice(j, None, None)
sj_max = slice(None, jx - j, None)
if np.all(np.isnan(noise[si_min, sj_min])) or np.all(np.isnan(
noise[si_max, sj_max])):
corr[i, j] = np.nan
else:
corr[i, j] = np.nansum(noise[si_min, sj_min] * noise[si_max,
sj_max])
return corr / np.nanmax(corr)
|
nan_acf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(noise):\n corr = np.zeros(noise.shape)\n ix, jx = noise.shape\n for i in range(ix):\n si_min = slice(i, None, None)\n si_max = slice(None, ix - i, None)\n for j in range(jx):\n sj_min = slice(j, None, None)\n sj_max = slice(None, jx - j, None)\n if np.all(np.isnan(noise[si_min, sj_min])) or np.all(np.isnan(\n noise[si_max, sj_max])):\n corr[i, j] = np.nan\n else:\n corr[i, j] = np.nansum(noise[si_min, sj_min] * noise[si_max,\n sj_max])\n return corr / np.nanmax(corr)\n",
"role": "user"
},
{
"content": "nan_acf",
"role": "assistant"
}
] |
def x(noise, acf=None):
if acf is None:
acf = nan_acf(noise)
s = np.count_nonzero(np.isfinite(noise))
xm, ym = np.where(np.isfinite(noise))
ita = np.zeros((s, s))
for i, (x1, y1) in enumerate(zip(xm, ym)):
for j, (x2, y2) in enumerate(zip(xm, ym)):
k = abs(x1 - x2)
l = abs(y1 - y2)
ita[i, j] = acf[k, l]
return ita
|
make_ita
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(noise, acf=None):\n if acf is None:\n acf = nan_acf(noise)\n s = np.count_nonzero(np.isfinite(noise))\n xm, ym = np.where(np.isfinite(noise))\n ita = np.zeros((s, s))\n for i, (x1, y1) in enumerate(zip(xm, ym)):\n for j, (x2, y2) in enumerate(zip(xm, ym)):\n k = abs(x1 - x2)\n l = abs(y1 - y2)\n ita[i, j] = acf[k, l]\n return ita\n",
"role": "user"
},
{
"content": "make_ita",
"role": "assistant"
}
] |
def x(data, pars, ita=None, acf=None):
log.info('data {0}'.format(data.shape))
nparams = np.sum([pars[k].vary for k in pars.keys() if k != 'components'])
xm, ym = np.where(np.isfinite(data))
x, y = np.indices(data.shape)
j = np.array(np.vsplit(lmfit_jacobian(pars, xm, ym).T, nparams)).reshape(
nparams, -1)
h = hessian(pars, x, y)
h = h[:, :, xm, ym]
Hij = np.einsum('ik,jk', j, j)
Dij = np.linalg.inv(Hij)
Bijk = np.einsum('ip,jkp', j, h)
Eilkm = np.einsum('il,km', Dij, Dij)
Cimn_1 = -1 * np.einsum('krj,ir,km,jn', Bijk, Dij, Dij, Dij)
Cimn_2 = -1.0 / 2 * np.einsum('rkj,ir,km,jn', Bijk, Dij, Dij, Dij)
Cimn = Cimn_1 + Cimn_2
if ita is None:
N = data - ntwodgaussian_lmfit(pars)(x, y)
if acf is None:
acf = nan_acf(N)
ita = make_ita(N, acf=acf)
log.info('acf.shape {0}'.format(acf.shape))
log.info('acf[0] {0}'.format(acf[0]))
log.info('ita.shape {0}'.format(ita.shape))
log.info('ita[0] {0}'.format(ita[0]))
Vij = np.einsum('ip,jq,pq', j, j, ita)
Uijk = np.einsum('ip,jkq,pq', j, h, ita)
bias_1 = np.einsum('imn, mn', Cimn, Vij)
bias_2 = np.einsum('ilkm, mlk', Eilkm, Uijk)
bias = bias_1 + bias_2
log.info('bias {0}'.format(bias))
return bias
|
RB_bias
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, pars, ita=None, acf=None):\n log.info('data {0}'.format(data.shape))\n nparams = np.sum([pars[k].vary for k in pars.keys() if k != 'components'])\n xm, ym = np.where(np.isfinite(data))\n x, y = np.indices(data.shape)\n j = np.array(np.vsplit(lmfit_jacobian(pars, xm, ym).T, nparams)).reshape(\n nparams, -1)\n h = hessian(pars, x, y)\n h = h[:, :, xm, ym]\n Hij = np.einsum('ik,jk', j, j)\n Dij = np.linalg.inv(Hij)\n Bijk = np.einsum('ip,jkp', j, h)\n Eilkm = np.einsum('il,km', Dij, Dij)\n Cimn_1 = -1 * np.einsum('krj,ir,km,jn', Bijk, Dij, Dij, Dij)\n Cimn_2 = -1.0 / 2 * np.einsum('rkj,ir,km,jn', Bijk, Dij, Dij, Dij)\n Cimn = Cimn_1 + Cimn_2\n if ita is None:\n N = data - ntwodgaussian_lmfit(pars)(x, y)\n if acf is None:\n acf = nan_acf(N)\n ita = make_ita(N, acf=acf)\n log.info('acf.shape {0}'.format(acf.shape))\n log.info('acf[0] {0}'.format(acf[0]))\n log.info('ita.shape {0}'.format(ita.shape))\n log.info('ita[0] {0}'.format(ita[0]))\n Vij = np.einsum('ip,jq,pq', j, j, ita)\n Uijk = np.einsum('ip,jkq,pq', j, h, ita)\n bias_1 = np.einsum('imn, mn', Cimn, Vij)\n bias_2 = np.einsum('ilkm, mlk', Eilkm, Uijk)\n bias = bias_1 + bias_2\n log.info('bias {0}'.format(bias))\n return bias\n",
"role": "user"
},
{
"content": "RB_bias",
"role": "assistant"
}
] |
def x(params, data, acf=None):
bias = RB_bias(data, params, acf=acf)
i = 0
for p in params:
if 'theta' in p:
continue
if params[p].vary:
params[p].value -= bias[i]
i += 1
return
|
bias_correct
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params, data, acf=None):\n bias = RB_bias(data, params, acf=acf)\n i = 0\n for p in params:\n if 'theta' in p:\n continue\n if params[p].vary:\n params[p].value -= bias[i]\n i += 1\n return\n",
"role": "user"
},
{
"content": "bias_correct",
"role": "assistant"
}
] |
def x(source, theta_n, psf=None):
alphas = {'amp': (3.0 / 2, 3.0 / 2), 'major': (5.0 / 2, 1.0 / 2), 'xo':
(5.0 / 2, 1.0 / 2), 'minor': (1.0 / 2, 5.0 / 2), 'yo': (1.0 / 2,
5.0 / 2), 'pa': (1.0 / 2, 5.0 / 2)}
major = source.a / 3600.0
minor = source.b / 3600.0
phi = np.radians(source.pa)
if psf is not None:
beam = psf.get_beam(source.ra, source.dec)
if beam is not None:
theta_n = np.hypot(beam.a, beam.b)
print(beam, theta_n)
if theta_n is None:
(source.err_a) = (source.err_b) = (source.err_peak_flux) = (source.
err_pa) = (source.err_int_flux) = 0.0
return
smoothing = major * minor / theta_n ** 2
factor1 = 1 + major / theta_n
factor2 = 1 + minor / theta_n
snr = source.peak_flux / source.local_rms
rho2 = lambda x: smoothing / 4 * factor1 ** alphas[x][0
] * factor2 ** alphas[x][1] * snr ** 2
source.err_peak_flux = source.peak_flux * np.sqrt(2 / rho2('amp'))
source.err_a = major * np.sqrt(2 / rho2('major')) * 3600.0
source.err_b = minor * np.sqrt(2 / rho2('minor')) * 3600.0
err_xo2 = 2.0 / rho2('xo') * major ** 2 / (8 * np.log(2))
err_yo2 = 2.0 / rho2('yo') * minor ** 2 / (8 * np.log(2))
source.err_ra = np.sqrt(err_xo2 * np.sin(phi) ** 2 + err_yo2 * np.cos(
phi) ** 2)
source.err_dec = np.sqrt(err_xo2 * np.cos(phi) ** 2 + err_yo2 * np.sin(
phi) ** 2)
if major == 0 or minor == 0:
source.err_pa = ERR_MASK
elif abs(2 * (major - minor) / (major + minor)) < 0.01:
source.err_pa = ERR_MASK
else:
source.err_pa = np.degrees(np.sqrt(4 / rho2('pa')) * (major * minor /
(major ** 2 - minor ** 2)))
err2 = (source.err_peak_flux / source.peak_flux) ** 2
err2 += theta_n ** 2 / (major * minor) * ((source.err_a / source.a) **
2 + (source.err_b / source.b) ** 2)
source.err_int_flux = source.int_flux * np.sqrt(err2)
return
|
condon_errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source, theta_n, psf=None):\n alphas = {'amp': (3.0 / 2, 3.0 / 2), 'major': (5.0 / 2, 1.0 / 2), 'xo':\n (5.0 / 2, 1.0 / 2), 'minor': (1.0 / 2, 5.0 / 2), 'yo': (1.0 / 2, \n 5.0 / 2), 'pa': (1.0 / 2, 5.0 / 2)}\n major = source.a / 3600.0\n minor = source.b / 3600.0\n phi = np.radians(source.pa)\n if psf is not None:\n beam = psf.get_beam(source.ra, source.dec)\n if beam is not None:\n theta_n = np.hypot(beam.a, beam.b)\n print(beam, theta_n)\n if theta_n is None:\n (source.err_a) = (source.err_b) = (source.err_peak_flux) = (source.\n err_pa) = (source.err_int_flux) = 0.0\n return\n smoothing = major * minor / theta_n ** 2\n factor1 = 1 + major / theta_n\n factor2 = 1 + minor / theta_n\n snr = source.peak_flux / source.local_rms\n rho2 = lambda x: smoothing / 4 * factor1 ** alphas[x][0\n ] * factor2 ** alphas[x][1] * snr ** 2\n source.err_peak_flux = source.peak_flux * np.sqrt(2 / rho2('amp'))\n source.err_a = major * np.sqrt(2 / rho2('major')) * 3600.0\n source.err_b = minor * np.sqrt(2 / rho2('minor')) * 3600.0\n err_xo2 = 2.0 / rho2('xo') * major ** 2 / (8 * np.log(2))\n err_yo2 = 2.0 / rho2('yo') * minor ** 2 / (8 * np.log(2))\n source.err_ra = np.sqrt(err_xo2 * np.sin(phi) ** 2 + err_yo2 * np.cos(\n phi) ** 2)\n source.err_dec = np.sqrt(err_xo2 * np.cos(phi) ** 2 + err_yo2 * np.sin(\n phi) ** 2)\n if major == 0 or minor == 0:\n source.err_pa = ERR_MASK\n elif abs(2 * (major - minor) / (major + minor)) < 0.01:\n source.err_pa = ERR_MASK\n else:\n source.err_pa = np.degrees(np.sqrt(4 / rho2('pa')) * (major * minor /\n (major ** 2 - minor ** 2)))\n err2 = (source.err_peak_flux / source.peak_flux) ** 2\n err2 += theta_n ** 2 / (major * minor) * ((source.err_a / source.a) ** \n 2 + (source.err_b / source.b) ** 2)\n source.err_int_flux = source.int_flux * np.sqrt(err2)\n return\n",
"role": "user"
},
{
"content": "condon_errors",
"role": "assistant"
}
] |
def x(source, model, wcshelper):
if source.flags & (flags.NOTFIT | flags.FITERR):
(source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.
err_pa) = ERR_MASK
source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK
return source
prefix = 'c{0}_'.format(source.source)
err_amp = model[prefix + 'amp'].stderr
xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value
err_xo = model[prefix + 'xo'].stderr
err_yo = model[prefix + 'yo'].stderr
sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value
err_sx = model[prefix + 'sx'].stderr
err_sy = model[prefix + 'sy'].stderr
theta = model[prefix + 'theta'].value
err_theta = model[prefix + 'theta'].stderr
source.err_peak_flux = err_amp
pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta]
log.debug('Pix errs: {0}'.format(pix_errs))
ref = wcshelper.pix2sky([xo, yo])
if not all(np.isfinite(ref)):
source.flags |= flags.WCSERR
(source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.
err_pa) = ERR_MASK
source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK
return source
if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary and all(np.
isfinite([err_xo, err_yo])):
offset = wcshelper.pix2sky([xo + err_xo, yo + err_yo])
source.err_ra = gcd(ref[0], ref[1], offset[0], ref[1])
source.err_dec = gcd(ref[0], ref[1], ref[0], offset[1])
else:
source.err_ra = source.err_dec = -1
if model[prefix + 'theta'].vary and np.isfinite(err_theta):
off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo +
sy * np.sin(np.radians(theta))])
off2 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta +
err_theta)), yo + sy * np.sin(np.radians(theta + err_theta))])
source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear(
ref[0], ref[1], off2[0], off2[1]))
else:
source.err_pa = ERR_MASK
if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary and all(np.
isfinite([err_sx, err_sy])):
ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo +
sy * np.sin(np.radians(theta))])
offset = wcshelper.pix2sky([xo + (sx + err_sx) * np.cos(np.radians(
theta)), yo + sy * np.sin(np.radians(theta))])
source.err_a = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600
ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)),
yo + sy * np.sin(np.radians(theta + 90))])
offset = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)
), yo + (sy + err_sy) * np.sin(np.radians(theta + 90))])
source.err_b = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600
else:
source.err_a = source.err_b = ERR_MASK
sqerr = 0
sqerr += (source.err_peak_flux / source.peak_flux
) ** 2 if source.err_peak_flux > 0 else 0
sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0
sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0
if sqerr == 0:
source.err_int_flux = ERR_MASK
else:
source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr))
return source
|
errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source, model, wcshelper):\n if source.flags & (flags.NOTFIT | flags.FITERR):\n (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.\n err_pa) = ERR_MASK\n source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK\n return source\n prefix = 'c{0}_'.format(source.source)\n err_amp = model[prefix + 'amp'].stderr\n xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value\n err_xo = model[prefix + 'xo'].stderr\n err_yo = model[prefix + 'yo'].stderr\n sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value\n err_sx = model[prefix + 'sx'].stderr\n err_sy = model[prefix + 'sy'].stderr\n theta = model[prefix + 'theta'].value\n err_theta = model[prefix + 'theta'].stderr\n source.err_peak_flux = err_amp\n pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta]\n log.debug('Pix errs: {0}'.format(pix_errs))\n ref = wcshelper.pix2sky([xo, yo])\n if not all(np.isfinite(ref)):\n source.flags |= flags.WCSERR\n (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.\n err_pa) = ERR_MASK\n source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK\n return source\n if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary and all(np.\n isfinite([err_xo, err_yo])):\n offset = wcshelper.pix2sky([xo + err_xo, yo + err_yo])\n source.err_ra = gcd(ref[0], ref[1], offset[0], ref[1])\n source.err_dec = gcd(ref[0], ref[1], ref[0], offset[1])\n else:\n source.err_ra = source.err_dec = -1\n if model[prefix + 'theta'].vary and np.isfinite(err_theta):\n off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo +\n sy * np.sin(np.radians(theta))])\n off2 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta +\n err_theta)), yo + sy * np.sin(np.radians(theta + err_theta))])\n source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear(\n ref[0], ref[1], off2[0], off2[1]))\n else:\n source.err_pa = ERR_MASK\n if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary and all(np.\n isfinite([err_sx, err_sy])):\n ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + \n sy * np.sin(np.radians(theta))])\n offset = wcshelper.pix2sky([xo + (sx + err_sx) * np.cos(np.radians(\n theta)), yo + sy * np.sin(np.radians(theta))])\n source.err_a = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600\n ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)), \n yo + sy * np.sin(np.radians(theta + 90))])\n offset = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)\n ), yo + (sy + err_sy) * np.sin(np.radians(theta + 90))])\n source.err_b = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600\n else:\n source.err_a = source.err_b = ERR_MASK\n sqerr = 0\n sqerr += (source.err_peak_flux / source.peak_flux\n ) ** 2 if source.err_peak_flux > 0 else 0\n sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0\n sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0\n if sqerr == 0:\n source.err_int_flux = ERR_MASK\n else:\n source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr))\n return source\n",
"role": "user"
},
{
"content": "errors",
"role": "assistant"
}
] |
def x(source, model, wcshelper):
if source.flags & (flags.NOTFIT | flags.FITERR):
(source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.
err_pa) = ERR_MASK
source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK
return source
prefix = 'c{0}_'.format(source.source)
err_amp = model[prefix + 'amp'].stderr
xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value
err_xo = model[prefix + 'xo'].stderr
err_yo = model[prefix + 'yo'].stderr
sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value
err_sx = model[prefix + 'sx'].stderr
err_sy = model[prefix + 'sy'].stderr
theta = model[prefix + 'theta'].value
err_theta = model[prefix + 'theta'].stderr
source.err_peak_flux = err_amp
pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta]
if not all(a is not None and np.isfinite(a) for a in pix_errs):
source.flags |= flags.FITERR
(source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.
err_pa) = ERR_MASK
source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK
return source
ref = wcshelper.pix2sky([xo, yo])
if not all(np.isfinite(ref)):
source.flags |= flags.WCSERR
(source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.
err_pa) = ERR_MASK
source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK
return source
if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary:
mat = model.covar[1:3, 1:3]
if not np.all(np.isfinite(mat)):
source.err_ra = source.err_dec = ERR_MASK
else:
(a, b), e = np.linalg.eig(mat)
pa = np.degrees(np.arctan2(*e[0]))
_, _, major, minor, pa = wcshelper.pix2sky_ellipse([xo, yo], a,
b, pa)
source.err_ra = major * minor / np.hypot(major * np.sin(np.
radians(pa)), minor * np.cos(np.radians(pa)))
source.err_dec = major * minor / np.hypot(major * np.cos(np.
radians(pa)), minor * np.sin(np.radians(pa)))
else:
source.err_ra = source.err_dec = -1
if model[prefix + 'theta'].vary:
off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo +
sy * np.sin(np.radians(theta))])
off2 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 1)),
yo + sy * np.sin(np.radians(theta + 1))])
source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear(
ref[0], ref[1], off2[0], off2[1])) * err_theta
else:
source.err_pa = ERR_MASK
if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary:
ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo +
sy * np.sin(np.radians(theta))])
offset = wcshelper.pix2sky([xo + (sx + 0.1) * np.cos(np.radians(
theta)), yo + sy * np.sin(np.radians(theta))])
source.err_a = gcd(ref[0], ref[1], offset[0], offset[1]
) / 0.1 * err_sx * 3600
ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)),
yo + sy * np.sin(np.radians(theta + 90))])
offset = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)
), yo + (sy + 0.1) * np.sin(np.radians(theta + 90))])
source.err_b = gcd(ref[0], ref[1], offset[0], offset[1]
) / 0.1 * err_sy * 3600
else:
source.err_a = source.err_b = ERR_MASK
sqerr = 0
sqerr += (source.err_peak_flux / source.peak_flux
) ** 2 if source.err_peak_flux > 0 else 0
sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0
sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0
source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr))
return source
|
new_errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source, model, wcshelper):\n if source.flags & (flags.NOTFIT | flags.FITERR):\n (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.\n err_pa) = ERR_MASK\n source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK\n return source\n prefix = 'c{0}_'.format(source.source)\n err_amp = model[prefix + 'amp'].stderr\n xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value\n err_xo = model[prefix + 'xo'].stderr\n err_yo = model[prefix + 'yo'].stderr\n sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value\n err_sx = model[prefix + 'sx'].stderr\n err_sy = model[prefix + 'sy'].stderr\n theta = model[prefix + 'theta'].value\n err_theta = model[prefix + 'theta'].stderr\n source.err_peak_flux = err_amp\n pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta]\n if not all(a is not None and np.isfinite(a) for a in pix_errs):\n source.flags |= flags.FITERR\n (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.\n err_pa) = ERR_MASK\n source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK\n return source\n ref = wcshelper.pix2sky([xo, yo])\n if not all(np.isfinite(ref)):\n source.flags |= flags.WCSERR\n (source.err_peak_flux) = (source.err_a) = (source.err_b) = (source.\n err_pa) = ERR_MASK\n source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK\n return source\n if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary:\n mat = model.covar[1:3, 1:3]\n if not np.all(np.isfinite(mat)):\n source.err_ra = source.err_dec = ERR_MASK\n else:\n (a, b), e = np.linalg.eig(mat)\n pa = np.degrees(np.arctan2(*e[0]))\n _, _, major, minor, pa = wcshelper.pix2sky_ellipse([xo, yo], a,\n b, pa)\n source.err_ra = major * minor / np.hypot(major * np.sin(np.\n radians(pa)), minor * np.cos(np.radians(pa)))\n source.err_dec = major * minor / np.hypot(major * np.cos(np.\n radians(pa)), minor * np.sin(np.radians(pa)))\n else:\n source.err_ra = source.err_dec = -1\n if model[prefix + 'theta'].vary:\n off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo +\n sy * np.sin(np.radians(theta))])\n off2 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 1)), \n yo + sy * np.sin(np.radians(theta + 1))])\n source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear(\n ref[0], ref[1], off2[0], off2[1])) * err_theta\n else:\n source.err_pa = ERR_MASK\n if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary:\n ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + \n sy * np.sin(np.radians(theta))])\n offset = wcshelper.pix2sky([xo + (sx + 0.1) * np.cos(np.radians(\n theta)), yo + sy * np.sin(np.radians(theta))])\n source.err_a = gcd(ref[0], ref[1], offset[0], offset[1]\n ) / 0.1 * err_sx * 3600\n ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)), \n yo + sy * np.sin(np.radians(theta + 90))])\n offset = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)\n ), yo + (sy + 0.1) * np.sin(np.radians(theta + 90))])\n source.err_b = gcd(ref[0], ref[1], offset[0], offset[1]\n ) / 0.1 * err_sy * 3600\n else:\n source.err_a = source.err_b = ERR_MASK\n sqerr = 0\n sqerr += (source.err_peak_flux / source.peak_flux\n ) ** 2 if source.err_peak_flux > 0 else 0\n sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0\n sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0\n source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr))\n return source\n",
"role": "user"
},
{
"content": "new_errors",
"role": "assistant"
}
] |
def x(params):
def x(x, y):
result = None
for i in range(params['components'].value):
prefix = 'c{0}_'.format(i)
amp = np.nan_to_num(params[prefix + 'amp'].value)
xo = params[prefix + 'xo'].value
yo = params[prefix + 'yo'].value
sx = params[prefix + 'sx'].value
sy = params[prefix + 'sy'].value
theta = params[prefix + 'theta'].value
if result is not None:
result += elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta)
else:
result = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta)
return result
return rfunc
|
ntwodgaussian_lmfit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params):\n\n def x(x, y):\n result = None\n for i in range(params['components'].value):\n prefix = 'c{0}_'.format(i)\n amp = np.nan_to_num(params[prefix + 'amp'].value)\n xo = params[prefix + 'xo'].value\n yo = params[prefix + 'yo'].value\n sx = params[prefix + 'sx'].value\n sy = params[prefix + 'sy'].value\n theta = params[prefix + 'theta'].value\n if result is not None:\n result += elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta)\n else:\n result = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta)\n return result\n return rfunc\n",
"role": "user"
},
{
"content": "ntwodgaussian_lmfit",
"role": "assistant"
}
] |
def x(data, params, B=None, errs=None, dojac=True):
params = copy.deepcopy(params)
data = np.array(data)
mask = np.where(np.isfinite(data))
def x(params, **kwargs):
f = ntwodgaussian_lmfit(params)
model = f(*mask)
if B is None:
return model - data[mask]
else:
return (model - data[mask]).dot(B)
if dojac:
result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y':
mask[1], 'B': B, 'errs': errs}, Dfun=lmfit_jacobian)
else:
result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y':
mask[1], 'B': B, 'errs': errs})
if B is not None:
result.residual = result.residual.dot(inv(B))
return result, params
|
do_lmfit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, params, B=None, errs=None, dojac=True):\n params = copy.deepcopy(params)\n data = np.array(data)\n mask = np.where(np.isfinite(data))\n\n def x(params, **kwargs):\n f = ntwodgaussian_lmfit(params)\n model = f(*mask)\n if B is None:\n return model - data[mask]\n else:\n return (model - data[mask]).dot(B)\n if dojac:\n result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y':\n mask[1], 'B': B, 'errs': errs}, Dfun=lmfit_jacobian)\n else:\n result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y':\n mask[1], 'B': B, 'errs': errs})\n if B is not None:\n result.residual = result.residual.dot(inv(B))\n return result, params\n",
"role": "user"
},
{
"content": "do_lmfit",
"role": "assistant"
}
] |
def x(params, data, errs, B, C=None):
mask = np.where(np.isfinite(data))
if C is not None:
try:
J = lmfit_jacobian(params, mask[0], mask[1], errs=errs)
covar = np.transpose(J).dot(inv(C)).dot(J)
onesigma = np.sqrt(np.diag(inv(covar)))
except (np.linalg.linalg.LinAlgError, ValueError) as _:
C = None
if C is None:
try:
J = lmfit_jacobian(params, mask[0], mask[1], B=B, errs=errs)
covar = np.transpose(J).dot(J)
onesigma = np.sqrt(np.diag(inv(covar)))
except (np.linalg.linalg.LinAlgError, ValueError) as _:
onesigma = [-2] * len(mask[0])
for i in range(params['components'].value):
prefix = 'c{0}_'.format(i)
j = 0
for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']:
if params[prefix + p].vary:
params[prefix + p].stderr = onesigma[j]
j += 1
return params
|
covar_errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params, data, errs, B, C=None):\n mask = np.where(np.isfinite(data))\n if C is not None:\n try:\n J = lmfit_jacobian(params, mask[0], mask[1], errs=errs)\n covar = np.transpose(J).dot(inv(C)).dot(J)\n onesigma = np.sqrt(np.diag(inv(covar)))\n except (np.linalg.linalg.LinAlgError, ValueError) as _:\n C = None\n if C is None:\n try:\n J = lmfit_jacobian(params, mask[0], mask[1], B=B, errs=errs)\n covar = np.transpose(J).dot(J)\n onesigma = np.sqrt(np.diag(inv(covar)))\n except (np.linalg.linalg.LinAlgError, ValueError) as _:\n onesigma = [-2] * len(mask[0])\n for i in range(params['components'].value):\n prefix = 'c{0}_'.format(i)\n j = 0\n for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']:\n if params[prefix + p].vary:\n params[prefix + p].stderr = onesigma[j]\n j += 1\n return params\n",
"role": "user"
},
{
"content": "covar_errors",
"role": "assistant"
}
] |
def x(events, sid, kind='neighbour'):
events[sid].set()
if kind == 'neighbour':
if sid > 0:
logging.debug('{0} is waiting for {1}'.format(sid, sid - 1))
events[sid - 1].wait()
if sid < len(bkg_events) - 1:
logging.debug('{0} is waiting for {1}'.format(sid, sid + 1))
events[sid + 1].wait()
else:
[e.wait() for e in events]
return
|
barrier
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(events, sid, kind='neighbour'):\n events[sid].set()\n if kind == 'neighbour':\n if sid > 0:\n logging.debug('{0} is waiting for {1}'.format(sid, sid - 1))\n events[sid - 1].wait()\n if sid < len(bkg_events) - 1:\n logging.debug('{0} is waiting for {1}'.format(sid, sid + 1))\n events[sid + 1].wait()\n else:\n [e.wait() for e in events]\n return\n",
"role": "user"
},
{
"content": "barrier",
"role": "assistant"
}
] |
def x(arr, lo, hi, reps=3):
clipped = np.array(arr)[np.isfinite(arr)]
if len(clipped) < 1:
return np.nan, np.nan
std = np.std(clipped)
mean = np.mean(clipped)
for _ in range(int(reps)):
clipped = clipped[np.where(clipped > mean - std * lo)]
clipped = clipped[np.where(clipped < mean + std * hi)]
pstd = std
if len(clipped) < 1:
break
std = np.std(clipped)
mean = np.mean(clipped)
if 2 * abs(pstd - std) / (pstd + std) < 0.2:
break
return mean, std
|
sigmaclip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, lo, hi, reps=3):\n clipped = np.array(arr)[np.isfinite(arr)]\n if len(clipped) < 1:\n return np.nan, np.nan\n std = np.std(clipped)\n mean = np.mean(clipped)\n for _ in range(int(reps)):\n clipped = clipped[np.where(clipped > mean - std * lo)]\n clipped = clipped[np.where(clipped < mean + std * hi)]\n pstd = std\n if len(clipped) < 1:\n break\n std = np.std(clipped)\n mean = np.mean(clipped)\n if 2 * abs(pstd - std) / (pstd + std) < 0.2:\n break\n return mean, std\n",
"role": "user"
},
{
"content": "sigmaclip",
"role": "assistant"
}
] |
def x(args):
try:
return sigma_filter(*args)
except:
import traceback
raise Exception(''.join(traceback.format_exception(*sys.exc_info())))
|
sf2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n try:\n return sigma_filter(*args)\n except:\n import traceback\n raise Exception(''.join(traceback.format_exception(*sys.exc_info())))\n",
"role": "user"
},
{
"content": "sf2",
"role": "assistant"
}
] |
def x(filename, region, step_size, box_size, shape, domask, sid):
ymin, ymax = region
logging.debug('rows {0}-{1} starting at {2}'.format(ymin, ymax,
strftime('%Y-%m-%d %H:%M:%S', gmtime())))
data_row_min = max(0, ymin - box_size[0] // 2)
data_row_max = min(shape[0], ymax + box_size[0] // 2)
NAXIS = fits.getheader(filename)['NAXIS']
with fits.open(filename, memmap=True) as a:
if NAXIS == 2:
data = a[0].section[data_row_min:data_row_max, 0:shape[1]]
elif NAXIS == 3:
data = a[0].section[0, data_row_min:data_row_max, 0:shape[1]]
elif NAXIS == 4:
data = a[0].section[0, 0, data_row_min:data_row_max, 0:shape[1]]
else:
logging.error('Too many NAXIS for me {0}'.format(NAXIS))
logging.error('fix your file to be more sane')
raise Exception('Too many NAXIS')
row_len = shape[1]
logging.debug('data size is {0}'.format(data.shape))
def x(r, c):
r_min = max(0, r - box_size[0] // 2)
r_max = min(data.shape[0] - 1, r + box_size[0] // 2)
c_min = max(0, c - box_size[1] // 2)
c_max = min(data.shape[1] - 1, c + box_size[1] // 2)
return r_min, r_max, c_min, c_max
rows = list(range(ymin - data_row_min, ymax - data_row_min, step_size[0]))
rows.append(ymax - data_row_min)
cols = list(range(0, shape[1], step_size[1]))
cols.append(shape[1])
vals = np.zeros(shape=(len(rows), len(cols)))
for i, row in enumerate(rows):
for j, col in enumerate(cols):
r_min, r_max, c_min, c_max = box(row, col)
new = data[r_min:r_max, c_min:c_max]
new = np.ravel(new)
bkg, _ = sigmaclip(new, 3, 3)
vals[i, j] = bkg
gr, gc = np.mgrid[ymin - data_row_min:ymax - data_row_min, 0:shape[1]]
logging.debug('Interpolating bkg to sharemem')
ifunc = RegularGridInterpolator((rows, cols), vals)
for i in range(gr.shape[0]):
row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32)
start_idx = np.ravel_multi_index((ymin + i, 0), shape)
end_idx = start_idx + row_len
ibkg[start_idx:end_idx] = row
del ifunc
logging.debug(' ... done writing bkg')
barrier(bkg_events, sid)
logging.debug('{0} background subtraction'.format(sid))
for i in range(data_row_max - data_row_min):
start_idx = np.ravel_multi_index((data_row_min + i, 0), shape)
end_idx = start_idx + row_len
data[i, :] = data[i, :] - ibkg[start_idx:end_idx]
vals[:] = 0
for i, row in enumerate(rows):
for j, col in enumerate(cols):
r_min, r_max, c_min, c_max = box(row, col)
new = data[r_min:r_max, c_min:c_max]
new = np.ravel(new)
_, rms = sigmaclip(new, 3, 3)
vals[i, j] = rms
logging.debug('Interpolating rm to sharemem rms')
ifunc = RegularGridInterpolator((rows, cols), vals)
for i in range(gr.shape[0]):
row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32)
start_idx = np.ravel_multi_index((ymin + i, 0), shape)
end_idx = start_idx + row_len
irms[start_idx:end_idx] = row
del ifunc
logging.debug(' .. done writing rms')
if domask:
barrier(mask_events, sid)
logging.debug('applying mask')
for i in range(gr.shape[0]):
mask = np.where(np.bitwise_not(np.isfinite(data[i + ymin -
data_row_min, :])))[0]
for j in mask:
idx = np.ravel_multi_index((i + ymin, j), shape)
ibkg[idx] = np.nan
irms[idx] = np.nan
logging.debug(' ... done applying mask')
logging.debug('rows {0}-{1} finished at {2}'.format(ymin, ymax,
strftime('%Y-%m-%d %H:%M:%S', gmtime())))
return
|
sigma_filter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, region, step_size, box_size, shape, domask, sid):\n ymin, ymax = region\n logging.debug('rows {0}-{1} starting at {2}'.format(ymin, ymax,\n strftime('%Y-%m-%d %H:%M:%S', gmtime())))\n data_row_min = max(0, ymin - box_size[0] // 2)\n data_row_max = min(shape[0], ymax + box_size[0] // 2)\n NAXIS = fits.getheader(filename)['NAXIS']\n with fits.open(filename, memmap=True) as a:\n if NAXIS == 2:\n data = a[0].section[data_row_min:data_row_max, 0:shape[1]]\n elif NAXIS == 3:\n data = a[0].section[0, data_row_min:data_row_max, 0:shape[1]]\n elif NAXIS == 4:\n data = a[0].section[0, 0, data_row_min:data_row_max, 0:shape[1]]\n else:\n logging.error('Too many NAXIS for me {0}'.format(NAXIS))\n logging.error('fix your file to be more sane')\n raise Exception('Too many NAXIS')\n row_len = shape[1]\n logging.debug('data size is {0}'.format(data.shape))\n\n def x(r, c):\n r_min = max(0, r - box_size[0] // 2)\n r_max = min(data.shape[0] - 1, r + box_size[0] // 2)\n c_min = max(0, c - box_size[1] // 2)\n c_max = min(data.shape[1] - 1, c + box_size[1] // 2)\n return r_min, r_max, c_min, c_max\n rows = list(range(ymin - data_row_min, ymax - data_row_min, step_size[0]))\n rows.append(ymax - data_row_min)\n cols = list(range(0, shape[1], step_size[1]))\n cols.append(shape[1])\n vals = np.zeros(shape=(len(rows), len(cols)))\n for i, row in enumerate(rows):\n for j, col in enumerate(cols):\n r_min, r_max, c_min, c_max = box(row, col)\n new = data[r_min:r_max, c_min:c_max]\n new = np.ravel(new)\n bkg, _ = sigmaclip(new, 3, 3)\n vals[i, j] = bkg\n gr, gc = np.mgrid[ymin - data_row_min:ymax - data_row_min, 0:shape[1]]\n logging.debug('Interpolating bkg to sharemem')\n ifunc = RegularGridInterpolator((rows, cols), vals)\n for i in range(gr.shape[0]):\n row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32)\n start_idx = np.ravel_multi_index((ymin + i, 0), shape)\n end_idx = start_idx + row_len\n ibkg[start_idx:end_idx] = row\n del ifunc\n logging.debug(' ... done writing bkg')\n barrier(bkg_events, sid)\n logging.debug('{0} background subtraction'.format(sid))\n for i in range(data_row_max - data_row_min):\n start_idx = np.ravel_multi_index((data_row_min + i, 0), shape)\n end_idx = start_idx + row_len\n data[i, :] = data[i, :] - ibkg[start_idx:end_idx]\n vals[:] = 0\n for i, row in enumerate(rows):\n for j, col in enumerate(cols):\n r_min, r_max, c_min, c_max = box(row, col)\n new = data[r_min:r_max, c_min:c_max]\n new = np.ravel(new)\n _, rms = sigmaclip(new, 3, 3)\n vals[i, j] = rms\n logging.debug('Interpolating rm to sharemem rms')\n ifunc = RegularGridInterpolator((rows, cols), vals)\n for i in range(gr.shape[0]):\n row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32)\n start_idx = np.ravel_multi_index((ymin + i, 0), shape)\n end_idx = start_idx + row_len\n irms[start_idx:end_idx] = row\n del ifunc\n logging.debug(' .. done writing rms')\n if domask:\n barrier(mask_events, sid)\n logging.debug('applying mask')\n for i in range(gr.shape[0]):\n mask = np.where(np.bitwise_not(np.isfinite(data[i + ymin -\n data_row_min, :])))[0]\n for j in mask:\n idx = np.ravel_multi_index((i + ymin, j), shape)\n ibkg[idx] = np.nan\n irms[idx] = np.nan\n logging.debug(' ... done applying mask')\n logging.debug('rows {0}-{1} finished at {2}'.format(ymin, ymax,\n strftime('%Y-%m-%d %H:%M:%S', gmtime())))\n return\n",
"role": "user"
},
{
"content": "sigma_filter",
"role": "assistant"
}
] |
def x(filename, step_size, box_size, cores, shape, nslice=None, domask=True):
if cores is None:
cores = multiprocessing.cpu_count()
if nslice is None or cores == 1:
nslice = cores
img_y, img_x = shape
global ibkg
ibkg = multiprocessing.Array('f', img_y * img_x)
global irms
irms = multiprocessing.Array('f', img_y * img_x)
logging.info('using {0} cores'.format(cores))
logging.info('using {0} stripes'.format(nslice))
if nslice > 1:
width_y = int(max(img_y / nslice / step_size[1], 1) * step_size[1])
ymins = list(range(0, img_y, width_y))
ymaxs = list(range(width_y, img_y, width_y))
ymaxs.append(img_y)
else:
ymins = [0]
ymaxs = [img_y]
logging.debug('ymins {0}'.format(ymins))
logging.debug('ymaxs {0}'.format(ymaxs))
global bkg_events, mask_events
bkg_events = [multiprocessing.Event() for _ in range(len(ymaxs))]
mask_events = [multiprocessing.Event() for _ in range(len(ymaxs))]
args = []
for i, region in enumerate(zip(ymins, ymaxs)):
args.append((filename, region, step_size, box_size, shape, domask, i))
pool = multiprocessing.Pool(processes=cores, maxtasksperchild=1)
try:
pool.map_async(_sf2, args, chunksize=1).get(timeout=10000000)
except KeyboardInterrupt:
logging.error('Caught keyboard interrupt')
pool.close()
sys.exit(1)
pool.close()
pool.join()
bkg = np.reshape(np.array(ibkg[:], dtype=np.float32), shape)
rms = np.reshape(np.array(irms[:], dtype=np.float32), shape)
del ibkg, irms
return bkg, rms
|
filter_mc_sharemem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, step_size, box_size, cores, shape, nslice=None, domask=True):\n if cores is None:\n cores = multiprocessing.cpu_count()\n if nslice is None or cores == 1:\n nslice = cores\n img_y, img_x = shape\n global ibkg\n ibkg = multiprocessing.Array('f', img_y * img_x)\n global irms\n irms = multiprocessing.Array('f', img_y * img_x)\n logging.info('using {0} cores'.format(cores))\n logging.info('using {0} stripes'.format(nslice))\n if nslice > 1:\n width_y = int(max(img_y / nslice / step_size[1], 1) * step_size[1])\n ymins = list(range(0, img_y, width_y))\n ymaxs = list(range(width_y, img_y, width_y))\n ymaxs.append(img_y)\n else:\n ymins = [0]\n ymaxs = [img_y]\n logging.debug('ymins {0}'.format(ymins))\n logging.debug('ymaxs {0}'.format(ymaxs))\n global bkg_events, mask_events\n bkg_events = [multiprocessing.Event() for _ in range(len(ymaxs))]\n mask_events = [multiprocessing.Event() for _ in range(len(ymaxs))]\n args = []\n for i, region in enumerate(zip(ymins, ymaxs)):\n args.append((filename, region, step_size, box_size, shape, domask, i))\n pool = multiprocessing.Pool(processes=cores, maxtasksperchild=1)\n try:\n pool.map_async(_sf2, args, chunksize=1).get(timeout=10000000)\n except KeyboardInterrupt:\n logging.error('Caught keyboard interrupt')\n pool.close()\n sys.exit(1)\n pool.close()\n pool.join()\n bkg = np.reshape(np.array(ibkg[:], dtype=np.float32), shape)\n rms = np.reshape(np.array(irms[:], dtype=np.float32), shape)\n del ibkg, irms\n return bkg, rms\n",
"role": "user"
},
{
"content": "filter_mc_sharemem",
"role": "assistant"
}
] |
def x(im_name, out_base, step_size=None, box_size=None, twopass=False,
cores=None, mask=True, compressed=False, nslice=None):
header = fits.getheader(im_name)
shape = header['NAXIS2'], header['NAXIS1']
if step_size is None:
if 'BMAJ' in header and 'BMIN' in header:
beam_size = np.sqrt(abs(header['BMAJ'] * header['BMIN']))
if 'CDELT1' in header:
pix_scale = np.sqrt(abs(header['CDELT1'] * header['CDELT2']))
elif 'CD1_1' in header:
pix_scale = np.sqrt(abs(header['CD1_1'] * header['CD2_2']))
if 'CD1_2' in header and 'CD2_1' in header:
if header['CD1_2'] != 0 or header['CD2_1'] != 0:
logging.warning(
"CD1_2 and/or CD2_1 are non-zero and I don't know what to do with them"
)
logging.warning('Ingoring them')
else:
logging.warning(
'Cannot determine pixel scale, assuming 4 pixels per beam')
pix_scale = beam_size / 4.0
step_size = int(np.ceil(4 * beam_size / pix_scale))
else:
logging.info('BMAJ and/or BMIN not in fits header.')
logging.info(
'Assuming 4 pix/beam, so we have step_size = 16 pixels')
step_size = 16
step_size = step_size, step_size
if box_size is None:
box_size = step_size[0] * 6, step_size[1] * 6
if compressed:
if not step_size[0] == step_size[1]:
step_size = min(step_size), min(step_size)
logging.info(
'Changing grid to be {0} so we can compress the output'.
format(step_size))
logging.info('using grid_size {0}, box_size {1}'.format(step_size,
box_size))
logging.info('on data shape {0}'.format(shape))
bkg, rms = filter_mc_sharemem(im_name, step_size=step_size, box_size=
box_size, cores=cores, shape=shape, nslice=nslice, domask=mask)
logging.info('done')
bkg_out = '_'.join([os.path.expanduser(out_base), 'bkg.fits'])
rms_out = '_'.join([os.path.expanduser(out_base), 'rms.fits'])
header['HISTORY'] = 'BANE {0}-({1})'.format(__version__, __date__)
if compressed:
hdu = fits.PrimaryHDU(bkg)
hdu.header = copy.deepcopy(header)
hdulist = fits.HDUList([hdu])
compress(hdulist, step_size[0], bkg_out)
hdulist[0].header = copy.deepcopy(header)
hdulist[0].data = rms
compress(hdulist, step_size[0], rms_out)
return
write_fits(bkg, header, bkg_out)
write_fits(rms, header, rms_out)
|
filter_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(im_name, out_base, step_size=None, box_size=None, twopass=False,\n cores=None, mask=True, compressed=False, nslice=None):\n header = fits.getheader(im_name)\n shape = header['NAXIS2'], header['NAXIS1']\n if step_size is None:\n if 'BMAJ' in header and 'BMIN' in header:\n beam_size = np.sqrt(abs(header['BMAJ'] * header['BMIN']))\n if 'CDELT1' in header:\n pix_scale = np.sqrt(abs(header['CDELT1'] * header['CDELT2']))\n elif 'CD1_1' in header:\n pix_scale = np.sqrt(abs(header['CD1_1'] * header['CD2_2']))\n if 'CD1_2' in header and 'CD2_1' in header:\n if header['CD1_2'] != 0 or header['CD2_1'] != 0:\n logging.warning(\n \"CD1_2 and/or CD2_1 are non-zero and I don't know what to do with them\"\n )\n logging.warning('Ingoring them')\n else:\n logging.warning(\n 'Cannot determine pixel scale, assuming 4 pixels per beam')\n pix_scale = beam_size / 4.0\n step_size = int(np.ceil(4 * beam_size / pix_scale))\n else:\n logging.info('BMAJ and/or BMIN not in fits header.')\n logging.info(\n 'Assuming 4 pix/beam, so we have step_size = 16 pixels')\n step_size = 16\n step_size = step_size, step_size\n if box_size is None:\n box_size = step_size[0] * 6, step_size[1] * 6\n if compressed:\n if not step_size[0] == step_size[1]:\n step_size = min(step_size), min(step_size)\n logging.info(\n 'Changing grid to be {0} so we can compress the output'.\n format(step_size))\n logging.info('using grid_size {0}, box_size {1}'.format(step_size,\n box_size))\n logging.info('on data shape {0}'.format(shape))\n bkg, rms = filter_mc_sharemem(im_name, step_size=step_size, box_size=\n box_size, cores=cores, shape=shape, nslice=nslice, domask=mask)\n logging.info('done')\n bkg_out = '_'.join([os.path.expanduser(out_base), 'bkg.fits'])\n rms_out = '_'.join([os.path.expanduser(out_base), 'rms.fits'])\n header['HISTORY'] = 'BANE {0}-({1})'.format(__version__, __date__)\n if compressed:\n hdu = fits.PrimaryHDU(bkg)\n hdu.header = copy.deepcopy(header)\n hdulist = fits.HDUList([hdu])\n compress(hdulist, step_size[0], bkg_out)\n hdulist[0].header = copy.deepcopy(header)\n hdulist[0].data = rms\n compress(hdulist, step_size[0], rms_out)\n return\n write_fits(bkg, header, bkg_out)\n write_fits(rms, header, rms_out)\n",
"role": "user"
},
{
"content": "filter_image",
"role": "assistant"
}
] |
def x(data, header, file_name):
hdu = fits.PrimaryHDU(data)
hdu.header = header
hdulist = fits.HDUList([hdu])
hdulist.writeto(file_name, overwrite=True)
logging.info('Wrote {0}'.format(file_name))
return
|
write_fits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, header, file_name):\n hdu = fits.PrimaryHDU(data)\n hdu.header = header\n hdulist = fits.HDUList([hdu])\n hdulist.writeto(file_name, overwrite=True)\n logging.info('Wrote {0}'.format(file_name))\n return\n",
"role": "user"
},
{
"content": "write_fits",
"role": "assistant"
}
] |
def x(dec):
d = dec.replace(':', ' ').split()
if len(d) == 2:
d.append(0.0)
if d[0].startswith('-') or float(d[0]) < 0:
return float(d[0]) - float(d[1]) / 60.0 - float(d[2]) / 3600.0
return float(d[0]) + float(d[1]) / 60.0 + float(d[2]) / 3600.0
|
dec2dec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dec):\n d = dec.replace(':', ' ').split()\n if len(d) == 2:\n d.append(0.0)\n if d[0].startswith('-') or float(d[0]) < 0:\n return float(d[0]) - float(d[1]) / 60.0 - float(d[2]) / 3600.0\n return float(d[0]) + float(d[1]) / 60.0 + float(d[2]) / 3600.0\n",
"role": "user"
},
{
"content": "dec2dec",
"role": "assistant"
}
] |
def x(x):
if not np.isfinite(x):
return 'XX:XX:XX.XX'
if x < 0:
sign = '-'
else:
sign = '+'
x = abs(x)
d = int(math.floor(x))
m = int(math.floor((x - d) * 60))
s = float(((x - d) * 60 - m) * 60)
return '{0}{1:02d}:{2:02d}:{3:05.2f}'.format(sign, d, m, s)
|
dec2dms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if not np.isfinite(x):\n return 'XX:XX:XX.XX'\n if x < 0:\n sign = '-'\n else:\n sign = '+'\n x = abs(x)\n d = int(math.floor(x))\n m = int(math.floor((x - d) * 60))\n s = float(((x - d) * 60 - m) * 60)\n return '{0}{1:02d}:{2:02d}:{3:05.2f}'.format(sign, d, m, s)\n",
"role": "user"
},
{
"content": "dec2dms",
"role": "assistant"
}
] |
def x(x):
if not np.isfinite(x):
return 'XX:XX:XX.XX'
if x < 0:
x += 360
x /= 15.0
h = int(x)
x = (x - h) * 60
m = int(x)
s = (x - m) * 60
return '{0:02d}:{1:02d}:{2:05.2f}'.format(h, m, s)
|
dec2hms
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n if not np.isfinite(x):\n return 'XX:XX:XX.XX'\n if x < 0:\n x += 360\n x /= 15.0\n h = int(x)\n x = (x - h) * 60\n m = int(x)\n s = (x - m) * 60\n return '{0:02d}:{1:02d}:{2:05.2f}'.format(h, m, s)\n",
"role": "user"
},
{
"content": "dec2hms",
"role": "assistant"
}
] |
def x(ra1, dec1, ra2, dec2):
dlon = ra2 - ra1
dlat = dec2 - dec1
a = np.sin(np.radians(dlat) / 2) ** 2
a += np.cos(np.radians(dec1)) * np.cos(np.radians(dec2)) * np.sin(np.
radians(dlon) / 2) ** 2
sep = np.degrees(2 * np.arcsin(np.minimum(1, np.sqrt(a))))
return sep
|
gcd
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ra1, dec1, ra2, dec2):\n dlon = ra2 - ra1\n dlat = dec2 - dec1\n a = np.sin(np.radians(dlat) / 2) ** 2\n a += np.cos(np.radians(dec1)) * np.cos(np.radians(dec2)) * np.sin(np.\n radians(dlon) / 2) ** 2\n sep = np.degrees(2 * np.arcsin(np.minimum(1, np.sqrt(a))))\n return sep\n",
"role": "user"
},
{
"content": "gcd",
"role": "assistant"
}
] |
def x(ra1, dec1, ra2, dec2):
rdec1 = np.radians(dec1)
rdec2 = np.radians(dec2)
rdlon = np.radians(ra2 - ra1)
y = np.sin(rdlon) * np.cos(rdec2)
x = np.cos(rdec1) * np.sin(rdec2)
x -= np.sin(rdec1) * np.cos(rdec2) * np.cos(rdlon)
return np.degrees(np.arctan2(y, x))
|
bear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ra1, dec1, ra2, dec2):\n rdec1 = np.radians(dec1)\n rdec2 = np.radians(dec2)\n rdlon = np.radians(ra2 - ra1)\n y = np.sin(rdlon) * np.cos(rdec2)\n x = np.cos(rdec1) * np.sin(rdec2)\n x -= np.sin(rdec1) * np.cos(rdec2) * np.cos(rdlon)\n return np.degrees(np.arctan2(y, x))\n",
"role": "user"
},
{
"content": "bear",
"role": "assistant"
}
] |
def x(ra, dec, r, theta):
factor = np.sin(np.radians(dec)) * np.cos(np.radians(r))
factor += np.cos(np.radians(dec)) * np.sin(np.radians(r)) * np.cos(np.
radians(theta))
dec_out = np.degrees(np.arcsin(factor))
y = np.sin(np.radians(theta)) * np.sin(np.radians(r)) * np.cos(np.
radians(dec))
x = np.cos(np.radians(r)) - np.sin(np.radians(dec)) * np.sin(np.radians
(dec_out))
ra_out = ra + np.degrees(np.arctan2(y, x))
return ra_out, dec_out
|
translate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ra, dec, r, theta):\n factor = np.sin(np.radians(dec)) * np.cos(np.radians(r))\n factor += np.cos(np.radians(dec)) * np.sin(np.radians(r)) * np.cos(np.\n radians(theta))\n dec_out = np.degrees(np.arcsin(factor))\n y = np.sin(np.radians(theta)) * np.sin(np.radians(r)) * np.cos(np.\n radians(dec))\n x = np.cos(np.radians(r)) - np.sin(np.radians(dec)) * np.sin(np.radians\n (dec_out))\n ra_out = ra + np.degrees(np.arctan2(y, x))\n return ra_out, dec_out\n",
"role": "user"
},
{
"content": "translate",
"role": "assistant"
}
] |
def x(ra1, dec1, ra2, dec2):
phi1 = np.radians(dec1)
phi2 = np.radians(dec2)
dphi = phi2 - phi1
lambda1 = np.radians(ra1)
lambda2 = np.radians(ra2)
dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2))
if dpsi < 1e-12:
q = np.cos(phi1)
else:
q = dpsi / dphi
dlambda = lambda2 - lambda1
if dlambda > np.pi:
dlambda -= 2 * np.pi
dist = np.hypot(dphi, q * dlambda)
return np.degrees(dist)
|
dist_rhumb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ra1, dec1, ra2, dec2):\n phi1 = np.radians(dec1)\n phi2 = np.radians(dec2)\n dphi = phi2 - phi1\n lambda1 = np.radians(ra1)\n lambda2 = np.radians(ra2)\n dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2))\n if dpsi < 1e-12:\n q = np.cos(phi1)\n else:\n q = dpsi / dphi\n dlambda = lambda2 - lambda1\n if dlambda > np.pi:\n dlambda -= 2 * np.pi\n dist = np.hypot(dphi, q * dlambda)\n return np.degrees(dist)\n",
"role": "user"
},
{
"content": "dist_rhumb",
"role": "assistant"
}
] |
def x(ra1, dec1, ra2, dec2):
phi1 = np.radians(dec1)
phi2 = np.radians(dec2)
lambda1 = np.radians(ra1)
lambda2 = np.radians(ra2)
dlambda = lambda2 - lambda1
dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2))
theta = np.arctan2(dlambda, dpsi)
return np.degrees(theta)
|
bear_rhumb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ra1, dec1, ra2, dec2):\n phi1 = np.radians(dec1)\n phi2 = np.radians(dec2)\n lambda1 = np.radians(ra1)\n lambda2 = np.radians(ra2)\n dlambda = lambda2 - lambda1\n dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2))\n theta = np.arctan2(dlambda, dpsi)\n return np.degrees(theta)\n",
"role": "user"
},
{
"content": "bear_rhumb",
"role": "assistant"
}
] |
def x(ra, dec, r, theta):
delta = np.radians(r)
phi1 = np.radians(dec)
phi2 = phi1 + delta * np.cos(np.radians(theta))
dphi = phi2 - phi1
if abs(dphi) < 1e-09:
q = np.cos(phi1)
else:
dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 +
phi1 / 2))
q = dphi / dpsi
lambda1 = np.radians(ra)
dlambda = delta * np.sin(np.radians(theta)) / q
lambda2 = lambda1 + dlambda
ra_out = np.degrees(lambda2)
dec_out = np.degrees(phi2)
return ra_out, dec_out
|
translate_rhumb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ra, dec, r, theta):\n delta = np.radians(r)\n phi1 = np.radians(dec)\n phi2 = phi1 + delta * np.cos(np.radians(theta))\n dphi = phi2 - phi1\n if abs(dphi) < 1e-09:\n q = np.cos(phi1)\n else:\n dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + \n phi1 / 2))\n q = dphi / dpsi\n lambda1 = np.radians(ra)\n dlambda = delta * np.sin(np.radians(theta)) / q\n lambda2 = lambda1 + dlambda\n ra_out = np.degrees(lambda2)\n dec_out = np.degrees(phi2)\n return ra_out, dec_out\n",
"role": "user"
},
{
"content": "translate_rhumb",
"role": "assistant"
}
] |
def x(l, b):
a = SkyCoord(l, b, unit=(u.radian, u.radian), frame='galactic')
return a.fk5.ra.radian, a.fk5.dec.radian
|
galactic2fk5
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l, b):\n a = SkyCoord(l, b, unit=(u.radian, u.radian), frame='galactic')\n return a.fk5.ra.radian, a.fk5.dec.radian\n",
"role": "user"
},
{
"content": "galactic2fk5",
"role": "assistant"
}
] |
def x(data, wcs, region, negate=False):
indexes = np.empty((data.shape[0] * data.shape[1], 2), dtype=int)
idx = np.array([(j, 0) for j in range(data.shape[1])])
j = data.shape[1]
for i in range(data.shape[0]):
idx[:, 1] = i
indexes[i * j:(i + 1) * j] = idx
ra, dec = wcs.wcs_pix2world(indexes, 1).transpose()
bigmask = region.sky_within(ra, dec, degin=True)
if not negate:
bigmask = np.bitwise_not(bigmask)
bigmask = bigmask.reshape(data.shape)
data[bigmask] = np.nan
return data
|
mask_plane
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, wcs, region, negate=False):\n indexes = np.empty((data.shape[0] * data.shape[1], 2), dtype=int)\n idx = np.array([(j, 0) for j in range(data.shape[1])])\n j = data.shape[1]\n for i in range(data.shape[0]):\n idx[:, 1] = i\n indexes[i * j:(i + 1) * j] = idx\n ra, dec = wcs.wcs_pix2world(indexes, 1).transpose()\n bigmask = region.sky_within(ra, dec, degin=True)\n if not negate:\n bigmask = np.bitwise_not(bigmask)\n bigmask = bigmask.reshape(data.shape)\n data[bigmask] = np.nan\n return data\n",
"role": "user"
},
{
"content": "mask_plane",
"role": "assistant"
}
] |
def x(regionfile, infile, outfile, negate=False):
if not os.path.exists(infile):
raise AssertionError('Cannot locate fits file {0}'.format(infile))
im = pyfits.open(infile)
if not os.path.exists(regionfile):
raise AssertionError('Cannot locate region file {0}'.format(regionfile)
)
region = Region.load(regionfile)
try:
wcs = pywcs.WCS(im[0].header, naxis=2)
except:
wcs = pywcs.WCS(str(im[0].header), naxis=2)
if len(im[0].data.shape) > 2:
data = np.squeeze(im[0].data)
else:
data = im[0].data
print(data.shape)
if len(data.shape) == 3:
for plane in range(data.shape[0]):
mask_plane(data[plane], wcs, region, negate)
else:
mask_plane(data, wcs, region, negate)
im[0].data = data
im.writeto(outfile, overwrite=True)
logging.info('Wrote {0}'.format(outfile))
return
|
mask_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(regionfile, infile, outfile, negate=False):\n if not os.path.exists(infile):\n raise AssertionError('Cannot locate fits file {0}'.format(infile))\n im = pyfits.open(infile)\n if not os.path.exists(regionfile):\n raise AssertionError('Cannot locate region file {0}'.format(regionfile)\n )\n region = Region.load(regionfile)\n try:\n wcs = pywcs.WCS(im[0].header, naxis=2)\n except:\n wcs = pywcs.WCS(str(im[0].header), naxis=2)\n if len(im[0].data.shape) > 2:\n data = np.squeeze(im[0].data)\n else:\n data = im[0].data\n print(data.shape)\n if len(data.shape) == 3:\n for plane in range(data.shape[0]):\n mask_plane(data[plane], wcs, region, negate)\n else:\n mask_plane(data, wcs, region, negate)\n im[0].data = data\n im.writeto(outfile, overwrite=True)\n logging.info('Wrote {0}'.format(outfile))\n return\n",
"role": "user"
},
{
"content": "mask_file",
"role": "assistant"
}
] |
def x(region, table, negate=False, racol='ra', deccol='dec'):
inside = region.sky_within(table[racol], table[deccol], degin=True)
if not negate:
mask = np.bitwise_not(inside)
else:
mask = inside
return table[mask]
|
mask_table
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(region, table, negate=False, racol='ra', deccol='dec'):\n inside = region.sky_within(table[racol], table[deccol], degin=True)\n if not negate:\n mask = np.bitwise_not(inside)\n else:\n mask = inside\n return table[mask]\n",
"role": "user"
},
{
"content": "mask_table",
"role": "assistant"
}
] |
def x(regionfile, infile, outfile, negate=False, racol='ra', deccol='dec'):
logging.info('Loading region from {0}'.format(regionfile))
region = Region.load(regionfile)
logging.info('Loading catalog from {0}'.format(infile))
table = load_table(infile)
masked_table = mask_table(region, table, negate=negate, racol=racol,
deccol=deccol)
write_table(masked_table, outfile)
return
|
mask_catalog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(regionfile, infile, outfile, negate=False, racol='ra', deccol='dec'):\n logging.info('Loading region from {0}'.format(regionfile))\n region = Region.load(regionfile)\n logging.info('Loading catalog from {0}'.format(infile))\n table = load_table(infile)\n masked_table = mask_table(region, table, negate=negate, racol=racol,\n deccol=deccol)\n write_table(masked_table, outfile)\n return\n",
"role": "user"
},
{
"content": "mask_catalog",
"role": "assistant"
}
] |
def x(mimfile, regfile):
region = Region.load(mimfile)
region.write_reg(regfile)
logging.info('Converted {0} -> {1}'.format(mimfile, regfile))
return
|
mim2reg
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mimfile, regfile):\n region = Region.load(mimfile)\n region.write_reg(regfile)\n logging.info('Converted {0} -> {1}'.format(mimfile, regfile))\n return\n",
"role": "user"
},
{
"content": "mim2reg",
"role": "assistant"
}
] |
def x(mimfile, fitsfile):
region = Region.load(mimfile)
region.write_fits(fitsfile, moctool='MIMAS {0}-{1}'.format(__version__,
__date__))
logging.info('Converted {0} -> {1}'.format(mimfile, fitsfile))
return
|
mim2fits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mimfile, fitsfile):\n region = Region.load(mimfile)\n region.write_fits(fitsfile, moctool='MIMAS {0}-{1}'.format(__version__,\n __date__))\n logging.info('Converted {0} -> {1}'.format(mimfile, fitsfile))\n return\n",
"role": "user"
},
{
"content": "mim2fits",
"role": "assistant"
}
] |
def x(line):
words = re.split('[(\\s,)]', line)
ra = words[1]
dec = words[2]
width = words[3]
height = words[4]
if ':' in ra:
ra = Angle(ra, unit=u.hour)
else:
ra = Angle(ra, unit=u.degree)
dec = Angle(dec, unit=u.degree)
width = Angle(float(width[:-1]) / 2, unit=u.arcsecond)
height = Angle(float(height[:-1]) / 2, unit=u.arcsecond)
center = SkyCoord(ra, dec)
tl = center.ra.degree + width.degree, center.dec.degree + height.degree
tr = center.ra.degree - width.degree, center.dec.degree + height.degree
bl = center.ra.degree + width.degree, center.dec.degree - height.degree
br = center.ra.degree - width.degree, center.dec.degree - height.degree
return np.ravel([tl, tr, br, bl]).tolist()
|
box2poly
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line):\n words = re.split('[(\\\\s,)]', line)\n ra = words[1]\n dec = words[2]\n width = words[3]\n height = words[4]\n if ':' in ra:\n ra = Angle(ra, unit=u.hour)\n else:\n ra = Angle(ra, unit=u.degree)\n dec = Angle(dec, unit=u.degree)\n width = Angle(float(width[:-1]) / 2, unit=u.arcsecond)\n height = Angle(float(height[:-1]) / 2, unit=u.arcsecond)\n center = SkyCoord(ra, dec)\n tl = center.ra.degree + width.degree, center.dec.degree + height.degree\n tr = center.ra.degree - width.degree, center.dec.degree + height.degree\n bl = center.ra.degree + width.degree, center.dec.degree - height.degree\n br = center.ra.degree - width.degree, center.dec.degree - height.degree\n return np.ravel([tl, tr, br, bl]).tolist()\n",
"role": "user"
},
{
"content": "box2poly",
"role": "assistant"
}
] |
def x(line):
words = re.split('[(,\\s)]', line)
ra = words[1]
dec = words[2]
radius = words[3][:-1]
if ':' in ra:
ra = Angle(ra, unit=u.hour)
else:
ra = Angle(ra, unit=u.degree)
dec = Angle(dec, unit=u.degree)
radius = Angle(radius, unit=u.arcsecond)
return [ra.degree, dec.degree, radius.degree]
|
circle2circle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line):\n words = re.split('[(,\\\\s)]', line)\n ra = words[1]\n dec = words[2]\n radius = words[3][:-1]\n if ':' in ra:\n ra = Angle(ra, unit=u.hour)\n else:\n ra = Angle(ra, unit=u.degree)\n dec = Angle(dec, unit=u.degree)\n radius = Angle(radius, unit=u.arcsecond)\n return [ra.degree, dec.degree, radius.degree]\n",
"role": "user"
},
{
"content": "circle2circle",
"role": "assistant"
}
] |
def x(line):
words = re.split('[(\\s,)]', line)
ras = np.array(words[1::2])
decs = np.array(words[2::2])
coords = []
for ra, dec in zip(ras, decs):
if ra.strip() == '' or dec.strip() == '':
continue
if ':' in ra:
pos = SkyCoord(Angle(ra, unit=u.hour), Angle(dec, unit=u.degree))
else:
pos = SkyCoord(Angle(ra, unit=u.degree), Angle(dec, unit=u.degree))
coords.extend([pos.ra.degree, pos.dec.degree])
return coords
|
poly2poly
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(line):\n words = re.split('[(\\\\s,)]', line)\n ras = np.array(words[1::2])\n decs = np.array(words[2::2])\n coords = []\n for ra, dec in zip(ras, decs):\n if ra.strip() == '' or dec.strip() == '':\n continue\n if ':' in ra:\n pos = SkyCoord(Angle(ra, unit=u.hour), Angle(dec, unit=u.degree))\n else:\n pos = SkyCoord(Angle(ra, unit=u.degree), Angle(dec, unit=u.degree))\n coords.extend([pos.ra.degree, pos.dec.degree])\n return coords\n",
"role": "user"
},
{
"content": "poly2poly",
"role": "assistant"
}
] |
def x(regfile, mimfile, maxdepth):
logging.info('Reading regions from {0}'.format(regfile))
lines = (l for l in open(regfile, 'r') if not l.startswith('#'))
poly = []
circles = []
for line in lines:
if line.startswith('box'):
poly.append(box2poly(line))
elif line.startswith('circle'):
circles.append(circle2circle(line))
elif line.startswith('polygon'):
logging.warning(
"Polygons break a lot, but I'll try this one anyway.")
poly.append(poly2poly(line))
else:
logging.warning('Not sure what to do with {0}'.format(line[:-1]))
container = Dummy(maxdepth=maxdepth)
container.include_circles = circles
container.include_polygons = poly
region = combine_regions(container)
save_region(region, mimfile)
return
|
reg2mim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(regfile, mimfile, maxdepth):\n logging.info('Reading regions from {0}'.format(regfile))\n lines = (l for l in open(regfile, 'r') if not l.startswith('#'))\n poly = []\n circles = []\n for line in lines:\n if line.startswith('box'):\n poly.append(box2poly(line))\n elif line.startswith('circle'):\n circles.append(circle2circle(line))\n elif line.startswith('polygon'):\n logging.warning(\n \"Polygons break a lot, but I'll try this one anyway.\")\n poly.append(poly2poly(line))\n else:\n logging.warning('Not sure what to do with {0}'.format(line[:-1]))\n container = Dummy(maxdepth=maxdepth)\n container.include_circles = circles\n container.include_polygons = poly\n region = combine_regions(container)\n save_region(region, mimfile)\n return\n",
"role": "user"
},
{
"content": "reg2mim",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.