source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(mv_districts, n_of_districts, output_info, run_id, base_path): engine = db.connection(section='oedb') session = sessionmaker(bind=engine)() clusters = [mv_districts[x:x + n_of_districts] for x in range(0, len( mv_districts), n_of_districts)] output_clusters = [] for cl in clusters: print('\n########################################') print(' Running ding0 for district', cl) print('########################################') nw_name = 'ding0_grids_' + str(cl[0]) if not cl[0] == cl[-1]: nw_name = nw_name + '_to_' + str(cl[-1]) nw = NetworkDing0(name=nw_name) try: msg = nw.run_ding0(session=session, mv_grid_districts_no=cl) if msg: status = 'run error' else: msg = '' status = 'OK' results.save_nd_to_pickle(nw, os.path.join(base_path, run_id)) output_clusters.append((nw_name, status, msg, nw.metadata)) except Exception as e: output_clusters.append((nw_name, 'corrupt dist', e, nw.metadata)) continue output_info.put(output_clusters)
process_runs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mv_districts, n_of_districts, output_info, run_id, base_path):\n engine = db.connection(section='oedb')\n session = sessionmaker(bind=engine)()\n clusters = [mv_districts[x:x + n_of_districts] for x in range(0, len(\n mv_districts), n_of_districts)]\n output_clusters = []\n for cl in clusters:\n print('\\n########################################')\n print(' Running ding0 for district', cl)\n print('########################################')\n nw_name = 'ding0_grids_' + str(cl[0])\n if not cl[0] == cl[-1]:\n nw_name = nw_name + '_to_' + str(cl[-1])\n nw = NetworkDing0(name=nw_name)\n try:\n msg = nw.run_ding0(session=session, mv_grid_districts_no=cl)\n if msg:\n status = 'run error'\n else:\n msg = ''\n status = 'OK'\n results.save_nd_to_pickle(nw, os.path.join(base_path, run_id))\n output_clusters.append((nw_name, status, msg, nw.metadata))\n except Exception as e:\n output_clusters.append((nw_name, 'corrupt dist', e, nw.metadata))\n continue\n output_info.put(output_clusters)\n", "role": "user" }, { "content": "process_runs", "role": "assistant" } ]
def x(meta): mvgds = [] metadata = meta[0] for mvgd in meta: if isinstance(mvgd['mv_grid_districts'], list): mvgds.extend(mvgd['mv_grid_districts']) else: mvgds.append(mvgd['mv_grid_districts']) metadata['mv_grid_districts'] = mvgds return metadata
process_metadata
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(meta):\n mvgds = []\n metadata = meta[0]\n for mvgd in meta:\n if isinstance(mvgd['mv_grid_districts'], list):\n mvgds.extend(mvgd['mv_grid_districts'])\n else:\n mvgds.append(mvgd['mv_grid_districts'])\n metadata['mv_grid_districts'] = mvgds\n return metadata\n", "role": "user" }, { "content": "process_metadata", "role": "assistant" } ]
def x(grid, mode): if mode == 'MV': crit_branches, crit_stations = check_load(grid, mode) reinforce_branches_current(grid, crit_branches) if crit_branches or crit_stations: grid.network.run_powerflow(conn=None, method='onthefly') crit_nodes = check_voltage(grid, mode) crit_nodes_count_prev_step = len(crit_nodes) while crit_nodes: crit_branches_v = grid.find_and_union_paths(grid.station(), crit_nodes) reinforce_branches_voltage(grid, crit_branches_v) grid.network.run_powerflow(session=None, method='onthefly') crit_nodes = check_voltage(grid, mode) if len(crit_nodes) == crit_nodes_count_prev_step: logger.warning( '==> There are {0} branches that cannot be reinforced (no appropriate cable available).' .format(len(grid.find_and_union_paths(grid.station(), crit_nodes)))) break crit_nodes_count_prev_step = len(crit_nodes) if not crit_nodes: logger.info( '==> All voltage issues in {mode} grid could be solved using reinforcement.' .format(mode=mode)) elif mode == 'LV': critical_branches, critical_stations = get_critical_line_loading(grid) unresolved = reinforce_lv_branches_overloading(grid, critical_branches) logger.info( 'Out of {crit_branches} with overloading {unresolved} remain with unresolved issues due to line overloading. LV grid: {grid}' .format(crit_branches=len(critical_branches), unresolved=len( unresolved), grid=grid)) extend_substation(grid, critical_stations, mode) crit_nodes = get_critical_voltage_at_nodes(grid) crit_nodes_count_prev_step = len(crit_nodes) logger.info('{cnt_crit_branches} in {grid} have voltage issues'. format(cnt_crit_branches=crit_nodes_count_prev_step, grid=grid)) while crit_nodes: crit_branches_v = grid.find_and_union_paths(grid.station(), [_[ 'node'] for _ in crit_nodes]) reinforce_branches_voltage(grid, crit_branches_v, mode) crit_nodes = get_critical_voltage_at_nodes(grid) if len(crit_nodes) == crit_nodes_count_prev_step: logger.warning( '==> There are {0} branches that cannot be reinforced (no appropriate cable available).' .format(len(crit_branches_v))) break crit_nodes_count_prev_step = len(crit_nodes) if not crit_nodes: logger.info( '==> All voltage issues in {mode} grid could be solved using reinforcement.' .format(mode=mode)) crit_stations_voltage = [_ for _ in crit_nodes if isinstance(_[ 'node'], LVStationDing0)] if crit_stations_voltage: extend_substation_voltage(crit_stations_voltage, grid_level='LV')
reinforce_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, mode):\n if mode == 'MV':\n crit_branches, crit_stations = check_load(grid, mode)\n reinforce_branches_current(grid, crit_branches)\n if crit_branches or crit_stations:\n grid.network.run_powerflow(conn=None, method='onthefly')\n crit_nodes = check_voltage(grid, mode)\n crit_nodes_count_prev_step = len(crit_nodes)\n while crit_nodes:\n crit_branches_v = grid.find_and_union_paths(grid.station(),\n crit_nodes)\n reinforce_branches_voltage(grid, crit_branches_v)\n grid.network.run_powerflow(session=None, method='onthefly')\n crit_nodes = check_voltage(grid, mode)\n if len(crit_nodes) == crit_nodes_count_prev_step:\n logger.warning(\n '==> There are {0} branches that cannot be reinforced (no appropriate cable available).'\n .format(len(grid.find_and_union_paths(grid.station(),\n crit_nodes))))\n break\n crit_nodes_count_prev_step = len(crit_nodes)\n if not crit_nodes:\n logger.info(\n '==> All voltage issues in {mode} grid could be solved using reinforcement.'\n .format(mode=mode))\n elif mode == 'LV':\n critical_branches, critical_stations = get_critical_line_loading(grid)\n unresolved = reinforce_lv_branches_overloading(grid, critical_branches)\n logger.info(\n 'Out of {crit_branches} with overloading {unresolved} remain with unresolved issues due to line overloading. LV grid: {grid}'\n .format(crit_branches=len(critical_branches), unresolved=len(\n unresolved), grid=grid))\n extend_substation(grid, critical_stations, mode)\n crit_nodes = get_critical_voltage_at_nodes(grid)\n crit_nodes_count_prev_step = len(crit_nodes)\n logger.info('{cnt_crit_branches} in {grid} have voltage issues'.\n format(cnt_crit_branches=crit_nodes_count_prev_step, grid=grid))\n while crit_nodes:\n crit_branches_v = grid.find_and_union_paths(grid.station(), [_[\n 'node'] for _ in crit_nodes])\n reinforce_branches_voltage(grid, crit_branches_v, mode)\n crit_nodes = get_critical_voltage_at_nodes(grid)\n if len(crit_nodes) == crit_nodes_count_prev_step:\n logger.warning(\n '==> There are {0} branches that cannot be reinforced (no appropriate cable available).'\n .format(len(crit_branches_v)))\n break\n crit_nodes_count_prev_step = len(crit_nodes)\n if not crit_nodes:\n logger.info(\n '==> All voltage issues in {mode} grid could be solved using reinforcement.'\n .format(mode=mode))\n crit_stations_voltage = [_ for _ in crit_nodes if isinstance(_[\n 'node'], LVStationDing0)]\n if crit_stations_voltage:\n extend_substation_voltage(crit_stations_voltage, grid_level='LV')\n", "role": "user" }, { "content": "reinforce_grid", "role": "assistant" } ]
def x(filename): nd = results.load_nd_from_pickle(filename=filename) nodes_df, edges_df = nd.to_dataframe() stats = results.calculate_mvgd_stats(nd) stations = nodes_df[nodes_df['type'] == 'LV Station'] f, axarr = plt.subplots(2, sharex=True) f.suptitle( 'Peak load (top) / peak generation capacity (bottom) at LV substations in kW' ) stations['peak_load'].hist(bins=20, alpha=0.5, ax=axarr[0]) axarr[0].set_title('Peak load in kW') stations['generation_capacity'].hist(bins=20, alpha=0.5, ax=axarr[1]) axarr[1].set_title('Peak generation capacity in kW') plt.show() print('You are analyzing MV grid district {mvgd}\n'.format(mvgd=int( stats.index.values))) with option_context('display.max_rows', None, 'display.max_columns', None, 'display.max_colwidth', -1): print(stats.T)
example_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n nd = results.load_nd_from_pickle(filename=filename)\n nodes_df, edges_df = nd.to_dataframe()\n stats = results.calculate_mvgd_stats(nd)\n stations = nodes_df[nodes_df['type'] == 'LV Station']\n f, axarr = plt.subplots(2, sharex=True)\n f.suptitle(\n 'Peak load (top) / peak generation capacity (bottom) at LV substations in kW'\n )\n stations['peak_load'].hist(bins=20, alpha=0.5, ax=axarr[0])\n axarr[0].set_title('Peak load in kW')\n stations['generation_capacity'].hist(bins=20, alpha=0.5, ax=axarr[1])\n axarr[1].set_title('Peak generation capacity in kW')\n plt.show()\n print('You are analyzing MV grid district {mvgd}\\n'.format(mvgd=int(\n stats.index.values)))\n with option_context('display.max_rows', None, 'display.max_columns',\n None, 'display.max_colwidth', -1):\n print(stats.T)\n", "role": "user" }, { "content": "example_stats", "role": "assistant" } ]
def x(graph1, mode, graph2=None): package_path = ding0.__path__[0] file = path.join(package_path, 'output', 'debug', 'graph1.gpickle') if mode == 'write': try: nx.write_gpickle(graph1, file) print('=====> DEBUG: Graph written to', file) except: raise FileNotFoundError('Could not write to file', file) elif mode == 'compare': if graph2 is None: try: graph2 = nx.read_gpickle(file) print('=====> DEBUG: Graph read from', file) except: raise FileNotFoundError('File not found:', file) nodes1 = sorted(graph1.nodes(), key=lambda _: repr(_)) nodes2 = sorted(graph2.nodes(), key=lambda _: repr(_)) edges1 = sorted(graph1.edges(), key=lambda _: repr(_)) edges2 = sorted(graph2.edges(), key=lambda _: repr(_)) graphs_are_isomorphic = True if len(nodes1) > len(nodes2): print('Node count in graph 1 > node count in graph 2') print('Difference:', [node for node in nodes1 if repr(node) not in repr(nodes2)]) graphs_are_isomorphic = False elif len(nodes2) > len(nodes1): print('Node count in graph 2 > node count in graph 1') print('Difference:', [node for node in nodes2 if repr(node) not in repr(nodes1)]) graphs_are_isomorphic = False if len(edges1) > len(edges2): print('Edge count in graph 1 > edge count in graph 2') print('Difference:', [edge for edge in edges1 if repr(edge) not in repr(edges2) and repr(tuple(reversed(edge))) not in repr( edges2)]) graphs_are_isomorphic = False elif len(edges2) > len(edges1): print('Edge count in graph 2 > edge count in graph 1') print('Difference:', [edge for edge in edges2 if repr(edge) not in repr(edges1) and repr(tuple(reversed(edge))) not in repr( edges1)]) graphs_are_isomorphic = False elif len(edges1) == len(edges1) and len([edge for edge in edges1 if repr(edge) not in repr(edges2) and repr(tuple(reversed(edge))) not in repr(edges2)]) > 0: print('Edge count in graph 1 = edge count in graph 2') print('Difference:', [edge for edge in edges2 if repr(edge) not in repr(edges1) and repr(tuple(reversed(edge))) not in repr( edges1)]) graphs_are_isomorphic = False if graphs_are_isomorphic: print('=====> DEBUG: Graphs are isomorphic') else: print('=====> DEBUG: Graphs are NOT isomorphic') else: raise ValueError( "Invalid value for mode, use mode='write' or 'compare'") exit(0)
compare_graphs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph1, mode, graph2=None):\n package_path = ding0.__path__[0]\n file = path.join(package_path, 'output', 'debug', 'graph1.gpickle')\n if mode == 'write':\n try:\n nx.write_gpickle(graph1, file)\n print('=====> DEBUG: Graph written to', file)\n except:\n raise FileNotFoundError('Could not write to file', file)\n elif mode == 'compare':\n if graph2 is None:\n try:\n graph2 = nx.read_gpickle(file)\n print('=====> DEBUG: Graph read from', file)\n except:\n raise FileNotFoundError('File not found:', file)\n nodes1 = sorted(graph1.nodes(), key=lambda _: repr(_))\n nodes2 = sorted(graph2.nodes(), key=lambda _: repr(_))\n edges1 = sorted(graph1.edges(), key=lambda _: repr(_))\n edges2 = sorted(graph2.edges(), key=lambda _: repr(_))\n graphs_are_isomorphic = True\n if len(nodes1) > len(nodes2):\n print('Node count in graph 1 > node count in graph 2')\n print('Difference:', [node for node in nodes1 if repr(node) not in\n repr(nodes2)])\n graphs_are_isomorphic = False\n elif len(nodes2) > len(nodes1):\n print('Node count in graph 2 > node count in graph 1')\n print('Difference:', [node for node in nodes2 if repr(node) not in\n repr(nodes1)])\n graphs_are_isomorphic = False\n if len(edges1) > len(edges2):\n print('Edge count in graph 1 > edge count in graph 2')\n print('Difference:', [edge for edge in edges1 if repr(edge) not in\n repr(edges2) and repr(tuple(reversed(edge))) not in repr(\n edges2)])\n graphs_are_isomorphic = False\n elif len(edges2) > len(edges1):\n print('Edge count in graph 2 > edge count in graph 1')\n print('Difference:', [edge for edge in edges2 if repr(edge) not in\n repr(edges1) and repr(tuple(reversed(edge))) not in repr(\n edges1)])\n graphs_are_isomorphic = False\n elif len(edges1) == len(edges1) and len([edge for edge in edges1 if\n repr(edge) not in repr(edges2) and repr(tuple(reversed(edge)))\n not in repr(edges2)]) > 0:\n print('Edge count in graph 1 = edge count in graph 2')\n print('Difference:', [edge for edge in edges2 if repr(edge) not in\n repr(edges1) and repr(tuple(reversed(edge))) not in repr(\n edges1)])\n graphs_are_isomorphic = False\n if graphs_are_isomorphic:\n print('=====> DEBUG: Graphs are isomorphic')\n else:\n print('=====> DEBUG: Graphs are NOT isomorphic')\n else:\n raise ValueError(\n \"Invalid value for mode, use mode='write' or 'compare'\")\n exit(0)\n", "role": "user" }, { "content": "compare_graphs", "role": "assistant" } ]
def x(self, mode): if mode == 'MV': return sum([_.capacity for _ in self.grid.generators()]) elif mode == 'MVLV': cum_mv_peak_generation = sum([_.capacity for _ in self.grid. generators()]) cum_lv_peak_generation = 0 for load_area in self.grid.grid_district.lv_load_areas(): cum_lv_peak_generation += load_area.peak_generation return cum_mv_peak_generation + cum_lv_peak_generation else: raise ValueError("parameter 'mode' is invalid!")
peak_generation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n if mode == 'MV':\n return sum([_.capacity for _ in self.grid.generators()])\n elif mode == 'MVLV':\n cum_mv_peak_generation = sum([_.capacity for _ in self.grid.\n generators()])\n cum_lv_peak_generation = 0\n for load_area in self.grid.grid_district.lv_load_areas():\n cum_lv_peak_generation += load_area.peak_generation\n return cum_mv_peak_generation + cum_lv_peak_generation\n else:\n raise ValueError(\"parameter 'mode' is invalid!\")\n", "role": "user" }, { "content": "peak_generation", "role": "assistant" } ]
def x(self): mv_station_v_level_operation = float(cfg_ding0.get( 'mv_routing_tech_constraints', 'mv_station_v_level_operation')) self.v_level_operation = mv_station_v_level_operation * self.grid.v_level
set_operation_voltage_level
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n mv_station_v_level_operation = float(cfg_ding0.get(\n 'mv_routing_tech_constraints', 'mv_station_v_level_operation'))\n self.v_level_operation = mv_station_v_level_operation * self.grid.v_level\n", "role": "user" }, { "content": "set_operation_voltage_level", "role": "assistant" } ]
def x(self): cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load') cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen') load_factor_mv_trans_lc_normal = float(cfg_ding0.get('assumptions', 'load_factor_mv_trans_lc_normal')) load_factor_mv_trans_fc_normal = float(cfg_ding0.get('assumptions', 'load_factor_mv_trans_fc_normal')) trafo_parameters = self.grid.network.static_data['MV_trafos'] cum_peak_load = self.peak_load / cos_phi_load cum_peak_generation = self.peak_generation(mode='MVLV') / cos_phi_feedin if (cum_peak_load / load_factor_mv_trans_lc_normal > cum_peak_generation / load_factor_mv_trans_fc_normal): load_factor_mv_trans = load_factor_mv_trans_lc_normal residual_apparent_power = cum_peak_load else: load_factor_mv_trans = load_factor_mv_trans_fc_normal residual_apparent_power = cum_peak_generation transformer_max = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmax()] while residual_apparent_power > 0: if residual_apparent_power > load_factor_mv_trans * transformer_max[ 'S_nom']: transformer = transformer_max else: transformer = trafo_parameters.iloc[trafo_parameters[ trafo_parameters['S_nom'] * load_factor_mv_trans > residual_apparent_power]['S_nom'].idxmin()] self.add_transformer(TransformerDing0(**{'grid': self.grid, 'v_level': self.grid.v_level, 's_max_longterm': transformer[ 'S_nom']})) residual_apparent_power -= load_factor_mv_trans * transformer['S_nom'] if len(self._transformers) == 0: transformer = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmin()] self.add_transformer(TransformerDing0(grid=self.grid, v_level=self. grid.v_level, s_max_longterm=transformer['S_nom'])) s_max_max = max(o.s_max_a for o in self._transformers) self.add_transformer(TransformerDing0(**{'grid': self.grid, 'v_level': self.grid.v_level, 's_max_longterm': s_max_max}))
select_transformers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')\n load_factor_mv_trans_lc_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_trans_lc_normal'))\n load_factor_mv_trans_fc_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_trans_fc_normal'))\n trafo_parameters = self.grid.network.static_data['MV_trafos']\n cum_peak_load = self.peak_load / cos_phi_load\n cum_peak_generation = self.peak_generation(mode='MVLV') / cos_phi_feedin\n if (cum_peak_load / load_factor_mv_trans_lc_normal > \n cum_peak_generation / load_factor_mv_trans_fc_normal):\n load_factor_mv_trans = load_factor_mv_trans_lc_normal\n residual_apparent_power = cum_peak_load\n else:\n load_factor_mv_trans = load_factor_mv_trans_fc_normal\n residual_apparent_power = cum_peak_generation\n transformer_max = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmax()]\n while residual_apparent_power > 0:\n if residual_apparent_power > load_factor_mv_trans * transformer_max[\n 'S_nom']:\n transformer = transformer_max\n else:\n transformer = trafo_parameters.iloc[trafo_parameters[\n trafo_parameters['S_nom'] * load_factor_mv_trans >\n residual_apparent_power]['S_nom'].idxmin()]\n self.add_transformer(TransformerDing0(**{'grid': self.grid,\n 'v_level': self.grid.v_level, 's_max_longterm': transformer[\n 'S_nom']}))\n residual_apparent_power -= load_factor_mv_trans * transformer['S_nom']\n if len(self._transformers) == 0:\n transformer = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmin()]\n self.add_transformer(TransformerDing0(grid=self.grid, v_level=self.\n grid.v_level, s_max_longterm=transformer['S_nom']))\n s_max_max = max(o.s_max_a for o in self._transformers)\n self.add_transformer(TransformerDing0(**{'grid': self.grid, 'v_level':\n self.grid.v_level, 's_max_longterm': s_max_max}))\n", "role": "user" }, { "content": "select_transformers", "role": "assistant" } ]
def x(self): return '_'.join(['MV', str(self.grid.grid_district.lv_load_area. mv_grid_district.mv_grid.id_db), 'tru', str(self.id_db)])
pypsa_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return '_'.join(['MV', str(self.grid.grid_district.lv_load_area.\n mv_grid_district.mv_grid.id_db), 'tru', str(self.id_db)])\n", "role": "user" }, { "content": "pypsa_id", "role": "assistant" } ]
def x(base_path): if not os.path.exists(base_path): print('Creating directory {} for results data.'.format(base_path)) os.mkdir(base_path) if not os.path.exists(os.path.join(base_path, 'results')): os.mkdir(os.path.join(base_path, 'results')) if not os.path.exists(os.path.join(base_path, 'plots')): os.mkdir(os.path.join(base_path, 'plots')) if not os.path.exists(os.path.join(base_path, 'info')): os.mkdir(os.path.join(base_path, 'info')) if not os.path.exists(os.path.join(base_path, 'log')): os.mkdir(os.path.join(base_path, 'log'))
create_results_dirs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(base_path):\n if not os.path.exists(base_path):\n print('Creating directory {} for results data.'.format(base_path))\n os.mkdir(base_path)\n if not os.path.exists(os.path.join(base_path, 'results')):\n os.mkdir(os.path.join(base_path, 'results'))\n if not os.path.exists(os.path.join(base_path, 'plots')):\n os.mkdir(os.path.join(base_path, 'plots'))\n if not os.path.exists(os.path.join(base_path, 'info')):\n os.mkdir(os.path.join(base_path, 'info'))\n if not os.path.exists(os.path.join(base_path, 'log')):\n os.mkdir(os.path.join(base_path, 'log'))\n", "role": "user" }, { "content": "create_results_dirs", "role": "assistant" } ]
def x(mv_grid_districts, run_id, failsafe=False, base_path=None): start = time.time() if base_path is None: base_path = BASEPATH engine = db.connection(section='oedb') session = sessionmaker(bind=engine)() corrupt_grid_districts = pd.DataFrame(columns=['id', 'message']) for mvgd in mv_grid_districts: nd = NetworkDing0(name='network', run_id=run_id) if not os.path.exists(os.path.join(base_path, 'grids')): os.mkdir(os.path.join(base_path, 'grids')) if not failsafe: msg = nd.run_ding0(session=session, mv_grid_districts_no=[mvgd]) results.save_nd_to_pickle(nd, os.path.join(base_path, 'grids')) else: try: msg = nd.run_ding0(session=session, mv_grid_districts_no=[mvgd] ) if msg: corrupt_grid_districts = corrupt_grid_districts.append(pd .Series({'id': mvgd, 'message': msg[0]}), ignore_index=True) else: results.save_nd_to_pickle(nd, os.path.join(base_path, 'grids')) except Exception as e: corrupt_grid_districts = corrupt_grid_districts.append(pd. Series({'id': mvgd, 'message': e}), ignore_index=True) continue if 'metadata' not in locals(): metadata = nd.metadata elif isinstance(mvgd, list): metadata['mv_grid_districts'].extend(mvgd) else: metadata['mv_grid_districts'].append(mvgd) with open(os.path.join(base_path, 'grids', 'Ding0_{}.meta'.format( run_id)), 'w') as f: json.dump(metadata, f) corrupt_grid_districts.to_csv(os.path.join(base_path, 'grids', 'corrupt_mv_grid_districts.txt'), index=False, float_format='%.0f') print('Elapsed time for', str(len(mv_grid_districts)), 'MV grid districts (seconds): {}'.format(time.time() - start)) return msg
run_multiple_grid_districts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mv_grid_districts, run_id, failsafe=False, base_path=None):\n start = time.time()\n if base_path is None:\n base_path = BASEPATH\n engine = db.connection(section='oedb')\n session = sessionmaker(bind=engine)()\n corrupt_grid_districts = pd.DataFrame(columns=['id', 'message'])\n for mvgd in mv_grid_districts:\n nd = NetworkDing0(name='network', run_id=run_id)\n if not os.path.exists(os.path.join(base_path, 'grids')):\n os.mkdir(os.path.join(base_path, 'grids'))\n if not failsafe:\n msg = nd.run_ding0(session=session, mv_grid_districts_no=[mvgd])\n results.save_nd_to_pickle(nd, os.path.join(base_path, 'grids'))\n else:\n try:\n msg = nd.run_ding0(session=session, mv_grid_districts_no=[mvgd]\n )\n if msg:\n corrupt_grid_districts = corrupt_grid_districts.append(pd\n .Series({'id': mvgd, 'message': msg[0]}),\n ignore_index=True)\n else:\n results.save_nd_to_pickle(nd, os.path.join(base_path,\n 'grids'))\n except Exception as e:\n corrupt_grid_districts = corrupt_grid_districts.append(pd.\n Series({'id': mvgd, 'message': e}), ignore_index=True)\n continue\n if 'metadata' not in locals():\n metadata = nd.metadata\n elif isinstance(mvgd, list):\n metadata['mv_grid_districts'].extend(mvgd)\n else:\n metadata['mv_grid_districts'].append(mvgd)\n with open(os.path.join(base_path, 'grids', 'Ding0_{}.meta'.format(\n run_id)), 'w') as f:\n json.dump(metadata, f)\n corrupt_grid_districts.to_csv(os.path.join(base_path, 'grids',\n 'corrupt_mv_grid_districts.txt'), index=False, float_format='%.0f')\n print('Elapsed time for', str(len(mv_grid_districts)),\n 'MV grid districts (seconds): {}'.format(time.time() - start))\n return msg\n", "role": "user" }, { "content": "run_multiple_grid_districts", "role": "assistant" } ]
def x(filename): package_path = ding0.__path__[0] FILE = path.join(package_path, 'config', filename) try: cfg.read(FILE) global _loaded _loaded = True except: logger.exception('configfile not found.')
load_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n package_path = ding0.__path__[0]\n FILE = path.join(package_path, 'config', filename)\n try:\n cfg.read(FILE)\n global _loaded\n _loaded = True\n except:\n logger.exception('configfile not found.')\n", "role": "user" }, { "content": "load_config", "role": "assistant" } ]
def x(section, key, value): if not _loaded: init() if not cfg.has_section(section): cfg.add_section(section) cfg.set(section, key, value) with open(FILE, 'w') as configfile: cfg.write(configfile)
set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(section, key, value):\n if not _loaded:\n init()\n if not cfg.has_section(section):\n cfg.add_section(section)\n cfg.set(section, key, value)\n with open(FILE, 'w') as configfile:\n cfg.write(configfile)\n", "role": "user" }, { "content": "set", "role": "assistant" } ]
def x(f): depots = [] for line in f: line = strip(line) if line == '-1' or line == 'EOF': break else: depots.append(line) if len(depots) != 1: raise ParseException('One and only one depot is supported') return int(depots[0])
parse_depot_section
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f):\n depots = []\n for line in f:\n line = strip(line)\n if line == '-1' or line == 'EOF':\n break\n else:\n depots.append(line)\n if len(depots) != 1:\n raise ParseException('One and only one depot is supported')\n return int(depots[0])\n", "role": "user" }, { "content": "parse_depot_section", "role": "assistant" } ]
def x(f, current_section, nodes): section = {} dimensions = None if current_section == 'NODE_COORD_SECTION': dimensions = 3 elif current_section == 'DEMAND_SECTION': dimensions = 2 else: raise ParseException('Invalid section {}'.format(current_section)) n = 0 for line in f: line = strip(line) definitions = re.split('\\s*', line) if len(definitions) != dimensions: raise ParseException( 'Invalid dimensions from section {}. Expected: {}'.format( current_section, dimensions)) node = int(definitions[0]) values = [int(v) for v in definitions[1:]] if len(values) == 1: values = values[0] section[node] = values n = n + 1 if n == nodes: break if n != nodes: raise ParseException('Missing {} nodes definition from section {}'. format(nodes - n, current_section)) return section
parse_nodes_section
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, current_section, nodes):\n section = {}\n dimensions = None\n if current_section == 'NODE_COORD_SECTION':\n dimensions = 3\n elif current_section == 'DEMAND_SECTION':\n dimensions = 2\n else:\n raise ParseException('Invalid section {}'.format(current_section))\n n = 0\n for line in f:\n line = strip(line)\n definitions = re.split('\\\\s*', line)\n if len(definitions) != dimensions:\n raise ParseException(\n 'Invalid dimensions from section {}. Expected: {}'.format(\n current_section, dimensions))\n node = int(definitions[0])\n values = [int(v) for v in definitions[1:]]\n if len(values) == 1:\n values = values[0]\n section[node] = values\n n = n + 1\n if n == nodes:\n break\n if n != nodes:\n raise ParseException('Missing {} nodes definition from section {}'.\n format(nodes - n, current_section))\n return section\n", "role": "user" }, { "content": "parse_nodes_section", "role": "assistant" } ]
def x(f, nodes): matrix = [] n = 0 for line in f: line = strip(line) regex = re.compile('\\s+') row = regex.split(line) matrix.append(row) n = n + 1 if n == nodes: break if n != nodes: raise ParseException( 'Missing {} nodes definition from section EDGE_WEIGHT_SECTION'. format(nodes - n)) return matrix
parse_edge_weight
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, nodes):\n matrix = []\n n = 0\n for line in f:\n line = strip(line)\n regex = re.compile('\\\\s+')\n row = regex.split(line)\n matrix.append(row)\n n = n + 1\n if n == nodes:\n break\n if n != nodes:\n raise ParseException(\n 'Missing {} nodes definition from section EDGE_WEIGHT_SECTION'.\n format(nodes - n))\n return matrix\n", "role": "user" }, { "content": "parse_edge_weight", "role": "assistant" } ]
def x(a, b): x1, y1 = a x2, y2 = b return int(round(math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)))
calculate_euc_distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b):\n x1, y1 = a\n x2, y2 = b\n return int(round(math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)))\n", "role": "user" }, { "content": "calculate_euc_distance", "role": "assistant" } ]
def x(specs): integer_specs = ['DIMENSION', 'CAPACITY'] for s in integer_specs: specs[s] = int(specs[s])
post_process_specs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(specs):\n integer_specs = ['DIMENSION', 'CAPACITY']\n for s in integer_specs:\n specs[s] = int(specs[s])\n", "role": "user" }, { "content": "post_process_specs", "role": "assistant" } ]
def x(specs): distances = specs['NODE_COORD_SECTION'] specs['MATRIX'] = {} for i in distances: origin = tuple(distances[i]) specs['MATRIX'][i] = {} for j in specs['NODE_COORD_SECTION']: destination = tuple(distances[j]) distance = calculate_euc_distance(origin, destination) specs['MATRIX'][i][j] = distance
create_node_matrix_from_coord_section
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(specs):\n distances = specs['NODE_COORD_SECTION']\n specs['MATRIX'] = {}\n for i in distances:\n origin = tuple(distances[i])\n specs['MATRIX'][i] = {}\n for j in specs['NODE_COORD_SECTION']:\n destination = tuple(distances[j])\n distance = calculate_euc_distance(origin, destination)\n specs['MATRIX'][i][j] = distance\n", "role": "user" }, { "content": "create_node_matrix_from_coord_section", "role": "assistant" } ]
def x(specs): old_matrix = specs['EDGE_WEIGHT_SECTION'] nodes = specs['DIMENSION'] specs['MATRIX'] = {} for i in range(nodes): specs['MATRIX'][i + 1] = {} for j in range(nodes): if i > j: continue specs['MATRIX'][i + 1][j + 1] = int(old_matrix[i][j])
create_node_matrix_from_full_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(specs):\n old_matrix = specs['EDGE_WEIGHT_SECTION']\n nodes = specs['DIMENSION']\n specs['MATRIX'] = {}\n for i in range(nodes):\n specs['MATRIX'][i + 1] = {}\n for j in range(nodes):\n if i > j:\n continue\n specs['MATRIX'][i + 1][j + 1] = int(old_matrix[i][j])\n", "role": "user" }, { "content": "create_node_matrix_from_full_matrix", "role": "assistant" } ]
def x(f): line = '' specs = {} used_specs = ['NAME', 'COMMENT', 'DIMENSION', 'CAPACITY', 'TYPE', 'EDGE_WEIGHT_TYPE'] used_data = ['DEMAND_SECTION', 'DEPOT_SECTION'] for line in f: line = strip(line) s = None for s in used_specs: if line.startswith(s): specs[s] = line.split('{} :'.format(s))[-1].strip() break if s == 'EDGE_WEIGHT_TYPE' and s in specs and specs[s] == 'EXPLICIT': used_specs.append('EDGE_WEIGHT_FORMAT') if len(specs) == len(used_specs): break if len(specs) != len(used_specs): missing_specs = set(used_specs).symmetric_difference(set(specs)) raise ParseException('Error parsing TSPLIB data: specs {} missing'. format(missing_specs)) print(specs) if specs['EDGE_WEIGHT_TYPE'] == 'EUC_2D': used_data.append('NODE_COORD_SECTION') elif specs['EDGE_WEIGHT_FORMAT'] == 'FULL_MATRIX': used_data.append('EDGE_WEIGHT_SECTION') else: raise ParseException( 'EDGE_WEIGHT_TYPE or EDGE_WEIGHT_FORMAT not supported') _post_process_specs(specs) for line in f: line = strip(line) for d in used_data: if line.startswith(d): if d == 'DEPOT_SECTION': specs[d] = _parse_depot_section(f) elif d in ['NODE_COORD_SECTION', 'DEMAND_SECTION']: specs[d] = _parse_nodes_section(f, d, specs['DIMENSION']) elif d == 'EDGE_WEIGHT_SECTION': specs[d] = _parse_edge_weight(f, specs['DIMENSION']) if len(specs) == len(used_specs) + len(used_data): break if len(specs) != len(used_specs) + len(used_data): missing_specs = set(specs).symmetric_difference(set(used_specs). union(set(used_data))) raise ParseException('Error parsing TSPLIB data: specs {} missing'. format(missing_specs)) _post_process_data(specs) return specs
parse_tsplib
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f):\n line = ''\n specs = {}\n used_specs = ['NAME', 'COMMENT', 'DIMENSION', 'CAPACITY', 'TYPE',\n 'EDGE_WEIGHT_TYPE']\n used_data = ['DEMAND_SECTION', 'DEPOT_SECTION']\n for line in f:\n line = strip(line)\n s = None\n for s in used_specs:\n if line.startswith(s):\n specs[s] = line.split('{} :'.format(s))[-1].strip()\n break\n if s == 'EDGE_WEIGHT_TYPE' and s in specs and specs[s] == 'EXPLICIT':\n used_specs.append('EDGE_WEIGHT_FORMAT')\n if len(specs) == len(used_specs):\n break\n if len(specs) != len(used_specs):\n missing_specs = set(used_specs).symmetric_difference(set(specs))\n raise ParseException('Error parsing TSPLIB data: specs {} missing'.\n format(missing_specs))\n print(specs)\n if specs['EDGE_WEIGHT_TYPE'] == 'EUC_2D':\n used_data.append('NODE_COORD_SECTION')\n elif specs['EDGE_WEIGHT_FORMAT'] == 'FULL_MATRIX':\n used_data.append('EDGE_WEIGHT_SECTION')\n else:\n raise ParseException(\n 'EDGE_WEIGHT_TYPE or EDGE_WEIGHT_FORMAT not supported')\n _post_process_specs(specs)\n for line in f:\n line = strip(line)\n for d in used_data:\n if line.startswith(d):\n if d == 'DEPOT_SECTION':\n specs[d] = _parse_depot_section(f)\n elif d in ['NODE_COORD_SECTION', 'DEMAND_SECTION']:\n specs[d] = _parse_nodes_section(f, d, specs['DIMENSION'])\n elif d == 'EDGE_WEIGHT_SECTION':\n specs[d] = _parse_edge_weight(f, specs['DIMENSION'])\n if len(specs) == len(used_specs) + len(used_data):\n break\n if len(specs) != len(used_specs) + len(used_data):\n missing_specs = set(specs).symmetric_difference(set(used_specs).\n union(set(used_data)))\n raise ParseException('Error parsing TSPLIB data: specs {} missing'.\n format(missing_specs))\n _post_process_data(specs)\n return specs\n", "role": "user" }, { "content": "parse_tsplib", "role": "assistant" } ]
def x(filename): sanitized_filename = sanitize(filename) f = open(sanitized_filename) specs = None try: specs = _parse_tsplib(f) except ParseException: raise finally: f.close() if specs['TYPE'] != 'CVRP': raise Exception('Not a CVRP TSPLIB problem. Found: {}'.format(specs ['TYPE'])) specs['VOLTAGE'] = 20000 specs['CABLETYPE'] = 1 return Graph(specs)
read_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n sanitized_filename = sanitize(filename)\n f = open(sanitized_filename)\n specs = None\n try:\n specs = _parse_tsplib(f)\n except ParseException:\n raise\n finally:\n f.close()\n if specs['TYPE'] != 'CVRP':\n raise Exception('Not a CVRP TSPLIB problem. Found: {}'.format(specs\n ['TYPE']))\n specs['VOLTAGE'] = 20000\n specs['CABLETYPE'] = 1\n return Graph(specs)\n", "role": "user" }, { "content": "read_file", "role": "assistant" } ]
def x(self, circ_breaker): if circ_breaker not in self._circuit_breakers and isinstance(circ_breaker, CircuitBreakerDing0): self._circuit_breakers.append(circ_breaker) self.graph_add_node(circ_breaker)
add_circuit_breaker
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, circ_breaker):\n if circ_breaker not in self._circuit_breakers and isinstance(circ_breaker,\n CircuitBreakerDing0):\n self._circuit_breakers.append(circ_breaker)\n self.graph_add_node(circ_breaker)\n", "role": "user" }, { "content": "add_circuit_breaker", "role": "assistant" } ]
def x(self, mv_station, force=False): if not isinstance(mv_station, MVStationDing0): raise Exception('Given MV station is not a MVStationDing0 object.') if self._station is None: self._station = mv_station self.graph_add_node(mv_station) elif force: self._station = mv_station else: raise Exception( 'MV Station already set, use argument `force=True` to override.')
add_station
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mv_station, force=False):\n if not isinstance(mv_station, MVStationDing0):\n raise Exception('Given MV station is not a MVStationDing0 object.')\n if self._station is None:\n self._station = mv_station\n self.graph_add_node(mv_station)\n elif force:\n self._station = mv_station\n else:\n raise Exception(\n 'MV Station already set, use argument `force=True` to override.')\n", "role": "user" }, { "content": "add_station", "role": "assistant" } ]
def x(self, lv_load): if lv_load not in self._loads and isinstance(lv_load, MVLoadDing0): self._loads.append(lv_load) self.graph_add_node(lv_load)
add_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lv_load):\n if lv_load not in self._loads and isinstance(lv_load, MVLoadDing0):\n self._loads.append(lv_load)\n self.graph_add_node(lv_load)\n", "role": "user" }, { "content": "add_load", "role": "assistant" } ]
def x(self, cable_dist): if cable_dist not in self.cable_distributors() and isinstance(cable_dist, MVCableDistributorDing0): self._cable_distributors.append(cable_dist) self.graph_add_node(cable_dist)
add_cable_distributor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cable_dist):\n if cable_dist not in self.cable_distributors() and isinstance(cable_dist,\n MVCableDistributorDing0):\n self._cable_distributors.append(cable_dist)\n self.graph_add_node(cable_dist)\n", "role": "user" }, { "content": "add_cable_distributor", "role": "assistant" } ]
def x(self, cable_dist): if cable_dist in self.cable_distributors() and isinstance(cable_dist, MVCableDistributorDing0): self._cable_distributors.remove(cable_dist) if self._graph.has_node(cable_dist): self._graph.remove_node(cable_dist)
remove_cable_distributor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cable_dist):\n if cable_dist in self.cable_distributors() and isinstance(cable_dist,\n MVCableDistributorDing0):\n self._cable_distributors.remove(cable_dist)\n if self._graph.has_node(cable_dist):\n self._graph.remove_node(cable_dist)\n", "role": "user" }, { "content": "remove_cable_distributor", "role": "assistant" } ]
def x(self, ring): if ring not in self._rings and isinstance(ring, RingDing0): self._rings.append(ring)
add_ring
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ring):\n if ring not in self._rings and isinstance(ring, RingDing0):\n self._rings.append(ring)\n", "role": "user" }, { "content": "add_ring", "role": "assistant" } ]
def x(self, include_root_node=False, include_satellites=False): for circ_breaker in self.circuit_breakers(): if circ_breaker.status is 'open': circ_breaker.close() logger.info( 'Circuit breakers were closed in order to find MV rings') for ring in nx.cycle_basis(self._graph, root=self._station): if not include_root_node: ring.remove(self._station) if include_satellites: ring_nodes = ring satellites = [] for ring_node in ring: satellites.append(self.graph_nodes_from_subtree(ring_node, include_root_node=include_root_node)) yield ring + [_ for sublist in satellites for _ in sublist] else: yield ring
rings_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, include_root_node=False, include_satellites=False):\n for circ_breaker in self.circuit_breakers():\n if circ_breaker.status is 'open':\n circ_breaker.close()\n logger.info(\n 'Circuit breakers were closed in order to find MV rings')\n for ring in nx.cycle_basis(self._graph, root=self._station):\n if not include_root_node:\n ring.remove(self._station)\n if include_satellites:\n ring_nodes = ring\n satellites = []\n for ring_node in ring:\n satellites.append(self.graph_nodes_from_subtree(ring_node,\n include_root_node=include_root_node))\n yield ring + [_ for sublist in satellites for _ in sublist]\n else:\n yield ring\n", "role": "user" }, { "content": "rings_nodes", "role": "assistant" } ]
def x(self): for circ_breaker in self.circuit_breakers(): if not circ_breaker.status == 'closed': circ_breaker.close() logger.info( 'Circuit breakers were closed in order to find MV rings') for ring_nodes in nx.cycle_basis(self._graph, root=self._station): edges_ring = [] for node in ring_nodes: for edge in self.graph_branches_from_node(node): nodes_in_the_branch = self.graph_nodes_from_branch(edge[1][ 'branch']) if nodes_in_the_branch[0 ] in ring_nodes and nodes_in_the_branch[1] in ring_nodes: if not edge[1]['branch'] in edges_ring: edges_ring.append(edge[1]['branch']) yield edges_ring[0].ring, edges_ring, ring_nodes
rings_full_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for circ_breaker in self.circuit_breakers():\n if not circ_breaker.status == 'closed':\n circ_breaker.close()\n logger.info(\n 'Circuit breakers were closed in order to find MV rings')\n for ring_nodes in nx.cycle_basis(self._graph, root=self._station):\n edges_ring = []\n for node in ring_nodes:\n for edge in self.graph_branches_from_node(node):\n nodes_in_the_branch = self.graph_nodes_from_branch(edge[1][\n 'branch'])\n if nodes_in_the_branch[0\n ] in ring_nodes and nodes_in_the_branch[1] in ring_nodes:\n if not edge[1]['branch'] in edges_ring:\n edges_ring.append(edge[1]['branch'])\n yield edges_ring[0].ring, edges_ring, ring_nodes\n", "role": "user" }, { "content": "rings_full_data", "role": "assistant" } ]
def x(self, node_source, include_root_node=False): if node_source in self._graph.nodes(): node_ring = [] for ring in self.rings_nodes(include_root_node=include_root_node): if node_source in ring: node_ring = ring break nodes_subtree = set() if node_source in node_ring: for path in nx.shortest_path(self._graph, node_source).values(): if len(path) > 1: if path[1] not in node_ring and path[1 ] is not self.station(): nodes_subtree.update(path[1:len(path)]) else: raise ValueError(node_source, 'is not member of ring.') else: raise ValueError(node_source, 'is not member of graph.') return list(nodes_subtree)
graph_nodes_from_subtree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node_source, include_root_node=False):\n if node_source in self._graph.nodes():\n node_ring = []\n for ring in self.rings_nodes(include_root_node=include_root_node):\n if node_source in ring:\n node_ring = ring\n break\n nodes_subtree = set()\n if node_source in node_ring:\n for path in nx.shortest_path(self._graph, node_source).values():\n if len(path) > 1:\n if path[1] not in node_ring and path[1\n ] is not self.station():\n nodes_subtree.update(path[1:len(path)])\n else:\n raise ValueError(node_source, 'is not member of ring.')\n else:\n raise ValueError(node_source, 'is not member of graph.')\n return list(nodes_subtree)\n", "role": "user" }, { "content": "graph_nodes_from_subtree", "role": "assistant" } ]
def x(self): ctr = 1 for branch in self.graph_edges(): branch['branch'].id_db = self.grid_district.id_db * 10 ** 4 + ctr ctr += 1 for lv_load_area in self.grid_district.lv_load_areas(): for lv_grid_district in lv_load_area.lv_grid_districts(): ctr = 1 for branch in lv_grid_district.lv_grid.graph_edges(): branch['branch'].id_db = lv_grid_district.id_db * 10 ** 7 + ctr ctr += 1
set_branch_ids
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n ctr = 1\n for branch in self.graph_edges():\n branch['branch'].id_db = self.grid_district.id_db * 10 ** 4 + ctr\n ctr += 1\n for lv_load_area in self.grid_district.lv_load_areas():\n for lv_grid_district in lv_load_area.lv_grid_districts():\n ctr = 1\n for branch in lv_grid_district.lv_grid.graph_edges():\n branch['branch'].id_db = lv_grid_district.id_db * 10 ** 7 + ctr\n ctr += 1\n", "role": "user" }, { "content": "set_branch_ids", "role": "assistant" } ]
def x(self, debug=False, anim=None): self._graph = mv_routing.solve(graph=self._graph, debug=debug, anim=anim) logger.info('==> MV Routing for {} done'.format(repr(self))) self._graph = mv_connect.mv_connect_satellites(mv_grid=self, graph=self ._graph, mode='normal', debug=debug) logger.info('==> MV Sat1 for {} done'.format(repr(self))) self._graph = mv_connect.mv_connect_satellites(mv_grid=self, graph=self ._graph, mode='isolated', debug=debug) logger.info('==> MV Sat2 for {} done'.format(repr(self))) self._graph = mv_connect.mv_connect_stations(mv_grid_district=self. grid_district, graph=self._graph, debug=debug) logger.info('==> MV Stations for {} done'.format(repr(self)))
routing
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, debug=False, anim=None):\n self._graph = mv_routing.solve(graph=self._graph, debug=debug, anim=anim)\n logger.info('==> MV Routing for {} done'.format(repr(self)))\n self._graph = mv_connect.mv_connect_satellites(mv_grid=self, graph=self\n ._graph, mode='normal', debug=debug)\n logger.info('==> MV Sat1 for {} done'.format(repr(self)))\n self._graph = mv_connect.mv_connect_satellites(mv_grid=self, graph=self\n ._graph, mode='isolated', debug=debug)\n logger.info('==> MV Sat2 for {} done'.format(repr(self)))\n self._graph = mv_connect.mv_connect_stations(mv_grid_district=self.\n grid_district, graph=self._graph, debug=debug)\n logger.info('==> MV Stations for {} done'.format(repr(self)))\n", "role": "user" }, { "content": "routing", "role": "assistant" } ]
def x(self, debug=False): self._graph = mv_connect.mv_connect_generators(self.grid_district, self ._graph, debug)
connect_generators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, debug=False):\n self._graph = mv_connect.mv_connect_generators(self.grid_district, self\n ._graph, debug)\n", "role": "user" }, { "content": "connect_generators", "role": "assistant" } ]
def x(self, debug=False): self.set_voltage_level() self._station.set_operation_voltage_level() (self.default_branch_type, self.default_branch_type_aggregated, self. default_branch_type_settle) = self.set_default_branch_type(debug) self.default_branch_kind_aggregated = self.default_branch_kind self.default_branch_kind_settle = 'cable' self._station.select_transformers()
parametrize_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, debug=False):\n self.set_voltage_level()\n self._station.set_operation_voltage_level()\n (self.default_branch_type, self.default_branch_type_aggregated, self.\n default_branch_type_settle) = self.set_default_branch_type(debug)\n self.default_branch_kind_aggregated = self.default_branch_kind\n self.default_branch_kind_settle = 'cable'\n self._station.select_transformers()\n", "role": "user" }, { "content": "parametrize_grid", "role": "assistant" } ]
def x(self, mode='distance'): if mode == 'load_density': cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load') load_density_threshold = float(cfg_ding0.get('assumptions', 'load_density_threshold')) projection = partial(pyproj.transform, pyproj.Proj(init='epsg:4326' ), pyproj.Proj(init='epsg:3035')) kw2mw = 0.001 sqm2sqkm = 1000000.0 load_density = self.grid_district.peak_load * kw2mw / cos_phi_load / ( transform(projection, self.grid_district.geo_data).area / sqm2sqkm) if load_density < load_density_threshold: self.v_level = 20 elif load_density >= load_density_threshold: self.v_level = 10 else: raise ValueError('load_density is invalid!') elif mode == 'distance': voltage_per_km_threshold = float(cfg_ding0.get('assumptions', 'voltage_per_km_threshold')) dist_max = 0 import time start = time.time() for node in self.graph_nodes_sorted(): if isinstance(node, LVLoadAreaCentreDing0): dist_node = calc_geo_dist_vincenty(self.station(), node ) / 1000.0 if dist_node > dist_max: dist_max = dist_node if dist_max >= voltage_per_km_threshold: self.v_level = 20 else: self.v_level = 10 else: raise ValueError("parameter 'mode' is invalid!")
set_voltage_level
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode='distance'):\n if mode == 'load_density':\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n load_density_threshold = float(cfg_ding0.get('assumptions',\n 'load_density_threshold'))\n projection = partial(pyproj.transform, pyproj.Proj(init='epsg:4326'\n ), pyproj.Proj(init='epsg:3035'))\n kw2mw = 0.001\n sqm2sqkm = 1000000.0\n load_density = self.grid_district.peak_load * kw2mw / cos_phi_load / (\n transform(projection, self.grid_district.geo_data).area / sqm2sqkm)\n if load_density < load_density_threshold:\n self.v_level = 20\n elif load_density >= load_density_threshold:\n self.v_level = 10\n else:\n raise ValueError('load_density is invalid!')\n elif mode == 'distance':\n voltage_per_km_threshold = float(cfg_ding0.get('assumptions',\n 'voltage_per_km_threshold'))\n dist_max = 0\n import time\n start = time.time()\n for node in self.graph_nodes_sorted():\n if isinstance(node, LVLoadAreaCentreDing0):\n dist_node = calc_geo_dist_vincenty(self.station(), node\n ) / 1000.0\n if dist_node > dist_max:\n dist_max = dist_node\n if dist_max >= voltage_per_km_threshold:\n self.v_level = 20\n else:\n self.v_level = 10\n else:\n raise ValueError(\"parameter 'mode' is invalid!\")\n", "role": "user" }, { "content": "set_voltage_level", "role": "assistant" } ]
def x(self, debug=False): if self.v_level == 20: self.default_branch_kind = 'line' elif self.v_level == 10: self.default_branch_kind = 'cable' cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load') mv_half_ring_count_max = int(cfg_ding0.get( 'mv_routing_tech_constraints', 'mv_half_ring_count_max')) if self.default_branch_kind == 'line': load_factor_normal = float(cfg_ding0.get('assumptions', 'load_factor_mv_line_lc_normal')) branch_parameters = self.network.static_data['MV_overhead_lines'] branch_parameters_settle = self.network.static_data['MV_cables'] branch_parameters_settle = branch_parameters_settle[ branch_parameters_settle['U_n'] == self.v_level] elif self.default_branch_kind == 'cable': load_factor_normal = float(cfg_ding0.get('assumptions', 'load_factor_mv_cable_lc_normal')) branch_parameters = self.network.static_data['MV_cables'] else: raise ValueError( "Grid's default_branch_kind is invalid, could not set branch parameters." ) branch_parameters = branch_parameters[branch_parameters['U_n'] == self. v_level] branch_parameters = branch_parameters[branch_parameters[ 'reinforce_only'] == 0].sort_values('I_max_th') branch_type_max = branch_parameters.loc[branch_parameters['I_max_th']. idxmax()] self.set_nodes_aggregation_flag(branch_type_max['I_max_th'] * load_factor_normal) peak_current_sum = (self.grid_district.peak_load - self.grid_district. peak_load_satellites - self.grid_district.peak_load_aggregated ) / cos_phi_load / 3 ** 0.5 / self.v_level branch_type_settle = branch_type_settle_max = None for idx, row in branch_parameters.iterrows(): half_ring_count = round(peak_current_sum / (row['I_max_th'] * load_factor_normal)) if debug: logger.debug('=== Selection of default branch type in {} ==='. format(self)) logger.debug('Peak load= {} kVA'.format(self.grid_district. peak_load)) logger.debug('Peak current={}'.format(peak_current_sum)) logger.debug('I_max_th={}'.format(row['I_max_th'])) logger.debug('Half ring count={}'.format(half_ring_count)) if half_ring_count <= mv_half_ring_count_max: if self.default_branch_kind == 'line': branch_parameters_settle_filter = branch_parameters_settle[ branch_parameters_settle['I_max_th'] - row['I_max_th'] > 0] branch_type_settle = branch_parameters_settle_filter.loc[ branch_parameters_settle_filter['I_max_th'].idxmin()] return row, branch_type_max, branch_type_settle if debug: logger.debug( 'No appropriate line/cable type could be found for {}, declare some load areas as aggregated.' .format(self)) if self.default_branch_kind == 'line': branch_type_settle_max = branch_parameters_settle.loc[ branch_parameters_settle['I_max_th'].idxmax()] return branch_type_max, branch_type_max, branch_type_settle_max
set_default_branch_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, debug=False):\n if self.v_level == 20:\n self.default_branch_kind = 'line'\n elif self.v_level == 10:\n self.default_branch_kind = 'cable'\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n mv_half_ring_count_max = int(cfg_ding0.get(\n 'mv_routing_tech_constraints', 'mv_half_ring_count_max'))\n if self.default_branch_kind == 'line':\n load_factor_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_line_lc_normal'))\n branch_parameters = self.network.static_data['MV_overhead_lines']\n branch_parameters_settle = self.network.static_data['MV_cables']\n branch_parameters_settle = branch_parameters_settle[\n branch_parameters_settle['U_n'] == self.v_level]\n elif self.default_branch_kind == 'cable':\n load_factor_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_cable_lc_normal'))\n branch_parameters = self.network.static_data['MV_cables']\n else:\n raise ValueError(\n \"Grid's default_branch_kind is invalid, could not set branch parameters.\"\n )\n branch_parameters = branch_parameters[branch_parameters['U_n'] == self.\n v_level]\n branch_parameters = branch_parameters[branch_parameters[\n 'reinforce_only'] == 0].sort_values('I_max_th')\n branch_type_max = branch_parameters.loc[branch_parameters['I_max_th'].\n idxmax()]\n self.set_nodes_aggregation_flag(branch_type_max['I_max_th'] *\n load_factor_normal)\n peak_current_sum = (self.grid_district.peak_load - self.grid_district.\n peak_load_satellites - self.grid_district.peak_load_aggregated\n ) / cos_phi_load / 3 ** 0.5 / self.v_level\n branch_type_settle = branch_type_settle_max = None\n for idx, row in branch_parameters.iterrows():\n half_ring_count = round(peak_current_sum / (row['I_max_th'] *\n load_factor_normal))\n if debug:\n logger.debug('=== Selection of default branch type in {} ==='.\n format(self))\n logger.debug('Peak load= {} kVA'.format(self.grid_district.\n peak_load))\n logger.debug('Peak current={}'.format(peak_current_sum))\n logger.debug('I_max_th={}'.format(row['I_max_th']))\n logger.debug('Half ring count={}'.format(half_ring_count))\n if half_ring_count <= mv_half_ring_count_max:\n if self.default_branch_kind == 'line':\n branch_parameters_settle_filter = branch_parameters_settle[\n branch_parameters_settle['I_max_th'] - row['I_max_th'] > 0]\n branch_type_settle = branch_parameters_settle_filter.loc[\n branch_parameters_settle_filter['I_max_th'].idxmin()]\n return row, branch_type_max, branch_type_settle\n if debug:\n logger.debug(\n 'No appropriate line/cable type could be found for {}, declare some load areas as aggregated.'\n .format(self))\n if self.default_branch_kind == 'line':\n branch_type_settle_max = branch_parameters_settle.loc[\n branch_parameters_settle['I_max_th'].idxmax()]\n return branch_type_max, branch_type_max, branch_type_settle_max\n", "role": "user" }, { "content": "set_default_branch_type", "role": "assistant" } ]
def x(self, peak_current_branch_max): for lv_load_area in self.grid_district.lv_load_areas(): peak_current_node = lv_load_area.peak_load / 3 ** 0.5 / self.v_level if peak_current_node > peak_current_branch_max: lv_load_area.is_aggregated = True self.grid_district.add_aggregated_peak_demand()
set_nodes_aggregation_flag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, peak_current_branch_max):\n for lv_load_area in self.grid_district.lv_load_areas():\n peak_current_node = lv_load_area.peak_load / 3 ** 0.5 / self.v_level\n if peak_current_node > peak_current_branch_max:\n lv_load_area.is_aggregated = True\n self.grid_district.add_aggregated_peak_demand()\n", "role": "user" }, { "content": "set_nodes_aggregation_flag", "role": "assistant" } ]
def x(self, session, method='onthefly'): temp_id = 1 timesteps = 2 start_time = datetime(1970, 1, 1, 0, 0, 0) resolution = 'H' nodes = self._graph.nodes() edges = [edge for edge in list(self.graph_edges()) if (edge['adj_nodes' ][0] in nodes and not isinstance(edge['adj_nodes'][0], LVLoadAreaCentreDing0)) and (edge['adj_nodes'][1] in nodes and not isinstance(edge['adj_nodes'][1], LVLoadAreaCentreDing0))] if method == 'db': pypsa_io.export_nodes(self, session, nodes, temp_id, lv_transformer =False) pypsa_io.export_edges(self, session, edges) pypsa_io.create_temp_resolution_table(session, timesteps=timesteps, resolution=resolution, start_time=start_time) elif method == 'onthefly': nodes_dict, components_data = pypsa_io.nodes_to_dict_of_dataframes(self , nodes, lv_transformer=False) edges_dict = pypsa_io.edges_to_dict_of_dataframes(self, edges) components = tools.merge_two_dicts(nodes_dict, edges_dict) return components, components_data else: raise ValueError('Sorry, this export method does not exist!')
export_to_pypsa
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, session, method='onthefly'):\n temp_id = 1\n timesteps = 2\n start_time = datetime(1970, 1, 1, 0, 0, 0)\n resolution = 'H'\n nodes = self._graph.nodes()\n edges = [edge for edge in list(self.graph_edges()) if (edge['adj_nodes'\n ][0] in nodes and not isinstance(edge['adj_nodes'][0],\n LVLoadAreaCentreDing0)) and (edge['adj_nodes'][1] in nodes and not\n isinstance(edge['adj_nodes'][1], LVLoadAreaCentreDing0))]\n if method == 'db':\n pypsa_io.export_nodes(self, session, nodes, temp_id, lv_transformer\n =False)\n pypsa_io.export_edges(self, session, edges)\n pypsa_io.create_temp_resolution_table(session, timesteps=timesteps,\n resolution=resolution, start_time=start_time)\n elif method == 'onthefly':\n nodes_dict, components_data = pypsa_io.nodes_to_dict_of_dataframes(self\n , nodes, lv_transformer=False)\n edges_dict = pypsa_io.edges_to_dict_of_dataframes(self, edges)\n components = tools.merge_two_dicts(nodes_dict, edges_dict)\n return components, components_data\n else:\n raise ValueError('Sorry, this export method does not exist!')\n", "role": "user" }, { "content": "export_to_pypsa", "role": "assistant" } ]
def x(self, session, export_pypsa_dir=None, method='onthefly', debug=False): if method == 'db': raise NotImplementedError("Please use 'onthefly'.") elif method == 'onthefly': components, components_data = self.export_to_pypsa(session, method) pypsa_io.run_powerflow_onthefly(components, components_data, self, export_pypsa_dir=export_pypsa_dir, debug=debug)
run_powerflow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, session, export_pypsa_dir=None, method='onthefly', debug=False):\n if method == 'db':\n raise NotImplementedError(\"Please use 'onthefly'.\")\n elif method == 'onthefly':\n components, components_data = self.export_to_pypsa(session, method)\n pypsa_io.run_powerflow_onthefly(components, components_data, self,\n export_pypsa_dir=export_pypsa_dir, debug=debug)\n", "role": "user" }, { "content": "run_powerflow", "role": "assistant" } ]
def x(self, session): pypsa_io.import_pfa_bus_results(session, self) pypsa_io.import_pfa_line_results(session, self)
import_powerflow_results
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, session):\n pypsa_io.import_pfa_bus_results(session, self)\n pypsa_io.import_pfa_line_results(session, self)\n", "role": "user" }, { "content": "import_powerflow_results", "role": "assistant" } ]
def x(self, lv_station): if not isinstance(lv_station, LVStationDing0): raise Exception('Given LV station is not a LVStationDing0 object.') if self._station is None: self._station = lv_station self.graph_add_node(lv_station) self.grid_district.lv_load_area.mv_grid_district.mv_grid.graph_add_node( lv_station)
add_station
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lv_station):\n if not isinstance(lv_station, LVStationDing0):\n raise Exception('Given LV station is not a LVStationDing0 object.')\n if self._station is None:\n self._station = lv_station\n self.graph_add_node(lv_station)\n self.grid_district.lv_load_area.mv_grid_district.mv_grid.graph_add_node(\n lv_station)\n", "role": "user" }, { "content": "add_station", "role": "assistant" } ]
def x(self, sector='res'): for load in self._loads: if sector == 'res' and load.string_id is not None: yield load elif sector == 'ria' and load.string_id is None: yield load
loads_sector
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sector='res'):\n for load in self._loads:\n if sector == 'res' and load.string_id is not None:\n yield load\n elif sector == 'ria' and load.string_id is None:\n yield load\n", "role": "user" }, { "content": "loads_sector", "role": "assistant" } ]
def x(self, lv_load): if lv_load not in self._loads and isinstance(lv_load, LVLoadDing0): self._loads.append(lv_load) self.graph_add_node(lv_load)
add_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lv_load):\n if lv_load not in self._loads and isinstance(lv_load, LVLoadDing0):\n self._loads.append(lv_load)\n self.graph_add_node(lv_load)\n", "role": "user" }, { "content": "add_load", "role": "assistant" } ]
def x(self, lv_cable_dist): if lv_cable_dist not in self._cable_distributors and isinstance( lv_cable_dist, LVCableDistributorDing0): self._cable_distributors.append(lv_cable_dist) self.graph_add_node(lv_cable_dist)
add_cable_dist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lv_cable_dist):\n if lv_cable_dist not in self._cable_distributors and isinstance(\n lv_cable_dist, LVCableDistributorDing0):\n self._cable_distributors.append(lv_cable_dist)\n self.graph_add_node(lv_cable_dist)\n", "role": "user" }, { "content": "add_cable_dist", "role": "assistant" } ]
def x(self): build_grid.transformer(self) build_grid.build_ret_ind_agr_branches(self.grid_district) build_grid.build_residential_branches(self.grid_district)
build_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n build_grid.transformer(self)\n build_grid.build_ret_ind_agr_branches(self.grid_district)\n build_grid.build_residential_branches(self.grid_district)\n", "role": "user" }, { "content": "build_grid", "role": "assistant" } ]
def x(self, debug=False): self._graph = lv_connect.lv_connect_generators(self.grid_district, self ._graph, debug)
connect_generators
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, debug=False):\n self._graph = lv_connect.lv_connect_generators(self.grid_district, self\n ._graph, debug)\n", "role": "user" }, { "content": "connect_generators", "role": "assistant" } ]
def x(self): new_route = self.__class__(self._problem) for node in self.nodes(): new_node = node.__class__(node._name, node._demand) new_route.allocate([new_node]) return new_route
clone
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n new_route = self.__class__(self._problem)\n for node in self.nodes():\n new_node = node.__class__(node._name, node._demand)\n new_route.allocate([new_node])\n return new_route\n", "role": "user" }, { "content": "clone", "role": "assistant" } ]
def x(self): cost = 0 depot = self._problem.depot() last = depot for i in self._nodes: a, b = last, i if a.name() > b.name(): a, b = b, a cost = cost + self._problem.distance(a, b) last = i cost = cost + self._problem.distance(depot, last) return cost
length
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n cost = 0\n depot = self._problem.depot()\n last = depot\n for i in self._nodes:\n a, b = last, i\n if a.name() > b.name():\n a, b = b, a\n cost = cost + self._problem.distance(a, b)\n last = i\n cost = cost + self._problem.distance(depot, last)\n return cost\n", "role": "user" }, { "content": "length", "role": "assistant" } ]
def x(self, nodelist): cost = 0 for n1, n2 in zip(nodelist[0:len(nodelist) - 1], nodelist[1:len(nodelist)] ): cost += self._problem.distance(n1, n2) return cost
length_from_nodelist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nodelist):\n cost = 0\n for n1, n2 in zip(nodelist[0:len(nodelist) - 1], nodelist[1:len(nodelist)]\n ):\n cost += self._problem.distance(n1, n2)\n return cost\n", "role": "user" }, { "content": "length_from_nodelist", "role": "assistant" } ]
def x(self, nodes, pos=None): new_route = self.clone() new_nodes = [node.clone() for node in nodes] if pos is None: pos = len(self._nodes) new_route._nodes = new_route._nodes[:pos] + new_nodes + new_route._nodes[ pos:] new_route._demand = sum([node.demand() for node in new_route._nodes]) if new_route.tech_constraints_satisfied(): return True return False
can_allocate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nodes, pos=None):\n new_route = self.clone()\n new_nodes = [node.clone() for node in nodes]\n if pos is None:\n pos = len(self._nodes)\n new_route._nodes = new_route._nodes[:pos] + new_nodes + new_route._nodes[\n pos:]\n new_route._demand = sum([node.demand() for node in new_route._nodes])\n if new_route.tech_constraints_satisfied():\n return True\n return False\n", "role": "user" }, { "content": "can_allocate", "role": "assistant" } ]
def x(self, nodes, append=True): nodes_demand = 0 for node in [node for node in nodes]: if node._allocation: node._allocation.deallocate([node]) node._allocation = self nodes_demand = nodes_demand + node.demand() if append: self._nodes.append(node) else: self._nodes.insert(0, node) self._demand = self._demand + nodes_demand
allocate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nodes, append=True):\n nodes_demand = 0\n for node in [node for node in nodes]:\n if node._allocation:\n node._allocation.deallocate([node])\n node._allocation = self\n nodes_demand = nodes_demand + node.demand()\n if append:\n self._nodes.append(node)\n else:\n self._nodes.insert(0, node)\n self._demand = self._demand + nodes_demand\n", "role": "user" }, { "content": "allocate", "role": "assistant" } ]
def x(self, nodes): nodes_demand = 0 for node in nodes: self._nodes.remove(node) node._allocation = None nodes_demand = nodes_demand + node.demand() self._demand = self._demand - nodes_demand if self._demand < 0: raise Exception('Trying to deallocate more than previously allocated')
deallocate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nodes):\n nodes_demand = 0\n for node in nodes:\n self._nodes.remove(node)\n node._allocation = None\n nodes_demand = nodes_demand + node.demand()\n self._demand = self._demand - nodes_demand\n if self._demand < 0:\n raise Exception('Trying to deallocate more than previously allocated')\n", "role": "user" }, { "content": "deallocate", "role": "assistant" } ]
def x(self, nodes, pos): node_list = [] nodes_demand = 0 for node in [node for node in nodes]: if node._allocation: node._allocation.deallocate([node]) node_list.append(node) node._allocation = self nodes_demand = nodes_demand + node.demand() self._nodes = self._nodes[:pos] + node_list + self._nodes[pos:] self._demand += nodes_demand
insert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nodes, pos):\n node_list = []\n nodes_demand = 0\n for node in [node for node in nodes]:\n if node._allocation:\n node._allocation.deallocate([node])\n node_list.append(node)\n node._allocation = self\n nodes_demand = nodes_demand + node.demand()\n self._nodes = self._nodes[:pos] + node_list + self._nodes[pos:]\n self._demand += nodes_demand\n", "role": "user" }, { "content": "insert", "role": "assistant" } ]
def x(self, node): return self._nodes.index(node) != 0 and self._nodes.index(node) != len(self ._nodes) - 1
is_interior
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node):\n return self._nodes.index(node) != 0 and self._nodes.index(node) != len(self\n ._nodes) - 1\n", "role": "user" }, { "content": "is_interior", "role": "assistant" } ]
def x(self, node): return self._nodes.index(node) == len(self._nodes) - 1
last
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node):\n return self._nodes.index(node) == len(self._nodes) - 1\n", "role": "user" }, { "content": "last", "role": "assistant" } ]
def x(self, debug=False): demand_diff_min = 10000000.0 for ctr in range(len(self._nodes)): route_demand_part1 = sum([node.demand() for node in self._nodes[0:ctr]] ) route_demand_part2 = sum([node.demand() for node in self._nodes[ctr :len(self._nodes)]]) demand_diff = abs(route_demand_part1 - route_demand_part2) if demand_diff < demand_diff_min: demand_diff_min = demand_diff position = ctr if debug: logger.debug('sum 1={}'.format(sum([node.demand() for node in self. _nodes[0:position]]))) logger.debug('sum 2={}'.format(sum([node.demand() for node in self. _nodes[position:len(self._nodes)]]))) logger.debug('Position of circuit breaker: {0}-{1} (sumdiff={2})'. format(self._nodes[position - 1], self._nodes[position], demand_diff_min)) return position
calc_circuit_breaker_position
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, debug=False):\n demand_diff_min = 10000000.0\n for ctr in range(len(self._nodes)):\n route_demand_part1 = sum([node.demand() for node in self._nodes[0:ctr]]\n )\n route_demand_part2 = sum([node.demand() for node in self._nodes[ctr\n :len(self._nodes)]])\n demand_diff = abs(route_demand_part1 - route_demand_part2)\n if demand_diff < demand_diff_min:\n demand_diff_min = demand_diff\n position = ctr\n if debug:\n logger.debug('sum 1={}'.format(sum([node.demand() for node in self.\n _nodes[0:position]])))\n logger.debug('sum 2={}'.format(sum([node.demand() for node in self.\n _nodes[position:len(self._nodes)]])))\n logger.debug('Position of circuit breaker: {0}-{1} (sumdiff={2})'.\n format(self._nodes[position - 1], self._nodes[position],\n demand_diff_min))\n return position\n", "role": "user" }, { "content": "calc_circuit_breaker_position", "role": "assistant" } ]
def x(self): new_node = self.__class__(self._name, self._demand) return new_node
clone
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n new_node = self.__class__(self._name, self._demand)\n return new_node\n", "role": "user" }, { "content": "clone", "role": "assistant" } ]
def x(self): for i in sorted(self._matrix.keys(), key=lambda x: x.name()): for j in sorted(self._matrix[i].keys(), key=lambda x: x.name()): if i != j: yield i, j
edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for i in sorted(self._matrix.keys(), key=lambda x: x.name()):\n for j in sorted(self._matrix[i].keys(), key=lambda x: x.name()):\n if i != j:\n yield i, j\n", "role": "user" }, { "content": "edges", "role": "assistant" } ]
def x(self, i, j): a, b = i, j if a.name() > b.name(): a, b = b, a return self._matrix[self._nodes[a.name()]][self._nodes[b.name()]]
distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i, j):\n a, b = i, j\n if a.name() > b.name():\n a, b = b, a\n return self._matrix[self._nodes[a.name()]][self._nodes[b.name()]]\n", "role": "user" }, { "content": "distance", "role": "assistant" } ]
def x(grid, s_max=None): load_factor_lv_trans_lc_normal = cfg_ding0.get('assumptions', 'load_factor_lv_trans_lc_normal') load_factor_lv_trans_fc_normal = cfg_ding0.get('assumptions', 'load_factor_lv_trans_fc_normal') cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load') cos_phi_gen = cfg_ding0.get('assumptions', 'cos_phi_gen') trafo_parameters = grid.network.static_data['LV_trafos'] if s_max is None: s_max_load = grid.grid_district.peak_load / cos_phi_load s_max_gen = grid.station().peak_generation / cos_phi_gen if s_max_load > s_max_gen: load_factor_lv_trans = load_factor_lv_trans_lc_normal s_max = s_max_load else: load_factor_lv_trans = load_factor_lv_trans_fc_normal s_max = s_max_gen else: if s_max['case'] == 'load': load_factor_lv_trans = load_factor_lv_trans_lc_normal elif s_max['case'] == 'gen': load_factor_lv_trans = load_factor_lv_trans_fc_normal else: logger.error("No proper 'case' provided for argument s_max") raise ValueError( "Please provide proper 'case' for argument `s_max`.") s_max = s_max['s_max'] transformer_max = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmax()] if s_max < transformer_max['S_nom'] * load_factor_lv_trans: transformer = trafo_parameters.iloc[trafo_parameters[ trafo_parameters['S_nom'] * load_factor_lv_trans > s_max][ 'S_nom'].idxmin()] transformer_cnt = 1 else: transformer_cnt = 2 while not any(trafo_parameters['S_nom'] * load_factor_lv_trans > s_max / transformer_cnt): transformer_cnt += 1 transformer = trafo_parameters.iloc[trafo_parameters[ trafo_parameters['S_nom'] * load_factor_lv_trans > s_max / transformer_cnt]['S_nom'].idxmin()] return transformer, transformer_cnt
select_transformers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, s_max=None):\n load_factor_lv_trans_lc_normal = cfg_ding0.get('assumptions',\n 'load_factor_lv_trans_lc_normal')\n load_factor_lv_trans_fc_normal = cfg_ding0.get('assumptions',\n 'load_factor_lv_trans_fc_normal')\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n cos_phi_gen = cfg_ding0.get('assumptions', 'cos_phi_gen')\n trafo_parameters = grid.network.static_data['LV_trafos']\n if s_max is None:\n s_max_load = grid.grid_district.peak_load / cos_phi_load\n s_max_gen = grid.station().peak_generation / cos_phi_gen\n if s_max_load > s_max_gen:\n load_factor_lv_trans = load_factor_lv_trans_lc_normal\n s_max = s_max_load\n else:\n load_factor_lv_trans = load_factor_lv_trans_fc_normal\n s_max = s_max_gen\n else:\n if s_max['case'] == 'load':\n load_factor_lv_trans = load_factor_lv_trans_lc_normal\n elif s_max['case'] == 'gen':\n load_factor_lv_trans = load_factor_lv_trans_fc_normal\n else:\n logger.error(\"No proper 'case' provided for argument s_max\")\n raise ValueError(\n \"Please provide proper 'case' for argument `s_max`.\")\n s_max = s_max['s_max']\n transformer_max = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmax()]\n if s_max < transformer_max['S_nom'] * load_factor_lv_trans:\n transformer = trafo_parameters.iloc[trafo_parameters[\n trafo_parameters['S_nom'] * load_factor_lv_trans > s_max][\n 'S_nom'].idxmin()]\n transformer_cnt = 1\n else:\n transformer_cnt = 2\n while not any(trafo_parameters['S_nom'] * load_factor_lv_trans > \n s_max / transformer_cnt):\n transformer_cnt += 1\n transformer = trafo_parameters.iloc[trafo_parameters[\n trafo_parameters['S_nom'] * load_factor_lv_trans > s_max /\n transformer_cnt]['S_nom'].idxmin()]\n return transformer, transformer_cnt\n", "role": "user" }, { "content": "select_transformers", "role": "assistant" } ]
def x(grid): transformer, transformer_cnt = select_transformers(grid) for t in range(0, transformer_cnt): lv_transformer = TransformerDing0(grid=grid, id_db=id, v_level=0.4, s_max_longterm=transformer['S_nom'], r=transformer['R'], x= transformer['X']) grid._station.add_transformer(lv_transformer)
transformer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid):\n transformer, transformer_cnt = select_transformers(grid)\n for t in range(0, transformer_cnt):\n lv_transformer = TransformerDing0(grid=grid, id_db=id, v_level=0.4,\n s_max_longterm=transformer['S_nom'], r=transformer['R'], x=\n transformer['X'])\n grid._station.add_transformer(lv_transformer)\n", "role": "user" }, { "content": "transformer", "role": "assistant" } ]
def x(lvgd, sector): cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal') cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load') max_lv_branch_line_load = cfg_ding0.get('assumptions', 'max_lv_branch_line' ) if sector == 'retail/industrial': max_branch_length = cfg_ding0.get('assumptions', 'branch_line_length_retail_industrial') peak_load = lvgd.peak_load_retail + lvgd.peak_load_industrial count_sector_areas = (lvgd.sector_count_retail + lvgd. sector_count_industrial) elif sector == 'agricultural': max_branch_length = cfg_ding0.get('assumptions', 'branch_line_length_agricultural') peak_load = lvgd.peak_load_agricultural count_sector_areas = lvgd.sector_count_agricultural else: raise ValueError('Sector {} does not exist!'.format(sector)) single_peak_load = peak_load / count_sector_areas while single_peak_load > max_lv_branch_line_load * (cable_lf * cos_phi_load ): single_peak_load = single_peak_load / 2 count_sector_areas = count_sector_areas * 2 grid_model = {} if 0 < single_peak_load: grid_model['max_loads_per_branch'] = math.floor( max_lv_branch_line_load * (cable_lf * cos_phi_load) / single_peak_load) grid_model['single_peak_load'] = single_peak_load grid_model['full_branches'] = math.floor(count_sector_areas / grid_model['max_loads_per_branch']) grid_model['remaining_loads'] = count_sector_areas - grid_model[ 'full_branches'] * grid_model['max_loads_per_branch'] grid_model['load_distance'] = max_branch_length / (grid_model[ 'max_loads_per_branch'] + 1) grid_model['load_distance_remaining'] = max_branch_length / (grid_model ['remaining_loads'] + 1) elif count_sector_areas > 0: logger.warning( 'LVGD {lvgd} has in sector {sector} no load but area countis {count}. This is maybe related to #153' .format(lvgd=lvgd, sector=sector, count=count_sector_areas)) grid_model = None if sector == 'retail/industrial': grid_model['consumption'] = {'retail': lvgd. sector_consumption_retail / (grid_model['full_branches'] * grid_model['max_loads_per_branch'] + grid_model[ 'remaining_loads']), 'industrial': lvgd. sector_consumption_industrial / (grid_model['full_branches'] * grid_model['max_loads_per_branch'] + grid_model['remaining_loads']) } elif sector == 'agricultural': grid_model['consumption'] = {'agricultural': lvgd. sector_consumption_agricultural / (grid_model['full_branches'] * grid_model['max_loads_per_branch'] + grid_model['remaining_loads']) } return grid_model
select_grid_model_ria
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lvgd, sector):\n cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal')\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n max_lv_branch_line_load = cfg_ding0.get('assumptions', 'max_lv_branch_line'\n )\n if sector == 'retail/industrial':\n max_branch_length = cfg_ding0.get('assumptions',\n 'branch_line_length_retail_industrial')\n peak_load = lvgd.peak_load_retail + lvgd.peak_load_industrial\n count_sector_areas = (lvgd.sector_count_retail + lvgd.\n sector_count_industrial)\n elif sector == 'agricultural':\n max_branch_length = cfg_ding0.get('assumptions',\n 'branch_line_length_agricultural')\n peak_load = lvgd.peak_load_agricultural\n count_sector_areas = lvgd.sector_count_agricultural\n else:\n raise ValueError('Sector {} does not exist!'.format(sector))\n single_peak_load = peak_load / count_sector_areas\n while single_peak_load > max_lv_branch_line_load * (cable_lf * cos_phi_load\n ):\n single_peak_load = single_peak_load / 2\n count_sector_areas = count_sector_areas * 2\n grid_model = {}\n if 0 < single_peak_load:\n grid_model['max_loads_per_branch'] = math.floor(\n max_lv_branch_line_load * (cable_lf * cos_phi_load) /\n single_peak_load)\n grid_model['single_peak_load'] = single_peak_load\n grid_model['full_branches'] = math.floor(count_sector_areas /\n grid_model['max_loads_per_branch'])\n grid_model['remaining_loads'] = count_sector_areas - grid_model[\n 'full_branches'] * grid_model['max_loads_per_branch']\n grid_model['load_distance'] = max_branch_length / (grid_model[\n 'max_loads_per_branch'] + 1)\n grid_model['load_distance_remaining'] = max_branch_length / (grid_model\n ['remaining_loads'] + 1)\n elif count_sector_areas > 0:\n logger.warning(\n 'LVGD {lvgd} has in sector {sector} no load but area countis {count}. This is maybe related to #153'\n .format(lvgd=lvgd, sector=sector, count=count_sector_areas))\n grid_model = None\n if sector == 'retail/industrial':\n grid_model['consumption'] = {'retail': lvgd.\n sector_consumption_retail / (grid_model['full_branches'] *\n grid_model['max_loads_per_branch'] + grid_model[\n 'remaining_loads']), 'industrial': lvgd.\n sector_consumption_industrial / (grid_model['full_branches'] *\n grid_model['max_loads_per_branch'] + grid_model['remaining_loads'])\n }\n elif sector == 'agricultural':\n grid_model['consumption'] = {'agricultural': lvgd.\n sector_consumption_agricultural / (grid_model['full_branches'] *\n grid_model['max_loads_per_branch'] + grid_model['remaining_loads'])\n }\n return grid_model\n", "role": "user" }, { "content": "select_grid_model_ria", "role": "assistant" } ]
def x(lvgd): model_params_ria = {} if (lvgd.sector_count_retail + lvgd.sector_count_industrial > 0 or lvgd .peak_load_retail + lvgd.peak_load_industrial > 0): model_params_ria['retail/industrial'] = select_grid_model_ria(lvgd, 'retail/industrial') else: model_params_ria['retail/industrial'] = None if lvgd.sector_count_agricultural > 0 or lvgd.peak_load_agricultural > 0: model_params_ria['agricultural'] = select_grid_model_ria(lvgd, 'agricultural') else: model_params_ria['agricultural'] = None return model_params_ria
grid_model_params_ria
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lvgd):\n model_params_ria = {}\n if (lvgd.sector_count_retail + lvgd.sector_count_industrial > 0 or lvgd\n .peak_load_retail + lvgd.peak_load_industrial > 0):\n model_params_ria['retail/industrial'] = select_grid_model_ria(lvgd,\n 'retail/industrial')\n else:\n model_params_ria['retail/industrial'] = None\n if lvgd.sector_count_agricultural > 0 or lvgd.peak_load_agricultural > 0:\n model_params_ria['agricultural'] = select_grid_model_ria(lvgd,\n 'agricultural')\n else:\n model_params_ria['agricultural'] = None\n return model_params_ria\n", "role": "user" }, { "content": "grid_model_params_ria", "role": "assistant" } ]
def x(lvgd, grid_model_params): def x(): I_max_load = val['single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load suitable_cables_stub = lvgd.lv_grid.network.static_data['LV_cables'][ lvgd.lv_grid.network.static_data['LV_cables']['I_max_th'] * cable_lf > I_max_load] cable_type_stub = suitable_cables_stub.loc[suitable_cables_stub[ 'I_max_th'].idxmin(), :] lv_cable_dist = LVCableDistributorDing0(grid=lvgd.lv_grid, branch_no=branch_no, load_no=load_no) lvgd.lv_grid.add_cable_dist(lv_cable_dist) lv_cable_dist_building = LVCableDistributorDing0(grid=lvgd.lv_grid, branch_no=branch_no, load_no=load_no, in_building=True) lvgd.lv_grid.add_cable_dist(lv_cable_dist_building) lv_load = LVLoadDing0(grid=lvgd.lv_grid, branch_no=branch_no, load_no=load_no, peak_load=val['single_peak_load'], consumption =val['consumption']) lvgd.lv_grid.add_load(lv_load) if load_no == 1: lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.station(), lv_cable_dist, branch=BranchDing0(length=val[ 'load_distance'], kind='cable', type=cable_type, id_db= 'branch_{sector}{branch}_{load}'.format(branch=branch_no, load=load_no, sector=sector_short))) else: lvgd.lv_grid._graph.add_edge(lvgd.lv_grid._cable_distributors[- 4], lv_cable_dist, branch=BranchDing0(length=val[ 'load_distance'], kind='cable', type=cable_type, id_db= 'branch_{sector}{branch}_{load}'.format(branch=branch_no, load=load_no, sector=sector_short))) lvgd.lv_grid._graph.add_edge(lv_cable_dist, lv_cable_dist_building, branch=BranchDing0(length=cfg_ding0.get('assumptions', 'lv_ria_branch_connection_distance'), kind='cable', type= cable_type_stub, id_db='stub_{sector}{branch}_{load}'.format( branch=branch_no, load=load_no, sector=sector_short))) lvgd.lv_grid._graph.add_edge(lv_cable_dist_building, lv_load, branch=BranchDing0(length=1, kind='cable', type=cable_type_stub, id_db='stub_{sector}{branch}_{load}'.format(branch=branch_no, load=load_no, sector=sector_short))) cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal') cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load') for sector, val in grid_model_params.items(): if sector == 'retail/industrial': sector_short = 'RETIND' elif sector == 'agricultural': sector_short = 'AGR' else: sector_short = '' if val is not None: for branch_no in list(range(1, val['full_branches'] + 1)): I_max_branch = val['max_loads_per_branch'] * val[ 'single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load suitable_cables = lvgd.lv_grid.network.static_data['LV_cables' ][lvgd.lv_grid.network.static_data['LV_cables'][ 'I_max_th'] * cable_lf > I_max_branch] cable_type = suitable_cables.loc[suitable_cables['I_max_th' ].idxmin(), :] for load_no in list(range(1, val['max_loads_per_branch'] + 1)): lv_graph_attach_branch() if val['remaining_loads'] > 0: if 'branch_no' not in locals(): branch_no = 0 I_max_branch = val['max_loads_per_branch'] * val[ 'single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load suitable_cables = lvgd.lv_grid.network.static_data['LV_cables' ][lvgd.lv_grid.network.static_data['LV_cables'][ 'I_max_th'] * cable_lf > I_max_branch] cable_type = suitable_cables.loc[suitable_cables['I_max_th' ].idxmin(), :] branch_no += 1 for load_no in list(range(1, val['remaining_loads'] + 1)): lv_graph_attach_branch()
build_lv_graph_ria
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lvgd, grid_model_params):\n\n def x():\n I_max_load = val['single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load\n suitable_cables_stub = lvgd.lv_grid.network.static_data['LV_cables'][\n lvgd.lv_grid.network.static_data['LV_cables']['I_max_th'] *\n cable_lf > I_max_load]\n cable_type_stub = suitable_cables_stub.loc[suitable_cables_stub[\n 'I_max_th'].idxmin(), :]\n lv_cable_dist = LVCableDistributorDing0(grid=lvgd.lv_grid,\n branch_no=branch_no, load_no=load_no)\n lvgd.lv_grid.add_cable_dist(lv_cable_dist)\n lv_cable_dist_building = LVCableDistributorDing0(grid=lvgd.lv_grid,\n branch_no=branch_no, load_no=load_no, in_building=True)\n lvgd.lv_grid.add_cable_dist(lv_cable_dist_building)\n lv_load = LVLoadDing0(grid=lvgd.lv_grid, branch_no=branch_no,\n load_no=load_no, peak_load=val['single_peak_load'], consumption\n =val['consumption'])\n lvgd.lv_grid.add_load(lv_load)\n if load_no == 1:\n lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.station(),\n lv_cable_dist, branch=BranchDing0(length=val[\n 'load_distance'], kind='cable', type=cable_type, id_db=\n 'branch_{sector}{branch}_{load}'.format(branch=branch_no,\n load=load_no, sector=sector_short)))\n else:\n lvgd.lv_grid._graph.add_edge(lvgd.lv_grid._cable_distributors[-\n 4], lv_cable_dist, branch=BranchDing0(length=val[\n 'load_distance'], kind='cable', type=cable_type, id_db=\n 'branch_{sector}{branch}_{load}'.format(branch=branch_no,\n load=load_no, sector=sector_short)))\n lvgd.lv_grid._graph.add_edge(lv_cable_dist, lv_cable_dist_building,\n branch=BranchDing0(length=cfg_ding0.get('assumptions',\n 'lv_ria_branch_connection_distance'), kind='cable', type=\n cable_type_stub, id_db='stub_{sector}{branch}_{load}'.format(\n branch=branch_no, load=load_no, sector=sector_short)))\n lvgd.lv_grid._graph.add_edge(lv_cable_dist_building, lv_load,\n branch=BranchDing0(length=1, kind='cable', type=cable_type_stub,\n id_db='stub_{sector}{branch}_{load}'.format(branch=branch_no,\n load=load_no, sector=sector_short)))\n cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal')\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n for sector, val in grid_model_params.items():\n if sector == 'retail/industrial':\n sector_short = 'RETIND'\n elif sector == 'agricultural':\n sector_short = 'AGR'\n else:\n sector_short = ''\n if val is not None:\n for branch_no in list(range(1, val['full_branches'] + 1)):\n I_max_branch = val['max_loads_per_branch'] * val[\n 'single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load\n suitable_cables = lvgd.lv_grid.network.static_data['LV_cables'\n ][lvgd.lv_grid.network.static_data['LV_cables'][\n 'I_max_th'] * cable_lf > I_max_branch]\n cable_type = suitable_cables.loc[suitable_cables['I_max_th'\n ].idxmin(), :]\n for load_no in list(range(1, val['max_loads_per_branch'] + 1)):\n lv_graph_attach_branch()\n if val['remaining_loads'] > 0:\n if 'branch_no' not in locals():\n branch_no = 0\n I_max_branch = val['max_loads_per_branch'] * val[\n 'single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load\n suitable_cables = lvgd.lv_grid.network.static_data['LV_cables'\n ][lvgd.lv_grid.network.static_data['LV_cables'][\n 'I_max_th'] * cable_lf > I_max_branch]\n cable_type = suitable_cables.loc[suitable_cables['I_max_th'\n ].idxmin(), :]\n branch_no += 1\n for load_no in list(range(1, val['remaining_loads'] + 1)):\n lv_graph_attach_branch()\n", "role": "user" }, { "content": "build_lv_graph_ria", "role": "assistant" } ]
def x(lvgd): string_properties = lvgd.lv_grid.network.static_data[ 'LV_model_grids_strings'] apartment_string = lvgd.lv_grid.network.static_data[ 'LV_model_grids_strings_per_grid'] apartment_house_branch_ratio = cfg_ding0.get('assumptions', 'apartment_house_branch_ratio') population_per_apartment = cfg_ding0.get('assumptions', 'population_per_apartment') apartments = round(lvgd.population / population_per_apartment) if apartments > 196: apartments = 196 strings = apartment_string.loc[apartments] selected_strings = [int(s) for s in strings[strings >= 1].index.tolist()] selected_strings_df = string_properties.loc[selected_strings] occurence_selector = [str(i) for i in selected_strings] selected_strings_df['occurence'] = strings.loc[occurence_selector].tolist() return selected_strings_df
select_grid_model_residential
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lvgd):\n string_properties = lvgd.lv_grid.network.static_data[\n 'LV_model_grids_strings']\n apartment_string = lvgd.lv_grid.network.static_data[\n 'LV_model_grids_strings_per_grid']\n apartment_house_branch_ratio = cfg_ding0.get('assumptions',\n 'apartment_house_branch_ratio')\n population_per_apartment = cfg_ding0.get('assumptions',\n 'population_per_apartment')\n apartments = round(lvgd.population / population_per_apartment)\n if apartments > 196:\n apartments = 196\n strings = apartment_string.loc[apartments]\n selected_strings = [int(s) for s in strings[strings >= 1].index.tolist()]\n selected_strings_df = string_properties.loc[selected_strings]\n occurence_selector = [str(i) for i in selected_strings]\n selected_strings_df['occurence'] = strings.loc[occurence_selector].tolist()\n return selected_strings_df\n", "role": "user" }, { "content": "select_grid_model_residential", "role": "assistant" } ]
def x(lvgd, selected_string_df): houses_connected = (selected_string_df['occurence'] * selected_string_df['count house branch']).sum() average_load = lvgd.peak_load_residential / houses_connected average_consumption = (lvgd.sector_consumption_residential / houses_connected) hh_branch = 0 for i, row in selected_string_df.iterrows(): branch_count_sum = len(list(lvgd.lv_grid._graph.neighbors(lvgd. lv_grid.station()))) for branch_no in range(1, int(row['occurence']) + 1): hh_branch += 1 for house_branch in range(1, row['count house branch'] + 1): if house_branch % 2 == 0: variant = 'B' else: variant = 'A' lv_cable_dist = LVCableDistributorDing0(grid=lvgd.lv_grid, string_id=i, branch_no=branch_no + branch_count_sum, load_no=house_branch) lvgd.lv_grid.add_cable_dist(lv_cable_dist) lv_cable_dist_building = LVCableDistributorDing0(grid=lvgd. lv_grid, string_id=i, branch_no=branch_no + branch_count_sum, load_no=house_branch, in_building=True) lvgd.lv_grid.add_cable_dist(lv_cable_dist_building) lv_load = LVLoadDing0(grid=lvgd.lv_grid, string_id=i, branch_no=branch_no + branch_count_sum, load_no= house_branch, peak_load=average_load, consumption={ 'residential': average_consumption}) lvgd.lv_grid.add_load(lv_load) cable_name = row['cable type'] + ' 4x1x{}'.format(row[ 'cable width']) cable_type = lvgd.lv_grid.network.static_data['LV_cables'].loc[ cable_name] if house_branch == 1: lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.station(), lv_cable_dist, branch=BranchDing0(length=row[ 'distance house branch'], kind='cable', type= cable_type, id_db='branch_{sector}{branch}_{load}'. format(branch=hh_branch, load=house_branch, sector= 'HH'))) else: lvgd.lv_grid._graph.add_edge(lvgd.lv_grid. _cable_distributors[-4], lv_cable_dist, branch= BranchDing0(length=row['distance house branch'], kind='cable', type=lvgd.lv_grid.network.static_data ['LV_cables'].loc[cable_name], id_db= 'branch_{sector}{branch}_{load}'.format(branch= hh_branch, load=house_branch, sector='HH'))) house_cable_name = row['cable type {}'.format(variant) ] + ' 4x1x{}'.format(row['cable width {}'.format(variant)]) lvgd.lv_grid._graph.add_edge(lv_cable_dist, lv_cable_dist_building, branch=BranchDing0(length=row[ 'length house branch {}'.format(variant)], kind='cable', type=lvgd.lv_grid.network.static_data['LV_cables'].loc[ house_cable_name], id_db= 'branch_{sector}{branch}_{load}'.format(branch= hh_branch, load=house_branch, sector='HH'))) lvgd.lv_grid._graph.add_edge(lv_cable_dist_building, lv_load, branch=BranchDing0(length=1, kind='cable', type=lvgd.lv_grid.network.static_data['LV_cables'].loc[ house_cable_name], id_db= 'branch_{sector}{branch}_{load}'.format(branch= hh_branch, load=house_branch, sector='HH')))
build_lv_graph_residential
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lvgd, selected_string_df):\n houses_connected = (selected_string_df['occurence'] *\n selected_string_df['count house branch']).sum()\n average_load = lvgd.peak_load_residential / houses_connected\n average_consumption = (lvgd.sector_consumption_residential /\n houses_connected)\n hh_branch = 0\n for i, row in selected_string_df.iterrows():\n branch_count_sum = len(list(lvgd.lv_grid._graph.neighbors(lvgd.\n lv_grid.station())))\n for branch_no in range(1, int(row['occurence']) + 1):\n hh_branch += 1\n for house_branch in range(1, row['count house branch'] + 1):\n if house_branch % 2 == 0:\n variant = 'B'\n else:\n variant = 'A'\n lv_cable_dist = LVCableDistributorDing0(grid=lvgd.lv_grid,\n string_id=i, branch_no=branch_no + branch_count_sum,\n load_no=house_branch)\n lvgd.lv_grid.add_cable_dist(lv_cable_dist)\n lv_cable_dist_building = LVCableDistributorDing0(grid=lvgd.\n lv_grid, string_id=i, branch_no=branch_no +\n branch_count_sum, load_no=house_branch, in_building=True)\n lvgd.lv_grid.add_cable_dist(lv_cable_dist_building)\n lv_load = LVLoadDing0(grid=lvgd.lv_grid, string_id=i,\n branch_no=branch_no + branch_count_sum, load_no=\n house_branch, peak_load=average_load, consumption={\n 'residential': average_consumption})\n lvgd.lv_grid.add_load(lv_load)\n cable_name = row['cable type'] + ' 4x1x{}'.format(row[\n 'cable width'])\n cable_type = lvgd.lv_grid.network.static_data['LV_cables'].loc[\n cable_name]\n if house_branch == 1:\n lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.station(),\n lv_cable_dist, branch=BranchDing0(length=row[\n 'distance house branch'], kind='cable', type=\n cable_type, id_db='branch_{sector}{branch}_{load}'.\n format(branch=hh_branch, load=house_branch, sector=\n 'HH')))\n else:\n lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.\n _cable_distributors[-4], lv_cable_dist, branch=\n BranchDing0(length=row['distance house branch'],\n kind='cable', type=lvgd.lv_grid.network.static_data\n ['LV_cables'].loc[cable_name], id_db=\n 'branch_{sector}{branch}_{load}'.format(branch=\n hh_branch, load=house_branch, sector='HH')))\n house_cable_name = row['cable type {}'.format(variant)\n ] + ' 4x1x{}'.format(row['cable width {}'.format(variant)])\n lvgd.lv_grid._graph.add_edge(lv_cable_dist,\n lv_cable_dist_building, branch=BranchDing0(length=row[\n 'length house branch {}'.format(variant)], kind='cable',\n type=lvgd.lv_grid.network.static_data['LV_cables'].loc[\n house_cable_name], id_db=\n 'branch_{sector}{branch}_{load}'.format(branch=\n hh_branch, load=house_branch, sector='HH')))\n lvgd.lv_grid._graph.add_edge(lv_cable_dist_building,\n lv_load, branch=BranchDing0(length=1, kind='cable',\n type=lvgd.lv_grid.network.static_data['LV_cables'].loc[\n house_cable_name], id_db=\n 'branch_{sector}{branch}_{load}'.format(branch=\n hh_branch, load=house_branch, sector='HH')))\n", "role": "user" }, { "content": "build_lv_graph_residential", "role": "assistant" } ]
def x(lvgd): if lvgd.population > 0 and lvgd.peak_load_residential > 0: model_grid = select_grid_model_residential(lvgd) build_lv_graph_residential(lvgd, model_grid) elif lvgd.population > 0 and lvgd.peak_load_residential == 0: logger.warning( '{} has population but no residential load. No grid is created.' .format(repr(lvgd))) elif lvgd.population == 0 and lvgd.peak_load_residential > 0: logger.warning( '{} has no population but residential load. No grid is created and thus this load is missing in overall balance!' .format(repr(lvgd))) else: logger.info('{} has got no residential load. No grid is created.'. format(repr(lvgd)))
build_residential_branches
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lvgd):\n if lvgd.population > 0 and lvgd.peak_load_residential > 0:\n model_grid = select_grid_model_residential(lvgd)\n build_lv_graph_residential(lvgd, model_grid)\n elif lvgd.population > 0 and lvgd.peak_load_residential == 0:\n logger.warning(\n '{} has population but no residential load. No grid is created.'\n .format(repr(lvgd)))\n elif lvgd.population == 0 and lvgd.peak_load_residential > 0:\n logger.warning(\n '{} has no population but residential load. No grid is created and thus this load is missing in overall balance!'\n .format(repr(lvgd)))\n else:\n logger.info('{} has got no residential load. No grid is created.'.\n format(repr(lvgd)))\n", "role": "user" }, { "content": "build_residential_branches", "role": "assistant" } ]
def x(nd): lv_stats = {} for la in nd._mv_grid_districts[0].lv_load_areas(): for lvgd in la.lv_grid_districts(): station_neighbors = list(lvgd.lv_grid._graph[lvgd.lv_grid. _station].keys()) station_generators = [x for x in station_neighbors if x in lvgd .lv_grid.generators()] lv_stats[repr(lvgd.lv_grid._station)] = station_generators return lv_stats
lv_grid_generators_bus_bar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nd):\n lv_stats = {}\n for la in nd._mv_grid_districts[0].lv_load_areas():\n for lvgd in la.lv_grid_districts():\n station_neighbors = list(lvgd.lv_grid._graph[lvgd.lv_grid.\n _station].keys())\n station_generators = [x for x in station_neighbors if x in lvgd\n .lv_grid.generators()]\n lv_stats[repr(lvgd.lv_grid._station)] = station_generators\n return lv_stats\n", "role": "user" }, { "content": "lv_grid_generators_bus_bar", "role": "assistant" } ]
def x(nd, path='', filename=None): abs_path = os.path.abspath(path) if len(nd._mv_grid_districts) > 1: name_extension = '_{number}-{number2}'.format(number=nd. _mv_grid_districts[0].id_db, number2=nd._mv_grid_districts[-1]. id_db) else: name_extension = '_{number}'.format(number=nd._mv_grid_districts[0] .id_db) if filename is None: filename = 'ding0_grids_{ext}.pkl'.format(ext=name_extension) del nd._orm pickle.dump(nd, open(os.path.join(abs_path, filename), 'wb'))
save_nd_to_pickle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nd, path='', filename=None):\n abs_path = os.path.abspath(path)\n if len(nd._mv_grid_districts) > 1:\n name_extension = '_{number}-{number2}'.format(number=nd.\n _mv_grid_districts[0].id_db, number2=nd._mv_grid_districts[-1].\n id_db)\n else:\n name_extension = '_{number}'.format(number=nd._mv_grid_districts[0]\n .id_db)\n if filename is None:\n filename = 'ding0_grids_{ext}.pkl'.format(ext=name_extension)\n del nd._orm\n pickle.dump(nd, open(os.path.join(abs_path, filename), 'wb'))\n", "role": "user" }, { "content": "save_nd_to_pickle", "role": "assistant" } ]
def x(filename=None, path=''): abs_path = os.path.abspath(path) if filename is None: raise NotImplementedError return pickle.load(open(os.path.join(abs_path, filename), 'rb'))
load_nd_from_pickle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename=None, path=''):\n abs_path = os.path.abspath(path)\n if filename is None:\n raise NotImplementedError\n return pickle.load(open(os.path.join(abs_path, filename), 'rb'))\n", "role": "user" }, { "content": "load_nd_from_pickle", "role": "assistant" } ]
def x(stats, plotpath): f, axarr = plt.subplots(2, 2, sharex=True) stats.hist(column=['Length of MV overhead lines'], bins=5, alpha=0.5, ax=axarr[0, 0]) stats.hist(column=['Length of MV underground cables'], bins=5, alpha= 0.5, ax=axarr[0, 1]) stats.hist(column=['Length of LV overhead lines'], bins=5, alpha=0.5, ax=axarr[1, 0]) stats.hist(column=['Length of LV underground cables'], bins=5, alpha= 0.5, ax=axarr[1, 1]) plt.savefig(os.path.join(plotpath, 'Histogram_cable_line_length.pdf'))
plot_cable_length
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stats, plotpath):\n f, axarr = plt.subplots(2, 2, sharex=True)\n stats.hist(column=['Length of MV overhead lines'], bins=5, alpha=0.5,\n ax=axarr[0, 0])\n stats.hist(column=['Length of MV underground cables'], bins=5, alpha=\n 0.5, ax=axarr[0, 1])\n stats.hist(column=['Length of LV overhead lines'], bins=5, alpha=0.5,\n ax=axarr[1, 0])\n stats.hist(column=['Length of LV underground cables'], bins=5, alpha=\n 0.5, ax=axarr[1, 1])\n plt.savefig(os.path.join(plotpath, 'Histogram_cable_line_length.pdf'))\n", "role": "user" }, { "content": "plot_cable_length", "role": "assistant" } ]
def x(stats, plotpath): sns.set_context('paper', font_scale=1.1) sns.set_style('ticks') gen_cap_indexes = ['Gen. Cap. of MV at v_level 4', 'Gen. Cap. of MV at v_level 5', 'Gen. Cap. of LV at v_level 6', 'Gen. Cap. of LV at v_level 7'] peak_load_index = ['LA Total LV Peak Load total'] stats['generation_capacity'] = stats[gen_cap_indexes].sum(axis=1) / 1000.0 stats['peak_load'] = stats[peak_load_index] / 1000.0 sns.lmplot('generation_capacity', 'peak_load', data=stats, fit_reg= False, scatter_kws={'marker': 'D', 's': 100}, aspect=2) plt.title('Peak load vs. generation capacity') plt.xlabel('Generation capacity in MW') plt.ylabel('Peak load in MW') plt.savefig(os.path.join(plotpath, 'Scatter_generation_load.pdf'))
plot_generation_over_load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stats, plotpath):\n sns.set_context('paper', font_scale=1.1)\n sns.set_style('ticks')\n gen_cap_indexes = ['Gen. Cap. of MV at v_level 4',\n 'Gen. Cap. of MV at v_level 5', 'Gen. Cap. of LV at v_level 6',\n 'Gen. Cap. of LV at v_level 7']\n peak_load_index = ['LA Total LV Peak Load total']\n stats['generation_capacity'] = stats[gen_cap_indexes].sum(axis=1) / 1000.0\n stats['peak_load'] = stats[peak_load_index] / 1000.0\n sns.lmplot('generation_capacity', 'peak_load', data=stats, fit_reg=\n False, scatter_kws={'marker': 'D', 's': 100}, aspect=2)\n plt.title('Peak load vs. generation capacity')\n plt.xlabel('Generation capacity in MW')\n plt.ylabel('Peak load in MW')\n plt.savefig(os.path.join(plotpath, 'Scatter_generation_load.pdf'))\n", "role": "user" }, { "content": "plot_generation_over_load", "role": "assistant" } ]
def x(self, mv_grid_districts): pickle_name = cfg_ding0.get('output', 'nd_pickle') for mvgd in mv_grid_districts[1:]: filename = os.path.join(self.base_path, 'results', pickle_name. format(mvgd)) if os.path.isfile(filename): mvgd_pickle = pickle.load(open(filename, 'rb')) if mvgd_pickle._mv_grid_districts: mvgd.add_mv_grid_district(mvgd_pickle._mv_grid_districts[0]) pickle.dump(mvgd, open(os.path.join(self.base_path, 'results', 'ding0_grids_{0}-{1}.pkl'.format(mv_grid_districts[0], mv_grid_districts[-1])), 'wb')) nodes, edges = mvgd.to_dataframe() nodes.to_csv(os.path.join(self.base_path, 'results', 'mvgd_nodes_stats_{0}-{1}.csv'.format(mv_grid_districts[0], mv_grid_districts[-1])), index=False) edges.to_csv(os.path.join(self.base_path, 'results', 'mvgd_edges_stats_{0}-{1}.csv'.format(mv_grid_districts[0], mv_grid_districts[-1])), index=False)
concat_nd_pickles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mv_grid_districts):\n pickle_name = cfg_ding0.get('output', 'nd_pickle')\n for mvgd in mv_grid_districts[1:]:\n filename = os.path.join(self.base_path, 'results', pickle_name.\n format(mvgd))\n if os.path.isfile(filename):\n mvgd_pickle = pickle.load(open(filename, 'rb'))\n if mvgd_pickle._mv_grid_districts:\n mvgd.add_mv_grid_district(mvgd_pickle._mv_grid_districts[0])\n pickle.dump(mvgd, open(os.path.join(self.base_path, 'results',\n 'ding0_grids_{0}-{1}.pkl'.format(mv_grid_districts[0],\n mv_grid_districts[-1])), 'wb'))\n nodes, edges = mvgd.to_dataframe()\n nodes.to_csv(os.path.join(self.base_path, 'results',\n 'mvgd_nodes_stats_{0}-{1}.csv'.format(mv_grid_districts[0],\n mv_grid_districts[-1])), index=False)\n edges.to_csv(os.path.join(self.base_path, 'results',\n 'mvgd_edges_stats_{0}-{1}.csv'.format(mv_grid_districts[0],\n mv_grid_districts[-1])), index=False)\n", "role": "user" }, { "content": "concat_nd_pickles", "role": "assistant" } ]
def x(nw): nw.control_circuit_breakers(mode='close') nodes_idx = 0 nodes_dict = {} branches_idx = 0 branches_dict = {} for district in nw.mv_grid_districts(): for node in district.mv_grid.graph_nodes_sorted(): nodes_idx += 1 if hasattr(node, 'voltage_res'): Vres0 = node.voltage_res[0] Vres1 = node.voltage_res[1] else: Vres0 = 'Not available' Vres1 = 'Not available' nodes_dict[nodes_idx] = {'MV_grid_id': district.mv_grid.id_db, 'node id': node.__repr__(), 'V_res_0': Vres0, 'V_res_1': Vres1, 'V nominal': district.mv_grid.v_level} for branch in district.mv_grid.graph_edges(): branches_idx += 1 if hasattr(branch['branch'], 's_res'): s_res0 = branch['branch'].s_res[0] s_res1 = branch['branch'].s_res[1] else: s_res0 = 'Not available' s_res1 = 'Not available' branches_dict[branches_idx] = {'MV_grid_id': district.mv_grid. id_db, 'branch id': branch['branch'].__repr__(), 's_res_0': s_res0, 's_res_1': s_res1} nodes_df = pd.DataFrame.from_dict(nodes_dict, orient='index') branches_df = pd.DataFrame.from_dict(branches_dict, orient='index') if not nodes_df.empty: nodes_df = nodes_df.set_index('node id') nodes_df = nodes_df.fillna(0) nodes_df = nodes_df[sorted(nodes_df.columns.tolist())] nodes_df.sort_index(inplace=True) if not branches_df.empty: branches_df = branches_df.set_index('branch id') branches_df = branches_df.fillna(0) branches_df = branches_df[sorted(branches_df.columns.tolist())] branches_df.sort_index(inplace=True) return nodes_df, branches_df
calculate_mvgd_voltage_current_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nw):\n nw.control_circuit_breakers(mode='close')\n nodes_idx = 0\n nodes_dict = {}\n branches_idx = 0\n branches_dict = {}\n for district in nw.mv_grid_districts():\n for node in district.mv_grid.graph_nodes_sorted():\n nodes_idx += 1\n if hasattr(node, 'voltage_res'):\n Vres0 = node.voltage_res[0]\n Vres1 = node.voltage_res[1]\n else:\n Vres0 = 'Not available'\n Vres1 = 'Not available'\n nodes_dict[nodes_idx] = {'MV_grid_id': district.mv_grid.id_db,\n 'node id': node.__repr__(), 'V_res_0': Vres0, 'V_res_1':\n Vres1, 'V nominal': district.mv_grid.v_level}\n for branch in district.mv_grid.graph_edges():\n branches_idx += 1\n if hasattr(branch['branch'], 's_res'):\n s_res0 = branch['branch'].s_res[0]\n s_res1 = branch['branch'].s_res[1]\n else:\n s_res0 = 'Not available'\n s_res1 = 'Not available'\n branches_dict[branches_idx] = {'MV_grid_id': district.mv_grid.\n id_db, 'branch id': branch['branch'].__repr__(), 's_res_0':\n s_res0, 's_res_1': s_res1}\n nodes_df = pd.DataFrame.from_dict(nodes_dict, orient='index')\n branches_df = pd.DataFrame.from_dict(branches_dict, orient='index')\n if not nodes_df.empty:\n nodes_df = nodes_df.set_index('node id')\n nodes_df = nodes_df.fillna(0)\n nodes_df = nodes_df[sorted(nodes_df.columns.tolist())]\n nodes_df.sort_index(inplace=True)\n if not branches_df.empty:\n branches_df = branches_df.set_index('branch id')\n branches_df = branches_df.fillna(0)\n branches_df = branches_df[sorted(branches_df.columns.tolist())]\n branches_df.sort_index(inplace=True)\n return nodes_df, branches_df\n", "role": "user" }, { "content": "calculate_mvgd_voltage_current_stats", "role": "assistant" } ]
def x(nw): nw.control_circuit_breakers(mode='close') nodes_idx = 0 nodes_dict = {} branches_idx = 0 branches_dict = {} for mv_district in nw.mv_grid_districts(): for LA in mv_district.lv_load_areas(): if not LA.is_aggregated: for lv_district in LA.lv_grid_districts(): crit_nodes = get_critical_voltage_at_nodes(lv_district. lv_grid) for node in crit_nodes: nodes_idx += 1 nodes_dict[nodes_idx] = {'MV_grid_id': mv_district. mv_grid.id_db, 'LV_grid_id': lv_district. lv_grid.id_db, 'LA_id': LA.id_db, 'node id': node['node'].__repr__(), 'v_diff_0': node[ 'v_diff'][0], 'v_diff_1': node['v_diff'][1], 's_max_0': 'NA', 's_max_1': 'NA', 'V nominal': lv_district.lv_grid.v_level} critical_branches, critical_stations = ( get_critical_line_loading(lv_district.lv_grid)) for branch in critical_branches: branches_idx += 1 branches_dict[branches_idx] = {'MV_grid_id': mv_district.mv_grid.id_db, 'LV_grid_id': lv_district.lv_grid.id_db, 'LA_id': LA.id_db, 'branch id': branch['branch'].__repr__(), 's_max_0': branch['s_max'][0], 's_max_1': branch['s_max'][1]} for node in critical_stations: nodes_idx += 1 nodes_dict[nodes_idx] = {'MV_grid_id': mv_district. mv_grid.id_db, 'LV_grid_id': lv_district. lv_grid.id_db, 'LA_id': LA.id_db, 'node id': node['station'].__repr__(), 's_max_0': node[ 's_max'][0], 's_max_1': node['s_max'][1], 'v_diff_0': 'NA', 'v_diff_1': 'NA'} nodes_df = pd.DataFrame.from_dict(nodes_dict, orient='index') branches_df = pd.DataFrame.from_dict(branches_dict, orient='index') if not nodes_df.empty: nodes_df = nodes_df.set_index('node id') nodes_df = nodes_df.fillna(0) nodes_df = nodes_df[sorted(nodes_df.columns.tolist())] nodes_df.sort_index(inplace=True) if not branches_df.empty: branches_df = branches_df.set_index('branch id') branches_df = branches_df.fillna(0) branches_df = branches_df[sorted(branches_df.columns.tolist())] branches_df.sort_index(inplace=True) return nodes_df, branches_df
calculate_lvgd_voltage_current_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nw):\n nw.control_circuit_breakers(mode='close')\n nodes_idx = 0\n nodes_dict = {}\n branches_idx = 0\n branches_dict = {}\n for mv_district in nw.mv_grid_districts():\n for LA in mv_district.lv_load_areas():\n if not LA.is_aggregated:\n for lv_district in LA.lv_grid_districts():\n crit_nodes = get_critical_voltage_at_nodes(lv_district.\n lv_grid)\n for node in crit_nodes:\n nodes_idx += 1\n nodes_dict[nodes_idx] = {'MV_grid_id': mv_district.\n mv_grid.id_db, 'LV_grid_id': lv_district.\n lv_grid.id_db, 'LA_id': LA.id_db, 'node id':\n node['node'].__repr__(), 'v_diff_0': node[\n 'v_diff'][0], 'v_diff_1': node['v_diff'][1],\n 's_max_0': 'NA', 's_max_1': 'NA', 'V nominal':\n lv_district.lv_grid.v_level}\n critical_branches, critical_stations = (\n get_critical_line_loading(lv_district.lv_grid))\n for branch in critical_branches:\n branches_idx += 1\n branches_dict[branches_idx] = {'MV_grid_id':\n mv_district.mv_grid.id_db, 'LV_grid_id':\n lv_district.lv_grid.id_db, 'LA_id': LA.id_db,\n 'branch id': branch['branch'].__repr__(),\n 's_max_0': branch['s_max'][0], 's_max_1':\n branch['s_max'][1]}\n for node in critical_stations:\n nodes_idx += 1\n nodes_dict[nodes_idx] = {'MV_grid_id': mv_district.\n mv_grid.id_db, 'LV_grid_id': lv_district.\n lv_grid.id_db, 'LA_id': LA.id_db, 'node id':\n node['station'].__repr__(), 's_max_0': node[\n 's_max'][0], 's_max_1': node['s_max'][1],\n 'v_diff_0': 'NA', 'v_diff_1': 'NA'}\n nodes_df = pd.DataFrame.from_dict(nodes_dict, orient='index')\n branches_df = pd.DataFrame.from_dict(branches_dict, orient='index')\n if not nodes_df.empty:\n nodes_df = nodes_df.set_index('node id')\n nodes_df = nodes_df.fillna(0)\n nodes_df = nodes_df[sorted(nodes_df.columns.tolist())]\n nodes_df.sort_index(inplace=True)\n if not branches_df.empty:\n branches_df = branches_df.set_index('branch id')\n branches_df = branches_df.fillna(0)\n branches_df = branches_df[sorted(branches_df.columns.tolist())]\n branches_df.sort_index(inplace=True)\n return nodes_df, branches_df\n", "role": "user" }, { "content": "calculate_lvgd_voltage_current_stats", "role": "assistant" } ]
def x(mv_grid_districts=[3545], filename='ding0_tests_grids_1.pkl'): print('\n########################################') print(' Running ding0 for district', mv_grid_districts) engine = db.connection(section='oedb') session = sessionmaker(bind=engine)() nd = NetworkDing0(name='network') nd.run_ding0(session=session, mv_grid_districts_no=mv_grid_districts) if filename: print('\n########################################') print(' Saving result in ', filename) save_nd_to_pickle(nd, filename=filename) print('\n########################################') return nd
init_mv_grid
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mv_grid_districts=[3545], filename='ding0_tests_grids_1.pkl'):\n print('\\n########################################')\n print(' Running ding0 for district', mv_grid_districts)\n engine = db.connection(section='oedb')\n session = sessionmaker(bind=engine)()\n nd = NetworkDing0(name='network')\n nd.run_ding0(session=session, mv_grid_districts_no=mv_grid_districts)\n if filename:\n print('\\n########################################')\n print(' Saving result in ', filename)\n save_nd_to_pickle(nd, filename=filename)\n print('\\n########################################')\n return nd\n", "role": "user" }, { "content": "init_mv_grid", "role": "assistant" } ]
def x(mv_districts, n_of_districts, source, mode, critical, filename, output): if mode == 'MV': calc_mv = True calc_lv = False elif mode == 'LV': calc_mv = False calc_lv = True else: calc_mv = True calc_lv = True clusters = [mv_districts[x:x + n_of_districts] for x in range(0, len( mv_districts), n_of_districts)] mv_stats = [] lv_stats = [] mv_crit_nodes = [] mv_crit_edges = [] lv_crit_nodes = [] lv_crit_edges = [] for cl in clusters: nw_name = filename + str(cl[0]) if not cl[0] == cl[-1]: nw_name = nw_name + '_to_' + str(cl[-1]) nw = NetworkDing0(name=nw_name) if source == 'pkl': print('\n########################################') print(' Reading data from pickle district', cl) print('########################################') try: nw = load_nd_from_pickle(nw_name + '.pkl') except Exception: continue else: engine = db.connection(section='oedb') session = sessionmaker(bind=engine)() print('\n########################################') print(' Running ding0 for district', cl) print('########################################') try: nw.run_ding0(session=session, mv_grid_districts_no=cl) try: save_nd_to_pickle(nw, filename=nw_name + '.pkl') except Exception: continue except Exception: continue if calc_mv: stats = calculate_mvgd_stats(nw) mv_stats.append(stats) if calc_lv: stats = calculate_lvgd_stats(nw) lv_stats.append(stats) if critical and calc_mv: stats = calculate_mvgd_voltage_current_stats(nw) mv_crit_nodes.append(stats[0]) mv_crit_edges.append(stats[1]) if critical and calc_lv: stats = calculate_lvgd_voltage_current_stats(nw) lv_crit_nodes.append(stats[0]) lv_crit_edges.append(stats[1]) salida = (mv_stats, lv_stats, mv_crit_nodes, mv_crit_edges, lv_crit_nodes, lv_crit_edges) output.put(salida)
process_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mv_districts, n_of_districts, source, mode, critical, filename, output):\n if mode == 'MV':\n calc_mv = True\n calc_lv = False\n elif mode == 'LV':\n calc_mv = False\n calc_lv = True\n else:\n calc_mv = True\n calc_lv = True\n clusters = [mv_districts[x:x + n_of_districts] for x in range(0, len(\n mv_districts), n_of_districts)]\n mv_stats = []\n lv_stats = []\n mv_crit_nodes = []\n mv_crit_edges = []\n lv_crit_nodes = []\n lv_crit_edges = []\n for cl in clusters:\n nw_name = filename + str(cl[0])\n if not cl[0] == cl[-1]:\n nw_name = nw_name + '_to_' + str(cl[-1])\n nw = NetworkDing0(name=nw_name)\n if source == 'pkl':\n print('\\n########################################')\n print(' Reading data from pickle district', cl)\n print('########################################')\n try:\n nw = load_nd_from_pickle(nw_name + '.pkl')\n except Exception:\n continue\n else:\n engine = db.connection(section='oedb')\n session = sessionmaker(bind=engine)()\n print('\\n########################################')\n print(' Running ding0 for district', cl)\n print('########################################')\n try:\n nw.run_ding0(session=session, mv_grid_districts_no=cl)\n try:\n save_nd_to_pickle(nw, filename=nw_name + '.pkl')\n except Exception:\n continue\n except Exception:\n continue\n if calc_mv:\n stats = calculate_mvgd_stats(nw)\n mv_stats.append(stats)\n if calc_lv:\n stats = calculate_lvgd_stats(nw)\n lv_stats.append(stats)\n if critical and calc_mv:\n stats = calculate_mvgd_voltage_current_stats(nw)\n mv_crit_nodes.append(stats[0])\n mv_crit_edges.append(stats[1])\n if critical and calc_lv:\n stats = calculate_lvgd_voltage_current_stats(nw)\n lv_crit_nodes.append(stats[0])\n lv_crit_edges.append(stats[1])\n salida = (mv_stats, lv_stats, mv_crit_nodes, mv_crit_edges,\n lv_crit_nodes, lv_crit_edges)\n output.put(salida)\n", "role": "user" }, { "content": "process_stats", "role": "assistant" } ]
def x(districts_list, n_of_processes, n_of_districts=1, source='pkl', mode= '', critical=False, save_csv=False, save_path=''): start = time.time() nw_name = os.path.join(save_path, 'ding0_grids__') output_stats = mp.Queue() max_dist = len(districts_list) threat_long = floor(max_dist / n_of_processes) if threat_long == 0: threat_long = 1 threats = [districts_list[x:x + threat_long] for x in range(0, len( districts_list), threat_long)] processes = [] for districts in threats: args = (districts, n_of_districts, source, mode, critical, nw_name, output_stats) processes.append(mp.Process(target=process_stats, args=args)) for p in processes: p.start() output = [output_stats.get() for p in processes] for p in processes: p.join() if save_csv: nw_name = nw_name + str(districts_list[0]) if not districts_list[0] == districts_list[-1]: nw_name = nw_name + '_to_' + str(districts_list[-1]) try: mv_stats = pd.concat([df for p in range(0, len(processes)) for df in output[p][0]], axis=0) except: mv_stats = pd.DataFrame.from_dict({}) try: lv_stats = pd.concat([df for p in range(0, len(processes)) for df in output[p][1]], axis=0) except: lv_stats = pd.DataFrame.from_dict({}) try: mv_crit_nodes = pd.concat([df for p in range(0, len(processes)) for df in output[p][2]], axis=0) except: mv_crit_nodes = pd.DataFrame.from_dict({}) try: mv_crit_edges = pd.concat([df for p in range(0, len(processes)) for df in output[p][3]], axis=0) except: mv_crit_edges = pd.DataFrame.from_dict({}) try: lv_crit_nodes = pd.concat([df for p in range(0, len(processes)) for df in output[p][4]], axis=0) except: lv_crit_nodes = pd.DataFrame.from_dict({}) try: lv_crit_edges = pd.concat([df for p in range(0, len(processes)) for df in output[p][5]], axis=0) except: lv_crit_edges = pd.DataFrame.from_dict({}) if not mv_stats.empty: mv_stats = mv_stats.fillna(0) mv_stats = mv_stats[sorted(mv_stats.columns.tolist())] mv_stats.sort_index(inplace=True) if save_csv: mv_stats.to_csv(nw_name + '_mv_stats.csv') if not lv_stats.empty: lv_stats = lv_stats.fillna(0) lv_stats = lv_stats[sorted(lv_stats.columns.tolist())] lv_stats.sort_index(inplace=True) if save_csv: lv_stats.to_csv(nw_name + '_lv_stats.csv') if not mv_crit_nodes.empty: mv_crit_nodes = mv_crit_nodes.fillna(0) mv_crit_nodes = mv_crit_nodes[sorted(mv_crit_nodes.columns.tolist())] mv_crit_nodes.sort_index(inplace=True) if save_csv: mv_crit_nodes.to_csv(nw_name + '_mv_crit_nodes.csv') if not mv_crit_edges.empty: mv_crit_edges = mv_crit_edges.fillna(0) mv_crit_edges = mv_crit_edges[sorted(mv_crit_edges.columns.tolist())] mv_crit_edges.sort_index(inplace=True) if save_csv: mv_crit_edges.to_csv(nw_name + '_mv_crit_edges.csv') if not lv_crit_nodes.empty: lv_crit_nodes = lv_crit_nodes.fillna(0) lv_crit_nodes = lv_crit_nodes[sorted(lv_crit_nodes.columns.tolist())] lv_crit_nodes.sort_index(inplace=True) if save_csv: lv_crit_nodes.to_csv(nw_name + '_lv_crit_nodes.csv') if not lv_crit_edges.empty: lv_crit_edges = lv_crit_edges.fillna(0) lv_crit_edges = lv_crit_edges[sorted(lv_crit_edges.columns.tolist())] lv_crit_edges.sort_index(inplace=True) if save_csv: lv_crit_edges.to_csv(nw_name + '_lv_crit_edges.csv') print('\n########################################') print(' Elapsed time for', str(max_dist), 'MV grid districts (seconds): {}'.format(time.time() - start)) print('\n########################################') return (mv_stats, lv_stats, mv_crit_nodes, mv_crit_edges, lv_crit_nodes, lv_crit_edges)
parallel_running_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(districts_list, n_of_processes, n_of_districts=1, source='pkl', mode=\n '', critical=False, save_csv=False, save_path=''):\n start = time.time()\n nw_name = os.path.join(save_path, 'ding0_grids__')\n output_stats = mp.Queue()\n max_dist = len(districts_list)\n threat_long = floor(max_dist / n_of_processes)\n if threat_long == 0:\n threat_long = 1\n threats = [districts_list[x:x + threat_long] for x in range(0, len(\n districts_list), threat_long)]\n processes = []\n for districts in threats:\n args = (districts, n_of_districts, source, mode, critical, nw_name,\n output_stats)\n processes.append(mp.Process(target=process_stats, args=args))\n for p in processes:\n p.start()\n output = [output_stats.get() for p in processes]\n for p in processes:\n p.join()\n if save_csv:\n nw_name = nw_name + str(districts_list[0])\n if not districts_list[0] == districts_list[-1]:\n nw_name = nw_name + '_to_' + str(districts_list[-1])\n try:\n mv_stats = pd.concat([df for p in range(0, len(processes)) for df in\n output[p][0]], axis=0)\n except:\n mv_stats = pd.DataFrame.from_dict({})\n try:\n lv_stats = pd.concat([df for p in range(0, len(processes)) for df in\n output[p][1]], axis=0)\n except:\n lv_stats = pd.DataFrame.from_dict({})\n try:\n mv_crit_nodes = pd.concat([df for p in range(0, len(processes)) for\n df in output[p][2]], axis=0)\n except:\n mv_crit_nodes = pd.DataFrame.from_dict({})\n try:\n mv_crit_edges = pd.concat([df for p in range(0, len(processes)) for\n df in output[p][3]], axis=0)\n except:\n mv_crit_edges = pd.DataFrame.from_dict({})\n try:\n lv_crit_nodes = pd.concat([df for p in range(0, len(processes)) for\n df in output[p][4]], axis=0)\n except:\n lv_crit_nodes = pd.DataFrame.from_dict({})\n try:\n lv_crit_edges = pd.concat([df for p in range(0, len(processes)) for\n df in output[p][5]], axis=0)\n except:\n lv_crit_edges = pd.DataFrame.from_dict({})\n if not mv_stats.empty:\n mv_stats = mv_stats.fillna(0)\n mv_stats = mv_stats[sorted(mv_stats.columns.tolist())]\n mv_stats.sort_index(inplace=True)\n if save_csv:\n mv_stats.to_csv(nw_name + '_mv_stats.csv')\n if not lv_stats.empty:\n lv_stats = lv_stats.fillna(0)\n lv_stats = lv_stats[sorted(lv_stats.columns.tolist())]\n lv_stats.sort_index(inplace=True)\n if save_csv:\n lv_stats.to_csv(nw_name + '_lv_stats.csv')\n if not mv_crit_nodes.empty:\n mv_crit_nodes = mv_crit_nodes.fillna(0)\n mv_crit_nodes = mv_crit_nodes[sorted(mv_crit_nodes.columns.tolist())]\n mv_crit_nodes.sort_index(inplace=True)\n if save_csv:\n mv_crit_nodes.to_csv(nw_name + '_mv_crit_nodes.csv')\n if not mv_crit_edges.empty:\n mv_crit_edges = mv_crit_edges.fillna(0)\n mv_crit_edges = mv_crit_edges[sorted(mv_crit_edges.columns.tolist())]\n mv_crit_edges.sort_index(inplace=True)\n if save_csv:\n mv_crit_edges.to_csv(nw_name + '_mv_crit_edges.csv')\n if not lv_crit_nodes.empty:\n lv_crit_nodes = lv_crit_nodes.fillna(0)\n lv_crit_nodes = lv_crit_nodes[sorted(lv_crit_nodes.columns.tolist())]\n lv_crit_nodes.sort_index(inplace=True)\n if save_csv:\n lv_crit_nodes.to_csv(nw_name + '_lv_crit_nodes.csv')\n if not lv_crit_edges.empty:\n lv_crit_edges = lv_crit_edges.fillna(0)\n lv_crit_edges = lv_crit_edges[sorted(lv_crit_edges.columns.tolist())]\n lv_crit_edges.sort_index(inplace=True)\n if save_csv:\n lv_crit_edges.to_csv(nw_name + '_lv_crit_edges.csv')\n print('\\n########################################')\n print(' Elapsed time for', str(max_dist),\n 'MV grid districts (seconds): {}'.format(time.time() - start))\n print('\\n########################################')\n return (mv_stats, lv_stats, mv_crit_nodes, mv_crit_edges, lv_crit_nodes,\n lv_crit_edges)\n", "role": "user" }, { "content": "parallel_running_stats", "role": "assistant" } ]
def x(stats, base_path=BASEPATH): plotpath = os.path.join(base_path, 'plots') results.plot_cable_length(stats, plotpath) plt.show() results.plot_generation_over_load(stats, plotpath) plt.show()
ding0_exemplary_plots
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stats, base_path=BASEPATH):\n plotpath = os.path.join(base_path, 'plots')\n results.plot_cable_length(stats, plotpath)\n plt.show()\n results.plot_generation_over_load(stats, plotpath)\n plt.show()\n", "role": "user" }, { "content": "ding0_exemplary_plots", "role": "assistant" } ]
def x(filenames, base_path=BASEPATH): nds = [] for filename in filenames: try: nd_load = results.load_nd_from_pickle(filename=os.path.join( base_path, 'grids', filename)) nds.append(nd_load) except: print( 'File {mvgd} not found. It was maybe excluded by Ding0 or just forgotten to generate by you...' .format(mvgd=filename)) nd = nds[0] for n in nds[1:]: nd.add_mv_grid_district(n._mv_grid_districts[0]) stats = results.calculate_mvgd_stats(nd) return stats
nd_load_and_stats
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filenames, base_path=BASEPATH):\n nds = []\n for filename in filenames:\n try:\n nd_load = results.load_nd_from_pickle(filename=os.path.join(\n base_path, 'grids', filename))\n nds.append(nd_load)\n except:\n print(\n 'File {mvgd} not found. It was maybe excluded by Ding0 or just forgotten to generate by you...'\n .format(mvgd=filename))\n nd = nds[0]\n for n in nds[1:]:\n nd.add_mv_grid_district(n._mv_grid_districts[0])\n stats = results.calculate_mvgd_stats(nd)\n return stats\n", "role": "user" }, { "content": "nd_load_and_stats", "role": "assistant" } ]
def x(grid, crit_branches): branch_parameters = grid.network.static_data['MV_cables'] branch_parameters = branch_parameters[branch_parameters['U_n'] == grid. v_level].sort_values('I_max_th') branch_ctr = 0 for branch, rel_overload in crit_branches.items(): try: type = branch_parameters.loc[branch_parameters[ branch_parameters['I_max_th'] >= branch['branch'].type[ 'I_max_th'] * rel_overload].loc[:, 'I_max_th'].idxmin(), :] branch['branch'].type = type branch_ctr += 1 except: logger.warning( 'Branch {} could not be reinforced (current issues) as there is no appropriate cable type available. Original type is retained.' .format(branch)) pass if branch_ctr: logger.info('==> {} branches were reinforced.'.format(str(branch_ctr)))
reinforce_branches_current
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, crit_branches):\n branch_parameters = grid.network.static_data['MV_cables']\n branch_parameters = branch_parameters[branch_parameters['U_n'] == grid.\n v_level].sort_values('I_max_th')\n branch_ctr = 0\n for branch, rel_overload in crit_branches.items():\n try:\n type = branch_parameters.loc[branch_parameters[\n branch_parameters['I_max_th'] >= branch['branch'].type[\n 'I_max_th'] * rel_overload].loc[:, 'I_max_th'].idxmin(), :]\n branch['branch'].type = type\n branch_ctr += 1\n except:\n logger.warning(\n 'Branch {} could not be reinforced (current issues) as there is no appropriate cable type available. Original type is retained.'\n .format(branch))\n pass\n if branch_ctr:\n logger.info('==> {} branches were reinforced.'.format(str(branch_ctr)))\n", "role": "user" }, { "content": "reinforce_branches_current", "role": "assistant" } ]
def x(grid, crit_branches, grid_level='MV'): branch_parameters = grid.network.static_data['{gridlevel}_cables'. format(gridlevel=grid_level)] branch_parameters = branch_parameters[branch_parameters['U_n'] == grid. v_level].sort_values('I_max_th') branch_ctr = 0 for branch in crit_branches: try: type = branch_parameters.loc[branch_parameters.loc[ branch_parameters['I_max_th'] > branch.type['I_max_th']]. loc[:, 'I_max_th'].idxmin(), :] branch.type = type branch_ctr += 1 except: logger.warning( 'Branch {} could not be reinforced (voltage issues) as there is no appropriate cable type available. Original type is retained.' .format(branch)) pass if branch_ctr: logger.info('==> {} branches were reinforced.'.format(str(branch_ctr)))
reinforce_branches_voltage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, crit_branches, grid_level='MV'):\n branch_parameters = grid.network.static_data['{gridlevel}_cables'.\n format(gridlevel=grid_level)]\n branch_parameters = branch_parameters[branch_parameters['U_n'] == grid.\n v_level].sort_values('I_max_th')\n branch_ctr = 0\n for branch in crit_branches:\n try:\n type = branch_parameters.loc[branch_parameters.loc[\n branch_parameters['I_max_th'] > branch.type['I_max_th']].\n loc[:, 'I_max_th'].idxmin(), :]\n branch.type = type\n branch_ctr += 1\n except:\n logger.warning(\n 'Branch {} could not be reinforced (voltage issues) as there is no appropriate cable type available. Original type is retained.'\n .format(branch))\n pass\n if branch_ctr:\n logger.info('==> {} branches were reinforced.'.format(str(branch_ctr)))\n", "role": "user" }, { "content": "reinforce_branches_voltage", "role": "assistant" } ]
def x(grid, critical_stations, grid_level): load_factor_lv_trans_lc_normal = cfg_ding0.get('assumptions', 'load_factor_lv_trans_lc_normal') load_factor_lv_trans_fc_normal = cfg_ding0.get('assumptions', 'load_factor_lv_trans_fc_normal') trafo_params = grid.network._static_data['{grid_level}_trafos'.format( grid_level=grid_level)] trafo_s_max_max = max(trafo_params['S_nom']) for station in critical_stations: if station['s_max'][0] > station['s_max'][1]: case = 'load' lf_lv_trans_normal = load_factor_lv_trans_lc_normal else: case = 'gen' lf_lv_trans_normal = load_factor_lv_trans_fc_normal s_max_trafos = sum([_.s_max_a for _ in station['station']. _transformers]) s_trafo_missing = max(station['s_max'] ) - s_max_trafos * lf_lv_trans_normal extendable_trafos = [_ for _ in station['station']._transformers if _.s_max_a < trafo_s_max_max] while s_trafo_missing > 0 and extendable_trafos: trafo = extendable_trafos[0] trafo_s_max_a_before = trafo.s_max_a extend_trafo_power(extendable_trafos, trafo_params) s_trafo_missing -= (trafo.s_max_a * lf_lv_trans_normal - trafo_s_max_a_before) extendable_trafos = [_ for _ in station['station']. _transformers if _.s_max_a < trafo_s_max_max] if s_trafo_missing > 0: trafo_type, trafo_cnt = select_transformers(grid, s_max={ 's_max': s_trafo_missing, 'case': case}) for t in range(0, trafo_cnt): lv_transformer = TransformerDing0(grid=grid, id_db=id, v_level=0.4, s_max_longterm=trafo_type['S_nom'], r= trafo_type['R'], x=trafo_type['X']) grid._station.add_transformer(lv_transformer) logger.info( '{stations_cnt} have been reinforced due to overloading issues.'. format(stations_cnt=len(critical_stations)))
extend_substation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, critical_stations, grid_level):\n load_factor_lv_trans_lc_normal = cfg_ding0.get('assumptions',\n 'load_factor_lv_trans_lc_normal')\n load_factor_lv_trans_fc_normal = cfg_ding0.get('assumptions',\n 'load_factor_lv_trans_fc_normal')\n trafo_params = grid.network._static_data['{grid_level}_trafos'.format(\n grid_level=grid_level)]\n trafo_s_max_max = max(trafo_params['S_nom'])\n for station in critical_stations:\n if station['s_max'][0] > station['s_max'][1]:\n case = 'load'\n lf_lv_trans_normal = load_factor_lv_trans_lc_normal\n else:\n case = 'gen'\n lf_lv_trans_normal = load_factor_lv_trans_fc_normal\n s_max_trafos = sum([_.s_max_a for _ in station['station'].\n _transformers])\n s_trafo_missing = max(station['s_max']\n ) - s_max_trafos * lf_lv_trans_normal\n extendable_trafos = [_ for _ in station['station']._transformers if\n _.s_max_a < trafo_s_max_max]\n while s_trafo_missing > 0 and extendable_trafos:\n trafo = extendable_trafos[0]\n trafo_s_max_a_before = trafo.s_max_a\n extend_trafo_power(extendable_trafos, trafo_params)\n s_trafo_missing -= (trafo.s_max_a * lf_lv_trans_normal -\n trafo_s_max_a_before)\n extendable_trafos = [_ for _ in station['station'].\n _transformers if _.s_max_a < trafo_s_max_max]\n if s_trafo_missing > 0:\n trafo_type, trafo_cnt = select_transformers(grid, s_max={\n 's_max': s_trafo_missing, 'case': case})\n for t in range(0, trafo_cnt):\n lv_transformer = TransformerDing0(grid=grid, id_db=id,\n v_level=0.4, s_max_longterm=trafo_type['S_nom'], r=\n trafo_type['R'], x=trafo_type['X'])\n grid._station.add_transformer(lv_transformer)\n logger.info(\n '{stations_cnt} have been reinforced due to overloading issues.'.\n format(stations_cnt=len(critical_stations)))\n", "role": "user" }, { "content": "extend_substation", "role": "assistant" } ]
def x(crit_stations, grid_level='LV'): grid = crit_stations[0]['node'].grid trafo_params = grid.network._static_data['{grid_level}_trafos'.format( grid_level=grid_level)] trafo_s_max_max = max(trafo_params['S_nom']) trafo_min_size = trafo_params.loc[trafo_params['S_nom'].idxmin(), :] v_diff_max_fc = cfg_ding0.get('assumptions', 'lv_max_v_level_fc_diff_normal') v_diff_max_lc = cfg_ding0.get('assumptions', 'lv_max_v_level_lc_diff_normal') tree = nx.dfs_tree(grid._graph, grid._station) for station in crit_stations: v_delta = max(station['v_diff']) extendable_trafos = [_ for _ in station['node']._transformers if _. s_max_a < trafo_s_max_max] v_delta_initially_lc = v_delta[0] v_delta_initially_fc = v_delta[1] new_transformers_cnt = 0 while v_delta[0] > v_diff_max_lc or v_delta[1] > v_diff_max_fc: if extendable_trafos: extend_trafo_power(extendable_trafos, trafo_params) elif new_transformers_cnt < 2: lv_transformer = TransformerDing0(grid=grid, id_db=id, v_level=0.4, s_max_longterm=trafo_min_size['S_nom'], r= trafo_min_size['R'], x=trafo_min_size['X']) grid._station.add_transformer(lv_transformer) new_transformers_cnt += 1 v_delta = get_voltage_at_bus_bar(grid, tree) extendable_trafos = [_ for _ in station['node']._transformers if _.s_max_a < trafo_s_max_max] if v_delta[0] == v_delta_initially_lc or v_delta[1 ] == v_delta_initially_fc: logger.warning( 'Extension of {station} has no effect on voltage delta at bus bar. Transformation power extension is halted.' .format(station=station['node'])) break
extend_substation_voltage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(crit_stations, grid_level='LV'):\n grid = crit_stations[0]['node'].grid\n trafo_params = grid.network._static_data['{grid_level}_trafos'.format(\n grid_level=grid_level)]\n trafo_s_max_max = max(trafo_params['S_nom'])\n trafo_min_size = trafo_params.loc[trafo_params['S_nom'].idxmin(), :]\n v_diff_max_fc = cfg_ding0.get('assumptions',\n 'lv_max_v_level_fc_diff_normal')\n v_diff_max_lc = cfg_ding0.get('assumptions',\n 'lv_max_v_level_lc_diff_normal')\n tree = nx.dfs_tree(grid._graph, grid._station)\n for station in crit_stations:\n v_delta = max(station['v_diff'])\n extendable_trafos = [_ for _ in station['node']._transformers if _.\n s_max_a < trafo_s_max_max]\n v_delta_initially_lc = v_delta[0]\n v_delta_initially_fc = v_delta[1]\n new_transformers_cnt = 0\n while v_delta[0] > v_diff_max_lc or v_delta[1] > v_diff_max_fc:\n if extendable_trafos:\n extend_trafo_power(extendable_trafos, trafo_params)\n elif new_transformers_cnt < 2:\n lv_transformer = TransformerDing0(grid=grid, id_db=id,\n v_level=0.4, s_max_longterm=trafo_min_size['S_nom'], r=\n trafo_min_size['R'], x=trafo_min_size['X'])\n grid._station.add_transformer(lv_transformer)\n new_transformers_cnt += 1\n v_delta = get_voltage_at_bus_bar(grid, tree)\n extendable_trafos = [_ for _ in station['node']._transformers if\n _.s_max_a < trafo_s_max_max]\n if v_delta[0] == v_delta_initially_lc or v_delta[1\n ] == v_delta_initially_fc:\n logger.warning(\n 'Extension of {station} has no effect on voltage delta at bus bar. Transformation power extension is halted.'\n .format(station=station['node']))\n break\n", "role": "user" }, { "content": "extend_substation_voltage", "role": "assistant" } ]
def x(grid, crit_branches): unsolved_branches = [] cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal') cables = grid.network.static_data['LV_cables'] for branch in crit_branches: I_max_branch_load = branch['s_max'][0] I_max_branch_gen = branch['s_max'][1] I_max_branch = max([I_max_branch_load, I_max_branch_gen]) suitable_cables = cables[cables['I_max_th'] * cable_lf > I_max_branch] if not suitable_cables.empty: cable_type = suitable_cables.loc[suitable_cables['I_max_th']. idxmin(), :] branch['branch'].type = cable_type crit_branches.remove(branch) else: cable_type_max = cables.loc[cables['I_max_th'].idxmax(), :] unsolved_branches.append(branch) branch['branch'].type = cable_type_max logger.error( 'No suitable cable type could be found for {branch} with I_th_max = {current}. Cable of type {cable} is chosen during reinforcement.' .format(branch=branch['branch'], cable=cable_type_max.name, current=I_max_branch)) return unsolved_branches
reinforce_lv_branches_overloading
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(grid, crit_branches):\n unsolved_branches = []\n cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal')\n cables = grid.network.static_data['LV_cables']\n for branch in crit_branches:\n I_max_branch_load = branch['s_max'][0]\n I_max_branch_gen = branch['s_max'][1]\n I_max_branch = max([I_max_branch_load, I_max_branch_gen])\n suitable_cables = cables[cables['I_max_th'] * cable_lf > I_max_branch]\n if not suitable_cables.empty:\n cable_type = suitable_cables.loc[suitable_cables['I_max_th'].\n idxmin(), :]\n branch['branch'].type = cable_type\n crit_branches.remove(branch)\n else:\n cable_type_max = cables.loc[cables['I_max_th'].idxmax(), :]\n unsolved_branches.append(branch)\n branch['branch'].type = cable_type_max\n logger.error(\n 'No suitable cable type could be found for {branch} with I_th_max = {current}. Cable of type {cable} is chosen during reinforcement.'\n .format(branch=branch['branch'], cable=cable_type_max.name,\n current=I_max_branch))\n return unsolved_branches\n", "role": "user" }, { "content": "reinforce_lv_branches_overloading", "role": "assistant" } ]
def x(extendable_trafos, trafo_params): trafo = extendable_trafos[0] trafo_s_max_a_before = trafo.s_max_a trafo_nearest_larger = trafo_params.loc[trafo_params.loc[trafo_params[ 'S_nom'] > trafo_s_max_a_before].loc[:, 'S_nom'].idxmin(), :] trafo.s_max_a = trafo_nearest_larger['S_nom'] trafo.r = trafo_nearest_larger['R'] trafo.x = trafo_nearest_larger['X']
extend_trafo_power
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(extendable_trafos, trafo_params):\n trafo = extendable_trafos[0]\n trafo_s_max_a_before = trafo.s_max_a\n trafo_nearest_larger = trafo_params.loc[trafo_params.loc[trafo_params[\n 'S_nom'] > trafo_s_max_a_before].loc[:, 'S_nom'].idxmin(), :]\n trafo.s_max_a = trafo_nearest_larger['S_nom']\n trafo.r = trafo_nearest_larger['R']\n trafo.x = trafo_nearest_larger['X']\n", "role": "user" }, { "content": "extend_trafo_power", "role": "assistant" } ]
def x(self, generator): if generator not in self._generators and isinstance(generator, GeneratorDing0): self._generators.append(generator) self.graph_add_node(generator)
add_generator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, generator):\n if generator not in self._generators and isinstance(generator,\n GeneratorDing0):\n self._generators.append(generator)\n self.graph_add_node(generator)\n", "role": "user" }, { "content": "add_generator", "role": "assistant" } ]
def x(self, node_object): if node_object not in self._graph.nodes() and isinstance(node_object, ( StationDing0, CableDistributorDing0, LVLoadAreaCentreDing0, CircuitBreakerDing0, GeneratorDing0)): self._graph.add_node(node_object)
graph_add_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node_object):\n if node_object not in self._graph.nodes() and isinstance(node_object, (\n StationDing0, CableDistributorDing0, LVLoadAreaCentreDing0,\n CircuitBreakerDing0, GeneratorDing0)):\n self._graph.add_node(node_object)\n", "role": "user" }, { "content": "graph_add_node", "role": "assistant" } ]
def x(self, mode): g = self._graph if mode == 'MV': nodes_pos = {} demands = {} demands_pos = {} nodes_color = [] for node in g.nodes(): if isinstance(node, (StationDing0, LVLoadAreaCentreDing0, CableDistributorDing0, GeneratorDing0, CircuitBreakerDing0)): nodes_pos[node] = node.geo_data.x, node.geo_data.y if node == self.station(): nodes_color.append((1, 0.5, 0.5)) else: nodes_color.append((0.5, 0.5, 1)) edges_color = [] for edge in self.graph_edges(): if edge['branch'].critical: edges_color.append((1, 0, 0)) else: edges_color.append((0, 0, 0)) plt.figure() nx.draw_networkx(g, nodes_pos, node_color=nodes_color, edge_color= edges_color, font_size=8) plt.show() elif mode == 'LV': nodes_pos = {} nodes_color = [] for node in g.nodes(): station_neighbors = sorted(g.neighbors(self.station()), key=lambda _: repr(_)) if len(station_neighbors) % 2 == 0: x_pos_start = -(len(station_neighbors) // 2 - 0.5) else: x_pos_start = -(len(station_neighbors) // 2) if isinstance(node, CableDistributorDing0): if node.in_building: nodes_pos[node] = (x_pos_start + node.branch_no - 1 + 0.25, -node.load_no - 2) nodes_color.append((0.5, 0.5, 0.5)) else: nodes_pos[node ] = x_pos_start + node.branch_no - 1, -node.load_no - 2 nodes_color.append((0.5, 0.5, 0.5)) elif isinstance(node, LoadDing0): nodes_pos[node] = (x_pos_start + node.branch_no - 1 + 0.5, -node.load_no - 2 - 0.25) nodes_color.append((0.5, 0.5, 1)) elif isinstance(node, GeneratorDing0): neighbor = list(g.neighbors(node))[0] if isinstance(neighbor, CableDistributorDing0): nodes_pos[node] = (x_pos_start + neighbor.branch_no - 1 + 0.5, -neighbor.load_no - 2 + 0.25) else: nodes_pos[node] = 1, 1 nodes_color.append((0.5, 1, 0.5)) elif isinstance(node, StationDing0): nodes_pos[node] = 0, 0 nodes_color.append((1, 0.5, 0.5)) plt.figure() nx.draw_networkx(g, nodes_pos, node_color=nodes_color, font_size=8, node_size=100) plt.show()
graph_draw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n g = self._graph\n if mode == 'MV':\n nodes_pos = {}\n demands = {}\n demands_pos = {}\n nodes_color = []\n for node in g.nodes():\n if isinstance(node, (StationDing0, LVLoadAreaCentreDing0,\n CableDistributorDing0, GeneratorDing0, CircuitBreakerDing0)):\n nodes_pos[node] = node.geo_data.x, node.geo_data.y\n if node == self.station():\n nodes_color.append((1, 0.5, 0.5))\n else:\n nodes_color.append((0.5, 0.5, 1))\n edges_color = []\n for edge in self.graph_edges():\n if edge['branch'].critical:\n edges_color.append((1, 0, 0))\n else:\n edges_color.append((0, 0, 0))\n plt.figure()\n nx.draw_networkx(g, nodes_pos, node_color=nodes_color, edge_color=\n edges_color, font_size=8)\n plt.show()\n elif mode == 'LV':\n nodes_pos = {}\n nodes_color = []\n for node in g.nodes():\n station_neighbors = sorted(g.neighbors(self.station()), key=lambda\n _: repr(_))\n if len(station_neighbors) % 2 == 0:\n x_pos_start = -(len(station_neighbors) // 2 - 0.5)\n else:\n x_pos_start = -(len(station_neighbors) // 2)\n if isinstance(node, CableDistributorDing0):\n if node.in_building:\n nodes_pos[node] = (x_pos_start + node.branch_no - 1 + \n 0.25, -node.load_no - 2)\n nodes_color.append((0.5, 0.5, 0.5))\n else:\n nodes_pos[node\n ] = x_pos_start + node.branch_no - 1, -node.load_no - 2\n nodes_color.append((0.5, 0.5, 0.5))\n elif isinstance(node, LoadDing0):\n nodes_pos[node] = (x_pos_start + node.branch_no - 1 + 0.5, \n -node.load_no - 2 - 0.25)\n nodes_color.append((0.5, 0.5, 1))\n elif isinstance(node, GeneratorDing0):\n neighbor = list(g.neighbors(node))[0]\n if isinstance(neighbor, CableDistributorDing0):\n nodes_pos[node] = (x_pos_start + neighbor.branch_no - 1 +\n 0.5, -neighbor.load_no - 2 + 0.25)\n else:\n nodes_pos[node] = 1, 1\n nodes_color.append((0.5, 1, 0.5))\n elif isinstance(node, StationDing0):\n nodes_pos[node] = 0, 0\n nodes_color.append((1, 0.5, 0.5))\n plt.figure()\n nx.draw_networkx(g, nodes_pos, node_color=nodes_color, font_size=8,\n node_size=100)\n plt.show()\n", "role": "user" }, { "content": "graph_draw", "role": "assistant" } ]
def x(self): return sorted(self._graph.nodes(), key=lambda _: repr(_))
graph_nodes_sorted
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return sorted(self._graph.nodes(), key=lambda _: repr(_))\n", "role": "user" }, { "content": "graph_nodes_sorted", "role": "assistant" } ]
def x(self, branch): edges = nx.get_edge_attributes(self._graph, 'branch') nodes = list(edges.keys())[list(edges.values()).index(branch)] return nodes
graph_nodes_from_branch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, branch):\n edges = nx.get_edge_attributes(self._graph, 'branch')\n nodes = list(edges.keys())[list(edges.values()).index(branch)]\n return nodes\n", "role": "user" }, { "content": "graph_nodes_from_branch", "role": "assistant" } ]
def x(self, node): branches = [] branches_dict = self._graph.adj[node] for branch in branches_dict.items(): branches.append(branch) return sorted(branches, key=lambda _: repr(_))
graph_branches_from_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node):\n branches = []\n branches_dict = self._graph.adj[node]\n for branch in branches_dict.items():\n branches.append(branch)\n return sorted(branches, key=lambda _: repr(_))\n", "role": "user" }, { "content": "graph_branches_from_node", "role": "assistant" } ]
def x(self): edges = nx.get_edge_attributes(self._graph, 'branch').items() edges_sorted = sorted(list(edges), key=lambda _: ''.join(sorted([repr(_ [0][0]), repr(_[0][1])]))) for edge in edges_sorted: yield {'adj_nodes': edge[0], 'branch': edge[1]}
graph_edges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n edges = nx.get_edge_attributes(self._graph, 'branch').items()\n edges_sorted = sorted(list(edges), key=lambda _: ''.join(sorted([repr(_\n [0][0]), repr(_[0][1])])))\n for edge in edges_sorted:\n yield {'adj_nodes': edge[0], 'branch': edge[1]}\n", "role": "user" }, { "content": "graph_edges", "role": "assistant" } ]
def x(self, node_source, node_target, type='nodes'): if node_source in self._graph.nodes() and node_target in self._graph.nodes( ): path = nx.shortest_path(self._graph, node_source, node_target) else: raise Exception('At least one of the nodes is not a member of graph.') if type == 'nodes': return path elif type == 'edges': return [_ for _ in self._graph.edges(nbunch=path, data=True) if _[0 ] in path and _[1] in path] else: raise ValueError('Please specify type as nodes or edges')
find_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node_source, node_target, type='nodes'):\n if node_source in self._graph.nodes() and node_target in self._graph.nodes(\n ):\n path = nx.shortest_path(self._graph, node_source, node_target)\n else:\n raise Exception('At least one of the nodes is not a member of graph.')\n if type == 'nodes':\n return path\n elif type == 'edges':\n return [_ for _ in self._graph.edges(nbunch=path, data=True) if _[0\n ] in path and _[1] in path]\n else:\n raise ValueError('Please specify type as nodes or edges')\n", "role": "user" }, { "content": "find_path", "role": "assistant" } ]
def x(self, node_source, nodes_target): branches = set() for node_target in nodes_target: path = self.find_path(node_source, node_target) node_pairs = list(zip(path[0:len(path) - 1], path[1:len(path)])) for n1, n2 in node_pairs: branches.add(self._graph.adj[n1][n2]['branch']) return list(branches)
find_and_union_paths
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node_source, nodes_target):\n branches = set()\n for node_target in nodes_target:\n path = self.find_path(node_source, node_target)\n node_pairs = list(zip(path[0:len(path) - 1], path[1:len(path)]))\n for n1, n2 in node_pairs:\n branches.add(self._graph.adj[n1][n2]['branch'])\n return list(branches)\n", "role": "user" }, { "content": "find_and_union_paths", "role": "assistant" } ]
def x(self, node_source, node_target): length = 0 path = self.find_path(node_source, node_target) node_pairs = list(zip(path[0:len(path) - 1], path[1:len(path)])) for n1, n2 in node_pairs: length += self._graph.adj[n1][n2]['branch'].length return length
graph_path_length
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node_source, node_target):\n length = 0\n path = self.find_path(node_source, node_target)\n node_pairs = list(zip(path[0:len(path) - 1], path[1:len(path)]))\n for n1, n2 in node_pairs:\n length += self._graph.adj[n1][n2]['branch'].length\n return length\n", "role": "user" }, { "content": "graph_path_length", "role": "assistant" } ]
def x(self): return sorted(nx.isolates(self._graph), key=lambda x: repr(x))
graph_isolated_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return sorted(nx.isolates(self._graph), key=lambda x: repr(x))\n", "role": "user" }, { "content": "graph_isolated_nodes", "role": "assistant" } ]
def x(self, transformer): if transformer not in self.transformers() and isinstance(transformer, TransformerDing0): self._transformers.append(transformer)
add_transformer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, transformer):\n if transformer not in self.transformers() and isinstance(transformer,\n TransformerDing0):\n self._transformers.append(transformer)\n", "role": "user" }, { "content": "add_transformer", "role": "assistant" } ]
def x(self): for branch in self._grid.graph_edges(): if branch['branch'].ring == self: yield branch
branches
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for branch in self._grid.graph_edges():\n if branch['branch'].ring == self:\n yield branch\n", "role": "user" }, { "content": "branches", "role": "assistant" } ]