source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(mv_districts, n_of_districts, output_info, run_id, base_path):
engine = db.connection(section='oedb')
session = sessionmaker(bind=engine)()
clusters = [mv_districts[x:x + n_of_districts] for x in range(0, len(
mv_districts), n_of_districts)]
output_clusters = []
for cl in clusters:
print('\n########################################')
print(' Running ding0 for district', cl)
print('########################################')
nw_name = 'ding0_grids_' + str(cl[0])
if not cl[0] == cl[-1]:
nw_name = nw_name + '_to_' + str(cl[-1])
nw = NetworkDing0(name=nw_name)
try:
msg = nw.run_ding0(session=session, mv_grid_districts_no=cl)
if msg:
status = 'run error'
else:
msg = ''
status = 'OK'
results.save_nd_to_pickle(nw, os.path.join(base_path, run_id))
output_clusters.append((nw_name, status, msg, nw.metadata))
except Exception as e:
output_clusters.append((nw_name, 'corrupt dist', e, nw.metadata))
continue
output_info.put(output_clusters)
|
process_runs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mv_districts, n_of_districts, output_info, run_id, base_path):\n engine = db.connection(section='oedb')\n session = sessionmaker(bind=engine)()\n clusters = [mv_districts[x:x + n_of_districts] for x in range(0, len(\n mv_districts), n_of_districts)]\n output_clusters = []\n for cl in clusters:\n print('\\n########################################')\n print(' Running ding0 for district', cl)\n print('########################################')\n nw_name = 'ding0_grids_' + str(cl[0])\n if not cl[0] == cl[-1]:\n nw_name = nw_name + '_to_' + str(cl[-1])\n nw = NetworkDing0(name=nw_name)\n try:\n msg = nw.run_ding0(session=session, mv_grid_districts_no=cl)\n if msg:\n status = 'run error'\n else:\n msg = ''\n status = 'OK'\n results.save_nd_to_pickle(nw, os.path.join(base_path, run_id))\n output_clusters.append((nw_name, status, msg, nw.metadata))\n except Exception as e:\n output_clusters.append((nw_name, 'corrupt dist', e, nw.metadata))\n continue\n output_info.put(output_clusters)\n",
"role": "user"
},
{
"content": "process_runs",
"role": "assistant"
}
] |
def x(meta):
mvgds = []
metadata = meta[0]
for mvgd in meta:
if isinstance(mvgd['mv_grid_districts'], list):
mvgds.extend(mvgd['mv_grid_districts'])
else:
mvgds.append(mvgd['mv_grid_districts'])
metadata['mv_grid_districts'] = mvgds
return metadata
|
process_metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(meta):\n mvgds = []\n metadata = meta[0]\n for mvgd in meta:\n if isinstance(mvgd['mv_grid_districts'], list):\n mvgds.extend(mvgd['mv_grid_districts'])\n else:\n mvgds.append(mvgd['mv_grid_districts'])\n metadata['mv_grid_districts'] = mvgds\n return metadata\n",
"role": "user"
},
{
"content": "process_metadata",
"role": "assistant"
}
] |
def x(grid, mode):
if mode == 'MV':
crit_branches, crit_stations = check_load(grid, mode)
reinforce_branches_current(grid, crit_branches)
if crit_branches or crit_stations:
grid.network.run_powerflow(conn=None, method='onthefly')
crit_nodes = check_voltage(grid, mode)
crit_nodes_count_prev_step = len(crit_nodes)
while crit_nodes:
crit_branches_v = grid.find_and_union_paths(grid.station(),
crit_nodes)
reinforce_branches_voltage(grid, crit_branches_v)
grid.network.run_powerflow(session=None, method='onthefly')
crit_nodes = check_voltage(grid, mode)
if len(crit_nodes) == crit_nodes_count_prev_step:
logger.warning(
'==> There are {0} branches that cannot be reinforced (no appropriate cable available).'
.format(len(grid.find_and_union_paths(grid.station(),
crit_nodes))))
break
crit_nodes_count_prev_step = len(crit_nodes)
if not crit_nodes:
logger.info(
'==> All voltage issues in {mode} grid could be solved using reinforcement.'
.format(mode=mode))
elif mode == 'LV':
critical_branches, critical_stations = get_critical_line_loading(grid)
unresolved = reinforce_lv_branches_overloading(grid, critical_branches)
logger.info(
'Out of {crit_branches} with overloading {unresolved} remain with unresolved issues due to line overloading. LV grid: {grid}'
.format(crit_branches=len(critical_branches), unresolved=len(
unresolved), grid=grid))
extend_substation(grid, critical_stations, mode)
crit_nodes = get_critical_voltage_at_nodes(grid)
crit_nodes_count_prev_step = len(crit_nodes)
logger.info('{cnt_crit_branches} in {grid} have voltage issues'.
format(cnt_crit_branches=crit_nodes_count_prev_step, grid=grid))
while crit_nodes:
crit_branches_v = grid.find_and_union_paths(grid.station(), [_[
'node'] for _ in crit_nodes])
reinforce_branches_voltage(grid, crit_branches_v, mode)
crit_nodes = get_critical_voltage_at_nodes(grid)
if len(crit_nodes) == crit_nodes_count_prev_step:
logger.warning(
'==> There are {0} branches that cannot be reinforced (no appropriate cable available).'
.format(len(crit_branches_v)))
break
crit_nodes_count_prev_step = len(crit_nodes)
if not crit_nodes:
logger.info(
'==> All voltage issues in {mode} grid could be solved using reinforcement.'
.format(mode=mode))
crit_stations_voltage = [_ for _ in crit_nodes if isinstance(_[
'node'], LVStationDing0)]
if crit_stations_voltage:
extend_substation_voltage(crit_stations_voltage, grid_level='LV')
|
reinforce_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, mode):\n if mode == 'MV':\n crit_branches, crit_stations = check_load(grid, mode)\n reinforce_branches_current(grid, crit_branches)\n if crit_branches or crit_stations:\n grid.network.run_powerflow(conn=None, method='onthefly')\n crit_nodes = check_voltage(grid, mode)\n crit_nodes_count_prev_step = len(crit_nodes)\n while crit_nodes:\n crit_branches_v = grid.find_and_union_paths(grid.station(),\n crit_nodes)\n reinforce_branches_voltage(grid, crit_branches_v)\n grid.network.run_powerflow(session=None, method='onthefly')\n crit_nodes = check_voltage(grid, mode)\n if len(crit_nodes) == crit_nodes_count_prev_step:\n logger.warning(\n '==> There are {0} branches that cannot be reinforced (no appropriate cable available).'\n .format(len(grid.find_and_union_paths(grid.station(),\n crit_nodes))))\n break\n crit_nodes_count_prev_step = len(crit_nodes)\n if not crit_nodes:\n logger.info(\n '==> All voltage issues in {mode} grid could be solved using reinforcement.'\n .format(mode=mode))\n elif mode == 'LV':\n critical_branches, critical_stations = get_critical_line_loading(grid)\n unresolved = reinforce_lv_branches_overloading(grid, critical_branches)\n logger.info(\n 'Out of {crit_branches} with overloading {unresolved} remain with unresolved issues due to line overloading. LV grid: {grid}'\n .format(crit_branches=len(critical_branches), unresolved=len(\n unresolved), grid=grid))\n extend_substation(grid, critical_stations, mode)\n crit_nodes = get_critical_voltage_at_nodes(grid)\n crit_nodes_count_prev_step = len(crit_nodes)\n logger.info('{cnt_crit_branches} in {grid} have voltage issues'.\n format(cnt_crit_branches=crit_nodes_count_prev_step, grid=grid))\n while crit_nodes:\n crit_branches_v = grid.find_and_union_paths(grid.station(), [_[\n 'node'] for _ in crit_nodes])\n reinforce_branches_voltage(grid, crit_branches_v, mode)\n crit_nodes = get_critical_voltage_at_nodes(grid)\n if len(crit_nodes) == crit_nodes_count_prev_step:\n logger.warning(\n '==> There are {0} branches that cannot be reinforced (no appropriate cable available).'\n .format(len(crit_branches_v)))\n break\n crit_nodes_count_prev_step = len(crit_nodes)\n if not crit_nodes:\n logger.info(\n '==> All voltage issues in {mode} grid could be solved using reinforcement.'\n .format(mode=mode))\n crit_stations_voltage = [_ for _ in crit_nodes if isinstance(_[\n 'node'], LVStationDing0)]\n if crit_stations_voltage:\n extend_substation_voltage(crit_stations_voltage, grid_level='LV')\n",
"role": "user"
},
{
"content": "reinforce_grid",
"role": "assistant"
}
] |
def x(filename):
nd = results.load_nd_from_pickle(filename=filename)
nodes_df, edges_df = nd.to_dataframe()
stats = results.calculate_mvgd_stats(nd)
stations = nodes_df[nodes_df['type'] == 'LV Station']
f, axarr = plt.subplots(2, sharex=True)
f.suptitle(
'Peak load (top) / peak generation capacity (bottom) at LV substations in kW'
)
stations['peak_load'].hist(bins=20, alpha=0.5, ax=axarr[0])
axarr[0].set_title('Peak load in kW')
stations['generation_capacity'].hist(bins=20, alpha=0.5, ax=axarr[1])
axarr[1].set_title('Peak generation capacity in kW')
plt.show()
print('You are analyzing MV grid district {mvgd}\n'.format(mvgd=int(
stats.index.values)))
with option_context('display.max_rows', None, 'display.max_columns',
None, 'display.max_colwidth', -1):
print(stats.T)
|
example_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n nd = results.load_nd_from_pickle(filename=filename)\n nodes_df, edges_df = nd.to_dataframe()\n stats = results.calculate_mvgd_stats(nd)\n stations = nodes_df[nodes_df['type'] == 'LV Station']\n f, axarr = plt.subplots(2, sharex=True)\n f.suptitle(\n 'Peak load (top) / peak generation capacity (bottom) at LV substations in kW'\n )\n stations['peak_load'].hist(bins=20, alpha=0.5, ax=axarr[0])\n axarr[0].set_title('Peak load in kW')\n stations['generation_capacity'].hist(bins=20, alpha=0.5, ax=axarr[1])\n axarr[1].set_title('Peak generation capacity in kW')\n plt.show()\n print('You are analyzing MV grid district {mvgd}\\n'.format(mvgd=int(\n stats.index.values)))\n with option_context('display.max_rows', None, 'display.max_columns',\n None, 'display.max_colwidth', -1):\n print(stats.T)\n",
"role": "user"
},
{
"content": "example_stats",
"role": "assistant"
}
] |
def x(graph1, mode, graph2=None):
package_path = ding0.__path__[0]
file = path.join(package_path, 'output', 'debug', 'graph1.gpickle')
if mode == 'write':
try:
nx.write_gpickle(graph1, file)
print('=====> DEBUG: Graph written to', file)
except:
raise FileNotFoundError('Could not write to file', file)
elif mode == 'compare':
if graph2 is None:
try:
graph2 = nx.read_gpickle(file)
print('=====> DEBUG: Graph read from', file)
except:
raise FileNotFoundError('File not found:', file)
nodes1 = sorted(graph1.nodes(), key=lambda _: repr(_))
nodes2 = sorted(graph2.nodes(), key=lambda _: repr(_))
edges1 = sorted(graph1.edges(), key=lambda _: repr(_))
edges2 = sorted(graph2.edges(), key=lambda _: repr(_))
graphs_are_isomorphic = True
if len(nodes1) > len(nodes2):
print('Node count in graph 1 > node count in graph 2')
print('Difference:', [node for node in nodes1 if repr(node) not in
repr(nodes2)])
graphs_are_isomorphic = False
elif len(nodes2) > len(nodes1):
print('Node count in graph 2 > node count in graph 1')
print('Difference:', [node for node in nodes2 if repr(node) not in
repr(nodes1)])
graphs_are_isomorphic = False
if len(edges1) > len(edges2):
print('Edge count in graph 1 > edge count in graph 2')
print('Difference:', [edge for edge in edges1 if repr(edge) not in
repr(edges2) and repr(tuple(reversed(edge))) not in repr(
edges2)])
graphs_are_isomorphic = False
elif len(edges2) > len(edges1):
print('Edge count in graph 2 > edge count in graph 1')
print('Difference:', [edge for edge in edges2 if repr(edge) not in
repr(edges1) and repr(tuple(reversed(edge))) not in repr(
edges1)])
graphs_are_isomorphic = False
elif len(edges1) == len(edges1) and len([edge for edge in edges1 if
repr(edge) not in repr(edges2) and repr(tuple(reversed(edge)))
not in repr(edges2)]) > 0:
print('Edge count in graph 1 = edge count in graph 2')
print('Difference:', [edge for edge in edges2 if repr(edge) not in
repr(edges1) and repr(tuple(reversed(edge))) not in repr(
edges1)])
graphs_are_isomorphic = False
if graphs_are_isomorphic:
print('=====> DEBUG: Graphs are isomorphic')
else:
print('=====> DEBUG: Graphs are NOT isomorphic')
else:
raise ValueError(
"Invalid value for mode, use mode='write' or 'compare'")
exit(0)
|
compare_graphs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph1, mode, graph2=None):\n package_path = ding0.__path__[0]\n file = path.join(package_path, 'output', 'debug', 'graph1.gpickle')\n if mode == 'write':\n try:\n nx.write_gpickle(graph1, file)\n print('=====> DEBUG: Graph written to', file)\n except:\n raise FileNotFoundError('Could not write to file', file)\n elif mode == 'compare':\n if graph2 is None:\n try:\n graph2 = nx.read_gpickle(file)\n print('=====> DEBUG: Graph read from', file)\n except:\n raise FileNotFoundError('File not found:', file)\n nodes1 = sorted(graph1.nodes(), key=lambda _: repr(_))\n nodes2 = sorted(graph2.nodes(), key=lambda _: repr(_))\n edges1 = sorted(graph1.edges(), key=lambda _: repr(_))\n edges2 = sorted(graph2.edges(), key=lambda _: repr(_))\n graphs_are_isomorphic = True\n if len(nodes1) > len(nodes2):\n print('Node count in graph 1 > node count in graph 2')\n print('Difference:', [node for node in nodes1 if repr(node) not in\n repr(nodes2)])\n graphs_are_isomorphic = False\n elif len(nodes2) > len(nodes1):\n print('Node count in graph 2 > node count in graph 1')\n print('Difference:', [node for node in nodes2 if repr(node) not in\n repr(nodes1)])\n graphs_are_isomorphic = False\n if len(edges1) > len(edges2):\n print('Edge count in graph 1 > edge count in graph 2')\n print('Difference:', [edge for edge in edges1 if repr(edge) not in\n repr(edges2) and repr(tuple(reversed(edge))) not in repr(\n edges2)])\n graphs_are_isomorphic = False\n elif len(edges2) > len(edges1):\n print('Edge count in graph 2 > edge count in graph 1')\n print('Difference:', [edge for edge in edges2 if repr(edge) not in\n repr(edges1) and repr(tuple(reversed(edge))) not in repr(\n edges1)])\n graphs_are_isomorphic = False\n elif len(edges1) == len(edges1) and len([edge for edge in edges1 if\n repr(edge) not in repr(edges2) and repr(tuple(reversed(edge)))\n not in repr(edges2)]) > 0:\n print('Edge count in graph 1 = edge count in graph 2')\n print('Difference:', [edge for edge in edges2 if repr(edge) not in\n repr(edges1) and repr(tuple(reversed(edge))) not in repr(\n edges1)])\n graphs_are_isomorphic = False\n if graphs_are_isomorphic:\n print('=====> DEBUG: Graphs are isomorphic')\n else:\n print('=====> DEBUG: Graphs are NOT isomorphic')\n else:\n raise ValueError(\n \"Invalid value for mode, use mode='write' or 'compare'\")\n exit(0)\n",
"role": "user"
},
{
"content": "compare_graphs",
"role": "assistant"
}
] |
def x(self, mode):
if mode == 'MV':
return sum([_.capacity for _ in self.grid.generators()])
elif mode == 'MVLV':
cum_mv_peak_generation = sum([_.capacity for _ in self.grid.
generators()])
cum_lv_peak_generation = 0
for load_area in self.grid.grid_district.lv_load_areas():
cum_lv_peak_generation += load_area.peak_generation
return cum_mv_peak_generation + cum_lv_peak_generation
else:
raise ValueError("parameter 'mode' is invalid!")
|
peak_generation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n if mode == 'MV':\n return sum([_.capacity for _ in self.grid.generators()])\n elif mode == 'MVLV':\n cum_mv_peak_generation = sum([_.capacity for _ in self.grid.\n generators()])\n cum_lv_peak_generation = 0\n for load_area in self.grid.grid_district.lv_load_areas():\n cum_lv_peak_generation += load_area.peak_generation\n return cum_mv_peak_generation + cum_lv_peak_generation\n else:\n raise ValueError(\"parameter 'mode' is invalid!\")\n",
"role": "user"
},
{
"content": "peak_generation",
"role": "assistant"
}
] |
def x(self):
mv_station_v_level_operation = float(cfg_ding0.get(
'mv_routing_tech_constraints', 'mv_station_v_level_operation'))
self.v_level_operation = mv_station_v_level_operation * self.grid.v_level
|
set_operation_voltage_level
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mv_station_v_level_operation = float(cfg_ding0.get(\n 'mv_routing_tech_constraints', 'mv_station_v_level_operation'))\n self.v_level_operation = mv_station_v_level_operation * self.grid.v_level\n",
"role": "user"
},
{
"content": "set_operation_voltage_level",
"role": "assistant"
}
] |
def x(self):
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')
load_factor_mv_trans_lc_normal = float(cfg_ding0.get('assumptions',
'load_factor_mv_trans_lc_normal'))
load_factor_mv_trans_fc_normal = float(cfg_ding0.get('assumptions',
'load_factor_mv_trans_fc_normal'))
trafo_parameters = self.grid.network.static_data['MV_trafos']
cum_peak_load = self.peak_load / cos_phi_load
cum_peak_generation = self.peak_generation(mode='MVLV') / cos_phi_feedin
if (cum_peak_load / load_factor_mv_trans_lc_normal >
cum_peak_generation / load_factor_mv_trans_fc_normal):
load_factor_mv_trans = load_factor_mv_trans_lc_normal
residual_apparent_power = cum_peak_load
else:
load_factor_mv_trans = load_factor_mv_trans_fc_normal
residual_apparent_power = cum_peak_generation
transformer_max = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmax()]
while residual_apparent_power > 0:
if residual_apparent_power > load_factor_mv_trans * transformer_max[
'S_nom']:
transformer = transformer_max
else:
transformer = trafo_parameters.iloc[trafo_parameters[
trafo_parameters['S_nom'] * load_factor_mv_trans >
residual_apparent_power]['S_nom'].idxmin()]
self.add_transformer(TransformerDing0(**{'grid': self.grid,
'v_level': self.grid.v_level, 's_max_longterm': transformer[
'S_nom']}))
residual_apparent_power -= load_factor_mv_trans * transformer['S_nom']
if len(self._transformers) == 0:
transformer = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmin()]
self.add_transformer(TransformerDing0(grid=self.grid, v_level=self.
grid.v_level, s_max_longterm=transformer['S_nom']))
s_max_max = max(o.s_max_a for o in self._transformers)
self.add_transformer(TransformerDing0(**{'grid': self.grid, 'v_level':
self.grid.v_level, 's_max_longterm': s_max_max}))
|
select_transformers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')\n load_factor_mv_trans_lc_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_trans_lc_normal'))\n load_factor_mv_trans_fc_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_trans_fc_normal'))\n trafo_parameters = self.grid.network.static_data['MV_trafos']\n cum_peak_load = self.peak_load / cos_phi_load\n cum_peak_generation = self.peak_generation(mode='MVLV') / cos_phi_feedin\n if (cum_peak_load / load_factor_mv_trans_lc_normal > \n cum_peak_generation / load_factor_mv_trans_fc_normal):\n load_factor_mv_trans = load_factor_mv_trans_lc_normal\n residual_apparent_power = cum_peak_load\n else:\n load_factor_mv_trans = load_factor_mv_trans_fc_normal\n residual_apparent_power = cum_peak_generation\n transformer_max = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmax()]\n while residual_apparent_power > 0:\n if residual_apparent_power > load_factor_mv_trans * transformer_max[\n 'S_nom']:\n transformer = transformer_max\n else:\n transformer = trafo_parameters.iloc[trafo_parameters[\n trafo_parameters['S_nom'] * load_factor_mv_trans >\n residual_apparent_power]['S_nom'].idxmin()]\n self.add_transformer(TransformerDing0(**{'grid': self.grid,\n 'v_level': self.grid.v_level, 's_max_longterm': transformer[\n 'S_nom']}))\n residual_apparent_power -= load_factor_mv_trans * transformer['S_nom']\n if len(self._transformers) == 0:\n transformer = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmin()]\n self.add_transformer(TransformerDing0(grid=self.grid, v_level=self.\n grid.v_level, s_max_longterm=transformer['S_nom']))\n s_max_max = max(o.s_max_a for o in self._transformers)\n self.add_transformer(TransformerDing0(**{'grid': self.grid, 'v_level':\n self.grid.v_level, 's_max_longterm': s_max_max}))\n",
"role": "user"
},
{
"content": "select_transformers",
"role": "assistant"
}
] |
def x(self):
return '_'.join(['MV', str(self.grid.grid_district.lv_load_area.
mv_grid_district.mv_grid.id_db), 'tru', str(self.id_db)])
|
pypsa_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return '_'.join(['MV', str(self.grid.grid_district.lv_load_area.\n mv_grid_district.mv_grid.id_db), 'tru', str(self.id_db)])\n",
"role": "user"
},
{
"content": "pypsa_id",
"role": "assistant"
}
] |
def x(base_path):
if not os.path.exists(base_path):
print('Creating directory {} for results data.'.format(base_path))
os.mkdir(base_path)
if not os.path.exists(os.path.join(base_path, 'results')):
os.mkdir(os.path.join(base_path, 'results'))
if not os.path.exists(os.path.join(base_path, 'plots')):
os.mkdir(os.path.join(base_path, 'plots'))
if not os.path.exists(os.path.join(base_path, 'info')):
os.mkdir(os.path.join(base_path, 'info'))
if not os.path.exists(os.path.join(base_path, 'log')):
os.mkdir(os.path.join(base_path, 'log'))
|
create_results_dirs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(base_path):\n if not os.path.exists(base_path):\n print('Creating directory {} for results data.'.format(base_path))\n os.mkdir(base_path)\n if not os.path.exists(os.path.join(base_path, 'results')):\n os.mkdir(os.path.join(base_path, 'results'))\n if not os.path.exists(os.path.join(base_path, 'plots')):\n os.mkdir(os.path.join(base_path, 'plots'))\n if not os.path.exists(os.path.join(base_path, 'info')):\n os.mkdir(os.path.join(base_path, 'info'))\n if not os.path.exists(os.path.join(base_path, 'log')):\n os.mkdir(os.path.join(base_path, 'log'))\n",
"role": "user"
},
{
"content": "create_results_dirs",
"role": "assistant"
}
] |
def x(mv_grid_districts, run_id, failsafe=False, base_path=None):
start = time.time()
if base_path is None:
base_path = BASEPATH
engine = db.connection(section='oedb')
session = sessionmaker(bind=engine)()
corrupt_grid_districts = pd.DataFrame(columns=['id', 'message'])
for mvgd in mv_grid_districts:
nd = NetworkDing0(name='network', run_id=run_id)
if not os.path.exists(os.path.join(base_path, 'grids')):
os.mkdir(os.path.join(base_path, 'grids'))
if not failsafe:
msg = nd.run_ding0(session=session, mv_grid_districts_no=[mvgd])
results.save_nd_to_pickle(nd, os.path.join(base_path, 'grids'))
else:
try:
msg = nd.run_ding0(session=session, mv_grid_districts_no=[mvgd]
)
if msg:
corrupt_grid_districts = corrupt_grid_districts.append(pd
.Series({'id': mvgd, 'message': msg[0]}),
ignore_index=True)
else:
results.save_nd_to_pickle(nd, os.path.join(base_path,
'grids'))
except Exception as e:
corrupt_grid_districts = corrupt_grid_districts.append(pd.
Series({'id': mvgd, 'message': e}), ignore_index=True)
continue
if 'metadata' not in locals():
metadata = nd.metadata
elif isinstance(mvgd, list):
metadata['mv_grid_districts'].extend(mvgd)
else:
metadata['mv_grid_districts'].append(mvgd)
with open(os.path.join(base_path, 'grids', 'Ding0_{}.meta'.format(
run_id)), 'w') as f:
json.dump(metadata, f)
corrupt_grid_districts.to_csv(os.path.join(base_path, 'grids',
'corrupt_mv_grid_districts.txt'), index=False, float_format='%.0f')
print('Elapsed time for', str(len(mv_grid_districts)),
'MV grid districts (seconds): {}'.format(time.time() - start))
return msg
|
run_multiple_grid_districts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mv_grid_districts, run_id, failsafe=False, base_path=None):\n start = time.time()\n if base_path is None:\n base_path = BASEPATH\n engine = db.connection(section='oedb')\n session = sessionmaker(bind=engine)()\n corrupt_grid_districts = pd.DataFrame(columns=['id', 'message'])\n for mvgd in mv_grid_districts:\n nd = NetworkDing0(name='network', run_id=run_id)\n if not os.path.exists(os.path.join(base_path, 'grids')):\n os.mkdir(os.path.join(base_path, 'grids'))\n if not failsafe:\n msg = nd.run_ding0(session=session, mv_grid_districts_no=[mvgd])\n results.save_nd_to_pickle(nd, os.path.join(base_path, 'grids'))\n else:\n try:\n msg = nd.run_ding0(session=session, mv_grid_districts_no=[mvgd]\n )\n if msg:\n corrupt_grid_districts = corrupt_grid_districts.append(pd\n .Series({'id': mvgd, 'message': msg[0]}),\n ignore_index=True)\n else:\n results.save_nd_to_pickle(nd, os.path.join(base_path,\n 'grids'))\n except Exception as e:\n corrupt_grid_districts = corrupt_grid_districts.append(pd.\n Series({'id': mvgd, 'message': e}), ignore_index=True)\n continue\n if 'metadata' not in locals():\n metadata = nd.metadata\n elif isinstance(mvgd, list):\n metadata['mv_grid_districts'].extend(mvgd)\n else:\n metadata['mv_grid_districts'].append(mvgd)\n with open(os.path.join(base_path, 'grids', 'Ding0_{}.meta'.format(\n run_id)), 'w') as f:\n json.dump(metadata, f)\n corrupt_grid_districts.to_csv(os.path.join(base_path, 'grids',\n 'corrupt_mv_grid_districts.txt'), index=False, float_format='%.0f')\n print('Elapsed time for', str(len(mv_grid_districts)),\n 'MV grid districts (seconds): {}'.format(time.time() - start))\n return msg\n",
"role": "user"
},
{
"content": "run_multiple_grid_districts",
"role": "assistant"
}
] |
def x(filename):
package_path = ding0.__path__[0]
FILE = path.join(package_path, 'config', filename)
try:
cfg.read(FILE)
global _loaded
_loaded = True
except:
logger.exception('configfile not found.')
|
load_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n package_path = ding0.__path__[0]\n FILE = path.join(package_path, 'config', filename)\n try:\n cfg.read(FILE)\n global _loaded\n _loaded = True\n except:\n logger.exception('configfile not found.')\n",
"role": "user"
},
{
"content": "load_config",
"role": "assistant"
}
] |
def x(section, key, value):
if not _loaded:
init()
if not cfg.has_section(section):
cfg.add_section(section)
cfg.set(section, key, value)
with open(FILE, 'w') as configfile:
cfg.write(configfile)
|
set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(section, key, value):\n if not _loaded:\n init()\n if not cfg.has_section(section):\n cfg.add_section(section)\n cfg.set(section, key, value)\n with open(FILE, 'w') as configfile:\n cfg.write(configfile)\n",
"role": "user"
},
{
"content": "set",
"role": "assistant"
}
] |
def x(f):
depots = []
for line in f:
line = strip(line)
if line == '-1' or line == 'EOF':
break
else:
depots.append(line)
if len(depots) != 1:
raise ParseException('One and only one depot is supported')
return int(depots[0])
|
parse_depot_section
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f):\n depots = []\n for line in f:\n line = strip(line)\n if line == '-1' or line == 'EOF':\n break\n else:\n depots.append(line)\n if len(depots) != 1:\n raise ParseException('One and only one depot is supported')\n return int(depots[0])\n",
"role": "user"
},
{
"content": "parse_depot_section",
"role": "assistant"
}
] |
def x(f, current_section, nodes):
section = {}
dimensions = None
if current_section == 'NODE_COORD_SECTION':
dimensions = 3
elif current_section == 'DEMAND_SECTION':
dimensions = 2
else:
raise ParseException('Invalid section {}'.format(current_section))
n = 0
for line in f:
line = strip(line)
definitions = re.split('\\s*', line)
if len(definitions) != dimensions:
raise ParseException(
'Invalid dimensions from section {}. Expected: {}'.format(
current_section, dimensions))
node = int(definitions[0])
values = [int(v) for v in definitions[1:]]
if len(values) == 1:
values = values[0]
section[node] = values
n = n + 1
if n == nodes:
break
if n != nodes:
raise ParseException('Missing {} nodes definition from section {}'.
format(nodes - n, current_section))
return section
|
parse_nodes_section
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, current_section, nodes):\n section = {}\n dimensions = None\n if current_section == 'NODE_COORD_SECTION':\n dimensions = 3\n elif current_section == 'DEMAND_SECTION':\n dimensions = 2\n else:\n raise ParseException('Invalid section {}'.format(current_section))\n n = 0\n for line in f:\n line = strip(line)\n definitions = re.split('\\\\s*', line)\n if len(definitions) != dimensions:\n raise ParseException(\n 'Invalid dimensions from section {}. Expected: {}'.format(\n current_section, dimensions))\n node = int(definitions[0])\n values = [int(v) for v in definitions[1:]]\n if len(values) == 1:\n values = values[0]\n section[node] = values\n n = n + 1\n if n == nodes:\n break\n if n != nodes:\n raise ParseException('Missing {} nodes definition from section {}'.\n format(nodes - n, current_section))\n return section\n",
"role": "user"
},
{
"content": "parse_nodes_section",
"role": "assistant"
}
] |
def x(f, nodes):
matrix = []
n = 0
for line in f:
line = strip(line)
regex = re.compile('\\s+')
row = regex.split(line)
matrix.append(row)
n = n + 1
if n == nodes:
break
if n != nodes:
raise ParseException(
'Missing {} nodes definition from section EDGE_WEIGHT_SECTION'.
format(nodes - n))
return matrix
|
parse_edge_weight
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, nodes):\n matrix = []\n n = 0\n for line in f:\n line = strip(line)\n regex = re.compile('\\\\s+')\n row = regex.split(line)\n matrix.append(row)\n n = n + 1\n if n == nodes:\n break\n if n != nodes:\n raise ParseException(\n 'Missing {} nodes definition from section EDGE_WEIGHT_SECTION'.\n format(nodes - n))\n return matrix\n",
"role": "user"
},
{
"content": "parse_edge_weight",
"role": "assistant"
}
] |
def x(a, b):
x1, y1 = a
x2, y2 = b
return int(round(math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)))
|
calculate_euc_distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b):\n x1, y1 = a\n x2, y2 = b\n return int(round(math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)))\n",
"role": "user"
},
{
"content": "calculate_euc_distance",
"role": "assistant"
}
] |
def x(specs):
integer_specs = ['DIMENSION', 'CAPACITY']
for s in integer_specs:
specs[s] = int(specs[s])
|
post_process_specs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(specs):\n integer_specs = ['DIMENSION', 'CAPACITY']\n for s in integer_specs:\n specs[s] = int(specs[s])\n",
"role": "user"
},
{
"content": "post_process_specs",
"role": "assistant"
}
] |
def x(specs):
distances = specs['NODE_COORD_SECTION']
specs['MATRIX'] = {}
for i in distances:
origin = tuple(distances[i])
specs['MATRIX'][i] = {}
for j in specs['NODE_COORD_SECTION']:
destination = tuple(distances[j])
distance = calculate_euc_distance(origin, destination)
specs['MATRIX'][i][j] = distance
|
create_node_matrix_from_coord_section
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(specs):\n distances = specs['NODE_COORD_SECTION']\n specs['MATRIX'] = {}\n for i in distances:\n origin = tuple(distances[i])\n specs['MATRIX'][i] = {}\n for j in specs['NODE_COORD_SECTION']:\n destination = tuple(distances[j])\n distance = calculate_euc_distance(origin, destination)\n specs['MATRIX'][i][j] = distance\n",
"role": "user"
},
{
"content": "create_node_matrix_from_coord_section",
"role": "assistant"
}
] |
def x(specs):
old_matrix = specs['EDGE_WEIGHT_SECTION']
nodes = specs['DIMENSION']
specs['MATRIX'] = {}
for i in range(nodes):
specs['MATRIX'][i + 1] = {}
for j in range(nodes):
if i > j:
continue
specs['MATRIX'][i + 1][j + 1] = int(old_matrix[i][j])
|
create_node_matrix_from_full_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(specs):\n old_matrix = specs['EDGE_WEIGHT_SECTION']\n nodes = specs['DIMENSION']\n specs['MATRIX'] = {}\n for i in range(nodes):\n specs['MATRIX'][i + 1] = {}\n for j in range(nodes):\n if i > j:\n continue\n specs['MATRIX'][i + 1][j + 1] = int(old_matrix[i][j])\n",
"role": "user"
},
{
"content": "create_node_matrix_from_full_matrix",
"role": "assistant"
}
] |
def x(f):
line = ''
specs = {}
used_specs = ['NAME', 'COMMENT', 'DIMENSION', 'CAPACITY', 'TYPE',
'EDGE_WEIGHT_TYPE']
used_data = ['DEMAND_SECTION', 'DEPOT_SECTION']
for line in f:
line = strip(line)
s = None
for s in used_specs:
if line.startswith(s):
specs[s] = line.split('{} :'.format(s))[-1].strip()
break
if s == 'EDGE_WEIGHT_TYPE' and s in specs and specs[s] == 'EXPLICIT':
used_specs.append('EDGE_WEIGHT_FORMAT')
if len(specs) == len(used_specs):
break
if len(specs) != len(used_specs):
missing_specs = set(used_specs).symmetric_difference(set(specs))
raise ParseException('Error parsing TSPLIB data: specs {} missing'.
format(missing_specs))
print(specs)
if specs['EDGE_WEIGHT_TYPE'] == 'EUC_2D':
used_data.append('NODE_COORD_SECTION')
elif specs['EDGE_WEIGHT_FORMAT'] == 'FULL_MATRIX':
used_data.append('EDGE_WEIGHT_SECTION')
else:
raise ParseException(
'EDGE_WEIGHT_TYPE or EDGE_WEIGHT_FORMAT not supported')
_post_process_specs(specs)
for line in f:
line = strip(line)
for d in used_data:
if line.startswith(d):
if d == 'DEPOT_SECTION':
specs[d] = _parse_depot_section(f)
elif d in ['NODE_COORD_SECTION', 'DEMAND_SECTION']:
specs[d] = _parse_nodes_section(f, d, specs['DIMENSION'])
elif d == 'EDGE_WEIGHT_SECTION':
specs[d] = _parse_edge_weight(f, specs['DIMENSION'])
if len(specs) == len(used_specs) + len(used_data):
break
if len(specs) != len(used_specs) + len(used_data):
missing_specs = set(specs).symmetric_difference(set(used_specs).
union(set(used_data)))
raise ParseException('Error parsing TSPLIB data: specs {} missing'.
format(missing_specs))
_post_process_data(specs)
return specs
|
parse_tsplib
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f):\n line = ''\n specs = {}\n used_specs = ['NAME', 'COMMENT', 'DIMENSION', 'CAPACITY', 'TYPE',\n 'EDGE_WEIGHT_TYPE']\n used_data = ['DEMAND_SECTION', 'DEPOT_SECTION']\n for line in f:\n line = strip(line)\n s = None\n for s in used_specs:\n if line.startswith(s):\n specs[s] = line.split('{} :'.format(s))[-1].strip()\n break\n if s == 'EDGE_WEIGHT_TYPE' and s in specs and specs[s] == 'EXPLICIT':\n used_specs.append('EDGE_WEIGHT_FORMAT')\n if len(specs) == len(used_specs):\n break\n if len(specs) != len(used_specs):\n missing_specs = set(used_specs).symmetric_difference(set(specs))\n raise ParseException('Error parsing TSPLIB data: specs {} missing'.\n format(missing_specs))\n print(specs)\n if specs['EDGE_WEIGHT_TYPE'] == 'EUC_2D':\n used_data.append('NODE_COORD_SECTION')\n elif specs['EDGE_WEIGHT_FORMAT'] == 'FULL_MATRIX':\n used_data.append('EDGE_WEIGHT_SECTION')\n else:\n raise ParseException(\n 'EDGE_WEIGHT_TYPE or EDGE_WEIGHT_FORMAT not supported')\n _post_process_specs(specs)\n for line in f:\n line = strip(line)\n for d in used_data:\n if line.startswith(d):\n if d == 'DEPOT_SECTION':\n specs[d] = _parse_depot_section(f)\n elif d in ['NODE_COORD_SECTION', 'DEMAND_SECTION']:\n specs[d] = _parse_nodes_section(f, d, specs['DIMENSION'])\n elif d == 'EDGE_WEIGHT_SECTION':\n specs[d] = _parse_edge_weight(f, specs['DIMENSION'])\n if len(specs) == len(used_specs) + len(used_data):\n break\n if len(specs) != len(used_specs) + len(used_data):\n missing_specs = set(specs).symmetric_difference(set(used_specs).\n union(set(used_data)))\n raise ParseException('Error parsing TSPLIB data: specs {} missing'.\n format(missing_specs))\n _post_process_data(specs)\n return specs\n",
"role": "user"
},
{
"content": "parse_tsplib",
"role": "assistant"
}
] |
def x(filename):
sanitized_filename = sanitize(filename)
f = open(sanitized_filename)
specs = None
try:
specs = _parse_tsplib(f)
except ParseException:
raise
finally:
f.close()
if specs['TYPE'] != 'CVRP':
raise Exception('Not a CVRP TSPLIB problem. Found: {}'.format(specs
['TYPE']))
specs['VOLTAGE'] = 20000
specs['CABLETYPE'] = 1
return Graph(specs)
|
read_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n sanitized_filename = sanitize(filename)\n f = open(sanitized_filename)\n specs = None\n try:\n specs = _parse_tsplib(f)\n except ParseException:\n raise\n finally:\n f.close()\n if specs['TYPE'] != 'CVRP':\n raise Exception('Not a CVRP TSPLIB problem. Found: {}'.format(specs\n ['TYPE']))\n specs['VOLTAGE'] = 20000\n specs['CABLETYPE'] = 1\n return Graph(specs)\n",
"role": "user"
},
{
"content": "read_file",
"role": "assistant"
}
] |
def x(self, circ_breaker):
if circ_breaker not in self._circuit_breakers and isinstance(circ_breaker,
CircuitBreakerDing0):
self._circuit_breakers.append(circ_breaker)
self.graph_add_node(circ_breaker)
|
add_circuit_breaker
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, circ_breaker):\n if circ_breaker not in self._circuit_breakers and isinstance(circ_breaker,\n CircuitBreakerDing0):\n self._circuit_breakers.append(circ_breaker)\n self.graph_add_node(circ_breaker)\n",
"role": "user"
},
{
"content": "add_circuit_breaker",
"role": "assistant"
}
] |
def x(self, mv_station, force=False):
if not isinstance(mv_station, MVStationDing0):
raise Exception('Given MV station is not a MVStationDing0 object.')
if self._station is None:
self._station = mv_station
self.graph_add_node(mv_station)
elif force:
self._station = mv_station
else:
raise Exception(
'MV Station already set, use argument `force=True` to override.')
|
add_station
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mv_station, force=False):\n if not isinstance(mv_station, MVStationDing0):\n raise Exception('Given MV station is not a MVStationDing0 object.')\n if self._station is None:\n self._station = mv_station\n self.graph_add_node(mv_station)\n elif force:\n self._station = mv_station\n else:\n raise Exception(\n 'MV Station already set, use argument `force=True` to override.')\n",
"role": "user"
},
{
"content": "add_station",
"role": "assistant"
}
] |
def x(self, lv_load):
if lv_load not in self._loads and isinstance(lv_load, MVLoadDing0):
self._loads.append(lv_load)
self.graph_add_node(lv_load)
|
add_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lv_load):\n if lv_load not in self._loads and isinstance(lv_load, MVLoadDing0):\n self._loads.append(lv_load)\n self.graph_add_node(lv_load)\n",
"role": "user"
},
{
"content": "add_load",
"role": "assistant"
}
] |
def x(self, cable_dist):
if cable_dist not in self.cable_distributors() and isinstance(cable_dist,
MVCableDistributorDing0):
self._cable_distributors.append(cable_dist)
self.graph_add_node(cable_dist)
|
add_cable_distributor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cable_dist):\n if cable_dist not in self.cable_distributors() and isinstance(cable_dist,\n MVCableDistributorDing0):\n self._cable_distributors.append(cable_dist)\n self.graph_add_node(cable_dist)\n",
"role": "user"
},
{
"content": "add_cable_distributor",
"role": "assistant"
}
] |
def x(self, cable_dist):
if cable_dist in self.cable_distributors() and isinstance(cable_dist,
MVCableDistributorDing0):
self._cable_distributors.remove(cable_dist)
if self._graph.has_node(cable_dist):
self._graph.remove_node(cable_dist)
|
remove_cable_distributor
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cable_dist):\n if cable_dist in self.cable_distributors() and isinstance(cable_dist,\n MVCableDistributorDing0):\n self._cable_distributors.remove(cable_dist)\n if self._graph.has_node(cable_dist):\n self._graph.remove_node(cable_dist)\n",
"role": "user"
},
{
"content": "remove_cable_distributor",
"role": "assistant"
}
] |
def x(self, ring):
if ring not in self._rings and isinstance(ring, RingDing0):
self._rings.append(ring)
|
add_ring
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ring):\n if ring not in self._rings and isinstance(ring, RingDing0):\n self._rings.append(ring)\n",
"role": "user"
},
{
"content": "add_ring",
"role": "assistant"
}
] |
def x(self, include_root_node=False, include_satellites=False):
for circ_breaker in self.circuit_breakers():
if circ_breaker.status is 'open':
circ_breaker.close()
logger.info(
'Circuit breakers were closed in order to find MV rings')
for ring in nx.cycle_basis(self._graph, root=self._station):
if not include_root_node:
ring.remove(self._station)
if include_satellites:
ring_nodes = ring
satellites = []
for ring_node in ring:
satellites.append(self.graph_nodes_from_subtree(ring_node,
include_root_node=include_root_node))
yield ring + [_ for sublist in satellites for _ in sublist]
else:
yield ring
|
rings_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, include_root_node=False, include_satellites=False):\n for circ_breaker in self.circuit_breakers():\n if circ_breaker.status is 'open':\n circ_breaker.close()\n logger.info(\n 'Circuit breakers were closed in order to find MV rings')\n for ring in nx.cycle_basis(self._graph, root=self._station):\n if not include_root_node:\n ring.remove(self._station)\n if include_satellites:\n ring_nodes = ring\n satellites = []\n for ring_node in ring:\n satellites.append(self.graph_nodes_from_subtree(ring_node,\n include_root_node=include_root_node))\n yield ring + [_ for sublist in satellites for _ in sublist]\n else:\n yield ring\n",
"role": "user"
},
{
"content": "rings_nodes",
"role": "assistant"
}
] |
def x(self):
for circ_breaker in self.circuit_breakers():
if not circ_breaker.status == 'closed':
circ_breaker.close()
logger.info(
'Circuit breakers were closed in order to find MV rings')
for ring_nodes in nx.cycle_basis(self._graph, root=self._station):
edges_ring = []
for node in ring_nodes:
for edge in self.graph_branches_from_node(node):
nodes_in_the_branch = self.graph_nodes_from_branch(edge[1][
'branch'])
if nodes_in_the_branch[0
] in ring_nodes and nodes_in_the_branch[1] in ring_nodes:
if not edge[1]['branch'] in edges_ring:
edges_ring.append(edge[1]['branch'])
yield edges_ring[0].ring, edges_ring, ring_nodes
|
rings_full_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for circ_breaker in self.circuit_breakers():\n if not circ_breaker.status == 'closed':\n circ_breaker.close()\n logger.info(\n 'Circuit breakers were closed in order to find MV rings')\n for ring_nodes in nx.cycle_basis(self._graph, root=self._station):\n edges_ring = []\n for node in ring_nodes:\n for edge in self.graph_branches_from_node(node):\n nodes_in_the_branch = self.graph_nodes_from_branch(edge[1][\n 'branch'])\n if nodes_in_the_branch[0\n ] in ring_nodes and nodes_in_the_branch[1] in ring_nodes:\n if not edge[1]['branch'] in edges_ring:\n edges_ring.append(edge[1]['branch'])\n yield edges_ring[0].ring, edges_ring, ring_nodes\n",
"role": "user"
},
{
"content": "rings_full_data",
"role": "assistant"
}
] |
def x(self, node_source, include_root_node=False):
if node_source in self._graph.nodes():
node_ring = []
for ring in self.rings_nodes(include_root_node=include_root_node):
if node_source in ring:
node_ring = ring
break
nodes_subtree = set()
if node_source in node_ring:
for path in nx.shortest_path(self._graph, node_source).values():
if len(path) > 1:
if path[1] not in node_ring and path[1
] is not self.station():
nodes_subtree.update(path[1:len(path)])
else:
raise ValueError(node_source, 'is not member of ring.')
else:
raise ValueError(node_source, 'is not member of graph.')
return list(nodes_subtree)
|
graph_nodes_from_subtree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node_source, include_root_node=False):\n if node_source in self._graph.nodes():\n node_ring = []\n for ring in self.rings_nodes(include_root_node=include_root_node):\n if node_source in ring:\n node_ring = ring\n break\n nodes_subtree = set()\n if node_source in node_ring:\n for path in nx.shortest_path(self._graph, node_source).values():\n if len(path) > 1:\n if path[1] not in node_ring and path[1\n ] is not self.station():\n nodes_subtree.update(path[1:len(path)])\n else:\n raise ValueError(node_source, 'is not member of ring.')\n else:\n raise ValueError(node_source, 'is not member of graph.')\n return list(nodes_subtree)\n",
"role": "user"
},
{
"content": "graph_nodes_from_subtree",
"role": "assistant"
}
] |
def x(self):
ctr = 1
for branch in self.graph_edges():
branch['branch'].id_db = self.grid_district.id_db * 10 ** 4 + ctr
ctr += 1
for lv_load_area in self.grid_district.lv_load_areas():
for lv_grid_district in lv_load_area.lv_grid_districts():
ctr = 1
for branch in lv_grid_district.lv_grid.graph_edges():
branch['branch'].id_db = lv_grid_district.id_db * 10 ** 7 + ctr
ctr += 1
|
set_branch_ids
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n ctr = 1\n for branch in self.graph_edges():\n branch['branch'].id_db = self.grid_district.id_db * 10 ** 4 + ctr\n ctr += 1\n for lv_load_area in self.grid_district.lv_load_areas():\n for lv_grid_district in lv_load_area.lv_grid_districts():\n ctr = 1\n for branch in lv_grid_district.lv_grid.graph_edges():\n branch['branch'].id_db = lv_grid_district.id_db * 10 ** 7 + ctr\n ctr += 1\n",
"role": "user"
},
{
"content": "set_branch_ids",
"role": "assistant"
}
] |
def x(self, debug=False, anim=None):
self._graph = mv_routing.solve(graph=self._graph, debug=debug, anim=anim)
logger.info('==> MV Routing for {} done'.format(repr(self)))
self._graph = mv_connect.mv_connect_satellites(mv_grid=self, graph=self
._graph, mode='normal', debug=debug)
logger.info('==> MV Sat1 for {} done'.format(repr(self)))
self._graph = mv_connect.mv_connect_satellites(mv_grid=self, graph=self
._graph, mode='isolated', debug=debug)
logger.info('==> MV Sat2 for {} done'.format(repr(self)))
self._graph = mv_connect.mv_connect_stations(mv_grid_district=self.
grid_district, graph=self._graph, debug=debug)
logger.info('==> MV Stations for {} done'.format(repr(self)))
|
routing
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, debug=False, anim=None):\n self._graph = mv_routing.solve(graph=self._graph, debug=debug, anim=anim)\n logger.info('==> MV Routing for {} done'.format(repr(self)))\n self._graph = mv_connect.mv_connect_satellites(mv_grid=self, graph=self\n ._graph, mode='normal', debug=debug)\n logger.info('==> MV Sat1 for {} done'.format(repr(self)))\n self._graph = mv_connect.mv_connect_satellites(mv_grid=self, graph=self\n ._graph, mode='isolated', debug=debug)\n logger.info('==> MV Sat2 for {} done'.format(repr(self)))\n self._graph = mv_connect.mv_connect_stations(mv_grid_district=self.\n grid_district, graph=self._graph, debug=debug)\n logger.info('==> MV Stations for {} done'.format(repr(self)))\n",
"role": "user"
},
{
"content": "routing",
"role": "assistant"
}
] |
def x(self, debug=False):
self._graph = mv_connect.mv_connect_generators(self.grid_district, self
._graph, debug)
|
connect_generators
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, debug=False):\n self._graph = mv_connect.mv_connect_generators(self.grid_district, self\n ._graph, debug)\n",
"role": "user"
},
{
"content": "connect_generators",
"role": "assistant"
}
] |
def x(self, debug=False):
self.set_voltage_level()
self._station.set_operation_voltage_level()
(self.default_branch_type, self.default_branch_type_aggregated, self.
default_branch_type_settle) = self.set_default_branch_type(debug)
self.default_branch_kind_aggregated = self.default_branch_kind
self.default_branch_kind_settle = 'cable'
self._station.select_transformers()
|
parametrize_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, debug=False):\n self.set_voltage_level()\n self._station.set_operation_voltage_level()\n (self.default_branch_type, self.default_branch_type_aggregated, self.\n default_branch_type_settle) = self.set_default_branch_type(debug)\n self.default_branch_kind_aggregated = self.default_branch_kind\n self.default_branch_kind_settle = 'cable'\n self._station.select_transformers()\n",
"role": "user"
},
{
"content": "parametrize_grid",
"role": "assistant"
}
] |
def x(self, mode='distance'):
if mode == 'load_density':
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
load_density_threshold = float(cfg_ding0.get('assumptions',
'load_density_threshold'))
projection = partial(pyproj.transform, pyproj.Proj(init='epsg:4326'
), pyproj.Proj(init='epsg:3035'))
kw2mw = 0.001
sqm2sqkm = 1000000.0
load_density = self.grid_district.peak_load * kw2mw / cos_phi_load / (
transform(projection, self.grid_district.geo_data).area / sqm2sqkm)
if load_density < load_density_threshold:
self.v_level = 20
elif load_density >= load_density_threshold:
self.v_level = 10
else:
raise ValueError('load_density is invalid!')
elif mode == 'distance':
voltage_per_km_threshold = float(cfg_ding0.get('assumptions',
'voltage_per_km_threshold'))
dist_max = 0
import time
start = time.time()
for node in self.graph_nodes_sorted():
if isinstance(node, LVLoadAreaCentreDing0):
dist_node = calc_geo_dist_vincenty(self.station(), node
) / 1000.0
if dist_node > dist_max:
dist_max = dist_node
if dist_max >= voltage_per_km_threshold:
self.v_level = 20
else:
self.v_level = 10
else:
raise ValueError("parameter 'mode' is invalid!")
|
set_voltage_level
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode='distance'):\n if mode == 'load_density':\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n load_density_threshold = float(cfg_ding0.get('assumptions',\n 'load_density_threshold'))\n projection = partial(pyproj.transform, pyproj.Proj(init='epsg:4326'\n ), pyproj.Proj(init='epsg:3035'))\n kw2mw = 0.001\n sqm2sqkm = 1000000.0\n load_density = self.grid_district.peak_load * kw2mw / cos_phi_load / (\n transform(projection, self.grid_district.geo_data).area / sqm2sqkm)\n if load_density < load_density_threshold:\n self.v_level = 20\n elif load_density >= load_density_threshold:\n self.v_level = 10\n else:\n raise ValueError('load_density is invalid!')\n elif mode == 'distance':\n voltage_per_km_threshold = float(cfg_ding0.get('assumptions',\n 'voltage_per_km_threshold'))\n dist_max = 0\n import time\n start = time.time()\n for node in self.graph_nodes_sorted():\n if isinstance(node, LVLoadAreaCentreDing0):\n dist_node = calc_geo_dist_vincenty(self.station(), node\n ) / 1000.0\n if dist_node > dist_max:\n dist_max = dist_node\n if dist_max >= voltage_per_km_threshold:\n self.v_level = 20\n else:\n self.v_level = 10\n else:\n raise ValueError(\"parameter 'mode' is invalid!\")\n",
"role": "user"
},
{
"content": "set_voltage_level",
"role": "assistant"
}
] |
def x(self, debug=False):
if self.v_level == 20:
self.default_branch_kind = 'line'
elif self.v_level == 10:
self.default_branch_kind = 'cable'
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
mv_half_ring_count_max = int(cfg_ding0.get(
'mv_routing_tech_constraints', 'mv_half_ring_count_max'))
if self.default_branch_kind == 'line':
load_factor_normal = float(cfg_ding0.get('assumptions',
'load_factor_mv_line_lc_normal'))
branch_parameters = self.network.static_data['MV_overhead_lines']
branch_parameters_settle = self.network.static_data['MV_cables']
branch_parameters_settle = branch_parameters_settle[
branch_parameters_settle['U_n'] == self.v_level]
elif self.default_branch_kind == 'cable':
load_factor_normal = float(cfg_ding0.get('assumptions',
'load_factor_mv_cable_lc_normal'))
branch_parameters = self.network.static_data['MV_cables']
else:
raise ValueError(
"Grid's default_branch_kind is invalid, could not set branch parameters."
)
branch_parameters = branch_parameters[branch_parameters['U_n'] == self.
v_level]
branch_parameters = branch_parameters[branch_parameters[
'reinforce_only'] == 0].sort_values('I_max_th')
branch_type_max = branch_parameters.loc[branch_parameters['I_max_th'].
idxmax()]
self.set_nodes_aggregation_flag(branch_type_max['I_max_th'] *
load_factor_normal)
peak_current_sum = (self.grid_district.peak_load - self.grid_district.
peak_load_satellites - self.grid_district.peak_load_aggregated
) / cos_phi_load / 3 ** 0.5 / self.v_level
branch_type_settle = branch_type_settle_max = None
for idx, row in branch_parameters.iterrows():
half_ring_count = round(peak_current_sum / (row['I_max_th'] *
load_factor_normal))
if debug:
logger.debug('=== Selection of default branch type in {} ==='.
format(self))
logger.debug('Peak load= {} kVA'.format(self.grid_district.
peak_load))
logger.debug('Peak current={}'.format(peak_current_sum))
logger.debug('I_max_th={}'.format(row['I_max_th']))
logger.debug('Half ring count={}'.format(half_ring_count))
if half_ring_count <= mv_half_ring_count_max:
if self.default_branch_kind == 'line':
branch_parameters_settle_filter = branch_parameters_settle[
branch_parameters_settle['I_max_th'] - row['I_max_th'] > 0]
branch_type_settle = branch_parameters_settle_filter.loc[
branch_parameters_settle_filter['I_max_th'].idxmin()]
return row, branch_type_max, branch_type_settle
if debug:
logger.debug(
'No appropriate line/cable type could be found for {}, declare some load areas as aggregated.'
.format(self))
if self.default_branch_kind == 'line':
branch_type_settle_max = branch_parameters_settle.loc[
branch_parameters_settle['I_max_th'].idxmax()]
return branch_type_max, branch_type_max, branch_type_settle_max
|
set_default_branch_type
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, debug=False):\n if self.v_level == 20:\n self.default_branch_kind = 'line'\n elif self.v_level == 10:\n self.default_branch_kind = 'cable'\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n mv_half_ring_count_max = int(cfg_ding0.get(\n 'mv_routing_tech_constraints', 'mv_half_ring_count_max'))\n if self.default_branch_kind == 'line':\n load_factor_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_line_lc_normal'))\n branch_parameters = self.network.static_data['MV_overhead_lines']\n branch_parameters_settle = self.network.static_data['MV_cables']\n branch_parameters_settle = branch_parameters_settle[\n branch_parameters_settle['U_n'] == self.v_level]\n elif self.default_branch_kind == 'cable':\n load_factor_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_cable_lc_normal'))\n branch_parameters = self.network.static_data['MV_cables']\n else:\n raise ValueError(\n \"Grid's default_branch_kind is invalid, could not set branch parameters.\"\n )\n branch_parameters = branch_parameters[branch_parameters['U_n'] == self.\n v_level]\n branch_parameters = branch_parameters[branch_parameters[\n 'reinforce_only'] == 0].sort_values('I_max_th')\n branch_type_max = branch_parameters.loc[branch_parameters['I_max_th'].\n idxmax()]\n self.set_nodes_aggregation_flag(branch_type_max['I_max_th'] *\n load_factor_normal)\n peak_current_sum = (self.grid_district.peak_load - self.grid_district.\n peak_load_satellites - self.grid_district.peak_load_aggregated\n ) / cos_phi_load / 3 ** 0.5 / self.v_level\n branch_type_settle = branch_type_settle_max = None\n for idx, row in branch_parameters.iterrows():\n half_ring_count = round(peak_current_sum / (row['I_max_th'] *\n load_factor_normal))\n if debug:\n logger.debug('=== Selection of default branch type in {} ==='.\n format(self))\n logger.debug('Peak load= {} kVA'.format(self.grid_district.\n peak_load))\n logger.debug('Peak current={}'.format(peak_current_sum))\n logger.debug('I_max_th={}'.format(row['I_max_th']))\n logger.debug('Half ring count={}'.format(half_ring_count))\n if half_ring_count <= mv_half_ring_count_max:\n if self.default_branch_kind == 'line':\n branch_parameters_settle_filter = branch_parameters_settle[\n branch_parameters_settle['I_max_th'] - row['I_max_th'] > 0]\n branch_type_settle = branch_parameters_settle_filter.loc[\n branch_parameters_settle_filter['I_max_th'].idxmin()]\n return row, branch_type_max, branch_type_settle\n if debug:\n logger.debug(\n 'No appropriate line/cable type could be found for {}, declare some load areas as aggregated.'\n .format(self))\n if self.default_branch_kind == 'line':\n branch_type_settle_max = branch_parameters_settle.loc[\n branch_parameters_settle['I_max_th'].idxmax()]\n return branch_type_max, branch_type_max, branch_type_settle_max\n",
"role": "user"
},
{
"content": "set_default_branch_type",
"role": "assistant"
}
] |
def x(self, peak_current_branch_max):
for lv_load_area in self.grid_district.lv_load_areas():
peak_current_node = lv_load_area.peak_load / 3 ** 0.5 / self.v_level
if peak_current_node > peak_current_branch_max:
lv_load_area.is_aggregated = True
self.grid_district.add_aggregated_peak_demand()
|
set_nodes_aggregation_flag
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, peak_current_branch_max):\n for lv_load_area in self.grid_district.lv_load_areas():\n peak_current_node = lv_load_area.peak_load / 3 ** 0.5 / self.v_level\n if peak_current_node > peak_current_branch_max:\n lv_load_area.is_aggregated = True\n self.grid_district.add_aggregated_peak_demand()\n",
"role": "user"
},
{
"content": "set_nodes_aggregation_flag",
"role": "assistant"
}
] |
def x(self, session, method='onthefly'):
temp_id = 1
timesteps = 2
start_time = datetime(1970, 1, 1, 0, 0, 0)
resolution = 'H'
nodes = self._graph.nodes()
edges = [edge for edge in list(self.graph_edges()) if (edge['adj_nodes'
][0] in nodes and not isinstance(edge['adj_nodes'][0],
LVLoadAreaCentreDing0)) and (edge['adj_nodes'][1] in nodes and not
isinstance(edge['adj_nodes'][1], LVLoadAreaCentreDing0))]
if method == 'db':
pypsa_io.export_nodes(self, session, nodes, temp_id, lv_transformer
=False)
pypsa_io.export_edges(self, session, edges)
pypsa_io.create_temp_resolution_table(session, timesteps=timesteps,
resolution=resolution, start_time=start_time)
elif method == 'onthefly':
nodes_dict, components_data = pypsa_io.nodes_to_dict_of_dataframes(self
, nodes, lv_transformer=False)
edges_dict = pypsa_io.edges_to_dict_of_dataframes(self, edges)
components = tools.merge_two_dicts(nodes_dict, edges_dict)
return components, components_data
else:
raise ValueError('Sorry, this export method does not exist!')
|
export_to_pypsa
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, method='onthefly'):\n temp_id = 1\n timesteps = 2\n start_time = datetime(1970, 1, 1, 0, 0, 0)\n resolution = 'H'\n nodes = self._graph.nodes()\n edges = [edge for edge in list(self.graph_edges()) if (edge['adj_nodes'\n ][0] in nodes and not isinstance(edge['adj_nodes'][0],\n LVLoadAreaCentreDing0)) and (edge['adj_nodes'][1] in nodes and not\n isinstance(edge['adj_nodes'][1], LVLoadAreaCentreDing0))]\n if method == 'db':\n pypsa_io.export_nodes(self, session, nodes, temp_id, lv_transformer\n =False)\n pypsa_io.export_edges(self, session, edges)\n pypsa_io.create_temp_resolution_table(session, timesteps=timesteps,\n resolution=resolution, start_time=start_time)\n elif method == 'onthefly':\n nodes_dict, components_data = pypsa_io.nodes_to_dict_of_dataframes(self\n , nodes, lv_transformer=False)\n edges_dict = pypsa_io.edges_to_dict_of_dataframes(self, edges)\n components = tools.merge_two_dicts(nodes_dict, edges_dict)\n return components, components_data\n else:\n raise ValueError('Sorry, this export method does not exist!')\n",
"role": "user"
},
{
"content": "export_to_pypsa",
"role": "assistant"
}
] |
def x(self, session, export_pypsa_dir=None, method='onthefly', debug=False):
if method == 'db':
raise NotImplementedError("Please use 'onthefly'.")
elif method == 'onthefly':
components, components_data = self.export_to_pypsa(session, method)
pypsa_io.run_powerflow_onthefly(components, components_data, self,
export_pypsa_dir=export_pypsa_dir, debug=debug)
|
run_powerflow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, export_pypsa_dir=None, method='onthefly', debug=False):\n if method == 'db':\n raise NotImplementedError(\"Please use 'onthefly'.\")\n elif method == 'onthefly':\n components, components_data = self.export_to_pypsa(session, method)\n pypsa_io.run_powerflow_onthefly(components, components_data, self,\n export_pypsa_dir=export_pypsa_dir, debug=debug)\n",
"role": "user"
},
{
"content": "run_powerflow",
"role": "assistant"
}
] |
def x(self, session):
pypsa_io.import_pfa_bus_results(session, self)
pypsa_io.import_pfa_line_results(session, self)
|
import_powerflow_results
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session):\n pypsa_io.import_pfa_bus_results(session, self)\n pypsa_io.import_pfa_line_results(session, self)\n",
"role": "user"
},
{
"content": "import_powerflow_results",
"role": "assistant"
}
] |
def x(self, lv_station):
if not isinstance(lv_station, LVStationDing0):
raise Exception('Given LV station is not a LVStationDing0 object.')
if self._station is None:
self._station = lv_station
self.graph_add_node(lv_station)
self.grid_district.lv_load_area.mv_grid_district.mv_grid.graph_add_node(
lv_station)
|
add_station
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lv_station):\n if not isinstance(lv_station, LVStationDing0):\n raise Exception('Given LV station is not a LVStationDing0 object.')\n if self._station is None:\n self._station = lv_station\n self.graph_add_node(lv_station)\n self.grid_district.lv_load_area.mv_grid_district.mv_grid.graph_add_node(\n lv_station)\n",
"role": "user"
},
{
"content": "add_station",
"role": "assistant"
}
] |
def x(self, sector='res'):
for load in self._loads:
if sector == 'res' and load.string_id is not None:
yield load
elif sector == 'ria' and load.string_id is None:
yield load
|
loads_sector
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sector='res'):\n for load in self._loads:\n if sector == 'res' and load.string_id is not None:\n yield load\n elif sector == 'ria' and load.string_id is None:\n yield load\n",
"role": "user"
},
{
"content": "loads_sector",
"role": "assistant"
}
] |
def x(self, lv_load):
if lv_load not in self._loads and isinstance(lv_load, LVLoadDing0):
self._loads.append(lv_load)
self.graph_add_node(lv_load)
|
add_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lv_load):\n if lv_load not in self._loads and isinstance(lv_load, LVLoadDing0):\n self._loads.append(lv_load)\n self.graph_add_node(lv_load)\n",
"role": "user"
},
{
"content": "add_load",
"role": "assistant"
}
] |
def x(self, lv_cable_dist):
if lv_cable_dist not in self._cable_distributors and isinstance(
lv_cable_dist, LVCableDistributorDing0):
self._cable_distributors.append(lv_cable_dist)
self.graph_add_node(lv_cable_dist)
|
add_cable_dist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lv_cable_dist):\n if lv_cable_dist not in self._cable_distributors and isinstance(\n lv_cable_dist, LVCableDistributorDing0):\n self._cable_distributors.append(lv_cable_dist)\n self.graph_add_node(lv_cable_dist)\n",
"role": "user"
},
{
"content": "add_cable_dist",
"role": "assistant"
}
] |
def x(self):
build_grid.transformer(self)
build_grid.build_ret_ind_agr_branches(self.grid_district)
build_grid.build_residential_branches(self.grid_district)
|
build_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n build_grid.transformer(self)\n build_grid.build_ret_ind_agr_branches(self.grid_district)\n build_grid.build_residential_branches(self.grid_district)\n",
"role": "user"
},
{
"content": "build_grid",
"role": "assistant"
}
] |
def x(self, debug=False):
self._graph = lv_connect.lv_connect_generators(self.grid_district, self
._graph, debug)
|
connect_generators
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, debug=False):\n self._graph = lv_connect.lv_connect_generators(self.grid_district, self\n ._graph, debug)\n",
"role": "user"
},
{
"content": "connect_generators",
"role": "assistant"
}
] |
def x(self):
new_route = self.__class__(self._problem)
for node in self.nodes():
new_node = node.__class__(node._name, node._demand)
new_route.allocate([new_node])
return new_route
|
clone
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n new_route = self.__class__(self._problem)\n for node in self.nodes():\n new_node = node.__class__(node._name, node._demand)\n new_route.allocate([new_node])\n return new_route\n",
"role": "user"
},
{
"content": "clone",
"role": "assistant"
}
] |
def x(self):
cost = 0
depot = self._problem.depot()
last = depot
for i in self._nodes:
a, b = last, i
if a.name() > b.name():
a, b = b, a
cost = cost + self._problem.distance(a, b)
last = i
cost = cost + self._problem.distance(depot, last)
return cost
|
length
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n cost = 0\n depot = self._problem.depot()\n last = depot\n for i in self._nodes:\n a, b = last, i\n if a.name() > b.name():\n a, b = b, a\n cost = cost + self._problem.distance(a, b)\n last = i\n cost = cost + self._problem.distance(depot, last)\n return cost\n",
"role": "user"
},
{
"content": "length",
"role": "assistant"
}
] |
def x(self, nodelist):
cost = 0
for n1, n2 in zip(nodelist[0:len(nodelist) - 1], nodelist[1:len(nodelist)]
):
cost += self._problem.distance(n1, n2)
return cost
|
length_from_nodelist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nodelist):\n cost = 0\n for n1, n2 in zip(nodelist[0:len(nodelist) - 1], nodelist[1:len(nodelist)]\n ):\n cost += self._problem.distance(n1, n2)\n return cost\n",
"role": "user"
},
{
"content": "length_from_nodelist",
"role": "assistant"
}
] |
def x(self, nodes, pos=None):
new_route = self.clone()
new_nodes = [node.clone() for node in nodes]
if pos is None:
pos = len(self._nodes)
new_route._nodes = new_route._nodes[:pos] + new_nodes + new_route._nodes[
pos:]
new_route._demand = sum([node.demand() for node in new_route._nodes])
if new_route.tech_constraints_satisfied():
return True
return False
|
can_allocate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nodes, pos=None):\n new_route = self.clone()\n new_nodes = [node.clone() for node in nodes]\n if pos is None:\n pos = len(self._nodes)\n new_route._nodes = new_route._nodes[:pos] + new_nodes + new_route._nodes[\n pos:]\n new_route._demand = sum([node.demand() for node in new_route._nodes])\n if new_route.tech_constraints_satisfied():\n return True\n return False\n",
"role": "user"
},
{
"content": "can_allocate",
"role": "assistant"
}
] |
def x(self, nodes, append=True):
nodes_demand = 0
for node in [node for node in nodes]:
if node._allocation:
node._allocation.deallocate([node])
node._allocation = self
nodes_demand = nodes_demand + node.demand()
if append:
self._nodes.append(node)
else:
self._nodes.insert(0, node)
self._demand = self._demand + nodes_demand
|
allocate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nodes, append=True):\n nodes_demand = 0\n for node in [node for node in nodes]:\n if node._allocation:\n node._allocation.deallocate([node])\n node._allocation = self\n nodes_demand = nodes_demand + node.demand()\n if append:\n self._nodes.append(node)\n else:\n self._nodes.insert(0, node)\n self._demand = self._demand + nodes_demand\n",
"role": "user"
},
{
"content": "allocate",
"role": "assistant"
}
] |
def x(self, nodes):
nodes_demand = 0
for node in nodes:
self._nodes.remove(node)
node._allocation = None
nodes_demand = nodes_demand + node.demand()
self._demand = self._demand - nodes_demand
if self._demand < 0:
raise Exception('Trying to deallocate more than previously allocated')
|
deallocate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nodes):\n nodes_demand = 0\n for node in nodes:\n self._nodes.remove(node)\n node._allocation = None\n nodes_demand = nodes_demand + node.demand()\n self._demand = self._demand - nodes_demand\n if self._demand < 0:\n raise Exception('Trying to deallocate more than previously allocated')\n",
"role": "user"
},
{
"content": "deallocate",
"role": "assistant"
}
] |
def x(self, nodes, pos):
node_list = []
nodes_demand = 0
for node in [node for node in nodes]:
if node._allocation:
node._allocation.deallocate([node])
node_list.append(node)
node._allocation = self
nodes_demand = nodes_demand + node.demand()
self._nodes = self._nodes[:pos] + node_list + self._nodes[pos:]
self._demand += nodes_demand
|
insert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nodes, pos):\n node_list = []\n nodes_demand = 0\n for node in [node for node in nodes]:\n if node._allocation:\n node._allocation.deallocate([node])\n node_list.append(node)\n node._allocation = self\n nodes_demand = nodes_demand + node.demand()\n self._nodes = self._nodes[:pos] + node_list + self._nodes[pos:]\n self._demand += nodes_demand\n",
"role": "user"
},
{
"content": "insert",
"role": "assistant"
}
] |
def x(self, node):
return self._nodes.index(node) != 0 and self._nodes.index(node) != len(self
._nodes) - 1
|
is_interior
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node):\n return self._nodes.index(node) != 0 and self._nodes.index(node) != len(self\n ._nodes) - 1\n",
"role": "user"
},
{
"content": "is_interior",
"role": "assistant"
}
] |
def x(self, node):
return self._nodes.index(node) == len(self._nodes) - 1
|
last
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node):\n return self._nodes.index(node) == len(self._nodes) - 1\n",
"role": "user"
},
{
"content": "last",
"role": "assistant"
}
] |
def x(self, debug=False):
demand_diff_min = 10000000.0
for ctr in range(len(self._nodes)):
route_demand_part1 = sum([node.demand() for node in self._nodes[0:ctr]]
)
route_demand_part2 = sum([node.demand() for node in self._nodes[ctr
:len(self._nodes)]])
demand_diff = abs(route_demand_part1 - route_demand_part2)
if demand_diff < demand_diff_min:
demand_diff_min = demand_diff
position = ctr
if debug:
logger.debug('sum 1={}'.format(sum([node.demand() for node in self.
_nodes[0:position]])))
logger.debug('sum 2={}'.format(sum([node.demand() for node in self.
_nodes[position:len(self._nodes)]])))
logger.debug('Position of circuit breaker: {0}-{1} (sumdiff={2})'.
format(self._nodes[position - 1], self._nodes[position],
demand_diff_min))
return position
|
calc_circuit_breaker_position
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, debug=False):\n demand_diff_min = 10000000.0\n for ctr in range(len(self._nodes)):\n route_demand_part1 = sum([node.demand() for node in self._nodes[0:ctr]]\n )\n route_demand_part2 = sum([node.demand() for node in self._nodes[ctr\n :len(self._nodes)]])\n demand_diff = abs(route_demand_part1 - route_demand_part2)\n if demand_diff < demand_diff_min:\n demand_diff_min = demand_diff\n position = ctr\n if debug:\n logger.debug('sum 1={}'.format(sum([node.demand() for node in self.\n _nodes[0:position]])))\n logger.debug('sum 2={}'.format(sum([node.demand() for node in self.\n _nodes[position:len(self._nodes)]])))\n logger.debug('Position of circuit breaker: {0}-{1} (sumdiff={2})'.\n format(self._nodes[position - 1], self._nodes[position],\n demand_diff_min))\n return position\n",
"role": "user"
},
{
"content": "calc_circuit_breaker_position",
"role": "assistant"
}
] |
def x(self):
new_node = self.__class__(self._name, self._demand)
return new_node
|
clone
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n new_node = self.__class__(self._name, self._demand)\n return new_node\n",
"role": "user"
},
{
"content": "clone",
"role": "assistant"
}
] |
def x(self):
for i in sorted(self._matrix.keys(), key=lambda x: x.name()):
for j in sorted(self._matrix[i].keys(), key=lambda x: x.name()):
if i != j:
yield i, j
|
edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for i in sorted(self._matrix.keys(), key=lambda x: x.name()):\n for j in sorted(self._matrix[i].keys(), key=lambda x: x.name()):\n if i != j:\n yield i, j\n",
"role": "user"
},
{
"content": "edges",
"role": "assistant"
}
] |
def x(self, i, j):
a, b = i, j
if a.name() > b.name():
a, b = b, a
return self._matrix[self._nodes[a.name()]][self._nodes[b.name()]]
|
distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i, j):\n a, b = i, j\n if a.name() > b.name():\n a, b = b, a\n return self._matrix[self._nodes[a.name()]][self._nodes[b.name()]]\n",
"role": "user"
},
{
"content": "distance",
"role": "assistant"
}
] |
def x(grid, s_max=None):
load_factor_lv_trans_lc_normal = cfg_ding0.get('assumptions',
'load_factor_lv_trans_lc_normal')
load_factor_lv_trans_fc_normal = cfg_ding0.get('assumptions',
'load_factor_lv_trans_fc_normal')
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
cos_phi_gen = cfg_ding0.get('assumptions', 'cos_phi_gen')
trafo_parameters = grid.network.static_data['LV_trafos']
if s_max is None:
s_max_load = grid.grid_district.peak_load / cos_phi_load
s_max_gen = grid.station().peak_generation / cos_phi_gen
if s_max_load > s_max_gen:
load_factor_lv_trans = load_factor_lv_trans_lc_normal
s_max = s_max_load
else:
load_factor_lv_trans = load_factor_lv_trans_fc_normal
s_max = s_max_gen
else:
if s_max['case'] == 'load':
load_factor_lv_trans = load_factor_lv_trans_lc_normal
elif s_max['case'] == 'gen':
load_factor_lv_trans = load_factor_lv_trans_fc_normal
else:
logger.error("No proper 'case' provided for argument s_max")
raise ValueError(
"Please provide proper 'case' for argument `s_max`.")
s_max = s_max['s_max']
transformer_max = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmax()]
if s_max < transformer_max['S_nom'] * load_factor_lv_trans:
transformer = trafo_parameters.iloc[trafo_parameters[
trafo_parameters['S_nom'] * load_factor_lv_trans > s_max][
'S_nom'].idxmin()]
transformer_cnt = 1
else:
transformer_cnt = 2
while not any(trafo_parameters['S_nom'] * load_factor_lv_trans >
s_max / transformer_cnt):
transformer_cnt += 1
transformer = trafo_parameters.iloc[trafo_parameters[
trafo_parameters['S_nom'] * load_factor_lv_trans > s_max /
transformer_cnt]['S_nom'].idxmin()]
return transformer, transformer_cnt
|
select_transformers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, s_max=None):\n load_factor_lv_trans_lc_normal = cfg_ding0.get('assumptions',\n 'load_factor_lv_trans_lc_normal')\n load_factor_lv_trans_fc_normal = cfg_ding0.get('assumptions',\n 'load_factor_lv_trans_fc_normal')\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n cos_phi_gen = cfg_ding0.get('assumptions', 'cos_phi_gen')\n trafo_parameters = grid.network.static_data['LV_trafos']\n if s_max is None:\n s_max_load = grid.grid_district.peak_load / cos_phi_load\n s_max_gen = grid.station().peak_generation / cos_phi_gen\n if s_max_load > s_max_gen:\n load_factor_lv_trans = load_factor_lv_trans_lc_normal\n s_max = s_max_load\n else:\n load_factor_lv_trans = load_factor_lv_trans_fc_normal\n s_max = s_max_gen\n else:\n if s_max['case'] == 'load':\n load_factor_lv_trans = load_factor_lv_trans_lc_normal\n elif s_max['case'] == 'gen':\n load_factor_lv_trans = load_factor_lv_trans_fc_normal\n else:\n logger.error(\"No proper 'case' provided for argument s_max\")\n raise ValueError(\n \"Please provide proper 'case' for argument `s_max`.\")\n s_max = s_max['s_max']\n transformer_max = trafo_parameters.iloc[trafo_parameters['S_nom'].idxmax()]\n if s_max < transformer_max['S_nom'] * load_factor_lv_trans:\n transformer = trafo_parameters.iloc[trafo_parameters[\n trafo_parameters['S_nom'] * load_factor_lv_trans > s_max][\n 'S_nom'].idxmin()]\n transformer_cnt = 1\n else:\n transformer_cnt = 2\n while not any(trafo_parameters['S_nom'] * load_factor_lv_trans > \n s_max / transformer_cnt):\n transformer_cnt += 1\n transformer = trafo_parameters.iloc[trafo_parameters[\n trafo_parameters['S_nom'] * load_factor_lv_trans > s_max /\n transformer_cnt]['S_nom'].idxmin()]\n return transformer, transformer_cnt\n",
"role": "user"
},
{
"content": "select_transformers",
"role": "assistant"
}
] |
def x(grid):
transformer, transformer_cnt = select_transformers(grid)
for t in range(0, transformer_cnt):
lv_transformer = TransformerDing0(grid=grid, id_db=id, v_level=0.4,
s_max_longterm=transformer['S_nom'], r=transformer['R'], x=
transformer['X'])
grid._station.add_transformer(lv_transformer)
|
transformer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid):\n transformer, transformer_cnt = select_transformers(grid)\n for t in range(0, transformer_cnt):\n lv_transformer = TransformerDing0(grid=grid, id_db=id, v_level=0.4,\n s_max_longterm=transformer['S_nom'], r=transformer['R'], x=\n transformer['X'])\n grid._station.add_transformer(lv_transformer)\n",
"role": "user"
},
{
"content": "transformer",
"role": "assistant"
}
] |
def x(lvgd, sector):
cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal')
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
max_lv_branch_line_load = cfg_ding0.get('assumptions', 'max_lv_branch_line'
)
if sector == 'retail/industrial':
max_branch_length = cfg_ding0.get('assumptions',
'branch_line_length_retail_industrial')
peak_load = lvgd.peak_load_retail + lvgd.peak_load_industrial
count_sector_areas = (lvgd.sector_count_retail + lvgd.
sector_count_industrial)
elif sector == 'agricultural':
max_branch_length = cfg_ding0.get('assumptions',
'branch_line_length_agricultural')
peak_load = lvgd.peak_load_agricultural
count_sector_areas = lvgd.sector_count_agricultural
else:
raise ValueError('Sector {} does not exist!'.format(sector))
single_peak_load = peak_load / count_sector_areas
while single_peak_load > max_lv_branch_line_load * (cable_lf * cos_phi_load
):
single_peak_load = single_peak_load / 2
count_sector_areas = count_sector_areas * 2
grid_model = {}
if 0 < single_peak_load:
grid_model['max_loads_per_branch'] = math.floor(
max_lv_branch_line_load * (cable_lf * cos_phi_load) /
single_peak_load)
grid_model['single_peak_load'] = single_peak_load
grid_model['full_branches'] = math.floor(count_sector_areas /
grid_model['max_loads_per_branch'])
grid_model['remaining_loads'] = count_sector_areas - grid_model[
'full_branches'] * grid_model['max_loads_per_branch']
grid_model['load_distance'] = max_branch_length / (grid_model[
'max_loads_per_branch'] + 1)
grid_model['load_distance_remaining'] = max_branch_length / (grid_model
['remaining_loads'] + 1)
elif count_sector_areas > 0:
logger.warning(
'LVGD {lvgd} has in sector {sector} no load but area countis {count}. This is maybe related to #153'
.format(lvgd=lvgd, sector=sector, count=count_sector_areas))
grid_model = None
if sector == 'retail/industrial':
grid_model['consumption'] = {'retail': lvgd.
sector_consumption_retail / (grid_model['full_branches'] *
grid_model['max_loads_per_branch'] + grid_model[
'remaining_loads']), 'industrial': lvgd.
sector_consumption_industrial / (grid_model['full_branches'] *
grid_model['max_loads_per_branch'] + grid_model['remaining_loads'])
}
elif sector == 'agricultural':
grid_model['consumption'] = {'agricultural': lvgd.
sector_consumption_agricultural / (grid_model['full_branches'] *
grid_model['max_loads_per_branch'] + grid_model['remaining_loads'])
}
return grid_model
|
select_grid_model_ria
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lvgd, sector):\n cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal')\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n max_lv_branch_line_load = cfg_ding0.get('assumptions', 'max_lv_branch_line'\n )\n if sector == 'retail/industrial':\n max_branch_length = cfg_ding0.get('assumptions',\n 'branch_line_length_retail_industrial')\n peak_load = lvgd.peak_load_retail + lvgd.peak_load_industrial\n count_sector_areas = (lvgd.sector_count_retail + lvgd.\n sector_count_industrial)\n elif sector == 'agricultural':\n max_branch_length = cfg_ding0.get('assumptions',\n 'branch_line_length_agricultural')\n peak_load = lvgd.peak_load_agricultural\n count_sector_areas = lvgd.sector_count_agricultural\n else:\n raise ValueError('Sector {} does not exist!'.format(sector))\n single_peak_load = peak_load / count_sector_areas\n while single_peak_load > max_lv_branch_line_load * (cable_lf * cos_phi_load\n ):\n single_peak_load = single_peak_load / 2\n count_sector_areas = count_sector_areas * 2\n grid_model = {}\n if 0 < single_peak_load:\n grid_model['max_loads_per_branch'] = math.floor(\n max_lv_branch_line_load * (cable_lf * cos_phi_load) /\n single_peak_load)\n grid_model['single_peak_load'] = single_peak_load\n grid_model['full_branches'] = math.floor(count_sector_areas /\n grid_model['max_loads_per_branch'])\n grid_model['remaining_loads'] = count_sector_areas - grid_model[\n 'full_branches'] * grid_model['max_loads_per_branch']\n grid_model['load_distance'] = max_branch_length / (grid_model[\n 'max_loads_per_branch'] + 1)\n grid_model['load_distance_remaining'] = max_branch_length / (grid_model\n ['remaining_loads'] + 1)\n elif count_sector_areas > 0:\n logger.warning(\n 'LVGD {lvgd} has in sector {sector} no load but area countis {count}. This is maybe related to #153'\n .format(lvgd=lvgd, sector=sector, count=count_sector_areas))\n grid_model = None\n if sector == 'retail/industrial':\n grid_model['consumption'] = {'retail': lvgd.\n sector_consumption_retail / (grid_model['full_branches'] *\n grid_model['max_loads_per_branch'] + grid_model[\n 'remaining_loads']), 'industrial': lvgd.\n sector_consumption_industrial / (grid_model['full_branches'] *\n grid_model['max_loads_per_branch'] + grid_model['remaining_loads'])\n }\n elif sector == 'agricultural':\n grid_model['consumption'] = {'agricultural': lvgd.\n sector_consumption_agricultural / (grid_model['full_branches'] *\n grid_model['max_loads_per_branch'] + grid_model['remaining_loads'])\n }\n return grid_model\n",
"role": "user"
},
{
"content": "select_grid_model_ria",
"role": "assistant"
}
] |
def x(lvgd):
model_params_ria = {}
if (lvgd.sector_count_retail + lvgd.sector_count_industrial > 0 or lvgd
.peak_load_retail + lvgd.peak_load_industrial > 0):
model_params_ria['retail/industrial'] = select_grid_model_ria(lvgd,
'retail/industrial')
else:
model_params_ria['retail/industrial'] = None
if lvgd.sector_count_agricultural > 0 or lvgd.peak_load_agricultural > 0:
model_params_ria['agricultural'] = select_grid_model_ria(lvgd,
'agricultural')
else:
model_params_ria['agricultural'] = None
return model_params_ria
|
grid_model_params_ria
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lvgd):\n model_params_ria = {}\n if (lvgd.sector_count_retail + lvgd.sector_count_industrial > 0 or lvgd\n .peak_load_retail + lvgd.peak_load_industrial > 0):\n model_params_ria['retail/industrial'] = select_grid_model_ria(lvgd,\n 'retail/industrial')\n else:\n model_params_ria['retail/industrial'] = None\n if lvgd.sector_count_agricultural > 0 or lvgd.peak_load_agricultural > 0:\n model_params_ria['agricultural'] = select_grid_model_ria(lvgd,\n 'agricultural')\n else:\n model_params_ria['agricultural'] = None\n return model_params_ria\n",
"role": "user"
},
{
"content": "grid_model_params_ria",
"role": "assistant"
}
] |
def x(lvgd, grid_model_params):
def x():
I_max_load = val['single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load
suitable_cables_stub = lvgd.lv_grid.network.static_data['LV_cables'][
lvgd.lv_grid.network.static_data['LV_cables']['I_max_th'] *
cable_lf > I_max_load]
cable_type_stub = suitable_cables_stub.loc[suitable_cables_stub[
'I_max_th'].idxmin(), :]
lv_cable_dist = LVCableDistributorDing0(grid=lvgd.lv_grid,
branch_no=branch_no, load_no=load_no)
lvgd.lv_grid.add_cable_dist(lv_cable_dist)
lv_cable_dist_building = LVCableDistributorDing0(grid=lvgd.lv_grid,
branch_no=branch_no, load_no=load_no, in_building=True)
lvgd.lv_grid.add_cable_dist(lv_cable_dist_building)
lv_load = LVLoadDing0(grid=lvgd.lv_grid, branch_no=branch_no,
load_no=load_no, peak_load=val['single_peak_load'], consumption
=val['consumption'])
lvgd.lv_grid.add_load(lv_load)
if load_no == 1:
lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.station(),
lv_cable_dist, branch=BranchDing0(length=val[
'load_distance'], kind='cable', type=cable_type, id_db=
'branch_{sector}{branch}_{load}'.format(branch=branch_no,
load=load_no, sector=sector_short)))
else:
lvgd.lv_grid._graph.add_edge(lvgd.lv_grid._cable_distributors[-
4], lv_cable_dist, branch=BranchDing0(length=val[
'load_distance'], kind='cable', type=cable_type, id_db=
'branch_{sector}{branch}_{load}'.format(branch=branch_no,
load=load_no, sector=sector_short)))
lvgd.lv_grid._graph.add_edge(lv_cable_dist, lv_cable_dist_building,
branch=BranchDing0(length=cfg_ding0.get('assumptions',
'lv_ria_branch_connection_distance'), kind='cable', type=
cable_type_stub, id_db='stub_{sector}{branch}_{load}'.format(
branch=branch_no, load=load_no, sector=sector_short)))
lvgd.lv_grid._graph.add_edge(lv_cable_dist_building, lv_load,
branch=BranchDing0(length=1, kind='cable', type=cable_type_stub,
id_db='stub_{sector}{branch}_{load}'.format(branch=branch_no,
load=load_no, sector=sector_short)))
cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal')
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
for sector, val in grid_model_params.items():
if sector == 'retail/industrial':
sector_short = 'RETIND'
elif sector == 'agricultural':
sector_short = 'AGR'
else:
sector_short = ''
if val is not None:
for branch_no in list(range(1, val['full_branches'] + 1)):
I_max_branch = val['max_loads_per_branch'] * val[
'single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load
suitable_cables = lvgd.lv_grid.network.static_data['LV_cables'
][lvgd.lv_grid.network.static_data['LV_cables'][
'I_max_th'] * cable_lf > I_max_branch]
cable_type = suitable_cables.loc[suitable_cables['I_max_th'
].idxmin(), :]
for load_no in list(range(1, val['max_loads_per_branch'] + 1)):
lv_graph_attach_branch()
if val['remaining_loads'] > 0:
if 'branch_no' not in locals():
branch_no = 0
I_max_branch = val['max_loads_per_branch'] * val[
'single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load
suitable_cables = lvgd.lv_grid.network.static_data['LV_cables'
][lvgd.lv_grid.network.static_data['LV_cables'][
'I_max_th'] * cable_lf > I_max_branch]
cable_type = suitable_cables.loc[suitable_cables['I_max_th'
].idxmin(), :]
branch_no += 1
for load_no in list(range(1, val['remaining_loads'] + 1)):
lv_graph_attach_branch()
|
build_lv_graph_ria
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lvgd, grid_model_params):\n\n def x():\n I_max_load = val['single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load\n suitable_cables_stub = lvgd.lv_grid.network.static_data['LV_cables'][\n lvgd.lv_grid.network.static_data['LV_cables']['I_max_th'] *\n cable_lf > I_max_load]\n cable_type_stub = suitable_cables_stub.loc[suitable_cables_stub[\n 'I_max_th'].idxmin(), :]\n lv_cable_dist = LVCableDistributorDing0(grid=lvgd.lv_grid,\n branch_no=branch_no, load_no=load_no)\n lvgd.lv_grid.add_cable_dist(lv_cable_dist)\n lv_cable_dist_building = LVCableDistributorDing0(grid=lvgd.lv_grid,\n branch_no=branch_no, load_no=load_no, in_building=True)\n lvgd.lv_grid.add_cable_dist(lv_cable_dist_building)\n lv_load = LVLoadDing0(grid=lvgd.lv_grid, branch_no=branch_no,\n load_no=load_no, peak_load=val['single_peak_load'], consumption\n =val['consumption'])\n lvgd.lv_grid.add_load(lv_load)\n if load_no == 1:\n lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.station(),\n lv_cable_dist, branch=BranchDing0(length=val[\n 'load_distance'], kind='cable', type=cable_type, id_db=\n 'branch_{sector}{branch}_{load}'.format(branch=branch_no,\n load=load_no, sector=sector_short)))\n else:\n lvgd.lv_grid._graph.add_edge(lvgd.lv_grid._cable_distributors[-\n 4], lv_cable_dist, branch=BranchDing0(length=val[\n 'load_distance'], kind='cable', type=cable_type, id_db=\n 'branch_{sector}{branch}_{load}'.format(branch=branch_no,\n load=load_no, sector=sector_short)))\n lvgd.lv_grid._graph.add_edge(lv_cable_dist, lv_cable_dist_building,\n branch=BranchDing0(length=cfg_ding0.get('assumptions',\n 'lv_ria_branch_connection_distance'), kind='cable', type=\n cable_type_stub, id_db='stub_{sector}{branch}_{load}'.format(\n branch=branch_no, load=load_no, sector=sector_short)))\n lvgd.lv_grid._graph.add_edge(lv_cable_dist_building, lv_load,\n branch=BranchDing0(length=1, kind='cable', type=cable_type_stub,\n id_db='stub_{sector}{branch}_{load}'.format(branch=branch_no,\n load=load_no, sector=sector_short)))\n cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal')\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n for sector, val in grid_model_params.items():\n if sector == 'retail/industrial':\n sector_short = 'RETIND'\n elif sector == 'agricultural':\n sector_short = 'AGR'\n else:\n sector_short = ''\n if val is not None:\n for branch_no in list(range(1, val['full_branches'] + 1)):\n I_max_branch = val['max_loads_per_branch'] * val[\n 'single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load\n suitable_cables = lvgd.lv_grid.network.static_data['LV_cables'\n ][lvgd.lv_grid.network.static_data['LV_cables'][\n 'I_max_th'] * cable_lf > I_max_branch]\n cable_type = suitable_cables.loc[suitable_cables['I_max_th'\n ].idxmin(), :]\n for load_no in list(range(1, val['max_loads_per_branch'] + 1)):\n lv_graph_attach_branch()\n if val['remaining_loads'] > 0:\n if 'branch_no' not in locals():\n branch_no = 0\n I_max_branch = val['max_loads_per_branch'] * val[\n 'single_peak_load'] / (3 ** 0.5 * 0.4) / cos_phi_load\n suitable_cables = lvgd.lv_grid.network.static_data['LV_cables'\n ][lvgd.lv_grid.network.static_data['LV_cables'][\n 'I_max_th'] * cable_lf > I_max_branch]\n cable_type = suitable_cables.loc[suitable_cables['I_max_th'\n ].idxmin(), :]\n branch_no += 1\n for load_no in list(range(1, val['remaining_loads'] + 1)):\n lv_graph_attach_branch()\n",
"role": "user"
},
{
"content": "build_lv_graph_ria",
"role": "assistant"
}
] |
def x(lvgd):
string_properties = lvgd.lv_grid.network.static_data[
'LV_model_grids_strings']
apartment_string = lvgd.lv_grid.network.static_data[
'LV_model_grids_strings_per_grid']
apartment_house_branch_ratio = cfg_ding0.get('assumptions',
'apartment_house_branch_ratio')
population_per_apartment = cfg_ding0.get('assumptions',
'population_per_apartment')
apartments = round(lvgd.population / population_per_apartment)
if apartments > 196:
apartments = 196
strings = apartment_string.loc[apartments]
selected_strings = [int(s) for s in strings[strings >= 1].index.tolist()]
selected_strings_df = string_properties.loc[selected_strings]
occurence_selector = [str(i) for i in selected_strings]
selected_strings_df['occurence'] = strings.loc[occurence_selector].tolist()
return selected_strings_df
|
select_grid_model_residential
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lvgd):\n string_properties = lvgd.lv_grid.network.static_data[\n 'LV_model_grids_strings']\n apartment_string = lvgd.lv_grid.network.static_data[\n 'LV_model_grids_strings_per_grid']\n apartment_house_branch_ratio = cfg_ding0.get('assumptions',\n 'apartment_house_branch_ratio')\n population_per_apartment = cfg_ding0.get('assumptions',\n 'population_per_apartment')\n apartments = round(lvgd.population / population_per_apartment)\n if apartments > 196:\n apartments = 196\n strings = apartment_string.loc[apartments]\n selected_strings = [int(s) for s in strings[strings >= 1].index.tolist()]\n selected_strings_df = string_properties.loc[selected_strings]\n occurence_selector = [str(i) for i in selected_strings]\n selected_strings_df['occurence'] = strings.loc[occurence_selector].tolist()\n return selected_strings_df\n",
"role": "user"
},
{
"content": "select_grid_model_residential",
"role": "assistant"
}
] |
def x(lvgd, selected_string_df):
houses_connected = (selected_string_df['occurence'] *
selected_string_df['count house branch']).sum()
average_load = lvgd.peak_load_residential / houses_connected
average_consumption = (lvgd.sector_consumption_residential /
houses_connected)
hh_branch = 0
for i, row in selected_string_df.iterrows():
branch_count_sum = len(list(lvgd.lv_grid._graph.neighbors(lvgd.
lv_grid.station())))
for branch_no in range(1, int(row['occurence']) + 1):
hh_branch += 1
for house_branch in range(1, row['count house branch'] + 1):
if house_branch % 2 == 0:
variant = 'B'
else:
variant = 'A'
lv_cable_dist = LVCableDistributorDing0(grid=lvgd.lv_grid,
string_id=i, branch_no=branch_no + branch_count_sum,
load_no=house_branch)
lvgd.lv_grid.add_cable_dist(lv_cable_dist)
lv_cable_dist_building = LVCableDistributorDing0(grid=lvgd.
lv_grid, string_id=i, branch_no=branch_no +
branch_count_sum, load_no=house_branch, in_building=True)
lvgd.lv_grid.add_cable_dist(lv_cable_dist_building)
lv_load = LVLoadDing0(grid=lvgd.lv_grid, string_id=i,
branch_no=branch_no + branch_count_sum, load_no=
house_branch, peak_load=average_load, consumption={
'residential': average_consumption})
lvgd.lv_grid.add_load(lv_load)
cable_name = row['cable type'] + ' 4x1x{}'.format(row[
'cable width'])
cable_type = lvgd.lv_grid.network.static_data['LV_cables'].loc[
cable_name]
if house_branch == 1:
lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.station(),
lv_cable_dist, branch=BranchDing0(length=row[
'distance house branch'], kind='cable', type=
cable_type, id_db='branch_{sector}{branch}_{load}'.
format(branch=hh_branch, load=house_branch, sector=
'HH')))
else:
lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.
_cable_distributors[-4], lv_cable_dist, branch=
BranchDing0(length=row['distance house branch'],
kind='cable', type=lvgd.lv_grid.network.static_data
['LV_cables'].loc[cable_name], id_db=
'branch_{sector}{branch}_{load}'.format(branch=
hh_branch, load=house_branch, sector='HH')))
house_cable_name = row['cable type {}'.format(variant)
] + ' 4x1x{}'.format(row['cable width {}'.format(variant)])
lvgd.lv_grid._graph.add_edge(lv_cable_dist,
lv_cable_dist_building, branch=BranchDing0(length=row[
'length house branch {}'.format(variant)], kind='cable',
type=lvgd.lv_grid.network.static_data['LV_cables'].loc[
house_cable_name], id_db=
'branch_{sector}{branch}_{load}'.format(branch=
hh_branch, load=house_branch, sector='HH')))
lvgd.lv_grid._graph.add_edge(lv_cable_dist_building,
lv_load, branch=BranchDing0(length=1, kind='cable',
type=lvgd.lv_grid.network.static_data['LV_cables'].loc[
house_cable_name], id_db=
'branch_{sector}{branch}_{load}'.format(branch=
hh_branch, load=house_branch, sector='HH')))
|
build_lv_graph_residential
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lvgd, selected_string_df):\n houses_connected = (selected_string_df['occurence'] *\n selected_string_df['count house branch']).sum()\n average_load = lvgd.peak_load_residential / houses_connected\n average_consumption = (lvgd.sector_consumption_residential /\n houses_connected)\n hh_branch = 0\n for i, row in selected_string_df.iterrows():\n branch_count_sum = len(list(lvgd.lv_grid._graph.neighbors(lvgd.\n lv_grid.station())))\n for branch_no in range(1, int(row['occurence']) + 1):\n hh_branch += 1\n for house_branch in range(1, row['count house branch'] + 1):\n if house_branch % 2 == 0:\n variant = 'B'\n else:\n variant = 'A'\n lv_cable_dist = LVCableDistributorDing0(grid=lvgd.lv_grid,\n string_id=i, branch_no=branch_no + branch_count_sum,\n load_no=house_branch)\n lvgd.lv_grid.add_cable_dist(lv_cable_dist)\n lv_cable_dist_building = LVCableDistributorDing0(grid=lvgd.\n lv_grid, string_id=i, branch_no=branch_no +\n branch_count_sum, load_no=house_branch, in_building=True)\n lvgd.lv_grid.add_cable_dist(lv_cable_dist_building)\n lv_load = LVLoadDing0(grid=lvgd.lv_grid, string_id=i,\n branch_no=branch_no + branch_count_sum, load_no=\n house_branch, peak_load=average_load, consumption={\n 'residential': average_consumption})\n lvgd.lv_grid.add_load(lv_load)\n cable_name = row['cable type'] + ' 4x1x{}'.format(row[\n 'cable width'])\n cable_type = lvgd.lv_grid.network.static_data['LV_cables'].loc[\n cable_name]\n if house_branch == 1:\n lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.station(),\n lv_cable_dist, branch=BranchDing0(length=row[\n 'distance house branch'], kind='cable', type=\n cable_type, id_db='branch_{sector}{branch}_{load}'.\n format(branch=hh_branch, load=house_branch, sector=\n 'HH')))\n else:\n lvgd.lv_grid._graph.add_edge(lvgd.lv_grid.\n _cable_distributors[-4], lv_cable_dist, branch=\n BranchDing0(length=row['distance house branch'],\n kind='cable', type=lvgd.lv_grid.network.static_data\n ['LV_cables'].loc[cable_name], id_db=\n 'branch_{sector}{branch}_{load}'.format(branch=\n hh_branch, load=house_branch, sector='HH')))\n house_cable_name = row['cable type {}'.format(variant)\n ] + ' 4x1x{}'.format(row['cable width {}'.format(variant)])\n lvgd.lv_grid._graph.add_edge(lv_cable_dist,\n lv_cable_dist_building, branch=BranchDing0(length=row[\n 'length house branch {}'.format(variant)], kind='cable',\n type=lvgd.lv_grid.network.static_data['LV_cables'].loc[\n house_cable_name], id_db=\n 'branch_{sector}{branch}_{load}'.format(branch=\n hh_branch, load=house_branch, sector='HH')))\n lvgd.lv_grid._graph.add_edge(lv_cable_dist_building,\n lv_load, branch=BranchDing0(length=1, kind='cable',\n type=lvgd.lv_grid.network.static_data['LV_cables'].loc[\n house_cable_name], id_db=\n 'branch_{sector}{branch}_{load}'.format(branch=\n hh_branch, load=house_branch, sector='HH')))\n",
"role": "user"
},
{
"content": "build_lv_graph_residential",
"role": "assistant"
}
] |
def x(lvgd):
if lvgd.population > 0 and lvgd.peak_load_residential > 0:
model_grid = select_grid_model_residential(lvgd)
build_lv_graph_residential(lvgd, model_grid)
elif lvgd.population > 0 and lvgd.peak_load_residential == 0:
logger.warning(
'{} has population but no residential load. No grid is created.'
.format(repr(lvgd)))
elif lvgd.population == 0 and lvgd.peak_load_residential > 0:
logger.warning(
'{} has no population but residential load. No grid is created and thus this load is missing in overall balance!'
.format(repr(lvgd)))
else:
logger.info('{} has got no residential load. No grid is created.'.
format(repr(lvgd)))
|
build_residential_branches
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lvgd):\n if lvgd.population > 0 and lvgd.peak_load_residential > 0:\n model_grid = select_grid_model_residential(lvgd)\n build_lv_graph_residential(lvgd, model_grid)\n elif lvgd.population > 0 and lvgd.peak_load_residential == 0:\n logger.warning(\n '{} has population but no residential load. No grid is created.'\n .format(repr(lvgd)))\n elif lvgd.population == 0 and lvgd.peak_load_residential > 0:\n logger.warning(\n '{} has no population but residential load. No grid is created and thus this load is missing in overall balance!'\n .format(repr(lvgd)))\n else:\n logger.info('{} has got no residential load. No grid is created.'.\n format(repr(lvgd)))\n",
"role": "user"
},
{
"content": "build_residential_branches",
"role": "assistant"
}
] |
def x(nd):
lv_stats = {}
for la in nd._mv_grid_districts[0].lv_load_areas():
for lvgd in la.lv_grid_districts():
station_neighbors = list(lvgd.lv_grid._graph[lvgd.lv_grid.
_station].keys())
station_generators = [x for x in station_neighbors if x in lvgd
.lv_grid.generators()]
lv_stats[repr(lvgd.lv_grid._station)] = station_generators
return lv_stats
|
lv_grid_generators_bus_bar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nd):\n lv_stats = {}\n for la in nd._mv_grid_districts[0].lv_load_areas():\n for lvgd in la.lv_grid_districts():\n station_neighbors = list(lvgd.lv_grid._graph[lvgd.lv_grid.\n _station].keys())\n station_generators = [x for x in station_neighbors if x in lvgd\n .lv_grid.generators()]\n lv_stats[repr(lvgd.lv_grid._station)] = station_generators\n return lv_stats\n",
"role": "user"
},
{
"content": "lv_grid_generators_bus_bar",
"role": "assistant"
}
] |
def x(nd, path='', filename=None):
abs_path = os.path.abspath(path)
if len(nd._mv_grid_districts) > 1:
name_extension = '_{number}-{number2}'.format(number=nd.
_mv_grid_districts[0].id_db, number2=nd._mv_grid_districts[-1].
id_db)
else:
name_extension = '_{number}'.format(number=nd._mv_grid_districts[0]
.id_db)
if filename is None:
filename = 'ding0_grids_{ext}.pkl'.format(ext=name_extension)
del nd._orm
pickle.dump(nd, open(os.path.join(abs_path, filename), 'wb'))
|
save_nd_to_pickle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nd, path='', filename=None):\n abs_path = os.path.abspath(path)\n if len(nd._mv_grid_districts) > 1:\n name_extension = '_{number}-{number2}'.format(number=nd.\n _mv_grid_districts[0].id_db, number2=nd._mv_grid_districts[-1].\n id_db)\n else:\n name_extension = '_{number}'.format(number=nd._mv_grid_districts[0]\n .id_db)\n if filename is None:\n filename = 'ding0_grids_{ext}.pkl'.format(ext=name_extension)\n del nd._orm\n pickle.dump(nd, open(os.path.join(abs_path, filename), 'wb'))\n",
"role": "user"
},
{
"content": "save_nd_to_pickle",
"role": "assistant"
}
] |
def x(filename=None, path=''):
abs_path = os.path.abspath(path)
if filename is None:
raise NotImplementedError
return pickle.load(open(os.path.join(abs_path, filename), 'rb'))
|
load_nd_from_pickle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename=None, path=''):\n abs_path = os.path.abspath(path)\n if filename is None:\n raise NotImplementedError\n return pickle.load(open(os.path.join(abs_path, filename), 'rb'))\n",
"role": "user"
},
{
"content": "load_nd_from_pickle",
"role": "assistant"
}
] |
def x(stats, plotpath):
f, axarr = plt.subplots(2, 2, sharex=True)
stats.hist(column=['Length of MV overhead lines'], bins=5, alpha=0.5,
ax=axarr[0, 0])
stats.hist(column=['Length of MV underground cables'], bins=5, alpha=
0.5, ax=axarr[0, 1])
stats.hist(column=['Length of LV overhead lines'], bins=5, alpha=0.5,
ax=axarr[1, 0])
stats.hist(column=['Length of LV underground cables'], bins=5, alpha=
0.5, ax=axarr[1, 1])
plt.savefig(os.path.join(plotpath, 'Histogram_cable_line_length.pdf'))
|
plot_cable_length
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stats, plotpath):\n f, axarr = plt.subplots(2, 2, sharex=True)\n stats.hist(column=['Length of MV overhead lines'], bins=5, alpha=0.5,\n ax=axarr[0, 0])\n stats.hist(column=['Length of MV underground cables'], bins=5, alpha=\n 0.5, ax=axarr[0, 1])\n stats.hist(column=['Length of LV overhead lines'], bins=5, alpha=0.5,\n ax=axarr[1, 0])\n stats.hist(column=['Length of LV underground cables'], bins=5, alpha=\n 0.5, ax=axarr[1, 1])\n plt.savefig(os.path.join(plotpath, 'Histogram_cable_line_length.pdf'))\n",
"role": "user"
},
{
"content": "plot_cable_length",
"role": "assistant"
}
] |
def x(stats, plotpath):
sns.set_context('paper', font_scale=1.1)
sns.set_style('ticks')
gen_cap_indexes = ['Gen. Cap. of MV at v_level 4',
'Gen. Cap. of MV at v_level 5', 'Gen. Cap. of LV at v_level 6',
'Gen. Cap. of LV at v_level 7']
peak_load_index = ['LA Total LV Peak Load total']
stats['generation_capacity'] = stats[gen_cap_indexes].sum(axis=1) / 1000.0
stats['peak_load'] = stats[peak_load_index] / 1000.0
sns.lmplot('generation_capacity', 'peak_load', data=stats, fit_reg=
False, scatter_kws={'marker': 'D', 's': 100}, aspect=2)
plt.title('Peak load vs. generation capacity')
plt.xlabel('Generation capacity in MW')
plt.ylabel('Peak load in MW')
plt.savefig(os.path.join(plotpath, 'Scatter_generation_load.pdf'))
|
plot_generation_over_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stats, plotpath):\n sns.set_context('paper', font_scale=1.1)\n sns.set_style('ticks')\n gen_cap_indexes = ['Gen. Cap. of MV at v_level 4',\n 'Gen. Cap. of MV at v_level 5', 'Gen. Cap. of LV at v_level 6',\n 'Gen. Cap. of LV at v_level 7']\n peak_load_index = ['LA Total LV Peak Load total']\n stats['generation_capacity'] = stats[gen_cap_indexes].sum(axis=1) / 1000.0\n stats['peak_load'] = stats[peak_load_index] / 1000.0\n sns.lmplot('generation_capacity', 'peak_load', data=stats, fit_reg=\n False, scatter_kws={'marker': 'D', 's': 100}, aspect=2)\n plt.title('Peak load vs. generation capacity')\n plt.xlabel('Generation capacity in MW')\n plt.ylabel('Peak load in MW')\n plt.savefig(os.path.join(plotpath, 'Scatter_generation_load.pdf'))\n",
"role": "user"
},
{
"content": "plot_generation_over_load",
"role": "assistant"
}
] |
def x(self, mv_grid_districts):
pickle_name = cfg_ding0.get('output', 'nd_pickle')
for mvgd in mv_grid_districts[1:]:
filename = os.path.join(self.base_path, 'results', pickle_name.
format(mvgd))
if os.path.isfile(filename):
mvgd_pickle = pickle.load(open(filename, 'rb'))
if mvgd_pickle._mv_grid_districts:
mvgd.add_mv_grid_district(mvgd_pickle._mv_grid_districts[0])
pickle.dump(mvgd, open(os.path.join(self.base_path, 'results',
'ding0_grids_{0}-{1}.pkl'.format(mv_grid_districts[0],
mv_grid_districts[-1])), 'wb'))
nodes, edges = mvgd.to_dataframe()
nodes.to_csv(os.path.join(self.base_path, 'results',
'mvgd_nodes_stats_{0}-{1}.csv'.format(mv_grid_districts[0],
mv_grid_districts[-1])), index=False)
edges.to_csv(os.path.join(self.base_path, 'results',
'mvgd_edges_stats_{0}-{1}.csv'.format(mv_grid_districts[0],
mv_grid_districts[-1])), index=False)
|
concat_nd_pickles
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mv_grid_districts):\n pickle_name = cfg_ding0.get('output', 'nd_pickle')\n for mvgd in mv_grid_districts[1:]:\n filename = os.path.join(self.base_path, 'results', pickle_name.\n format(mvgd))\n if os.path.isfile(filename):\n mvgd_pickle = pickle.load(open(filename, 'rb'))\n if mvgd_pickle._mv_grid_districts:\n mvgd.add_mv_grid_district(mvgd_pickle._mv_grid_districts[0])\n pickle.dump(mvgd, open(os.path.join(self.base_path, 'results',\n 'ding0_grids_{0}-{1}.pkl'.format(mv_grid_districts[0],\n mv_grid_districts[-1])), 'wb'))\n nodes, edges = mvgd.to_dataframe()\n nodes.to_csv(os.path.join(self.base_path, 'results',\n 'mvgd_nodes_stats_{0}-{1}.csv'.format(mv_grid_districts[0],\n mv_grid_districts[-1])), index=False)\n edges.to_csv(os.path.join(self.base_path, 'results',\n 'mvgd_edges_stats_{0}-{1}.csv'.format(mv_grid_districts[0],\n mv_grid_districts[-1])), index=False)\n",
"role": "user"
},
{
"content": "concat_nd_pickles",
"role": "assistant"
}
] |
def x(nw):
nw.control_circuit_breakers(mode='close')
nodes_idx = 0
nodes_dict = {}
branches_idx = 0
branches_dict = {}
for district in nw.mv_grid_districts():
for node in district.mv_grid.graph_nodes_sorted():
nodes_idx += 1
if hasattr(node, 'voltage_res'):
Vres0 = node.voltage_res[0]
Vres1 = node.voltage_res[1]
else:
Vres0 = 'Not available'
Vres1 = 'Not available'
nodes_dict[nodes_idx] = {'MV_grid_id': district.mv_grid.id_db,
'node id': node.__repr__(), 'V_res_0': Vres0, 'V_res_1':
Vres1, 'V nominal': district.mv_grid.v_level}
for branch in district.mv_grid.graph_edges():
branches_idx += 1
if hasattr(branch['branch'], 's_res'):
s_res0 = branch['branch'].s_res[0]
s_res1 = branch['branch'].s_res[1]
else:
s_res0 = 'Not available'
s_res1 = 'Not available'
branches_dict[branches_idx] = {'MV_grid_id': district.mv_grid.
id_db, 'branch id': branch['branch'].__repr__(), 's_res_0':
s_res0, 's_res_1': s_res1}
nodes_df = pd.DataFrame.from_dict(nodes_dict, orient='index')
branches_df = pd.DataFrame.from_dict(branches_dict, orient='index')
if not nodes_df.empty:
nodes_df = nodes_df.set_index('node id')
nodes_df = nodes_df.fillna(0)
nodes_df = nodes_df[sorted(nodes_df.columns.tolist())]
nodes_df.sort_index(inplace=True)
if not branches_df.empty:
branches_df = branches_df.set_index('branch id')
branches_df = branches_df.fillna(0)
branches_df = branches_df[sorted(branches_df.columns.tolist())]
branches_df.sort_index(inplace=True)
return nodes_df, branches_df
|
calculate_mvgd_voltage_current_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nw):\n nw.control_circuit_breakers(mode='close')\n nodes_idx = 0\n nodes_dict = {}\n branches_idx = 0\n branches_dict = {}\n for district in nw.mv_grid_districts():\n for node in district.mv_grid.graph_nodes_sorted():\n nodes_idx += 1\n if hasattr(node, 'voltage_res'):\n Vres0 = node.voltage_res[0]\n Vres1 = node.voltage_res[1]\n else:\n Vres0 = 'Not available'\n Vres1 = 'Not available'\n nodes_dict[nodes_idx] = {'MV_grid_id': district.mv_grid.id_db,\n 'node id': node.__repr__(), 'V_res_0': Vres0, 'V_res_1':\n Vres1, 'V nominal': district.mv_grid.v_level}\n for branch in district.mv_grid.graph_edges():\n branches_idx += 1\n if hasattr(branch['branch'], 's_res'):\n s_res0 = branch['branch'].s_res[0]\n s_res1 = branch['branch'].s_res[1]\n else:\n s_res0 = 'Not available'\n s_res1 = 'Not available'\n branches_dict[branches_idx] = {'MV_grid_id': district.mv_grid.\n id_db, 'branch id': branch['branch'].__repr__(), 's_res_0':\n s_res0, 's_res_1': s_res1}\n nodes_df = pd.DataFrame.from_dict(nodes_dict, orient='index')\n branches_df = pd.DataFrame.from_dict(branches_dict, orient='index')\n if not nodes_df.empty:\n nodes_df = nodes_df.set_index('node id')\n nodes_df = nodes_df.fillna(0)\n nodes_df = nodes_df[sorted(nodes_df.columns.tolist())]\n nodes_df.sort_index(inplace=True)\n if not branches_df.empty:\n branches_df = branches_df.set_index('branch id')\n branches_df = branches_df.fillna(0)\n branches_df = branches_df[sorted(branches_df.columns.tolist())]\n branches_df.sort_index(inplace=True)\n return nodes_df, branches_df\n",
"role": "user"
},
{
"content": "calculate_mvgd_voltage_current_stats",
"role": "assistant"
}
] |
def x(nw):
nw.control_circuit_breakers(mode='close')
nodes_idx = 0
nodes_dict = {}
branches_idx = 0
branches_dict = {}
for mv_district in nw.mv_grid_districts():
for LA in mv_district.lv_load_areas():
if not LA.is_aggregated:
for lv_district in LA.lv_grid_districts():
crit_nodes = get_critical_voltage_at_nodes(lv_district.
lv_grid)
for node in crit_nodes:
nodes_idx += 1
nodes_dict[nodes_idx] = {'MV_grid_id': mv_district.
mv_grid.id_db, 'LV_grid_id': lv_district.
lv_grid.id_db, 'LA_id': LA.id_db, 'node id':
node['node'].__repr__(), 'v_diff_0': node[
'v_diff'][0], 'v_diff_1': node['v_diff'][1],
's_max_0': 'NA', 's_max_1': 'NA', 'V nominal':
lv_district.lv_grid.v_level}
critical_branches, critical_stations = (
get_critical_line_loading(lv_district.lv_grid))
for branch in critical_branches:
branches_idx += 1
branches_dict[branches_idx] = {'MV_grid_id':
mv_district.mv_grid.id_db, 'LV_grid_id':
lv_district.lv_grid.id_db, 'LA_id': LA.id_db,
'branch id': branch['branch'].__repr__(),
's_max_0': branch['s_max'][0], 's_max_1':
branch['s_max'][1]}
for node in critical_stations:
nodes_idx += 1
nodes_dict[nodes_idx] = {'MV_grid_id': mv_district.
mv_grid.id_db, 'LV_grid_id': lv_district.
lv_grid.id_db, 'LA_id': LA.id_db, 'node id':
node['station'].__repr__(), 's_max_0': node[
's_max'][0], 's_max_1': node['s_max'][1],
'v_diff_0': 'NA', 'v_diff_1': 'NA'}
nodes_df = pd.DataFrame.from_dict(nodes_dict, orient='index')
branches_df = pd.DataFrame.from_dict(branches_dict, orient='index')
if not nodes_df.empty:
nodes_df = nodes_df.set_index('node id')
nodes_df = nodes_df.fillna(0)
nodes_df = nodes_df[sorted(nodes_df.columns.tolist())]
nodes_df.sort_index(inplace=True)
if not branches_df.empty:
branches_df = branches_df.set_index('branch id')
branches_df = branches_df.fillna(0)
branches_df = branches_df[sorted(branches_df.columns.tolist())]
branches_df.sort_index(inplace=True)
return nodes_df, branches_df
|
calculate_lvgd_voltage_current_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nw):\n nw.control_circuit_breakers(mode='close')\n nodes_idx = 0\n nodes_dict = {}\n branches_idx = 0\n branches_dict = {}\n for mv_district in nw.mv_grid_districts():\n for LA in mv_district.lv_load_areas():\n if not LA.is_aggregated:\n for lv_district in LA.lv_grid_districts():\n crit_nodes = get_critical_voltage_at_nodes(lv_district.\n lv_grid)\n for node in crit_nodes:\n nodes_idx += 1\n nodes_dict[nodes_idx] = {'MV_grid_id': mv_district.\n mv_grid.id_db, 'LV_grid_id': lv_district.\n lv_grid.id_db, 'LA_id': LA.id_db, 'node id':\n node['node'].__repr__(), 'v_diff_0': node[\n 'v_diff'][0], 'v_diff_1': node['v_diff'][1],\n 's_max_0': 'NA', 's_max_1': 'NA', 'V nominal':\n lv_district.lv_grid.v_level}\n critical_branches, critical_stations = (\n get_critical_line_loading(lv_district.lv_grid))\n for branch in critical_branches:\n branches_idx += 1\n branches_dict[branches_idx] = {'MV_grid_id':\n mv_district.mv_grid.id_db, 'LV_grid_id':\n lv_district.lv_grid.id_db, 'LA_id': LA.id_db,\n 'branch id': branch['branch'].__repr__(),\n 's_max_0': branch['s_max'][0], 's_max_1':\n branch['s_max'][1]}\n for node in critical_stations:\n nodes_idx += 1\n nodes_dict[nodes_idx] = {'MV_grid_id': mv_district.\n mv_grid.id_db, 'LV_grid_id': lv_district.\n lv_grid.id_db, 'LA_id': LA.id_db, 'node id':\n node['station'].__repr__(), 's_max_0': node[\n 's_max'][0], 's_max_1': node['s_max'][1],\n 'v_diff_0': 'NA', 'v_diff_1': 'NA'}\n nodes_df = pd.DataFrame.from_dict(nodes_dict, orient='index')\n branches_df = pd.DataFrame.from_dict(branches_dict, orient='index')\n if not nodes_df.empty:\n nodes_df = nodes_df.set_index('node id')\n nodes_df = nodes_df.fillna(0)\n nodes_df = nodes_df[sorted(nodes_df.columns.tolist())]\n nodes_df.sort_index(inplace=True)\n if not branches_df.empty:\n branches_df = branches_df.set_index('branch id')\n branches_df = branches_df.fillna(0)\n branches_df = branches_df[sorted(branches_df.columns.tolist())]\n branches_df.sort_index(inplace=True)\n return nodes_df, branches_df\n",
"role": "user"
},
{
"content": "calculate_lvgd_voltage_current_stats",
"role": "assistant"
}
] |
def x(mv_grid_districts=[3545], filename='ding0_tests_grids_1.pkl'):
print('\n########################################')
print(' Running ding0 for district', mv_grid_districts)
engine = db.connection(section='oedb')
session = sessionmaker(bind=engine)()
nd = NetworkDing0(name='network')
nd.run_ding0(session=session, mv_grid_districts_no=mv_grid_districts)
if filename:
print('\n########################################')
print(' Saving result in ', filename)
save_nd_to_pickle(nd, filename=filename)
print('\n########################################')
return nd
|
init_mv_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mv_grid_districts=[3545], filename='ding0_tests_grids_1.pkl'):\n print('\\n########################################')\n print(' Running ding0 for district', mv_grid_districts)\n engine = db.connection(section='oedb')\n session = sessionmaker(bind=engine)()\n nd = NetworkDing0(name='network')\n nd.run_ding0(session=session, mv_grid_districts_no=mv_grid_districts)\n if filename:\n print('\\n########################################')\n print(' Saving result in ', filename)\n save_nd_to_pickle(nd, filename=filename)\n print('\\n########################################')\n return nd\n",
"role": "user"
},
{
"content": "init_mv_grid",
"role": "assistant"
}
] |
def x(mv_districts, n_of_districts, source, mode, critical, filename, output):
if mode == 'MV':
calc_mv = True
calc_lv = False
elif mode == 'LV':
calc_mv = False
calc_lv = True
else:
calc_mv = True
calc_lv = True
clusters = [mv_districts[x:x + n_of_districts] for x in range(0, len(
mv_districts), n_of_districts)]
mv_stats = []
lv_stats = []
mv_crit_nodes = []
mv_crit_edges = []
lv_crit_nodes = []
lv_crit_edges = []
for cl in clusters:
nw_name = filename + str(cl[0])
if not cl[0] == cl[-1]:
nw_name = nw_name + '_to_' + str(cl[-1])
nw = NetworkDing0(name=nw_name)
if source == 'pkl':
print('\n########################################')
print(' Reading data from pickle district', cl)
print('########################################')
try:
nw = load_nd_from_pickle(nw_name + '.pkl')
except Exception:
continue
else:
engine = db.connection(section='oedb')
session = sessionmaker(bind=engine)()
print('\n########################################')
print(' Running ding0 for district', cl)
print('########################################')
try:
nw.run_ding0(session=session, mv_grid_districts_no=cl)
try:
save_nd_to_pickle(nw, filename=nw_name + '.pkl')
except Exception:
continue
except Exception:
continue
if calc_mv:
stats = calculate_mvgd_stats(nw)
mv_stats.append(stats)
if calc_lv:
stats = calculate_lvgd_stats(nw)
lv_stats.append(stats)
if critical and calc_mv:
stats = calculate_mvgd_voltage_current_stats(nw)
mv_crit_nodes.append(stats[0])
mv_crit_edges.append(stats[1])
if critical and calc_lv:
stats = calculate_lvgd_voltage_current_stats(nw)
lv_crit_nodes.append(stats[0])
lv_crit_edges.append(stats[1])
salida = (mv_stats, lv_stats, mv_crit_nodes, mv_crit_edges,
lv_crit_nodes, lv_crit_edges)
output.put(salida)
|
process_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mv_districts, n_of_districts, source, mode, critical, filename, output):\n if mode == 'MV':\n calc_mv = True\n calc_lv = False\n elif mode == 'LV':\n calc_mv = False\n calc_lv = True\n else:\n calc_mv = True\n calc_lv = True\n clusters = [mv_districts[x:x + n_of_districts] for x in range(0, len(\n mv_districts), n_of_districts)]\n mv_stats = []\n lv_stats = []\n mv_crit_nodes = []\n mv_crit_edges = []\n lv_crit_nodes = []\n lv_crit_edges = []\n for cl in clusters:\n nw_name = filename + str(cl[0])\n if not cl[0] == cl[-1]:\n nw_name = nw_name + '_to_' + str(cl[-1])\n nw = NetworkDing0(name=nw_name)\n if source == 'pkl':\n print('\\n########################################')\n print(' Reading data from pickle district', cl)\n print('########################################')\n try:\n nw = load_nd_from_pickle(nw_name + '.pkl')\n except Exception:\n continue\n else:\n engine = db.connection(section='oedb')\n session = sessionmaker(bind=engine)()\n print('\\n########################################')\n print(' Running ding0 for district', cl)\n print('########################################')\n try:\n nw.run_ding0(session=session, mv_grid_districts_no=cl)\n try:\n save_nd_to_pickle(nw, filename=nw_name + '.pkl')\n except Exception:\n continue\n except Exception:\n continue\n if calc_mv:\n stats = calculate_mvgd_stats(nw)\n mv_stats.append(stats)\n if calc_lv:\n stats = calculate_lvgd_stats(nw)\n lv_stats.append(stats)\n if critical and calc_mv:\n stats = calculate_mvgd_voltage_current_stats(nw)\n mv_crit_nodes.append(stats[0])\n mv_crit_edges.append(stats[1])\n if critical and calc_lv:\n stats = calculate_lvgd_voltage_current_stats(nw)\n lv_crit_nodes.append(stats[0])\n lv_crit_edges.append(stats[1])\n salida = (mv_stats, lv_stats, mv_crit_nodes, mv_crit_edges,\n lv_crit_nodes, lv_crit_edges)\n output.put(salida)\n",
"role": "user"
},
{
"content": "process_stats",
"role": "assistant"
}
] |
def x(districts_list, n_of_processes, n_of_districts=1, source='pkl', mode=
'', critical=False, save_csv=False, save_path=''):
start = time.time()
nw_name = os.path.join(save_path, 'ding0_grids__')
output_stats = mp.Queue()
max_dist = len(districts_list)
threat_long = floor(max_dist / n_of_processes)
if threat_long == 0:
threat_long = 1
threats = [districts_list[x:x + threat_long] for x in range(0, len(
districts_list), threat_long)]
processes = []
for districts in threats:
args = (districts, n_of_districts, source, mode, critical, nw_name,
output_stats)
processes.append(mp.Process(target=process_stats, args=args))
for p in processes:
p.start()
output = [output_stats.get() for p in processes]
for p in processes:
p.join()
if save_csv:
nw_name = nw_name + str(districts_list[0])
if not districts_list[0] == districts_list[-1]:
nw_name = nw_name + '_to_' + str(districts_list[-1])
try:
mv_stats = pd.concat([df for p in range(0, len(processes)) for df in
output[p][0]], axis=0)
except:
mv_stats = pd.DataFrame.from_dict({})
try:
lv_stats = pd.concat([df for p in range(0, len(processes)) for df in
output[p][1]], axis=0)
except:
lv_stats = pd.DataFrame.from_dict({})
try:
mv_crit_nodes = pd.concat([df for p in range(0, len(processes)) for
df in output[p][2]], axis=0)
except:
mv_crit_nodes = pd.DataFrame.from_dict({})
try:
mv_crit_edges = pd.concat([df for p in range(0, len(processes)) for
df in output[p][3]], axis=0)
except:
mv_crit_edges = pd.DataFrame.from_dict({})
try:
lv_crit_nodes = pd.concat([df for p in range(0, len(processes)) for
df in output[p][4]], axis=0)
except:
lv_crit_nodes = pd.DataFrame.from_dict({})
try:
lv_crit_edges = pd.concat([df for p in range(0, len(processes)) for
df in output[p][5]], axis=0)
except:
lv_crit_edges = pd.DataFrame.from_dict({})
if not mv_stats.empty:
mv_stats = mv_stats.fillna(0)
mv_stats = mv_stats[sorted(mv_stats.columns.tolist())]
mv_stats.sort_index(inplace=True)
if save_csv:
mv_stats.to_csv(nw_name + '_mv_stats.csv')
if not lv_stats.empty:
lv_stats = lv_stats.fillna(0)
lv_stats = lv_stats[sorted(lv_stats.columns.tolist())]
lv_stats.sort_index(inplace=True)
if save_csv:
lv_stats.to_csv(nw_name + '_lv_stats.csv')
if not mv_crit_nodes.empty:
mv_crit_nodes = mv_crit_nodes.fillna(0)
mv_crit_nodes = mv_crit_nodes[sorted(mv_crit_nodes.columns.tolist())]
mv_crit_nodes.sort_index(inplace=True)
if save_csv:
mv_crit_nodes.to_csv(nw_name + '_mv_crit_nodes.csv')
if not mv_crit_edges.empty:
mv_crit_edges = mv_crit_edges.fillna(0)
mv_crit_edges = mv_crit_edges[sorted(mv_crit_edges.columns.tolist())]
mv_crit_edges.sort_index(inplace=True)
if save_csv:
mv_crit_edges.to_csv(nw_name + '_mv_crit_edges.csv')
if not lv_crit_nodes.empty:
lv_crit_nodes = lv_crit_nodes.fillna(0)
lv_crit_nodes = lv_crit_nodes[sorted(lv_crit_nodes.columns.tolist())]
lv_crit_nodes.sort_index(inplace=True)
if save_csv:
lv_crit_nodes.to_csv(nw_name + '_lv_crit_nodes.csv')
if not lv_crit_edges.empty:
lv_crit_edges = lv_crit_edges.fillna(0)
lv_crit_edges = lv_crit_edges[sorted(lv_crit_edges.columns.tolist())]
lv_crit_edges.sort_index(inplace=True)
if save_csv:
lv_crit_edges.to_csv(nw_name + '_lv_crit_edges.csv')
print('\n########################################')
print(' Elapsed time for', str(max_dist),
'MV grid districts (seconds): {}'.format(time.time() - start))
print('\n########################################')
return (mv_stats, lv_stats, mv_crit_nodes, mv_crit_edges, lv_crit_nodes,
lv_crit_edges)
|
parallel_running_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(districts_list, n_of_processes, n_of_districts=1, source='pkl', mode=\n '', critical=False, save_csv=False, save_path=''):\n start = time.time()\n nw_name = os.path.join(save_path, 'ding0_grids__')\n output_stats = mp.Queue()\n max_dist = len(districts_list)\n threat_long = floor(max_dist / n_of_processes)\n if threat_long == 0:\n threat_long = 1\n threats = [districts_list[x:x + threat_long] for x in range(0, len(\n districts_list), threat_long)]\n processes = []\n for districts in threats:\n args = (districts, n_of_districts, source, mode, critical, nw_name,\n output_stats)\n processes.append(mp.Process(target=process_stats, args=args))\n for p in processes:\n p.start()\n output = [output_stats.get() for p in processes]\n for p in processes:\n p.join()\n if save_csv:\n nw_name = nw_name + str(districts_list[0])\n if not districts_list[0] == districts_list[-1]:\n nw_name = nw_name + '_to_' + str(districts_list[-1])\n try:\n mv_stats = pd.concat([df for p in range(0, len(processes)) for df in\n output[p][0]], axis=0)\n except:\n mv_stats = pd.DataFrame.from_dict({})\n try:\n lv_stats = pd.concat([df for p in range(0, len(processes)) for df in\n output[p][1]], axis=0)\n except:\n lv_stats = pd.DataFrame.from_dict({})\n try:\n mv_crit_nodes = pd.concat([df for p in range(0, len(processes)) for\n df in output[p][2]], axis=0)\n except:\n mv_crit_nodes = pd.DataFrame.from_dict({})\n try:\n mv_crit_edges = pd.concat([df for p in range(0, len(processes)) for\n df in output[p][3]], axis=0)\n except:\n mv_crit_edges = pd.DataFrame.from_dict({})\n try:\n lv_crit_nodes = pd.concat([df for p in range(0, len(processes)) for\n df in output[p][4]], axis=0)\n except:\n lv_crit_nodes = pd.DataFrame.from_dict({})\n try:\n lv_crit_edges = pd.concat([df for p in range(0, len(processes)) for\n df in output[p][5]], axis=0)\n except:\n lv_crit_edges = pd.DataFrame.from_dict({})\n if not mv_stats.empty:\n mv_stats = mv_stats.fillna(0)\n mv_stats = mv_stats[sorted(mv_stats.columns.tolist())]\n mv_stats.sort_index(inplace=True)\n if save_csv:\n mv_stats.to_csv(nw_name + '_mv_stats.csv')\n if not lv_stats.empty:\n lv_stats = lv_stats.fillna(0)\n lv_stats = lv_stats[sorted(lv_stats.columns.tolist())]\n lv_stats.sort_index(inplace=True)\n if save_csv:\n lv_stats.to_csv(nw_name + '_lv_stats.csv')\n if not mv_crit_nodes.empty:\n mv_crit_nodes = mv_crit_nodes.fillna(0)\n mv_crit_nodes = mv_crit_nodes[sorted(mv_crit_nodes.columns.tolist())]\n mv_crit_nodes.sort_index(inplace=True)\n if save_csv:\n mv_crit_nodes.to_csv(nw_name + '_mv_crit_nodes.csv')\n if not mv_crit_edges.empty:\n mv_crit_edges = mv_crit_edges.fillna(0)\n mv_crit_edges = mv_crit_edges[sorted(mv_crit_edges.columns.tolist())]\n mv_crit_edges.sort_index(inplace=True)\n if save_csv:\n mv_crit_edges.to_csv(nw_name + '_mv_crit_edges.csv')\n if not lv_crit_nodes.empty:\n lv_crit_nodes = lv_crit_nodes.fillna(0)\n lv_crit_nodes = lv_crit_nodes[sorted(lv_crit_nodes.columns.tolist())]\n lv_crit_nodes.sort_index(inplace=True)\n if save_csv:\n lv_crit_nodes.to_csv(nw_name + '_lv_crit_nodes.csv')\n if not lv_crit_edges.empty:\n lv_crit_edges = lv_crit_edges.fillna(0)\n lv_crit_edges = lv_crit_edges[sorted(lv_crit_edges.columns.tolist())]\n lv_crit_edges.sort_index(inplace=True)\n if save_csv:\n lv_crit_edges.to_csv(nw_name + '_lv_crit_edges.csv')\n print('\\n########################################')\n print(' Elapsed time for', str(max_dist),\n 'MV grid districts (seconds): {}'.format(time.time() - start))\n print('\\n########################################')\n return (mv_stats, lv_stats, mv_crit_nodes, mv_crit_edges, lv_crit_nodes,\n lv_crit_edges)\n",
"role": "user"
},
{
"content": "parallel_running_stats",
"role": "assistant"
}
] |
def x(stats, base_path=BASEPATH):
plotpath = os.path.join(base_path, 'plots')
results.plot_cable_length(stats, plotpath)
plt.show()
results.plot_generation_over_load(stats, plotpath)
plt.show()
|
ding0_exemplary_plots
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stats, base_path=BASEPATH):\n plotpath = os.path.join(base_path, 'plots')\n results.plot_cable_length(stats, plotpath)\n plt.show()\n results.plot_generation_over_load(stats, plotpath)\n plt.show()\n",
"role": "user"
},
{
"content": "ding0_exemplary_plots",
"role": "assistant"
}
] |
def x(filenames, base_path=BASEPATH):
nds = []
for filename in filenames:
try:
nd_load = results.load_nd_from_pickle(filename=os.path.join(
base_path, 'grids', filename))
nds.append(nd_load)
except:
print(
'File {mvgd} not found. It was maybe excluded by Ding0 or just forgotten to generate by you...'
.format(mvgd=filename))
nd = nds[0]
for n in nds[1:]:
nd.add_mv_grid_district(n._mv_grid_districts[0])
stats = results.calculate_mvgd_stats(nd)
return stats
|
nd_load_and_stats
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filenames, base_path=BASEPATH):\n nds = []\n for filename in filenames:\n try:\n nd_load = results.load_nd_from_pickle(filename=os.path.join(\n base_path, 'grids', filename))\n nds.append(nd_load)\n except:\n print(\n 'File {mvgd} not found. It was maybe excluded by Ding0 or just forgotten to generate by you...'\n .format(mvgd=filename))\n nd = nds[0]\n for n in nds[1:]:\n nd.add_mv_grid_district(n._mv_grid_districts[0])\n stats = results.calculate_mvgd_stats(nd)\n return stats\n",
"role": "user"
},
{
"content": "nd_load_and_stats",
"role": "assistant"
}
] |
def x(grid, crit_branches):
branch_parameters = grid.network.static_data['MV_cables']
branch_parameters = branch_parameters[branch_parameters['U_n'] == grid.
v_level].sort_values('I_max_th')
branch_ctr = 0
for branch, rel_overload in crit_branches.items():
try:
type = branch_parameters.loc[branch_parameters[
branch_parameters['I_max_th'] >= branch['branch'].type[
'I_max_th'] * rel_overload].loc[:, 'I_max_th'].idxmin(), :]
branch['branch'].type = type
branch_ctr += 1
except:
logger.warning(
'Branch {} could not be reinforced (current issues) as there is no appropriate cable type available. Original type is retained.'
.format(branch))
pass
if branch_ctr:
logger.info('==> {} branches were reinforced.'.format(str(branch_ctr)))
|
reinforce_branches_current
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, crit_branches):\n branch_parameters = grid.network.static_data['MV_cables']\n branch_parameters = branch_parameters[branch_parameters['U_n'] == grid.\n v_level].sort_values('I_max_th')\n branch_ctr = 0\n for branch, rel_overload in crit_branches.items():\n try:\n type = branch_parameters.loc[branch_parameters[\n branch_parameters['I_max_th'] >= branch['branch'].type[\n 'I_max_th'] * rel_overload].loc[:, 'I_max_th'].idxmin(), :]\n branch['branch'].type = type\n branch_ctr += 1\n except:\n logger.warning(\n 'Branch {} could not be reinforced (current issues) as there is no appropriate cable type available. Original type is retained.'\n .format(branch))\n pass\n if branch_ctr:\n logger.info('==> {} branches were reinforced.'.format(str(branch_ctr)))\n",
"role": "user"
},
{
"content": "reinforce_branches_current",
"role": "assistant"
}
] |
def x(grid, crit_branches, grid_level='MV'):
branch_parameters = grid.network.static_data['{gridlevel}_cables'.
format(gridlevel=grid_level)]
branch_parameters = branch_parameters[branch_parameters['U_n'] == grid.
v_level].sort_values('I_max_th')
branch_ctr = 0
for branch in crit_branches:
try:
type = branch_parameters.loc[branch_parameters.loc[
branch_parameters['I_max_th'] > branch.type['I_max_th']].
loc[:, 'I_max_th'].idxmin(), :]
branch.type = type
branch_ctr += 1
except:
logger.warning(
'Branch {} could not be reinforced (voltage issues) as there is no appropriate cable type available. Original type is retained.'
.format(branch))
pass
if branch_ctr:
logger.info('==> {} branches were reinforced.'.format(str(branch_ctr)))
|
reinforce_branches_voltage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, crit_branches, grid_level='MV'):\n branch_parameters = grid.network.static_data['{gridlevel}_cables'.\n format(gridlevel=grid_level)]\n branch_parameters = branch_parameters[branch_parameters['U_n'] == grid.\n v_level].sort_values('I_max_th')\n branch_ctr = 0\n for branch in crit_branches:\n try:\n type = branch_parameters.loc[branch_parameters.loc[\n branch_parameters['I_max_th'] > branch.type['I_max_th']].\n loc[:, 'I_max_th'].idxmin(), :]\n branch.type = type\n branch_ctr += 1\n except:\n logger.warning(\n 'Branch {} could not be reinforced (voltage issues) as there is no appropriate cable type available. Original type is retained.'\n .format(branch))\n pass\n if branch_ctr:\n logger.info('==> {} branches were reinforced.'.format(str(branch_ctr)))\n",
"role": "user"
},
{
"content": "reinforce_branches_voltage",
"role": "assistant"
}
] |
def x(grid, critical_stations, grid_level):
load_factor_lv_trans_lc_normal = cfg_ding0.get('assumptions',
'load_factor_lv_trans_lc_normal')
load_factor_lv_trans_fc_normal = cfg_ding0.get('assumptions',
'load_factor_lv_trans_fc_normal')
trafo_params = grid.network._static_data['{grid_level}_trafos'.format(
grid_level=grid_level)]
trafo_s_max_max = max(trafo_params['S_nom'])
for station in critical_stations:
if station['s_max'][0] > station['s_max'][1]:
case = 'load'
lf_lv_trans_normal = load_factor_lv_trans_lc_normal
else:
case = 'gen'
lf_lv_trans_normal = load_factor_lv_trans_fc_normal
s_max_trafos = sum([_.s_max_a for _ in station['station'].
_transformers])
s_trafo_missing = max(station['s_max']
) - s_max_trafos * lf_lv_trans_normal
extendable_trafos = [_ for _ in station['station']._transformers if
_.s_max_a < trafo_s_max_max]
while s_trafo_missing > 0 and extendable_trafos:
trafo = extendable_trafos[0]
trafo_s_max_a_before = trafo.s_max_a
extend_trafo_power(extendable_trafos, trafo_params)
s_trafo_missing -= (trafo.s_max_a * lf_lv_trans_normal -
trafo_s_max_a_before)
extendable_trafos = [_ for _ in station['station'].
_transformers if _.s_max_a < trafo_s_max_max]
if s_trafo_missing > 0:
trafo_type, trafo_cnt = select_transformers(grid, s_max={
's_max': s_trafo_missing, 'case': case})
for t in range(0, trafo_cnt):
lv_transformer = TransformerDing0(grid=grid, id_db=id,
v_level=0.4, s_max_longterm=trafo_type['S_nom'], r=
trafo_type['R'], x=trafo_type['X'])
grid._station.add_transformer(lv_transformer)
logger.info(
'{stations_cnt} have been reinforced due to overloading issues.'.
format(stations_cnt=len(critical_stations)))
|
extend_substation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, critical_stations, grid_level):\n load_factor_lv_trans_lc_normal = cfg_ding0.get('assumptions',\n 'load_factor_lv_trans_lc_normal')\n load_factor_lv_trans_fc_normal = cfg_ding0.get('assumptions',\n 'load_factor_lv_trans_fc_normal')\n trafo_params = grid.network._static_data['{grid_level}_trafos'.format(\n grid_level=grid_level)]\n trafo_s_max_max = max(trafo_params['S_nom'])\n for station in critical_stations:\n if station['s_max'][0] > station['s_max'][1]:\n case = 'load'\n lf_lv_trans_normal = load_factor_lv_trans_lc_normal\n else:\n case = 'gen'\n lf_lv_trans_normal = load_factor_lv_trans_fc_normal\n s_max_trafos = sum([_.s_max_a for _ in station['station'].\n _transformers])\n s_trafo_missing = max(station['s_max']\n ) - s_max_trafos * lf_lv_trans_normal\n extendable_trafos = [_ for _ in station['station']._transformers if\n _.s_max_a < trafo_s_max_max]\n while s_trafo_missing > 0 and extendable_trafos:\n trafo = extendable_trafos[0]\n trafo_s_max_a_before = trafo.s_max_a\n extend_trafo_power(extendable_trafos, trafo_params)\n s_trafo_missing -= (trafo.s_max_a * lf_lv_trans_normal -\n trafo_s_max_a_before)\n extendable_trafos = [_ for _ in station['station'].\n _transformers if _.s_max_a < trafo_s_max_max]\n if s_trafo_missing > 0:\n trafo_type, trafo_cnt = select_transformers(grid, s_max={\n 's_max': s_trafo_missing, 'case': case})\n for t in range(0, trafo_cnt):\n lv_transformer = TransformerDing0(grid=grid, id_db=id,\n v_level=0.4, s_max_longterm=trafo_type['S_nom'], r=\n trafo_type['R'], x=trafo_type['X'])\n grid._station.add_transformer(lv_transformer)\n logger.info(\n '{stations_cnt} have been reinforced due to overloading issues.'.\n format(stations_cnt=len(critical_stations)))\n",
"role": "user"
},
{
"content": "extend_substation",
"role": "assistant"
}
] |
def x(crit_stations, grid_level='LV'):
grid = crit_stations[0]['node'].grid
trafo_params = grid.network._static_data['{grid_level}_trafos'.format(
grid_level=grid_level)]
trafo_s_max_max = max(trafo_params['S_nom'])
trafo_min_size = trafo_params.loc[trafo_params['S_nom'].idxmin(), :]
v_diff_max_fc = cfg_ding0.get('assumptions',
'lv_max_v_level_fc_diff_normal')
v_diff_max_lc = cfg_ding0.get('assumptions',
'lv_max_v_level_lc_diff_normal')
tree = nx.dfs_tree(grid._graph, grid._station)
for station in crit_stations:
v_delta = max(station['v_diff'])
extendable_trafos = [_ for _ in station['node']._transformers if _.
s_max_a < trafo_s_max_max]
v_delta_initially_lc = v_delta[0]
v_delta_initially_fc = v_delta[1]
new_transformers_cnt = 0
while v_delta[0] > v_diff_max_lc or v_delta[1] > v_diff_max_fc:
if extendable_trafos:
extend_trafo_power(extendable_trafos, trafo_params)
elif new_transformers_cnt < 2:
lv_transformer = TransformerDing0(grid=grid, id_db=id,
v_level=0.4, s_max_longterm=trafo_min_size['S_nom'], r=
trafo_min_size['R'], x=trafo_min_size['X'])
grid._station.add_transformer(lv_transformer)
new_transformers_cnt += 1
v_delta = get_voltage_at_bus_bar(grid, tree)
extendable_trafos = [_ for _ in station['node']._transformers if
_.s_max_a < trafo_s_max_max]
if v_delta[0] == v_delta_initially_lc or v_delta[1
] == v_delta_initially_fc:
logger.warning(
'Extension of {station} has no effect on voltage delta at bus bar. Transformation power extension is halted.'
.format(station=station['node']))
break
|
extend_substation_voltage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(crit_stations, grid_level='LV'):\n grid = crit_stations[0]['node'].grid\n trafo_params = grid.network._static_data['{grid_level}_trafos'.format(\n grid_level=grid_level)]\n trafo_s_max_max = max(trafo_params['S_nom'])\n trafo_min_size = trafo_params.loc[trafo_params['S_nom'].idxmin(), :]\n v_diff_max_fc = cfg_ding0.get('assumptions',\n 'lv_max_v_level_fc_diff_normal')\n v_diff_max_lc = cfg_ding0.get('assumptions',\n 'lv_max_v_level_lc_diff_normal')\n tree = nx.dfs_tree(grid._graph, grid._station)\n for station in crit_stations:\n v_delta = max(station['v_diff'])\n extendable_trafos = [_ for _ in station['node']._transformers if _.\n s_max_a < trafo_s_max_max]\n v_delta_initially_lc = v_delta[0]\n v_delta_initially_fc = v_delta[1]\n new_transformers_cnt = 0\n while v_delta[0] > v_diff_max_lc or v_delta[1] > v_diff_max_fc:\n if extendable_trafos:\n extend_trafo_power(extendable_trafos, trafo_params)\n elif new_transformers_cnt < 2:\n lv_transformer = TransformerDing0(grid=grid, id_db=id,\n v_level=0.4, s_max_longterm=trafo_min_size['S_nom'], r=\n trafo_min_size['R'], x=trafo_min_size['X'])\n grid._station.add_transformer(lv_transformer)\n new_transformers_cnt += 1\n v_delta = get_voltage_at_bus_bar(grid, tree)\n extendable_trafos = [_ for _ in station['node']._transformers if\n _.s_max_a < trafo_s_max_max]\n if v_delta[0] == v_delta_initially_lc or v_delta[1\n ] == v_delta_initially_fc:\n logger.warning(\n 'Extension of {station} has no effect on voltage delta at bus bar. Transformation power extension is halted.'\n .format(station=station['node']))\n break\n",
"role": "user"
},
{
"content": "extend_substation_voltage",
"role": "assistant"
}
] |
def x(grid, crit_branches):
unsolved_branches = []
cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal')
cables = grid.network.static_data['LV_cables']
for branch in crit_branches:
I_max_branch_load = branch['s_max'][0]
I_max_branch_gen = branch['s_max'][1]
I_max_branch = max([I_max_branch_load, I_max_branch_gen])
suitable_cables = cables[cables['I_max_th'] * cable_lf > I_max_branch]
if not suitable_cables.empty:
cable_type = suitable_cables.loc[suitable_cables['I_max_th'].
idxmin(), :]
branch['branch'].type = cable_type
crit_branches.remove(branch)
else:
cable_type_max = cables.loc[cables['I_max_th'].idxmax(), :]
unsolved_branches.append(branch)
branch['branch'].type = cable_type_max
logger.error(
'No suitable cable type could be found for {branch} with I_th_max = {current}. Cable of type {cable} is chosen during reinforcement.'
.format(branch=branch['branch'], cable=cable_type_max.name,
current=I_max_branch))
return unsolved_branches
|
reinforce_lv_branches_overloading
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, crit_branches):\n unsolved_branches = []\n cable_lf = cfg_ding0.get('assumptions', 'load_factor_lv_cable_lc_normal')\n cables = grid.network.static_data['LV_cables']\n for branch in crit_branches:\n I_max_branch_load = branch['s_max'][0]\n I_max_branch_gen = branch['s_max'][1]\n I_max_branch = max([I_max_branch_load, I_max_branch_gen])\n suitable_cables = cables[cables['I_max_th'] * cable_lf > I_max_branch]\n if not suitable_cables.empty:\n cable_type = suitable_cables.loc[suitable_cables['I_max_th'].\n idxmin(), :]\n branch['branch'].type = cable_type\n crit_branches.remove(branch)\n else:\n cable_type_max = cables.loc[cables['I_max_th'].idxmax(), :]\n unsolved_branches.append(branch)\n branch['branch'].type = cable_type_max\n logger.error(\n 'No suitable cable type could be found for {branch} with I_th_max = {current}. Cable of type {cable} is chosen during reinforcement.'\n .format(branch=branch['branch'], cable=cable_type_max.name,\n current=I_max_branch))\n return unsolved_branches\n",
"role": "user"
},
{
"content": "reinforce_lv_branches_overloading",
"role": "assistant"
}
] |
def x(extendable_trafos, trafo_params):
trafo = extendable_trafos[0]
trafo_s_max_a_before = trafo.s_max_a
trafo_nearest_larger = trafo_params.loc[trafo_params.loc[trafo_params[
'S_nom'] > trafo_s_max_a_before].loc[:, 'S_nom'].idxmin(), :]
trafo.s_max_a = trafo_nearest_larger['S_nom']
trafo.r = trafo_nearest_larger['R']
trafo.x = trafo_nearest_larger['X']
|
extend_trafo_power
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(extendable_trafos, trafo_params):\n trafo = extendable_trafos[0]\n trafo_s_max_a_before = trafo.s_max_a\n trafo_nearest_larger = trafo_params.loc[trafo_params.loc[trafo_params[\n 'S_nom'] > trafo_s_max_a_before].loc[:, 'S_nom'].idxmin(), :]\n trafo.s_max_a = trafo_nearest_larger['S_nom']\n trafo.r = trafo_nearest_larger['R']\n trafo.x = trafo_nearest_larger['X']\n",
"role": "user"
},
{
"content": "extend_trafo_power",
"role": "assistant"
}
] |
def x(self, generator):
if generator not in self._generators and isinstance(generator,
GeneratorDing0):
self._generators.append(generator)
self.graph_add_node(generator)
|
add_generator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, generator):\n if generator not in self._generators and isinstance(generator,\n GeneratorDing0):\n self._generators.append(generator)\n self.graph_add_node(generator)\n",
"role": "user"
},
{
"content": "add_generator",
"role": "assistant"
}
] |
def x(self, node_object):
if node_object not in self._graph.nodes() and isinstance(node_object, (
StationDing0, CableDistributorDing0, LVLoadAreaCentreDing0,
CircuitBreakerDing0, GeneratorDing0)):
self._graph.add_node(node_object)
|
graph_add_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node_object):\n if node_object not in self._graph.nodes() and isinstance(node_object, (\n StationDing0, CableDistributorDing0, LVLoadAreaCentreDing0,\n CircuitBreakerDing0, GeneratorDing0)):\n self._graph.add_node(node_object)\n",
"role": "user"
},
{
"content": "graph_add_node",
"role": "assistant"
}
] |
def x(self, mode):
g = self._graph
if mode == 'MV':
nodes_pos = {}
demands = {}
demands_pos = {}
nodes_color = []
for node in g.nodes():
if isinstance(node, (StationDing0, LVLoadAreaCentreDing0,
CableDistributorDing0, GeneratorDing0, CircuitBreakerDing0)):
nodes_pos[node] = node.geo_data.x, node.geo_data.y
if node == self.station():
nodes_color.append((1, 0.5, 0.5))
else:
nodes_color.append((0.5, 0.5, 1))
edges_color = []
for edge in self.graph_edges():
if edge['branch'].critical:
edges_color.append((1, 0, 0))
else:
edges_color.append((0, 0, 0))
plt.figure()
nx.draw_networkx(g, nodes_pos, node_color=nodes_color, edge_color=
edges_color, font_size=8)
plt.show()
elif mode == 'LV':
nodes_pos = {}
nodes_color = []
for node in g.nodes():
station_neighbors = sorted(g.neighbors(self.station()), key=lambda
_: repr(_))
if len(station_neighbors) % 2 == 0:
x_pos_start = -(len(station_neighbors) // 2 - 0.5)
else:
x_pos_start = -(len(station_neighbors) // 2)
if isinstance(node, CableDistributorDing0):
if node.in_building:
nodes_pos[node] = (x_pos_start + node.branch_no - 1 +
0.25, -node.load_no - 2)
nodes_color.append((0.5, 0.5, 0.5))
else:
nodes_pos[node
] = x_pos_start + node.branch_no - 1, -node.load_no - 2
nodes_color.append((0.5, 0.5, 0.5))
elif isinstance(node, LoadDing0):
nodes_pos[node] = (x_pos_start + node.branch_no - 1 + 0.5,
-node.load_no - 2 - 0.25)
nodes_color.append((0.5, 0.5, 1))
elif isinstance(node, GeneratorDing0):
neighbor = list(g.neighbors(node))[0]
if isinstance(neighbor, CableDistributorDing0):
nodes_pos[node] = (x_pos_start + neighbor.branch_no - 1 +
0.5, -neighbor.load_no - 2 + 0.25)
else:
nodes_pos[node] = 1, 1
nodes_color.append((0.5, 1, 0.5))
elif isinstance(node, StationDing0):
nodes_pos[node] = 0, 0
nodes_color.append((1, 0.5, 0.5))
plt.figure()
nx.draw_networkx(g, nodes_pos, node_color=nodes_color, font_size=8,
node_size=100)
plt.show()
|
graph_draw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n g = self._graph\n if mode == 'MV':\n nodes_pos = {}\n demands = {}\n demands_pos = {}\n nodes_color = []\n for node in g.nodes():\n if isinstance(node, (StationDing0, LVLoadAreaCentreDing0,\n CableDistributorDing0, GeneratorDing0, CircuitBreakerDing0)):\n nodes_pos[node] = node.geo_data.x, node.geo_data.y\n if node == self.station():\n nodes_color.append((1, 0.5, 0.5))\n else:\n nodes_color.append((0.5, 0.5, 1))\n edges_color = []\n for edge in self.graph_edges():\n if edge['branch'].critical:\n edges_color.append((1, 0, 0))\n else:\n edges_color.append((0, 0, 0))\n plt.figure()\n nx.draw_networkx(g, nodes_pos, node_color=nodes_color, edge_color=\n edges_color, font_size=8)\n plt.show()\n elif mode == 'LV':\n nodes_pos = {}\n nodes_color = []\n for node in g.nodes():\n station_neighbors = sorted(g.neighbors(self.station()), key=lambda\n _: repr(_))\n if len(station_neighbors) % 2 == 0:\n x_pos_start = -(len(station_neighbors) // 2 - 0.5)\n else:\n x_pos_start = -(len(station_neighbors) // 2)\n if isinstance(node, CableDistributorDing0):\n if node.in_building:\n nodes_pos[node] = (x_pos_start + node.branch_no - 1 + \n 0.25, -node.load_no - 2)\n nodes_color.append((0.5, 0.5, 0.5))\n else:\n nodes_pos[node\n ] = x_pos_start + node.branch_no - 1, -node.load_no - 2\n nodes_color.append((0.5, 0.5, 0.5))\n elif isinstance(node, LoadDing0):\n nodes_pos[node] = (x_pos_start + node.branch_no - 1 + 0.5, \n -node.load_no - 2 - 0.25)\n nodes_color.append((0.5, 0.5, 1))\n elif isinstance(node, GeneratorDing0):\n neighbor = list(g.neighbors(node))[0]\n if isinstance(neighbor, CableDistributorDing0):\n nodes_pos[node] = (x_pos_start + neighbor.branch_no - 1 +\n 0.5, -neighbor.load_no - 2 + 0.25)\n else:\n nodes_pos[node] = 1, 1\n nodes_color.append((0.5, 1, 0.5))\n elif isinstance(node, StationDing0):\n nodes_pos[node] = 0, 0\n nodes_color.append((1, 0.5, 0.5))\n plt.figure()\n nx.draw_networkx(g, nodes_pos, node_color=nodes_color, font_size=8,\n node_size=100)\n plt.show()\n",
"role": "user"
},
{
"content": "graph_draw",
"role": "assistant"
}
] |
def x(self):
return sorted(self._graph.nodes(), key=lambda _: repr(_))
|
graph_nodes_sorted
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return sorted(self._graph.nodes(), key=lambda _: repr(_))\n",
"role": "user"
},
{
"content": "graph_nodes_sorted",
"role": "assistant"
}
] |
def x(self, branch):
edges = nx.get_edge_attributes(self._graph, 'branch')
nodes = list(edges.keys())[list(edges.values()).index(branch)]
return nodes
|
graph_nodes_from_branch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, branch):\n edges = nx.get_edge_attributes(self._graph, 'branch')\n nodes = list(edges.keys())[list(edges.values()).index(branch)]\n return nodes\n",
"role": "user"
},
{
"content": "graph_nodes_from_branch",
"role": "assistant"
}
] |
def x(self, node):
branches = []
branches_dict = self._graph.adj[node]
for branch in branches_dict.items():
branches.append(branch)
return sorted(branches, key=lambda _: repr(_))
|
graph_branches_from_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node):\n branches = []\n branches_dict = self._graph.adj[node]\n for branch in branches_dict.items():\n branches.append(branch)\n return sorted(branches, key=lambda _: repr(_))\n",
"role": "user"
},
{
"content": "graph_branches_from_node",
"role": "assistant"
}
] |
def x(self):
edges = nx.get_edge_attributes(self._graph, 'branch').items()
edges_sorted = sorted(list(edges), key=lambda _: ''.join(sorted([repr(_
[0][0]), repr(_[0][1])])))
for edge in edges_sorted:
yield {'adj_nodes': edge[0], 'branch': edge[1]}
|
graph_edges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n edges = nx.get_edge_attributes(self._graph, 'branch').items()\n edges_sorted = sorted(list(edges), key=lambda _: ''.join(sorted([repr(_\n [0][0]), repr(_[0][1])])))\n for edge in edges_sorted:\n yield {'adj_nodes': edge[0], 'branch': edge[1]}\n",
"role": "user"
},
{
"content": "graph_edges",
"role": "assistant"
}
] |
def x(self, node_source, node_target, type='nodes'):
if node_source in self._graph.nodes() and node_target in self._graph.nodes(
):
path = nx.shortest_path(self._graph, node_source, node_target)
else:
raise Exception('At least one of the nodes is not a member of graph.')
if type == 'nodes':
return path
elif type == 'edges':
return [_ for _ in self._graph.edges(nbunch=path, data=True) if _[0
] in path and _[1] in path]
else:
raise ValueError('Please specify type as nodes or edges')
|
find_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node_source, node_target, type='nodes'):\n if node_source in self._graph.nodes() and node_target in self._graph.nodes(\n ):\n path = nx.shortest_path(self._graph, node_source, node_target)\n else:\n raise Exception('At least one of the nodes is not a member of graph.')\n if type == 'nodes':\n return path\n elif type == 'edges':\n return [_ for _ in self._graph.edges(nbunch=path, data=True) if _[0\n ] in path and _[1] in path]\n else:\n raise ValueError('Please specify type as nodes or edges')\n",
"role": "user"
},
{
"content": "find_path",
"role": "assistant"
}
] |
def x(self, node_source, nodes_target):
branches = set()
for node_target in nodes_target:
path = self.find_path(node_source, node_target)
node_pairs = list(zip(path[0:len(path) - 1], path[1:len(path)]))
for n1, n2 in node_pairs:
branches.add(self._graph.adj[n1][n2]['branch'])
return list(branches)
|
find_and_union_paths
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node_source, nodes_target):\n branches = set()\n for node_target in nodes_target:\n path = self.find_path(node_source, node_target)\n node_pairs = list(zip(path[0:len(path) - 1], path[1:len(path)]))\n for n1, n2 in node_pairs:\n branches.add(self._graph.adj[n1][n2]['branch'])\n return list(branches)\n",
"role": "user"
},
{
"content": "find_and_union_paths",
"role": "assistant"
}
] |
def x(self, node_source, node_target):
length = 0
path = self.find_path(node_source, node_target)
node_pairs = list(zip(path[0:len(path) - 1], path[1:len(path)]))
for n1, n2 in node_pairs:
length += self._graph.adj[n1][n2]['branch'].length
return length
|
graph_path_length
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node_source, node_target):\n length = 0\n path = self.find_path(node_source, node_target)\n node_pairs = list(zip(path[0:len(path) - 1], path[1:len(path)]))\n for n1, n2 in node_pairs:\n length += self._graph.adj[n1][n2]['branch'].length\n return length\n",
"role": "user"
},
{
"content": "graph_path_length",
"role": "assistant"
}
] |
def x(self):
return sorted(nx.isolates(self._graph), key=lambda x: repr(x))
|
graph_isolated_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return sorted(nx.isolates(self._graph), key=lambda x: repr(x))\n",
"role": "user"
},
{
"content": "graph_isolated_nodes",
"role": "assistant"
}
] |
def x(self, transformer):
if transformer not in self.transformers() and isinstance(transformer,
TransformerDing0):
self._transformers.append(transformer)
|
add_transformer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, transformer):\n if transformer not in self.transformers() and isinstance(transformer,\n TransformerDing0):\n self._transformers.append(transformer)\n",
"role": "user"
},
{
"content": "add_transformer",
"role": "assistant"
}
] |
def x(self):
for branch in self._grid.graph_edges():
if branch['branch'].ring == self:
yield branch
|
branches
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for branch in self._grid.graph_edges():\n if branch['branch'].ring == self:\n yield branch\n",
"role": "user"
},
{
"content": "branches",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.