source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, event_collection, event_body, timestamp=None):
event = Event(self.project_id, event_collection, event_body, timestamp=
timestamp)
self.persistence_strategy.persist(event)
|
add_event
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event_collection, event_body, timestamp=None):\n event = Event(self.project_id, event_collection, event_body, timestamp=\n timestamp)\n self.persistence_strategy.persist(event)\n",
"role": "user"
},
{
"content": "add_event",
"role": "assistant"
}
] |
def x(self, event_collection, event_body, timestamp=None):
event = Event(self.project_id, event_collection, event_body, timestamp=
timestamp)
event_json = event.to_json()
return '{0}/{1}/projects/{2}/events/{3}?api_key={4}&data={5}'.format(self
.api.base_url, self.api.api_version, self.project_id, self.
_url_escape(event_collection), self.api.write_key.decode(sys.
getdefaultencoding()), self._base64_encode(event_json))
|
generate_image_beacon
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event_collection, event_body, timestamp=None):\n event = Event(self.project_id, event_collection, event_body, timestamp=\n timestamp)\n event_json = event.to_json()\n return '{0}/{1}/projects/{2}/events/{3}?api_key={4}&data={5}'.format(self\n .api.base_url, self.api.api_version, self.project_id, self.\n _url_escape(event_collection), self.api.write_key.decode(sys.\n getdefaultencoding()), self._base64_encode(event_json))\n",
"role": "user"
},
{
"content": "generate_image_beacon",
"role": "assistant"
}
] |
def x(self, event_collection, timeframe=None, timezone=None, filters=None):
params = self.get_params(timeframe=timeframe, timezone=timezone,
filters=filters)
return self.api.delete_events(event_collection, params)
|
delete_events
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event_collection, timeframe=None, timezone=None, filters=None):\n params = self.get_params(timeframe=timeframe, timezone=timezone,\n filters=filters)\n return self.api.delete_events(event_collection, params)\n",
"role": "user"
},
{
"content": "delete_events",
"role": "assistant"
}
] |
def x(self, name, is_active=True, permitted=[], options={}):
return self.api.create_access_key(name=name, is_active=is_active,
permitted=permitted, options=options)
|
create_access_key
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, is_active=True, permitted=[], options={}):\n return self.api.create_access_key(name=name, is_active=is_active,\n permitted=permitted, options=options)\n",
"role": "user"
},
{
"content": "create_access_key",
"role": "assistant"
}
] |
def x(self, access_key_id, name, is_active, permitted, options):
return self.api.update_access_key_full(access_key_id, name, is_active,
permitted, options)
|
update_access_key_full
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, access_key_id, name, is_active, permitted, options):\n return self.api.update_access_key_full(access_key_id, name, is_active,\n permitted, options)\n",
"role": "user"
},
{
"content": "update_access_key_full",
"role": "assistant"
}
] |
def x(self, string_to_encode):
try:
return base64.b64encode(string_to_encode)
except TypeError:
encoding = sys.getdefaultencoding()
base64_bytes = base64.b64encode(bytes(string_to_encode, encoding))
return base64_bytes.decode(encoding)
|
base64_encode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, string_to_encode):\n try:\n return base64.b64encode(string_to_encode)\n except TypeError:\n encoding = sys.getdefaultencoding()\n base64_bytes = base64.b64encode(bytes(string_to_encode, encoding))\n return base64_bytes.decode(encoding)\n",
"role": "user"
},
{
"content": "base64_encode",
"role": "assistant"
}
] |
def x(self, event_collection, target_property, timeframe=None, timezone=
None, interval=None, filters=None, group_by=None, order_by=None,
max_age=None, limit=None):
params = self.get_params(event_collection=event_collection, timeframe=
timeframe, timezone=timezone, interval=interval, filters=filters,
group_by=group_by, order_by=order_by, target_property=
target_property, max_age=max_age, limit=limit)
return self.api.query('select_unique', params)
|
select_unique
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event_collection, target_property, timeframe=None, timezone=\n None, interval=None, filters=None, group_by=None, order_by=None,\n max_age=None, limit=None):\n params = self.get_params(event_collection=event_collection, timeframe=\n timeframe, timezone=timezone, interval=interval, filters=filters,\n group_by=group_by, order_by=order_by, target_property=\n target_property, max_age=max_age, limit=limit)\n return self.api.query('select_unique', params)\n",
"role": "user"
},
{
"content": "select_unique",
"role": "assistant"
}
] |
def x(self, event_collection, timeframe=None, timezone=None, filters=None,
latest=None, email=None, property_names=None):
params = self.get_params(event_collection=event_collection, timeframe=
timeframe, timezone=timezone, filters=filters, latest=latest, email
=email, property_names=property_names)
return self.api.query('extraction', params)
|
extraction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, event_collection, timeframe=None, timezone=None, filters=None,\n latest=None, email=None, property_names=None):\n params = self.get_params(event_collection=event_collection, timeframe=\n timeframe, timezone=timezone, filters=filters, latest=latest, email\n =email, property_names=property_names)\n return self.api.query('extraction', params)\n",
"role": "user"
},
{
"content": "extraction",
"role": "assistant"
}
] |
def x(self, steps, timeframe=None, timezone=None, max_age=None, all_keys=False
):
params = self.get_params(steps=steps, timeframe=timeframe, timezone=
timezone, max_age=max_age)
return self.api.query('funnel', params, all_keys=all_keys)
|
funnel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, steps, timeframe=None, timezone=None, max_age=None, all_keys=False\n ):\n params = self.get_params(steps=steps, timeframe=timeframe, timezone=\n timezone, max_age=max_age)\n return self.api.query('funnel', params, all_keys=all_keys)\n",
"role": "user"
},
{
"content": "funnel",
"role": "assistant"
}
] |
def x():
OPENJPEG.opj_version.restype = ctypes.c_char_p
library_version = OPENJPEG.opj_version()
if sys.hexversion >= 50331648:
return library_version.decode('utf-8')
else:
return library_version
|
version
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n OPENJPEG.opj_version.restype = ctypes.c_char_p\n library_version = OPENJPEG.opj_version()\n if sys.hexversion >= 50331648:\n return library_version.decode('utf-8')\n else:\n return library_version\n",
"role": "user"
},
{
"content": "version",
"role": "assistant"
}
] |
def x(cinfo, src=None):
argtypes = [ctypes.POINTER(CommonStructType), ctypes.c_char_p, ctypes.c_int
]
OPENJPEG.opj_cio_open.argtypes = argtypes
OPENJPEG.opj_cio_open.restype = ctypes.POINTER(CioType)
if src is None:
length = 0
else:
length = len(src)
cio = OPENJPEG.opj_cio_open(ctypes.cast(cinfo, ctypes.POINTER(
CommonStructType)), src, length)
return cio
|
cio_open
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cinfo, src=None):\n argtypes = [ctypes.POINTER(CommonStructType), ctypes.c_char_p, ctypes.c_int\n ]\n OPENJPEG.opj_cio_open.argtypes = argtypes\n OPENJPEG.opj_cio_open.restype = ctypes.POINTER(CioType)\n if src is None:\n length = 0\n else:\n length = len(src)\n cio = OPENJPEG.opj_cio_open(ctypes.cast(cinfo, ctypes.POINTER(\n CommonStructType)), src, length)\n return cio\n",
"role": "user"
},
{
"content": "cio_open",
"role": "assistant"
}
] |
def x(cio):
OPENJPEG.opj_cio_close.argtypes = [ctypes.POINTER(CioType)]
OPENJPEG.opj_cio_close(cio)
|
cio_close
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cio):\n OPENJPEG.opj_cio_close.argtypes = [ctypes.POINTER(CioType)]\n OPENJPEG.opj_cio_close(cio)\n",
"role": "user"
},
{
"content": "cio_close",
"role": "assistant"
}
] |
def x(cio):
OPENJPEG.cio_tell.argtypes = [ctypes.POINTER(CioType)]
OPENJPEG.cio_tell.restype = ctypes.c_int
pos = OPENJPEG.cio_tell(cio)
return pos
|
cio_tell
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cio):\n OPENJPEG.cio_tell.argtypes = [ctypes.POINTER(CioType)]\n OPENJPEG.cio_tell.restype = ctypes.c_int\n pos = OPENJPEG.cio_tell(cio)\n return pos\n",
"role": "user"
},
{
"content": "cio_tell",
"role": "assistant"
}
] |
def x(fmt):
OPENJPEG.opj_create_compress.argtypes = [ctypes.c_int]
OPENJPEG.opj_create_compress.restype = ctypes.POINTER(CompressionInfoType)
cinfo = OPENJPEG.opj_create_compress(fmt)
return cinfo
|
create_compress
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fmt):\n OPENJPEG.opj_create_compress.argtypes = [ctypes.c_int]\n OPENJPEG.opj_create_compress.restype = ctypes.POINTER(CompressionInfoType)\n cinfo = OPENJPEG.opj_create_compress(fmt)\n return cinfo\n",
"role": "user"
},
{
"content": "create_compress",
"role": "assistant"
}
] |
def x(fmt):
OPENJPEG.opj_create_decompress.argtypes = [ctypes.c_int]
restype = ctypes.POINTER(DecompressionInfoType)
OPENJPEG.opj_create_decompress.restype = restype
dinfo = OPENJPEG.opj_create_decompress(fmt)
return dinfo
|
create_decompress
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fmt):\n OPENJPEG.opj_create_decompress.argtypes = [ctypes.c_int]\n restype = ctypes.POINTER(DecompressionInfoType)\n OPENJPEG.opj_create_decompress.restype = restype\n dinfo = OPENJPEG.opj_create_decompress(fmt)\n return dinfo\n",
"role": "user"
},
{
"content": "create_decompress",
"role": "assistant"
}
] |
def x(dinfo, cio):
argtypes = [ctypes.POINTER(DecompressionInfoType), ctypes.POINTER(CioType)]
OPENJPEG.opj_decode.argtypes = argtypes
OPENJPEG.opj_decode.restype = ctypes.POINTER(ImageType)
image = OPENJPEG.opj_decode(dinfo, cio)
return image
|
decode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dinfo, cio):\n argtypes = [ctypes.POINTER(DecompressionInfoType), ctypes.POINTER(CioType)]\n OPENJPEG.opj_decode.argtypes = argtypes\n OPENJPEG.opj_decode.restype = ctypes.POINTER(ImageType)\n image = OPENJPEG.opj_decode(dinfo, cio)\n return image\n",
"role": "user"
},
{
"content": "decode",
"role": "assistant"
}
] |
def x(cinfo):
argtypes = [ctypes.POINTER(CompressionInfoType)]
OPENJPEG.opj_destroy_compress.argtypes = argtypes
OPENJPEG.opj_destroy_compress(cinfo)
|
destroy_compress
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cinfo):\n argtypes = [ctypes.POINTER(CompressionInfoType)]\n OPENJPEG.opj_destroy_compress.argtypes = argtypes\n OPENJPEG.opj_destroy_compress(cinfo)\n",
"role": "user"
},
{
"content": "destroy_compress",
"role": "assistant"
}
] |
def x(cinfo, cio, image):
argtypes = [ctypes.POINTER(CompressionInfoType), ctypes.POINTER(CioType
), ctypes.POINTER(ImageType)]
OPENJPEG.opj_encode.argtypes = argtypes
OPENJPEG.opj_encode.restype = ctypes.c_int
status = OPENJPEG.opj_encode(cinfo, cio, image)
return status
|
encode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cinfo, cio, image):\n argtypes = [ctypes.POINTER(CompressionInfoType), ctypes.POINTER(CioType\n ), ctypes.POINTER(ImageType)]\n OPENJPEG.opj_encode.argtypes = argtypes\n OPENJPEG.opj_encode.restype = ctypes.c_int\n status = OPENJPEG.opj_encode(cinfo, cio, image)\n return status\n",
"role": "user"
},
{
"content": "encode",
"role": "assistant"
}
] |
def x(dinfo):
argtypes = [ctypes.POINTER(DecompressionInfoType)]
OPENJPEG.opj_destroy_decompress.argtypes = argtypes
OPENJPEG.opj_destroy_decompress(dinfo)
|
destroy_decompress
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dinfo):\n argtypes = [ctypes.POINTER(DecompressionInfoType)]\n OPENJPEG.opj_destroy_decompress.argtypes = argtypes\n OPENJPEG.opj_destroy_decompress(dinfo)\n",
"role": "user"
},
{
"content": "destroy_decompress",
"role": "assistant"
}
] |
def x(cmptparms, cspace):
lst = [ctypes.c_int, ctypes.POINTER(ImageComptParmType), ctypes.c_int]
OPENJPEG.opj_image_create.argtypes = lst
OPENJPEG.opj_image_create.restype = ctypes.POINTER(ImageType)
image = OPENJPEG.opj_image_create(len(cmptparms), cmptparms, cspace)
return image
|
image_create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cmptparms, cspace):\n lst = [ctypes.c_int, ctypes.POINTER(ImageComptParmType), ctypes.c_int]\n OPENJPEG.opj_image_create.argtypes = lst\n OPENJPEG.opj_image_create.restype = ctypes.POINTER(ImageType)\n image = OPENJPEG.opj_image_create(len(cmptparms), cmptparms, cspace)\n return image\n",
"role": "user"
},
{
"content": "image_create",
"role": "assistant"
}
] |
def x(image):
OPENJPEG.opj_image_destroy.argtypes = [ctypes.POINTER(ImageType)]
OPENJPEG.opj_image_destroy(image)
|
image_destroy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image):\n OPENJPEG.opj_image_destroy.argtypes = [ctypes.POINTER(ImageType)]\n OPENJPEG.opj_image_destroy(image)\n",
"role": "user"
},
{
"content": "image_destroy",
"role": "assistant"
}
] |
def x():
cparams = CompressionParametersType()
argtypes = [ctypes.POINTER(CompressionParametersType)]
OPENJPEG.opj_set_default_encoder_parameters.argtypes = argtypes
OPENJPEG.opj_set_default_encoder_parameters(ctypes.byref(cparams))
return cparams
|
set_default_encoder_parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n cparams = CompressionParametersType()\n argtypes = [ctypes.POINTER(CompressionParametersType)]\n OPENJPEG.opj_set_default_encoder_parameters.argtypes = argtypes\n OPENJPEG.opj_set_default_encoder_parameters(ctypes.byref(cparams))\n return cparams\n",
"role": "user"
},
{
"content": "set_default_encoder_parameters",
"role": "assistant"
}
] |
def x(dparams_p):
argtypes = [ctypes.POINTER(DecompressionParametersType)]
OPENJPEG.opj_set_default_decoder_parameters.argtypes = argtypes
OPENJPEG.opj_set_default_decoder_parameters(dparams_p)
|
set_default_decoder_parameters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dparams_p):\n argtypes = [ctypes.POINTER(DecompressionParametersType)]\n OPENJPEG.opj_set_default_decoder_parameters.argtypes = argtypes\n OPENJPEG.opj_set_default_decoder_parameters(dparams_p)\n",
"role": "user"
},
{
"content": "set_default_decoder_parameters",
"role": "assistant"
}
] |
def x(dinfo, event_mgr, context=None):
argtypes = [ctypes.POINTER(CommonStructType), ctypes.POINTER(
EventMgrType), ctypes.c_void_p]
OPENJPEG.opj_set_event_mgr.argtypes = argtypes
OPENJPEG.opj_set_event_mgr(ctypes.cast(dinfo, ctypes.POINTER(
CommonStructType)), event_mgr, context)
|
set_event_mgr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dinfo, event_mgr, context=None):\n argtypes = [ctypes.POINTER(CommonStructType), ctypes.POINTER(\n EventMgrType), ctypes.c_void_p]\n OPENJPEG.opj_set_event_mgr.argtypes = argtypes\n OPENJPEG.opj_set_event_mgr(ctypes.cast(dinfo, ctypes.POINTER(\n CommonStructType)), event_mgr, context)\n",
"role": "user"
},
{
"content": "set_event_mgr",
"role": "assistant"
}
] |
def x(cinfo, cparameters, image):
argtypes = [ctypes.POINTER(CompressionInfoType), ctypes.POINTER(
CompressionParametersType), ctypes.POINTER(ImageType)]
OPENJPEG.opj_setup_encoder.argtypes = argtypes
OPENJPEG.opj_setup_encoder(cinfo, cparameters, image)
|
setup_encoder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cinfo, cparameters, image):\n argtypes = [ctypes.POINTER(CompressionInfoType), ctypes.POINTER(\n CompressionParametersType), ctypes.POINTER(ImageType)]\n OPENJPEG.opj_setup_encoder.argtypes = argtypes\n OPENJPEG.opj_setup_encoder(cinfo, cparameters, image)\n",
"role": "user"
},
{
"content": "setup_encoder",
"role": "assistant"
}
] |
def x(dinfo, dparams):
argtypes = [ctypes.POINTER(DecompressionInfoType), ctypes.POINTER(
DecompressionParametersType)]
OPENJPEG.opj_setup_decoder.argtypes = argtypes
OPENJPEG.opj_setup_decoder(dinfo, dparams)
|
setup_decoder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dinfo, dparams):\n argtypes = [ctypes.POINTER(DecompressionInfoType), ctypes.POINTER(\n DecompressionParametersType)]\n OPENJPEG.opj_setup_decoder.argtypes = argtypes\n OPENJPEG.opj_setup_decoder(dinfo, dparams)\n",
"role": "user"
},
{
"content": "setup_decoder",
"role": "assistant"
}
] |
def x(matrix):
first = sorted(matrix.keys())[0]
print('\t', end=' ')
for i in matrix[first]:
print('{}\t'.format(i), end=' ')
print()
indent_count = 0
for i in matrix:
print('{}\t'.format(i), end=' ')
if indent_count:
print('\t' * indent_count, end=' ')
for j in sorted(matrix[i]):
print('{}\t'.format(matrix[i][j]), end=' ')
print()
indent_count = indent_count + 1
|
print_upper_triangular_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(matrix):\n first = sorted(matrix.keys())[0]\n print('\\t', end=' ')\n for i in matrix[first]:\n print('{}\\t'.format(i), end=' ')\n print()\n indent_count = 0\n for i in matrix:\n print('{}\\t'.format(i), end=' ')\n if indent_count:\n print('\\t' * indent_count, end=' ')\n for j in sorted(matrix[i]):\n print('{}\\t'.format(matrix[i][j]), end=' ')\n print()\n indent_count = indent_count + 1\n",
"role": "user"
},
{
"content": "print_upper_triangular_matrix",
"role": "assistant"
}
] |
def x(matrix):
for i in sorted(matrix.keys()):
for j in sorted(matrix.keys()):
a, b = i, j
if a > b:
a, b = b, a
print(matrix[a][b], end=' ')
print()
|
print_upper_triangular_matrix_as_complete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(matrix):\n for i in sorted(matrix.keys()):\n for j in sorted(matrix.keys()):\n a, b = i, j\n if a > b:\n a, b = b, a\n print(matrix[a][b], end=' ')\n print()\n",
"role": "user"
},
{
"content": "print_upper_triangular_matrix_as_complete",
"role": "assistant"
}
] |
def x(solution):
total_cost = 0
for solution in solution.routes():
cost = solution.length()
total_cost = total_cost + cost
print('{}: {}'.format(solution, cost))
print('Total cost: {}'.format(total_cost))
|
print_solution
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(solution):\n total_cost = 0\n for solution in solution.routes():\n cost = solution.length()\n total_cost = total_cost + cost\n print('{}: {}'.format(solution, cost))\n print('Total cost: {}'.format(total_cost))\n",
"role": "user"
},
{
"content": "print_solution",
"role": "assistant"
}
] |
def x(session, nw):
nw._config = nw.import_config()
nw._pf_config = nw.import_pf_config()
nw._static_data = nw.import_static_data()
nw._orm = nw.import_orm()
generation_input = nw.list_generators(session)
gen_idx = 0
gen_dict = {}
for mv_district in nw.mv_grid_districts():
for node in mv_district.mv_grid.graph_nodes_sorted():
if isinstance(node, GeneratorDing0):
gen_idx += 1
subtype = node.subtype
if subtype == None:
subtype = 'other'
type = node.type
if type == None:
type = 'other'
gen_dict[gen_idx] = {'v_level': node.v_level, 'type': type,
'subtype': subtype, 'GenCap': node.capacity}
for LA in mv_district.lv_load_areas():
for lv_district in LA.lv_grid_districts():
for g in lv_district.lv_grid.generators():
gen_idx += 1
subtype = g.subtype
if subtype == None:
subtype = 'other'
type = g.type
if type == None:
type = 'other'
gen_dict[gen_idx] = {'v_level': g.v_level, 'type': type,
'subtype': subtype, 'GenCap': g.capacity}
generation_effective = pd.DataFrame.from_dict(gen_dict, orient='index')
input_by_level = generation_input.groupby('v_level').sum()['GenCap'].apply(
lambda x: np.round(x, 3))
effective_by_level = generation_effective.groupby('v_level').sum()['GenCap'
].apply(lambda x: np.round(x, 3))
compare_by_level = pd.concat([input_by_level, effective_by_level,
input_by_level == effective_by_level], axis=1)
compare_by_level.columns = ['table', 'ding0', 'equal?']
generation_input['type'] = generation_input['type'
] + '/' + generation_input['subtype']
generation_effective['type'] = generation_effective['type'
] + '/' + generation_effective['subtype']
input_by_type = generation_input.groupby('type').sum()['GenCap'].apply(
lambda x: np.round(x, 3))
effective_by_type = generation_effective.groupby('type').sum()['GenCap'
].apply(lambda x: np.round(x, 3))
compare_by_type = pd.concat([input_by_type, effective_by_type,
input_by_type == effective_by_type], axis=1)
compare_by_type.columns = ['table', 'ding0', 'equal?']
compare_by_type.index.names = ['type/subtype']
return compare_by_level, compare_by_type
|
validate_generation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(session, nw):\n nw._config = nw.import_config()\n nw._pf_config = nw.import_pf_config()\n nw._static_data = nw.import_static_data()\n nw._orm = nw.import_orm()\n generation_input = nw.list_generators(session)\n gen_idx = 0\n gen_dict = {}\n for mv_district in nw.mv_grid_districts():\n for node in mv_district.mv_grid.graph_nodes_sorted():\n if isinstance(node, GeneratorDing0):\n gen_idx += 1\n subtype = node.subtype\n if subtype == None:\n subtype = 'other'\n type = node.type\n if type == None:\n type = 'other'\n gen_dict[gen_idx] = {'v_level': node.v_level, 'type': type,\n 'subtype': subtype, 'GenCap': node.capacity}\n for LA in mv_district.lv_load_areas():\n for lv_district in LA.lv_grid_districts():\n for g in lv_district.lv_grid.generators():\n gen_idx += 1\n subtype = g.subtype\n if subtype == None:\n subtype = 'other'\n type = g.type\n if type == None:\n type = 'other'\n gen_dict[gen_idx] = {'v_level': g.v_level, 'type': type,\n 'subtype': subtype, 'GenCap': g.capacity}\n generation_effective = pd.DataFrame.from_dict(gen_dict, orient='index')\n input_by_level = generation_input.groupby('v_level').sum()['GenCap'].apply(\n lambda x: np.round(x, 3))\n effective_by_level = generation_effective.groupby('v_level').sum()['GenCap'\n ].apply(lambda x: np.round(x, 3))\n compare_by_level = pd.concat([input_by_level, effective_by_level, \n input_by_level == effective_by_level], axis=1)\n compare_by_level.columns = ['table', 'ding0', 'equal?']\n generation_input['type'] = generation_input['type'\n ] + '/' + generation_input['subtype']\n generation_effective['type'] = generation_effective['type'\n ] + '/' + generation_effective['subtype']\n input_by_type = generation_input.groupby('type').sum()['GenCap'].apply(\n lambda x: np.round(x, 3))\n effective_by_type = generation_effective.groupby('type').sum()['GenCap'\n ].apply(lambda x: np.round(x, 3))\n compare_by_type = pd.concat([input_by_type, effective_by_type, \n input_by_type == effective_by_type], axis=1)\n compare_by_type.columns = ['table', 'ding0', 'equal?']\n compare_by_type.index.names = ['type/subtype']\n return compare_by_level, compare_by_type\n",
"role": "user"
},
{
"content": "validate_generation",
"role": "assistant"
}
] |
def x(session, nw):
nw._config = nw.import_config()
nw._pf_config = nw.import_pf_config()
nw._static_data = nw.import_static_data()
nw._orm = nw.import_orm()
load_input = nw.list_load_areas(session, nw.mv_grid_districts())
la_input = sorted(load_input.index)
load_input = load_input.sum(axis=0).apply(lambda x: np.round(x, 3))
load_input.sort_index(inplace=True)
la_idx = 0
la_dict = {}
for mv_district in nw.mv_grid_districts():
for LA in mv_district.lv_load_areas():
la_idx += 1
la_dict[la_idx] = {'id_db': LA.id_db, 'peak_load_residential':
LA.peak_load_residential, 'peak_load_retail': LA.
peak_load_retail, 'peak_load_industrial': LA.
peak_load_industrial, 'peak_load_agricultural': LA.
peak_load_agricultural}
load_effective = pd.DataFrame.from_dict(la_dict, orient='index').set_index(
'id_db')
la_effective = sorted(load_effective.index)
load_effective = load_effective.sum(axis=0).apply(lambda x: np.round(x, 3))
load_effective.sort_index(inplace=True)
compare_by_la = pd.concat([load_input, load_effective, load_input ==
load_effective], axis=1)
compare_by_la.columns = ['table', 'ding0', 'equal?']
compare_by_la.index.names = ['sector']
return compare_by_la, la_input == la_effective
|
validate_load_areas
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(session, nw):\n nw._config = nw.import_config()\n nw._pf_config = nw.import_pf_config()\n nw._static_data = nw.import_static_data()\n nw._orm = nw.import_orm()\n load_input = nw.list_load_areas(session, nw.mv_grid_districts())\n la_input = sorted(load_input.index)\n load_input = load_input.sum(axis=0).apply(lambda x: np.round(x, 3))\n load_input.sort_index(inplace=True)\n la_idx = 0\n la_dict = {}\n for mv_district in nw.mv_grid_districts():\n for LA in mv_district.lv_load_areas():\n la_idx += 1\n la_dict[la_idx] = {'id_db': LA.id_db, 'peak_load_residential':\n LA.peak_load_residential, 'peak_load_retail': LA.\n peak_load_retail, 'peak_load_industrial': LA.\n peak_load_industrial, 'peak_load_agricultural': LA.\n peak_load_agricultural}\n load_effective = pd.DataFrame.from_dict(la_dict, orient='index').set_index(\n 'id_db')\n la_effective = sorted(load_effective.index)\n load_effective = load_effective.sum(axis=0).apply(lambda x: np.round(x, 3))\n load_effective.sort_index(inplace=True)\n compare_by_la = pd.concat([load_input, load_effective, load_input ==\n load_effective], axis=1)\n compare_by_la.columns = ['table', 'ding0', 'equal?']\n compare_by_la.index.names = ['sector']\n return compare_by_la, la_input == la_effective\n",
"role": "user"
},
{
"content": "validate_load_areas",
"role": "assistant"
}
] |
def x(session, nw):
nw._config = nw.import_config()
nw._pf_config = nw.import_pf_config()
nw._static_data = nw.import_static_data()
nw._orm = nw.import_orm()
lv_ditricts = [dist.id_db for mv in nw.mv_grid_districts() for la in mv
.lv_load_areas() for dist in la.lv_grid_districts()]
load_input = nw.list_lv_grid_districts(session, lv_ditricts)
load_input = load_input.sum(axis=0).apply(lambda x: np.round(x, 3))
load_input.sort_index(inplace=True)
load_input.index.names = ['id_db']
load_input['peak_load_retind'] = load_input['peak_load_retail'
] + load_input['peak_load_industrial']
lv_dist_idx = 0
lv_dist_dict = {}
lv_load_idx = 0
lv_load_dict = {}
for mv_district in nw.mv_grid_districts():
for LA in mv_district.lv_load_areas():
for lv_district in LA.lv_grid_districts():
lv_dist_idx += 1
lv_dist_dict[lv_dist_idx] = {'id_db': lv_district.id_db,
'peak_load_residential': lv_district.
peak_load_residential, 'peak_load_retail': lv_district.
peak_load_retail, 'peak_load_industrial': lv_district.
peak_load_industrial, 'peak_load_agricultural':
lv_district.peak_load_agricultural, 'peak_load_retind':
lv_district.peak_load_industrial + lv_district.
peak_load_retail}
for node in lv_district.lv_grid.graph_nodes_sorted():
if isinstance(node, LVLoadDing0):
lv_load_idx += 1
peak_load_agricultural = 0
peak_load_residential = 0
peak_load_retail = 0
peak_load_industrial = 0
peak_load_retind = 0
if 'agricultural' in node.consumption:
tipo = 'agricultural'
peak_load_agricultural = node.peak_load
elif 'industrial' in node.consumption:
if node.consumption['retail'] == 0:
tipo = 'industrial'
peak_load_industrial = node.peak_load
elif node.consumption['industrial'] == 0:
tipo = 'retail'
peak_load_retail = node.peak_load
else:
tipo = 'ret_ind'
peak_load_retind = node.peak_load
elif 'residential' in node.consumption:
tipo = 'residential'
peak_load_residential = node.peak_load
else:
tipo = 'none'
print(node.consumption)
lv_load_dict[lv_load_idx] = {'id_db': node.id_db,
'peak_load_residential': peak_load_residential,
'peak_load_retail': peak_load_retail,
'peak_load_industrial': peak_load_industrial,
'peak_load_agricultural':
peak_load_agricultural, 'peak_load_retind':
peak_load_retind}
for node in mv_district.mv_grid.graph_nodes_sorted():
if isinstance(node, LVLoadAreaCentreDing0):
lv_load_idx += 1
lv_load_dict[lv_load_idx] = {'id_db': node.id_db,
'peak_load_residential': node.lv_load_area.
peak_load_residential, 'peak_load_retail': node.
lv_load_area.peak_load_retail, 'peak_load_industrial':
node.lv_load_area.peak_load_industrial,
'peak_load_agricultural': node.lv_load_area.
peak_load_agricultural, 'peak_load_retind': 0}
load_effective_lv_distr = pd.DataFrame.from_dict(lv_dist_dict, orient=
'index').set_index('id_db').sum(axis=0).apply(lambda x: np.round(x, 3))
load_effective_lv_distr.sort_index(inplace=True)
compare_by_district = pd.concat([load_input, load_effective_lv_distr,
load_input == load_effective_lv_distr], axis=1)
compare_by_district.columns = ['table', 'ding0', 'equal?']
compare_by_district.index.names = ['sector']
load_effective_lv_load = pd.DataFrame.from_dict(lv_load_dict, orient=
'index').set_index('id_db')
load_effective_lv_load = load_effective_lv_load.sum(axis=0).apply(lambda
x: np.round(x, 3))
load_effective_lv_load.sort_index(inplace=True)
load_effective_lv_load['peak_load_retind'] = load_effective_lv_load[
'peak_load_retail'] + load_effective_lv_load['peak_load_industrial'
] + load_effective_lv_load['peak_load_retind']
compare_by_load = pd.concat([load_input, load_effective_lv_load,
load_input == load_effective_lv_load], axis=1)
compare_by_load.columns = ['table', 'ding0', 'equal?']
compare_by_load.index.names = ['sector']
return compare_by_district, compare_by_load
|
validate_lv_districts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(session, nw):\n nw._config = nw.import_config()\n nw._pf_config = nw.import_pf_config()\n nw._static_data = nw.import_static_data()\n nw._orm = nw.import_orm()\n lv_ditricts = [dist.id_db for mv in nw.mv_grid_districts() for la in mv\n .lv_load_areas() for dist in la.lv_grid_districts()]\n load_input = nw.list_lv_grid_districts(session, lv_ditricts)\n load_input = load_input.sum(axis=0).apply(lambda x: np.round(x, 3))\n load_input.sort_index(inplace=True)\n load_input.index.names = ['id_db']\n load_input['peak_load_retind'] = load_input['peak_load_retail'\n ] + load_input['peak_load_industrial']\n lv_dist_idx = 0\n lv_dist_dict = {}\n lv_load_idx = 0\n lv_load_dict = {}\n for mv_district in nw.mv_grid_districts():\n for LA in mv_district.lv_load_areas():\n for lv_district in LA.lv_grid_districts():\n lv_dist_idx += 1\n lv_dist_dict[lv_dist_idx] = {'id_db': lv_district.id_db,\n 'peak_load_residential': lv_district.\n peak_load_residential, 'peak_load_retail': lv_district.\n peak_load_retail, 'peak_load_industrial': lv_district.\n peak_load_industrial, 'peak_load_agricultural':\n lv_district.peak_load_agricultural, 'peak_load_retind':\n lv_district.peak_load_industrial + lv_district.\n peak_load_retail}\n for node in lv_district.lv_grid.graph_nodes_sorted():\n if isinstance(node, LVLoadDing0):\n lv_load_idx += 1\n peak_load_agricultural = 0\n peak_load_residential = 0\n peak_load_retail = 0\n peak_load_industrial = 0\n peak_load_retind = 0\n if 'agricultural' in node.consumption:\n tipo = 'agricultural'\n peak_load_agricultural = node.peak_load\n elif 'industrial' in node.consumption:\n if node.consumption['retail'] == 0:\n tipo = 'industrial'\n peak_load_industrial = node.peak_load\n elif node.consumption['industrial'] == 0:\n tipo = 'retail'\n peak_load_retail = node.peak_load\n else:\n tipo = 'ret_ind'\n peak_load_retind = node.peak_load\n elif 'residential' in node.consumption:\n tipo = 'residential'\n peak_load_residential = node.peak_load\n else:\n tipo = 'none'\n print(node.consumption)\n lv_load_dict[lv_load_idx] = {'id_db': node.id_db,\n 'peak_load_residential': peak_load_residential,\n 'peak_load_retail': peak_load_retail,\n 'peak_load_industrial': peak_load_industrial,\n 'peak_load_agricultural':\n peak_load_agricultural, 'peak_load_retind':\n peak_load_retind}\n for node in mv_district.mv_grid.graph_nodes_sorted():\n if isinstance(node, LVLoadAreaCentreDing0):\n lv_load_idx += 1\n lv_load_dict[lv_load_idx] = {'id_db': node.id_db,\n 'peak_load_residential': node.lv_load_area.\n peak_load_residential, 'peak_load_retail': node.\n lv_load_area.peak_load_retail, 'peak_load_industrial':\n node.lv_load_area.peak_load_industrial,\n 'peak_load_agricultural': node.lv_load_area.\n peak_load_agricultural, 'peak_load_retind': 0}\n load_effective_lv_distr = pd.DataFrame.from_dict(lv_dist_dict, orient=\n 'index').set_index('id_db').sum(axis=0).apply(lambda x: np.round(x, 3))\n load_effective_lv_distr.sort_index(inplace=True)\n compare_by_district = pd.concat([load_input, load_effective_lv_distr, \n load_input == load_effective_lv_distr], axis=1)\n compare_by_district.columns = ['table', 'ding0', 'equal?']\n compare_by_district.index.names = ['sector']\n load_effective_lv_load = pd.DataFrame.from_dict(lv_load_dict, orient=\n 'index').set_index('id_db')\n load_effective_lv_load = load_effective_lv_load.sum(axis=0).apply(lambda\n x: np.round(x, 3))\n load_effective_lv_load.sort_index(inplace=True)\n load_effective_lv_load['peak_load_retind'] = load_effective_lv_load[\n 'peak_load_retail'] + load_effective_lv_load['peak_load_industrial'\n ] + load_effective_lv_load['peak_load_retind']\n compare_by_load = pd.concat([load_input, load_effective_lv_load, \n load_input == load_effective_lv_load], axis=1)\n compare_by_load.columns = ['table', 'ding0', 'equal?']\n compare_by_load.index.names = ['sector']\n return compare_by_district, compare_by_load\n",
"role": "user"
},
{
"content": "validate_lv_districts",
"role": "assistant"
}
] |
def x(grid, mode):
crit_branches = {}
crit_stations = []
if mode == 'MV':
load_factor_mv_line_lc_normal = float(cfg_ding0.get('assumptions',
'load_factor_mv_line_lc_normal'))
load_factor_mv_cable_lc_normal = float(cfg_ding0.get('assumptions',
'load_factor_mv_cable_lc_normal'))
load_factor_mv_line_fc_normal = float(cfg_ding0.get('assumptions',
'load_factor_mv_line_fc_normal'))
load_factor_mv_cable_fc_normal = float(cfg_ding0.get('assumptions',
'load_factor_mv_cable_fc_normal'))
mw2kw = 1000.0
kw2mw = 0.001
for branch in grid.graph_edges():
s_max_th = 3 ** 0.5 * branch['branch'].type['U_n'] * branch[
'branch'].type['I_max_th']
if branch['branch'].kind == 'line':
s_max_th_lcfc = [s_max_th * load_factor_mv_line_lc_normal,
s_max_th * load_factor_mv_line_fc_normal]
elif branch['branch'].kind == 'cable':
s_max_th_lcfc = [s_max_th * load_factor_mv_cable_lc_normal,
s_max_th * load_factor_mv_cable_fc_normal]
else:
raise ValueError('Branch kind is invalid!')
try:
if any([(s_res * mw2kw > _) for s_res, _ in zip(branch[
'branch'].s_res, s_max_th_lcfc)]):
crit_branches[branch] = max(branch['branch'].s_res
) * mw2kw / s_max_th
except:
pass
elif mode == 'LV':
raise NotImplementedError
if crit_branches:
logger.info('==> {} branches have load issues.'.format(len(
crit_branches)))
if crit_stations:
logger.info('==> {} stations have load issues.'.format(len(
crit_stations)))
return crit_branches, crit_stations
|
check_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, mode):\n crit_branches = {}\n crit_stations = []\n if mode == 'MV':\n load_factor_mv_line_lc_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_line_lc_normal'))\n load_factor_mv_cable_lc_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_cable_lc_normal'))\n load_factor_mv_line_fc_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_line_fc_normal'))\n load_factor_mv_cable_fc_normal = float(cfg_ding0.get('assumptions',\n 'load_factor_mv_cable_fc_normal'))\n mw2kw = 1000.0\n kw2mw = 0.001\n for branch in grid.graph_edges():\n s_max_th = 3 ** 0.5 * branch['branch'].type['U_n'] * branch[\n 'branch'].type['I_max_th']\n if branch['branch'].kind == 'line':\n s_max_th_lcfc = [s_max_th * load_factor_mv_line_lc_normal, \n s_max_th * load_factor_mv_line_fc_normal]\n elif branch['branch'].kind == 'cable':\n s_max_th_lcfc = [s_max_th * load_factor_mv_cable_lc_normal,\n s_max_th * load_factor_mv_cable_fc_normal]\n else:\n raise ValueError('Branch kind is invalid!')\n try:\n if any([(s_res * mw2kw > _) for s_res, _ in zip(branch[\n 'branch'].s_res, s_max_th_lcfc)]):\n crit_branches[branch] = max(branch['branch'].s_res\n ) * mw2kw / s_max_th\n except:\n pass\n elif mode == 'LV':\n raise NotImplementedError\n if crit_branches:\n logger.info('==> {} branches have load issues.'.format(len(\n crit_branches)))\n if crit_stations:\n logger.info('==> {} stations have load issues.'.format(len(\n crit_stations)))\n return crit_branches, crit_stations\n",
"role": "user"
},
{
"content": "check_load",
"role": "assistant"
}
] |
def x(grid, mode):
crit_nodes = {}
if mode == 'MV':
mv_max_v_level_lc_diff_normal = float(cfg_ding0.get(
'mv_routing_tech_constraints', 'mv_max_v_level_lc_diff_normal'))
mv_max_v_level_fc_diff_normal = float(cfg_ding0.get(
'mv_routing_tech_constraints', 'mv_max_v_level_fc_diff_normal'))
voltage_station = grid._station.voltage_res
for node in grid.graph_nodes_sorted():
try:
if abs(voltage_station[0] - node.voltage_res[0]
) > mv_max_v_level_lc_diff_normal or abs(
voltage_station[1] - node.voltage_res[1]
) > mv_max_v_level_fc_diff_normal:
crit_nodes[node] = {'node': node, 'v_diff': max([abs(v2 -
v1) for v1, v2 in zip(node.voltage_res,
voltage_station)])}
except:
pass
elif mode == 'LV':
raise NotImplementedError
if crit_nodes:
logger.info('==> {} nodes have voltage issues.'.format(len(crit_nodes))
)
return [_['node'] for _ in sorted(crit_nodes.values(), key=lambda _: _[
'v_diff'], reverse=True)]
|
check_voltage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, mode):\n crit_nodes = {}\n if mode == 'MV':\n mv_max_v_level_lc_diff_normal = float(cfg_ding0.get(\n 'mv_routing_tech_constraints', 'mv_max_v_level_lc_diff_normal'))\n mv_max_v_level_fc_diff_normal = float(cfg_ding0.get(\n 'mv_routing_tech_constraints', 'mv_max_v_level_fc_diff_normal'))\n voltage_station = grid._station.voltage_res\n for node in grid.graph_nodes_sorted():\n try:\n if abs(voltage_station[0] - node.voltage_res[0]\n ) > mv_max_v_level_lc_diff_normal or abs(\n voltage_station[1] - node.voltage_res[1]\n ) > mv_max_v_level_fc_diff_normal:\n crit_nodes[node] = {'node': node, 'v_diff': max([abs(v2 -\n v1) for v1, v2 in zip(node.voltage_res,\n voltage_station)])}\n except:\n pass\n elif mode == 'LV':\n raise NotImplementedError\n if crit_nodes:\n logger.info('==> {} nodes have voltage issues.'.format(len(crit_nodes))\n )\n return [_['node'] for _ in sorted(crit_nodes.values(), key=lambda _: _[\n 'v_diff'], reverse=True)]\n",
"role": "user"
},
{
"content": "check_voltage",
"role": "assistant"
}
] |
def x(grid):
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')
lf_trafo_load = cfg_ding0.get('assumptions',
'load_factor_lv_trans_lc_normal')
lf_trafo_gen = cfg_ding0.get('assumptions',
'load_factor_lv_trans_fc_normal')
critical_branches = []
critical_stations = []
station = grid._station
tree = nx.dfs_tree(grid._graph, station)
for node in tree.nodes():
descendants = list(nx.descendants(tree, node))
descendants.append(node)
if isinstance(node, LVStationDing0):
peak_load, peak_gen = peak_load_generation_at_node(descendants)
if grid.id_db == 61107:
if isinstance(node, LVStationDing0):
print(node)
s_max_trafos = sum([_.s_max_a for _ in node._transformers])
if (peak_load / cos_phi_load > s_max_trafos * lf_trafo_load or
peak_gen / cos_phi_feedin > s_max_trafos * lf_trafo_gen):
critical_stations.append({'station': node, 's_max': [
peak_load / cos_phi_load, peak_gen / cos_phi_feedin]})
else:
predecessors = list(tree.predecessors(node))
predecessor = predecessors[0]
branches = grid.graph_branches_from_node(node)
preceeding_branch = [branch for branch in branches if branch[0] is
predecessor][0]
peak_load, peak_gen = peak_load_generation_at_node(descendants)
s_max_th = 3 ** 0.5 * preceeding_branch[1]['branch'].type['U_n'
] * preceeding_branch[1]['branch'].type['I_max_th'] / 1000.0
if (peak_load / cos_phi_load > s_max_th or peak_gen /
cos_phi_feedin > s_max_th):
critical_branches.append({'branch': preceeding_branch[1][
'branch'], 's_max': [peak_load / cos_phi_load, peak_gen /
cos_phi_feedin]})
return critical_branches, critical_stations
|
get_critical_line_loading
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid):\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')\n lf_trafo_load = cfg_ding0.get('assumptions',\n 'load_factor_lv_trans_lc_normal')\n lf_trafo_gen = cfg_ding0.get('assumptions',\n 'load_factor_lv_trans_fc_normal')\n critical_branches = []\n critical_stations = []\n station = grid._station\n tree = nx.dfs_tree(grid._graph, station)\n for node in tree.nodes():\n descendants = list(nx.descendants(tree, node))\n descendants.append(node)\n if isinstance(node, LVStationDing0):\n peak_load, peak_gen = peak_load_generation_at_node(descendants)\n if grid.id_db == 61107:\n if isinstance(node, LVStationDing0):\n print(node)\n s_max_trafos = sum([_.s_max_a for _ in node._transformers])\n if (peak_load / cos_phi_load > s_max_trafos * lf_trafo_load or \n peak_gen / cos_phi_feedin > s_max_trafos * lf_trafo_gen):\n critical_stations.append({'station': node, 's_max': [\n peak_load / cos_phi_load, peak_gen / cos_phi_feedin]})\n else:\n predecessors = list(tree.predecessors(node))\n predecessor = predecessors[0]\n branches = grid.graph_branches_from_node(node)\n preceeding_branch = [branch for branch in branches if branch[0] is\n predecessor][0]\n peak_load, peak_gen = peak_load_generation_at_node(descendants)\n s_max_th = 3 ** 0.5 * preceeding_branch[1]['branch'].type['U_n'\n ] * preceeding_branch[1]['branch'].type['I_max_th'] / 1000.0\n if (peak_load / cos_phi_load > s_max_th or peak_gen /\n cos_phi_feedin > s_max_th):\n critical_branches.append({'branch': preceeding_branch[1][\n 'branch'], 's_max': [peak_load / cos_phi_load, peak_gen /\n cos_phi_feedin]})\n return critical_branches, critical_stations\n",
"role": "user"
},
{
"content": "get_critical_line_loading",
"role": "assistant"
}
] |
def x(nodes):
loads = [node.peak_load for node in nodes if isinstance(node, LVLoadDing0)]
peak_load = sum(loads)
generation = [node.capacity for node in nodes if isinstance(node,
GeneratorDing0)]
peak_generation = sum(generation)
return peak_load, peak_generation
|
peak_load_generation_at_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nodes):\n loads = [node.peak_load for node in nodes if isinstance(node, LVLoadDing0)]\n peak_load = sum(loads)\n generation = [node.capacity for node in nodes if isinstance(node,\n GeneratorDing0)]\n peak_generation = sum(generation)\n return peak_load, peak_generation\n",
"role": "user"
},
{
"content": "peak_load_generation_at_node",
"role": "assistant"
}
] |
def x(grid):
v_delta_tolerable_fc = cfg_ding0.get('assumptions',
'lv_max_v_level_fc_diff_normal')
v_delta_tolerable_lc = cfg_ding0.get('assumptions',
'lv_max_v_level_lc_diff_normal')
omega = 2 * math.pi * 50
crit_nodes = []
tree = nx.dfs_tree(grid._graph, grid._station)
main_branch = []
grid_conn_points = []
for node in list(nx.descendants(tree, grid._station)):
successors = list(tree.successors(node))
if successors and all(isinstance(successor, LVCableDistributorDing0
) for successor in successors):
main_branch.append(node)
elif isinstance(node, LVCableDistributorDing0) and all(isinstance(
successor, (GeneratorDing0, LVLoadDing0)) for successor in
successors):
grid_conn_points.append(node)
r_mv_grid, x_mv_grid = get_mv_impedance(grid)
r_trafo = sum([tr.r for tr in grid._station._transformers])
x_trafo = sum([tr.x for tr in grid._station._transformers])
v_delta_load_case_bus_bar, v_delta_gen_case_bus_bar = (
get_voltage_at_bus_bar(grid, tree))
if abs(v_delta_gen_case_bus_bar) > v_delta_tolerable_fc or abs(
v_delta_load_case_bus_bar) > v_delta_tolerable_lc:
crit_nodes.append({'node': grid._station, 'v_diff': [
v_delta_load_case_bus_bar, v_delta_gen_case_bus_bar]})
for first_node in [b for b in tree.successors(grid._station) if b in
main_branch]:
r = r_mv_grid + r_trafo
x = x_mv_grid + x_trafo
stub_node = [_ for _ in list(tree.successors(first_node)) if _ not in
main_branch][0]
v_delta_load_stub, v_delta_gen_stub = voltage_delta_stub(grid, tree,
first_node, stub_node, r, x)
v_delta_load_cum = v_delta_load_case_bus_bar
v_delta_gen_cum = v_delta_gen_case_bus_bar
voltage_delta_load, voltage_delta_gen, r, x = get_voltage_delta_branch(
grid, tree, first_node, r, x)
v_delta_load_cum += voltage_delta_load
v_delta_gen_cum += voltage_delta_gen
if abs(v_delta_gen_cum
) > v_delta_tolerable_fc - v_delta_gen_stub or abs(v_delta_load_cum
) > v_delta_tolerable_lc - v_delta_load_stub:
crit_nodes.append({'node': first_node, 'v_diff': [
v_delta_load_cum, v_delta_gen_cum]})
crit_nodes.append({'node': stub_node, 'v_diff': [
v_delta_load_cum + v_delta_load_stub, v_delta_gen_cum +
v_delta_gen_stub]})
successor = [x for x in tree.successors(first_node) if x in main_branch
]
if successor:
successor = successor[0]
while successor:
voltage_delta_load, voltage_delta_gen, r, x = (
get_voltage_delta_branch(grid, tree, successor, r, x))
v_delta_load_cum += voltage_delta_load
v_delta_gen_cum += voltage_delta_gen
stub_node = [_ for _ in tree.successors(successor) if _ not in
main_branch][0]
v_delta_load_stub, v_delta_gen_stub = voltage_delta_stub(grid,
tree, successor, stub_node, r, x)
if abs(v_delta_gen_cum
) > v_delta_tolerable_fc - v_delta_gen_stub or abs(
v_delta_load_cum) > v_delta_tolerable_lc - v_delta_load_stub:
crit_nodes.append({'node': successor, 'v_diff': [
v_delta_load_cum, v_delta_gen_cum]})
crit_nodes.append({'node': stub_node, 'v_diff': [
v_delta_load_cum + v_delta_load_stub, v_delta_gen_cum +
v_delta_gen_stub]})
successor = [_ for _ in tree.successors(successor) if _ in
main_branch]
if successor:
successor = successor[0]
return crit_nodes
|
get_critical_voltage_at_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid):\n v_delta_tolerable_fc = cfg_ding0.get('assumptions',\n 'lv_max_v_level_fc_diff_normal')\n v_delta_tolerable_lc = cfg_ding0.get('assumptions',\n 'lv_max_v_level_lc_diff_normal')\n omega = 2 * math.pi * 50\n crit_nodes = []\n tree = nx.dfs_tree(grid._graph, grid._station)\n main_branch = []\n grid_conn_points = []\n for node in list(nx.descendants(tree, grid._station)):\n successors = list(tree.successors(node))\n if successors and all(isinstance(successor, LVCableDistributorDing0\n ) for successor in successors):\n main_branch.append(node)\n elif isinstance(node, LVCableDistributorDing0) and all(isinstance(\n successor, (GeneratorDing0, LVLoadDing0)) for successor in\n successors):\n grid_conn_points.append(node)\n r_mv_grid, x_mv_grid = get_mv_impedance(grid)\n r_trafo = sum([tr.r for tr in grid._station._transformers])\n x_trafo = sum([tr.x for tr in grid._station._transformers])\n v_delta_load_case_bus_bar, v_delta_gen_case_bus_bar = (\n get_voltage_at_bus_bar(grid, tree))\n if abs(v_delta_gen_case_bus_bar) > v_delta_tolerable_fc or abs(\n v_delta_load_case_bus_bar) > v_delta_tolerable_lc:\n crit_nodes.append({'node': grid._station, 'v_diff': [\n v_delta_load_case_bus_bar, v_delta_gen_case_bus_bar]})\n for first_node in [b for b in tree.successors(grid._station) if b in\n main_branch]:\n r = r_mv_grid + r_trafo\n x = x_mv_grid + x_trafo\n stub_node = [_ for _ in list(tree.successors(first_node)) if _ not in\n main_branch][0]\n v_delta_load_stub, v_delta_gen_stub = voltage_delta_stub(grid, tree,\n first_node, stub_node, r, x)\n v_delta_load_cum = v_delta_load_case_bus_bar\n v_delta_gen_cum = v_delta_gen_case_bus_bar\n voltage_delta_load, voltage_delta_gen, r, x = get_voltage_delta_branch(\n grid, tree, first_node, r, x)\n v_delta_load_cum += voltage_delta_load\n v_delta_gen_cum += voltage_delta_gen\n if abs(v_delta_gen_cum\n ) > v_delta_tolerable_fc - v_delta_gen_stub or abs(v_delta_load_cum\n ) > v_delta_tolerable_lc - v_delta_load_stub:\n crit_nodes.append({'node': first_node, 'v_diff': [\n v_delta_load_cum, v_delta_gen_cum]})\n crit_nodes.append({'node': stub_node, 'v_diff': [\n v_delta_load_cum + v_delta_load_stub, v_delta_gen_cum +\n v_delta_gen_stub]})\n successor = [x for x in tree.successors(first_node) if x in main_branch\n ]\n if successor:\n successor = successor[0]\n while successor:\n voltage_delta_load, voltage_delta_gen, r, x = (\n get_voltage_delta_branch(grid, tree, successor, r, x))\n v_delta_load_cum += voltage_delta_load\n v_delta_gen_cum += voltage_delta_gen\n stub_node = [_ for _ in tree.successors(successor) if _ not in\n main_branch][0]\n v_delta_load_stub, v_delta_gen_stub = voltage_delta_stub(grid,\n tree, successor, stub_node, r, x)\n if abs(v_delta_gen_cum\n ) > v_delta_tolerable_fc - v_delta_gen_stub or abs(\n v_delta_load_cum) > v_delta_tolerable_lc - v_delta_load_stub:\n crit_nodes.append({'node': successor, 'v_diff': [\n v_delta_load_cum, v_delta_gen_cum]})\n crit_nodes.append({'node': stub_node, 'v_diff': [\n v_delta_load_cum + v_delta_load_stub, v_delta_gen_cum +\n v_delta_gen_stub]})\n successor = [_ for _ in tree.successors(successor) if _ in\n main_branch]\n if successor:\n successor = successor[0]\n return crit_nodes\n",
"role": "user"
},
{
"content": "get_critical_voltage_at_nodes",
"role": "assistant"
}
] |
def x(v_nom, s_max, r, x, cos_phi):
delta_v = s_max * (r * cos_phi + x * math.sin(math.acos(cos_phi))
) / v_nom ** 2
return delta_v
|
voltage_delta_vde
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(v_nom, s_max, r, x, cos_phi):\n delta_v = s_max * (r * cos_phi + x * math.sin(math.acos(cos_phi))\n ) / v_nom ** 2\n return delta_v\n",
"role": "user"
},
{
"content": "voltage_delta_vde",
"role": "assistant"
}
] |
def x(graph, node):
generation = 0
peak_load = 0
for cus_1 in graph.successors(node):
for cus_2 in graph.successors(cus_1):
if not isinstance(cus_2, list):
cus_2 = [cus_2]
generation += sum([gen.capacity for gen in cus_2 if isinstance(
gen, GeneratorDing0)])
peak_load += sum([load.peak_load for load in cus_2 if
isinstance(load, LVLoadDing0)])
return [peak_load, generation]
|
get_house_conn_gen_load
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph, node):\n generation = 0\n peak_load = 0\n for cus_1 in graph.successors(node):\n for cus_2 in graph.successors(cus_1):\n if not isinstance(cus_2, list):\n cus_2 = [cus_2]\n generation += sum([gen.capacity for gen in cus_2 if isinstance(\n gen, GeneratorDing0)])\n peak_load += sum([load.peak_load for load in cus_2 if\n isinstance(load, LVLoadDing0)])\n return [peak_load, generation]\n",
"role": "user"
},
{
"content": "get_house_conn_gen_load",
"role": "assistant"
}
] |
def x(grid, tree, node, r_preceeding, x_preceeding):
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')
v_nom = cfg_ding0.get('assumptions', 'lv_nominal_voltage')
omega = 2 * math.pi * 50
in_edge = [_ for _ in grid.graph_branches_from_node(node) if _[0] in
list(tree.predecessors(node))][0][1]
r = r_preceeding + in_edge['branch'].type['R'] * in_edge['branch'].length
x = x_preceeding + in_edge['branch'].type['L'] / 1000.0 * omega * in_edge[
'branch'].length
peak_load, gen_capacity = get_house_conn_gen_load(tree, node)
s_max_load = peak_load / cos_phi_load
s_max_feedin = gen_capacity / cos_phi_feedin
voltage_delta_load = voltage_delta_vde(v_nom, s_max_load, r, x,
cos_phi_load)
voltage_delta_gen = voltage_delta_vde(v_nom, s_max_feedin, r, -x,
cos_phi_feedin)
return [voltage_delta_load, voltage_delta_gen, r, x]
|
get_voltage_delta_branch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, tree, node, r_preceeding, x_preceeding):\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')\n v_nom = cfg_ding0.get('assumptions', 'lv_nominal_voltage')\n omega = 2 * math.pi * 50\n in_edge = [_ for _ in grid.graph_branches_from_node(node) if _[0] in\n list(tree.predecessors(node))][0][1]\n r = r_preceeding + in_edge['branch'].type['R'] * in_edge['branch'].length\n x = x_preceeding + in_edge['branch'].type['L'] / 1000.0 * omega * in_edge[\n 'branch'].length\n peak_load, gen_capacity = get_house_conn_gen_load(tree, node)\n s_max_load = peak_load / cos_phi_load\n s_max_feedin = gen_capacity / cos_phi_feedin\n voltage_delta_load = voltage_delta_vde(v_nom, s_max_load, r, x,\n cos_phi_load)\n voltage_delta_gen = voltage_delta_vde(v_nom, s_max_feedin, r, -x,\n cos_phi_feedin)\n return [voltage_delta_load, voltage_delta_gen, r, x]\n",
"role": "user"
},
{
"content": "get_voltage_delta_branch",
"role": "assistant"
}
] |
def x(grid):
omega = 2 * math.pi * 50
mv_grid = grid.grid_district.lv_load_area.mv_grid_district.mv_grid
edges = mv_grid.find_path(grid._station, mv_grid._station, type='edges')
r_mv_grid = sum([(e[2]['branch'].type['R'] * e[2]['branch'].length /
1000.0) for e in edges])
x_mv_grid = sum([(e[2]['branch'].type['L'] / 1000.0 * omega * e[2][
'branch'].length / 1000.0) for e in edges])
return [r_mv_grid, x_mv_grid]
|
get_mv_impedance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid):\n omega = 2 * math.pi * 50\n mv_grid = grid.grid_district.lv_load_area.mv_grid_district.mv_grid\n edges = mv_grid.find_path(grid._station, mv_grid._station, type='edges')\n r_mv_grid = sum([(e[2]['branch'].type['R'] * e[2]['branch'].length / \n 1000.0) for e in edges])\n x_mv_grid = sum([(e[2]['branch'].type['L'] / 1000.0 * omega * e[2][\n 'branch'].length / 1000.0) for e in edges])\n return [r_mv_grid, x_mv_grid]\n",
"role": "user"
},
{
"content": "get_mv_impedance",
"role": "assistant"
}
] |
def x(grid, tree, main_branch_node, stub_node, r_preceeding, x_preceedig):
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')
v_nom = cfg_ding0.get('assumptions', 'lv_nominal_voltage')
omega = 2 * math.pi * 50
stub_branch = [_ for _ in grid.graph_branches_from_node(
main_branch_node) if _[0] == stub_node][0][1]
r_stub = stub_branch['branch'].type['R'] * stub_branch['branch'
].length / 1000.0
x_stub = stub_branch['branch'].type['L'] / 1000.0 * omega * stub_branch[
'branch'].length / 1000.0
s_max_gen = [(_.capacity / cos_phi_feedin) for _ in tree.successors(
stub_node) if isinstance(_, GeneratorDing0)]
if s_max_gen:
s_max_gen = s_max_gen[0]
v_delta_stub_gen = voltage_delta_vde(v_nom, s_max_gen, r_stub +
r_preceeding, x_stub + x_preceedig, cos_phi_feedin)
else:
v_delta_stub_gen = 0
s_max_load = [(_.peak_load / cos_phi_load) for _ in tree.successors(
stub_node) if isinstance(_, LVLoadDing0)]
if s_max_load:
s_max_load = s_max_load[0]
v_delta_stub_load = voltage_delta_vde(v_nom, s_max_load, r_stub +
r_preceeding, x_stub + x_preceedig, cos_phi_load)
else:
v_delta_stub_load = 0
return [v_delta_stub_load, v_delta_stub_gen]
|
voltage_delta_stub
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, tree, main_branch_node, stub_node, r_preceeding, x_preceedig):\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')\n v_nom = cfg_ding0.get('assumptions', 'lv_nominal_voltage')\n omega = 2 * math.pi * 50\n stub_branch = [_ for _ in grid.graph_branches_from_node(\n main_branch_node) if _[0] == stub_node][0][1]\n r_stub = stub_branch['branch'].type['R'] * stub_branch['branch'\n ].length / 1000.0\n x_stub = stub_branch['branch'].type['L'] / 1000.0 * omega * stub_branch[\n 'branch'].length / 1000.0\n s_max_gen = [(_.capacity / cos_phi_feedin) for _ in tree.successors(\n stub_node) if isinstance(_, GeneratorDing0)]\n if s_max_gen:\n s_max_gen = s_max_gen[0]\n v_delta_stub_gen = voltage_delta_vde(v_nom, s_max_gen, r_stub +\n r_preceeding, x_stub + x_preceedig, cos_phi_feedin)\n else:\n v_delta_stub_gen = 0\n s_max_load = [(_.peak_load / cos_phi_load) for _ in tree.successors(\n stub_node) if isinstance(_, LVLoadDing0)]\n if s_max_load:\n s_max_load = s_max_load[0]\n v_delta_stub_load = voltage_delta_vde(v_nom, s_max_load, r_stub +\n r_preceeding, x_stub + x_preceedig, cos_phi_load)\n else:\n v_delta_stub_load = 0\n return [v_delta_stub_load, v_delta_stub_gen]\n",
"role": "user"
},
{
"content": "voltage_delta_stub",
"role": "assistant"
}
] |
def x(grid, tree):
r_mv_grid, x_mv_grid = get_mv_impedance(grid)
r_trafo = sum([tr.r for tr in grid._station._transformers])
x_trafo = sum([tr.x for tr in grid._station._transformers])
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')
v_nom = cfg_ding0.get('assumptions', 'lv_nominal_voltage')
bus_bar_load = sum([node.peak_load for node in tree.successors(grid.
_station) if isinstance(node, LVLoadDing0)]) / cos_phi_load
bus_bar_generation = sum([node.capacity for node in tree.successors(
grid._station) if isinstance(node, GeneratorDing0)]) / cos_phi_feedin
v_delta_load_case_bus_bar = voltage_delta_vde(v_nom, bus_bar_load,
r_mv_grid + r_trafo, x_mv_grid + x_trafo, cos_phi_load)
v_delta_gen_case_bus_bar = voltage_delta_vde(v_nom, bus_bar_generation,
r_mv_grid + r_trafo, -(x_mv_grid + x_trafo), cos_phi_feedin)
return v_delta_load_case_bus_bar, v_delta_gen_case_bus_bar
|
get_voltage_at_bus_bar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, tree):\n r_mv_grid, x_mv_grid = get_mv_impedance(grid)\n r_trafo = sum([tr.r for tr in grid._station._transformers])\n x_trafo = sum([tr.x for tr in grid._station._transformers])\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n cos_phi_feedin = cfg_ding0.get('assumptions', 'cos_phi_gen')\n v_nom = cfg_ding0.get('assumptions', 'lv_nominal_voltage')\n bus_bar_load = sum([node.peak_load for node in tree.successors(grid.\n _station) if isinstance(node, LVLoadDing0)]) / cos_phi_load\n bus_bar_generation = sum([node.capacity for node in tree.successors(\n grid._station) if isinstance(node, GeneratorDing0)]) / cos_phi_feedin\n v_delta_load_case_bus_bar = voltage_delta_vde(v_nom, bus_bar_load, \n r_mv_grid + r_trafo, x_mv_grid + x_trafo, cos_phi_load)\n v_delta_gen_case_bus_bar = voltage_delta_vde(v_nom, bus_bar_generation,\n r_mv_grid + r_trafo, -(x_mv_grid + x_trafo), cos_phi_feedin)\n return v_delta_load_case_bus_bar, v_delta_gen_case_bus_bar\n",
"role": "user"
},
{
"content": "get_voltage_at_bus_bar",
"role": "assistant"
}
] |
def x(self, lv_load_area):
self._lv_load_areas.append(lv_load_area)
if not isinstance(lv_load_area, MVCableDistributorDing0):
self.peak_load += lv_load_area.peak_load
|
add_lv_load_area
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lv_load_area):\n self._lv_load_areas.append(lv_load_area)\n if not isinstance(lv_load_area, MVCableDistributorDing0):\n self.peak_load += lv_load_area.peak_load\n",
"role": "user"
},
{
"content": "add_lv_load_area",
"role": "assistant"
}
] |
def x(self, node):
cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')
lv_load_area = node.lv_load_area
if lv_load_area not in self.lv_load_areas():
path_length_to_root = (lv_load_area.mv_grid_district.mv_grid.
graph_path_length(self.root_node, node))
if path_length_to_root <= self.branch_length_max and (lv_load_area.
peak_load + self.peak_load) / cos_phi_load <= self.peak_load_max:
return True
else:
return False
|
can_add_lv_load_area
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node):\n cos_phi_load = cfg_ding0.get('assumptions', 'cos_phi_load')\n lv_load_area = node.lv_load_area\n if lv_load_area not in self.lv_load_areas():\n path_length_to_root = (lv_load_area.mv_grid_district.mv_grid.\n graph_path_length(self.root_node, node))\n if path_length_to_root <= self.branch_length_max and (lv_load_area.\n peak_load + self.peak_load) / cos_phi_load <= self.peak_load_max:\n return True\n else:\n return False\n",
"role": "user"
},
{
"content": "can_add_lv_load_area",
"role": "assistant"
}
] |
def x(self, graph, solution, op_diff_round_digits, anim=None):
no_ctr = 100
dm = graph._matrix
dn = graph._nodes
for route in solution.routes():
if len(route._nodes) == 1:
if solution._problem._is_aggregated[str(route._nodes[0])]:
continue
n = len(route._nodes) + 1
tour = [graph._depot] + route._nodes + [graph._depot]
while True:
length = route.length()
length_best = length
for s in range(3, 0, -1):
for i in range(1, n - s):
length_diff = length - dm[dn[tour[i - 1].name()]][dn[
tour[i].name()]] - dm[dn[tour[i + s - 1].name()]][dn
[tour[i + s].name()]] + dm[dn[tour[i - 1].name()]][dn
[tour[i + s].name()]]
for j in range(i + s + 1, n + 1):
if j == n:
j2 = 1
else:
j2 = j + 1
length_new = length_diff + dm[dn[tour[j - 1].name()]][
dn[tour[i].name()]] + dm[dn[tour[i + s - 1].name()]
][dn[tour[j2 - 1].name()]] - dm[dn[tour[j - 1].
name()]][dn[tour[j2 - 1].name()]]
if length_new < length_best:
length_best = length_new
s_best, i_best, j_best = s, i, j
if length_best < length:
tour = tour[0:i_best] + tour[i_best + s_best:j_best] + tour[
i_best:i_best + s_best] + tour[j_best:n + 1]
if anim is not None:
solution.draw_network(anim)
if length_best == length:
solution._routes[solution._routes.index(route)].deallocate(tour
[1:-1])
solution._routes[solution._routes.index(route)].allocate(tour
[1:-1])
break
return solution
|
operator_oropt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graph, solution, op_diff_round_digits, anim=None):\n no_ctr = 100\n dm = graph._matrix\n dn = graph._nodes\n for route in solution.routes():\n if len(route._nodes) == 1:\n if solution._problem._is_aggregated[str(route._nodes[0])]:\n continue\n n = len(route._nodes) + 1\n tour = [graph._depot] + route._nodes + [graph._depot]\n while True:\n length = route.length()\n length_best = length\n for s in range(3, 0, -1):\n for i in range(1, n - s):\n length_diff = length - dm[dn[tour[i - 1].name()]][dn[\n tour[i].name()]] - dm[dn[tour[i + s - 1].name()]][dn\n [tour[i + s].name()]] + dm[dn[tour[i - 1].name()]][dn\n [tour[i + s].name()]]\n for j in range(i + s + 1, n + 1):\n if j == n:\n j2 = 1\n else:\n j2 = j + 1\n length_new = length_diff + dm[dn[tour[j - 1].name()]][\n dn[tour[i].name()]] + dm[dn[tour[i + s - 1].name()]\n ][dn[tour[j2 - 1].name()]] - dm[dn[tour[j - 1].\n name()]][dn[tour[j2 - 1].name()]]\n if length_new < length_best:\n length_best = length_new\n s_best, i_best, j_best = s, i, j\n if length_best < length:\n tour = tour[0:i_best] + tour[i_best + s_best:j_best] + tour[\n i_best:i_best + s_best] + tour[j_best:n + 1]\n if anim is not None:\n solution.draw_network(anim)\n if length_best == length:\n solution._routes[solution._routes.index(route)].deallocate(tour\n [1:-1])\n solution._routes[solution._routes.index(route)].allocate(tour\n [1:-1])\n break\n return solution\n",
"role": "user"
},
{
"content": "operator_oropt",
"role": "assistant"
}
] |
def x(self, graph, solution, op_diff_round_digits, anim):
dm = graph._matrix
dn = graph._nodes
while True:
length_diff_best = 0
for route in solution.routes():
if len(route._nodes) == 1:
if solution._problem._is_aggregated[str(route._nodes[0])]:
continue
tour = [graph._depot] + route._nodes + [graph._depot]
for target_route in solution.routes():
if len(target_route._nodes) == 1:
if solution._problem._is_aggregated[str(target_route.
_nodes[0])]:
continue
target_tour = [graph._depot] + target_route._nodes + [graph
._depot]
if route == target_route:
continue
n = len(route._nodes)
nt = len(target_route._nodes) + 1
for i in range(0, n):
node = route._nodes[i]
for j in range(0, nt):
if target_route.can_allocate([node]):
length_diff = -dm[dn[tour[i].name()]][dn[tour[i +
1].name()]] - dm[dn[tour[i + 1].name()]][dn
[tour[i + 2].name()]] + dm[dn[tour[i].name()]][
dn[tour[i + 2].name()]] + dm[dn[target_tour
[j].name()]][dn[tour[i + 1].name()]] + dm[dn
[tour[i + 1].name()]][dn[target_tour[j + 1]
.name()]] - dm[dn[target_tour[j].name()]][dn
[target_tour[j + 1].name()]]
if length_diff < length_diff_best:
length_diff_best = length_diff
node_best, target_route_best, j_best = (
node, target_route, j)
if length_diff_best < 0:
target_route_best.insert([node_best], j_best)
solution._routes = [route for route in solution._routes if
route._nodes]
if anim is not None:
solution.draw_network(anim)
if round(length_diff_best, op_diff_round_digits) == 0:
break
return solution
|
operator_relocate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graph, solution, op_diff_round_digits, anim):\n dm = graph._matrix\n dn = graph._nodes\n while True:\n length_diff_best = 0\n for route in solution.routes():\n if len(route._nodes) == 1:\n if solution._problem._is_aggregated[str(route._nodes[0])]:\n continue\n tour = [graph._depot] + route._nodes + [graph._depot]\n for target_route in solution.routes():\n if len(target_route._nodes) == 1:\n if solution._problem._is_aggregated[str(target_route.\n _nodes[0])]:\n continue\n target_tour = [graph._depot] + target_route._nodes + [graph\n ._depot]\n if route == target_route:\n continue\n n = len(route._nodes)\n nt = len(target_route._nodes) + 1\n for i in range(0, n):\n node = route._nodes[i]\n for j in range(0, nt):\n if target_route.can_allocate([node]):\n length_diff = -dm[dn[tour[i].name()]][dn[tour[i +\n 1].name()]] - dm[dn[tour[i + 1].name()]][dn\n [tour[i + 2].name()]] + dm[dn[tour[i].name()]][\n dn[tour[i + 2].name()]] + dm[dn[target_tour\n [j].name()]][dn[tour[i + 1].name()]] + dm[dn\n [tour[i + 1].name()]][dn[target_tour[j + 1]\n .name()]] - dm[dn[target_tour[j].name()]][dn\n [target_tour[j + 1].name()]]\n if length_diff < length_diff_best:\n length_diff_best = length_diff\n node_best, target_route_best, j_best = (\n node, target_route, j)\n if length_diff_best < 0:\n target_route_best.insert([node_best], j_best)\n solution._routes = [route for route in solution._routes if\n route._nodes]\n if anim is not None:\n solution.draw_network(anim)\n if round(length_diff_best, op_diff_round_digits) == 0:\n break\n return solution\n",
"role": "user"
},
{
"content": "operator_relocate",
"role": "assistant"
}
] |
def x(self, graph, solution, op_diff_round_digits):
dm = graph._matrix
dn = graph._nodes
|
operator_cross
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graph, solution, op_diff_round_digits):\n dm = graph._matrix\n dn = graph._nodes\n",
"role": "user"
},
{
"content": "operator_cross",
"role": "assistant"
}
] |
def x(self, graph, solution, op_diff_round_digits):
operators = {self.operator_exchange: 'exchange', self.operator_relocate:
'relocate', self.operator_oropt: 'oropt'}
for op in it.permutations(operators):
solution = solution.clone()
solution = op[0](graph, solution, op_diff_round_digits)
solution = op[1](graph, solution, op_diff_round_digits)
solution = op[2](graph, solution, op_diff_round_digits)
logger.info('{0} {1} {2} => Length: {3}'.format(operators[op[0]],
operators[op[1]], operators[op[2]], solution.length()))
|
benchmark_operator_order
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graph, solution, op_diff_round_digits):\n operators = {self.operator_exchange: 'exchange', self.operator_relocate:\n 'relocate', self.operator_oropt: 'oropt'}\n for op in it.permutations(operators):\n solution = solution.clone()\n solution = op[0](graph, solution, op_diff_round_digits)\n solution = op[1](graph, solution, op_diff_round_digits)\n solution = op[2](graph, solution, op_diff_round_digits)\n logger.info('{0} {1} {2} => Length: {3}'.format(operators[op[0]],\n operators[op[1]], operators[op[2]], solution.length()))\n",
"role": "user"
},
{
"content": "benchmark_operator_order",
"role": "assistant"
}
] |
def x(self, graph, savings_solution, timeout, debug=False, anim=None):
op_diff_round_digits = int(cfg_ding0.get('mv_routing',
'operator_diff_round_digits'))
solution = LocalSearchSolution(graph, savings_solution)
for run in range(10):
start = time.time()
solution = self.operator_exchange(graph, solution,
op_diff_round_digits, anim)
time1 = time.time()
if debug:
logger.debug(
"Elapsed time (exchange, run {1}): {0}, Solution's length: {2}"
.format(time1 - start, str(run), solution.length()))
solution = self.operator_relocate(graph, solution,
op_diff_round_digits, anim)
time2 = time.time()
if debug:
logger.debug(
"Elapsed time (relocate, run {1}): {0}, Solution's length: {2}"
.format(time2 - time1, str(run), solution.length()))
solution = self.operator_oropt(graph, solution,
op_diff_round_digits, anim)
time3 = time.time()
if debug:
logger.debug(
"Elapsed time (oropt, run {1}): {0}, Solution's length: {2}"
.format(time3 - time2, str(run), solution.length()))
return solution
|
solve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graph, savings_solution, timeout, debug=False, anim=None):\n op_diff_round_digits = int(cfg_ding0.get('mv_routing',\n 'operator_diff_round_digits'))\n solution = LocalSearchSolution(graph, savings_solution)\n for run in range(10):\n start = time.time()\n solution = self.operator_exchange(graph, solution,\n op_diff_round_digits, anim)\n time1 = time.time()\n if debug:\n logger.debug(\n \"Elapsed time (exchange, run {1}): {0}, Solution's length: {2}\"\n .format(time1 - start, str(run), solution.length()))\n solution = self.operator_relocate(graph, solution,\n op_diff_round_digits, anim)\n time2 = time.time()\n if debug:\n logger.debug(\n \"Elapsed time (relocate, run {1}): {0}, Solution's length: {2}\"\n .format(time2 - time1, str(run), solution.length()))\n solution = self.operator_oropt(graph, solution,\n op_diff_round_digits, anim)\n time3 = time.time()\n if debug:\n logger.debug(\n \"Elapsed time (oropt, run {1}): {0}, Solution's length: {2}\"\n .format(time3 - time2, str(run), solution.length()))\n return solution\n",
"role": "user"
},
{
"content": "solve",
"role": "assistant"
}
] |
def x(grid):
station = grid._station
tree = nx.dfs_tree(grid._graph, station)
branch_heads = list(nx.neighbors(tree, station))
descendants = {branch_head: list(nx.descendants(tree, branch_head)) for
branch_head in branch_heads}
return descendants
|
get_branches
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid):\n station = grid._station\n tree = nx.dfs_tree(grid._graph, station)\n branch_heads = list(nx.neighbors(tree, station))\n descendants = {branch_head: list(nx.descendants(tree, branch_head)) for\n branch_head in branch_heads}\n return descendants\n",
"role": "user"
},
{
"content": "get_branches",
"role": "assistant"
}
] |
def x(self, mv_grid_district):
if mv_grid_district not in self.mv_grid_districts():
self._mv_grid_districts.append(mv_grid_district)
|
add_mv_grid_district
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mv_grid_district):\n if mv_grid_district not in self.mv_grid_districts():\n self._mv_grid_districts.append(mv_grid_district)\n",
"role": "user"
},
{
"content": "add_mv_grid_district",
"role": "assistant"
}
] |
def x(self, session, mv_grid_districts_no=None, debug=False, export_figures
=False):
if debug:
start = time.time()
self.import_mv_grid_districts(session, mv_grid_districts_no=
mv_grid_districts_no)
self.import_generators(session, debug=debug)
self.mv_parametrize_grid(debug=debug)
msg = self.validate_grid_districts()
self.build_lv_grids()
self.mv_routing(debug=False)
if export_figures:
grid = self._mv_grid_districts[0].mv_grid
plot_mv_topology(grid, subtitle='Routing completed', filename=
'1_routing_completed.png')
self.connect_generators(debug=False)
if export_figures:
plot_mv_topology(grid, subtitle='Generators connected', filename=
'2_generators_connected.png')
self.set_branch_ids()
self.set_circuit_breakers(debug=debug)
if export_figures:
plot_mv_topology(grid, subtitle='Circuit breakers relocated',
filename='3_circuit_breakers_relocated.png')
self.control_circuit_breakers(mode='open')
self.run_powerflow(session, method='onthefly', export_pypsa=False,
debug=debug)
if export_figures:
plot_mv_topology(grid, subtitle='PF result (load case)', filename=
'4_PF_result_load.png', line_color='loading', node_color=
'voltage', testcase='load')
plot_mv_topology(grid, subtitle='PF result (feedin case)', filename
='5_PF_result_feedin.png', line_color='loading', node_color=
'voltage', testcase='feedin')
self.reinforce_grid()
self.control_circuit_breakers(mode='close')
if export_figures:
plot_mv_topology(grid, subtitle='Final grid PF result (load case)',
filename='6_final_grid_PF_result_load.png', line_color=
'loading', node_color='voltage', testcase='load')
plot_mv_topology(grid, subtitle=
'Final grid PF result (feedin case)', filename=
'7_final_grid_PF_result_feedin.png', line_color='loading',
node_color='voltage', testcase='feedin')
if debug:
logger.info('Elapsed time for {0} MV Grid Districts (seconds): {1}'
.format(str(len(mv_grid_districts_no)), time.time() - start))
return msg
|
run_ding0
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, mv_grid_districts_no=None, debug=False, export_figures\n =False):\n if debug:\n start = time.time()\n self.import_mv_grid_districts(session, mv_grid_districts_no=\n mv_grid_districts_no)\n self.import_generators(session, debug=debug)\n self.mv_parametrize_grid(debug=debug)\n msg = self.validate_grid_districts()\n self.build_lv_grids()\n self.mv_routing(debug=False)\n if export_figures:\n grid = self._mv_grid_districts[0].mv_grid\n plot_mv_topology(grid, subtitle='Routing completed', filename=\n '1_routing_completed.png')\n self.connect_generators(debug=False)\n if export_figures:\n plot_mv_topology(grid, subtitle='Generators connected', filename=\n '2_generators_connected.png')\n self.set_branch_ids()\n self.set_circuit_breakers(debug=debug)\n if export_figures:\n plot_mv_topology(grid, subtitle='Circuit breakers relocated',\n filename='3_circuit_breakers_relocated.png')\n self.control_circuit_breakers(mode='open')\n self.run_powerflow(session, method='onthefly', export_pypsa=False,\n debug=debug)\n if export_figures:\n plot_mv_topology(grid, subtitle='PF result (load case)', filename=\n '4_PF_result_load.png', line_color='loading', node_color=\n 'voltage', testcase='load')\n plot_mv_topology(grid, subtitle='PF result (feedin case)', filename\n ='5_PF_result_feedin.png', line_color='loading', node_color=\n 'voltage', testcase='feedin')\n self.reinforce_grid()\n self.control_circuit_breakers(mode='close')\n if export_figures:\n plot_mv_topology(grid, subtitle='Final grid PF result (load case)',\n filename='6_final_grid_PF_result_load.png', line_color=\n 'loading', node_color='voltage', testcase='load')\n plot_mv_topology(grid, subtitle=\n 'Final grid PF result (feedin case)', filename=\n '7_final_grid_PF_result_feedin.png', line_color='loading',\n node_color='voltage', testcase='feedin')\n if debug:\n logger.info('Elapsed time for {0} MV Grid Districts (seconds): {1}'\n .format(str(len(mv_grid_districts_no)), time.time() - start))\n return msg\n",
"role": "user"
},
{
"content": "run_ding0",
"role": "assistant"
}
] |
def x(self):
mv_grid_districts_dict = {}
lv_load_areas_dict = {}
lv_grid_districts_dict = {}
lv_stations_dict = {}
for mv_grid_district in self.mv_grid_districts():
mv_grid_districts_dict[mv_grid_district.id_db] = mv_grid_district
for lv_load_area in mv_grid_district.lv_load_areas():
lv_load_areas_dict[lv_load_area.id_db] = lv_load_area
for lv_grid_district in lv_load_area.lv_grid_districts():
lv_grid_districts_dict[lv_grid_district.id_db
] = lv_grid_district
lv_stations_dict[lv_grid_district.lv_grid.station().id_db
] = lv_grid_district.lv_grid.station()
return (mv_grid_districts_dict, lv_load_areas_dict,
lv_grid_districts_dict, lv_stations_dict)
|
get_mvgd_lvla_lvgd_obj_from_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n mv_grid_districts_dict = {}\n lv_load_areas_dict = {}\n lv_grid_districts_dict = {}\n lv_stations_dict = {}\n for mv_grid_district in self.mv_grid_districts():\n mv_grid_districts_dict[mv_grid_district.id_db] = mv_grid_district\n for lv_load_area in mv_grid_district.lv_load_areas():\n lv_load_areas_dict[lv_load_area.id_db] = lv_load_area\n for lv_grid_district in lv_load_area.lv_grid_districts():\n lv_grid_districts_dict[lv_grid_district.id_db\n ] = lv_grid_district\n lv_stations_dict[lv_grid_district.lv_grid.station().id_db\n ] = lv_grid_district.lv_grid.station()\n return (mv_grid_districts_dict, lv_load_areas_dict,\n lv_grid_districts_dict, lv_stations_dict)\n",
"role": "user"
},
{
"content": "get_mvgd_lvla_lvgd_obj_from_id",
"role": "assistant"
}
] |
def x(self, poly_id, subst_id, grid_district_geo_data, station_geo_data):
mv_station = MVStationDing0(id_db=subst_id, geo_data=station_geo_data)
mv_grid = MVGridDing0(network=self, id_db=poly_id, station=mv_station)
mv_grid_district = MVGridDistrictDing0(id_db=poly_id, mv_grid=mv_grid,
geo_data=grid_district_geo_data)
mv_grid.grid_district = mv_grid_district
mv_station.grid = mv_grid
self.add_mv_grid_district(mv_grid_district)
return mv_grid_district
|
build_mv_grid_district
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, poly_id, subst_id, grid_district_geo_data, station_geo_data):\n mv_station = MVStationDing0(id_db=subst_id, geo_data=station_geo_data)\n mv_grid = MVGridDing0(network=self, id_db=poly_id, station=mv_station)\n mv_grid_district = MVGridDistrictDing0(id_db=poly_id, mv_grid=mv_grid,\n geo_data=grid_district_geo_data)\n mv_grid.grid_district = mv_grid_district\n mv_station.grid = mv_grid\n self.add_mv_grid_district(mv_grid_district)\n return mv_grid_district\n",
"role": "user"
},
{
"content": "build_mv_grid_district",
"role": "assistant"
}
] |
def x(self, lv_load_area, lv_grid_districts, lv_stations):
if len(lv_grid_districts) == 0:
geom = wkt_dumps(lv_load_area.geo_area)
lv_grid_districts = lv_grid_districts.append(pd.DataFrame({'la_id':
[lv_load_area.id_db], 'geom': [geom], 'population': [0],
'peak_load_residential': [lv_load_area.peak_load_residential],
'peak_load_retail': [lv_load_area.peak_load_retail],
'peak_load_industrial': [lv_load_area.peak_load_industrial],
'peak_load_agricultural': [lv_load_area.peak_load_agricultural],
'sector_count_residential': [0], 'sector_count_retail': [0],
'sector_count_industrial': [0], 'sector_count_agricultural': [0
], 'sector_consumption_residential': [0],
'sector_consumption_retail': [0],
'sector_consumption_industrial': [0],
'sector_consumption_agricultural': [0]}, index=[lv_load_area.
id_db]))
lv_nominal_voltage = cfg_ding0.get('assumptions', 'lv_nominal_voltage')
for id, row in lv_grid_districts.iterrows():
lv_grid_district = LVGridDistrictDing0(id_db=id, lv_load_area=
lv_load_area, geo_data=wkt_loads(row['geom']), population=0 if
isnan(row['population']) else int(row['population']),
peak_load_residential=row['peak_load_residential'],
peak_load_retail=row['peak_load_retail'], peak_load_industrial=
row['peak_load_industrial'], peak_load_agricultural=row[
'peak_load_agricultural'], peak_load=row[
'peak_load_residential'] + row['peak_load_retail'] + row[
'peak_load_industrial'] + row['peak_load_agricultural'],
sector_count_residential=int(row['sector_count_residential']),
sector_count_retail=int(row['sector_count_retail']),
sector_count_industrial=int(row['sector_count_industrial']),
sector_count_agricultural=int(row['sector_count_agricultural']),
sector_consumption_residential=row[
'sector_consumption_residential'], sector_consumption_retail=
row['sector_consumption_retail'], sector_consumption_industrial
=row['sector_consumption_industrial'],
sector_consumption_agricultural=row[
'sector_consumption_agricultural'])
lv_grid = LVGridDing0(network=self, grid_district=lv_grid_district,
id_db=id, geo_data=wkt_loads(row['geom']), v_level=
lv_nominal_voltage)
lv_station = LVStationDing0(id_db=id, grid=lv_grid, lv_load_area=
lv_load_area, geo_data=wkt_loads(lv_stations.loc[id, 'geom']) if
id in lv_stations.index.values else lv_load_area.geo_centre,
peak_load=lv_grid_district.peak_load)
lv_grid.add_station(lv_station)
lv_grid_district.lv_grid = lv_grid
lv_load_area.add_lv_grid_district(lv_grid_district)
|
build_lv_grid_district
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lv_load_area, lv_grid_districts, lv_stations):\n if len(lv_grid_districts) == 0:\n geom = wkt_dumps(lv_load_area.geo_area)\n lv_grid_districts = lv_grid_districts.append(pd.DataFrame({'la_id':\n [lv_load_area.id_db], 'geom': [geom], 'population': [0],\n 'peak_load_residential': [lv_load_area.peak_load_residential],\n 'peak_load_retail': [lv_load_area.peak_load_retail],\n 'peak_load_industrial': [lv_load_area.peak_load_industrial],\n 'peak_load_agricultural': [lv_load_area.peak_load_agricultural],\n 'sector_count_residential': [0], 'sector_count_retail': [0],\n 'sector_count_industrial': [0], 'sector_count_agricultural': [0\n ], 'sector_consumption_residential': [0],\n 'sector_consumption_retail': [0],\n 'sector_consumption_industrial': [0],\n 'sector_consumption_agricultural': [0]}, index=[lv_load_area.\n id_db]))\n lv_nominal_voltage = cfg_ding0.get('assumptions', 'lv_nominal_voltage')\n for id, row in lv_grid_districts.iterrows():\n lv_grid_district = LVGridDistrictDing0(id_db=id, lv_load_area=\n lv_load_area, geo_data=wkt_loads(row['geom']), population=0 if\n isnan(row['population']) else int(row['population']),\n peak_load_residential=row['peak_load_residential'],\n peak_load_retail=row['peak_load_retail'], peak_load_industrial=\n row['peak_load_industrial'], peak_load_agricultural=row[\n 'peak_load_agricultural'], peak_load=row[\n 'peak_load_residential'] + row['peak_load_retail'] + row[\n 'peak_load_industrial'] + row['peak_load_agricultural'],\n sector_count_residential=int(row['sector_count_residential']),\n sector_count_retail=int(row['sector_count_retail']),\n sector_count_industrial=int(row['sector_count_industrial']),\n sector_count_agricultural=int(row['sector_count_agricultural']),\n sector_consumption_residential=row[\n 'sector_consumption_residential'], sector_consumption_retail=\n row['sector_consumption_retail'], sector_consumption_industrial\n =row['sector_consumption_industrial'],\n sector_consumption_agricultural=row[\n 'sector_consumption_agricultural'])\n lv_grid = LVGridDing0(network=self, grid_district=lv_grid_district,\n id_db=id, geo_data=wkt_loads(row['geom']), v_level=\n lv_nominal_voltage)\n lv_station = LVStationDing0(id_db=id, grid=lv_grid, lv_load_area=\n lv_load_area, geo_data=wkt_loads(lv_stations.loc[id, 'geom']) if\n id in lv_stations.index.values else lv_load_area.geo_centre,\n peak_load=lv_grid_district.peak_load)\n lv_grid.add_station(lv_station)\n lv_grid_district.lv_grid = lv_grid\n lv_load_area.add_lv_grid_district(lv_grid_district)\n",
"role": "user"
},
{
"content": "build_lv_grid_district",
"role": "assistant"
}
] |
def x(self, session, mv_grid_districts_no=None):
if not all(isinstance(_, int) for _ in mv_grid_districts_no):
raise TypeError('`mv_grid_districts` has to be a list of integers.')
try:
srid = str(int(cfg_ding0.get('geo', 'srid')))
except OSError:
logger.exception('cannot open config file.')
grid_districts = session.query(self.orm['orm_mv_grid_districts'].
subst_id, func.ST_AsText(func.ST_Transform(self.orm[
'orm_mv_grid_districts'].geom, srid)).label('poly_geom'), func.
ST_AsText(func.ST_Transform(self.orm['orm_mv_stations'].point, srid
)).label('subs_geom')).join(self.orm['orm_mv_stations'], self.orm[
'orm_mv_grid_districts'].subst_id == self.orm['orm_mv_stations'].
subst_id).filter(self.orm['orm_mv_grid_districts'].subst_id.in_(
mv_grid_districts_no)).filter(self.orm['version_condition_mvgd']
).filter(self.orm['version_condition_mv_stations']).distinct()
mv_data = pd.read_sql_query(grid_districts.statement, session.bind,
index_col='subst_id')
for poly_id, row in mv_data.iterrows():
subst_id = poly_id
region_geo_data = wkt_loads(row['poly_geom'])
station_geo_data = wkt_loads(row['subs_geom'])
mv_grid_district = self.build_mv_grid_district(poly_id, subst_id,
region_geo_data, station_geo_data)
lv_stations = self.import_lv_stations(session)
lv_grid_districts = self.import_lv_grid_districts(session, lv_stations)
self.import_lv_load_areas(session, mv_grid_district,
lv_grid_districts, lv_stations)
mv_grid_district.add_peak_demand()
logger.info('=====> MV Grid Districts imported')
|
import_mv_grid_districts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, mv_grid_districts_no=None):\n if not all(isinstance(_, int) for _ in mv_grid_districts_no):\n raise TypeError('`mv_grid_districts` has to be a list of integers.')\n try:\n srid = str(int(cfg_ding0.get('geo', 'srid')))\n except OSError:\n logger.exception('cannot open config file.')\n grid_districts = session.query(self.orm['orm_mv_grid_districts'].\n subst_id, func.ST_AsText(func.ST_Transform(self.orm[\n 'orm_mv_grid_districts'].geom, srid)).label('poly_geom'), func.\n ST_AsText(func.ST_Transform(self.orm['orm_mv_stations'].point, srid\n )).label('subs_geom')).join(self.orm['orm_mv_stations'], self.orm[\n 'orm_mv_grid_districts'].subst_id == self.orm['orm_mv_stations'].\n subst_id).filter(self.orm['orm_mv_grid_districts'].subst_id.in_(\n mv_grid_districts_no)).filter(self.orm['version_condition_mvgd']\n ).filter(self.orm['version_condition_mv_stations']).distinct()\n mv_data = pd.read_sql_query(grid_districts.statement, session.bind,\n index_col='subst_id')\n for poly_id, row in mv_data.iterrows():\n subst_id = poly_id\n region_geo_data = wkt_loads(row['poly_geom'])\n station_geo_data = wkt_loads(row['subs_geom'])\n mv_grid_district = self.build_mv_grid_district(poly_id, subst_id,\n region_geo_data, station_geo_data)\n lv_stations = self.import_lv_stations(session)\n lv_grid_districts = self.import_lv_grid_districts(session, lv_stations)\n self.import_lv_load_areas(session, mv_grid_district,\n lv_grid_districts, lv_stations)\n mv_grid_district.add_peak_demand()\n logger.info('=====> MV Grid Districts imported')\n",
"role": "user"
},
{
"content": "import_mv_grid_districts",
"role": "assistant"
}
] |
def x(self, session, mv_grid_district, lv_grid_districts, lv_stations):
srid = str(int(cfg_ding0.get('geo', 'srid')))
lv_loads_threshold = cfg_ding0.get('mv_routing', 'load_area_threshold')
gw2kw = 10 ** 6
lv_load_areas_sqla = session.query(self.orm['orm_lv_load_areas'].id.
label('id_db'), self.orm['orm_lv_load_areas'].zensus_sum, self.orm[
'orm_lv_load_areas'].zensus_count.label('zensus_cnt'), self.orm[
'orm_lv_load_areas'].ioer_sum, self.orm['orm_lv_load_areas'].
ioer_count.label('ioer_cnt'), self.orm['orm_lv_load_areas'].area_ha
.label('area'), self.orm['orm_lv_load_areas'].
sector_area_residential, self.orm['orm_lv_load_areas'].
sector_area_retail, self.orm['orm_lv_load_areas'].
sector_area_industrial, self.orm['orm_lv_load_areas'].
sector_area_agricultural, self.orm['orm_lv_load_areas'].
sector_share_residential, self.orm['orm_lv_load_areas'].
sector_share_retail, self.orm['orm_lv_load_areas'].
sector_share_industrial, self.orm['orm_lv_load_areas'].
sector_share_agricultural, self.orm['orm_lv_load_areas'].
sector_count_residential, self.orm['orm_lv_load_areas'].
sector_count_retail, self.orm['orm_lv_load_areas'].
sector_count_industrial, self.orm['orm_lv_load_areas'].
sector_count_agricultural, self.orm['orm_lv_load_areas'].nuts.label
('nuts_code'), func.ST_AsText(func.ST_Transform(self.orm[
'orm_lv_load_areas'].geom, srid)).label('geo_area'), func.ST_AsText
(func.ST_Transform(self.orm['orm_lv_load_areas'].geom_centre, srid)
).label('geo_centre'), (self.orm['orm_lv_load_areas'].
sector_peakload_residential * gw2kw).label('peak_load_residential'),
(self.orm['orm_lv_load_areas'].sector_peakload_retail * gw2kw).
label('peak_load_retail'), (self.orm['orm_lv_load_areas'].
sector_peakload_industrial * gw2kw).label('peak_load_industrial'),
(self.orm['orm_lv_load_areas'].sector_peakload_agricultural * gw2kw
).label('peak_load_agricultural'), ((self.orm['orm_lv_load_areas'].
sector_peakload_residential + self.orm['orm_lv_load_areas'].
sector_peakload_retail + self.orm['orm_lv_load_areas'].
sector_peakload_industrial + self.orm['orm_lv_load_areas'].
sector_peakload_agricultural) * gw2kw).label('peak_load')).filter(
self.orm['orm_lv_load_areas'].subst_id == mv_grid_district.mv_grid.
_station.id_db).filter((self.orm['orm_lv_load_areas'].
sector_peakload_residential + self.orm['orm_lv_load_areas'].
sector_peakload_retail + self.orm['orm_lv_load_areas'].
sector_peakload_industrial + self.orm['orm_lv_load_areas'].
sector_peakload_agricultural) * gw2kw > lv_loads_threshold).filter(self
.orm['version_condition_la'])
lv_load_areas = pd.read_sql_query(lv_load_areas_sqla.statement, session
.bind, index_col='id_db')
for id_db, row in lv_load_areas.iterrows():
lv_load_area = LVLoadAreaDing0(id_db=id_db, db_data=row,
mv_grid_district=mv_grid_district, peak_load=row['peak_load'])
lv_grid_districts_per_load_area = lv_grid_districts.loc[
lv_grid_districts['la_id'] == id_db]
lv_stations_per_load_area = lv_stations.loc[lv_stations['la_id'] ==
id_db]
self.build_lv_grid_district(lv_load_area,
lv_grid_districts_per_load_area, lv_stations_per_load_area)
lv_load_area_centre = LVLoadAreaCentreDing0(id_db=id_db, geo_data=
wkt_loads(row['geo_centre']), lv_load_area=lv_load_area, grid=
mv_grid_district.mv_grid)
lv_load_area.lv_load_area_centre = lv_load_area_centre
mv_grid_district.add_lv_load_area(lv_load_area)
|
import_lv_load_areas
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, mv_grid_district, lv_grid_districts, lv_stations):\n srid = str(int(cfg_ding0.get('geo', 'srid')))\n lv_loads_threshold = cfg_ding0.get('mv_routing', 'load_area_threshold')\n gw2kw = 10 ** 6\n lv_load_areas_sqla = session.query(self.orm['orm_lv_load_areas'].id.\n label('id_db'), self.orm['orm_lv_load_areas'].zensus_sum, self.orm[\n 'orm_lv_load_areas'].zensus_count.label('zensus_cnt'), self.orm[\n 'orm_lv_load_areas'].ioer_sum, self.orm['orm_lv_load_areas'].\n ioer_count.label('ioer_cnt'), self.orm['orm_lv_load_areas'].area_ha\n .label('area'), self.orm['orm_lv_load_areas'].\n sector_area_residential, self.orm['orm_lv_load_areas'].\n sector_area_retail, self.orm['orm_lv_load_areas'].\n sector_area_industrial, self.orm['orm_lv_load_areas'].\n sector_area_agricultural, self.orm['orm_lv_load_areas'].\n sector_share_residential, self.orm['orm_lv_load_areas'].\n sector_share_retail, self.orm['orm_lv_load_areas'].\n sector_share_industrial, self.orm['orm_lv_load_areas'].\n sector_share_agricultural, self.orm['orm_lv_load_areas'].\n sector_count_residential, self.orm['orm_lv_load_areas'].\n sector_count_retail, self.orm['orm_lv_load_areas'].\n sector_count_industrial, self.orm['orm_lv_load_areas'].\n sector_count_agricultural, self.orm['orm_lv_load_areas'].nuts.label\n ('nuts_code'), func.ST_AsText(func.ST_Transform(self.orm[\n 'orm_lv_load_areas'].geom, srid)).label('geo_area'), func.ST_AsText\n (func.ST_Transform(self.orm['orm_lv_load_areas'].geom_centre, srid)\n ).label('geo_centre'), (self.orm['orm_lv_load_areas'].\n sector_peakload_residential * gw2kw).label('peak_load_residential'),\n (self.orm['orm_lv_load_areas'].sector_peakload_retail * gw2kw).\n label('peak_load_retail'), (self.orm['orm_lv_load_areas'].\n sector_peakload_industrial * gw2kw).label('peak_load_industrial'),\n (self.orm['orm_lv_load_areas'].sector_peakload_agricultural * gw2kw\n ).label('peak_load_agricultural'), ((self.orm['orm_lv_load_areas'].\n sector_peakload_residential + self.orm['orm_lv_load_areas'].\n sector_peakload_retail + self.orm['orm_lv_load_areas'].\n sector_peakload_industrial + self.orm['orm_lv_load_areas'].\n sector_peakload_agricultural) * gw2kw).label('peak_load')).filter(\n self.orm['orm_lv_load_areas'].subst_id == mv_grid_district.mv_grid.\n _station.id_db).filter((self.orm['orm_lv_load_areas'].\n sector_peakload_residential + self.orm['orm_lv_load_areas'].\n sector_peakload_retail + self.orm['orm_lv_load_areas'].\n sector_peakload_industrial + self.orm['orm_lv_load_areas'].\n sector_peakload_agricultural) * gw2kw > lv_loads_threshold).filter(self\n .orm['version_condition_la'])\n lv_load_areas = pd.read_sql_query(lv_load_areas_sqla.statement, session\n .bind, index_col='id_db')\n for id_db, row in lv_load_areas.iterrows():\n lv_load_area = LVLoadAreaDing0(id_db=id_db, db_data=row,\n mv_grid_district=mv_grid_district, peak_load=row['peak_load'])\n lv_grid_districts_per_load_area = lv_grid_districts.loc[\n lv_grid_districts['la_id'] == id_db]\n lv_stations_per_load_area = lv_stations.loc[lv_stations['la_id'] ==\n id_db]\n self.build_lv_grid_district(lv_load_area,\n lv_grid_districts_per_load_area, lv_stations_per_load_area)\n lv_load_area_centre = LVLoadAreaCentreDing0(id_db=id_db, geo_data=\n wkt_loads(row['geo_centre']), lv_load_area=lv_load_area, grid=\n mv_grid_district.mv_grid)\n lv_load_area.lv_load_area_centre = lv_load_area_centre\n mv_grid_district.add_lv_load_area(lv_load_area)\n",
"role": "user"
},
{
"content": "import_lv_load_areas",
"role": "assistant"
}
] |
def x(self, session, lv_stations):
srid = str(int(cfg_ding0.get('geo', 'srid')))
gw2kw = 10 ** 6
lv_grid_districs_sqla = session.query(self.orm['orm_lv_grid_district'].
mvlv_subst_id, self.orm['orm_lv_grid_district'].la_id, self.orm[
'orm_lv_grid_district'].zensus_sum.label('population'), (self.orm[
'orm_lv_grid_district'].sector_peakload_residential * gw2kw).label(
'peak_load_residential'), (self.orm['orm_lv_grid_district'].
sector_peakload_retail * gw2kw).label('peak_load_retail'), (self.
orm['orm_lv_grid_district'].sector_peakload_industrial * gw2kw).
label('peak_load_industrial'), (self.orm['orm_lv_grid_district'].
sector_peakload_agricultural * gw2kw).label(
'peak_load_agricultural'), ((self.orm['orm_lv_grid_district'].
sector_peakload_residential + self.orm['orm_lv_grid_district'].
sector_peakload_retail + self.orm['orm_lv_grid_district'].
sector_peakload_industrial + self.orm['orm_lv_grid_district'].
sector_peakload_agricultural) * gw2kw).label('peak_load'), func.
ST_AsText(func.ST_Transform(self.orm['orm_lv_grid_district'].geom,
srid)).label('geom'), self.orm['orm_lv_grid_district'].
sector_count_residential, self.orm['orm_lv_grid_district'].
sector_count_retail, self.orm['orm_lv_grid_district'].
sector_count_industrial, self.orm['orm_lv_grid_district'].
sector_count_agricultural, (self.orm['orm_lv_grid_district'].
sector_consumption_residential * gw2kw).label(
'sector_consumption_residential'), (self.orm['orm_lv_grid_district'
].sector_consumption_retail * gw2kw).label(
'sector_consumption_retail'), (self.orm['orm_lv_grid_district'].
sector_consumption_industrial * gw2kw).label(
'sector_consumption_industrial'), (self.orm['orm_lv_grid_district']
.sector_consumption_agricultural * gw2kw).label(
'sector_consumption_agricultural'), self.orm['orm_lv_grid_district'
].mvlv_subst_id).filter(self.orm['orm_lv_grid_district'].
mvlv_subst_id.in_(lv_stations.index.tolist())).filter(self.orm[
'version_condition_lvgd'])
lv_grid_districts = pd.read_sql_query(lv_grid_districs_sqla.statement,
session.bind, index_col='mvlv_subst_id')
lv_grid_districts[['sector_count_residential', 'sector_count_retail',
'sector_count_industrial', 'sector_count_agricultural']
] = lv_grid_districts[['sector_count_residential',
'sector_count_retail', 'sector_count_industrial',
'sector_count_agricultural']].fillna(0)
return lv_grid_districts
|
import_lv_grid_districts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, lv_stations):\n srid = str(int(cfg_ding0.get('geo', 'srid')))\n gw2kw = 10 ** 6\n lv_grid_districs_sqla = session.query(self.orm['orm_lv_grid_district'].\n mvlv_subst_id, self.orm['orm_lv_grid_district'].la_id, self.orm[\n 'orm_lv_grid_district'].zensus_sum.label('population'), (self.orm[\n 'orm_lv_grid_district'].sector_peakload_residential * gw2kw).label(\n 'peak_load_residential'), (self.orm['orm_lv_grid_district'].\n sector_peakload_retail * gw2kw).label('peak_load_retail'), (self.\n orm['orm_lv_grid_district'].sector_peakload_industrial * gw2kw).\n label('peak_load_industrial'), (self.orm['orm_lv_grid_district'].\n sector_peakload_agricultural * gw2kw).label(\n 'peak_load_agricultural'), ((self.orm['orm_lv_grid_district'].\n sector_peakload_residential + self.orm['orm_lv_grid_district'].\n sector_peakload_retail + self.orm['orm_lv_grid_district'].\n sector_peakload_industrial + self.orm['orm_lv_grid_district'].\n sector_peakload_agricultural) * gw2kw).label('peak_load'), func.\n ST_AsText(func.ST_Transform(self.orm['orm_lv_grid_district'].geom,\n srid)).label('geom'), self.orm['orm_lv_grid_district'].\n sector_count_residential, self.orm['orm_lv_grid_district'].\n sector_count_retail, self.orm['orm_lv_grid_district'].\n sector_count_industrial, self.orm['orm_lv_grid_district'].\n sector_count_agricultural, (self.orm['orm_lv_grid_district'].\n sector_consumption_residential * gw2kw).label(\n 'sector_consumption_residential'), (self.orm['orm_lv_grid_district'\n ].sector_consumption_retail * gw2kw).label(\n 'sector_consumption_retail'), (self.orm['orm_lv_grid_district'].\n sector_consumption_industrial * gw2kw).label(\n 'sector_consumption_industrial'), (self.orm['orm_lv_grid_district']\n .sector_consumption_agricultural * gw2kw).label(\n 'sector_consumption_agricultural'), self.orm['orm_lv_grid_district'\n ].mvlv_subst_id).filter(self.orm['orm_lv_grid_district'].\n mvlv_subst_id.in_(lv_stations.index.tolist())).filter(self.orm[\n 'version_condition_lvgd'])\n lv_grid_districts = pd.read_sql_query(lv_grid_districs_sqla.statement,\n session.bind, index_col='mvlv_subst_id')\n lv_grid_districts[['sector_count_residential', 'sector_count_retail',\n 'sector_count_industrial', 'sector_count_agricultural']\n ] = lv_grid_districts[['sector_count_residential',\n 'sector_count_retail', 'sector_count_industrial',\n 'sector_count_agricultural']].fillna(0)\n return lv_grid_districts\n",
"role": "user"
},
{
"content": "import_lv_grid_districts",
"role": "assistant"
}
] |
def x(self, session):
srid = str(int(cfg_ding0.get('geo', 'srid')))
mv_grid_districts = list(self.get_mvgd_lvla_lvgd_obj_from_id()[0])
lv_stations_sqla = session.query(self.orm['orm_lv_stations'].
mvlv_subst_id, self.orm['orm_lv_stations'].la_id, func.ST_AsText(
func.ST_Transform(self.orm['orm_lv_stations'].geom, srid)).label(
'geom')).filter(self.orm['orm_lv_stations'].subst_id.in_(
mv_grid_districts)).filter(self.orm['version_condition_mvlvst'])
lv_grid_stations = pd.read_sql_query(lv_stations_sqla.statement,
session.bind, index_col='mvlv_subst_id')
return lv_grid_stations
|
import_lv_stations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session):\n srid = str(int(cfg_ding0.get('geo', 'srid')))\n mv_grid_districts = list(self.get_mvgd_lvla_lvgd_obj_from_id()[0])\n lv_stations_sqla = session.query(self.orm['orm_lv_stations'].\n mvlv_subst_id, self.orm['orm_lv_stations'].la_id, func.ST_AsText(\n func.ST_Transform(self.orm['orm_lv_stations'].geom, srid)).label(\n 'geom')).filter(self.orm['orm_lv_stations'].subst_id.in_(\n mv_grid_districts)).filter(self.orm['version_condition_mvlvst'])\n lv_grid_stations = pd.read_sql_query(lv_stations_sqla.statement,\n session.bind, index_col='mvlv_subst_id')\n return lv_grid_stations\n",
"role": "user"
},
{
"content": "import_lv_stations",
"role": "assistant"
}
] |
def x(self):
cfg_ding0.load_config('config_db_tables.cfg')
cfg_ding0.load_config('config_calc.cfg')
cfg_ding0.load_config('config_files.cfg')
cfg_ding0.load_config('config_misc.cfg')
cfg_dict = cfg_ding0.cfg._sections
return cfg_dict
|
import_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n cfg_ding0.load_config('config_db_tables.cfg')\n cfg_ding0.load_config('config_calc.cfg')\n cfg_ding0.load_config('config_files.cfg')\n cfg_ding0.load_config('config_misc.cfg')\n cfg_dict = cfg_ding0.cfg._sections\n return cfg_dict\n",
"role": "user"
},
{
"content": "import_config",
"role": "assistant"
}
] |
def x(self):
scenario = cfg_ding0.get('powerflow', 'test_grid_stability_scenario')
start_hour = int(cfg_ding0.get('powerflow', 'start_hour'))
end_hour = int(cfg_ding0.get('powerflow', 'end_hour'))
start_time = datetime(1970, 1, 1, 0, 0, 0)
resolution = cfg_ding0.get('powerflow', 'resolution')
srid = str(int(cfg_ding0.get('geo', 'srid')))
return PFConfigDing0(scenarios=[scenario], timestep_start=start_time,
timesteps_count=end_hour - start_hour, srid=srid, resolution=resolution
)
|
import_pf_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n scenario = cfg_ding0.get('powerflow', 'test_grid_stability_scenario')\n start_hour = int(cfg_ding0.get('powerflow', 'start_hour'))\n end_hour = int(cfg_ding0.get('powerflow', 'end_hour'))\n start_time = datetime(1970, 1, 1, 0, 0, 0)\n resolution = cfg_ding0.get('powerflow', 'resolution')\n srid = str(int(cfg_ding0.get('geo', 'srid')))\n return PFConfigDing0(scenarios=[scenario], timestep_start=start_time,\n timesteps_count=end_hour - start_hour, srid=srid, resolution=resolution\n )\n",
"role": "user"
},
{
"content": "import_pf_config",
"role": "assistant"
}
] |
def x(self):
package_path = ding0.__path__[0]
static_data = {}
equipment_mv_parameters_trafos = cfg_ding0.get('equipment',
'equipment_mv_parameters_trafos')
static_data['MV_trafos'] = pd.read_csv(os.path.join(package_path,
'data', equipment_mv_parameters_trafos), comment='#', delimiter=',',
decimal='.', converters={'S_nom': lambda x: int(x)})
equipment_mv_parameters_lines = cfg_ding0.get('equipment',
'equipment_mv_parameters_lines')
static_data['MV_overhead_lines'] = pd.read_csv(os.path.join(
package_path, 'data', equipment_mv_parameters_lines), comment='#',
converters={'I_max_th': lambda x: int(x), 'U_n': lambda x: int(x),
'reinforce_only': lambda x: int(x)})
equipment_mv_parameters_cables = cfg_ding0.get('equipment',
'equipment_mv_parameters_cables')
static_data['MV_cables'] = pd.read_csv(os.path.join(package_path,
'data', equipment_mv_parameters_cables), comment='#', converters={
'I_max_th': lambda x: int(x), 'U_n': lambda x: int(x),
'reinforce_only': lambda x: int(x)})
equipment_lv_parameters_cables = cfg_ding0.get('equipment',
'equipment_lv_parameters_cables')
static_data['LV_cables'] = pd.read_csv(os.path.join(package_path,
'data', equipment_lv_parameters_cables), comment='#', index_col=
'name', converters={'I_max_th': lambda x: int(x), 'U_n': lambda x:
int(x)})
equipment_lv_parameters_trafos = cfg_ding0.get('equipment',
'equipment_lv_parameters_trafos')
static_data['LV_trafos'] = pd.read_csv(os.path.join(package_path,
'data', equipment_lv_parameters_trafos), comment='#', delimiter=',',
decimal='.', converters={'S_nom': lambda x: int(x)})
model_grids_lv_string_properties = cfg_ding0.get('model_grids',
'model_grids_lv_string_properties')
static_data['LV_model_grids_strings'] = pd.read_csv(os.path.join(
package_path, 'data', model_grids_lv_string_properties), comment=
'#', delimiter=';', decimal=',', index_col='string_id', converters=
{'string_id': lambda x: int(x), 'type': lambda x: int(x),
'Kerber Original': lambda x: int(x), 'count house branch': lambda x:
int(x), 'distance house branch': lambda x: int(x), 'cable width':
lambda x: int(x), 'string length': lambda x: int(x),
'length house branch A': lambda x: int(x), 'length house branch B':
lambda x: int(x), 'cable width A': lambda x: int(x),
'cable width B': lambda x: int(x)})
model_grids_lv_apartment_string = cfg_ding0.get('model_grids',
'model_grids_lv_apartment_string')
converters_ids = {}
for id in range(1, 47):
converters_ids[str(id)] = lambda x: int(x)
static_data['LV_model_grids_strings_per_grid'] = pd.read_csv(os.path.
join(package_path, 'data', model_grids_lv_apartment_string),
comment='#', delimiter=';', decimal=',', index_col=
'apartment_count', converters=dict({'apartment_count': lambda x:
int(x)}, **converters_ids))
return static_data
|
import_static_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n package_path = ding0.__path__[0]\n static_data = {}\n equipment_mv_parameters_trafos = cfg_ding0.get('equipment',\n 'equipment_mv_parameters_trafos')\n static_data['MV_trafos'] = pd.read_csv(os.path.join(package_path,\n 'data', equipment_mv_parameters_trafos), comment='#', delimiter=',',\n decimal='.', converters={'S_nom': lambda x: int(x)})\n equipment_mv_parameters_lines = cfg_ding0.get('equipment',\n 'equipment_mv_parameters_lines')\n static_data['MV_overhead_lines'] = pd.read_csv(os.path.join(\n package_path, 'data', equipment_mv_parameters_lines), comment='#',\n converters={'I_max_th': lambda x: int(x), 'U_n': lambda x: int(x),\n 'reinforce_only': lambda x: int(x)})\n equipment_mv_parameters_cables = cfg_ding0.get('equipment',\n 'equipment_mv_parameters_cables')\n static_data['MV_cables'] = pd.read_csv(os.path.join(package_path,\n 'data', equipment_mv_parameters_cables), comment='#', converters={\n 'I_max_th': lambda x: int(x), 'U_n': lambda x: int(x),\n 'reinforce_only': lambda x: int(x)})\n equipment_lv_parameters_cables = cfg_ding0.get('equipment',\n 'equipment_lv_parameters_cables')\n static_data['LV_cables'] = pd.read_csv(os.path.join(package_path,\n 'data', equipment_lv_parameters_cables), comment='#', index_col=\n 'name', converters={'I_max_th': lambda x: int(x), 'U_n': lambda x:\n int(x)})\n equipment_lv_parameters_trafos = cfg_ding0.get('equipment',\n 'equipment_lv_parameters_trafos')\n static_data['LV_trafos'] = pd.read_csv(os.path.join(package_path,\n 'data', equipment_lv_parameters_trafos), comment='#', delimiter=',',\n decimal='.', converters={'S_nom': lambda x: int(x)})\n model_grids_lv_string_properties = cfg_ding0.get('model_grids',\n 'model_grids_lv_string_properties')\n static_data['LV_model_grids_strings'] = pd.read_csv(os.path.join(\n package_path, 'data', model_grids_lv_string_properties), comment=\n '#', delimiter=';', decimal=',', index_col='string_id', converters=\n {'string_id': lambda x: int(x), 'type': lambda x: int(x),\n 'Kerber Original': lambda x: int(x), 'count house branch': lambda x:\n int(x), 'distance house branch': lambda x: int(x), 'cable width': \n lambda x: int(x), 'string length': lambda x: int(x),\n 'length house branch A': lambda x: int(x), 'length house branch B':\n lambda x: int(x), 'cable width A': lambda x: int(x),\n 'cable width B': lambda x: int(x)})\n model_grids_lv_apartment_string = cfg_ding0.get('model_grids',\n 'model_grids_lv_apartment_string')\n converters_ids = {}\n for id in range(1, 47):\n converters_ids[str(id)] = lambda x: int(x)\n static_data['LV_model_grids_strings_per_grid'] = pd.read_csv(os.path.\n join(package_path, 'data', model_grids_lv_apartment_string),\n comment='#', delimiter=';', decimal=',', index_col=\n 'apartment_count', converters=dict({'apartment_count': lambda x:\n int(x)}, **converters_ids))\n return static_data\n",
"role": "user"
},
{
"content": "import_static_data",
"role": "assistant"
}
] |
def x(self):
orm = {}
data_source = self.config['input_data_source']['input_data']
mv_grid_districts_name = self.config[data_source]['mv_grid_districts']
mv_stations_name = self.config[data_source]['mv_stations']
lv_load_areas_name = self.config[data_source]['lv_load_areas']
lv_grid_district_name = self.config[data_source]['lv_grid_district']
lv_stations_name = self.config[data_source]['lv_stations']
conv_generators_name = self.config[data_source]['conv_generators']
re_generators_name = self.config[data_source]['re_generators']
from egoio.db_tables import model_draft as orm_model_draft, supply as orm_supply, demand as orm_demand, grid as orm_grid
if data_source == 'model_draft':
orm['orm_mv_grid_districts'] = orm_model_draft.__getattribute__(
mv_grid_districts_name)
orm['orm_mv_stations'] = orm_model_draft.__getattribute__(
mv_stations_name)
orm['orm_lv_load_areas'] = orm_model_draft.__getattribute__(
lv_load_areas_name)
orm['orm_lv_grid_district'] = orm_model_draft.__getattribute__(
lv_grid_district_name)
orm['orm_lv_stations'] = orm_model_draft.__getattribute__(
lv_stations_name)
orm['orm_conv_generators'] = orm_model_draft.__getattribute__(
conv_generators_name)
orm['orm_re_generators'] = orm_model_draft.__getattribute__(
re_generators_name)
orm['version_condition_mvgd'] = 1 == 1
orm['version_condition_mv_stations'] = 1 == 1
orm['version_condition_la'] = 1 == 1
orm['version_condition_lvgd'] = 1 == 1
orm['version_condition_mvlvst'] = 1 == 1
orm['version_condition_re'] = 1 == 1
orm['version_condition_conv'] = 1 == 1
elif data_source == 'versioned':
orm['orm_mv_grid_districts'] = orm_grid.__getattribute__(
mv_grid_districts_name)
orm['orm_mv_stations'] = orm_grid.__getattribute__(mv_stations_name)
orm['orm_lv_load_areas'] = orm_demand.__getattribute__(
lv_load_areas_name)
orm['orm_lv_grid_district'] = orm_grid.__getattribute__(
lv_grid_district_name)
orm['orm_lv_stations'] = orm_grid.__getattribute__(lv_stations_name)
orm['orm_conv_generators'] = orm_supply.__getattribute__(
conv_generators_name)
orm['orm_re_generators'] = orm_supply.__getattribute__(
re_generators_name)
orm['data_version'] = self.config[data_source]['version']
orm['version_condition_mvgd'] = orm['orm_mv_grid_districts'
].version == orm['data_version']
orm['version_condition_mv_stations'] = orm['orm_mv_stations'
].version == orm['data_version']
orm['version_condition_la'] = orm['orm_lv_load_areas'].version == orm[
'data_version']
orm['version_condition_lvgd'] = orm['orm_lv_grid_district'
].version == orm['data_version']
orm['version_condition_mvlvst'] = orm['orm_lv_stations'
].version == orm['data_version']
orm['version_condition_re'] = orm['orm_re_generators'
].columns.version == orm['data_version']
orm['version_condition_conv'] = orm['orm_conv_generators'
].columns.version == orm['data_version']
else:
logger.error(
'Invalid data source {} provided. Please re-check the file `config_db_tables.cfg`'
.format(data_source))
raise NameError('{} is no valid data source!'.format(data_source))
return orm
|
import_orm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n orm = {}\n data_source = self.config['input_data_source']['input_data']\n mv_grid_districts_name = self.config[data_source]['mv_grid_districts']\n mv_stations_name = self.config[data_source]['mv_stations']\n lv_load_areas_name = self.config[data_source]['lv_load_areas']\n lv_grid_district_name = self.config[data_source]['lv_grid_district']\n lv_stations_name = self.config[data_source]['lv_stations']\n conv_generators_name = self.config[data_source]['conv_generators']\n re_generators_name = self.config[data_source]['re_generators']\n from egoio.db_tables import model_draft as orm_model_draft, supply as orm_supply, demand as orm_demand, grid as orm_grid\n if data_source == 'model_draft':\n orm['orm_mv_grid_districts'] = orm_model_draft.__getattribute__(\n mv_grid_districts_name)\n orm['orm_mv_stations'] = orm_model_draft.__getattribute__(\n mv_stations_name)\n orm['orm_lv_load_areas'] = orm_model_draft.__getattribute__(\n lv_load_areas_name)\n orm['orm_lv_grid_district'] = orm_model_draft.__getattribute__(\n lv_grid_district_name)\n orm['orm_lv_stations'] = orm_model_draft.__getattribute__(\n lv_stations_name)\n orm['orm_conv_generators'] = orm_model_draft.__getattribute__(\n conv_generators_name)\n orm['orm_re_generators'] = orm_model_draft.__getattribute__(\n re_generators_name)\n orm['version_condition_mvgd'] = 1 == 1\n orm['version_condition_mv_stations'] = 1 == 1\n orm['version_condition_la'] = 1 == 1\n orm['version_condition_lvgd'] = 1 == 1\n orm['version_condition_mvlvst'] = 1 == 1\n orm['version_condition_re'] = 1 == 1\n orm['version_condition_conv'] = 1 == 1\n elif data_source == 'versioned':\n orm['orm_mv_grid_districts'] = orm_grid.__getattribute__(\n mv_grid_districts_name)\n orm['orm_mv_stations'] = orm_grid.__getattribute__(mv_stations_name)\n orm['orm_lv_load_areas'] = orm_demand.__getattribute__(\n lv_load_areas_name)\n orm['orm_lv_grid_district'] = orm_grid.__getattribute__(\n lv_grid_district_name)\n orm['orm_lv_stations'] = orm_grid.__getattribute__(lv_stations_name)\n orm['orm_conv_generators'] = orm_supply.__getattribute__(\n conv_generators_name)\n orm['orm_re_generators'] = orm_supply.__getattribute__(\n re_generators_name)\n orm['data_version'] = self.config[data_source]['version']\n orm['version_condition_mvgd'] = orm['orm_mv_grid_districts'\n ].version == orm['data_version']\n orm['version_condition_mv_stations'] = orm['orm_mv_stations'\n ].version == orm['data_version']\n orm['version_condition_la'] = orm['orm_lv_load_areas'].version == orm[\n 'data_version']\n orm['version_condition_lvgd'] = orm['orm_lv_grid_district'\n ].version == orm['data_version']\n orm['version_condition_mvlvst'] = orm['orm_lv_stations'\n ].version == orm['data_version']\n orm['version_condition_re'] = orm['orm_re_generators'\n ].columns.version == orm['data_version']\n orm['version_condition_conv'] = orm['orm_conv_generators'\n ].columns.version == orm['data_version']\n else:\n logger.error(\n 'Invalid data source {} provided. Please re-check the file `config_db_tables.cfg`'\n .format(data_source))\n raise NameError('{} is no valid data source!'.format(data_source))\n return orm\n",
"role": "user"
},
{
"content": "import_orm",
"role": "assistant"
}
] |
def x(self):
msg_invalidity = []
invalid_mv_grid_districts = []
for grid_district in self.mv_grid_districts():
if len(grid_district.mv_grid._graph.nodes()) == 1:
invalid_mv_grid_districts.append(grid_district)
msg_invalidity.append(
'MV Grid District {} seems to be empty and was removed'.
format(grid_district))
elif all([lvla.is_aggregated for lvla in grid_district.lv_load_areas()]
):
invalid_mv_grid_districts.append(grid_district)
msg_invalidity.append(
'MV Grid District {} contains only aggregated Load Areas and was removed'
.format(grid_district))
for grid_district in invalid_mv_grid_districts:
self._mv_grid_districts.remove(grid_district)
logger.warning('\n'.join(msg_invalidity))
logger.info('=====> MV Grids validated')
return msg_invalidity
|
validate_grid_districts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n msg_invalidity = []\n invalid_mv_grid_districts = []\n for grid_district in self.mv_grid_districts():\n if len(grid_district.mv_grid._graph.nodes()) == 1:\n invalid_mv_grid_districts.append(grid_district)\n msg_invalidity.append(\n 'MV Grid District {} seems to be empty and was removed'.\n format(grid_district))\n elif all([lvla.is_aggregated for lvla in grid_district.lv_load_areas()]\n ):\n invalid_mv_grid_districts.append(grid_district)\n msg_invalidity.append(\n 'MV Grid District {} contains only aggregated Load Areas and was removed'\n .format(grid_district))\n for grid_district in invalid_mv_grid_districts:\n self._mv_grid_districts.remove(grid_district)\n logger.warning('\\n'.join(msg_invalidity))\n logger.info('=====> MV Grids validated')\n return msg_invalidity\n",
"role": "user"
},
{
"content": "validate_grid_districts",
"role": "assistant"
}
] |
def x(self, session, mv_grid_districts):
if not all(isinstance(_, int) for _ in mv_grid_districts):
raise TypeError('`mv_grid_districts` has to be a list of integers.')
srid = str(int(cfg_ding0.get('geo', 'srid')))
session.query(db_int.sqla_mv_grid_viz).delete()
session.commit()
for grid_district in self.mv_grid_districts():
grid_id = grid_district.mv_grid.id_db
mv_stations = []
mv_cable_distributors = []
mv_circuit_breakers = []
lv_load_area_centres = []
lv_stations = []
mv_generators = []
lines = []
for node in grid_district.mv_grid._graph.nodes():
if isinstance(node, LVLoadAreaCentreDing0):
lv_load_area_centres.append((node.geo_data.x, node.geo_data.y))
elif isinstance(node, MVCableDistributorDing0):
mv_cable_distributors.append((node.geo_data.x, node.geo_data.y)
)
elif isinstance(node, MVStationDing0):
mv_stations.append((node.geo_data.x, node.geo_data.y))
elif isinstance(node, CircuitBreakerDing0):
mv_circuit_breakers.append((node.geo_data.x, node.geo_data.y))
elif isinstance(node, GeneratorDing0):
mv_generators.append((node.geo_data.x, node.geo_data.y))
if lv_load_area_centres:
lv_load_area_centres_wkb = from_shape(MultiPoint(
lv_load_area_centres), srid=srid)
else:
lv_load_area_centres_wkb = None
if mv_cable_distributors:
mv_cable_distributors_wkb = from_shape(MultiPoint(
mv_cable_distributors), srid=srid)
else:
mv_cable_distributors_wkb = None
if mv_circuit_breakers:
mv_circuit_breakers_wkb = from_shape(MultiPoint(
mv_circuit_breakers), srid=srid)
else:
mv_circuit_breakers_wkb = None
if mv_stations:
mv_stations_wkb = from_shape(Point(mv_stations), srid=srid)
else:
mv_stations_wkb = None
if mv_generators:
mv_generators_wkb = from_shape(MultiPoint(mv_generators), srid=srid
)
else:
mv_generators_wkb = None
for branch in grid_district.mv_grid.graph_edges():
line = branch['adj_nodes']
lines.append(((line[0].geo_data.x, line[0].geo_data.y), (line[1
].geo_data.x, line[1].geo_data.y)))
mv_lines_wkb = from_shape(MultiLineString(lines), srid=srid)
for lv_load_area in grid_district.lv_load_areas():
for lv_grid_district in lv_load_area.lv_grid_districts():
station = lv_grid_district.lv_grid.station()
if station not in grid_district.mv_grid.graph_isolated_nodes():
lv_stations.append((station.geo_data.x, station.geo_data.y)
)
lv_stations_wkb = from_shape(MultiPoint(lv_stations), srid=srid)
dataset = db_int.sqla_mv_grid_viz(grid_id=grid_id, geom_mv_station=
mv_stations_wkb, geom_mv_cable_dists=mv_cable_distributors_wkb,
geom_mv_circuit_breakers=mv_circuit_breakers_wkb,
geom_lv_load_area_centres=lv_load_area_centres_wkb,
geom_lv_stations=lv_stations_wkb, geom_mv_generators=
mv_generators_wkb, geom_mv_lines=mv_lines_wkb)
session.add(dataset)
session.commit()
logger.info('MV Grids exported')
|
export_mv_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, mv_grid_districts):\n if not all(isinstance(_, int) for _ in mv_grid_districts):\n raise TypeError('`mv_grid_districts` has to be a list of integers.')\n srid = str(int(cfg_ding0.get('geo', 'srid')))\n session.query(db_int.sqla_mv_grid_viz).delete()\n session.commit()\n for grid_district in self.mv_grid_districts():\n grid_id = grid_district.mv_grid.id_db\n mv_stations = []\n mv_cable_distributors = []\n mv_circuit_breakers = []\n lv_load_area_centres = []\n lv_stations = []\n mv_generators = []\n lines = []\n for node in grid_district.mv_grid._graph.nodes():\n if isinstance(node, LVLoadAreaCentreDing0):\n lv_load_area_centres.append((node.geo_data.x, node.geo_data.y))\n elif isinstance(node, MVCableDistributorDing0):\n mv_cable_distributors.append((node.geo_data.x, node.geo_data.y)\n )\n elif isinstance(node, MVStationDing0):\n mv_stations.append((node.geo_data.x, node.geo_data.y))\n elif isinstance(node, CircuitBreakerDing0):\n mv_circuit_breakers.append((node.geo_data.x, node.geo_data.y))\n elif isinstance(node, GeneratorDing0):\n mv_generators.append((node.geo_data.x, node.geo_data.y))\n if lv_load_area_centres:\n lv_load_area_centres_wkb = from_shape(MultiPoint(\n lv_load_area_centres), srid=srid)\n else:\n lv_load_area_centres_wkb = None\n if mv_cable_distributors:\n mv_cable_distributors_wkb = from_shape(MultiPoint(\n mv_cable_distributors), srid=srid)\n else:\n mv_cable_distributors_wkb = None\n if mv_circuit_breakers:\n mv_circuit_breakers_wkb = from_shape(MultiPoint(\n mv_circuit_breakers), srid=srid)\n else:\n mv_circuit_breakers_wkb = None\n if mv_stations:\n mv_stations_wkb = from_shape(Point(mv_stations), srid=srid)\n else:\n mv_stations_wkb = None\n if mv_generators:\n mv_generators_wkb = from_shape(MultiPoint(mv_generators), srid=srid\n )\n else:\n mv_generators_wkb = None\n for branch in grid_district.mv_grid.graph_edges():\n line = branch['adj_nodes']\n lines.append(((line[0].geo_data.x, line[0].geo_data.y), (line[1\n ].geo_data.x, line[1].geo_data.y)))\n mv_lines_wkb = from_shape(MultiLineString(lines), srid=srid)\n for lv_load_area in grid_district.lv_load_areas():\n for lv_grid_district in lv_load_area.lv_grid_districts():\n station = lv_grid_district.lv_grid.station()\n if station not in grid_district.mv_grid.graph_isolated_nodes():\n lv_stations.append((station.geo_data.x, station.geo_data.y)\n )\n lv_stations_wkb = from_shape(MultiPoint(lv_stations), srid=srid)\n dataset = db_int.sqla_mv_grid_viz(grid_id=grid_id, geom_mv_station=\n mv_stations_wkb, geom_mv_cable_dists=mv_cable_distributors_wkb,\n geom_mv_circuit_breakers=mv_circuit_breakers_wkb,\n geom_lv_load_area_centres=lv_load_area_centres_wkb,\n geom_lv_stations=lv_stations_wkb, geom_mv_generators=\n mv_generators_wkb, geom_mv_lines=mv_lines_wkb)\n session.add(dataset)\n session.commit()\n logger.info('MV Grids exported')\n",
"role": "user"
},
{
"content": "export_mv_grid",
"role": "assistant"
}
] |
def x(self, session, mv_grid_districts):
if not all(isinstance(_, int) for _ in mv_grid_districts):
raise TypeError('`mv_grid_districts` has to be a list of integers.')
srid = str(int(cfg_ding0.get('geo', 'srid')))
session.query(db_int.sqla_mv_grid_viz_branches).delete()
session.query(db_int.sqla_mv_grid_viz_nodes).delete()
session.commit()
for grid_district in self.mv_grid_districts():
for node in grid_district.mv_grid._graph.nodes():
if hasattr(node, 'voltage_res'):
node_name = '_'.join(['MV', str(grid_district.mv_grid.id_db
), repr(node)])
node_dataset = db_int.sqla_mv_grid_viz_nodes(node_id=
node_name, grid_id=grid_district.mv_grid.id_db, v_nom=
grid_district.mv_grid.v_level, geom=from_shape(Point(
node.geo_data), srid=srid), v_res0=node.voltage_res[0],
v_res1=node.voltage_res[1])
session.add(node_dataset)
elif isinstance(node, LVLoadAreaCentreDing0):
if node.lv_load_area.is_aggregated:
node_name = '_'.join(['MV', str(grid_district.mv_grid.
id_db), repr(node)])
node_dataset = db_int.sqla_mv_grid_viz_nodes(node_id=
node_name, grid_id=grid_district.mv_grid.id_db,
v_nom=grid_district.mv_grid.v_level, geom=
from_shape(Point(node.geo_data), srid=srid), v_res0
=0, v_res1=0)
session.add(node_dataset)
for branch in grid_district.mv_grid.graph_edges():
if hasattr(branch['branch'], 's_res'):
branch_name = '_'.join(['MV', str(grid_district.mv_grid.
id_db), 'lin', str(branch['branch'].id_db)])
branch_dataset = db_int.sqla_mv_grid_viz_branches(branch_id
=branch_name, grid_id=grid_district.mv_grid.id_db,
type_name=branch['branch'].type['name'], type_kind=
branch['branch'].kind, type_v_nom=branch['branch'].type
['U_n'], type_s_nom=3 ** 0.5 * branch['branch'].type[
'I_max_th'] * branch['branch'].type['U_n'], length=
branch['branch'].length / 1000.0, geom=from_shape(
LineString([branch['adj_nodes'][0].geo_data, branch[
'adj_nodes'][1].geo_data]), srid=srid), s_res0=branch[
'branch'].s_res[0], s_res1=branch['branch'].s_res[1])
session.add(branch_dataset)
else:
branch_name = '_'.join(['MV', str(grid_district.mv_grid.
id_db), 'lin', str(branch['branch'].id_db)])
branch_dataset = db_int.sqla_mv_grid_viz_branches(branch_id
=branch_name, grid_id=grid_district.mv_grid.id_db,
type_name=branch['branch'].type['name'], type_kind=
branch['branch'].kind, type_v_nom=branch['branch'].type
['U_n'], type_s_nom=3 ** 0.5 * branch['branch'].type[
'I_max_th'] * branch['branch'].type['U_n'], length=
branch['branch'].length / 1000.0, geom=from_shape(
LineString([branch['adj_nodes'][0].geo_data, branch[
'adj_nodes'][1].geo_data]), srid=srid), s_res0=0, s_res1=0)
session.add(branch_dataset)
session.commit()
logger.info('=====> MV Grids exported (NEW)')
|
export_mv_grid_new
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, mv_grid_districts):\n if not all(isinstance(_, int) for _ in mv_grid_districts):\n raise TypeError('`mv_grid_districts` has to be a list of integers.')\n srid = str(int(cfg_ding0.get('geo', 'srid')))\n session.query(db_int.sqla_mv_grid_viz_branches).delete()\n session.query(db_int.sqla_mv_grid_viz_nodes).delete()\n session.commit()\n for grid_district in self.mv_grid_districts():\n for node in grid_district.mv_grid._graph.nodes():\n if hasattr(node, 'voltage_res'):\n node_name = '_'.join(['MV', str(grid_district.mv_grid.id_db\n ), repr(node)])\n node_dataset = db_int.sqla_mv_grid_viz_nodes(node_id=\n node_name, grid_id=grid_district.mv_grid.id_db, v_nom=\n grid_district.mv_grid.v_level, geom=from_shape(Point(\n node.geo_data), srid=srid), v_res0=node.voltage_res[0],\n v_res1=node.voltage_res[1])\n session.add(node_dataset)\n elif isinstance(node, LVLoadAreaCentreDing0):\n if node.lv_load_area.is_aggregated:\n node_name = '_'.join(['MV', str(grid_district.mv_grid.\n id_db), repr(node)])\n node_dataset = db_int.sqla_mv_grid_viz_nodes(node_id=\n node_name, grid_id=grid_district.mv_grid.id_db,\n v_nom=grid_district.mv_grid.v_level, geom=\n from_shape(Point(node.geo_data), srid=srid), v_res0\n =0, v_res1=0)\n session.add(node_dataset)\n for branch in grid_district.mv_grid.graph_edges():\n if hasattr(branch['branch'], 's_res'):\n branch_name = '_'.join(['MV', str(grid_district.mv_grid.\n id_db), 'lin', str(branch['branch'].id_db)])\n branch_dataset = db_int.sqla_mv_grid_viz_branches(branch_id\n =branch_name, grid_id=grid_district.mv_grid.id_db,\n type_name=branch['branch'].type['name'], type_kind=\n branch['branch'].kind, type_v_nom=branch['branch'].type\n ['U_n'], type_s_nom=3 ** 0.5 * branch['branch'].type[\n 'I_max_th'] * branch['branch'].type['U_n'], length=\n branch['branch'].length / 1000.0, geom=from_shape(\n LineString([branch['adj_nodes'][0].geo_data, branch[\n 'adj_nodes'][1].geo_data]), srid=srid), s_res0=branch[\n 'branch'].s_res[0], s_res1=branch['branch'].s_res[1])\n session.add(branch_dataset)\n else:\n branch_name = '_'.join(['MV', str(grid_district.mv_grid.\n id_db), 'lin', str(branch['branch'].id_db)])\n branch_dataset = db_int.sqla_mv_grid_viz_branches(branch_id\n =branch_name, grid_id=grid_district.mv_grid.id_db,\n type_name=branch['branch'].type['name'], type_kind=\n branch['branch'].kind, type_v_nom=branch['branch'].type\n ['U_n'], type_s_nom=3 ** 0.5 * branch['branch'].type[\n 'I_max_th'] * branch['branch'].type['U_n'], length=\n branch['branch'].length / 1000.0, geom=from_shape(\n LineString([branch['adj_nodes'][0].geo_data, branch[\n 'adj_nodes'][1].geo_data]), srid=srid), s_res0=0, s_res1=0)\n session.add(branch_dataset)\n session.commit()\n logger.info('=====> MV Grids exported (NEW)')\n",
"role": "user"
},
{
"content": "export_mv_grid_new",
"role": "assistant"
}
] |
def x(self):
node_cols = ['node_id', 'grid_id', 'v_nom', 'geom', 'v_res0', 'v_res1',
'peak_load', 'generation_capacity', 'type']
edges_cols = ['branch_id', 'grid_id', 'type_name', 'type_kind',
'type_v_nom', 'type_s_nom', 'length', 'geom', 's_res0', 's_res1']
nodes_df = pd.DataFrame(columns=node_cols)
edges_df = pd.DataFrame(columns=edges_cols)
srid = str(int(self.config['geo']['srid']))
for grid_district in self.mv_grid_districts():
for node in grid_district.mv_grid.graph_nodes_sorted():
node_name = '_'.join(['MV', str(grid_district.mv_grid.id_db),
repr(node)])
geom = from_shape(Point(node.geo_data), srid=srid)
if isinstance(node, LVStationDing0):
peak_load = node.peak_load
generation_capacity = node.peak_generation
if hasattr(node, 'voltage_res'):
type = 'LV Station'
else:
type = 'LV station (aggregated)'
elif isinstance(node, GeneratorDing0):
peak_load = 0
generation_capacity = node.capacity
type = node.type
elif isinstance(node, MVCableDistributorDing0):
peak_load = 0
generation_capacity = 0
type = 'Cable distributor'
elif isinstance(node, LVLoadAreaCentreDing0):
peak_load = 0
generation_capacity = 0
type = 'Load area center of aggregated load area'
elif isinstance(node, CircuitBreakerDing0):
peak_load = 0
generation_capacity = 0
type = 'Switch Disconnector'
geosjson = mapping(node.geo_data)
decimal_places = 4
geosjson['coordinates'] = np.round(np.array(geosjson[
'coordinates']), decimal_places)
geom = from_shape(Point(shape(geosjson)), srid=srid)
else:
peak_load = 0
generation_capacity = 0
type = 'Unknown'
if hasattr(node, 'voltage_res'):
v_res0 = node.voltage_res[0]
v_res1 = node.voltage_res[1]
else:
v_res0 = v_res1 = 0
nodes_df = nodes_df.append(pd.Series({'node_id': node_name,
'grid_id': grid_district.mv_grid.id_db, 'v_nom':
grid_district.mv_grid.v_level, 'geom': geom, 'peak_load':
peak_load, 'generation_capacity': generation_capacity,
'v_res0': v_res0, 'v_res1': v_res1, 'type': type, 'rings':
len(grid_district.mv_grid._rings)}), ignore_index=True)
for branch in grid_district.mv_grid.graph_edges():
if hasattr(branch['branch'], 's_res'):
branch_name = '_'.join(['MV', str(grid_district.mv_grid.
id_db), 'lin', str(branch['branch'].id_db)])
edges_df = edges_df.append(pd.Series({'branch_id':
branch_name, 'grid_id': grid_district.mv_grid.id_db,
'type_name': branch['branch'].type['name'], 'type_kind':
branch['branch'].kind, 'type_v_nom': branch['branch'].
type['U_n'], 'type_s_nom': 3 ** 0.5 * branch['branch'].
type['I_max_th'] * branch['branch'].type['U_n'],
'length': branch['branch'].length / 1000.0, 'geom':
from_shape(LineString([branch['adj_nodes'][0].geo_data,
branch['adj_nodes'][1].geo_data]), srid=srid), 's_res0':
branch['branch'].s_res[0], 's_res1': branch['branch'].
s_res[1]}), ignore_index=True)
return nodes_df, edges_df
|
to_dataframe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n node_cols = ['node_id', 'grid_id', 'v_nom', 'geom', 'v_res0', 'v_res1',\n 'peak_load', 'generation_capacity', 'type']\n edges_cols = ['branch_id', 'grid_id', 'type_name', 'type_kind',\n 'type_v_nom', 'type_s_nom', 'length', 'geom', 's_res0', 's_res1']\n nodes_df = pd.DataFrame(columns=node_cols)\n edges_df = pd.DataFrame(columns=edges_cols)\n srid = str(int(self.config['geo']['srid']))\n for grid_district in self.mv_grid_districts():\n for node in grid_district.mv_grid.graph_nodes_sorted():\n node_name = '_'.join(['MV', str(grid_district.mv_grid.id_db),\n repr(node)])\n geom = from_shape(Point(node.geo_data), srid=srid)\n if isinstance(node, LVStationDing0):\n peak_load = node.peak_load\n generation_capacity = node.peak_generation\n if hasattr(node, 'voltage_res'):\n type = 'LV Station'\n else:\n type = 'LV station (aggregated)'\n elif isinstance(node, GeneratorDing0):\n peak_load = 0\n generation_capacity = node.capacity\n type = node.type\n elif isinstance(node, MVCableDistributorDing0):\n peak_load = 0\n generation_capacity = 0\n type = 'Cable distributor'\n elif isinstance(node, LVLoadAreaCentreDing0):\n peak_load = 0\n generation_capacity = 0\n type = 'Load area center of aggregated load area'\n elif isinstance(node, CircuitBreakerDing0):\n peak_load = 0\n generation_capacity = 0\n type = 'Switch Disconnector'\n geosjson = mapping(node.geo_data)\n decimal_places = 4\n geosjson['coordinates'] = np.round(np.array(geosjson[\n 'coordinates']), decimal_places)\n geom = from_shape(Point(shape(geosjson)), srid=srid)\n else:\n peak_load = 0\n generation_capacity = 0\n type = 'Unknown'\n if hasattr(node, 'voltage_res'):\n v_res0 = node.voltage_res[0]\n v_res1 = node.voltage_res[1]\n else:\n v_res0 = v_res1 = 0\n nodes_df = nodes_df.append(pd.Series({'node_id': node_name,\n 'grid_id': grid_district.mv_grid.id_db, 'v_nom':\n grid_district.mv_grid.v_level, 'geom': geom, 'peak_load':\n peak_load, 'generation_capacity': generation_capacity,\n 'v_res0': v_res0, 'v_res1': v_res1, 'type': type, 'rings':\n len(grid_district.mv_grid._rings)}), ignore_index=True)\n for branch in grid_district.mv_grid.graph_edges():\n if hasattr(branch['branch'], 's_res'):\n branch_name = '_'.join(['MV', str(grid_district.mv_grid.\n id_db), 'lin', str(branch['branch'].id_db)])\n edges_df = edges_df.append(pd.Series({'branch_id':\n branch_name, 'grid_id': grid_district.mv_grid.id_db,\n 'type_name': branch['branch'].type['name'], 'type_kind':\n branch['branch'].kind, 'type_v_nom': branch['branch'].\n type['U_n'], 'type_s_nom': 3 ** 0.5 * branch['branch'].\n type['I_max_th'] * branch['branch'].type['U_n'],\n 'length': branch['branch'].length / 1000.0, 'geom':\n from_shape(LineString([branch['adj_nodes'][0].geo_data,\n branch['adj_nodes'][1].geo_data]), srid=srid), 's_res0':\n branch['branch'].s_res[0], 's_res1': branch['branch'].\n s_res[1]}), ignore_index=True)\n return nodes_df, edges_df\n",
"role": "user"
},
{
"content": "to_dataframe",
"role": "assistant"
}
] |
def x(self, debug=False, animation=False):
if animation:
anim = AnimationDing0()
else:
anim = None
for grid_district in self.mv_grid_districts():
grid_district.mv_grid.routing(debug=debug, anim=anim)
logger.info(
'=====> MV Routing (Routing, Connection of Satellites & Stations) performed'
)
|
mv_routing
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, debug=False, animation=False):\n if animation:\n anim = AnimationDing0()\n else:\n anim = None\n for grid_district in self.mv_grid_districts():\n grid_district.mv_grid.routing(debug=debug, anim=anim)\n logger.info(\n '=====> MV Routing (Routing, Connection of Satellites & Stations) performed'\n )\n",
"role": "user"
},
{
"content": "mv_routing",
"role": "assistant"
}
] |
def x(self):
for mv_grid_district in self.mv_grid_districts():
for load_area in mv_grid_district.lv_load_areas():
if not load_area.is_aggregated:
for lv_grid_district in load_area.lv_grid_districts():
lv_grid_district.lv_grid.build_grid()
else:
logger.info('{} is of type aggregated. No grid is created.'
.format(repr(load_area)))
logger.info('=====> LV model grids created')
|
build_lv_grids
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for mv_grid_district in self.mv_grid_districts():\n for load_area in mv_grid_district.lv_load_areas():\n if not load_area.is_aggregated:\n for lv_grid_district in load_area.lv_grid_districts():\n lv_grid_district.lv_grid.build_grid()\n else:\n logger.info('{} is of type aggregated. No grid is created.'\n .format(repr(load_area)))\n logger.info('=====> LV model grids created')\n",
"role": "user"
},
{
"content": "build_lv_grids",
"role": "assistant"
}
] |
def x(self, debug=False):
for mv_grid_district in self.mv_grid_districts():
mv_grid_district.mv_grid.connect_generators(debug=debug)
seed = int(cfg_ding0.get('random', 'seed'))
random.seed(a=seed)
for load_area in mv_grid_district.lv_load_areas():
if not load_area.is_aggregated:
for lv_grid_district in load_area.lv_grid_districts():
lv_grid_district.lv_grid.connect_generators(debug=debug)
if debug:
lv_grid_district.lv_grid.graph_draw(mode='LV')
else:
logger.info(
'{} is of type aggregated. LV generators are not connected to LV grids.'
.format(repr(load_area)))
logger.info('=====> Generators connected')
|
connect_generators
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, debug=False):\n for mv_grid_district in self.mv_grid_districts():\n mv_grid_district.mv_grid.connect_generators(debug=debug)\n seed = int(cfg_ding0.get('random', 'seed'))\n random.seed(a=seed)\n for load_area in mv_grid_district.lv_load_areas():\n if not load_area.is_aggregated:\n for lv_grid_district in load_area.lv_grid_districts():\n lv_grid_district.lv_grid.connect_generators(debug=debug)\n if debug:\n lv_grid_district.lv_grid.graph_draw(mode='LV')\n else:\n logger.info(\n '{} is of type aggregated. LV generators are not connected to LV grids.'\n .format(repr(load_area)))\n logger.info('=====> Generators connected')\n",
"role": "user"
},
{
"content": "connect_generators",
"role": "assistant"
}
] |
def x(self, debug=False):
for grid_district in self.mv_grid_districts():
grid_district.mv_grid.parametrize_grid(debug=debug)
logger.info('=====> MV Grids parametrized')
|
mv_parametrize_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, debug=False):\n for grid_district in self.mv_grid_districts():\n grid_district.mv_grid.parametrize_grid(debug=debug)\n logger.info('=====> MV Grids parametrized')\n",
"role": "user"
},
{
"content": "mv_parametrize_grid",
"role": "assistant"
}
] |
def x(self):
for grid_district in self.mv_grid_districts():
grid_district.mv_grid.set_branch_ids()
logger.info('=====> Branch IDs set')
|
set_branch_ids
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for grid_district in self.mv_grid_districts():\n grid_district.mv_grid.set_branch_ids()\n logger.info('=====> Branch IDs set')\n",
"role": "user"
},
{
"content": "set_branch_ids",
"role": "assistant"
}
] |
def x(self, debug=False):
for grid_district in self.mv_grid_districts():
grid_district.mv_grid.set_circuit_breakers(debug=debug)
logger.info('=====> MV Circuit Breakers relocated')
|
set_circuit_breakers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, debug=False):\n for grid_district in self.mv_grid_districts():\n grid_district.mv_grid.set_circuit_breakers(debug=debug)\n logger.info('=====> MV Circuit Breakers relocated')\n",
"role": "user"
},
{
"content": "set_circuit_breakers",
"role": "assistant"
}
] |
def x(self, mode=None):
for grid_district in self.mv_grid_districts():
if mode == 'open':
grid_district.mv_grid.open_circuit_breakers()
elif mode == 'close':
grid_district.mv_grid.close_circuit_breakers()
else:
raise ValueError("'mode' is invalid.")
if mode == 'open':
logger.info('=====> MV Circuit Breakers opened')
elif mode == 'close':
logger.info('=====> MV Circuit Breakers closed')
|
control_circuit_breakers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode=None):\n for grid_district in self.mv_grid_districts():\n if mode == 'open':\n grid_district.mv_grid.open_circuit_breakers()\n elif mode == 'close':\n grid_district.mv_grid.close_circuit_breakers()\n else:\n raise ValueError(\"'mode' is invalid.\")\n if mode == 'open':\n logger.info('=====> MV Circuit Breakers opened')\n elif mode == 'close':\n logger.info('=====> MV Circuit Breakers closed')\n",
"role": "user"
},
{
"content": "control_circuit_breakers",
"role": "assistant"
}
] |
def x(self, session, method='onthefly', export_pypsa=False, debug=False):
if method == 'db':
pypsa_io.delete_powerflow_tables(session)
for grid_district in self.mv_grid_districts():
if export_pypsa:
export_pypsa_dir = repr(grid_district.mv_grid)
else:
export_pypsa_dir = None
grid_district.mv_grid.run_powerflow(session, method='db',
export_pypsa_dir=export_pypsa_dir, debug=debug)
elif method == 'onthefly':
for grid_district in self.mv_grid_districts():
if export_pypsa:
export_pypsa_dir = repr(grid_district.mv_grid)
else:
export_pypsa_dir = None
grid_district.mv_grid.run_powerflow(session, method='onthefly',
export_pypsa_dir=export_pypsa_dir, debug=debug)
|
run_powerflow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, method='onthefly', export_pypsa=False, debug=False):\n if method == 'db':\n pypsa_io.delete_powerflow_tables(session)\n for grid_district in self.mv_grid_districts():\n if export_pypsa:\n export_pypsa_dir = repr(grid_district.mv_grid)\n else:\n export_pypsa_dir = None\n grid_district.mv_grid.run_powerflow(session, method='db',\n export_pypsa_dir=export_pypsa_dir, debug=debug)\n elif method == 'onthefly':\n for grid_district in self.mv_grid_districts():\n if export_pypsa:\n export_pypsa_dir = repr(grid_district.mv_grid)\n else:\n export_pypsa_dir = None\n grid_district.mv_grid.run_powerflow(session, method='onthefly',\n export_pypsa_dir=export_pypsa_dir, debug=debug)\n",
"role": "user"
},
{
"content": "run_powerflow",
"role": "assistant"
}
] |
def x(self):
for grid_district in self.mv_grid_districts():
grid_district.mv_grid.reinforce_grid()
for lv_load_area in grid_district.lv_load_areas():
if not lv_load_area.is_aggregated:
for lv_grid_district in lv_load_area.lv_grid_districts():
lv_grid_district.lv_grid.reinforce_grid()
|
reinforce_grid
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for grid_district in self.mv_grid_districts():\n grid_district.mv_grid.reinforce_grid()\n for lv_load_area in grid_district.lv_load_areas():\n if not lv_load_area.is_aggregated:\n for lv_grid_district in lv_load_area.lv_grid_districts():\n lv_grid_district.lv_grid.reinforce_grid()\n",
"role": "user"
},
{
"content": "reinforce_grid",
"role": "assistant"
}
] |
def x(self, run_id=None):
try:
version = subprocess.check_output(['git', 'describe', '--tags',
'--always']).decode('utf8')
except:
version = None
if self.config['input_data_source']['input_data'] == 'versioned':
data_version = self.config['versioned']['version']
database_tables = self.config['versioned']
elif self.config['input_data_source']['input_data'] == 'model_draft':
data_version = 'model_draft'
database_tables = self.config['model_draft']
else:
data_version = 'unknown'
database_tables = 'unknown'
assumptions = {}
assumptions.update(self.config['assumptions'])
assumptions.update(self.config['mv_connect'])
assumptions.update(self.config['mv_routing'])
assumptions.update(self.config['mv_routing_tech_constraints'])
if not run_id:
run_id = datetime.now().strftime('%Y%m%d%H%M%S')
if not self._run_id:
self._run_id = run_id
metadata = dict(version=version, mv_grid_districts=[int(_.id_db) for _ in
self._mv_grid_districts], database_tables=database_tables,
data_version=data_version, assumptions=assumptions, run_id=self._run_id
)
return metadata
|
metadata
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, run_id=None):\n try:\n version = subprocess.check_output(['git', 'describe', '--tags',\n '--always']).decode('utf8')\n except:\n version = None\n if self.config['input_data_source']['input_data'] == 'versioned':\n data_version = self.config['versioned']['version']\n database_tables = self.config['versioned']\n elif self.config['input_data_source']['input_data'] == 'model_draft':\n data_version = 'model_draft'\n database_tables = self.config['model_draft']\n else:\n data_version = 'unknown'\n database_tables = 'unknown'\n assumptions = {}\n assumptions.update(self.config['assumptions'])\n assumptions.update(self.config['mv_connect'])\n assumptions.update(self.config['mv_routing'])\n assumptions.update(self.config['mv_routing_tech_constraints'])\n if not run_id:\n run_id = datetime.now().strftime('%Y%m%d%H%M%S')\n if not self._run_id:\n self._run_id = run_id\n metadata = dict(version=version, mv_grid_districts=[int(_.id_db) for _ in\n self._mv_grid_districts], database_tables=database_tables,\n data_version=data_version, assumptions=assumptions, run_id=self._run_id\n )\n return metadata\n",
"role": "user"
},
{
"content": "metadata",
"role": "assistant"
}
] |
def x(self, session):
srid = str(int(cfg_ding0.get('geo', 'srid')))
(mv_grid_districts_dict, lv_load_areas_dict, lv_grid_districts_dict,
lv_stations_dict) = self.get_mvgd_lvla_lvgd_obj_from_id()
generators_sqla = session.query(self.orm['orm_re_generators'].columns.
id, self.orm['orm_re_generators'].columns.subst_id, self.orm[
'orm_re_generators'].columns.la_id, self.orm['orm_re_generators'].
columns.mvlv_subst_id, self.orm['orm_re_generators'].columns.
electrical_capacity, self.orm['orm_re_generators'].columns.
generation_type, self.orm['orm_re_generators'].columns.
generation_subtype, self.orm['orm_re_generators'].columns.
voltage_level, func.ST_AsText(func.ST_Transform(self.orm[
'orm_re_generators'].columns.rea_geom_new, srid)).label('geom_new'),
func.ST_AsText(func.ST_Transform(self.orm['orm_re_generators'].
columns.geom, srid)).label('geom')).filter(self.orm[
'orm_re_generators'].columns.subst_id.in_(list(mv_grid_districts_dict))
).filter(self.orm['orm_re_generators'].columns.voltage_level.in_([4,
5, 6, 7])).filter(self.orm['version_condition_re'])
generators_res = pd.read_sql_query(generators_sqla.statement, session.
bind, index_col='id')
generators_res.columns = [('GenCap' if c == 'electrical_capacity' else
'type' if c == 'generation_type' else 'subtype' if c ==
'generation_subtype' else 'v_level' if c == 'voltage_level' else c) for
c in generators_res.columns]
generators_sqla = session.query(self.orm['orm_conv_generators'].columns
.id, self.orm['orm_conv_generators'].columns.subst_id, self.orm[
'orm_conv_generators'].columns.name, self.orm['orm_conv_generators'
].columns.capacity, self.orm['orm_conv_generators'].columns.fuel,
self.orm['orm_conv_generators'].columns.voltage_level, func.
ST_AsText(func.ST_Transform(self.orm['orm_conv_generators'].columns
.geom, srid)).label('geom')).filter(self.orm['orm_conv_generators']
.columns.subst_id.in_(list(mv_grid_districts_dict))).filter(self.
orm['orm_conv_generators'].columns.voltage_level.in_([4, 5, 6])
).filter(self.orm['version_condition_conv'])
generators_conv = pd.read_sql_query(generators_sqla.statement, session.
bind, index_col='id')
generators_conv.columns = [('GenCap' if c == 'capacity' else 'type' if
c == 'fuel' else 'v_level' if c == 'voltage_level' else c) for c in
generators_conv.columns]
generators = pd.concat([generators_conv, generators_res], axis=0)
generators = generators.fillna('other')
return generators
|
list_generators
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session):\n srid = str(int(cfg_ding0.get('geo', 'srid')))\n (mv_grid_districts_dict, lv_load_areas_dict, lv_grid_districts_dict,\n lv_stations_dict) = self.get_mvgd_lvla_lvgd_obj_from_id()\n generators_sqla = session.query(self.orm['orm_re_generators'].columns.\n id, self.orm['orm_re_generators'].columns.subst_id, self.orm[\n 'orm_re_generators'].columns.la_id, self.orm['orm_re_generators'].\n columns.mvlv_subst_id, self.orm['orm_re_generators'].columns.\n electrical_capacity, self.orm['orm_re_generators'].columns.\n generation_type, self.orm['orm_re_generators'].columns.\n generation_subtype, self.orm['orm_re_generators'].columns.\n voltage_level, func.ST_AsText(func.ST_Transform(self.orm[\n 'orm_re_generators'].columns.rea_geom_new, srid)).label('geom_new'),\n func.ST_AsText(func.ST_Transform(self.orm['orm_re_generators'].\n columns.geom, srid)).label('geom')).filter(self.orm[\n 'orm_re_generators'].columns.subst_id.in_(list(mv_grid_districts_dict))\n ).filter(self.orm['orm_re_generators'].columns.voltage_level.in_([4,\n 5, 6, 7])).filter(self.orm['version_condition_re'])\n generators_res = pd.read_sql_query(generators_sqla.statement, session.\n bind, index_col='id')\n generators_res.columns = [('GenCap' if c == 'electrical_capacity' else \n 'type' if c == 'generation_type' else 'subtype' if c ==\n 'generation_subtype' else 'v_level' if c == 'voltage_level' else c) for\n c in generators_res.columns]\n generators_sqla = session.query(self.orm['orm_conv_generators'].columns\n .id, self.orm['orm_conv_generators'].columns.subst_id, self.orm[\n 'orm_conv_generators'].columns.name, self.orm['orm_conv_generators'\n ].columns.capacity, self.orm['orm_conv_generators'].columns.fuel,\n self.orm['orm_conv_generators'].columns.voltage_level, func.\n ST_AsText(func.ST_Transform(self.orm['orm_conv_generators'].columns\n .geom, srid)).label('geom')).filter(self.orm['orm_conv_generators']\n .columns.subst_id.in_(list(mv_grid_districts_dict))).filter(self.\n orm['orm_conv_generators'].columns.voltage_level.in_([4, 5, 6])\n ).filter(self.orm['version_condition_conv'])\n generators_conv = pd.read_sql_query(generators_sqla.statement, session.\n bind, index_col='id')\n generators_conv.columns = [('GenCap' if c == 'capacity' else 'type' if \n c == 'fuel' else 'v_level' if c == 'voltage_level' else c) for c in\n generators_conv.columns]\n generators = pd.concat([generators_conv, generators_res], axis=0)\n generators = generators.fillna('other')\n return generators\n",
"role": "user"
},
{
"content": "list_generators",
"role": "assistant"
}
] |
def x(self, session, mv_districts):
lv_loads_threshold = cfg_ding0.get('mv_routing', 'load_area_threshold')
gw2kw = 10 ** 6
stations_list = [d.mv_grid._station.id_db for d in mv_districts]
lv_load_areas_sqla = session.query(self.orm['orm_lv_load_areas'].id.
label('id_db'), (self.orm['orm_lv_load_areas'].
sector_peakload_residential * gw2kw).label('peak_load_residential'),
(self.orm['orm_lv_load_areas'].sector_peakload_retail * gw2kw).
label('peak_load_retail'), (self.orm['orm_lv_load_areas'].
sector_peakload_industrial * gw2kw).label('peak_load_industrial'),
(self.orm['orm_lv_load_areas'].sector_peakload_agricultural * gw2kw
).label('peak_load_agricultural')).filter(self.orm[
'orm_lv_load_areas'].subst_id.in_(stations_list)).filter((self.orm[
'orm_lv_load_areas'].sector_peakload_residential + self.orm[
'orm_lv_load_areas'].sector_peakload_retail + self.orm[
'orm_lv_load_areas'].sector_peakload_industrial + self.orm[
'orm_lv_load_areas'].sector_peakload_agricultural) * gw2kw >
lv_loads_threshold).filter(self.orm['version_condition_la'])
lv_load_areas = pd.read_sql_query(lv_load_areas_sqla.statement, session
.bind, index_col='id_db')
return lv_load_areas
|
list_load_areas
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, mv_districts):\n lv_loads_threshold = cfg_ding0.get('mv_routing', 'load_area_threshold')\n gw2kw = 10 ** 6\n stations_list = [d.mv_grid._station.id_db for d in mv_districts]\n lv_load_areas_sqla = session.query(self.orm['orm_lv_load_areas'].id.\n label('id_db'), (self.orm['orm_lv_load_areas'].\n sector_peakload_residential * gw2kw).label('peak_load_residential'),\n (self.orm['orm_lv_load_areas'].sector_peakload_retail * gw2kw).\n label('peak_load_retail'), (self.orm['orm_lv_load_areas'].\n sector_peakload_industrial * gw2kw).label('peak_load_industrial'),\n (self.orm['orm_lv_load_areas'].sector_peakload_agricultural * gw2kw\n ).label('peak_load_agricultural')).filter(self.orm[\n 'orm_lv_load_areas'].subst_id.in_(stations_list)).filter((self.orm[\n 'orm_lv_load_areas'].sector_peakload_residential + self.orm[\n 'orm_lv_load_areas'].sector_peakload_retail + self.orm[\n 'orm_lv_load_areas'].sector_peakload_industrial + self.orm[\n 'orm_lv_load_areas'].sector_peakload_agricultural) * gw2kw >\n lv_loads_threshold).filter(self.orm['version_condition_la'])\n lv_load_areas = pd.read_sql_query(lv_load_areas_sqla.statement, session\n .bind, index_col='id_db')\n return lv_load_areas\n",
"role": "user"
},
{
"content": "list_load_areas",
"role": "assistant"
}
] |
def x(self, session, lv_stations):
gw2kw = 10 ** 6
lv_grid_districs_sqla = session.query(self.orm['orm_lv_grid_district'].
mvlv_subst_id, (self.orm['orm_lv_grid_district'].
sector_peakload_residential * gw2kw).label('peak_load_residential'),
(self.orm['orm_lv_grid_district'].sector_peakload_retail * gw2kw).
label('peak_load_retail'), (self.orm['orm_lv_grid_district'].
sector_peakload_industrial * gw2kw).label('peak_load_industrial'),
(self.orm['orm_lv_grid_district'].sector_peakload_agricultural *
gw2kw).label('peak_load_agricultural')).filter(self.orm[
'orm_lv_grid_district'].mvlv_subst_id.in_(lv_stations)).filter(self
.orm['version_condition_lvgd'])
lv_grid_districts = pd.read_sql_query(lv_grid_districs_sqla.statement,
session.bind, index_col='mvlv_subst_id')
return lv_grid_districts
|
list_lv_grid_districts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, session, lv_stations):\n gw2kw = 10 ** 6\n lv_grid_districs_sqla = session.query(self.orm['orm_lv_grid_district'].\n mvlv_subst_id, (self.orm['orm_lv_grid_district'].\n sector_peakload_residential * gw2kw).label('peak_load_residential'),\n (self.orm['orm_lv_grid_district'].sector_peakload_retail * gw2kw).\n label('peak_load_retail'), (self.orm['orm_lv_grid_district'].\n sector_peakload_industrial * gw2kw).label('peak_load_industrial'),\n (self.orm['orm_lv_grid_district'].sector_peakload_agricultural *\n gw2kw).label('peak_load_agricultural')).filter(self.orm[\n 'orm_lv_grid_district'].mvlv_subst_id.in_(lv_stations)).filter(self\n .orm['version_condition_lvgd'])\n lv_grid_districts = pd.read_sql_query(lv_grid_districs_sqla.statement,\n session.bind, index_col='mvlv_subst_id')\n return lv_grid_districts\n",
"role": "user"
},
{
"content": "list_lv_grid_districts",
"role": "assistant"
}
] |
def x(dirpath):
if not os.path.isdir(dirpath):
os.mkdir(dirpath)
print('We create a directory for you and your Ding0 data: {}'.
format(dirpath))
|
create_dir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dirpath):\n if not os.path.isdir(dirpath):\n os.mkdir(dirpath)\n print('We create a directory for you and your Ding0 data: {}'.\n format(dirpath))\n",
"role": "user"
},
{
"content": "create_dir",
"role": "assistant"
}
] |
def x():
ding0_dir = str(cfg_ding0.get('config', 'config_dir'))
return os.path.join(os.path.expanduser('~'), ding0_dir)
|
get_default_home_dir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n ding0_dir = str(cfg_ding0.get('config', 'config_dir'))\n return os.path.join(os.path.expanduser('~'), ding0_dir)\n",
"role": "user"
},
{
"content": "get_default_home_dir",
"role": "assistant"
}
] |
def x(log_dir=None, loglevel=logging.DEBUG):
create_home_dir()
create_dir(os.path.join(get_default_home_dir(), 'log'))
if log_dir is None:
log_dir = os.path.join(get_default_home_dir(), 'log')
logger = logging.getLogger('ding0')
logger.setLevel(loglevel)
handler = logging.FileHandler(os.path.join(log_dir, 'ding0.log'))
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
'%(asctime)s-%(funcName)s-%(message)s (%(levelname)s)')
handler.setFormatter(formatter)
stream = logging.StreamHandler()
stream.setLevel(logging.INFO)
stream_formatter = logging.Formatter('%(message)s (%(levelname)s)')
stream.setFormatter(stream_formatter)
logger.addHandler(handler)
logger.addHandler(stream)
logger.info('########## New run of Ding0 issued #############')
return logger
|
setup_logger
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(log_dir=None, loglevel=logging.DEBUG):\n create_home_dir()\n create_dir(os.path.join(get_default_home_dir(), 'log'))\n if log_dir is None:\n log_dir = os.path.join(get_default_home_dir(), 'log')\n logger = logging.getLogger('ding0')\n logger.setLevel(loglevel)\n handler = logging.FileHandler(os.path.join(log_dir, 'ding0.log'))\n handler.setLevel(logging.DEBUG)\n formatter = logging.Formatter(\n '%(asctime)s-%(funcName)s-%(message)s (%(levelname)s)')\n handler.setFormatter(formatter)\n stream = logging.StreamHandler()\n stream.setLevel(logging.INFO)\n stream_formatter = logging.Formatter('%(message)s (%(levelname)s)')\n stream.setFormatter(stream_formatter)\n logger.addHandler(handler)\n logger.addHandler(stream)\n logger.info('########## New run of Ding0 issued #############')\n return logger\n",
"role": "user"
},
{
"content": "setup_logger",
"role": "assistant"
}
] |
def x(self):
new_solution = self.__class__(self._problem)
for index, r in enumerate(self._routes):
new_route = new_solution._routes[index] = models.Route(self._problem)
for node in r.nodes():
new_node = new_solution._nodes[node.name()]
new_route.allocate([new_node])
new_solution._routes = [route for route in new_solution._routes if
route._nodes]
return new_solution
|
clone
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n new_solution = self.__class__(self._problem)\n for index, r in enumerate(self._routes):\n new_route = new_solution._routes[index] = models.Route(self._problem)\n for node in r.nodes():\n new_node = new_solution._nodes[node.name()]\n new_route.allocate([new_node])\n new_solution._routes = [route for route in new_solution._routes if\n route._nodes]\n return new_solution\n",
"role": "user"
},
{
"content": "clone",
"role": "assistant"
}
] |
def x(self):
allocated = all([(node.route_allocation() is not None) for node in list
(self._nodes.values()) if node.name() != self._problem.depot().name()])
valid_routes = len(self._routes) == 1
return allocated and valid_routes
|
is_complete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n allocated = all([(node.route_allocation() is not None) for node in list\n (self._nodes.values()) if node.name() != self._problem.depot().name()])\n valid_routes = len(self._routes) == 1\n return allocated and valid_routes\n",
"role": "user"
},
{
"content": "is_complete",
"role": "assistant"
}
] |
def x(self, pair):
a, b = pair
new_solution = self.clone()
i, j = new_solution.get_pair((a, b))
route_i = i.route_allocation()
route_j = j.route_allocation()
inserted = False
if (route_i is not None and route_j is not None) and route_i != route_j:
if route_i._nodes.index(i) == 0 and route_j._nodes.index(j) == len(
route_j._nodes) - 1:
if route_j.can_allocate(route_i._nodes):
route_j.allocate(route_i._nodes)
if i.route_allocation() != j.route_allocation():
raise Exception('wtf')
inserted = True
elif route_j._nodes.index(j) == 0 and route_i._nodes.index(i) == len(
route_i._nodes) - 1:
if route_i.can_allocate(route_j._nodes):
route_i.allocate(route_j._nodes)
if i.route_allocation() != j.route_allocation():
raise Exception('wtf j')
inserted = True
new_solution._routes = [route for route in new_solution._routes if
route._nodes]
return new_solution, inserted
|
process
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pair):\n a, b = pair\n new_solution = self.clone()\n i, j = new_solution.get_pair((a, b))\n route_i = i.route_allocation()\n route_j = j.route_allocation()\n inserted = False\n if (route_i is not None and route_j is not None) and route_i != route_j:\n if route_i._nodes.index(i) == 0 and route_j._nodes.index(j) == len(\n route_j._nodes) - 1:\n if route_j.can_allocate(route_i._nodes):\n route_j.allocate(route_i._nodes)\n if i.route_allocation() != j.route_allocation():\n raise Exception('wtf')\n inserted = True\n elif route_j._nodes.index(j) == 0 and route_i._nodes.index(i) == len(\n route_i._nodes) - 1:\n if route_i.can_allocate(route_j._nodes):\n route_i.allocate(route_j._nodes)\n if i.route_allocation() != j.route_allocation():\n raise Exception('wtf j')\n inserted = True\n new_solution._routes = [route for route in new_solution._routes if\n route._nodes]\n return new_solution, inserted\n",
"role": "user"
},
{
"content": "process",
"role": "assistant"
}
] |
def x(self, pairs):
i, j = pairs
if i.route_allocation() is None or j.route_allocation() is None:
return True
if self._allocated == len(list(self._problem.nodes())) - 1:
return False
return False
|
can_process
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pairs):\n i, j = pairs\n if i.route_allocation() is None or j.route_allocation() is None:\n return True\n if self._allocated == len(list(self._problem.nodes())) - 1:\n return False\n return False\n",
"role": "user"
},
{
"content": "can_process",
"role": "assistant"
}
] |
def x(self, graph):
savings_list = {}
for i, j in graph.edges():
if repr(i) < repr(j):
t = i, j
else:
t = j, i
if i == graph.depot() or j == graph.depot():
continue
savings_list[t] = graph.distance(graph.depot(), i) + graph.distance(
graph.depot(), j) - graph.distance(i, j)
sorted_savings_list = sorted(list(savings_list.items()), key=operator.
itemgetter(1), reverse=True)
return [nodes for nodes, saving in sorted_savings_list]
|
compute_savings_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graph):\n savings_list = {}\n for i, j in graph.edges():\n if repr(i) < repr(j):\n t = i, j\n else:\n t = j, i\n if i == graph.depot() or j == graph.depot():\n continue\n savings_list[t] = graph.distance(graph.depot(), i) + graph.distance(\n graph.depot(), j) - graph.distance(i, j)\n sorted_savings_list = sorted(list(savings_list.items()), key=operator.\n itemgetter(1), reverse=True)\n return [nodes for nodes, saving in sorted_savings_list]\n",
"role": "user"
},
{
"content": "compute_savings_list",
"role": "assistant"
}
] |
def x(self, graph, timeout, debug=False, anim=None):
savings_list = self.compute_savings_list(graph)
solution = SavingsSolution(graph)
start = time.time()
for i, j in savings_list[:]:
if solution.is_complete():
break
if solution.can_process((i, j)):
solution, inserted = solution.process((i, j))
if inserted:
savings_list.remove((i, j))
if anim:
solution.draw_network(anim)
if time.time() - start > timeout:
break
return solution
|
solve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, graph, timeout, debug=False, anim=None):\n savings_list = self.compute_savings_list(graph)\n solution = SavingsSolution(graph)\n start = time.time()\n for i, j in savings_list[:]:\n if solution.is_complete():\n break\n if solution.can_process((i, j)):\n solution, inserted = solution.process((i, j))\n if inserted:\n savings_list.remove((i, j))\n if anim:\n solution.draw_network(anim)\n if time.time() - start > timeout:\n break\n return solution\n",
"role": "user"
},
{
"content": "solve",
"role": "assistant"
}
] |
def x(network, export_dir):
package_path = ding0.__path__[0]
network.export_to_csv_folder(os.path.join(package_path, 'output',
'debug', 'grid', export_dir))
|
export_to_dir
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(network, export_dir):\n package_path = ding0.__path__[0]\n network.export_to_csv_folder(os.path.join(package_path, 'output',\n 'debug', 'grid', export_dir))\n",
"role": "user"
},
{
"content": "export_to_dir",
"role": "assistant"
}
] |
def x(grid, edges):
omega = 2 * pi * 50
srid = int(cfg_ding0.get('geo', 'srid'))
lines = {'line_id': [], 'bus0': [], 'bus1': [], 'x': [], 'r': [],
's_nom': [], 'length': [], 'cables': [], 'geom': [], 'grid_id': []}
for edge in edges:
line_name = '_'.join(['MV', str(grid.id_db), 'lin', str(edge[
'branch'].id_db)])
if isinstance(edge['branch'].type['L'], Series) or isinstance(edge[
'branch'].type['C'], Series):
x = omega * edge['branch'].type['L'].values[0] * 0.001
else:
x = omega * edge['branch'].type['L'] * 0.001
if isinstance(edge['branch'].type['R'], Series):
r = edge['branch'].type['R'].values[0]
else:
r = edge['branch'].type['R']
if isinstance(edge['branch'].type['I_max_th'], Series) or isinstance(
edge['branch'].type['U_n'], Series):
s_nom = sqrt(3) * edge['branch'].type['I_max_th'].values[0] * edge[
'branch'].type['U_n'].values[0]
else:
s_nom = sqrt(3) * edge['branch'].type['I_max_th'] * edge['branch'
].type['U_n']
l = edge['branch'].length / 1000.0
lines['line_id'].append(line_name)
lines['bus0'].append(edge['adj_nodes'][0].pypsa_id)
lines['bus1'].append(edge['adj_nodes'][1].pypsa_id)
lines['x'].append(x * l)
lines['r'].append(r * l)
lines['s_nom'].append(s_nom)
lines['length'].append(l)
lines['cables'].append(3)
lines['geom'].append(from_shape(LineString([edge['adj_nodes'][0].
geo_data, edge['adj_nodes'][1].geo_data]), srid=srid))
lines['grid_id'].append(grid.id_db)
return {'Line': DataFrame(lines).set_index('line_id')}
|
edges_to_dict_of_dataframes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, edges):\n omega = 2 * pi * 50\n srid = int(cfg_ding0.get('geo', 'srid'))\n lines = {'line_id': [], 'bus0': [], 'bus1': [], 'x': [], 'r': [],\n 's_nom': [], 'length': [], 'cables': [], 'geom': [], 'grid_id': []}\n for edge in edges:\n line_name = '_'.join(['MV', str(grid.id_db), 'lin', str(edge[\n 'branch'].id_db)])\n if isinstance(edge['branch'].type['L'], Series) or isinstance(edge[\n 'branch'].type['C'], Series):\n x = omega * edge['branch'].type['L'].values[0] * 0.001\n else:\n x = omega * edge['branch'].type['L'] * 0.001\n if isinstance(edge['branch'].type['R'], Series):\n r = edge['branch'].type['R'].values[0]\n else:\n r = edge['branch'].type['R']\n if isinstance(edge['branch'].type['I_max_th'], Series) or isinstance(\n edge['branch'].type['U_n'], Series):\n s_nom = sqrt(3) * edge['branch'].type['I_max_th'].values[0] * edge[\n 'branch'].type['U_n'].values[0]\n else:\n s_nom = sqrt(3) * edge['branch'].type['I_max_th'] * edge['branch'\n ].type['U_n']\n l = edge['branch'].length / 1000.0\n lines['line_id'].append(line_name)\n lines['bus0'].append(edge['adj_nodes'][0].pypsa_id)\n lines['bus1'].append(edge['adj_nodes'][1].pypsa_id)\n lines['x'].append(x * l)\n lines['r'].append(r * l)\n lines['s_nom'].append(s_nom)\n lines['length'].append(l)\n lines['cables'].append(3)\n lines['geom'].append(from_shape(LineString([edge['adj_nodes'][0].\n geo_data, edge['adj_nodes'][1].geo_data]), srid=srid))\n lines['grid_id'].append(grid.id_db)\n return {'Line': DataFrame(lines).set_index('line_id')}\n",
"role": "user"
},
{
"content": "edges_to_dict_of_dataframes",
"role": "assistant"
}
] |
def x(components, components_data, grid, export_pypsa_dir=None, debug=False):
scenario = cfg_ding0.get('powerflow', 'test_grid_stability_scenario')
start_hour = cfg_ding0.get('powerflow', 'start_hour')
end_hour = cfg_ding0.get('powerflow', 'end_hour')
temp_id_set = 1
timesteps = 2
start_time = datetime(1970, 1, 1, 0, 0, 0)
resolution = 'H'
if debug:
data_integrity(components, components_data)
timerange = DatetimeIndex(freq=resolution, periods=timesteps, start=
start_time)
network, snapshots = create_powerflow_problem(timerange, components)
for key in ['Load', 'Generator']:
for attr in ['p_set', 'q_set']:
if not components_data[key].empty:
series = transform_timeseries4pypsa(components_data[key][
attr].to_frame(), timerange, column=attr)
import_series_from_dataframe(network, series, key, attr)
series = transform_timeseries4pypsa(components_data['Bus'][
'v_mag_pu_set'].to_frame(), timerange, column='v_mag_pu_set')
import_series_from_dataframe(network, series, 'Bus', 'v_mag_pu_set')
network.pf(snapshots)
bus_data, line_data = process_pf_results(network)
assign_bus_results(grid, bus_data)
assign_line_results(grid, line_data)
if export_pypsa_dir:
export_to_dir(network, export_dir=export_pypsa_dir)
|
run_powerflow_onthefly
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(components, components_data, grid, export_pypsa_dir=None, debug=False):\n scenario = cfg_ding0.get('powerflow', 'test_grid_stability_scenario')\n start_hour = cfg_ding0.get('powerflow', 'start_hour')\n end_hour = cfg_ding0.get('powerflow', 'end_hour')\n temp_id_set = 1\n timesteps = 2\n start_time = datetime(1970, 1, 1, 0, 0, 0)\n resolution = 'H'\n if debug:\n data_integrity(components, components_data)\n timerange = DatetimeIndex(freq=resolution, periods=timesteps, start=\n start_time)\n network, snapshots = create_powerflow_problem(timerange, components)\n for key in ['Load', 'Generator']:\n for attr in ['p_set', 'q_set']:\n if not components_data[key].empty:\n series = transform_timeseries4pypsa(components_data[key][\n attr].to_frame(), timerange, column=attr)\n import_series_from_dataframe(network, series, key, attr)\n series = transform_timeseries4pypsa(components_data['Bus'][\n 'v_mag_pu_set'].to_frame(), timerange, column='v_mag_pu_set')\n import_series_from_dataframe(network, series, 'Bus', 'v_mag_pu_set')\n network.pf(snapshots)\n bus_data, line_data = process_pf_results(network)\n assign_bus_results(grid, bus_data)\n assign_line_results(grid, line_data)\n if export_pypsa_dir:\n export_to_dir(network, export_dir=export_pypsa_dir)\n",
"role": "user"
},
{
"content": "run_powerflow_onthefly",
"role": "assistant"
}
] |
def x(components, components_data):
data_check = {}
for comp in ['Bus', 'Load']:
data_check[comp] = {}
data_check[comp]['length_diff'] = len(components[comp]) - len(
components_data[comp])
for comp in list(data_check.keys()):
if data_check[comp]['length_diff'] != 0:
logger.exception(
'{comp} data is invalid. You supplied {no_comp} {comp} objects and {no_data} datasets. Check you grid data and try again'
.format(comp=comp, no_comp=len(components[comp]), no_data=
len(components_data[comp])))
sys.exit(1)
|
data_integrity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(components, components_data):\n data_check = {}\n for comp in ['Bus', 'Load']:\n data_check[comp] = {}\n data_check[comp]['length_diff'] = len(components[comp]) - len(\n components_data[comp])\n for comp in list(data_check.keys()):\n if data_check[comp]['length_diff'] != 0:\n logger.exception(\n '{comp} data is invalid. You supplied {no_comp} {comp} objects and {no_data} datasets. Check you grid data and try again'\n .format(comp=comp, no_comp=len(components[comp]), no_data=\n len(components_data[comp])))\n sys.exit(1)\n",
"role": "user"
},
{
"content": "data_integrity",
"role": "assistant"
}
] |
def x(grid, bus_data):
for node in grid._graph.nodes():
if node not in grid.graph_isolated_nodes() and not isinstance(node,
LVLoadAreaCentreDing0):
if isinstance(node, LVStationDing0):
node.voltage_res = bus_data.loc[node.pypsa_id, 'v_mag_pu']
elif isinstance(node, (LVStationDing0, LVLoadAreaCentreDing0)):
if node.lv_load_area.is_aggregated:
node.voltage_res = bus_data.loc[node.pypsa_id, 'v_mag_pu']
elif not isinstance(node, CircuitBreakerDing0):
node.voltage_res = bus_data.loc[node.pypsa_id, 'v_mag_pu']
else:
logger.warning(
'Object {} has been skipped while importing results!')
|
assign_bus_results
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, bus_data):\n for node in grid._graph.nodes():\n if node not in grid.graph_isolated_nodes() and not isinstance(node,\n LVLoadAreaCentreDing0):\n if isinstance(node, LVStationDing0):\n node.voltage_res = bus_data.loc[node.pypsa_id, 'v_mag_pu']\n elif isinstance(node, (LVStationDing0, LVLoadAreaCentreDing0)):\n if node.lv_load_area.is_aggregated:\n node.voltage_res = bus_data.loc[node.pypsa_id, 'v_mag_pu']\n elif not isinstance(node, CircuitBreakerDing0):\n node.voltage_res = bus_data.loc[node.pypsa_id, 'v_mag_pu']\n else:\n logger.warning(\n 'Object {} has been skipped while importing results!')\n",
"role": "user"
},
{
"content": "assign_bus_results",
"role": "assistant"
}
] |
def x(grid, line_data):
package_path = ding0.__path__[0]
edges = [edge for edge in grid.graph_edges() if (edge['adj_nodes'][0] in
grid._graph.nodes() and not isinstance(edge['adj_nodes'][0],
LVLoadAreaCentreDing0)) and (edge['adj_nodes'][1] in grid._graph.
nodes() and not isinstance(edge['adj_nodes'][1],
LVLoadAreaCentreDing0))]
decimal_places = 6
for edge in edges:
s_res = [round(sqrt(max(abs(line_data.loc['MV_{0}_lin_{1}'.format(
grid.id_db, edge['branch'].id_db), 'p0'][0]), abs(line_data.loc
['MV_{0}_lin_{1}'.format(grid.id_db, edge['branch'].id_db),
'p1'][0])) ** 2 + max(abs(line_data.loc['MV_{0}_lin_{1}'.format
(grid.id_db, edge['branch'].id_db), 'q0'][0]), abs(line_data.
loc['MV_{0}_lin_{1}'.format(grid.id_db, edge['branch'].id_db),
'q1'][0])) ** 2), decimal_places), round(sqrt(max(abs(line_data
.loc['MV_{0}_lin_{1}'.format(grid.id_db, edge['branch'].id_db),
'p0'][1]), abs(line_data.loc['MV_{0}_lin_{1}'.format(grid.id_db,
edge['branch'].id_db), 'p1'][1])) ** 2 + max(abs(line_data.loc[
'MV_{0}_lin_{1}'.format(grid.id_db, edge['branch'].id_db), 'q0'
][1]), abs(line_data.loc['MV_{0}_lin_{1}'.format(grid.id_db,
edge['branch'].id_db), 'q1'][1])) ** 2), decimal_places)]
edge['branch'].s_res = s_res
|
assign_line_results
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(grid, line_data):\n package_path = ding0.__path__[0]\n edges = [edge for edge in grid.graph_edges() if (edge['adj_nodes'][0] in\n grid._graph.nodes() and not isinstance(edge['adj_nodes'][0],\n LVLoadAreaCentreDing0)) and (edge['adj_nodes'][1] in grid._graph.\n nodes() and not isinstance(edge['adj_nodes'][1],\n LVLoadAreaCentreDing0))]\n decimal_places = 6\n for edge in edges:\n s_res = [round(sqrt(max(abs(line_data.loc['MV_{0}_lin_{1}'.format(\n grid.id_db, edge['branch'].id_db), 'p0'][0]), abs(line_data.loc\n ['MV_{0}_lin_{1}'.format(grid.id_db, edge['branch'].id_db),\n 'p1'][0])) ** 2 + max(abs(line_data.loc['MV_{0}_lin_{1}'.format\n (grid.id_db, edge['branch'].id_db), 'q0'][0]), abs(line_data.\n loc['MV_{0}_lin_{1}'.format(grid.id_db, edge['branch'].id_db),\n 'q1'][0])) ** 2), decimal_places), round(sqrt(max(abs(line_data\n .loc['MV_{0}_lin_{1}'.format(grid.id_db, edge['branch'].id_db),\n 'p0'][1]), abs(line_data.loc['MV_{0}_lin_{1}'.format(grid.id_db,\n edge['branch'].id_db), 'p1'][1])) ** 2 + max(abs(line_data.loc[\n 'MV_{0}_lin_{1}'.format(grid.id_db, edge['branch'].id_db), 'q0'\n ][1]), abs(line_data.loc['MV_{0}_lin_{1}'.format(grid.id_db,\n edge['branch'].id_db), 'q1'][1])) ** 2), decimal_places)]\n edge['branch'].s_res = s_res\n",
"role": "user"
},
{
"content": "assign_line_results",
"role": "assistant"
}
] |
def x(time_range_lim):
network = Network()
network.set_snapshots(time_range_lim)
snapshots = network.snapshots
return network, snapshots
|
init_pypsa_network
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(time_range_lim):\n network = Network()\n network.set_snapshots(time_range_lim)\n snapshots = network.snapshots\n return network, snapshots\n",
"role": "user"
},
{
"content": "init_pypsa_network",
"role": "assistant"
}
] |
def x(timeseries, timerange, column=None):
timeseries.index = [str(i) for i in timeseries.index]
if column is None:
pypsa_timeseries = timeseries.apply(Series).transpose().set_index(
timerange)
else:
pypsa_timeseries = timeseries[column].apply(Series).transpose(
).set_index(timerange)
return pypsa_timeseries
|
transform_timeseries4pypsa
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(timeseries, timerange, column=None):\n timeseries.index = [str(i) for i in timeseries.index]\n if column is None:\n pypsa_timeseries = timeseries.apply(Series).transpose().set_index(\n timerange)\n else:\n pypsa_timeseries = timeseries[column].apply(Series).transpose(\n ).set_index(timerange)\n return pypsa_timeseries\n",
"role": "user"
},
{
"content": "transform_timeseries4pypsa",
"role": "assistant"
}
] |
def x(timerange, components):
network, snapshots = init_pypsa_network(timerange)
for component in components.keys():
network.import_components_from_dataframe(components[component],
component)
return network, snapshots
|
create_powerflow_problem
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(timerange, components):\n network, snapshots = init_pypsa_network(timerange)\n for component in components.keys():\n network.import_components_from_dataframe(components[component],\n component)\n return network, snapshots\n",
"role": "user"
},
{
"content": "create_powerflow_problem",
"role": "assistant"
}
] |
def x(districts_list, n_of_processes, n_of_districts, run_id, base_path=None):
if base_path is None:
base_path = BASEPATH
if not os.path.exists(os.path.join(base_path, run_id)):
os.makedirs(os.path.join(base_path, run_id))
start = time.time()
output_info = mp.Queue()
max_dist = len(districts_list)
threat_long = floor(max_dist / n_of_processes)
if threat_long == 0:
threat_long = 1
threats = [districts_list[x:x + threat_long] for x in range(0, len(
districts_list), threat_long)]
processes = []
for th in threats:
mv_districts = th
processes.append(mp.Process(target=process_runs, args=(mv_districts,
n_of_districts, output_info, run_id, base_path)))
for p in processes:
p.start()
output = [output_info.get() for p in processes]
output = list(itertools.chain.from_iterable(output))
for p in processes:
p.join()
print('Elapsed time for', str(max_dist),
'MV grid districts (seconds): {}'.format(time.time() - start))
return output
|
parallel_run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(districts_list, n_of_processes, n_of_districts, run_id, base_path=None):\n if base_path is None:\n base_path = BASEPATH\n if not os.path.exists(os.path.join(base_path, run_id)):\n os.makedirs(os.path.join(base_path, run_id))\n start = time.time()\n output_info = mp.Queue()\n max_dist = len(districts_list)\n threat_long = floor(max_dist / n_of_processes)\n if threat_long == 0:\n threat_long = 1\n threats = [districts_list[x:x + threat_long] for x in range(0, len(\n districts_list), threat_long)]\n processes = []\n for th in threats:\n mv_districts = th\n processes.append(mp.Process(target=process_runs, args=(mv_districts,\n n_of_districts, output_info, run_id, base_path)))\n for p in processes:\n p.start()\n output = [output_info.get() for p in processes]\n output = list(itertools.chain.from_iterable(output))\n for p in processes:\n p.join()\n print('Elapsed time for', str(max_dist),\n 'MV grid districts (seconds): {}'.format(time.time() - start))\n return output\n",
"role": "user"
},
{
"content": "parallel_run",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.