source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, *, start_token=None, page_size=250): start_token = None while True: response = self._call(mc_calls.PlaylistFeed, max_results=page_size, start_token=start_token) items = response.body.get('data', {}).get('items', []) if items: yield items start_token = response.body.get('nextPageToken') if start_token is None: break
playlists_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, start_token=None, page_size=250):\n start_token = None\n while True:\n response = self._call(mc_calls.PlaylistFeed, max_results=page_size,\n start_token=start_token)\n items = response.body.get('data', {}).get('items', [])\n if items:\n yield items\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n", "role": "user" }, { "content": "playlists_iter", "role": "assistant" } ]
def x(self, podcast_series_id, *, max_episodes=50): podcast_info = self._call(mc_calls.PodcastFetchSeries, podcast_series_id, max_episodes=max_episodes).body return podcast_info
podcast
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, podcast_series_id, *, max_episodes=50):\n podcast_info = self._call(mc_calls.PodcastFetchSeries,\n podcast_series_id, max_episodes=max_episodes).body\n return podcast_info\n", "role": "user" }, { "content": "podcast", "role": "assistant" } ]
def x(self, *, device_id=None): if device_id is None: device_id = self.device_id podcast_list = [] for chunk in self.podcasts_iter(device_id=device_id, page_size=49995): podcast_list.extend(chunk) return podcast_list
podcasts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, device_id=None):\n if device_id is None:\n device_id = self.device_id\n podcast_list = []\n for chunk in self.podcasts_iter(device_id=device_id, page_size=49995):\n podcast_list.extend(chunk)\n return podcast_list\n", "role": "user" }, { "content": "podcasts", "role": "assistant" } ]
def x(self, *, device_id=None, page_size=250): if device_id is None: device_id = self.device_id start_token = None prev_items = None while True: response = self._call(mc_calls.PodcastSeries, device_id, max_results=page_size, start_token=start_token) items = response.body.get('data', {}).get('items', []) if items != prev_items: subscribed_podcasts = [item for item in items if item.get( 'userPreferences', {}).get('subscribed')] yield subscribed_podcasts prev_items = items else: break start_token = response.body.get('nextPageToken') if start_token is None: break
podcasts_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, device_id=None, page_size=250):\n if device_id is None:\n device_id = self.device_id\n start_token = None\n prev_items = None\n while True:\n response = self._call(mc_calls.PodcastSeries, device_id,\n max_results=page_size, start_token=start_token)\n items = response.body.get('data', {}).get('items', [])\n if items != prev_items:\n subscribed_podcasts = [item for item in items if item.get(\n 'userPreferences', {}).get('subscribed')]\n yield subscribed_podcasts\n prev_items = items\n else:\n break\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n", "role": "user" }, { "content": "podcasts_iter", "role": "assistant" } ]
def x(self, podcast_episode_id): response = self._call(mc_calls.PodcastFetchEpisode, podcast_episode_id) podcast_episode_info = [podcast_episode for podcast_episode in response .body if not podcast_episode['deleted']] return podcast_episode_info
podcast_episode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, podcast_episode_id):\n response = self._call(mc_calls.PodcastFetchEpisode, podcast_episode_id)\n podcast_episode_info = [podcast_episode for podcast_episode in response\n .body if not podcast_episode['deleted']]\n return podcast_episode_info\n", "role": "user" }, { "content": "podcast_episode", "role": "assistant" } ]
def x(self, *, device_id=None): if device_id is None: device_id = self.device_id podcast_episode_list = [] for chunk in self.podcast_episodes_iter(device_id=device_id, page_size= 49995): podcast_episode_list.extend(chunk) return podcast_episode_list
podcast_episodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, device_id=None):\n if device_id is None:\n device_id = self.device_id\n podcast_episode_list = []\n for chunk in self.podcast_episodes_iter(device_id=device_id, page_size=\n 49995):\n podcast_episode_list.extend(chunk)\n return podcast_episode_list\n", "role": "user" }, { "content": "podcast_episodes", "role": "assistant" } ]
def x(self, *, device_id=None, page_size=250): if device_id is None: device_id = self.device_id start_token = None prev_items = None while True: response = self._call(mc_calls.PodcastEpisode, device_id, max_results=page_size, start_token=start_token) items = response.body.get('data', {}).get('items', []) if items != prev_items: yield items prev_items = items else: break start_token = response.body.get('nextPageToken') if start_token is None: break
podcast_episodes_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, device_id=None, page_size=250):\n if device_id is None:\n device_id = self.device_id\n start_token = None\n prev_items = None\n while True:\n response = self._call(mc_calls.PodcastEpisode, device_id,\n max_results=page_size, start_token=start_token)\n items = response.body.get('data', {}).get('items', [])\n if items != prev_items:\n yield items\n prev_items = items\n else:\n break\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n", "role": "user" }, { "content": "podcast_episodes_iter", "role": "assistant" } ]
def x(self, query, *, max_results=100, **kwargs): results = defaultdict(list) for type_, results_ in self.search_library(query, max_results= max_results, **kwargs).items(): results[type_].extend(results_) for type_, results_ in self.search_google(query, max_results= max_results, **kwargs).items(): results[type_].extend(results_) return dict(results)
search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, query, *, max_results=100, **kwargs):\n results = defaultdict(list)\n for type_, results_ in self.search_library(query, max_results=\n max_results, **kwargs).items():\n results[type_].extend(results_)\n for type_, results_ in self.search_google(query, max_results=\n max_results, **kwargs).items():\n results[type_].extend(results_)\n return dict(results)\n", "role": "user" }, { "content": "search", "role": "assistant" } ]
def x(self, query, *, max_results=100, **kwargs): response = self._call(mc_calls.Query, query, max_results=max_results, **kwargs) clusters = response.body.get('clusterDetail', []) results = defaultdict(list) for cluster in clusters: result_type = QueryResultType(cluster['cluster']['type']).name entries = cluster.get('entries', []) if len(entries) > 0: for entry in entries: item_key = next(key for key in entry if key not in [ 'cluster', 'score', 'type']) results[f'{result_type}s'].append(entry[item_key]) return dict(results)
search_google
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, query, *, max_results=100, **kwargs):\n response = self._call(mc_calls.Query, query, max_results=max_results,\n **kwargs)\n clusters = response.body.get('clusterDetail', [])\n results = defaultdict(list)\n for cluster in clusters:\n result_type = QueryResultType(cluster['cluster']['type']).name\n entries = cluster.get('entries', [])\n if len(entries) > 0:\n for entry in entries:\n item_key = next(key for key in entry if key not in [\n 'cluster', 'score', 'type'])\n results[f'{result_type}s'].append(entry[item_key])\n return dict(results)\n", "role": "user" }, { "content": "search_google", "role": "assistant" } ]
def x(self, query, *, max_results=100, **kwargs): def x(item, fields): return any(query.casefold() in item.get(field, '').casefold() for field in fields) types = [('playlists', ['description', 'name'], self.playlists), ( 'podcasts', ['author', 'description', 'title'], self.podcasts), ( 'songs', ['album', 'albumArtist', 'artist', 'composer', 'genre', 'title'], self.songs), ('stations', ['byline', 'description', 'name'], self.stations)] results = {} for type_, fields, func in types: if not kwargs or type_ in kwargs: results[type_] = [item for item in func() if match_fields(item, fields)][:max_results] return results
search_library
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, query, *, max_results=100, **kwargs):\n\n def x(item, fields):\n return any(query.casefold() in item.get(field, '').casefold() for\n field in fields)\n types = [('playlists', ['description', 'name'], self.playlists), (\n 'podcasts', ['author', 'description', 'title'], self.podcasts), (\n 'songs', ['album', 'albumArtist', 'artist', 'composer', 'genre',\n 'title'], self.songs), ('stations', ['byline', 'description',\n 'name'], self.stations)]\n results = {}\n for type_, fields, func in types:\n if not kwargs or type_ in kwargs:\n results[type_] = [item for item in func() if match_fields(item,\n fields)][:max_results]\n return results\n", "role": "user" }, { "content": "search_library", "role": "assistant" } ]
def x(self, query): response = self._call(mc_calls.QuerySuggestion, query) suggested_queries = response.body.get('suggested_queries', []) return [suggested_query['suggestion_string'] for suggested_query in suggested_queries]
search_suggestion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, query):\n response = self._call(mc_calls.QuerySuggestion, query)\n suggested_queries = response.body.get('suggested_queries', [])\n return [suggested_query['suggestion_string'] for suggested_query in\n suggested_queries]\n", "role": "user" }, { "content": "search_suggestion", "role": "assistant" } ]
def x(self, album, *, num_songs=100, only_library=False, recently_played=None): station_info = {'seed': {'albumId': album['albumId'], 'seedType': StationSeedType.album.value}, 'num_entries': num_songs, 'library_content_only': only_library} if recently_played is not None: station_info['recently_played'] = recently_played response = self._call(mc_calls.RadioStationFeed, station_infos=[ station_info]) station_feed = response.body.get('data', {}).get('stations', []) try: station = station_feed[0] except IndexError: station = {} return station.get('tracks', [])
shuffle_album
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, album, *, num_songs=100, only_library=False, recently_played=None):\n station_info = {'seed': {'albumId': album['albumId'], 'seedType':\n StationSeedType.album.value}, 'num_entries': num_songs,\n 'library_content_only': only_library}\n if recently_played is not None:\n station_info['recently_played'] = recently_played\n response = self._call(mc_calls.RadioStationFeed, station_infos=[\n station_info])\n station_feed = response.body.get('data', {}).get('stations', [])\n try:\n station = station_feed[0]\n except IndexError:\n station = {}\n return station.get('tracks', [])\n", "role": "user" }, { "content": "shuffle_album", "role": "assistant" } ]
def x(self, artist, *, num_songs=100, only_library=False, recently_played= None, only_artist=False): station_info = {'num_entries': num_songs, 'library_content_only': only_library} if only_artist: station_info['seed'] = {'artistId': artist['artistId'], 'seedType': StationSeedType.artist_only.value} else: station_info['seed'] = {'artistId': artist['artistId'], 'seedType': StationSeedType.artist_related.value} if recently_played is not None: station_info['recently_played'] = recently_played response = self._call(mc_calls.RadioStationFeed, station_infos=[ station_info]) station_feed = response.body.get('data', {}).get('stations', []) try: station = station_feed[0] except IndexError: station = {} return station.get('tracks', [])
shuffle_artist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, artist, *, num_songs=100, only_library=False, recently_played=\n None, only_artist=False):\n station_info = {'num_entries': num_songs, 'library_content_only':\n only_library}\n if only_artist:\n station_info['seed'] = {'artistId': artist['artistId'], 'seedType':\n StationSeedType.artist_only.value}\n else:\n station_info['seed'] = {'artistId': artist['artistId'], 'seedType':\n StationSeedType.artist_related.value}\n if recently_played is not None:\n station_info['recently_played'] = recently_played\n response = self._call(mc_calls.RadioStationFeed, station_infos=[\n station_info])\n station_feed = response.body.get('data', {}).get('stations', [])\n try:\n station = station_feed[0]\n except IndexError:\n station = {}\n return station.get('tracks', [])\n", "role": "user" }, { "content": "shuffle_artist", "role": "assistant" } ]
def x(self, song, *, num_songs=100, only_library=False, recently_played=None): station_info = {'num_entries': num_songs, 'library_content_only': only_library} if 'storeId' in song: station_info['seed'] = {'trackId': song['storeId'], 'seedType': StationSeedType.store_track.value} else: station_info['seed'] = {'trackLockerId': song['id'], 'seedType': StationSeedType.library_track.value} if recently_played is not None: station_info['recently_played'] = recently_played response = self._call(mc_calls.RadioStationFeed, station_infos=[ station_info]) station_feed = response.body.get('data', {}).get('stations', []) try: station = station_feed[0] except IndexError: station = {} return station.get('tracks', [])
shuffle_song
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, song, *, num_songs=100, only_library=False, recently_played=None):\n station_info = {'num_entries': num_songs, 'library_content_only':\n only_library}\n if 'storeId' in song:\n station_info['seed'] = {'trackId': song['storeId'], 'seedType':\n StationSeedType.store_track.value}\n else:\n station_info['seed'] = {'trackLockerId': song['id'], 'seedType':\n StationSeedType.library_track.value}\n if recently_played is not None:\n station_info['recently_played'] = recently_played\n response = self._call(mc_calls.RadioStationFeed, station_infos=[\n station_info])\n station_feed = response.body.get('data', {}).get('stations', [])\n try:\n station = station_feed[0]\n except IndexError:\n station = {}\n return station.get('tracks', [])\n", "role": "user" }, { "content": "shuffle_song", "role": "assistant" } ]
def x(self, *, tz_offset=None): response = self._call(mc_calls.ListenNowSituations, tz_offset) situation_list = response.body.get('situations', []) return situation_list
situations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, tz_offset=None):\n response = self._call(mc_calls.ListenNowSituations, tz_offset)\n situation_list = response.body.get('situations', [])\n return situation_list\n", "role": "user" }, { "content": "situations", "role": "assistant" } ]
def x(self, song_id): if song_id.startswith('T'): song_info = self._call(mc_calls.FetchTrack, song_id).body else: song_info = next((song for song in self.songs() if song['id'] == song_id), None) return song_info
song
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, song_id):\n if song_id.startswith('T'):\n song_info = self._call(mc_calls.FetchTrack, song_id).body\n else:\n song_info = next((song for song in self.songs() if song['id'] ==\n song_id), None)\n return song_info\n", "role": "user" }, { "content": "song", "role": "assistant" } ]
def x(self, songs): mutations = [mc_calls.TrackBatch.add(song) for song in songs] response = self._call(mc_calls.TrackBatch, mutations) success_ids = [res['id'] for res in response.body['mutate_response'] if res['response_code'] == 'OK'] return success_ids
songs_add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, songs):\n mutations = [mc_calls.TrackBatch.add(song) for song in songs]\n response = self._call(mc_calls.TrackBatch, mutations)\n success_ids = [res['id'] for res in response.body['mutate_response'] if\n res['response_code'] == 'OK']\n return success_ids\n", "role": "user" }, { "content": "songs_add", "role": "assistant" } ]
def x(self, songs): mutations = [mc_calls.TrackBatch.delete(song['id']) for song in songs] response = self._call(mc_calls.TrackBatch, mutations) success_ids = [res['id'] for res in response.body['mutate_response'] if res['response_code'] == 'OK'] return success_ids
songs_delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, songs):\n mutations = [mc_calls.TrackBatch.delete(song['id']) for song in songs]\n response = self._call(mc_calls.TrackBatch, mutations)\n success_ids = [res['id'] for res in response.body['mutate_response'] if\n res['response_code'] == 'OK']\n return success_ids\n", "role": "user" }, { "content": "songs_delete", "role": "assistant" } ]
def x(self, song): if 'storeId' in song: song_id = song['storeId'] elif 'trackId' in song: song_id = song['trackId'] else: song_id = song['id'] song_duration = song['durationMillis'] event = mc_calls.ActivityRecordRealtime.play(song_id, song_duration) response = self._call(mc_calls.ActivityRecordRealtime, event) return True if response.body['eventResults'][0]['code'] == 'OK' else False
song_play
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, song):\n if 'storeId' in song:\n song_id = song['storeId']\n elif 'trackId' in song:\n song_id = song['trackId']\n else:\n song_id = song['id']\n song_duration = song['durationMillis']\n event = mc_calls.ActivityRecordRealtime.play(song_id, song_duration)\n response = self._call(mc_calls.ActivityRecordRealtime, event)\n return True if response.body['eventResults'][0]['code'] == 'OK' else False\n", "role": "user" }, { "content": "song_play", "role": "assistant" } ]
def x(self, song, rating): if 'storeId' in song: song_id = song['storeId'] elif 'trackId' in song: song_id = song['trackId'] else: song_id = song['id'] event = mc_calls.ActivityRecordRealtime.rate(song_id, rating) response = self._call(mc_calls.ActivityRecordRealtime, event) return True if response.body['eventResults'][0]['code'] == 'OK' else False
song_rate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, song, rating):\n if 'storeId' in song:\n song_id = song['storeId']\n elif 'trackId' in song:\n song_id = song['trackId']\n else:\n song_id = song['id']\n event = mc_calls.ActivityRecordRealtime.rate(song_id, rating)\n response = self._call(mc_calls.ActivityRecordRealtime, event)\n return True if response.body['eventResults'][0]['code'] == 'OK' else False\n", "role": "user" }, { "content": "song_rate", "role": "assistant" } ]
def x(self): song_list = [] for chunk in self.songs_iter(page_size=49995): song_list.extend(chunk) return song_list
songs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n song_list = []\n for chunk in self.songs_iter(page_size=49995):\n song_list.extend(chunk)\n return song_list\n", "role": "user" }, { "content": "songs", "role": "assistant" } ]
def x(self, *, page_size=250): start_token = None while True: response = self._call(mc_calls.TrackFeed, max_results=page_size, start_token=start_token) items = response.body.get('data', {}).get('items', []) if items: yield items start_token = response.body.get('nextPageToken') if start_token is None: break
songs_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, page_size=250):\n start_token = None\n while True:\n response = self._call(mc_calls.TrackFeed, max_results=page_size,\n start_token=start_token)\n items = response.body.get('data', {}).get('items', [])\n if items:\n yield items\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n", "role": "user" }, { "content": "songs_iter", "role": "assistant" } ]
def x(self, station_id, *, num_songs=25, recently_played=None): station_info = {'station_id': station_id, 'num_entries': num_songs, 'library_content_only': False} if recently_played is not None: station_info['recently_played'] = recently_played response = self._call(mc_calls.RadioStationFeed, station_infos=[ station_info]) station_feed = response.body.get('data', {}).get('stations', []) try: station = station_feed[0] except IndexError: station = {} return station
station
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, station_id, *, num_songs=25, recently_played=None):\n station_info = {'station_id': station_id, 'num_entries': num_songs,\n 'library_content_only': False}\n if recently_played is not None:\n station_info['recently_played'] = recently_played\n response = self._call(mc_calls.RadioStationFeed, station_infos=[\n station_info])\n station_feed = response.body.get('data', {}).get('stations', [])\n try:\n station = station_feed[0]\n except IndexError:\n station = {}\n return station\n", "role": "user" }, { "content": "station", "role": "assistant" } ]
def x(self, *, num_songs=25, num_stations=4): response = self._call(mc_calls.RadioStationFeed, num_entries=num_songs, num_stations=num_stations) station_feed = response.body.get('data', {}).get('stations', []) return station_feed
station_feed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, num_songs=25, num_stations=4):\n response = self._call(mc_calls.RadioStationFeed, num_entries=num_songs,\n num_stations=num_stations)\n station_feed = response.body.get('data', {}).get('stations', [])\n return station_feed\n", "role": "user" }, { "content": "station_feed", "role": "assistant" } ]
def x(self, station, *, num_songs=25, recently_played=None): station_id = station['id'] station = self.station(station_id, num_songs=num_songs, recently_played =recently_played) return station.get('tracks', [])
station_songs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, station, *, num_songs=25, recently_played=None):\n station_id = station['id']\n station = self.station(station_id, num_songs=num_songs, recently_played\n =recently_played)\n return station.get('tracks', [])\n", "role": "user" }, { "content": "station_songs", "role": "assistant" } ]
def x(self, *, generated=True, library=True): station_list = [] for chunk in self.stations_iter(page_size=49995): for station in chunk: if generated and not station.get('inLibrary' ) or library and station.get('inLibrary'): station_list.append(station) return station_list
stations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, generated=True, library=True):\n station_list = []\n for chunk in self.stations_iter(page_size=49995):\n for station in chunk:\n if generated and not station.get('inLibrary'\n ) or library and station.get('inLibrary'):\n station_list.append(station)\n return station_list\n", "role": "user" }, { "content": "stations", "role": "assistant" } ]
def x(self, *, page_size=250): start_token = None while True: response = self._call(mc_calls.RadioStation, max_results=page_size, start_token=start_token) yield response.body.get('data', {}).get('items', []) start_token = response.body.get('nextPageToken') if start_token is None: break
stations_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, page_size=250):\n start_token = None\n while True:\n response = self._call(mc_calls.RadioStation, max_results=page_size,\n start_token=start_token)\n yield response.body.get('data', {}).get('items', [])\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n", "role": "user" }, { "content": "stations_iter", "role": "assistant" } ]
def x(self, item, *, device_id=None, quality='hi', session_token=None): if device_id is None: device_id = self.device_id stream_url = self.stream_url(item, device_id=device_id, quality=quality, session_token=session_token) response = self.session.get(stream_url) audio = response.content return audio
stream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, item, *, device_id=None, quality='hi', session_token=None):\n if device_id is None:\n device_id = self.device_id\n stream_url = self.stream_url(item, device_id=device_id, quality=quality,\n session_token=session_token)\n response = self.session.get(stream_url)\n audio = response.content\n return audio\n", "role": "user" }, { "content": "stream", "role": "assistant" } ]
def x(self, item, *, device_id=None, quality='hi', session_token=None): if device_id is None: device_id = self.device_id if 'episodeId' in item: response = self._call(mc_calls.PodcastEpisodeStreamURL, item[ 'episodeId'], quality=quality, device_id=device_id) elif 'wentryid' in item: response = self._call(mc_calls.RadioStationTrackStreamURL, item[ 'storeId'], item['wentryid'], session_token, quality=quality, device_id=device_id) elif 'trackId' in item: response = self._call(mc_calls.TrackStreamURL, item['trackId'], quality=quality, device_id=device_id) elif 'storeId' in item and self.is_subscribed: response = self._call(mc_calls.TrackStreamURL, item['storeId'], quality=quality, device_id=device_id) elif 'id' in item: response = self._call(mc_calls.TrackStreamURL, item['id'], quality= quality, device_id=device_id) else: if 'storeId' in item and not self.is_subscribed: msg = "Can't stream a store song without a subscription." else: msg = 'Item does not contain an ID field.' raise ValueError(msg) try: stream_url = response.headers['Location'] except KeyError: stream_url = response.body['url'] return stream_url
stream_url
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, item, *, device_id=None, quality='hi', session_token=None):\n if device_id is None:\n device_id = self.device_id\n if 'episodeId' in item:\n response = self._call(mc_calls.PodcastEpisodeStreamURL, item[\n 'episodeId'], quality=quality, device_id=device_id)\n elif 'wentryid' in item:\n response = self._call(mc_calls.RadioStationTrackStreamURL, item[\n 'storeId'], item['wentryid'], session_token, quality=quality,\n device_id=device_id)\n elif 'trackId' in item:\n response = self._call(mc_calls.TrackStreamURL, item['trackId'],\n quality=quality, device_id=device_id)\n elif 'storeId' in item and self.is_subscribed:\n response = self._call(mc_calls.TrackStreamURL, item['storeId'],\n quality=quality, device_id=device_id)\n elif 'id' in item:\n response = self._call(mc_calls.TrackStreamURL, item['id'], quality=\n quality, device_id=device_id)\n else:\n if 'storeId' in item and not self.is_subscribed:\n msg = \"Can't stream a store song without a subscription.\"\n else:\n msg = 'Item does not contain an ID field.'\n raise ValueError(msg)\n try:\n stream_url = response.headers['Location']\n except KeyError:\n stream_url = response.body['url']\n return stream_url\n", "role": "user" }, { "content": "stream_url", "role": "assistant" } ]
def x(self, *, library=True, store=True): thumbs_up_songs = [] if library is True: thumbs_up_songs.extend(song for song in self.songs() if song.get( 'rating', '0') == '5') if store is True: response = self._call(mc_calls.EphemeralTop) thumbs_up_songs.extend(response.body.get('data', {}).get('items', [])) return thumbs_up_songs
thumbs_up_songs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, library=True, store=True):\n thumbs_up_songs = []\n if library is True:\n thumbs_up_songs.extend(song for song in self.songs() if song.get(\n 'rating', '0') == '5')\n if store is True:\n response = self._call(mc_calls.EphemeralTop)\n thumbs_up_songs.extend(response.body.get('data', {}).get('items', []))\n return thumbs_up_songs\n", "role": "user" }, { "content": "thumbs_up_songs", "role": "assistant" } ]
def x(self): response = self._call(mc_calls.BrowseTopChart) top_charts = response.body return top_charts
top_charts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n response = self._call(mc_calls.BrowseTopChart)\n top_charts = response.body\n return top_charts\n", "role": "user" }, { "content": "top_charts", "role": "assistant" } ]
def x(self, genre_id): response = self._call(mc_calls.BrowseTopChartForGenre, genre_id) top_chart_for_genre = response.body return top_chart_for_genre
top_charts_for_genre
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, genre_id):\n response = self._call(mc_calls.BrowseTopChartForGenre, genre_id)\n top_chart_for_genre = response.body\n return top_chart_for_genre\n", "role": "user" }, { "content": "top_charts_for_genre", "role": "assistant" } ]
def x(self): response = self._call(mc_calls.BrowseTopChartGenres) top_chart_genres = response.body.get('genres', []) return top_chart_genres
top_charts_genres
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n response = self._call(mc_calls.BrowseTopChartGenres)\n top_chart_genres = response.body.get('genres', [])\n return top_chart_genres\n", "role": "user" }, { "content": "top_charts_genres", "role": "assistant" } ]
def x(stream=sys.stdin.buffer): payload = decode.decode(stream) sys.stdout.write(payload.decode('utf8'))
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stream=sys.stdin.buffer):\n payload = decode.decode(stream)\n sys.stdout.write(payload.decode('utf8'))\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(f, blocksize): f_bytes = f.read() blocks = [int.from_bytes(f_bytes[i:i + blocksize].ljust(blocksize, b'0' ), sys.byteorder) for i in range(0, len(f_bytes), blocksize)] return len(f_bytes), blocks
split_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, blocksize):\n f_bytes = f.read()\n blocks = [int.from_bytes(f_bytes[i:i + blocksize].ljust(blocksize, b'0'\n ), sys.byteorder) for i in range(0, len(f_bytes), blocksize)]\n return len(f_bytes), blocks\n", "role": "user" }, { "content": "split_file", "role": "assistant" } ]
def x(f, blocksize, seed=None, c=sampler.DEFAULT_C, delta=sampler.DEFAULT_DELTA ): if seed is None: seed = randint(0, 1 << 31 - 1) filesize, blocks = _split_file(f, blocksize) K = len(blocks) prng = sampler.PRNG(params=(K, delta, c)) prng.set_seed(seed) while True: blockseed, d, ix_samples = prng.get_src_blocks() block_data = 0 for ix in ix_samples: block_data ^= blocks[ix] block = filesize, blocksize, blockseed, int.to_bytes(block_data, blocksize, sys.byteorder) yield pack('!III%ss' % blocksize, *block)
encoder
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(f, blocksize, seed=None, c=sampler.DEFAULT_C, delta=sampler.DEFAULT_DELTA\n ):\n if seed is None:\n seed = randint(0, 1 << 31 - 1)\n filesize, blocks = _split_file(f, blocksize)\n K = len(blocks)\n prng = sampler.PRNG(params=(K, delta, c))\n prng.set_seed(seed)\n while True:\n blockseed, d, ix_samples = prng.get_src_blocks()\n block_data = 0\n for ix in ix_samples:\n block_data ^= blocks[ix]\n block = filesize, blocksize, blockseed, int.to_bytes(block_data,\n blocksize, sys.byteorder)\n yield pack('!III%ss' % blocksize, *block)\n", "role": "user" }, { "content": "encoder", "role": "assistant" } ]
def x(blocksize, stream): blockdata = stream.read(blocksize) return int.from_bytes(blockdata, 'big')
read_block
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(blocksize, stream):\n blockdata = stream.read(blocksize)\n return int.from_bytes(blockdata, 'big')\n", "role": "user" }, { "content": "read_block", "role": "assistant" } ]
def x(stream): while True: header = _read_header(stream) block = _read_block(header[1], stream) yield header, block
read_blocks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(stream):\n while True:\n header = _read_header(stream)\n block = _read_block(header[1], stream)\n yield header, block\n", "role": "user" }, { "content": "read_blocks", "role": "assistant" } ]
def x(self, nodes, data): if len(nodes) == 1: to_eliminate = list(self.eliminate(next(iter(nodes)), data)) while len(to_eliminate): other, check = to_eliminate.pop() to_eliminate.extend(self.eliminate(other, check)) else: for node in list(nodes): if node in self.eliminated: nodes.remove(node) data ^= self.eliminated[node] if len(nodes) == 1: return self.add_block(nodes, data) else: check = CheckNode(nodes, data) for node in nodes: self.checks[node].append(check) return len(self.eliminated) >= self.num_blocks
add_block
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nodes, data):\n if len(nodes) == 1:\n to_eliminate = list(self.eliminate(next(iter(nodes)), data))\n while len(to_eliminate):\n other, check = to_eliminate.pop()\n to_eliminate.extend(self.eliminate(other, check))\n else:\n for node in list(nodes):\n if node in self.eliminated:\n nodes.remove(node)\n data ^= self.eliminated[node]\n if len(nodes) == 1:\n return self.add_block(nodes, data)\n else:\n check = CheckNode(nodes, data)\n for node in nodes:\n self.checks[node].append(check)\n return len(self.eliminated) >= self.num_blocks\n", "role": "user" }, { "content": "add_block", "role": "assistant" } ]
def x(self, node, data): self.eliminated[node] = data others = self.checks[node] del self.checks[node] for check in others: check.check ^= data check.src_nodes.remove(node) if len(check.src_nodes) == 1: yield next(iter(check.src_nodes)), check.check
eliminate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node, data):\n self.eliminated[node] = data\n others = self.checks[node]\n del self.checks[node]\n for check in others:\n check.check ^= data\n check.src_nodes.remove(node)\n if len(check.src_nodes) == 1:\n yield next(iter(check.src_nodes)), check.check\n", "role": "user" }, { "content": "eliminate", "role": "assistant" } ]
def x(username=None, device_id=None, *, token=None, locale='en_US'): return MobileClient(username, device_id, token=token, locale=locale)
mobileclient
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(username=None, device_id=None, *, token=None, locale='en_US'):\n return MobileClient(username, device_id, token=token, locale=locale)\n", "role": "user" }, { "content": "mobileclient", "role": "assistant" } ]
def x(tree, add_node_labels=True, use_uids=True): tree.max_distance_from_root() idx = [] data = {'type': [], 'id': [], 'parent': [], 'length': [], 'label': [], 'distance': []} if use_uids: data['uid'] = [] if add_node_labels: for i, node in enumerate(tree.internal_nodes()): node.label = str(i) for node in tree.nodes(): if node.is_leaf(): type_ = 'leaf' label = str(node.taxon.label).replace(' ', '_') elif node.is_internal(): type_ = 'node' label = str(node.label) id_ = label parent_node = node.parent_node length = node.edge_length distance = node.distance_from_root() if parent_node is None and length is None: parent_label = None parent_node = None length = 0 distance = 0 type_ = 'root' elif parent_node.is_internal(): parent_label = str(parent_node.label) else: raise Exception('Subtree is not attached to tree?') data['type'].append(type_) data['id'].append(id_) data['parent'].append(parent_label) data['length'].append(length) data['label'].append(label) data['distance'].append(distance) if use_uids: data['uid'].append(get_random_id(10)) df = pandas.DataFrame(data) return df
dendropy_to_dataframe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tree, add_node_labels=True, use_uids=True):\n tree.max_distance_from_root()\n idx = []\n data = {'type': [], 'id': [], 'parent': [], 'length': [], 'label': [],\n 'distance': []}\n if use_uids:\n data['uid'] = []\n if add_node_labels:\n for i, node in enumerate(tree.internal_nodes()):\n node.label = str(i)\n for node in tree.nodes():\n if node.is_leaf():\n type_ = 'leaf'\n label = str(node.taxon.label).replace(' ', '_')\n elif node.is_internal():\n type_ = 'node'\n label = str(node.label)\n id_ = label\n parent_node = node.parent_node\n length = node.edge_length\n distance = node.distance_from_root()\n if parent_node is None and length is None:\n parent_label = None\n parent_node = None\n length = 0\n distance = 0\n type_ = 'root'\n elif parent_node.is_internal():\n parent_label = str(parent_node.label)\n else:\n raise Exception('Subtree is not attached to tree?')\n data['type'].append(type_)\n data['id'].append(id_)\n data['parent'].append(parent_label)\n data['length'].append(length)\n data['label'].append(label)\n data['distance'].append(distance)\n if use_uids:\n data['uid'].append(get_random_id(10))\n df = pandas.DataFrame(data)\n return df\n", "role": "user" }, { "content": "dendropy_to_dataframe", "role": "assistant" } ]
def x(filename=None, data=None, schema=None, add_node_labels=True, use_uids =True): if filename is not None: tree = dendropy.Tree.get(path=filename, schema=schema, preserve_underscores=True) elif data is not None: tree = dendropy.Tree.get(data=data, schema=schema, preserve_underscores=True) else: raise Exception('No tree given?') df = _dendropy_to_dataframe(tree, add_node_labels=add_node_labels, use_uids=use_uids) return df
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename=None, data=None, schema=None, add_node_labels=True, use_uids\n =True):\n if filename is not None:\n tree = dendropy.Tree.get(path=filename, schema=schema,\n preserve_underscores=True)\n elif data is not None:\n tree = dendropy.Tree.get(data=data, schema=schema,\n preserve_underscores=True)\n else:\n raise Exception('No tree given?')\n df = _dendropy_to_dataframe(tree, add_node_labels=add_node_labels,\n use_uids=use_uids)\n return df\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(schema): def x(filename=None, data=None, add_node_labels=True, use_uids=True, ** kwargs): return _read(filename=filename, data=data, schema=schema, add_node_labels=add_node_labels, use_uids=use_uids, **kwargs) func.__doc__ = _read_doc_template(schema) return func
read_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(schema):\n\n def x(filename=None, data=None, add_node_labels=True, use_uids=True, **\n kwargs):\n return _read(filename=filename, data=data, schema=schema,\n add_node_labels=add_node_labels, use_uids=use_uids, **kwargs)\n func.__doc__ = _read_doc_template(schema)\n return func\n", "role": "user" }, { "content": "read_function", "role": "assistant" } ]
def x(df, id_col='uid', sequence_col='sequence', extra_data=None, alphabet=None ): seq_records = [] for i, row in df.iterrows(): try: seq = Seq(row[sequence_col], alphabet=alphabet) id = row[id_col] description = '' if extra_data is not None: description = ' '.join([row[key] for key in extra_data]) record = SeqRecord(seq=seq, id=id, description=description) seq_records.append(record) except TypeError: pass return seq_records
pandas_df_to_biopython_seqrecord
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, id_col='uid', sequence_col='sequence', extra_data=None, alphabet=None\n ):\n seq_records = []\n for i, row in df.iterrows():\n try:\n seq = Seq(row[sequence_col], alphabet=alphabet)\n id = row[id_col]\n description = ''\n if extra_data is not None:\n description = ' '.join([row[key] for key in extra_data])\n record = SeqRecord(seq=seq, id=id, description=description)\n seq_records.append(record)\n except TypeError:\n pass\n return seq_records\n", "role": "user" }, { "content": "pandas_df_to_biopython_seqrecord", "role": "assistant" } ]
def x(series, id_col='uid', sequence_col='sequence', extra_data=None, alphabet=None): seq = Seq(series[sequence_col], alphabet=alphabet) id = series[id_col] description = '' if extra_data is not None: description = ' '.join([series[key] for key in extra_data]) record = SeqRecord(seq=seq, id=id, description=description) seq_records = [record] return seq_records
pandas_series_to_biopython_seqrecord
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(series, id_col='uid', sequence_col='sequence', extra_data=None,\n alphabet=None):\n seq = Seq(series[sequence_col], alphabet=alphabet)\n id = series[id_col]\n description = ''\n if extra_data is not None:\n description = ' '.join([series[key] for key in extra_data])\n record = SeqRecord(seq=seq, id=id, description=description)\n seq_records = [record]\n return seq_records\n", "role": "user" }, { "content": "pandas_series_to_biopython_seqrecord", "role": "assistant" } ]
def x(data, filename=None, schema='fasta', id_col='uid', sequence_col= 'sequence', extra_data=None, alphabet=None, **kwargs): if alphabet is None: alphabet = Bio.Alphabet.Alphabet() elif alphabet in ['dna', 'rna', 'protein', 'nucleotide']: alphabet = getattr(Bio.Alphabet, 'generic_{}'.format(alphabet)) else: raise Exception( "The alphabet is not recognized. Must be 'dna', 'rna', 'nucleotide', or 'protein'." ) if type(data) is pd.DataFrame: seq_records = pandas_df_to_biopython_seqrecord(data, id_col=id_col, sequence_col=sequence_col, extra_data=extra_data, alphabet=alphabet ) elif type(data) is pd.Series: seq_records = pandas_series_to_biopython_seqrecord(data, id_col= id_col, sequence_col=sequence_col, extra_data=extra_data, alphabet=alphabet) if filename is not None: SeqIO.write(seq_records, filename, format=schema, **kwargs) else: return ''.join([s.format(schema) for s in seq_records])
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, filename=None, schema='fasta', id_col='uid', sequence_col=\n 'sequence', extra_data=None, alphabet=None, **kwargs):\n if alphabet is None:\n alphabet = Bio.Alphabet.Alphabet()\n elif alphabet in ['dna', 'rna', 'protein', 'nucleotide']:\n alphabet = getattr(Bio.Alphabet, 'generic_{}'.format(alphabet))\n else:\n raise Exception(\n \"The alphabet is not recognized. Must be 'dna', 'rna', 'nucleotide', or 'protein'.\"\n )\n if type(data) is pd.DataFrame:\n seq_records = pandas_df_to_biopython_seqrecord(data, id_col=id_col,\n sequence_col=sequence_col, extra_data=extra_data, alphabet=alphabet\n )\n elif type(data) is pd.Series:\n seq_records = pandas_series_to_biopython_seqrecord(data, id_col=\n id_col, sequence_col=sequence_col, extra_data=extra_data,\n alphabet=alphabet)\n if filename is not None:\n SeqIO.write(seq_records, filename, format=schema, **kwargs)\n else:\n return ''.join([s.format(schema) for s in seq_records])\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(schema): def x(self, filename=None, schema=schema, id_col='uid', sequence_col= 'sequence', extra_data=None, alphabet=None, **kwargs): return _write(self._data, filename=filename, schema=schema, id_col= id_col, sequence_col=sequence_col, extra_data=extra_data, alphabet=alphabet, **kwargs) method.__doc__ = _write_doc_template(schema) return method
write_method
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(schema):\n\n def x(self, filename=None, schema=schema, id_col='uid', sequence_col=\n 'sequence', extra_data=None, alphabet=None, **kwargs):\n return _write(self._data, filename=filename, schema=schema, id_col=\n id_col, sequence_col=sequence_col, extra_data=extra_data,\n alphabet=alphabet, **kwargs)\n method.__doc__ = _write_doc_template(schema)\n return method\n", "role": "user" }, { "content": "write_method", "role": "assistant" } ]
def x(schema): def x(data, filename=None, schema=schema, id_col='uid', sequence_col= 'sequence', extra_data=None, alphabet=None, **kwargs): return _write(data, filename=filename, schema=schema, id_col=id_col, sequence_col=sequence_col, extra_data=extra_data, alphabet= alphabet, **kwargs) func.__doc__ = _write_doc_template(schema) return func
write_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(schema):\n\n def x(data, filename=None, schema=schema, id_col='uid', sequence_col=\n 'sequence', extra_data=None, alphabet=None, **kwargs):\n return _write(data, filename=filename, schema=schema, id_col=id_col,\n sequence_col=sequence_col, extra_data=extra_data, alphabet=\n alphabet, **kwargs)\n func.__doc__ = _write_doc_template(schema)\n return func\n", "role": "user" }, { "content": "write_function", "role": "assistant" } ]
def x(filename, schema, seq_label='sequence', alphabet=None, use_uids=True, **kwargs): if alphabet is None: alphabet = Bio.Alphabet.Alphabet() elif alphabet in ['dna', 'rna', 'protein', 'nucleotide']: alphabet = getattr(Bio.Alphabet, 'generic_{}'.format(alphabet)) else: raise Exception( "The alphabet is not recognized. Must be 'dna', 'rna', 'nucleotide', or 'protein'." ) kwargs.update(alphabet=alphabet) data = {'id': [], seq_label: [], 'description': [], 'label': []} if use_uids: data['uid'] = [] for i, s in enumerate(SeqIO.parse(filename, format=schema, **kwargs)): data['id'].append(s.id) data[seq_label].append(str(s.seq)) data['description'].append(s.description) data['label'].append(s.name) if use_uids: data['uid'].append(get_random_id(10)) return pd.DataFrame(data)
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, schema, seq_label='sequence', alphabet=None, use_uids=True,\n **kwargs):\n if alphabet is None:\n alphabet = Bio.Alphabet.Alphabet()\n elif alphabet in ['dna', 'rna', 'protein', 'nucleotide']:\n alphabet = getattr(Bio.Alphabet, 'generic_{}'.format(alphabet))\n else:\n raise Exception(\n \"The alphabet is not recognized. Must be 'dna', 'rna', 'nucleotide', or 'protein'.\"\n )\n kwargs.update(alphabet=alphabet)\n data = {'id': [], seq_label: [], 'description': [], 'label': []}\n if use_uids:\n data['uid'] = []\n for i, s in enumerate(SeqIO.parse(filename, format=schema, **kwargs)):\n data['id'].append(s.id)\n data[seq_label].append(str(s.seq))\n data['description'].append(s.description)\n data['label'].append(s.name)\n if use_uids:\n data['uid'].append(get_random_id(10))\n return pd.DataFrame(data)\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(schema): def x(self, filename, seq_label='sequence', alphabet=None, combine_on= 'uid', use_uids=True, **kwargs): df0 = self._data df1 = _read(filename=filename, schema=schema, seq_label=seq_label, alphabet=alphabet, use_uids=use_uids, **kwargs) return df0.phylo.combine(df1, on=combine_on) func.__doc__ = _read_doc_template(schema) return func
read_method
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(schema):\n\n def x(self, filename, seq_label='sequence', alphabet=None, combine_on=\n 'uid', use_uids=True, **kwargs):\n df0 = self._data\n df1 = _read(filename=filename, schema=schema, seq_label=seq_label,\n alphabet=alphabet, use_uids=use_uids, **kwargs)\n return df0.phylo.combine(df1, on=combine_on)\n func.__doc__ = _read_doc_template(schema)\n return func\n", "role": "user" }, { "content": "read_method", "role": "assistant" } ]
def x(schema): def x(filename, seq_label='sequence', alphabet=None, use_uids=True, ** kwargs): return _read(filename=filename, schema=schema, seq_label=seq_label, alphabet=alphabet, use_uids=use_uids, **kwargs) func.__doc__ = _read_doc_template(schema) return func
read_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(schema):\n\n def x(filename, seq_label='sequence', alphabet=None, use_uids=True, **\n kwargs):\n return _read(filename=filename, schema=schema, seq_label=seq_label,\n alphabet=alphabet, use_uids=use_uids, **kwargs)\n func.__doc__ = _read_doc_template(schema)\n return func\n", "role": "user" }, { "content": "read_function", "role": "assistant" } ]
def x(filename, **kwargs): with open(filename, 'r') as f: blast_record = NCBIXML.read(f) data = {'accession': [], 'hit_def': [], 'hit_id': [], 'title': [], 'length': [], 'e_value': [], 'sequence': []} for i, s in enumerate(blast_record.alignments): data['accession'] = s.accession data['hit_def'] = s.hit_def data['hit_id'] = s.hit_id data['title'] = s.title data['length'] = s.length data['e_value'] = s.hsps[0].expect data['sequence'] = s.hsps[0].sbjct return pd.DataFrame(data)
read_blast_xml
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, **kwargs):\n with open(filename, 'r') as f:\n blast_record = NCBIXML.read(f)\n data = {'accession': [], 'hit_def': [], 'hit_id': [], 'title': [],\n 'length': [], 'e_value': [], 'sequence': []}\n for i, s in enumerate(blast_record.alignments):\n data['accession'] = s.accession\n data['hit_def'] = s.hit_def\n data['hit_id'] = s.hit_id\n data['title'] = s.title\n data['length'] = s.length\n data['e_value'] = s.hsps[0].expect\n data['sequence'] = s.hsps[0].sbjct\n return pd.DataFrame(data)\n", "role": "user" }, { "content": "read_blast_xml", "role": "assistant" } ]
def x(df, taxon_col='uid', taxon_annotations=[], node_col='uid', node_annotations=[], branch_lengths=True): if isinstance(taxon_col, str) is False: raise Exception('taxon_col must be a string.') if isinstance(node_col, str) is False: raise Exception('taxon_col must be a string.') taxon_namespace = dendropy.TaxonNamespace() nodes = {} for idx in df.index: data = df.loc[idx] taxon = None if data['type'] == 'leaf': taxon = dendropy.Taxon(label=data[taxon_col]) for ann in taxon_annotations: taxon.annotations.add_new(ann, data[ann]) taxon_namespace.add_taxon(taxon) label = data[node_col] edge_length = None if branch_lengths is True: edge_length = data['length'] n = dendropy.Node(taxon=taxon, label=label, edge_length=edge_length) for ann in node_annotations: n.annotations.add_new(ann, data[ann]) nodes[idx] = n root = None for idx, node in nodes.items(): data = df.loc[idx] children_idx = df[df['parent'] == data['id']].index children_nodes = [nodes[i] for i in children_idx] nodes[idx].set_child_nodes(children_nodes) if data['parent'] is None: root = nodes[idx] tree = dendropy.Tree(seed_node=root, taxon_namespace=taxon_namespace) return tree
pandas_df_to_dendropy_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, taxon_col='uid', taxon_annotations=[], node_col='uid',\n node_annotations=[], branch_lengths=True):\n if isinstance(taxon_col, str) is False:\n raise Exception('taxon_col must be a string.')\n if isinstance(node_col, str) is False:\n raise Exception('taxon_col must be a string.')\n taxon_namespace = dendropy.TaxonNamespace()\n nodes = {}\n for idx in df.index:\n data = df.loc[idx]\n taxon = None\n if data['type'] == 'leaf':\n taxon = dendropy.Taxon(label=data[taxon_col])\n for ann in taxon_annotations:\n taxon.annotations.add_new(ann, data[ann])\n taxon_namespace.add_taxon(taxon)\n label = data[node_col]\n edge_length = None\n if branch_lengths is True:\n edge_length = data['length']\n n = dendropy.Node(taxon=taxon, label=label, edge_length=edge_length)\n for ann in node_annotations:\n n.annotations.add_new(ann, data[ann])\n nodes[idx] = n\n root = None\n for idx, node in nodes.items():\n data = df.loc[idx]\n children_idx = df[df['parent'] == data['id']].index\n children_nodes = [nodes[i] for i in children_idx]\n nodes[idx].set_child_nodes(children_nodes)\n if data['parent'] is None:\n root = nodes[idx]\n tree = dendropy.Tree(seed_node=root, taxon_namespace=taxon_namespace)\n return tree\n", "role": "user" }, { "content": "pandas_df_to_dendropy_tree", "role": "assistant" } ]
def x(df, filename=None, schema='newick', taxon_col='uid', taxon_annotations=[], node_col='uid', node_annotations=[], branch_lengths=True, **kwargs): tree = _pandas_df_to_dendropy_tree(df, taxon_col=taxon_col, taxon_annotations=taxon_annotations, node_col=node_col, node_annotations=node_annotations, branch_lengths=branch_lengths) print(schema) if filename is not None: tree.write(path=filename, schema=schema, suppress_annotations=False, **kwargs) else: return tree.as_string(schema=schema)
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(df, filename=None, schema='newick', taxon_col='uid',\n taxon_annotations=[], node_col='uid', node_annotations=[],\n branch_lengths=True, **kwargs):\n tree = _pandas_df_to_dendropy_tree(df, taxon_col=taxon_col,\n taxon_annotations=taxon_annotations, node_col=node_col,\n node_annotations=node_annotations, branch_lengths=branch_lengths)\n print(schema)\n if filename is not None:\n tree.write(path=filename, schema=schema, suppress_annotations=False,\n **kwargs)\n else:\n return tree.as_string(schema=schema)\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(schema): def x(self, filename=None, schema=schema, taxon_col='uid', taxon_annotations=[], node_col='uid', node_annotations=[], branch_lengths=True, **kwargs): return _write(self._data, filename=filename, schema=schema, taxon_col=taxon_col, taxon_annotations=taxon_annotations, node_col=node_col, node_annotations=node_annotations, branch_lengths=branch_lengths, **kwargs) method.__doc__ = _write_doc_template(schema) return method
write_method
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(schema):\n\n def x(self, filename=None, schema=schema, taxon_col='uid',\n taxon_annotations=[], node_col='uid', node_annotations=[],\n branch_lengths=True, **kwargs):\n return _write(self._data, filename=filename, schema=schema,\n taxon_col=taxon_col, taxon_annotations=taxon_annotations,\n node_col=node_col, node_annotations=node_annotations,\n branch_lengths=branch_lengths, **kwargs)\n method.__doc__ = _write_doc_template(schema)\n return method\n", "role": "user" }, { "content": "write_method", "role": "assistant" } ]
def x(schema): def x(data, filename=None, schema=schema, taxon_col='uid', taxon_annotations=[], node_col='uid', node_annotations=[], branch_lengths=True, **kwargs): return _write(data, filename=filename, schema=schema, taxon_col= taxon_col, taxon_annotations=taxon_annotations, node_col= node_col, node_annotations=node_annotations, branch_lengths= branch_lengths, **kwargs) func.__doc__ = _write_doc_template(schema) return func
write_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(schema):\n\n def x(data, filename=None, schema=schema, taxon_col='uid',\n taxon_annotations=[], node_col='uid', node_annotations=[],\n branch_lengths=True, **kwargs):\n return _write(data, filename=filename, schema=schema, taxon_col=\n taxon_col, taxon_annotations=taxon_annotations, node_col=\n node_col, node_annotations=node_annotations, branch_lengths=\n branch_lengths, **kwargs)\n func.__doc__ = _write_doc_template(schema)\n return func\n", "role": "user" }, { "content": "write_function", "role": "assistant" } ]
def x(length): alphabet = string.ascii_uppercase + string.ascii_lowercase + string.digits return ''.join(random.choice(alphabet) for _ in range(length))
get_random_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(length):\n alphabet = string.ascii_uppercase + string.ascii_lowercase + string.digits\n return ''.join(random.choice(alphabet) for _ in range(length))\n", "role": "user" }, { "content": "get_random_id", "role": "assistant" } ]
def x(self, folder): self.folder = folder self.templates.directories[0] = folder self.app.root_path = folder
set_folder
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, folder):\n self.folder = folder\n self.templates.directories[0] = folder\n self.app.root_path = folder\n", "role": "user" }, { "content": "set_folder", "role": "assistant" } ]
def x(self, host='0.0.0.0', port=8080): waitress.serve(self.app, host=host, port=port)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, host='0.0.0.0', port=8080):\n waitress.serve(self.app, host=host, port=port)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self, path): data = self.app.test_client().get('/%s' % path).data return data
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path):\n data = self.app.test_client().get('/%s' % path).data\n return data\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, output_folder): files = [] for l in self.file_listers: files += l() for f in files: _logger.info('generating %s' % f) content = self.get(f) loc = os.path.join(output_folder, f) d = os.path.dirname(loc) if not os.path.exists(d): os.makedirs(d) with open(loc, 'wb') as file_: file_.write(content)
gen_static
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, output_folder):\n files = []\n for l in self.file_listers:\n files += l()\n for f in files:\n _logger.info('generating %s' % f)\n content = self.get(f)\n loc = os.path.join(output_folder, f)\n d = os.path.dirname(loc)\n if not os.path.exists(d):\n os.makedirs(d)\n with open(loc, 'wb') as file_:\n file_.write(content)\n", "role": "user" }, { "content": "gen_static", "role": "assistant" } ]
def x(self, cmd_args=None): logging.basicConfig(level=logging.INFO, format='%(message)s') parser = argparse.ArgumentParser(description= 'PyGreen, micro web framework/static web site generator') subparsers = parser.add_subparsers(dest='action') parser_serve = subparsers.add_parser('serve', help='serve the web site') parser_serve.add_argument('-p', '--port', type=int, default=8080, help= 'port to serve on') parser_serve.add_argument('-f', '--folder', default='.', help= 'folder containg files to serve') parser_serve.add_argument('-d', '--disable-templates', action= 'store_true', default=False, help= 'just serve static files, do not use Mako') def x(): if args.disable_templates: self.template_exts = set([]) self.run(port=args.port) parser_serve.set_defaults(func=serve) parser_gen = subparsers.add_parser('gen', help= 'generate a static version of the site') parser_gen.add_argument('output', help='folder to store the files') parser_gen.add_argument('-f', '--folder', default='.', help= 'folder containing files to generate') def x(): self.gen_static(args.output) parser_gen.set_defaults(func=gen) args = parser.parse_args(cmd_args) self.set_folder(args.folder) print(parser.description) print('') args.func()
cli
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cmd_args=None):\n logging.basicConfig(level=logging.INFO, format='%(message)s')\n parser = argparse.ArgumentParser(description=\n 'PyGreen, micro web framework/static web site generator')\n subparsers = parser.add_subparsers(dest='action')\n parser_serve = subparsers.add_parser('serve', help='serve the web site')\n parser_serve.add_argument('-p', '--port', type=int, default=8080, help=\n 'port to serve on')\n parser_serve.add_argument('-f', '--folder', default='.', help=\n 'folder containg files to serve')\n parser_serve.add_argument('-d', '--disable-templates', action=\n 'store_true', default=False, help=\n 'just serve static files, do not use Mako')\n\n def x():\n if args.disable_templates:\n self.template_exts = set([])\n self.run(port=args.port)\n parser_serve.set_defaults(func=serve)\n parser_gen = subparsers.add_parser('gen', help=\n 'generate a static version of the site')\n parser_gen.add_argument('output', help='folder to store the files')\n parser_gen.add_argument('-f', '--folder', default='.', help=\n 'folder containing files to generate')\n\n def x():\n self.gen_static(args.output)\n parser_gen.set_defaults(func=gen)\n args = parser.parse_args(cmd_args)\n self.set_folder(args.folder)\n print(parser.description)\n print('')\n args.func()\n", "role": "user" }, { "content": "cli", "role": "assistant" } ]
def x(self, switch_configuration, terminal_controller, logger, piping_processor, *args): self.switch_configuration = switch_configuration self.terminal_controller = terminal_controller self.logger = logger self.piping_processor = piping_processor self.sub_processor = None self.continuing_to = None self.is_done = False self.replace_input = False self.awaiting_keystroke = False
init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, switch_configuration, terminal_controller, logger,\n piping_processor, *args):\n self.switch_configuration = switch_configuration\n self.terminal_controller = terminal_controller\n self.logger = logger\n self.piping_processor = piping_processor\n self.sub_processor = None\n self.continuing_to = None\n self.is_done = False\n self.replace_input = False\n self.awaiting_keystroke = False\n", "role": "user" }, { "content": "init", "role": "assistant" } ]
def x(lon, lat, azimuth, maxdist=None): glat1 = lat * np.pi / 180.0 glon1 = lon * np.pi / 180.0 s = maxdist / 1.852243 faz = azimuth * np.pi / 180.0 EPS = 5e-11 if np.abs(np.cos(glat1)) < EPS and not np.abs(np.sin(faz)) < EPS: raise CourseException('Only North-South courses are meaningful') a = 6378.137 / 1.852243 f = 1 / 298.257223563 r = 1 - f tu = r * np.tan(glat1) sf = np.sin(faz) cf = np.cos(faz) if cf == 0: b = 0.0 else: b = 2.0 * np.arctan2(tu, cf) cu = 1.0 / np.sqrt(1 + tu * tu) su = tu * cu sa = cu * sf c2a = 1 - sa * sa x = 1.0 + np.sqrt(1.0 + c2a * (1.0 / (r * r) - 1.0)) x = (x - 2.0) / x c = 1.0 - x c = (x * x / 4.0 + 1.0) / c d = (0.375 * x * x - 1.0) * x tu = s / (r * a * c) y = tu c = y + 1 while np.abs(y - c) > EPS: sy = np.sin(y) cy = np.cos(y) cz = np.cos(b + y) e = 2.0 * cz * cz - 1.0 c = y x = e * cy y = e + e - 1.0 y = (((sy * sy * 4.0 - 3.0) * y * cz * d / 6.0 + x) * d / 4.0 - cz ) * sy * d + tu b = cu * cy * cf - su * sy c = r * np.sqrt(sa * sa + b * b) d = su * cy + cu * sy * cf glat2 = (np.arctan2(d, c) + np.pi) % (2 * np.pi) - np.pi c = cu * cy - su * sy * cf x = np.arctan2(sy * sf, c) c = ((-3.0 * c2a + 4.0) * f + 4.0) * c2a * f / 16.0 d = ((e * cy * c + cz) * sy * c + y) * sa glon2 = (glon1 + x - (1.0 - c) * d * f + np.pi) % (2 * np.pi) - np.pi baz = (np.arctan2(sa, b) + np.pi) % (2 * np.pi) glon2 *= 180.0 / np.pi glat2 *= 180.0 / np.pi baz *= 180.0 / np.pi return glon2, glat2, baz
gccalc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lon, lat, azimuth, maxdist=None):\n glat1 = lat * np.pi / 180.0\n glon1 = lon * np.pi / 180.0\n s = maxdist / 1.852243\n faz = azimuth * np.pi / 180.0\n EPS = 5e-11\n if np.abs(np.cos(glat1)) < EPS and not np.abs(np.sin(faz)) < EPS:\n raise CourseException('Only North-South courses are meaningful')\n a = 6378.137 / 1.852243\n f = 1 / 298.257223563\n r = 1 - f\n tu = r * np.tan(glat1)\n sf = np.sin(faz)\n cf = np.cos(faz)\n if cf == 0:\n b = 0.0\n else:\n b = 2.0 * np.arctan2(tu, cf)\n cu = 1.0 / np.sqrt(1 + tu * tu)\n su = tu * cu\n sa = cu * sf\n c2a = 1 - sa * sa\n x = 1.0 + np.sqrt(1.0 + c2a * (1.0 / (r * r) - 1.0))\n x = (x - 2.0) / x\n c = 1.0 - x\n c = (x * x / 4.0 + 1.0) / c\n d = (0.375 * x * x - 1.0) * x\n tu = s / (r * a * c)\n y = tu\n c = y + 1\n while np.abs(y - c) > EPS:\n sy = np.sin(y)\n cy = np.cos(y)\n cz = np.cos(b + y)\n e = 2.0 * cz * cz - 1.0\n c = y\n x = e * cy\n y = e + e - 1.0\n y = (((sy * sy * 4.0 - 3.0) * y * cz * d / 6.0 + x) * d / 4.0 - cz\n ) * sy * d + tu\n b = cu * cy * cf - su * sy\n c = r * np.sqrt(sa * sa + b * b)\n d = su * cy + cu * sy * cf\n glat2 = (np.arctan2(d, c) + np.pi) % (2 * np.pi) - np.pi\n c = cu * cy - su * sy * cf\n x = np.arctan2(sy * sf, c)\n c = ((-3.0 * c2a + 4.0) * f + 4.0) * c2a * f / 16.0\n d = ((e * cy * c + cz) * sy * c + y) * sa\n glon2 = (glon1 + x - (1.0 - c) * d * f + np.pi) % (2 * np.pi) - np.pi\n baz = (np.arctan2(sa, b) + np.pi) % (2 * np.pi)\n glon2 *= 180.0 / np.pi\n glat2 *= 180.0 / np.pi\n baz *= 180.0 / np.pi\n return glon2, glat2, baz\n", "role": "user" }, { "content": "gccalc", "role": "assistant" } ]
def x(m, centerlon, centerlat, radius, *args, **kwargs): glon1 = centerlon glat1 = centerlat X = [] Y = [] for azimuth in range(0, 360): glon2, glat2, baz = _gccalc(glon1, glat1, azimuth, radius) X.append(glon2) Y.append(glat2) X.append(X[0]) Y.append(Y[0]) proj_x, proj_y = m(X, Y) return zip(proj_x, proj_y)
circle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(m, centerlon, centerlat, radius, *args, **kwargs):\n glon1 = centerlon\n glat1 = centerlat\n X = []\n Y = []\n for azimuth in range(0, 360):\n glon2, glat2, baz = _gccalc(glon1, glat1, azimuth, radius)\n X.append(glon2)\n Y.append(glat2)\n X.append(X[0])\n Y.append(Y[0])\n proj_x, proj_y = m(X, Y)\n return zip(proj_x, proj_y)\n", "role": "user" }, { "content": "circle", "role": "assistant" } ]
def x(shortname, mime_types): if shortname in _MIME_TYPES: raise MimeRenderException('"%s" has already been registered' % shortname) _MIME_TYPES[shortname] = mime_types
register_mime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(shortname, mime_types):\n if shortname in _MIME_TYPES:\n raise MimeRenderException('\"%s\" has already been registered' %\n shortname)\n _MIME_TYPES[shortname] = mime_types\n", "role": "user" }, { "content": "register_mime", "role": "assistant" } ]
def x(app): @wraps(app) def x(environ, start_response): status_headers = [None, None] def x(status, headers): status_headers[:] = [status, headers] body = app(environ, _start_response) ret = body, status_headers[0], status_headers[1] return ret return wrapped
wsgi_wrap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(app):\n\n @wraps(app)\n def x(environ, start_response):\n status_headers = [None, None]\n\n def x(status, headers):\n status_headers[:] = [status, headers]\n body = app(environ, _start_response)\n ret = body, status_headers[0], status_headers[1]\n return ret\n return wrapped\n", "role": "user" }, { "content": "wsgi_wrap", "role": "assistant" } ]
def x(*args, **kwargs): def x(*args2, **kwargs2): def x(f): return _WSGIMimeRender(*args, **kwargs)(*args2, **kwargs2)( wsgi_wrap(f)) return wrapped return wrapper
WSGIMimeRender
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(*args, **kwargs):\n\n def x(*args2, **kwargs2):\n\n def x(f):\n return _WSGIMimeRender(*args, **kwargs)(*args2, **kwargs2)(\n wsgi_wrap(f))\n return wrapped\n return wrapper\n", "role": "user" }, { "content": "WSGIMimeRender", "role": "assistant" } ]
def x(self, mapping, *args, **kwargs): @self.__call__(*args, **kwargs) def x(e, status): return dict(exception=e), status def x(target): @wraps(target) def x(*args, **kwargs): try: return target(*args, **kwargs) except BaseException as e: for klass, status in mapping: if isinstance(e, klass): return helper(e, status) raise return wrapper return wrap
map_exceptions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mapping, *args, **kwargs):\n\n @self.__call__(*args, **kwargs)\n def x(e, status):\n return dict(exception=e), status\n\n def x(target):\n\n @wraps(target)\n def x(*args, **kwargs):\n try:\n return target(*args, **kwargs)\n except BaseException as e:\n for klass, status in mapping:\n if isinstance(e, klass):\n return helper(e, status)\n raise\n return wrapper\n return wrap\n", "role": "user" }, { "content": "map_exceptions", "role": "assistant" } ]
def x(self): scheme = self.scheme if not scheme: return True return scheme.is_relative(self)
relative
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n scheme = self.scheme\n if not scheme:\n return True\n return scheme.is_relative(self)\n", "role": "user" }, { "content": "relative", "role": "assistant" } ]
def x(self, uri=None, **parts): if uri: result = self.__class__(urljoin(str(self), str(uri))) else: result = self.__class__(self) for part, value in parts.items(): if part not in self.__all_parts__: raise TypeError('Unknown URI component: ' + part) setattr(result, part, value) return result
resolve
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, uri=None, **parts):\n if uri:\n result = self.__class__(urljoin(str(self), str(uri)))\n else:\n result = self.__class__(self)\n for part, value in parts.items():\n if part not in self.__all_parts__:\n raise TypeError('Unknown URI component: ' + part)\n setattr(result, part, value)\n return result\n", "role": "user" }, { "content": "resolve", "role": "assistant" } ]
def x(cls, date_string, fmt): result = cls.formatterfactory(fmt).parse(date_string) result = {k: v for k, v in result.items() if k in ('year', 'month', 'day')} return cls(**result)
strptime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, date_string, fmt):\n result = cls.formatterfactory(fmt).parse(date_string)\n result = {k: v for k, v in result.items() if k in ('year', 'month', 'day')}\n return cls(**result)\n", "role": "user" }, { "content": "strptime", "role": "assistant" } ]
def x(self, year=None, month=None, day=None): return JalaliDate(year if year else self.year, month if month else self .month, day if day else self.day)
replace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, year=None, month=None, day=None):\n return JalaliDate(year if year else self.year, month if month else self\n .month, day if day else self.day)\n", "role": "user" }, { "content": "replace", "role": "assistant" } ]
def x(self): arr = get_gregorian_date_from_julian_day(self.tojulianday()) return datetime.date(int(arr[0]), int(arr[1]), int(arr[2]))
todate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n arr = get_gregorian_date_from_julian_day(self.tojulianday())\n return datetime.date(int(arr[0]), int(arr[1]), int(arr[2]))\n", "role": "user" }, { "content": "todate", "role": "assistant" } ]
def x(self): return time.struct_time((self.year, self.month, self.day, 0, 0, 0, self .weekday(), self.dayofyear(), -1))
timetuple
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return time.struct_time((self.year, self.month, self.day, 0, 0, 0, self\n .weekday(), self.dayofyear(), -1))\n", "role": "user" }, { "content": "timetuple", "role": "assistant" } ]
def x(self, first_day_of_week=SATURDAY): first_day_of_year = self.firstdayofyear() days = (self - first_day_of_year).days offset = first_day_of_week - first_day_of_year.weekday() if offset < 0: offset += 7 if days < offset: return 0 return int((days - offset) / 7 + 1)
weekofyear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, first_day_of_week=SATURDAY):\n first_day_of_year = self.firstdayofyear()\n days = (self - first_day_of_year).days\n offset = first_day_of_week - first_day_of_year.weekday()\n if offset < 0:\n offset += 7\n if days < offset:\n return 0\n return int((days - offset) / 7 + 1)\n", "role": "user" }, { "content": "weekofyear", "role": "assistant" } ]
def x(cls, timestamp, tz=None): return cls(datetime.fromtimestamp(timestamp, tz=tz))
fromtimestamp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, timestamp, tz=None):\n return cls(datetime.fromtimestamp(timestamp, tz=tz))\n", "role": "user" }, { "content": "fromtimestamp", "role": "assistant" } ]
def x(cls, date, _time): if isinstance(date, (JalaliDatetime, khayyam.JalaliDate)): date = date.todate() return cls(datetime.combine(date, _time))
combine
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, date, _time):\n if isinstance(date, (JalaliDatetime, khayyam.JalaliDate)):\n date = date.todate()\n return cls(datetime.combine(date, _time))\n", "role": "user" }, { "content": "combine", "role": "assistant" } ]
def x(self): arr = get_gregorian_date_from_julian_day(self.tojulianday()) return datetime(int(arr[0]), int(arr[1]), int(arr[2]), self.hour, self. minute, self.second, self.microsecond, self.tzinfo)
todatetime
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n arr = get_gregorian_date_from_julian_day(self.tojulianday())\n return datetime(int(arr[0]), int(arr[1]), int(arr[2]), self.hour, self.\n minute, self.second, self.microsecond, self.tzinfo)\n", "role": "user" }, { "content": "todatetime", "role": "assistant" } ]
def x(self): return khayyam.JalaliDate(self.year, self.month, self.day)
date
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return khayyam.JalaliDate(self.year, self.month, self.day)\n", "role": "user" }, { "content": "date", "role": "assistant" } ]
def x(self, year=None, month=None, day=None, hour=None, minute=None, second =None, microsecond=None, tzinfo=None): year, month, day = self._validate(year if year else self.year, month if month else self.month, day if day else self.day) result = JalaliDatetime(year, month, day, self.hour if hour is None else hour, self.minute if minute is None else minute, self.second if second is None else second, self.microsecond if microsecond is None else microsecond, tzinfo if tzinfo != self.tzinfo else self.tzinfo) return result
replace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, year=None, month=None, day=None, hour=None, minute=None, second\n =None, microsecond=None, tzinfo=None):\n year, month, day = self._validate(year if year else self.year, month if\n month else self.month, day if day else self.day)\n result = JalaliDatetime(year, month, day, self.hour if hour is None else\n hour, self.minute if minute is None else minute, self.second if \n second is None else second, self.microsecond if microsecond is None\n else microsecond, tzinfo if tzinfo != self.tzinfo else self.tzinfo)\n return result\n", "role": "user" }, { "content": "replace", "role": "assistant" } ]
def x(self, tz): if self.tzinfo is tz: return self if self.tzinfo: utc = self - self.utcoffset() else: utc = self return tz.fromutc(utc.replace(tzinfo=tz))
astimezone
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tz):\n if self.tzinfo is tz:\n return self\n if self.tzinfo:\n utc = self - self.utcoffset()\n else:\n utc = self\n return tz.fromutc(utc.replace(tzinfo=tz))\n", "role": "user" }, { "content": "astimezone", "role": "assistant" } ]
def x(self): res = self.hour if res > 12: res -= 12 elif res == 0: res = 12 return res
hour12
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n res = self.hour\n if res > 12:\n res -= 12\n elif res == 0:\n res = 12\n return res\n", "role": "user" }, { "content": "hour12", "role": "assistant" } ]
def x(signal, order): if signal.ndim > 1: raise ValueError('Array of rank > 1 not supported yet') if order > signal.size: raise ValueError('Input signal must have a lenght >= lpc order') if order > 0: p = order + 1 r = np.zeros(p, 'float32') nx = np.min([p, signal.size]) x = np.correlate(signal, signal, 'full') r[:nx] = x[signal.size - 1:signal.size + order] phi = np.dot(sp.linalg.inv(sp.linalg.toeplitz(r[:-1])), -r[1:]) return np.concatenate(([1.0], phi)) else: return np.ones(1, dtype='float32')
lpc_ref
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(signal, order):\n if signal.ndim > 1:\n raise ValueError('Array of rank > 1 not supported yet')\n if order > signal.size:\n raise ValueError('Input signal must have a lenght >= lpc order')\n if order > 0:\n p = order + 1\n r = np.zeros(p, 'float32')\n nx = np.min([p, signal.size])\n x = np.correlate(signal, signal, 'full')\n r[:nx] = x[signal.size - 1:signal.size + order]\n phi = np.dot(sp.linalg.inv(sp.linalg.toeplitz(r[:-1])), -r[1:])\n return np.concatenate(([1.0], phi))\n else:\n return np.ones(1, dtype='float32')\n", "role": "user" }, { "content": "lpc_ref", "role": "assistant" } ]
def x(r, order): r = np.atleast_1d(r) if r.ndim > 1: raise ValueError('Only rank 1 are supported for now.') n = r.size if n < 1: raise ValueError('Cannot operate on empty array !') elif order > n - 1: raise ValueError('Order should be <= size-1') if not np.isreal(r[0]): raise ValueError('First item of input must be real.') elif not np.isfinite(1 / r[0]): raise ValueError('First item should be != 0') a = np.empty(order + 1, 'float32') t = np.empty(order + 1, 'float32') k = np.empty(order, 'float32') a[0] = 1.0 e = r[0] for i in range(1, order + 1): acc = r[i] for j in range(1, i): acc += a[j] * r[i - j] k[i - 1] = -acc / e a[i] = k[i - 1] for j in range(order): t[j] = a[j] for j in range(1, i): a[j] += k[i - 1] * np.conj(t[i - j]) e *= 1 - k[i - 1] * np.conj(k[i - 1]) return a, e, k
levinson_1d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(r, order):\n r = np.atleast_1d(r)\n if r.ndim > 1:\n raise ValueError('Only rank 1 are supported for now.')\n n = r.size\n if n < 1:\n raise ValueError('Cannot operate on empty array !')\n elif order > n - 1:\n raise ValueError('Order should be <= size-1')\n if not np.isreal(r[0]):\n raise ValueError('First item of input must be real.')\n elif not np.isfinite(1 / r[0]):\n raise ValueError('First item should be != 0')\n a = np.empty(order + 1, 'float32')\n t = np.empty(order + 1, 'float32')\n k = np.empty(order, 'float32')\n a[0] = 1.0\n e = r[0]\n for i in range(1, order + 1):\n acc = r[i]\n for j in range(1, i):\n acc += a[j] * r[i - j]\n k[i - 1] = -acc / e\n a[i] = k[i - 1]\n for j in range(order):\n t[j] = a[j]\n for j in range(1, i):\n a[j] += k[i - 1] * np.conj(t[i - j])\n e *= 1 - k[i - 1] * np.conj(k[i - 1])\n return a, e, k\n", "role": "user" }, { "content": "levinson_1d", "role": "assistant" } ]
def x(x, axis=-1): if not np.isrealobj(x): raise ValueError('Complex input not supported yet') maxlag = x.shape[axis] nfft = int(2 ** nextpow2(2 * maxlag - 1)) if axis != -1: x = np.swapaxes(x, -1, axis) a = _acorr_last_axis(x, nfft, maxlag) if axis != -1: a = np.swapaxes(a, -1, axis) return a
acorr_lpc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, axis=-1):\n if not np.isrealobj(x):\n raise ValueError('Complex input not supported yet')\n maxlag = x.shape[axis]\n nfft = int(2 ** nextpow2(2 * maxlag - 1))\n if axis != -1:\n x = np.swapaxes(x, -1, axis)\n a = _acorr_last_axis(x, nfft, maxlag)\n if axis != -1:\n a = np.swapaxes(a, -1, axis)\n return a\n", "role": "user" }, { "content": "acorr_lpc", "role": "assistant" } ]
def x(signal, order, axis=-1): n = signal.shape[axis] if order > n: raise ValueError('Input signal must have length >= order') r = acorr_lpc(signal, axis) return levinson_1d(r, order)
lpc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(signal, order, axis=-1):\n n = signal.shape[axis]\n if order > n:\n raise ValueError('Input signal must have length >= order')\n r = acorr_lpc(signal, axis)\n return levinson_1d(r, order)\n", "role": "user" }, { "content": "lpc", "role": "assistant" } ]
def x(path_mapping, analysis_function, distance_function, stop_check=None, call_back=None, multiprocessing=True): num_cores = int(3 * cpu_count() / 4) segments = set() for x in path_mapping: segments.update(x) if multiprocessing: cache = generate_cache_mp(segments, analysis_function, num_cores, call_back, stop_check) asim = calculate_distances_mp(path_mapping, cache, distance_function, num_cores, call_back, stop_check) else: cache = generate_cache_th(segments, analysis_function, num_cores, call_back, stop_check) asim = calculate_distances_th(path_mapping, cache, distance_function, num_cores, call_back, stop_check) return asim
acoustic_similarity_mapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path_mapping, analysis_function, distance_function, stop_check=None,\n call_back=None, multiprocessing=True):\n num_cores = int(3 * cpu_count() / 4)\n segments = set()\n for x in path_mapping:\n segments.update(x)\n if multiprocessing:\n cache = generate_cache_mp(segments, analysis_function, num_cores,\n call_back, stop_check)\n asim = calculate_distances_mp(path_mapping, cache,\n distance_function, num_cores, call_back, stop_check)\n else:\n cache = generate_cache_th(segments, analysis_function, num_cores,\n call_back, stop_check)\n asim = calculate_distances_th(path_mapping, cache,\n distance_function, num_cores, call_back, stop_check)\n return asim\n", "role": "user" }, { "content": "acoustic_similarity_mapping", "role": "assistant" } ]
def x(path_mapping, analysis_function, distance_function, stop_check=None, call_back=None, multiprocessing=True): num_cores = int(3 * cpu_count() / 4) segments = set() for x in path_mapping: segments.update(x) if multiprocessing: cache = generate_cache_mp(segments, analysis_function, num_cores, call_back, stop_check) asim = calculate_axb_ratio_mp(path_mapping, cache, distance_function, num_cores, call_back, stop_check) else: cache = generate_cache_th(segments, analysis_function, num_cores, call_back, stop_check) asim = calculate_axb_ratio_th(path_mapping, cache, distance_function, num_cores, call_back, stop_check) return asim
axb_mapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path_mapping, analysis_function, distance_function, stop_check=None,\n call_back=None, multiprocessing=True):\n num_cores = int(3 * cpu_count() / 4)\n segments = set()\n for x in path_mapping:\n segments.update(x)\n if multiprocessing:\n cache = generate_cache_mp(segments, analysis_function, num_cores,\n call_back, stop_check)\n asim = calculate_axb_ratio_mp(path_mapping, cache,\n distance_function, num_cores, call_back, stop_check)\n else:\n cache = generate_cache_th(segments, analysis_function, num_cores,\n call_back, stop_check)\n asim = calculate_axb_ratio_th(path_mapping, cache,\n distance_function, num_cores, call_back, stop_check)\n return asim\n", "role": "user" }, { "content": "axb_mapping", "role": "assistant" } ]
def x(directories, analysis_function, distance_function, stop_check=None, call_back=None, multiprocessing=True): files = [] if call_back is not None: call_back('Mapping directories...') call_back(0, len(directories)) cur = 0 for d in directories: if not os.path.isdir(d): continue if stop_check is not None and stop_check(): return if call_back is not None: cur += 1 if cur % 3 == 0: call_back(cur) files += [os.path.join(d, x) for x in os.listdir(d) if x.lower(). endswith('.wav')] if len(files) == 0: raise ConchError( 'The directories specified do not contain any wav files') if call_back is not None: call_back('Mapping directories...') call_back(0, len(files) * len(files)) cur = 0 path_mapping = list() for x in files: for y in files: if stop_check is not None and stop_check(): return if call_back is not None: cur += 1 if cur % 20 == 0: call_back(cur) if not x.lower().endswith('.wav'): continue if not y.lower().endswith('.wav'): continue if x == y: continue path_mapping.append((x, y)) result = acoustic_similarity_mapping(path_mapping, analysis_function, distance_function, stop_check, call_back, multiprocessing) return result
acoustic_similarity_directories
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(directories, analysis_function, distance_function, stop_check=None,\n call_back=None, multiprocessing=True):\n files = []\n if call_back is not None:\n call_back('Mapping directories...')\n call_back(0, len(directories))\n cur = 0\n for d in directories:\n if not os.path.isdir(d):\n continue\n if stop_check is not None and stop_check():\n return\n if call_back is not None:\n cur += 1\n if cur % 3 == 0:\n call_back(cur)\n files += [os.path.join(d, x) for x in os.listdir(d) if x.lower().\n endswith('.wav')]\n if len(files) == 0:\n raise ConchError(\n 'The directories specified do not contain any wav files')\n if call_back is not None:\n call_back('Mapping directories...')\n call_back(0, len(files) * len(files))\n cur = 0\n path_mapping = list()\n for x in files:\n for y in files:\n if stop_check is not None and stop_check():\n return\n if call_back is not None:\n cur += 1\n if cur % 20 == 0:\n call_back(cur)\n if not x.lower().endswith('.wav'):\n continue\n if not y.lower().endswith('.wav'):\n continue\n if x == y:\n continue\n path_mapping.append((x, y))\n result = acoustic_similarity_mapping(path_mapping, analysis_function,\n distance_function, stop_check, call_back, multiprocessing)\n return result\n", "role": "user" }, { "content": "acoustic_similarity_directories", "role": "assistant" } ]
def x(rep_one, rep_two, norm=True): if not isinstance(rep_one, np.ndarray): rep_one = rep_one.to_array() if not isinstance(rep_two, np.ndarray): rep_two = rep_two.to_array() assert rep_one.shape[1] == rep_two.shape[1] distMat = generate_distance_matrix(rep_one, rep_two) return regularDTW(distMat, norm=norm)
dtw_distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(rep_one, rep_two, norm=True):\n if not isinstance(rep_one, np.ndarray):\n rep_one = rep_one.to_array()\n if not isinstance(rep_two, np.ndarray):\n rep_two = rep_two.to_array()\n assert rep_one.shape[1] == rep_two.shape[1]\n distMat = generate_distance_matrix(rep_one, rep_two)\n return regularDTW(distMat, norm=norm)\n", "role": "user" }, { "content": "dtw_distance", "role": "assistant" } ]
def x(source, target, weights=None): if weights is None: weights = ones((source.shape[1], 1)) sLen = source.shape[0] tLen = target.shape[0] distMat = zeros((sLen, tLen)) for i in range(sLen): for j in range(tLen): distMat[i, j] = euclidean(source[i, :], target[j, :]) return distMat
generate_distance_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(source, target, weights=None):\n if weights is None:\n weights = ones((source.shape[1], 1))\n sLen = source.shape[0]\n tLen = target.shape[0]\n distMat = zeros((sLen, tLen))\n for i in range(sLen):\n for j in range(tLen):\n distMat[i, j] = euclidean(source[i, :], target[j, :])\n return distMat\n", "role": "user" }, { "content": "generate_distance_matrix", "role": "assistant" } ]
def x(distMat, norm=True): sLen, tLen = distMat.shape totalDistance = zeros((sLen, tLen)) totalDistance[0:sLen, 0:tLen] = distMat minDirection = zeros((sLen, tLen)) for i in range(1, sLen): totalDistance[i, 0] = totalDistance[i, 0] + totalDistance[i - 1, 0] for j in range(1, tLen): totalDistance[0, j] = totalDistance[0, j] + totalDistance[0, j - 1] for i in range(1, sLen): for j in range(1, tLen): minDirection[i, j], totalDistance[i, j] = min(enumerate([ totalDistance[i - 1, j - 1] + 2 * totalDistance[i, j], totalDistance[i - 1, j] + totalDistance[i, j], totalDistance[i, j - 1] + totalDistance[i, j]]), key= operator.itemgetter(1)) if norm: return totalDistance[sLen - 1, tLen - 1] / (sLen + tLen) return totalDistance[sLen - 1, tLen - 1]
regularDTW
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(distMat, norm=True):\n sLen, tLen = distMat.shape\n totalDistance = zeros((sLen, tLen))\n totalDistance[0:sLen, 0:tLen] = distMat\n minDirection = zeros((sLen, tLen))\n for i in range(1, sLen):\n totalDistance[i, 0] = totalDistance[i, 0] + totalDistance[i - 1, 0]\n for j in range(1, tLen):\n totalDistance[0, j] = totalDistance[0, j] + totalDistance[0, j - 1]\n for i in range(1, sLen):\n for j in range(1, tLen):\n minDirection[i, j], totalDistance[i, j] = min(enumerate([\n totalDistance[i - 1, j - 1] + 2 * totalDistance[i, j], \n totalDistance[i - 1, j] + totalDistance[i, j], \n totalDistance[i, j - 1] + totalDistance[i, j]]), key=\n operator.itemgetter(1))\n if norm:\n return totalDistance[sLen - 1, tLen - 1] / (sLen + tLen)\n return totalDistance[sLen - 1, tLen - 1]\n", "role": "user" }, { "content": "regularDTW", "role": "assistant" } ]
def x(path, sr=16000, alpha=0.95): oldsr, sig = wavfile.read(path) try: sig = sig[:, 0] except IndexError: pass if False and sr != oldsr: t = len(sig) / oldsr numsamp = int(t * sr) proc = resample(sig, numsamp) else: proc = sig sr = oldsr if alpha is not None and alpha != 0: proc = lfilter([1.0, -alpha], 1, proc) return sr, proc
preproc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(path, sr=16000, alpha=0.95):\n oldsr, sig = wavfile.read(path)\n try:\n sig = sig[:, 0]\n except IndexError:\n pass\n if False and sr != oldsr:\n t = len(sig) / oldsr\n numsamp = int(t * sr)\n proc = resample(sig, numsamp)\n else:\n proc = sig\n sr = oldsr\n if alpha is not None and alpha != 0:\n proc = lfilter([1.0, -alpha], 1, proc)\n return sr, proc\n", "role": "user" }, { "content": "preproc", "role": "assistant" } ]
def x(b, x, *n): N_x = len(x) N_b = len(b) if len(n): n = n[0] if n != int(n) or n <= 0: raise ValueError('n must be a nonnegative integer') if n < N_b: n = N_b N_fft = 2 ** nextpow2(n) elif N_x > N_b: N = 2 ** np.arange(np.ceil(np.log2(N_b)), np.floor(np.log2(N_x))) cost = np.ceil(N_x / (N - N_b + 1)) * N * (np.log2(N) + 1) if len(cost) > 0: N_fft = N[np.argmin(cost)] else: N_fft = 2 ** nextpow2(N_b + N_x - 1) else: N_fft = 2 ** nextpow2(N_b + N_x - 1) N_fft = int(N_fft) L = int(N_fft - N_b + 1) H = fft(b, N_fft) y = np.zeros(N_x, np.float32) i = 0 while i <= N_x: il = np.min([i + L, N_x]) k = np.min([i + N_fft, N_x]) yt = ifft(fft(x[i:il], N_fft) * H, N_fft) y[i:k] = y[i:k] + yt[:k - i] i += L return y
fftfilt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(b, x, *n):\n N_x = len(x)\n N_b = len(b)\n if len(n):\n n = n[0]\n if n != int(n) or n <= 0:\n raise ValueError('n must be a nonnegative integer')\n if n < N_b:\n n = N_b\n N_fft = 2 ** nextpow2(n)\n elif N_x > N_b:\n N = 2 ** np.arange(np.ceil(np.log2(N_b)), np.floor(np.log2(N_x)))\n cost = np.ceil(N_x / (N - N_b + 1)) * N * (np.log2(N) + 1)\n if len(cost) > 0:\n N_fft = N[np.argmin(cost)]\n else:\n N_fft = 2 ** nextpow2(N_b + N_x - 1)\n else:\n N_fft = 2 ** nextpow2(N_b + N_x - 1)\n N_fft = int(N_fft)\n L = int(N_fft - N_b + 1)\n H = fft(b, N_fft)\n y = np.zeros(N_x, np.float32)\n i = 0\n while i <= N_x:\n il = np.min([i + L, N_x])\n k = np.min([i + N_fft, N_x])\n yt = ifft(fft(x[i:il], N_fft) * H, N_fft)\n y[i:k] = y[i:k] + yt[:k - i]\n i += L\n return y\n", "role": "user" }, { "content": "fftfilt", "role": "assistant" } ]
def x(spec): ncep = spec.shape[0] dctm = np.zeros((ncep, ncep)) for i in range(ncep): dctm[i, :] = np.cos(i * np.arange(1, 2 * ncep, 2) / (2 * ncep) * np.pi ) * np.sqrt(2 / ncep) dctm *= 0.230258509299405 cep = np.dot(dctm, 10 * np.log10(spec + np.spacing(1))) return cep
dct_spectrum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(spec):\n ncep = spec.shape[0]\n dctm = np.zeros((ncep, ncep))\n for i in range(ncep):\n dctm[i, :] = np.cos(i * np.arange(1, 2 * ncep, 2) / (2 * ncep) * np.pi\n ) * np.sqrt(2 / ncep)\n dctm *= 0.230258509299405\n cep = np.dot(dctm, 10 * np.log10(spec + np.spacing(1)))\n return cep\n", "role": "user" }, { "content": "dct_spectrum", "role": "assistant" } ]
def x(num_filters, nfft, sr, min_freq, max_freq): min_mel = freq_to_mel(min_freq) max_mel = freq_to_mel(max_freq) mel_points = np.linspace(min_mel, max_mel, num_filters + 2) bin_freqs = mel_to_freq(mel_points) fftfreqs = np.arange(int(nfft / 2 + 1)) / nfft * sr fbank = np.zeros((num_filters, int(nfft / 2 + 1))) for i in range(num_filters): fs = bin_freqs[i + np.arange(3)] fs = fs[1] + (fs - fs[1]) loslope = (fftfreqs - fs[0]) / (fs[1] - fs[0]) highslope = (fs[2] - fftfreqs) / (fs[2] - fs[1]) fbank[i, :] = np.maximum(np.zeros(loslope.shape), np.minimum( loslope, highslope)) return fbank.transpose()
construct_filterbank
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(num_filters, nfft, sr, min_freq, max_freq):\n min_mel = freq_to_mel(min_freq)\n max_mel = freq_to_mel(max_freq)\n mel_points = np.linspace(min_mel, max_mel, num_filters + 2)\n bin_freqs = mel_to_freq(mel_points)\n fftfreqs = np.arange(int(nfft / 2 + 1)) / nfft * sr\n fbank = np.zeros((num_filters, int(nfft / 2 + 1)))\n for i in range(num_filters):\n fs = bin_freqs[i + np.arange(3)]\n fs = fs[1] + (fs - fs[1])\n loslope = (fftfreqs - fs[0]) / (fs[1] - fs[0])\n highslope = (fs[2] - fftfreqs) / (fs[2] - fs[1])\n fbank[i, :] = np.maximum(np.zeros(loslope.shape), np.minimum(\n loslope, highslope))\n return fbank.transpose()\n", "role": "user" }, { "content": "construct_filterbank", "role": "assistant" } ]
def x(self, change): if self.is_initialized: view = self.item_view upper_limit = (view.iterable_index + view.iterable_fetch_size - view.iterable_prefetch) lower_limit = max(0, view.iterable_index + view.iterable_prefetch) offset = int(view.iterable_fetch_size / 2.0) upper_visible_row = view.visible_rect[2] lower_visible_row = view.visible_rect[0] print('Visible rect = %s' % view.visible_rect) if upper_visible_row >= upper_limit: next_index = max(0, upper_visible_row - offset) if next_index > view.iterable_index: print('Auto prefetch upper limit %s!' % upper_limit) view.iterable_index = next_index elif view.iterable_index > 0 and lower_visible_row < lower_limit: next_index = max(0, lower_visible_row - offset) if next_index < view.iterable_index: print( 'Auto prefetch lower limit=%s, iterable=%s, setting next=%s!' % (lower_limit, view.iterable_index, next_index)) view.iterable_index = next_index
prefetch_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, change):\n if self.is_initialized:\n view = self.item_view\n upper_limit = (view.iterable_index + view.iterable_fetch_size -\n view.iterable_prefetch)\n lower_limit = max(0, view.iterable_index + view.iterable_prefetch)\n offset = int(view.iterable_fetch_size / 2.0)\n upper_visible_row = view.visible_rect[2]\n lower_visible_row = view.visible_rect[0]\n print('Visible rect = %s' % view.visible_rect)\n if upper_visible_row >= upper_limit:\n next_index = max(0, upper_visible_row - offset)\n if next_index > view.iterable_index:\n print('Auto prefetch upper limit %s!' % upper_limit)\n view.iterable_index = next_index\n elif view.iterable_index > 0 and lower_visible_row < lower_limit:\n next_index = max(0, lower_visible_row - offset)\n if next_index < view.iterable_index:\n print(\n 'Auto prefetch lower limit=%s, iterable=%s, setting next=%s!'\n % (lower_limit, view.iterable_index, next_index))\n view.iterable_index = next_index\n", "role": "user" }, { "content": "prefetch_items", "role": "assistant" } ]
def x(self): effective_offset = max(0, self.item_view.iterable_index) for i, item in enumerate(self.iterable): if i < effective_offset: continue elif i >= effective_offset + self.item_view.iterable_fetch_size: return yield item
windowed_iterable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n effective_offset = max(0, self.item_view.iterable_index)\n for i, item in enumerate(self.iterable):\n if i < effective_offset:\n continue\n elif i >= effective_offset + self.item_view.iterable_fetch_size:\n return\n yield item\n", "role": "user" }, { "content": "windowed_iterable", "role": "assistant" } ]