source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, *, start_token=None, page_size=250):
start_token = None
while True:
response = self._call(mc_calls.PlaylistFeed, max_results=page_size,
start_token=start_token)
items = response.body.get('data', {}).get('items', [])
if items:
yield items
start_token = response.body.get('nextPageToken')
if start_token is None:
break
|
playlists_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, start_token=None, page_size=250):\n start_token = None\n while True:\n response = self._call(mc_calls.PlaylistFeed, max_results=page_size,\n start_token=start_token)\n items = response.body.get('data', {}).get('items', [])\n if items:\n yield items\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n",
"role": "user"
},
{
"content": "playlists_iter",
"role": "assistant"
}
] |
def x(self, podcast_series_id, *, max_episodes=50):
podcast_info = self._call(mc_calls.PodcastFetchSeries,
podcast_series_id, max_episodes=max_episodes).body
return podcast_info
|
podcast
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, podcast_series_id, *, max_episodes=50):\n podcast_info = self._call(mc_calls.PodcastFetchSeries,\n podcast_series_id, max_episodes=max_episodes).body\n return podcast_info\n",
"role": "user"
},
{
"content": "podcast",
"role": "assistant"
}
] |
def x(self, *, device_id=None):
if device_id is None:
device_id = self.device_id
podcast_list = []
for chunk in self.podcasts_iter(device_id=device_id, page_size=49995):
podcast_list.extend(chunk)
return podcast_list
|
podcasts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, device_id=None):\n if device_id is None:\n device_id = self.device_id\n podcast_list = []\n for chunk in self.podcasts_iter(device_id=device_id, page_size=49995):\n podcast_list.extend(chunk)\n return podcast_list\n",
"role": "user"
},
{
"content": "podcasts",
"role": "assistant"
}
] |
def x(self, *, device_id=None, page_size=250):
if device_id is None:
device_id = self.device_id
start_token = None
prev_items = None
while True:
response = self._call(mc_calls.PodcastSeries, device_id,
max_results=page_size, start_token=start_token)
items = response.body.get('data', {}).get('items', [])
if items != prev_items:
subscribed_podcasts = [item for item in items if item.get(
'userPreferences', {}).get('subscribed')]
yield subscribed_podcasts
prev_items = items
else:
break
start_token = response.body.get('nextPageToken')
if start_token is None:
break
|
podcasts_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, device_id=None, page_size=250):\n if device_id is None:\n device_id = self.device_id\n start_token = None\n prev_items = None\n while True:\n response = self._call(mc_calls.PodcastSeries, device_id,\n max_results=page_size, start_token=start_token)\n items = response.body.get('data', {}).get('items', [])\n if items != prev_items:\n subscribed_podcasts = [item for item in items if item.get(\n 'userPreferences', {}).get('subscribed')]\n yield subscribed_podcasts\n prev_items = items\n else:\n break\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n",
"role": "user"
},
{
"content": "podcasts_iter",
"role": "assistant"
}
] |
def x(self, podcast_episode_id):
response = self._call(mc_calls.PodcastFetchEpisode, podcast_episode_id)
podcast_episode_info = [podcast_episode for podcast_episode in response
.body if not podcast_episode['deleted']]
return podcast_episode_info
|
podcast_episode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, podcast_episode_id):\n response = self._call(mc_calls.PodcastFetchEpisode, podcast_episode_id)\n podcast_episode_info = [podcast_episode for podcast_episode in response\n .body if not podcast_episode['deleted']]\n return podcast_episode_info\n",
"role": "user"
},
{
"content": "podcast_episode",
"role": "assistant"
}
] |
def x(self, *, device_id=None):
if device_id is None:
device_id = self.device_id
podcast_episode_list = []
for chunk in self.podcast_episodes_iter(device_id=device_id, page_size=
49995):
podcast_episode_list.extend(chunk)
return podcast_episode_list
|
podcast_episodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, device_id=None):\n if device_id is None:\n device_id = self.device_id\n podcast_episode_list = []\n for chunk in self.podcast_episodes_iter(device_id=device_id, page_size=\n 49995):\n podcast_episode_list.extend(chunk)\n return podcast_episode_list\n",
"role": "user"
},
{
"content": "podcast_episodes",
"role": "assistant"
}
] |
def x(self, *, device_id=None, page_size=250):
if device_id is None:
device_id = self.device_id
start_token = None
prev_items = None
while True:
response = self._call(mc_calls.PodcastEpisode, device_id,
max_results=page_size, start_token=start_token)
items = response.body.get('data', {}).get('items', [])
if items != prev_items:
yield items
prev_items = items
else:
break
start_token = response.body.get('nextPageToken')
if start_token is None:
break
|
podcast_episodes_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, device_id=None, page_size=250):\n if device_id is None:\n device_id = self.device_id\n start_token = None\n prev_items = None\n while True:\n response = self._call(mc_calls.PodcastEpisode, device_id,\n max_results=page_size, start_token=start_token)\n items = response.body.get('data', {}).get('items', [])\n if items != prev_items:\n yield items\n prev_items = items\n else:\n break\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n",
"role": "user"
},
{
"content": "podcast_episodes_iter",
"role": "assistant"
}
] |
def x(self, query, *, max_results=100, **kwargs):
results = defaultdict(list)
for type_, results_ in self.search_library(query, max_results=
max_results, **kwargs).items():
results[type_].extend(results_)
for type_, results_ in self.search_google(query, max_results=
max_results, **kwargs).items():
results[type_].extend(results_)
return dict(results)
|
search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, query, *, max_results=100, **kwargs):\n results = defaultdict(list)\n for type_, results_ in self.search_library(query, max_results=\n max_results, **kwargs).items():\n results[type_].extend(results_)\n for type_, results_ in self.search_google(query, max_results=\n max_results, **kwargs).items():\n results[type_].extend(results_)\n return dict(results)\n",
"role": "user"
},
{
"content": "search",
"role": "assistant"
}
] |
def x(self, query, *, max_results=100, **kwargs):
response = self._call(mc_calls.Query, query, max_results=max_results,
**kwargs)
clusters = response.body.get('clusterDetail', [])
results = defaultdict(list)
for cluster in clusters:
result_type = QueryResultType(cluster['cluster']['type']).name
entries = cluster.get('entries', [])
if len(entries) > 0:
for entry in entries:
item_key = next(key for key in entry if key not in [
'cluster', 'score', 'type'])
results[f'{result_type}s'].append(entry[item_key])
return dict(results)
|
search_google
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, query, *, max_results=100, **kwargs):\n response = self._call(mc_calls.Query, query, max_results=max_results,\n **kwargs)\n clusters = response.body.get('clusterDetail', [])\n results = defaultdict(list)\n for cluster in clusters:\n result_type = QueryResultType(cluster['cluster']['type']).name\n entries = cluster.get('entries', [])\n if len(entries) > 0:\n for entry in entries:\n item_key = next(key for key in entry if key not in [\n 'cluster', 'score', 'type'])\n results[f'{result_type}s'].append(entry[item_key])\n return dict(results)\n",
"role": "user"
},
{
"content": "search_google",
"role": "assistant"
}
] |
def x(self, query, *, max_results=100, **kwargs):
def x(item, fields):
return any(query.casefold() in item.get(field, '').casefold() for
field in fields)
types = [('playlists', ['description', 'name'], self.playlists), (
'podcasts', ['author', 'description', 'title'], self.podcasts), (
'songs', ['album', 'albumArtist', 'artist', 'composer', 'genre',
'title'], self.songs), ('stations', ['byline', 'description',
'name'], self.stations)]
results = {}
for type_, fields, func in types:
if not kwargs or type_ in kwargs:
results[type_] = [item for item in func() if match_fields(item,
fields)][:max_results]
return results
|
search_library
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, query, *, max_results=100, **kwargs):\n\n def x(item, fields):\n return any(query.casefold() in item.get(field, '').casefold() for\n field in fields)\n types = [('playlists', ['description', 'name'], self.playlists), (\n 'podcasts', ['author', 'description', 'title'], self.podcasts), (\n 'songs', ['album', 'albumArtist', 'artist', 'composer', 'genre',\n 'title'], self.songs), ('stations', ['byline', 'description',\n 'name'], self.stations)]\n results = {}\n for type_, fields, func in types:\n if not kwargs or type_ in kwargs:\n results[type_] = [item for item in func() if match_fields(item,\n fields)][:max_results]\n return results\n",
"role": "user"
},
{
"content": "search_library",
"role": "assistant"
}
] |
def x(self, query):
response = self._call(mc_calls.QuerySuggestion, query)
suggested_queries = response.body.get('suggested_queries', [])
return [suggested_query['suggestion_string'] for suggested_query in
suggested_queries]
|
search_suggestion
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, query):\n response = self._call(mc_calls.QuerySuggestion, query)\n suggested_queries = response.body.get('suggested_queries', [])\n return [suggested_query['suggestion_string'] for suggested_query in\n suggested_queries]\n",
"role": "user"
},
{
"content": "search_suggestion",
"role": "assistant"
}
] |
def x(self, album, *, num_songs=100, only_library=False, recently_played=None):
station_info = {'seed': {'albumId': album['albumId'], 'seedType':
StationSeedType.album.value}, 'num_entries': num_songs,
'library_content_only': only_library}
if recently_played is not None:
station_info['recently_played'] = recently_played
response = self._call(mc_calls.RadioStationFeed, station_infos=[
station_info])
station_feed = response.body.get('data', {}).get('stations', [])
try:
station = station_feed[0]
except IndexError:
station = {}
return station.get('tracks', [])
|
shuffle_album
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, album, *, num_songs=100, only_library=False, recently_played=None):\n station_info = {'seed': {'albumId': album['albumId'], 'seedType':\n StationSeedType.album.value}, 'num_entries': num_songs,\n 'library_content_only': only_library}\n if recently_played is not None:\n station_info['recently_played'] = recently_played\n response = self._call(mc_calls.RadioStationFeed, station_infos=[\n station_info])\n station_feed = response.body.get('data', {}).get('stations', [])\n try:\n station = station_feed[0]\n except IndexError:\n station = {}\n return station.get('tracks', [])\n",
"role": "user"
},
{
"content": "shuffle_album",
"role": "assistant"
}
] |
def x(self, artist, *, num_songs=100, only_library=False, recently_played=
None, only_artist=False):
station_info = {'num_entries': num_songs, 'library_content_only':
only_library}
if only_artist:
station_info['seed'] = {'artistId': artist['artistId'], 'seedType':
StationSeedType.artist_only.value}
else:
station_info['seed'] = {'artistId': artist['artistId'], 'seedType':
StationSeedType.artist_related.value}
if recently_played is not None:
station_info['recently_played'] = recently_played
response = self._call(mc_calls.RadioStationFeed, station_infos=[
station_info])
station_feed = response.body.get('data', {}).get('stations', [])
try:
station = station_feed[0]
except IndexError:
station = {}
return station.get('tracks', [])
|
shuffle_artist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, artist, *, num_songs=100, only_library=False, recently_played=\n None, only_artist=False):\n station_info = {'num_entries': num_songs, 'library_content_only':\n only_library}\n if only_artist:\n station_info['seed'] = {'artistId': artist['artistId'], 'seedType':\n StationSeedType.artist_only.value}\n else:\n station_info['seed'] = {'artistId': artist['artistId'], 'seedType':\n StationSeedType.artist_related.value}\n if recently_played is not None:\n station_info['recently_played'] = recently_played\n response = self._call(mc_calls.RadioStationFeed, station_infos=[\n station_info])\n station_feed = response.body.get('data', {}).get('stations', [])\n try:\n station = station_feed[0]\n except IndexError:\n station = {}\n return station.get('tracks', [])\n",
"role": "user"
},
{
"content": "shuffle_artist",
"role": "assistant"
}
] |
def x(self, song, *, num_songs=100, only_library=False, recently_played=None):
station_info = {'num_entries': num_songs, 'library_content_only':
only_library}
if 'storeId' in song:
station_info['seed'] = {'trackId': song['storeId'], 'seedType':
StationSeedType.store_track.value}
else:
station_info['seed'] = {'trackLockerId': song['id'], 'seedType':
StationSeedType.library_track.value}
if recently_played is not None:
station_info['recently_played'] = recently_played
response = self._call(mc_calls.RadioStationFeed, station_infos=[
station_info])
station_feed = response.body.get('data', {}).get('stations', [])
try:
station = station_feed[0]
except IndexError:
station = {}
return station.get('tracks', [])
|
shuffle_song
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, song, *, num_songs=100, only_library=False, recently_played=None):\n station_info = {'num_entries': num_songs, 'library_content_only':\n only_library}\n if 'storeId' in song:\n station_info['seed'] = {'trackId': song['storeId'], 'seedType':\n StationSeedType.store_track.value}\n else:\n station_info['seed'] = {'trackLockerId': song['id'], 'seedType':\n StationSeedType.library_track.value}\n if recently_played is not None:\n station_info['recently_played'] = recently_played\n response = self._call(mc_calls.RadioStationFeed, station_infos=[\n station_info])\n station_feed = response.body.get('data', {}).get('stations', [])\n try:\n station = station_feed[0]\n except IndexError:\n station = {}\n return station.get('tracks', [])\n",
"role": "user"
},
{
"content": "shuffle_song",
"role": "assistant"
}
] |
def x(self, *, tz_offset=None):
response = self._call(mc_calls.ListenNowSituations, tz_offset)
situation_list = response.body.get('situations', [])
return situation_list
|
situations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, tz_offset=None):\n response = self._call(mc_calls.ListenNowSituations, tz_offset)\n situation_list = response.body.get('situations', [])\n return situation_list\n",
"role": "user"
},
{
"content": "situations",
"role": "assistant"
}
] |
def x(self, song_id):
if song_id.startswith('T'):
song_info = self._call(mc_calls.FetchTrack, song_id).body
else:
song_info = next((song for song in self.songs() if song['id'] ==
song_id), None)
return song_info
|
song
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, song_id):\n if song_id.startswith('T'):\n song_info = self._call(mc_calls.FetchTrack, song_id).body\n else:\n song_info = next((song for song in self.songs() if song['id'] ==\n song_id), None)\n return song_info\n",
"role": "user"
},
{
"content": "song",
"role": "assistant"
}
] |
def x(self, songs):
mutations = [mc_calls.TrackBatch.add(song) for song in songs]
response = self._call(mc_calls.TrackBatch, mutations)
success_ids = [res['id'] for res in response.body['mutate_response'] if
res['response_code'] == 'OK']
return success_ids
|
songs_add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, songs):\n mutations = [mc_calls.TrackBatch.add(song) for song in songs]\n response = self._call(mc_calls.TrackBatch, mutations)\n success_ids = [res['id'] for res in response.body['mutate_response'] if\n res['response_code'] == 'OK']\n return success_ids\n",
"role": "user"
},
{
"content": "songs_add",
"role": "assistant"
}
] |
def x(self, songs):
mutations = [mc_calls.TrackBatch.delete(song['id']) for song in songs]
response = self._call(mc_calls.TrackBatch, mutations)
success_ids = [res['id'] for res in response.body['mutate_response'] if
res['response_code'] == 'OK']
return success_ids
|
songs_delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, songs):\n mutations = [mc_calls.TrackBatch.delete(song['id']) for song in songs]\n response = self._call(mc_calls.TrackBatch, mutations)\n success_ids = [res['id'] for res in response.body['mutate_response'] if\n res['response_code'] == 'OK']\n return success_ids\n",
"role": "user"
},
{
"content": "songs_delete",
"role": "assistant"
}
] |
def x(self, song):
if 'storeId' in song:
song_id = song['storeId']
elif 'trackId' in song:
song_id = song['trackId']
else:
song_id = song['id']
song_duration = song['durationMillis']
event = mc_calls.ActivityRecordRealtime.play(song_id, song_duration)
response = self._call(mc_calls.ActivityRecordRealtime, event)
return True if response.body['eventResults'][0]['code'] == 'OK' else False
|
song_play
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, song):\n if 'storeId' in song:\n song_id = song['storeId']\n elif 'trackId' in song:\n song_id = song['trackId']\n else:\n song_id = song['id']\n song_duration = song['durationMillis']\n event = mc_calls.ActivityRecordRealtime.play(song_id, song_duration)\n response = self._call(mc_calls.ActivityRecordRealtime, event)\n return True if response.body['eventResults'][0]['code'] == 'OK' else False\n",
"role": "user"
},
{
"content": "song_play",
"role": "assistant"
}
] |
def x(self, song, rating):
if 'storeId' in song:
song_id = song['storeId']
elif 'trackId' in song:
song_id = song['trackId']
else:
song_id = song['id']
event = mc_calls.ActivityRecordRealtime.rate(song_id, rating)
response = self._call(mc_calls.ActivityRecordRealtime, event)
return True if response.body['eventResults'][0]['code'] == 'OK' else False
|
song_rate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, song, rating):\n if 'storeId' in song:\n song_id = song['storeId']\n elif 'trackId' in song:\n song_id = song['trackId']\n else:\n song_id = song['id']\n event = mc_calls.ActivityRecordRealtime.rate(song_id, rating)\n response = self._call(mc_calls.ActivityRecordRealtime, event)\n return True if response.body['eventResults'][0]['code'] == 'OK' else False\n",
"role": "user"
},
{
"content": "song_rate",
"role": "assistant"
}
] |
def x(self):
song_list = []
for chunk in self.songs_iter(page_size=49995):
song_list.extend(chunk)
return song_list
|
songs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n song_list = []\n for chunk in self.songs_iter(page_size=49995):\n song_list.extend(chunk)\n return song_list\n",
"role": "user"
},
{
"content": "songs",
"role": "assistant"
}
] |
def x(self, *, page_size=250):
start_token = None
while True:
response = self._call(mc_calls.TrackFeed, max_results=page_size,
start_token=start_token)
items = response.body.get('data', {}).get('items', [])
if items:
yield items
start_token = response.body.get('nextPageToken')
if start_token is None:
break
|
songs_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, page_size=250):\n start_token = None\n while True:\n response = self._call(mc_calls.TrackFeed, max_results=page_size,\n start_token=start_token)\n items = response.body.get('data', {}).get('items', [])\n if items:\n yield items\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n",
"role": "user"
},
{
"content": "songs_iter",
"role": "assistant"
}
] |
def x(self, station_id, *, num_songs=25, recently_played=None):
station_info = {'station_id': station_id, 'num_entries': num_songs,
'library_content_only': False}
if recently_played is not None:
station_info['recently_played'] = recently_played
response = self._call(mc_calls.RadioStationFeed, station_infos=[
station_info])
station_feed = response.body.get('data', {}).get('stations', [])
try:
station = station_feed[0]
except IndexError:
station = {}
return station
|
station
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, station_id, *, num_songs=25, recently_played=None):\n station_info = {'station_id': station_id, 'num_entries': num_songs,\n 'library_content_only': False}\n if recently_played is not None:\n station_info['recently_played'] = recently_played\n response = self._call(mc_calls.RadioStationFeed, station_infos=[\n station_info])\n station_feed = response.body.get('data', {}).get('stations', [])\n try:\n station = station_feed[0]\n except IndexError:\n station = {}\n return station\n",
"role": "user"
},
{
"content": "station",
"role": "assistant"
}
] |
def x(self, *, num_songs=25, num_stations=4):
response = self._call(mc_calls.RadioStationFeed, num_entries=num_songs,
num_stations=num_stations)
station_feed = response.body.get('data', {}).get('stations', [])
return station_feed
|
station_feed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, num_songs=25, num_stations=4):\n response = self._call(mc_calls.RadioStationFeed, num_entries=num_songs,\n num_stations=num_stations)\n station_feed = response.body.get('data', {}).get('stations', [])\n return station_feed\n",
"role": "user"
},
{
"content": "station_feed",
"role": "assistant"
}
] |
def x(self, station, *, num_songs=25, recently_played=None):
station_id = station['id']
station = self.station(station_id, num_songs=num_songs, recently_played
=recently_played)
return station.get('tracks', [])
|
station_songs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, station, *, num_songs=25, recently_played=None):\n station_id = station['id']\n station = self.station(station_id, num_songs=num_songs, recently_played\n =recently_played)\n return station.get('tracks', [])\n",
"role": "user"
},
{
"content": "station_songs",
"role": "assistant"
}
] |
def x(self, *, generated=True, library=True):
station_list = []
for chunk in self.stations_iter(page_size=49995):
for station in chunk:
if generated and not station.get('inLibrary'
) or library and station.get('inLibrary'):
station_list.append(station)
return station_list
|
stations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, generated=True, library=True):\n station_list = []\n for chunk in self.stations_iter(page_size=49995):\n for station in chunk:\n if generated and not station.get('inLibrary'\n ) or library and station.get('inLibrary'):\n station_list.append(station)\n return station_list\n",
"role": "user"
},
{
"content": "stations",
"role": "assistant"
}
] |
def x(self, *, page_size=250):
start_token = None
while True:
response = self._call(mc_calls.RadioStation, max_results=page_size,
start_token=start_token)
yield response.body.get('data', {}).get('items', [])
start_token = response.body.get('nextPageToken')
if start_token is None:
break
|
stations_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, page_size=250):\n start_token = None\n while True:\n response = self._call(mc_calls.RadioStation, max_results=page_size,\n start_token=start_token)\n yield response.body.get('data', {}).get('items', [])\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n",
"role": "user"
},
{
"content": "stations_iter",
"role": "assistant"
}
] |
def x(self, item, *, device_id=None, quality='hi', session_token=None):
if device_id is None:
device_id = self.device_id
stream_url = self.stream_url(item, device_id=device_id, quality=quality,
session_token=session_token)
response = self.session.get(stream_url)
audio = response.content
return audio
|
stream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, item, *, device_id=None, quality='hi', session_token=None):\n if device_id is None:\n device_id = self.device_id\n stream_url = self.stream_url(item, device_id=device_id, quality=quality,\n session_token=session_token)\n response = self.session.get(stream_url)\n audio = response.content\n return audio\n",
"role": "user"
},
{
"content": "stream",
"role": "assistant"
}
] |
def x(self, item, *, device_id=None, quality='hi', session_token=None):
if device_id is None:
device_id = self.device_id
if 'episodeId' in item:
response = self._call(mc_calls.PodcastEpisodeStreamURL, item[
'episodeId'], quality=quality, device_id=device_id)
elif 'wentryid' in item:
response = self._call(mc_calls.RadioStationTrackStreamURL, item[
'storeId'], item['wentryid'], session_token, quality=quality,
device_id=device_id)
elif 'trackId' in item:
response = self._call(mc_calls.TrackStreamURL, item['trackId'],
quality=quality, device_id=device_id)
elif 'storeId' in item and self.is_subscribed:
response = self._call(mc_calls.TrackStreamURL, item['storeId'],
quality=quality, device_id=device_id)
elif 'id' in item:
response = self._call(mc_calls.TrackStreamURL, item['id'], quality=
quality, device_id=device_id)
else:
if 'storeId' in item and not self.is_subscribed:
msg = "Can't stream a store song without a subscription."
else:
msg = 'Item does not contain an ID field.'
raise ValueError(msg)
try:
stream_url = response.headers['Location']
except KeyError:
stream_url = response.body['url']
return stream_url
|
stream_url
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, item, *, device_id=None, quality='hi', session_token=None):\n if device_id is None:\n device_id = self.device_id\n if 'episodeId' in item:\n response = self._call(mc_calls.PodcastEpisodeStreamURL, item[\n 'episodeId'], quality=quality, device_id=device_id)\n elif 'wentryid' in item:\n response = self._call(mc_calls.RadioStationTrackStreamURL, item[\n 'storeId'], item['wentryid'], session_token, quality=quality,\n device_id=device_id)\n elif 'trackId' in item:\n response = self._call(mc_calls.TrackStreamURL, item['trackId'],\n quality=quality, device_id=device_id)\n elif 'storeId' in item and self.is_subscribed:\n response = self._call(mc_calls.TrackStreamURL, item['storeId'],\n quality=quality, device_id=device_id)\n elif 'id' in item:\n response = self._call(mc_calls.TrackStreamURL, item['id'], quality=\n quality, device_id=device_id)\n else:\n if 'storeId' in item and not self.is_subscribed:\n msg = \"Can't stream a store song without a subscription.\"\n else:\n msg = 'Item does not contain an ID field.'\n raise ValueError(msg)\n try:\n stream_url = response.headers['Location']\n except KeyError:\n stream_url = response.body['url']\n return stream_url\n",
"role": "user"
},
{
"content": "stream_url",
"role": "assistant"
}
] |
def x(self, *, library=True, store=True):
thumbs_up_songs = []
if library is True:
thumbs_up_songs.extend(song for song in self.songs() if song.get(
'rating', '0') == '5')
if store is True:
response = self._call(mc_calls.EphemeralTop)
thumbs_up_songs.extend(response.body.get('data', {}).get('items', []))
return thumbs_up_songs
|
thumbs_up_songs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, library=True, store=True):\n thumbs_up_songs = []\n if library is True:\n thumbs_up_songs.extend(song for song in self.songs() if song.get(\n 'rating', '0') == '5')\n if store is True:\n response = self._call(mc_calls.EphemeralTop)\n thumbs_up_songs.extend(response.body.get('data', {}).get('items', []))\n return thumbs_up_songs\n",
"role": "user"
},
{
"content": "thumbs_up_songs",
"role": "assistant"
}
] |
def x(self):
response = self._call(mc_calls.BrowseTopChart)
top_charts = response.body
return top_charts
|
top_charts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n response = self._call(mc_calls.BrowseTopChart)\n top_charts = response.body\n return top_charts\n",
"role": "user"
},
{
"content": "top_charts",
"role": "assistant"
}
] |
def x(self, genre_id):
response = self._call(mc_calls.BrowseTopChartForGenre, genre_id)
top_chart_for_genre = response.body
return top_chart_for_genre
|
top_charts_for_genre
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, genre_id):\n response = self._call(mc_calls.BrowseTopChartForGenre, genre_id)\n top_chart_for_genre = response.body\n return top_chart_for_genre\n",
"role": "user"
},
{
"content": "top_charts_for_genre",
"role": "assistant"
}
] |
def x(self):
response = self._call(mc_calls.BrowseTopChartGenres)
top_chart_genres = response.body.get('genres', [])
return top_chart_genres
|
top_charts_genres
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n response = self._call(mc_calls.BrowseTopChartGenres)\n top_chart_genres = response.body.get('genres', [])\n return top_chart_genres\n",
"role": "user"
},
{
"content": "top_charts_genres",
"role": "assistant"
}
] |
def x(stream=sys.stdin.buffer):
payload = decode.decode(stream)
sys.stdout.write(payload.decode('utf8'))
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stream=sys.stdin.buffer):\n payload = decode.decode(stream)\n sys.stdout.write(payload.decode('utf8'))\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(f, blocksize):
f_bytes = f.read()
blocks = [int.from_bytes(f_bytes[i:i + blocksize].ljust(blocksize, b'0'
), sys.byteorder) for i in range(0, len(f_bytes), blocksize)]
return len(f_bytes), blocks
|
split_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, blocksize):\n f_bytes = f.read()\n blocks = [int.from_bytes(f_bytes[i:i + blocksize].ljust(blocksize, b'0'\n ), sys.byteorder) for i in range(0, len(f_bytes), blocksize)]\n return len(f_bytes), blocks\n",
"role": "user"
},
{
"content": "split_file",
"role": "assistant"
}
] |
def x(f, blocksize, seed=None, c=sampler.DEFAULT_C, delta=sampler.DEFAULT_DELTA
):
if seed is None:
seed = randint(0, 1 << 31 - 1)
filesize, blocks = _split_file(f, blocksize)
K = len(blocks)
prng = sampler.PRNG(params=(K, delta, c))
prng.set_seed(seed)
while True:
blockseed, d, ix_samples = prng.get_src_blocks()
block_data = 0
for ix in ix_samples:
block_data ^= blocks[ix]
block = filesize, blocksize, blockseed, int.to_bytes(block_data,
blocksize, sys.byteorder)
yield pack('!III%ss' % blocksize, *block)
|
encoder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(f, blocksize, seed=None, c=sampler.DEFAULT_C, delta=sampler.DEFAULT_DELTA\n ):\n if seed is None:\n seed = randint(0, 1 << 31 - 1)\n filesize, blocks = _split_file(f, blocksize)\n K = len(blocks)\n prng = sampler.PRNG(params=(K, delta, c))\n prng.set_seed(seed)\n while True:\n blockseed, d, ix_samples = prng.get_src_blocks()\n block_data = 0\n for ix in ix_samples:\n block_data ^= blocks[ix]\n block = filesize, blocksize, blockseed, int.to_bytes(block_data,\n blocksize, sys.byteorder)\n yield pack('!III%ss' % blocksize, *block)\n",
"role": "user"
},
{
"content": "encoder",
"role": "assistant"
}
] |
def x(blocksize, stream):
blockdata = stream.read(blocksize)
return int.from_bytes(blockdata, 'big')
|
read_block
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(blocksize, stream):\n blockdata = stream.read(blocksize)\n return int.from_bytes(blockdata, 'big')\n",
"role": "user"
},
{
"content": "read_block",
"role": "assistant"
}
] |
def x(stream):
while True:
header = _read_header(stream)
block = _read_block(header[1], stream)
yield header, block
|
read_blocks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(stream):\n while True:\n header = _read_header(stream)\n block = _read_block(header[1], stream)\n yield header, block\n",
"role": "user"
},
{
"content": "read_blocks",
"role": "assistant"
}
] |
def x(self, nodes, data):
if len(nodes) == 1:
to_eliminate = list(self.eliminate(next(iter(nodes)), data))
while len(to_eliminate):
other, check = to_eliminate.pop()
to_eliminate.extend(self.eliminate(other, check))
else:
for node in list(nodes):
if node in self.eliminated:
nodes.remove(node)
data ^= self.eliminated[node]
if len(nodes) == 1:
return self.add_block(nodes, data)
else:
check = CheckNode(nodes, data)
for node in nodes:
self.checks[node].append(check)
return len(self.eliminated) >= self.num_blocks
|
add_block
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nodes, data):\n if len(nodes) == 1:\n to_eliminate = list(self.eliminate(next(iter(nodes)), data))\n while len(to_eliminate):\n other, check = to_eliminate.pop()\n to_eliminate.extend(self.eliminate(other, check))\n else:\n for node in list(nodes):\n if node in self.eliminated:\n nodes.remove(node)\n data ^= self.eliminated[node]\n if len(nodes) == 1:\n return self.add_block(nodes, data)\n else:\n check = CheckNode(nodes, data)\n for node in nodes:\n self.checks[node].append(check)\n return len(self.eliminated) >= self.num_blocks\n",
"role": "user"
},
{
"content": "add_block",
"role": "assistant"
}
] |
def x(self, node, data):
self.eliminated[node] = data
others = self.checks[node]
del self.checks[node]
for check in others:
check.check ^= data
check.src_nodes.remove(node)
if len(check.src_nodes) == 1:
yield next(iter(check.src_nodes)), check.check
|
eliminate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node, data):\n self.eliminated[node] = data\n others = self.checks[node]\n del self.checks[node]\n for check in others:\n check.check ^= data\n check.src_nodes.remove(node)\n if len(check.src_nodes) == 1:\n yield next(iter(check.src_nodes)), check.check\n",
"role": "user"
},
{
"content": "eliminate",
"role": "assistant"
}
] |
def x(username=None, device_id=None, *, token=None, locale='en_US'):
return MobileClient(username, device_id, token=token, locale=locale)
|
mobileclient
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(username=None, device_id=None, *, token=None, locale='en_US'):\n return MobileClient(username, device_id, token=token, locale=locale)\n",
"role": "user"
},
{
"content": "mobileclient",
"role": "assistant"
}
] |
def x(tree, add_node_labels=True, use_uids=True):
tree.max_distance_from_root()
idx = []
data = {'type': [], 'id': [], 'parent': [], 'length': [], 'label': [],
'distance': []}
if use_uids:
data['uid'] = []
if add_node_labels:
for i, node in enumerate(tree.internal_nodes()):
node.label = str(i)
for node in tree.nodes():
if node.is_leaf():
type_ = 'leaf'
label = str(node.taxon.label).replace(' ', '_')
elif node.is_internal():
type_ = 'node'
label = str(node.label)
id_ = label
parent_node = node.parent_node
length = node.edge_length
distance = node.distance_from_root()
if parent_node is None and length is None:
parent_label = None
parent_node = None
length = 0
distance = 0
type_ = 'root'
elif parent_node.is_internal():
parent_label = str(parent_node.label)
else:
raise Exception('Subtree is not attached to tree?')
data['type'].append(type_)
data['id'].append(id_)
data['parent'].append(parent_label)
data['length'].append(length)
data['label'].append(label)
data['distance'].append(distance)
if use_uids:
data['uid'].append(get_random_id(10))
df = pandas.DataFrame(data)
return df
|
dendropy_to_dataframe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tree, add_node_labels=True, use_uids=True):\n tree.max_distance_from_root()\n idx = []\n data = {'type': [], 'id': [], 'parent': [], 'length': [], 'label': [],\n 'distance': []}\n if use_uids:\n data['uid'] = []\n if add_node_labels:\n for i, node in enumerate(tree.internal_nodes()):\n node.label = str(i)\n for node in tree.nodes():\n if node.is_leaf():\n type_ = 'leaf'\n label = str(node.taxon.label).replace(' ', '_')\n elif node.is_internal():\n type_ = 'node'\n label = str(node.label)\n id_ = label\n parent_node = node.parent_node\n length = node.edge_length\n distance = node.distance_from_root()\n if parent_node is None and length is None:\n parent_label = None\n parent_node = None\n length = 0\n distance = 0\n type_ = 'root'\n elif parent_node.is_internal():\n parent_label = str(parent_node.label)\n else:\n raise Exception('Subtree is not attached to tree?')\n data['type'].append(type_)\n data['id'].append(id_)\n data['parent'].append(parent_label)\n data['length'].append(length)\n data['label'].append(label)\n data['distance'].append(distance)\n if use_uids:\n data['uid'].append(get_random_id(10))\n df = pandas.DataFrame(data)\n return df\n",
"role": "user"
},
{
"content": "dendropy_to_dataframe",
"role": "assistant"
}
] |
def x(filename=None, data=None, schema=None, add_node_labels=True, use_uids
=True):
if filename is not None:
tree = dendropy.Tree.get(path=filename, schema=schema,
preserve_underscores=True)
elif data is not None:
tree = dendropy.Tree.get(data=data, schema=schema,
preserve_underscores=True)
else:
raise Exception('No tree given?')
df = _dendropy_to_dataframe(tree, add_node_labels=add_node_labels,
use_uids=use_uids)
return df
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename=None, data=None, schema=None, add_node_labels=True, use_uids\n =True):\n if filename is not None:\n tree = dendropy.Tree.get(path=filename, schema=schema,\n preserve_underscores=True)\n elif data is not None:\n tree = dendropy.Tree.get(data=data, schema=schema,\n preserve_underscores=True)\n else:\n raise Exception('No tree given?')\n df = _dendropy_to_dataframe(tree, add_node_labels=add_node_labels,\n use_uids=use_uids)\n return df\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(schema):
def x(filename=None, data=None, add_node_labels=True, use_uids=True, **
kwargs):
return _read(filename=filename, data=data, schema=schema,
add_node_labels=add_node_labels, use_uids=use_uids, **kwargs)
func.__doc__ = _read_doc_template(schema)
return func
|
read_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(schema):\n\n def x(filename=None, data=None, add_node_labels=True, use_uids=True, **\n kwargs):\n return _read(filename=filename, data=data, schema=schema,\n add_node_labels=add_node_labels, use_uids=use_uids, **kwargs)\n func.__doc__ = _read_doc_template(schema)\n return func\n",
"role": "user"
},
{
"content": "read_function",
"role": "assistant"
}
] |
def x(df, id_col='uid', sequence_col='sequence', extra_data=None, alphabet=None
):
seq_records = []
for i, row in df.iterrows():
try:
seq = Seq(row[sequence_col], alphabet=alphabet)
id = row[id_col]
description = ''
if extra_data is not None:
description = ' '.join([row[key] for key in extra_data])
record = SeqRecord(seq=seq, id=id, description=description)
seq_records.append(record)
except TypeError:
pass
return seq_records
|
pandas_df_to_biopython_seqrecord
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, id_col='uid', sequence_col='sequence', extra_data=None, alphabet=None\n ):\n seq_records = []\n for i, row in df.iterrows():\n try:\n seq = Seq(row[sequence_col], alphabet=alphabet)\n id = row[id_col]\n description = ''\n if extra_data is not None:\n description = ' '.join([row[key] for key in extra_data])\n record = SeqRecord(seq=seq, id=id, description=description)\n seq_records.append(record)\n except TypeError:\n pass\n return seq_records\n",
"role": "user"
},
{
"content": "pandas_df_to_biopython_seqrecord",
"role": "assistant"
}
] |
def x(series, id_col='uid', sequence_col='sequence', extra_data=None,
alphabet=None):
seq = Seq(series[sequence_col], alphabet=alphabet)
id = series[id_col]
description = ''
if extra_data is not None:
description = ' '.join([series[key] for key in extra_data])
record = SeqRecord(seq=seq, id=id, description=description)
seq_records = [record]
return seq_records
|
pandas_series_to_biopython_seqrecord
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(series, id_col='uid', sequence_col='sequence', extra_data=None,\n alphabet=None):\n seq = Seq(series[sequence_col], alphabet=alphabet)\n id = series[id_col]\n description = ''\n if extra_data is not None:\n description = ' '.join([series[key] for key in extra_data])\n record = SeqRecord(seq=seq, id=id, description=description)\n seq_records = [record]\n return seq_records\n",
"role": "user"
},
{
"content": "pandas_series_to_biopython_seqrecord",
"role": "assistant"
}
] |
def x(data, filename=None, schema='fasta', id_col='uid', sequence_col=
'sequence', extra_data=None, alphabet=None, **kwargs):
if alphabet is None:
alphabet = Bio.Alphabet.Alphabet()
elif alphabet in ['dna', 'rna', 'protein', 'nucleotide']:
alphabet = getattr(Bio.Alphabet, 'generic_{}'.format(alphabet))
else:
raise Exception(
"The alphabet is not recognized. Must be 'dna', 'rna', 'nucleotide', or 'protein'."
)
if type(data) is pd.DataFrame:
seq_records = pandas_df_to_biopython_seqrecord(data, id_col=id_col,
sequence_col=sequence_col, extra_data=extra_data, alphabet=alphabet
)
elif type(data) is pd.Series:
seq_records = pandas_series_to_biopython_seqrecord(data, id_col=
id_col, sequence_col=sequence_col, extra_data=extra_data,
alphabet=alphabet)
if filename is not None:
SeqIO.write(seq_records, filename, format=schema, **kwargs)
else:
return ''.join([s.format(schema) for s in seq_records])
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, filename=None, schema='fasta', id_col='uid', sequence_col=\n 'sequence', extra_data=None, alphabet=None, **kwargs):\n if alphabet is None:\n alphabet = Bio.Alphabet.Alphabet()\n elif alphabet in ['dna', 'rna', 'protein', 'nucleotide']:\n alphabet = getattr(Bio.Alphabet, 'generic_{}'.format(alphabet))\n else:\n raise Exception(\n \"The alphabet is not recognized. Must be 'dna', 'rna', 'nucleotide', or 'protein'.\"\n )\n if type(data) is pd.DataFrame:\n seq_records = pandas_df_to_biopython_seqrecord(data, id_col=id_col,\n sequence_col=sequence_col, extra_data=extra_data, alphabet=alphabet\n )\n elif type(data) is pd.Series:\n seq_records = pandas_series_to_biopython_seqrecord(data, id_col=\n id_col, sequence_col=sequence_col, extra_data=extra_data,\n alphabet=alphabet)\n if filename is not None:\n SeqIO.write(seq_records, filename, format=schema, **kwargs)\n else:\n return ''.join([s.format(schema) for s in seq_records])\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(schema):
def x(self, filename=None, schema=schema, id_col='uid', sequence_col=
'sequence', extra_data=None, alphabet=None, **kwargs):
return _write(self._data, filename=filename, schema=schema, id_col=
id_col, sequence_col=sequence_col, extra_data=extra_data,
alphabet=alphabet, **kwargs)
method.__doc__ = _write_doc_template(schema)
return method
|
write_method
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(schema):\n\n def x(self, filename=None, schema=schema, id_col='uid', sequence_col=\n 'sequence', extra_data=None, alphabet=None, **kwargs):\n return _write(self._data, filename=filename, schema=schema, id_col=\n id_col, sequence_col=sequence_col, extra_data=extra_data,\n alphabet=alphabet, **kwargs)\n method.__doc__ = _write_doc_template(schema)\n return method\n",
"role": "user"
},
{
"content": "write_method",
"role": "assistant"
}
] |
def x(schema):
def x(data, filename=None, schema=schema, id_col='uid', sequence_col=
'sequence', extra_data=None, alphabet=None, **kwargs):
return _write(data, filename=filename, schema=schema, id_col=id_col,
sequence_col=sequence_col, extra_data=extra_data, alphabet=
alphabet, **kwargs)
func.__doc__ = _write_doc_template(schema)
return func
|
write_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(schema):\n\n def x(data, filename=None, schema=schema, id_col='uid', sequence_col=\n 'sequence', extra_data=None, alphabet=None, **kwargs):\n return _write(data, filename=filename, schema=schema, id_col=id_col,\n sequence_col=sequence_col, extra_data=extra_data, alphabet=\n alphabet, **kwargs)\n func.__doc__ = _write_doc_template(schema)\n return func\n",
"role": "user"
},
{
"content": "write_function",
"role": "assistant"
}
] |
def x(filename, schema, seq_label='sequence', alphabet=None, use_uids=True,
**kwargs):
if alphabet is None:
alphabet = Bio.Alphabet.Alphabet()
elif alphabet in ['dna', 'rna', 'protein', 'nucleotide']:
alphabet = getattr(Bio.Alphabet, 'generic_{}'.format(alphabet))
else:
raise Exception(
"The alphabet is not recognized. Must be 'dna', 'rna', 'nucleotide', or 'protein'."
)
kwargs.update(alphabet=alphabet)
data = {'id': [], seq_label: [], 'description': [], 'label': []}
if use_uids:
data['uid'] = []
for i, s in enumerate(SeqIO.parse(filename, format=schema, **kwargs)):
data['id'].append(s.id)
data[seq_label].append(str(s.seq))
data['description'].append(s.description)
data['label'].append(s.name)
if use_uids:
data['uid'].append(get_random_id(10))
return pd.DataFrame(data)
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, schema, seq_label='sequence', alphabet=None, use_uids=True,\n **kwargs):\n if alphabet is None:\n alphabet = Bio.Alphabet.Alphabet()\n elif alphabet in ['dna', 'rna', 'protein', 'nucleotide']:\n alphabet = getattr(Bio.Alphabet, 'generic_{}'.format(alphabet))\n else:\n raise Exception(\n \"The alphabet is not recognized. Must be 'dna', 'rna', 'nucleotide', or 'protein'.\"\n )\n kwargs.update(alphabet=alphabet)\n data = {'id': [], seq_label: [], 'description': [], 'label': []}\n if use_uids:\n data['uid'] = []\n for i, s in enumerate(SeqIO.parse(filename, format=schema, **kwargs)):\n data['id'].append(s.id)\n data[seq_label].append(str(s.seq))\n data['description'].append(s.description)\n data['label'].append(s.name)\n if use_uids:\n data['uid'].append(get_random_id(10))\n return pd.DataFrame(data)\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(schema):
def x(self, filename, seq_label='sequence', alphabet=None, combine_on=
'uid', use_uids=True, **kwargs):
df0 = self._data
df1 = _read(filename=filename, schema=schema, seq_label=seq_label,
alphabet=alphabet, use_uids=use_uids, **kwargs)
return df0.phylo.combine(df1, on=combine_on)
func.__doc__ = _read_doc_template(schema)
return func
|
read_method
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(schema):\n\n def x(self, filename, seq_label='sequence', alphabet=None, combine_on=\n 'uid', use_uids=True, **kwargs):\n df0 = self._data\n df1 = _read(filename=filename, schema=schema, seq_label=seq_label,\n alphabet=alphabet, use_uids=use_uids, **kwargs)\n return df0.phylo.combine(df1, on=combine_on)\n func.__doc__ = _read_doc_template(schema)\n return func\n",
"role": "user"
},
{
"content": "read_method",
"role": "assistant"
}
] |
def x(schema):
def x(filename, seq_label='sequence', alphabet=None, use_uids=True, **
kwargs):
return _read(filename=filename, schema=schema, seq_label=seq_label,
alphabet=alphabet, use_uids=use_uids, **kwargs)
func.__doc__ = _read_doc_template(schema)
return func
|
read_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(schema):\n\n def x(filename, seq_label='sequence', alphabet=None, use_uids=True, **\n kwargs):\n return _read(filename=filename, schema=schema, seq_label=seq_label,\n alphabet=alphabet, use_uids=use_uids, **kwargs)\n func.__doc__ = _read_doc_template(schema)\n return func\n",
"role": "user"
},
{
"content": "read_function",
"role": "assistant"
}
] |
def x(filename, **kwargs):
with open(filename, 'r') as f:
blast_record = NCBIXML.read(f)
data = {'accession': [], 'hit_def': [], 'hit_id': [], 'title': [],
'length': [], 'e_value': [], 'sequence': []}
for i, s in enumerate(blast_record.alignments):
data['accession'] = s.accession
data['hit_def'] = s.hit_def
data['hit_id'] = s.hit_id
data['title'] = s.title
data['length'] = s.length
data['e_value'] = s.hsps[0].expect
data['sequence'] = s.hsps[0].sbjct
return pd.DataFrame(data)
|
read_blast_xml
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, **kwargs):\n with open(filename, 'r') as f:\n blast_record = NCBIXML.read(f)\n data = {'accession': [], 'hit_def': [], 'hit_id': [], 'title': [],\n 'length': [], 'e_value': [], 'sequence': []}\n for i, s in enumerate(blast_record.alignments):\n data['accession'] = s.accession\n data['hit_def'] = s.hit_def\n data['hit_id'] = s.hit_id\n data['title'] = s.title\n data['length'] = s.length\n data['e_value'] = s.hsps[0].expect\n data['sequence'] = s.hsps[0].sbjct\n return pd.DataFrame(data)\n",
"role": "user"
},
{
"content": "read_blast_xml",
"role": "assistant"
}
] |
def x(df, taxon_col='uid', taxon_annotations=[], node_col='uid',
node_annotations=[], branch_lengths=True):
if isinstance(taxon_col, str) is False:
raise Exception('taxon_col must be a string.')
if isinstance(node_col, str) is False:
raise Exception('taxon_col must be a string.')
taxon_namespace = dendropy.TaxonNamespace()
nodes = {}
for idx in df.index:
data = df.loc[idx]
taxon = None
if data['type'] == 'leaf':
taxon = dendropy.Taxon(label=data[taxon_col])
for ann in taxon_annotations:
taxon.annotations.add_new(ann, data[ann])
taxon_namespace.add_taxon(taxon)
label = data[node_col]
edge_length = None
if branch_lengths is True:
edge_length = data['length']
n = dendropy.Node(taxon=taxon, label=label, edge_length=edge_length)
for ann in node_annotations:
n.annotations.add_new(ann, data[ann])
nodes[idx] = n
root = None
for idx, node in nodes.items():
data = df.loc[idx]
children_idx = df[df['parent'] == data['id']].index
children_nodes = [nodes[i] for i in children_idx]
nodes[idx].set_child_nodes(children_nodes)
if data['parent'] is None:
root = nodes[idx]
tree = dendropy.Tree(seed_node=root, taxon_namespace=taxon_namespace)
return tree
|
pandas_df_to_dendropy_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, taxon_col='uid', taxon_annotations=[], node_col='uid',\n node_annotations=[], branch_lengths=True):\n if isinstance(taxon_col, str) is False:\n raise Exception('taxon_col must be a string.')\n if isinstance(node_col, str) is False:\n raise Exception('taxon_col must be a string.')\n taxon_namespace = dendropy.TaxonNamespace()\n nodes = {}\n for idx in df.index:\n data = df.loc[idx]\n taxon = None\n if data['type'] == 'leaf':\n taxon = dendropy.Taxon(label=data[taxon_col])\n for ann in taxon_annotations:\n taxon.annotations.add_new(ann, data[ann])\n taxon_namespace.add_taxon(taxon)\n label = data[node_col]\n edge_length = None\n if branch_lengths is True:\n edge_length = data['length']\n n = dendropy.Node(taxon=taxon, label=label, edge_length=edge_length)\n for ann in node_annotations:\n n.annotations.add_new(ann, data[ann])\n nodes[idx] = n\n root = None\n for idx, node in nodes.items():\n data = df.loc[idx]\n children_idx = df[df['parent'] == data['id']].index\n children_nodes = [nodes[i] for i in children_idx]\n nodes[idx].set_child_nodes(children_nodes)\n if data['parent'] is None:\n root = nodes[idx]\n tree = dendropy.Tree(seed_node=root, taxon_namespace=taxon_namespace)\n return tree\n",
"role": "user"
},
{
"content": "pandas_df_to_dendropy_tree",
"role": "assistant"
}
] |
def x(df, filename=None, schema='newick', taxon_col='uid',
taxon_annotations=[], node_col='uid', node_annotations=[],
branch_lengths=True, **kwargs):
tree = _pandas_df_to_dendropy_tree(df, taxon_col=taxon_col,
taxon_annotations=taxon_annotations, node_col=node_col,
node_annotations=node_annotations, branch_lengths=branch_lengths)
print(schema)
if filename is not None:
tree.write(path=filename, schema=schema, suppress_annotations=False,
**kwargs)
else:
return tree.as_string(schema=schema)
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(df, filename=None, schema='newick', taxon_col='uid',\n taxon_annotations=[], node_col='uid', node_annotations=[],\n branch_lengths=True, **kwargs):\n tree = _pandas_df_to_dendropy_tree(df, taxon_col=taxon_col,\n taxon_annotations=taxon_annotations, node_col=node_col,\n node_annotations=node_annotations, branch_lengths=branch_lengths)\n print(schema)\n if filename is not None:\n tree.write(path=filename, schema=schema, suppress_annotations=False,\n **kwargs)\n else:\n return tree.as_string(schema=schema)\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(schema):
def x(self, filename=None, schema=schema, taxon_col='uid',
taxon_annotations=[], node_col='uid', node_annotations=[],
branch_lengths=True, **kwargs):
return _write(self._data, filename=filename, schema=schema,
taxon_col=taxon_col, taxon_annotations=taxon_annotations,
node_col=node_col, node_annotations=node_annotations,
branch_lengths=branch_lengths, **kwargs)
method.__doc__ = _write_doc_template(schema)
return method
|
write_method
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(schema):\n\n def x(self, filename=None, schema=schema, taxon_col='uid',\n taxon_annotations=[], node_col='uid', node_annotations=[],\n branch_lengths=True, **kwargs):\n return _write(self._data, filename=filename, schema=schema,\n taxon_col=taxon_col, taxon_annotations=taxon_annotations,\n node_col=node_col, node_annotations=node_annotations,\n branch_lengths=branch_lengths, **kwargs)\n method.__doc__ = _write_doc_template(schema)\n return method\n",
"role": "user"
},
{
"content": "write_method",
"role": "assistant"
}
] |
def x(schema):
def x(data, filename=None, schema=schema, taxon_col='uid',
taxon_annotations=[], node_col='uid', node_annotations=[],
branch_lengths=True, **kwargs):
return _write(data, filename=filename, schema=schema, taxon_col=
taxon_col, taxon_annotations=taxon_annotations, node_col=
node_col, node_annotations=node_annotations, branch_lengths=
branch_lengths, **kwargs)
func.__doc__ = _write_doc_template(schema)
return func
|
write_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(schema):\n\n def x(data, filename=None, schema=schema, taxon_col='uid',\n taxon_annotations=[], node_col='uid', node_annotations=[],\n branch_lengths=True, **kwargs):\n return _write(data, filename=filename, schema=schema, taxon_col=\n taxon_col, taxon_annotations=taxon_annotations, node_col=\n node_col, node_annotations=node_annotations, branch_lengths=\n branch_lengths, **kwargs)\n func.__doc__ = _write_doc_template(schema)\n return func\n",
"role": "user"
},
{
"content": "write_function",
"role": "assistant"
}
] |
def x(length):
alphabet = string.ascii_uppercase + string.ascii_lowercase + string.digits
return ''.join(random.choice(alphabet) for _ in range(length))
|
get_random_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(length):\n alphabet = string.ascii_uppercase + string.ascii_lowercase + string.digits\n return ''.join(random.choice(alphabet) for _ in range(length))\n",
"role": "user"
},
{
"content": "get_random_id",
"role": "assistant"
}
] |
def x(self, folder):
self.folder = folder
self.templates.directories[0] = folder
self.app.root_path = folder
|
set_folder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, folder):\n self.folder = folder\n self.templates.directories[0] = folder\n self.app.root_path = folder\n",
"role": "user"
},
{
"content": "set_folder",
"role": "assistant"
}
] |
def x(self, host='0.0.0.0', port=8080):
waitress.serve(self.app, host=host, port=port)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, host='0.0.0.0', port=8080):\n waitress.serve(self.app, host=host, port=port)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self, path):
data = self.app.test_client().get('/%s' % path).data
return data
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path):\n data = self.app.test_client().get('/%s' % path).data\n return data\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, output_folder):
files = []
for l in self.file_listers:
files += l()
for f in files:
_logger.info('generating %s' % f)
content = self.get(f)
loc = os.path.join(output_folder, f)
d = os.path.dirname(loc)
if not os.path.exists(d):
os.makedirs(d)
with open(loc, 'wb') as file_:
file_.write(content)
|
gen_static
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, output_folder):\n files = []\n for l in self.file_listers:\n files += l()\n for f in files:\n _logger.info('generating %s' % f)\n content = self.get(f)\n loc = os.path.join(output_folder, f)\n d = os.path.dirname(loc)\n if not os.path.exists(d):\n os.makedirs(d)\n with open(loc, 'wb') as file_:\n file_.write(content)\n",
"role": "user"
},
{
"content": "gen_static",
"role": "assistant"
}
] |
def x(self, cmd_args=None):
logging.basicConfig(level=logging.INFO, format='%(message)s')
parser = argparse.ArgumentParser(description=
'PyGreen, micro web framework/static web site generator')
subparsers = parser.add_subparsers(dest='action')
parser_serve = subparsers.add_parser('serve', help='serve the web site')
parser_serve.add_argument('-p', '--port', type=int, default=8080, help=
'port to serve on')
parser_serve.add_argument('-f', '--folder', default='.', help=
'folder containg files to serve')
parser_serve.add_argument('-d', '--disable-templates', action=
'store_true', default=False, help=
'just serve static files, do not use Mako')
def x():
if args.disable_templates:
self.template_exts = set([])
self.run(port=args.port)
parser_serve.set_defaults(func=serve)
parser_gen = subparsers.add_parser('gen', help=
'generate a static version of the site')
parser_gen.add_argument('output', help='folder to store the files')
parser_gen.add_argument('-f', '--folder', default='.', help=
'folder containing files to generate')
def x():
self.gen_static(args.output)
parser_gen.set_defaults(func=gen)
args = parser.parse_args(cmd_args)
self.set_folder(args.folder)
print(parser.description)
print('')
args.func()
|
cli
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cmd_args=None):\n logging.basicConfig(level=logging.INFO, format='%(message)s')\n parser = argparse.ArgumentParser(description=\n 'PyGreen, micro web framework/static web site generator')\n subparsers = parser.add_subparsers(dest='action')\n parser_serve = subparsers.add_parser('serve', help='serve the web site')\n parser_serve.add_argument('-p', '--port', type=int, default=8080, help=\n 'port to serve on')\n parser_serve.add_argument('-f', '--folder', default='.', help=\n 'folder containg files to serve')\n parser_serve.add_argument('-d', '--disable-templates', action=\n 'store_true', default=False, help=\n 'just serve static files, do not use Mako')\n\n def x():\n if args.disable_templates:\n self.template_exts = set([])\n self.run(port=args.port)\n parser_serve.set_defaults(func=serve)\n parser_gen = subparsers.add_parser('gen', help=\n 'generate a static version of the site')\n parser_gen.add_argument('output', help='folder to store the files')\n parser_gen.add_argument('-f', '--folder', default='.', help=\n 'folder containing files to generate')\n\n def x():\n self.gen_static(args.output)\n parser_gen.set_defaults(func=gen)\n args = parser.parse_args(cmd_args)\n self.set_folder(args.folder)\n print(parser.description)\n print('')\n args.func()\n",
"role": "user"
},
{
"content": "cli",
"role": "assistant"
}
] |
def x(self, switch_configuration, terminal_controller, logger,
piping_processor, *args):
self.switch_configuration = switch_configuration
self.terminal_controller = terminal_controller
self.logger = logger
self.piping_processor = piping_processor
self.sub_processor = None
self.continuing_to = None
self.is_done = False
self.replace_input = False
self.awaiting_keystroke = False
|
init
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, switch_configuration, terminal_controller, logger,\n piping_processor, *args):\n self.switch_configuration = switch_configuration\n self.terminal_controller = terminal_controller\n self.logger = logger\n self.piping_processor = piping_processor\n self.sub_processor = None\n self.continuing_to = None\n self.is_done = False\n self.replace_input = False\n self.awaiting_keystroke = False\n",
"role": "user"
},
{
"content": "init",
"role": "assistant"
}
] |
def x(lon, lat, azimuth, maxdist=None):
glat1 = lat * np.pi / 180.0
glon1 = lon * np.pi / 180.0
s = maxdist / 1.852243
faz = azimuth * np.pi / 180.0
EPS = 5e-11
if np.abs(np.cos(glat1)) < EPS and not np.abs(np.sin(faz)) < EPS:
raise CourseException('Only North-South courses are meaningful')
a = 6378.137 / 1.852243
f = 1 / 298.257223563
r = 1 - f
tu = r * np.tan(glat1)
sf = np.sin(faz)
cf = np.cos(faz)
if cf == 0:
b = 0.0
else:
b = 2.0 * np.arctan2(tu, cf)
cu = 1.0 / np.sqrt(1 + tu * tu)
su = tu * cu
sa = cu * sf
c2a = 1 - sa * sa
x = 1.0 + np.sqrt(1.0 + c2a * (1.0 / (r * r) - 1.0))
x = (x - 2.0) / x
c = 1.0 - x
c = (x * x / 4.0 + 1.0) / c
d = (0.375 * x * x - 1.0) * x
tu = s / (r * a * c)
y = tu
c = y + 1
while np.abs(y - c) > EPS:
sy = np.sin(y)
cy = np.cos(y)
cz = np.cos(b + y)
e = 2.0 * cz * cz - 1.0
c = y
x = e * cy
y = e + e - 1.0
y = (((sy * sy * 4.0 - 3.0) * y * cz * d / 6.0 + x) * d / 4.0 - cz
) * sy * d + tu
b = cu * cy * cf - su * sy
c = r * np.sqrt(sa * sa + b * b)
d = su * cy + cu * sy * cf
glat2 = (np.arctan2(d, c) + np.pi) % (2 * np.pi) - np.pi
c = cu * cy - su * sy * cf
x = np.arctan2(sy * sf, c)
c = ((-3.0 * c2a + 4.0) * f + 4.0) * c2a * f / 16.0
d = ((e * cy * c + cz) * sy * c + y) * sa
glon2 = (glon1 + x - (1.0 - c) * d * f + np.pi) % (2 * np.pi) - np.pi
baz = (np.arctan2(sa, b) + np.pi) % (2 * np.pi)
glon2 *= 180.0 / np.pi
glat2 *= 180.0 / np.pi
baz *= 180.0 / np.pi
return glon2, glat2, baz
|
gccalc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lon, lat, azimuth, maxdist=None):\n glat1 = lat * np.pi / 180.0\n glon1 = lon * np.pi / 180.0\n s = maxdist / 1.852243\n faz = azimuth * np.pi / 180.0\n EPS = 5e-11\n if np.abs(np.cos(glat1)) < EPS and not np.abs(np.sin(faz)) < EPS:\n raise CourseException('Only North-South courses are meaningful')\n a = 6378.137 / 1.852243\n f = 1 / 298.257223563\n r = 1 - f\n tu = r * np.tan(glat1)\n sf = np.sin(faz)\n cf = np.cos(faz)\n if cf == 0:\n b = 0.0\n else:\n b = 2.0 * np.arctan2(tu, cf)\n cu = 1.0 / np.sqrt(1 + tu * tu)\n su = tu * cu\n sa = cu * sf\n c2a = 1 - sa * sa\n x = 1.0 + np.sqrt(1.0 + c2a * (1.0 / (r * r) - 1.0))\n x = (x - 2.0) / x\n c = 1.0 - x\n c = (x * x / 4.0 + 1.0) / c\n d = (0.375 * x * x - 1.0) * x\n tu = s / (r * a * c)\n y = tu\n c = y + 1\n while np.abs(y - c) > EPS:\n sy = np.sin(y)\n cy = np.cos(y)\n cz = np.cos(b + y)\n e = 2.0 * cz * cz - 1.0\n c = y\n x = e * cy\n y = e + e - 1.0\n y = (((sy * sy * 4.0 - 3.0) * y * cz * d / 6.0 + x) * d / 4.0 - cz\n ) * sy * d + tu\n b = cu * cy * cf - su * sy\n c = r * np.sqrt(sa * sa + b * b)\n d = su * cy + cu * sy * cf\n glat2 = (np.arctan2(d, c) + np.pi) % (2 * np.pi) - np.pi\n c = cu * cy - su * sy * cf\n x = np.arctan2(sy * sf, c)\n c = ((-3.0 * c2a + 4.0) * f + 4.0) * c2a * f / 16.0\n d = ((e * cy * c + cz) * sy * c + y) * sa\n glon2 = (glon1 + x - (1.0 - c) * d * f + np.pi) % (2 * np.pi) - np.pi\n baz = (np.arctan2(sa, b) + np.pi) % (2 * np.pi)\n glon2 *= 180.0 / np.pi\n glat2 *= 180.0 / np.pi\n baz *= 180.0 / np.pi\n return glon2, glat2, baz\n",
"role": "user"
},
{
"content": "gccalc",
"role": "assistant"
}
] |
def x(m, centerlon, centerlat, radius, *args, **kwargs):
glon1 = centerlon
glat1 = centerlat
X = []
Y = []
for azimuth in range(0, 360):
glon2, glat2, baz = _gccalc(glon1, glat1, azimuth, radius)
X.append(glon2)
Y.append(glat2)
X.append(X[0])
Y.append(Y[0])
proj_x, proj_y = m(X, Y)
return zip(proj_x, proj_y)
|
circle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(m, centerlon, centerlat, radius, *args, **kwargs):\n glon1 = centerlon\n glat1 = centerlat\n X = []\n Y = []\n for azimuth in range(0, 360):\n glon2, glat2, baz = _gccalc(glon1, glat1, azimuth, radius)\n X.append(glon2)\n Y.append(glat2)\n X.append(X[0])\n Y.append(Y[0])\n proj_x, proj_y = m(X, Y)\n return zip(proj_x, proj_y)\n",
"role": "user"
},
{
"content": "circle",
"role": "assistant"
}
] |
def x(shortname, mime_types):
if shortname in _MIME_TYPES:
raise MimeRenderException('"%s" has already been registered' %
shortname)
_MIME_TYPES[shortname] = mime_types
|
register_mime
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(shortname, mime_types):\n if shortname in _MIME_TYPES:\n raise MimeRenderException('\"%s\" has already been registered' %\n shortname)\n _MIME_TYPES[shortname] = mime_types\n",
"role": "user"
},
{
"content": "register_mime",
"role": "assistant"
}
] |
def x(app):
@wraps(app)
def x(environ, start_response):
status_headers = [None, None]
def x(status, headers):
status_headers[:] = [status, headers]
body = app(environ, _start_response)
ret = body, status_headers[0], status_headers[1]
return ret
return wrapped
|
wsgi_wrap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(app):\n\n @wraps(app)\n def x(environ, start_response):\n status_headers = [None, None]\n\n def x(status, headers):\n status_headers[:] = [status, headers]\n body = app(environ, _start_response)\n ret = body, status_headers[0], status_headers[1]\n return ret\n return wrapped\n",
"role": "user"
},
{
"content": "wsgi_wrap",
"role": "assistant"
}
] |
def x(*args, **kwargs):
def x(*args2, **kwargs2):
def x(f):
return _WSGIMimeRender(*args, **kwargs)(*args2, **kwargs2)(
wsgi_wrap(f))
return wrapped
return wrapper
|
WSGIMimeRender
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(*args, **kwargs):\n\n def x(*args2, **kwargs2):\n\n def x(f):\n return _WSGIMimeRender(*args, **kwargs)(*args2, **kwargs2)(\n wsgi_wrap(f))\n return wrapped\n return wrapper\n",
"role": "user"
},
{
"content": "WSGIMimeRender",
"role": "assistant"
}
] |
def x(self, mapping, *args, **kwargs):
@self.__call__(*args, **kwargs)
def x(e, status):
return dict(exception=e), status
def x(target):
@wraps(target)
def x(*args, **kwargs):
try:
return target(*args, **kwargs)
except BaseException as e:
for klass, status in mapping:
if isinstance(e, klass):
return helper(e, status)
raise
return wrapper
return wrap
|
map_exceptions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mapping, *args, **kwargs):\n\n @self.__call__(*args, **kwargs)\n def x(e, status):\n return dict(exception=e), status\n\n def x(target):\n\n @wraps(target)\n def x(*args, **kwargs):\n try:\n return target(*args, **kwargs)\n except BaseException as e:\n for klass, status in mapping:\n if isinstance(e, klass):\n return helper(e, status)\n raise\n return wrapper\n return wrap\n",
"role": "user"
},
{
"content": "map_exceptions",
"role": "assistant"
}
] |
def x(self):
scheme = self.scheme
if not scheme:
return True
return scheme.is_relative(self)
|
relative
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n scheme = self.scheme\n if not scheme:\n return True\n return scheme.is_relative(self)\n",
"role": "user"
},
{
"content": "relative",
"role": "assistant"
}
] |
def x(self, uri=None, **parts):
if uri:
result = self.__class__(urljoin(str(self), str(uri)))
else:
result = self.__class__(self)
for part, value in parts.items():
if part not in self.__all_parts__:
raise TypeError('Unknown URI component: ' + part)
setattr(result, part, value)
return result
|
resolve
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, uri=None, **parts):\n if uri:\n result = self.__class__(urljoin(str(self), str(uri)))\n else:\n result = self.__class__(self)\n for part, value in parts.items():\n if part not in self.__all_parts__:\n raise TypeError('Unknown URI component: ' + part)\n setattr(result, part, value)\n return result\n",
"role": "user"
},
{
"content": "resolve",
"role": "assistant"
}
] |
def x(cls, date_string, fmt):
result = cls.formatterfactory(fmt).parse(date_string)
result = {k: v for k, v in result.items() if k in ('year', 'month', 'day')}
return cls(**result)
|
strptime
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, date_string, fmt):\n result = cls.formatterfactory(fmt).parse(date_string)\n result = {k: v for k, v in result.items() if k in ('year', 'month', 'day')}\n return cls(**result)\n",
"role": "user"
},
{
"content": "strptime",
"role": "assistant"
}
] |
def x(self, year=None, month=None, day=None):
return JalaliDate(year if year else self.year, month if month else self
.month, day if day else self.day)
|
replace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, year=None, month=None, day=None):\n return JalaliDate(year if year else self.year, month if month else self\n .month, day if day else self.day)\n",
"role": "user"
},
{
"content": "replace",
"role": "assistant"
}
] |
def x(self):
arr = get_gregorian_date_from_julian_day(self.tojulianday())
return datetime.date(int(arr[0]), int(arr[1]), int(arr[2]))
|
todate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n arr = get_gregorian_date_from_julian_day(self.tojulianday())\n return datetime.date(int(arr[0]), int(arr[1]), int(arr[2]))\n",
"role": "user"
},
{
"content": "todate",
"role": "assistant"
}
] |
def x(self):
return time.struct_time((self.year, self.month, self.day, 0, 0, 0, self
.weekday(), self.dayofyear(), -1))
|
timetuple
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return time.struct_time((self.year, self.month, self.day, 0, 0, 0, self\n .weekday(), self.dayofyear(), -1))\n",
"role": "user"
},
{
"content": "timetuple",
"role": "assistant"
}
] |
def x(self, first_day_of_week=SATURDAY):
first_day_of_year = self.firstdayofyear()
days = (self - first_day_of_year).days
offset = first_day_of_week - first_day_of_year.weekday()
if offset < 0:
offset += 7
if days < offset:
return 0
return int((days - offset) / 7 + 1)
|
weekofyear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, first_day_of_week=SATURDAY):\n first_day_of_year = self.firstdayofyear()\n days = (self - first_day_of_year).days\n offset = first_day_of_week - first_day_of_year.weekday()\n if offset < 0:\n offset += 7\n if days < offset:\n return 0\n return int((days - offset) / 7 + 1)\n",
"role": "user"
},
{
"content": "weekofyear",
"role": "assistant"
}
] |
def x(cls, timestamp, tz=None):
return cls(datetime.fromtimestamp(timestamp, tz=tz))
|
fromtimestamp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, timestamp, tz=None):\n return cls(datetime.fromtimestamp(timestamp, tz=tz))\n",
"role": "user"
},
{
"content": "fromtimestamp",
"role": "assistant"
}
] |
def x(cls, date, _time):
if isinstance(date, (JalaliDatetime, khayyam.JalaliDate)):
date = date.todate()
return cls(datetime.combine(date, _time))
|
combine
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, date, _time):\n if isinstance(date, (JalaliDatetime, khayyam.JalaliDate)):\n date = date.todate()\n return cls(datetime.combine(date, _time))\n",
"role": "user"
},
{
"content": "combine",
"role": "assistant"
}
] |
def x(self):
arr = get_gregorian_date_from_julian_day(self.tojulianday())
return datetime(int(arr[0]), int(arr[1]), int(arr[2]), self.hour, self.
minute, self.second, self.microsecond, self.tzinfo)
|
todatetime
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n arr = get_gregorian_date_from_julian_day(self.tojulianday())\n return datetime(int(arr[0]), int(arr[1]), int(arr[2]), self.hour, self.\n minute, self.second, self.microsecond, self.tzinfo)\n",
"role": "user"
},
{
"content": "todatetime",
"role": "assistant"
}
] |
def x(self):
return khayyam.JalaliDate(self.year, self.month, self.day)
|
date
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return khayyam.JalaliDate(self.year, self.month, self.day)\n",
"role": "user"
},
{
"content": "date",
"role": "assistant"
}
] |
def x(self, year=None, month=None, day=None, hour=None, minute=None, second
=None, microsecond=None, tzinfo=None):
year, month, day = self._validate(year if year else self.year, month if
month else self.month, day if day else self.day)
result = JalaliDatetime(year, month, day, self.hour if hour is None else
hour, self.minute if minute is None else minute, self.second if
second is None else second, self.microsecond if microsecond is None
else microsecond, tzinfo if tzinfo != self.tzinfo else self.tzinfo)
return result
|
replace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, year=None, month=None, day=None, hour=None, minute=None, second\n =None, microsecond=None, tzinfo=None):\n year, month, day = self._validate(year if year else self.year, month if\n month else self.month, day if day else self.day)\n result = JalaliDatetime(year, month, day, self.hour if hour is None else\n hour, self.minute if minute is None else minute, self.second if \n second is None else second, self.microsecond if microsecond is None\n else microsecond, tzinfo if tzinfo != self.tzinfo else self.tzinfo)\n return result\n",
"role": "user"
},
{
"content": "replace",
"role": "assistant"
}
] |
def x(self, tz):
if self.tzinfo is tz:
return self
if self.tzinfo:
utc = self - self.utcoffset()
else:
utc = self
return tz.fromutc(utc.replace(tzinfo=tz))
|
astimezone
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tz):\n if self.tzinfo is tz:\n return self\n if self.tzinfo:\n utc = self - self.utcoffset()\n else:\n utc = self\n return tz.fromutc(utc.replace(tzinfo=tz))\n",
"role": "user"
},
{
"content": "astimezone",
"role": "assistant"
}
] |
def x(self):
res = self.hour
if res > 12:
res -= 12
elif res == 0:
res = 12
return res
|
hour12
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n res = self.hour\n if res > 12:\n res -= 12\n elif res == 0:\n res = 12\n return res\n",
"role": "user"
},
{
"content": "hour12",
"role": "assistant"
}
] |
def x(signal, order):
if signal.ndim > 1:
raise ValueError('Array of rank > 1 not supported yet')
if order > signal.size:
raise ValueError('Input signal must have a lenght >= lpc order')
if order > 0:
p = order + 1
r = np.zeros(p, 'float32')
nx = np.min([p, signal.size])
x = np.correlate(signal, signal, 'full')
r[:nx] = x[signal.size - 1:signal.size + order]
phi = np.dot(sp.linalg.inv(sp.linalg.toeplitz(r[:-1])), -r[1:])
return np.concatenate(([1.0], phi))
else:
return np.ones(1, dtype='float32')
|
lpc_ref
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(signal, order):\n if signal.ndim > 1:\n raise ValueError('Array of rank > 1 not supported yet')\n if order > signal.size:\n raise ValueError('Input signal must have a lenght >= lpc order')\n if order > 0:\n p = order + 1\n r = np.zeros(p, 'float32')\n nx = np.min([p, signal.size])\n x = np.correlate(signal, signal, 'full')\n r[:nx] = x[signal.size - 1:signal.size + order]\n phi = np.dot(sp.linalg.inv(sp.linalg.toeplitz(r[:-1])), -r[1:])\n return np.concatenate(([1.0], phi))\n else:\n return np.ones(1, dtype='float32')\n",
"role": "user"
},
{
"content": "lpc_ref",
"role": "assistant"
}
] |
def x(r, order):
r = np.atleast_1d(r)
if r.ndim > 1:
raise ValueError('Only rank 1 are supported for now.')
n = r.size
if n < 1:
raise ValueError('Cannot operate on empty array !')
elif order > n - 1:
raise ValueError('Order should be <= size-1')
if not np.isreal(r[0]):
raise ValueError('First item of input must be real.')
elif not np.isfinite(1 / r[0]):
raise ValueError('First item should be != 0')
a = np.empty(order + 1, 'float32')
t = np.empty(order + 1, 'float32')
k = np.empty(order, 'float32')
a[0] = 1.0
e = r[0]
for i in range(1, order + 1):
acc = r[i]
for j in range(1, i):
acc += a[j] * r[i - j]
k[i - 1] = -acc / e
a[i] = k[i - 1]
for j in range(order):
t[j] = a[j]
for j in range(1, i):
a[j] += k[i - 1] * np.conj(t[i - j])
e *= 1 - k[i - 1] * np.conj(k[i - 1])
return a, e, k
|
levinson_1d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(r, order):\n r = np.atleast_1d(r)\n if r.ndim > 1:\n raise ValueError('Only rank 1 are supported for now.')\n n = r.size\n if n < 1:\n raise ValueError('Cannot operate on empty array !')\n elif order > n - 1:\n raise ValueError('Order should be <= size-1')\n if not np.isreal(r[0]):\n raise ValueError('First item of input must be real.')\n elif not np.isfinite(1 / r[0]):\n raise ValueError('First item should be != 0')\n a = np.empty(order + 1, 'float32')\n t = np.empty(order + 1, 'float32')\n k = np.empty(order, 'float32')\n a[0] = 1.0\n e = r[0]\n for i in range(1, order + 1):\n acc = r[i]\n for j in range(1, i):\n acc += a[j] * r[i - j]\n k[i - 1] = -acc / e\n a[i] = k[i - 1]\n for j in range(order):\n t[j] = a[j]\n for j in range(1, i):\n a[j] += k[i - 1] * np.conj(t[i - j])\n e *= 1 - k[i - 1] * np.conj(k[i - 1])\n return a, e, k\n",
"role": "user"
},
{
"content": "levinson_1d",
"role": "assistant"
}
] |
def x(x, axis=-1):
if not np.isrealobj(x):
raise ValueError('Complex input not supported yet')
maxlag = x.shape[axis]
nfft = int(2 ** nextpow2(2 * maxlag - 1))
if axis != -1:
x = np.swapaxes(x, -1, axis)
a = _acorr_last_axis(x, nfft, maxlag)
if axis != -1:
a = np.swapaxes(a, -1, axis)
return a
|
acorr_lpc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, axis=-1):\n if not np.isrealobj(x):\n raise ValueError('Complex input not supported yet')\n maxlag = x.shape[axis]\n nfft = int(2 ** nextpow2(2 * maxlag - 1))\n if axis != -1:\n x = np.swapaxes(x, -1, axis)\n a = _acorr_last_axis(x, nfft, maxlag)\n if axis != -1:\n a = np.swapaxes(a, -1, axis)\n return a\n",
"role": "user"
},
{
"content": "acorr_lpc",
"role": "assistant"
}
] |
def x(signal, order, axis=-1):
n = signal.shape[axis]
if order > n:
raise ValueError('Input signal must have length >= order')
r = acorr_lpc(signal, axis)
return levinson_1d(r, order)
|
lpc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(signal, order, axis=-1):\n n = signal.shape[axis]\n if order > n:\n raise ValueError('Input signal must have length >= order')\n r = acorr_lpc(signal, axis)\n return levinson_1d(r, order)\n",
"role": "user"
},
{
"content": "lpc",
"role": "assistant"
}
] |
def x(path_mapping, analysis_function, distance_function, stop_check=None,
call_back=None, multiprocessing=True):
num_cores = int(3 * cpu_count() / 4)
segments = set()
for x in path_mapping:
segments.update(x)
if multiprocessing:
cache = generate_cache_mp(segments, analysis_function, num_cores,
call_back, stop_check)
asim = calculate_distances_mp(path_mapping, cache,
distance_function, num_cores, call_back, stop_check)
else:
cache = generate_cache_th(segments, analysis_function, num_cores,
call_back, stop_check)
asim = calculate_distances_th(path_mapping, cache,
distance_function, num_cores, call_back, stop_check)
return asim
|
acoustic_similarity_mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path_mapping, analysis_function, distance_function, stop_check=None,\n call_back=None, multiprocessing=True):\n num_cores = int(3 * cpu_count() / 4)\n segments = set()\n for x in path_mapping:\n segments.update(x)\n if multiprocessing:\n cache = generate_cache_mp(segments, analysis_function, num_cores,\n call_back, stop_check)\n asim = calculate_distances_mp(path_mapping, cache,\n distance_function, num_cores, call_back, stop_check)\n else:\n cache = generate_cache_th(segments, analysis_function, num_cores,\n call_back, stop_check)\n asim = calculate_distances_th(path_mapping, cache,\n distance_function, num_cores, call_back, stop_check)\n return asim\n",
"role": "user"
},
{
"content": "acoustic_similarity_mapping",
"role": "assistant"
}
] |
def x(path_mapping, analysis_function, distance_function, stop_check=None,
call_back=None, multiprocessing=True):
num_cores = int(3 * cpu_count() / 4)
segments = set()
for x in path_mapping:
segments.update(x)
if multiprocessing:
cache = generate_cache_mp(segments, analysis_function, num_cores,
call_back, stop_check)
asim = calculate_axb_ratio_mp(path_mapping, cache,
distance_function, num_cores, call_back, stop_check)
else:
cache = generate_cache_th(segments, analysis_function, num_cores,
call_back, stop_check)
asim = calculate_axb_ratio_th(path_mapping, cache,
distance_function, num_cores, call_back, stop_check)
return asim
|
axb_mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path_mapping, analysis_function, distance_function, stop_check=None,\n call_back=None, multiprocessing=True):\n num_cores = int(3 * cpu_count() / 4)\n segments = set()\n for x in path_mapping:\n segments.update(x)\n if multiprocessing:\n cache = generate_cache_mp(segments, analysis_function, num_cores,\n call_back, stop_check)\n asim = calculate_axb_ratio_mp(path_mapping, cache,\n distance_function, num_cores, call_back, stop_check)\n else:\n cache = generate_cache_th(segments, analysis_function, num_cores,\n call_back, stop_check)\n asim = calculate_axb_ratio_th(path_mapping, cache,\n distance_function, num_cores, call_back, stop_check)\n return asim\n",
"role": "user"
},
{
"content": "axb_mapping",
"role": "assistant"
}
] |
def x(directories, analysis_function, distance_function, stop_check=None,
call_back=None, multiprocessing=True):
files = []
if call_back is not None:
call_back('Mapping directories...')
call_back(0, len(directories))
cur = 0
for d in directories:
if not os.path.isdir(d):
continue
if stop_check is not None and stop_check():
return
if call_back is not None:
cur += 1
if cur % 3 == 0:
call_back(cur)
files += [os.path.join(d, x) for x in os.listdir(d) if x.lower().
endswith('.wav')]
if len(files) == 0:
raise ConchError(
'The directories specified do not contain any wav files')
if call_back is not None:
call_back('Mapping directories...')
call_back(0, len(files) * len(files))
cur = 0
path_mapping = list()
for x in files:
for y in files:
if stop_check is not None and stop_check():
return
if call_back is not None:
cur += 1
if cur % 20 == 0:
call_back(cur)
if not x.lower().endswith('.wav'):
continue
if not y.lower().endswith('.wav'):
continue
if x == y:
continue
path_mapping.append((x, y))
result = acoustic_similarity_mapping(path_mapping, analysis_function,
distance_function, stop_check, call_back, multiprocessing)
return result
|
acoustic_similarity_directories
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directories, analysis_function, distance_function, stop_check=None,\n call_back=None, multiprocessing=True):\n files = []\n if call_back is not None:\n call_back('Mapping directories...')\n call_back(0, len(directories))\n cur = 0\n for d in directories:\n if not os.path.isdir(d):\n continue\n if stop_check is not None and stop_check():\n return\n if call_back is not None:\n cur += 1\n if cur % 3 == 0:\n call_back(cur)\n files += [os.path.join(d, x) for x in os.listdir(d) if x.lower().\n endswith('.wav')]\n if len(files) == 0:\n raise ConchError(\n 'The directories specified do not contain any wav files')\n if call_back is not None:\n call_back('Mapping directories...')\n call_back(0, len(files) * len(files))\n cur = 0\n path_mapping = list()\n for x in files:\n for y in files:\n if stop_check is not None and stop_check():\n return\n if call_back is not None:\n cur += 1\n if cur % 20 == 0:\n call_back(cur)\n if not x.lower().endswith('.wav'):\n continue\n if not y.lower().endswith('.wav'):\n continue\n if x == y:\n continue\n path_mapping.append((x, y))\n result = acoustic_similarity_mapping(path_mapping, analysis_function,\n distance_function, stop_check, call_back, multiprocessing)\n return result\n",
"role": "user"
},
{
"content": "acoustic_similarity_directories",
"role": "assistant"
}
] |
def x(rep_one, rep_two, norm=True):
if not isinstance(rep_one, np.ndarray):
rep_one = rep_one.to_array()
if not isinstance(rep_two, np.ndarray):
rep_two = rep_two.to_array()
assert rep_one.shape[1] == rep_two.shape[1]
distMat = generate_distance_matrix(rep_one, rep_two)
return regularDTW(distMat, norm=norm)
|
dtw_distance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(rep_one, rep_two, norm=True):\n if not isinstance(rep_one, np.ndarray):\n rep_one = rep_one.to_array()\n if not isinstance(rep_two, np.ndarray):\n rep_two = rep_two.to_array()\n assert rep_one.shape[1] == rep_two.shape[1]\n distMat = generate_distance_matrix(rep_one, rep_two)\n return regularDTW(distMat, norm=norm)\n",
"role": "user"
},
{
"content": "dtw_distance",
"role": "assistant"
}
] |
def x(source, target, weights=None):
if weights is None:
weights = ones((source.shape[1], 1))
sLen = source.shape[0]
tLen = target.shape[0]
distMat = zeros((sLen, tLen))
for i in range(sLen):
for j in range(tLen):
distMat[i, j] = euclidean(source[i, :], target[j, :])
return distMat
|
generate_distance_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source, target, weights=None):\n if weights is None:\n weights = ones((source.shape[1], 1))\n sLen = source.shape[0]\n tLen = target.shape[0]\n distMat = zeros((sLen, tLen))\n for i in range(sLen):\n for j in range(tLen):\n distMat[i, j] = euclidean(source[i, :], target[j, :])\n return distMat\n",
"role": "user"
},
{
"content": "generate_distance_matrix",
"role": "assistant"
}
] |
def x(distMat, norm=True):
sLen, tLen = distMat.shape
totalDistance = zeros((sLen, tLen))
totalDistance[0:sLen, 0:tLen] = distMat
minDirection = zeros((sLen, tLen))
for i in range(1, sLen):
totalDistance[i, 0] = totalDistance[i, 0] + totalDistance[i - 1, 0]
for j in range(1, tLen):
totalDistance[0, j] = totalDistance[0, j] + totalDistance[0, j - 1]
for i in range(1, sLen):
for j in range(1, tLen):
minDirection[i, j], totalDistance[i, j] = min(enumerate([
totalDistance[i - 1, j - 1] + 2 * totalDistance[i, j],
totalDistance[i - 1, j] + totalDistance[i, j],
totalDistance[i, j - 1] + totalDistance[i, j]]), key=
operator.itemgetter(1))
if norm:
return totalDistance[sLen - 1, tLen - 1] / (sLen + tLen)
return totalDistance[sLen - 1, tLen - 1]
|
regularDTW
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(distMat, norm=True):\n sLen, tLen = distMat.shape\n totalDistance = zeros((sLen, tLen))\n totalDistance[0:sLen, 0:tLen] = distMat\n minDirection = zeros((sLen, tLen))\n for i in range(1, sLen):\n totalDistance[i, 0] = totalDistance[i, 0] + totalDistance[i - 1, 0]\n for j in range(1, tLen):\n totalDistance[0, j] = totalDistance[0, j] + totalDistance[0, j - 1]\n for i in range(1, sLen):\n for j in range(1, tLen):\n minDirection[i, j], totalDistance[i, j] = min(enumerate([\n totalDistance[i - 1, j - 1] + 2 * totalDistance[i, j], \n totalDistance[i - 1, j] + totalDistance[i, j], \n totalDistance[i, j - 1] + totalDistance[i, j]]), key=\n operator.itemgetter(1))\n if norm:\n return totalDistance[sLen - 1, tLen - 1] / (sLen + tLen)\n return totalDistance[sLen - 1, tLen - 1]\n",
"role": "user"
},
{
"content": "regularDTW",
"role": "assistant"
}
] |
def x(path, sr=16000, alpha=0.95):
oldsr, sig = wavfile.read(path)
try:
sig = sig[:, 0]
except IndexError:
pass
if False and sr != oldsr:
t = len(sig) / oldsr
numsamp = int(t * sr)
proc = resample(sig, numsamp)
else:
proc = sig
sr = oldsr
if alpha is not None and alpha != 0:
proc = lfilter([1.0, -alpha], 1, proc)
return sr, proc
|
preproc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, sr=16000, alpha=0.95):\n oldsr, sig = wavfile.read(path)\n try:\n sig = sig[:, 0]\n except IndexError:\n pass\n if False and sr != oldsr:\n t = len(sig) / oldsr\n numsamp = int(t * sr)\n proc = resample(sig, numsamp)\n else:\n proc = sig\n sr = oldsr\n if alpha is not None and alpha != 0:\n proc = lfilter([1.0, -alpha], 1, proc)\n return sr, proc\n",
"role": "user"
},
{
"content": "preproc",
"role": "assistant"
}
] |
def x(b, x, *n):
N_x = len(x)
N_b = len(b)
if len(n):
n = n[0]
if n != int(n) or n <= 0:
raise ValueError('n must be a nonnegative integer')
if n < N_b:
n = N_b
N_fft = 2 ** nextpow2(n)
elif N_x > N_b:
N = 2 ** np.arange(np.ceil(np.log2(N_b)), np.floor(np.log2(N_x)))
cost = np.ceil(N_x / (N - N_b + 1)) * N * (np.log2(N) + 1)
if len(cost) > 0:
N_fft = N[np.argmin(cost)]
else:
N_fft = 2 ** nextpow2(N_b + N_x - 1)
else:
N_fft = 2 ** nextpow2(N_b + N_x - 1)
N_fft = int(N_fft)
L = int(N_fft - N_b + 1)
H = fft(b, N_fft)
y = np.zeros(N_x, np.float32)
i = 0
while i <= N_x:
il = np.min([i + L, N_x])
k = np.min([i + N_fft, N_x])
yt = ifft(fft(x[i:il], N_fft) * H, N_fft)
y[i:k] = y[i:k] + yt[:k - i]
i += L
return y
|
fftfilt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(b, x, *n):\n N_x = len(x)\n N_b = len(b)\n if len(n):\n n = n[0]\n if n != int(n) or n <= 0:\n raise ValueError('n must be a nonnegative integer')\n if n < N_b:\n n = N_b\n N_fft = 2 ** nextpow2(n)\n elif N_x > N_b:\n N = 2 ** np.arange(np.ceil(np.log2(N_b)), np.floor(np.log2(N_x)))\n cost = np.ceil(N_x / (N - N_b + 1)) * N * (np.log2(N) + 1)\n if len(cost) > 0:\n N_fft = N[np.argmin(cost)]\n else:\n N_fft = 2 ** nextpow2(N_b + N_x - 1)\n else:\n N_fft = 2 ** nextpow2(N_b + N_x - 1)\n N_fft = int(N_fft)\n L = int(N_fft - N_b + 1)\n H = fft(b, N_fft)\n y = np.zeros(N_x, np.float32)\n i = 0\n while i <= N_x:\n il = np.min([i + L, N_x])\n k = np.min([i + N_fft, N_x])\n yt = ifft(fft(x[i:il], N_fft) * H, N_fft)\n y[i:k] = y[i:k] + yt[:k - i]\n i += L\n return y\n",
"role": "user"
},
{
"content": "fftfilt",
"role": "assistant"
}
] |
def x(spec):
ncep = spec.shape[0]
dctm = np.zeros((ncep, ncep))
for i in range(ncep):
dctm[i, :] = np.cos(i * np.arange(1, 2 * ncep, 2) / (2 * ncep) * np.pi
) * np.sqrt(2 / ncep)
dctm *= 0.230258509299405
cep = np.dot(dctm, 10 * np.log10(spec + np.spacing(1)))
return cep
|
dct_spectrum
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spec):\n ncep = spec.shape[0]\n dctm = np.zeros((ncep, ncep))\n for i in range(ncep):\n dctm[i, :] = np.cos(i * np.arange(1, 2 * ncep, 2) / (2 * ncep) * np.pi\n ) * np.sqrt(2 / ncep)\n dctm *= 0.230258509299405\n cep = np.dot(dctm, 10 * np.log10(spec + np.spacing(1)))\n return cep\n",
"role": "user"
},
{
"content": "dct_spectrum",
"role": "assistant"
}
] |
def x(num_filters, nfft, sr, min_freq, max_freq):
min_mel = freq_to_mel(min_freq)
max_mel = freq_to_mel(max_freq)
mel_points = np.linspace(min_mel, max_mel, num_filters + 2)
bin_freqs = mel_to_freq(mel_points)
fftfreqs = np.arange(int(nfft / 2 + 1)) / nfft * sr
fbank = np.zeros((num_filters, int(nfft / 2 + 1)))
for i in range(num_filters):
fs = bin_freqs[i + np.arange(3)]
fs = fs[1] + (fs - fs[1])
loslope = (fftfreqs - fs[0]) / (fs[1] - fs[0])
highslope = (fs[2] - fftfreqs) / (fs[2] - fs[1])
fbank[i, :] = np.maximum(np.zeros(loslope.shape), np.minimum(
loslope, highslope))
return fbank.transpose()
|
construct_filterbank
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(num_filters, nfft, sr, min_freq, max_freq):\n min_mel = freq_to_mel(min_freq)\n max_mel = freq_to_mel(max_freq)\n mel_points = np.linspace(min_mel, max_mel, num_filters + 2)\n bin_freqs = mel_to_freq(mel_points)\n fftfreqs = np.arange(int(nfft / 2 + 1)) / nfft * sr\n fbank = np.zeros((num_filters, int(nfft / 2 + 1)))\n for i in range(num_filters):\n fs = bin_freqs[i + np.arange(3)]\n fs = fs[1] + (fs - fs[1])\n loslope = (fftfreqs - fs[0]) / (fs[1] - fs[0])\n highslope = (fs[2] - fftfreqs) / (fs[2] - fs[1])\n fbank[i, :] = np.maximum(np.zeros(loslope.shape), np.minimum(\n loslope, highslope))\n return fbank.transpose()\n",
"role": "user"
},
{
"content": "construct_filterbank",
"role": "assistant"
}
] |
def x(self, change):
if self.is_initialized:
view = self.item_view
upper_limit = (view.iterable_index + view.iterable_fetch_size -
view.iterable_prefetch)
lower_limit = max(0, view.iterable_index + view.iterable_prefetch)
offset = int(view.iterable_fetch_size / 2.0)
upper_visible_row = view.visible_rect[2]
lower_visible_row = view.visible_rect[0]
print('Visible rect = %s' % view.visible_rect)
if upper_visible_row >= upper_limit:
next_index = max(0, upper_visible_row - offset)
if next_index > view.iterable_index:
print('Auto prefetch upper limit %s!' % upper_limit)
view.iterable_index = next_index
elif view.iterable_index > 0 and lower_visible_row < lower_limit:
next_index = max(0, lower_visible_row - offset)
if next_index < view.iterable_index:
print(
'Auto prefetch lower limit=%s, iterable=%s, setting next=%s!'
% (lower_limit, view.iterable_index, next_index))
view.iterable_index = next_index
|
prefetch_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, change):\n if self.is_initialized:\n view = self.item_view\n upper_limit = (view.iterable_index + view.iterable_fetch_size -\n view.iterable_prefetch)\n lower_limit = max(0, view.iterable_index + view.iterable_prefetch)\n offset = int(view.iterable_fetch_size / 2.0)\n upper_visible_row = view.visible_rect[2]\n lower_visible_row = view.visible_rect[0]\n print('Visible rect = %s' % view.visible_rect)\n if upper_visible_row >= upper_limit:\n next_index = max(0, upper_visible_row - offset)\n if next_index > view.iterable_index:\n print('Auto prefetch upper limit %s!' % upper_limit)\n view.iterable_index = next_index\n elif view.iterable_index > 0 and lower_visible_row < lower_limit:\n next_index = max(0, lower_visible_row - offset)\n if next_index < view.iterable_index:\n print(\n 'Auto prefetch lower limit=%s, iterable=%s, setting next=%s!'\n % (lower_limit, view.iterable_index, next_index))\n view.iterable_index = next_index\n",
"role": "user"
},
{
"content": "prefetch_items",
"role": "assistant"
}
] |
def x(self):
effective_offset = max(0, self.item_view.iterable_index)
for i, item in enumerate(self.iterable):
if i < effective_offset:
continue
elif i >= effective_offset + self.item_view.iterable_fetch_size:
return
yield item
|
windowed_iterable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n effective_offset = max(0, self.item_view.iterable_index)\n for i, item in enumerate(self.iterable):\n if i < effective_offset:\n continue\n elif i >= effective_offset + self.item_view.iterable_fetch_size:\n return\n yield item\n",
"role": "user"
},
{
"content": "windowed_iterable",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.