source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(covariance):
diagonal_ind = np.arange(covariance.shape[1])
diagonal_els = covariance[:, diagonal_ind, diagonal_ind]
result = covariance / np.sqrt(diagonal_els[:, :, None] * diagonal_els[:,
None, :])
result[np.isinf(result)] = 0
return np.clip(np.nan_to_num(result), -1, 1)
|
covariance_to_correlations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(covariance):\n diagonal_ind = np.arange(covariance.shape[1])\n diagonal_els = covariance[:, diagonal_ind, diagonal_ind]\n result = covariance / np.sqrt(diagonal_els[:, :, None] * diagonal_els[:,\n None, :])\n result[np.isinf(result)] = 0\n return np.clip(np.nan_to_num(result), -1, 1)\n",
"role": "user"
},
{
"content": "covariance_to_correlations",
"role": "assistant"
}
] |
def x(func, iterable):
if os.name == 'nt':
return list(map(func, iterable))
try:
p = multiprocessing.Pool()
return_data = list(p.imap(func, iterable))
p.close()
p.join()
return return_data
except OSError:
return list(map(func, iterable))
|
multiprocess_mapping
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, iterable):\n if os.name == 'nt':\n return list(map(func, iterable))\n try:\n p = multiprocessing.Pool()\n return_data = list(p.imap(func, iterable))\n p.close()\n p.join()\n return return_data\n except OSError:\n return list(map(func, iterable))\n",
"role": "user"
},
{
"content": "multiprocess_mapping",
"role": "assistant"
}
] |
def x(cl_code, dependencies=()):
from mot.lib.cl_function import SimpleCLFunction
def x(input_str):
class Semantics:
def x(self):
self._functions = []
def x(self, ast):
return self._functions
def x(self, ast):
return '({})'.format(', '.join(ast))
def x(self, ast):
def x(items):
result = ''
for item in items:
if isinstance(item, str):
result += item
else:
result += join(item)
return result
self._functions.append(join(ast).strip())
return ast
return _extract_cl_functions_parser.parse(input_str, semantics=
Semantics())
functions = separate_cl_functions(cl_code)
return SimpleCLFunction.from_string(functions[-1], dependencies=list(
dependencies or []) + [SimpleCLFunction.from_string(s) for s in
functions[:-1]])
|
parse_cl_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cl_code, dependencies=()):\n from mot.lib.cl_function import SimpleCLFunction\n\n def x(input_str):\n\n\n class Semantics:\n\n def x(self):\n self._functions = []\n\n def x(self, ast):\n return self._functions\n\n def x(self, ast):\n return '({})'.format(', '.join(ast))\n\n def x(self, ast):\n\n def x(items):\n result = ''\n for item in items:\n if isinstance(item, str):\n result += item\n else:\n result += join(item)\n return result\n self._functions.append(join(ast).strip())\n return ast\n return _extract_cl_functions_parser.parse(input_str, semantics=\n Semantics())\n functions = separate_cl_functions(cl_code)\n return SimpleCLFunction.from_string(functions[-1], dependencies=list(\n dependencies or []) + [SimpleCLFunction.from_string(s) for s in\n functions[:-1]])\n",
"role": "user"
},
{
"content": "parse_cl_function",
"role": "assistant"
}
] |
def x(cl_str):
class Semantics:
def x(self):
self._return_type = ''
self._function_name = ''
self._parameter_list = []
self._cl_body = ''
def x(self, ast):
return (self._return_type, self._function_name, self.
_parameter_list, self._cl_body)
def x(self, ast):
self._return_type = ast.strip() + ' '
return ast
def x(self, ast):
self._return_type += ''.join(ast).strip()
return ast
def x(self, ast):
self._function_name = ast.strip()
return ast
def x(self, ast):
if ast != '()':
self._parameter_list = ast
return ast
def x(self, ast):
def x(items):
result = ''
for item in items:
if isinstance(item, str):
result += item
else:
result += join(item)
return result
self._cl_body = join(ast).strip()[1:-1]
return ast
return _split_cl_function_parser.parse(cl_str, semantics=Semantics())
|
split_cl_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cl_str):\n\n\n class Semantics:\n\n def x(self):\n self._return_type = ''\n self._function_name = ''\n self._parameter_list = []\n self._cl_body = ''\n\n def x(self, ast):\n return (self._return_type, self._function_name, self.\n _parameter_list, self._cl_body)\n\n def x(self, ast):\n self._return_type = ast.strip() + ' '\n return ast\n\n def x(self, ast):\n self._return_type += ''.join(ast).strip()\n return ast\n\n def x(self, ast):\n self._function_name = ast.strip()\n return ast\n\n def x(self, ast):\n if ast != '()':\n self._parameter_list = ast\n return ast\n\n def x(self, ast):\n\n def x(items):\n result = ''\n for item in items:\n if isinstance(item, str):\n result += item\n else:\n result += join(item)\n return result\n self._cl_body = join(ast).strip()[1:-1]\n return ast\n return _split_cl_function_parser.parse(cl_str, semantics=Semantics())\n",
"role": "user"
},
{
"content": "split_cl_function",
"role": "assistant"
}
] |
def x(name=INTERNAL_LOGGER_NAME, level=logging.INFO, fmt=
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'):
logger = logging.getLogger(name)
logger.setLevel(level)
if not logger.handlers:
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(level)
formatter = logging.Formatter(fmt)
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
|
make_default_logger
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name=INTERNAL_LOGGER_NAME, level=logging.INFO, fmt=\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s'):\n logger = logging.getLogger(name)\n logger.setLevel(level)\n if not logger.handlers:\n handler = logging.StreamHandler(sys.stderr)\n handler.setLevel(level)\n formatter = logging.Formatter(fmt)\n handler.setFormatter(formatter)\n logger.addHandler(handler)\n return logger\n",
"role": "user"
},
{
"content": "make_default_logger",
"role": "assistant"
}
] |
def x(self):
return self._device.get_info(cl.device_info.TYPE) == cl.device_type.GPU
|
is_gpu
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self._device.get_info(cl.device_info.TYPE) == cl.device_type.GPU\n",
"role": "user"
},
{
"content": "is_gpu",
"role": "assistant"
}
] |
def x(self):
return self._device.get_info(cl.device_info.TYPE) == cl.device_type.CPU
|
is_cpu
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return self._device.get_info(cl.device_info.TYPE) == cl.device_type.CPU\n",
"role": "user"
},
{
"content": "is_cpu",
"role": "assistant"
}
] |
def x(cl_device_type='GPU', platform=None, fallback_to_any_device_type=False):
if isinstance(cl_device_type, str):
cl_device_type = device_type_from_string(cl_device_type)
device = None
if platform is None:
platforms = cl.get_platforms()
else:
platforms = [platform]
for platform in platforms:
devices = platform.get_devices(device_type=cl_device_type)
for dev in devices:
if device_supports_double(dev):
try:
env = CLEnvironment(platform, dev)
return [env]
except cl.RuntimeError:
pass
if not device:
if fallback_to_any_device_type:
return cl.get_platforms()[0].get_devices()
else:
raise ValueError('No devices of the specified type ({}) found.'
.format(cl.device_type.to_string(cl_device_type)))
raise ValueError('No suitable OpenCL device found.')
|
single_device
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cl_device_type='GPU', platform=None, fallback_to_any_device_type=False):\n if isinstance(cl_device_type, str):\n cl_device_type = device_type_from_string(cl_device_type)\n device = None\n if platform is None:\n platforms = cl.get_platforms()\n else:\n platforms = [platform]\n for platform in platforms:\n devices = platform.get_devices(device_type=cl_device_type)\n for dev in devices:\n if device_supports_double(dev):\n try:\n env = CLEnvironment(platform, dev)\n return [env]\n except cl.RuntimeError:\n pass\n if not device:\n if fallback_to_any_device_type:\n return cl.get_platforms()[0].get_devices()\n else:\n raise ValueError('No devices of the specified type ({}) found.'\n .format(cl.device_type.to_string(cl_device_type)))\n raise ValueError('No suitable OpenCL device found.')\n",
"role": "user"
},
{
"content": "single_device",
"role": "assistant"
}
] |
def x(cl_device_type=None, platform=None):
if isinstance(cl_device_type, str):
cl_device_type = device_type_from_string(cl_device_type)
runtime_list = []
if platform is None:
platforms = cl.get_platforms()
else:
platforms = [platform]
for platform in platforms:
if cl_device_type:
devices = platform.get_devices(device_type=cl_device_type)
else:
devices = platform.get_devices()
for device in devices:
if device_supports_double(device):
env = CLEnvironment(platform, device)
runtime_list.append(env)
return runtime_list
|
all_devices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cl_device_type=None, platform=None):\n if isinstance(cl_device_type, str):\n cl_device_type = device_type_from_string(cl_device_type)\n runtime_list = []\n if platform is None:\n platforms = cl.get_platforms()\n else:\n platforms = [platform]\n for platform in platforms:\n if cl_device_type:\n devices = platform.get_devices(device_type=cl_device_type)\n else:\n devices = platform.get_devices()\n for device in devices:\n if device_supports_double(device):\n env = CLEnvironment(platform, device)\n runtime_list.append(env)\n return runtime_list\n",
"role": "user"
},
{
"content": "all_devices",
"role": "assistant"
}
] |
def x(preferred_device_type=None):
cl_environments = CLEnvironmentFactory.all_devices(cl_device_type=
preferred_device_type)
platform_names = [env.platform.name for env in cl_environments]
has_amd_pro_platform = any('AMD Accelerated Parallel Processing' in
name for name in platform_names)
if has_amd_pro_platform:
return list(filter(lambda env: 'Clover' not in env.platform.name,
cl_environments))
if preferred_device_type is not None and not len(cl_environments):
return CLEnvironmentFactory.all_devices()
return cl_environments
|
smart_device_selection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(preferred_device_type=None):\n cl_environments = CLEnvironmentFactory.all_devices(cl_device_type=\n preferred_device_type)\n platform_names = [env.platform.name for env in cl_environments]\n has_amd_pro_platform = any('AMD Accelerated Parallel Processing' in\n name for name in platform_names)\n if has_amd_pro_platform:\n return list(filter(lambda env: 'Clover' not in env.platform.name,\n cl_environments))\n if preferred_device_type is not None and not len(cl_environments):\n return CLEnvironmentFactory.all_devices()\n return cl_environments\n",
"role": "user"
},
{
"content": "smart_device_selection",
"role": "assistant"
}
] |
def x(samples, batch_size_generator=None):
samples_generator = _get_sample_generator(samples)
return np.array(multiprocess_mapping(_MultivariateESSMultiProcessing(
batch_size_generator), samples_generator()))
|
multivariate_ess
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples, batch_size_generator=None):\n samples_generator = _get_sample_generator(samples)\n return np.array(multiprocess_mapping(_MultivariateESSMultiProcessing(\n batch_size_generator), samples_generator()))\n",
"role": "user"
},
{
"content": "multivariate_ess",
"role": "assistant"
}
] |
def x(samples, method='standard_error', **kwargs):
samples_generator = _get_sample_generator(samples)
return np.array(multiprocess_mapping(_UnivariateESSMultiProcessing(
method, **kwargs), samples_generator()))
|
univariate_ess
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples, method='standard_error', **kwargs):\n samples_generator = _get_sample_generator(samples)\n return np.array(multiprocess_mapping(_UnivariateESSMultiProcessing(\n method, **kwargs), samples_generator()))\n",
"role": "user"
},
{
"content": "univariate_ess",
"role": "assistant"
}
] |
def x(samples):
if isinstance(samples, Mapping):
def x():
for ind in range(samples[list(samples.keys())[0]].shape[0]):
yield np.array([samples[s][ind, :] for s in sorted(samples)])
elif isinstance(samples, np.ndarray):
def x():
for ind in range(samples.shape[0]):
yield samples[ind]
else:
samples_generator = samples
return samples_generator
|
get_sample_generator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples):\n if isinstance(samples, Mapping):\n\n def x():\n for ind in range(samples[list(samples.keys())[0]].shape[0]):\n yield np.array([samples[s][ind, :] for s in sorted(samples)])\n elif isinstance(samples, np.ndarray):\n\n def x():\n for ind in range(samples.shape[0]):\n yield samples[ind]\n else:\n samples_generator = samples\n return samples_generator\n",
"role": "user"
},
{
"content": "get_sample_generator",
"role": "assistant"
}
] |
def x(chain, lag):
normalized_chain = chain - np.mean(chain, dtype=np.float64)
lagged_mean = np.mean(normalized_chain[:len(chain) - lag] *
normalized_chain[lag:], dtype=np.float64)
return lagged_mean / np.var(chain, dtype=np.float64)
|
get_auto_correlation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chain, lag):\n normalized_chain = chain - np.mean(chain, dtype=np.float64)\n lagged_mean = np.mean(normalized_chain[:len(chain) - lag] *\n normalized_chain[lag:], dtype=np.float64)\n return lagged_mean / np.var(chain, dtype=np.float64)\n",
"role": "user"
},
{
"content": "get_auto_correlation",
"role": "assistant"
}
] |
def x(chain, max_lag=None):
max_lag = max_lag or min(len(chain) // 3, 1000)
normalized_chain = chain - np.mean(chain, dtype=np.float64)
previous_accoeff = 0
auto_corr_sum = 0
for lag in range(1, max_lag):
auto_correlation_coeff = np.mean(normalized_chain[:len(chain) - lag
] * normalized_chain[lag:], dtype=np.float64)
if lag % 2 == 0:
if previous_accoeff + auto_correlation_coeff <= 0:
break
auto_corr_sum += auto_correlation_coeff
previous_accoeff = auto_correlation_coeff
return auto_corr_sum / np.var(chain, dtype=np.float64)
|
get_auto_correlation_time
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chain, max_lag=None):\n max_lag = max_lag or min(len(chain) // 3, 1000)\n normalized_chain = chain - np.mean(chain, dtype=np.float64)\n previous_accoeff = 0\n auto_corr_sum = 0\n for lag in range(1, max_lag):\n auto_correlation_coeff = np.mean(normalized_chain[:len(chain) - lag\n ] * normalized_chain[lag:], dtype=np.float64)\n if lag % 2 == 0:\n if previous_accoeff + auto_correlation_coeff <= 0:\n break\n auto_corr_sum += auto_correlation_coeff\n previous_accoeff = auto_correlation_coeff\n return auto_corr_sum / np.var(chain, dtype=np.float64)\n",
"role": "user"
},
{
"content": "get_auto_correlation_time",
"role": "assistant"
}
] |
def x(chain, batch_size_generator=None, compute_method=None):
sigma = monte_carlo_standard_error(chain, batch_size_generator=
batch_size_generator, compute_method=compute_method) ** 2 * len(chain)
lambda_ = np.var(chain, dtype=np.float64)
return len(chain) * (lambda_ / sigma)
|
estimate_univariate_ess_standard_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chain, batch_size_generator=None, compute_method=None):\n sigma = monte_carlo_standard_error(chain, batch_size_generator=\n batch_size_generator, compute_method=compute_method) ** 2 * len(chain)\n lambda_ = np.var(chain, dtype=np.float64)\n return len(chain) * (lambda_ / sigma)\n",
"role": "user"
},
{
"content": "estimate_univariate_ess_standard_error",
"role": "assistant"
}
] |
def x(nmr_params, alpha=0.05, epsilon=0.05):
tmp = 2.0 / nmr_params
log_min_ess = tmp * np.log(2) + np.log(np.pi) - tmp * (np.log(
nmr_params) + gammaln(nmr_params / 2)) + np.log(chi2.ppf(1 - alpha,
nmr_params)) - 2 * np.log(epsilon)
return int(round(np.exp(log_min_ess)))
|
minimum_multivariate_ess
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nmr_params, alpha=0.05, epsilon=0.05):\n tmp = 2.0 / nmr_params\n log_min_ess = tmp * np.log(2) + np.log(np.pi) - tmp * (np.log(\n nmr_params) + gammaln(nmr_params / 2)) + np.log(chi2.ppf(1 - alpha,\n nmr_params)) - 2 * np.log(epsilon)\n return int(round(np.exp(log_min_ess)))\n",
"role": "user"
},
{
"content": "minimum_multivariate_ess",
"role": "assistant"
}
] |
def x(nmr_params, multi_variate_ess, alpha=0.05):
tmp = 2.0 / nmr_params
log_min_ess = tmp * np.log(2) + np.log(np.pi) - tmp * (np.log(
nmr_params) + gammaln(nmr_params / 2)) + np.log(chi2.ppf(1 - alpha,
nmr_params)) - np.log(multi_variate_ess)
return np.sqrt(np.exp(log_min_ess))
|
multivariate_ess_precision
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nmr_params, multi_variate_ess, alpha=0.05):\n tmp = 2.0 / nmr_params\n log_min_ess = tmp * np.log(2) + np.log(np.pi) - tmp * (np.log(\n nmr_params) + gammaln(nmr_params / 2)) + np.log(chi2.ppf(1 - alpha,\n nmr_params)) - np.log(multi_variate_ess)\n return np.sqrt(np.exp(log_min_ess))\n",
"role": "user"
},
{
"content": "multivariate_ess_precision",
"role": "assistant"
}
] |
def x(samples, batch_size):
sample_means = np.mean(samples, axis=1, dtype=np.float64)
nmr_params, chain_length = samples.shape
nmr_batches = int(np.floor(chain_length / batch_size))
sigma = np.zeros((nmr_params, nmr_params))
nmr_offsets = chain_length - nmr_batches * batch_size + 1
for offset in range(nmr_offsets):
batches = np.reshape(samples[:, np.array(offset + np.arange(0,
nmr_batches * batch_size), dtype=np.int)].T, [batch_size,
nmr_batches, nmr_params], order='F')
batch_means = np.squeeze(np.mean(batches, axis=0, dtype=np.float64))
Z = batch_means - sample_means
for x, y in itertools.product(range(nmr_params), range(nmr_params)):
sigma[x, y] += np.sum(Z[:, x] * Z[:, y])
return sigma * batch_size / (nmr_batches - 1) / nmr_offsets
|
estimate_multivariate_ess_sigma
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples, batch_size):\n sample_means = np.mean(samples, axis=1, dtype=np.float64)\n nmr_params, chain_length = samples.shape\n nmr_batches = int(np.floor(chain_length / batch_size))\n sigma = np.zeros((nmr_params, nmr_params))\n nmr_offsets = chain_length - nmr_batches * batch_size + 1\n for offset in range(nmr_offsets):\n batches = np.reshape(samples[:, np.array(offset + np.arange(0, \n nmr_batches * batch_size), dtype=np.int)].T, [batch_size,\n nmr_batches, nmr_params], order='F')\n batch_means = np.squeeze(np.mean(batches, axis=0, dtype=np.float64))\n Z = batch_means - sample_means\n for x, y in itertools.product(range(nmr_params), range(nmr_params)):\n sigma[x, y] += np.sum(Z[:, x] * Z[:, y])\n return sigma * batch_size / (nmr_batches - 1) / nmr_offsets\n",
"role": "user"
},
{
"content": "estimate_multivariate_ess_sigma",
"role": "assistant"
}
] |
def x(samples, batch_size_generator=None, full_output=False):
batch_size_generator = batch_size_generator or SquareRootSingleBatch()
batch_sizes = batch_size_generator.get_multivariate_ess_batch_sizes(*
samples.shape)
nmr_params, chain_length = samples.shape
nmr_batches = len(batch_sizes)
det_lambda = det(np.cov(samples))
ess_estimates = np.zeros(nmr_batches)
sigma_estimates = np.zeros((nmr_params, nmr_params, nmr_batches))
for i in range(0, nmr_batches):
sigma = estimate_multivariate_ess_sigma(samples, int(batch_sizes[i]))
ess = chain_length * (det_lambda ** (1.0 / nmr_params) / det(sigma) **
(1.0 / nmr_params))
ess_estimates[i] = ess
sigma_estimates[..., i] = sigma
ess_estimates = np.nan_to_num(ess_estimates)
if nmr_batches > 1:
idx = np.argmin(ess_estimates)
else:
idx = 0
if full_output:
return ess_estimates[idx], sigma_estimates[..., idx], batch_sizes[idx]
return ess_estimates[idx]
|
estimate_multivariate_ess
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples, batch_size_generator=None, full_output=False):\n batch_size_generator = batch_size_generator or SquareRootSingleBatch()\n batch_sizes = batch_size_generator.get_multivariate_ess_batch_sizes(*\n samples.shape)\n nmr_params, chain_length = samples.shape\n nmr_batches = len(batch_sizes)\n det_lambda = det(np.cov(samples))\n ess_estimates = np.zeros(nmr_batches)\n sigma_estimates = np.zeros((nmr_params, nmr_params, nmr_batches))\n for i in range(0, nmr_batches):\n sigma = estimate_multivariate_ess_sigma(samples, int(batch_sizes[i]))\n ess = chain_length * (det_lambda ** (1.0 / nmr_params) / det(sigma) **\n (1.0 / nmr_params))\n ess_estimates[i] = ess\n sigma_estimates[..., i] = sigma\n ess_estimates = np.nan_to_num(ess_estimates)\n if nmr_batches > 1:\n idx = np.argmin(ess_estimates)\n else:\n idx = 0\n if full_output:\n return ess_estimates[idx], sigma_estimates[..., idx], batch_sizes[idx]\n return ess_estimates[idx]\n",
"role": "user"
},
{
"content": "estimate_multivariate_ess",
"role": "assistant"
}
] |
def x(chain, batch_size_generator=None, compute_method=None):
batch_size_generator = batch_size_generator or SquareRootSingleBatch()
compute_method = compute_method or BatchMeansMCSE()
batch_sizes = batch_size_generator.get_univariate_ess_batch_sizes(len(
chain))
return np.min(list(compute_method.compute_standard_error(chain, b) for
b in batch_sizes))
|
monte_carlo_standard_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chain, batch_size_generator=None, compute_method=None):\n batch_size_generator = batch_size_generator or SquareRootSingleBatch()\n compute_method = compute_method or BatchMeansMCSE()\n batch_sizes = batch_size_generator.get_univariate_ess_batch_sizes(len(\n chain))\n return np.min(list(compute_method.compute_standard_error(chain, b) for\n b in batch_sizes))\n",
"role": "user"
},
{
"content": "monte_carlo_standard_error",
"role": "assistant"
}
] |
def x(samples, ddof=0):
if len(samples.shape) == 1:
return np.mean(samples), np.std(samples, ddof=ddof)
return np.mean(samples, axis=1), np.std(samples, axis=1, ddof=ddof)
|
fit_gaussian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples, ddof=0):\n if len(samples.shape) == 1:\n return np.mean(samples), np.std(samples, ddof=ddof)\n return np.mean(samples, axis=1), np.std(samples, axis=1, ddof=ddof)\n",
"role": "user"
},
{
"content": "fit_gaussian",
"role": "assistant"
}
] |
def x(samples, high=np.pi, low=0):
cl_func = SimpleCLFunction.from_string(
"""
void compute(global mot_float_type* samples,
global mot_float_type* means,
global mot_float_type* stds,
int nmr_samples,
int low,
int high){
double cos_mean = 0;
double sin_mean = 0;
double ang;
for(uint i = 0; i < nmr_samples; i++){
ang = (samples[i] - low)*2*M_PI / (high - low);
cos_mean += (cos(ang) - cos_mean) / (i + 1);
sin_mean += (sin(ang) - sin_mean) / (i + 1);
}
double R = hypot(cos_mean, sin_mean);
if(R > 1){
R = 1;
}
double stds = 1/2. * sqrt(-2 * log(R));
double res = atan2(sin_mean, cos_mean);
if(res < 0){
res += 2 * M_PI;
}
*(means) = res*(high - low)/2.0/M_PI + low;
*(stds) = ((high - low)/2.0/M_PI) * sqrt(-2*log(R));
}
"""
)
def x(samples):
data = {'samples': Array(samples, 'mot_float_type'), 'means': Zeros
(samples.shape[0], 'mot_float_type'), 'stds': Zeros(samples.
shape[0], 'mot_float_type'), 'nmr_samples': Scalar(samples.
shape[1]), 'low': Scalar(low), 'high': Scalar(high)}
cl_func.evaluate(data, samples.shape[0])
return data['means'].get_data(), data['stds'].get_data()
if len(samples.shape) == 1:
mean, std = run_cl(samples[None, :])
return mean[0], std[0]
return run_cl(samples)
|
fit_circular_gaussian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples, high=np.pi, low=0):\n cl_func = SimpleCLFunction.from_string(\n \"\"\"\n void compute(global mot_float_type* samples,\n global mot_float_type* means,\n global mot_float_type* stds,\n int nmr_samples,\n int low,\n int high){ \n \n double cos_mean = 0;\n double sin_mean = 0;\n double ang;\n\n for(uint i = 0; i < nmr_samples; i++){\n ang = (samples[i] - low)*2*M_PI / (high - low);\n\n cos_mean += (cos(ang) - cos_mean) / (i + 1);\n sin_mean += (sin(ang) - sin_mean) / (i + 1);\n }\n\n double R = hypot(cos_mean, sin_mean);\n if(R > 1){\n R = 1;\n }\n\n double stds = 1/2. * sqrt(-2 * log(R));\n\n double res = atan2(sin_mean, cos_mean);\n if(res < 0){\n res += 2 * M_PI;\n }\n\n *(means) = res*(high - low)/2.0/M_PI + low;\n *(stds) = ((high - low)/2.0/M_PI) * sqrt(-2*log(R));\n }\n \"\"\"\n )\n\n def x(samples):\n data = {'samples': Array(samples, 'mot_float_type'), 'means': Zeros\n (samples.shape[0], 'mot_float_type'), 'stds': Zeros(samples.\n shape[0], 'mot_float_type'), 'nmr_samples': Scalar(samples.\n shape[1]), 'low': Scalar(low), 'high': Scalar(high)}\n cl_func.evaluate(data, samples.shape[0])\n return data['means'].get_data(), data['stds'].get_data()\n if len(samples.shape) == 1:\n mean, std = run_cl(samples[None, :])\n return mean[0], std[0]\n return run_cl(samples)\n",
"role": "user"
},
{
"content": "fit_circular_gaussian",
"role": "assistant"
}
] |
def x(samples, lower_bounds, upper_bounds):
if len(samples.shape) == 1:
return _TruncatedNormalFitter()((samples, lower_bounds, upper_bounds))
def x():
for ind in range(samples.shape[0]):
if is_scalar(lower_bounds):
lower_bound = lower_bounds
else:
lower_bound = lower_bounds[ind]
if is_scalar(upper_bounds):
upper_bound = upper_bounds
else:
upper_bound = upper_bounds[ind]
yield samples[ind], lower_bound, upper_bound
results = np.array(multiprocess_mapping(_TruncatedNormalFitter(),
item_generator()))
return results[:, 0], results[:, 1]
|
fit_truncated_gaussian
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(samples, lower_bounds, upper_bounds):\n if len(samples.shape) == 1:\n return _TruncatedNormalFitter()((samples, lower_bounds, upper_bounds))\n\n def x():\n for ind in range(samples.shape[0]):\n if is_scalar(lower_bounds):\n lower_bound = lower_bounds\n else:\n lower_bound = lower_bounds[ind]\n if is_scalar(upper_bounds):\n upper_bound = upper_bounds\n else:\n upper_bound = upper_bounds[ind]\n yield samples[ind], lower_bound, upper_bound\n results = np.array(multiprocess_mapping(_TruncatedNormalFitter(),\n item_generator()))\n return results[:, 0], results[:, 1]\n",
"role": "user"
},
{
"content": "fit_truncated_gaussian",
"role": "assistant"
}
] |
def x(means_0, stds_0, means_1, stds_1, lower=None, upper=None):
if lower is None:
lower = -np.inf
if upper is None:
upper = np.inf
def x():
for ind in range(means_0.shape[0]):
yield np.squeeze(means_0[ind]), np.squeeze(stds_0[ind]
), np.squeeze(means_1[ind]), np.squeeze(stds_1[ind])
return np.array(list(multiprocess_mapping(_ComputeGaussianOverlap(lower,
upper), point_iterator())))
|
gaussian_overlapping_coefficient
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(means_0, stds_0, means_1, stds_1, lower=None, upper=None):\n if lower is None:\n lower = -np.inf\n if upper is None:\n upper = np.inf\n\n def x():\n for ind in range(means_0.shape[0]):\n yield np.squeeze(means_0[ind]), np.squeeze(stds_0[ind]\n ), np.squeeze(means_1[ind]), np.squeeze(stds_1[ind])\n return np.array(list(multiprocess_mapping(_ComputeGaussianOverlap(lower,\n upper), point_iterator())))\n",
"role": "user"
},
{
"content": "gaussian_overlapping_coefficient",
"role": "assistant"
}
] |
def x(mean_posterior_lls, ll_per_sample):
mean_deviance = -2 * np.mean(ll_per_sample, axis=1)
deviance_at_mean = -2 * mean_posterior_lls
pd_2002 = mean_deviance - deviance_at_mean
pd_2004 = np.var(ll_per_sample, axis=1) / 2.0
return {'DIC_2002': np.nan_to_num(mean_deviance + pd_2002), 'DIC_2004':
np.nan_to_num(mean_deviance + pd_2004), 'DIC_Ando_2011': np.
nan_to_num(mean_deviance + 2 * pd_2002)}
|
deviance_information_criterions
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mean_posterior_lls, ll_per_sample):\n mean_deviance = -2 * np.mean(ll_per_sample, axis=1)\n deviance_at_mean = -2 * mean_posterior_lls\n pd_2002 = mean_deviance - deviance_at_mean\n pd_2004 = np.var(ll_per_sample, axis=1) / 2.0\n return {'DIC_2002': np.nan_to_num(mean_deviance + pd_2002), 'DIC_2004':\n np.nan_to_num(mean_deviance + pd_2004), 'DIC_Ando_2011': np.\n nan_to_num(mean_deviance + 2 * pd_2002)}\n",
"role": "user"
},
{
"content": "deviance_information_criterions",
"role": "assistant"
}
] |
def x(params, low, high, data):
mu = params[0]
sigma = params[1]
if sigma == 0:
return np.inf
ll = np.sum(norm.logpdf(data, mu, sigma))
ll -= len(data) * np.log(norm.cdf(high, mu, sigma) - norm.cdf(low, mu,
sigma))
return -ll
|
truncated_normal_log_likelihood
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params, low, high, data):\n mu = params[0]\n sigma = params[1]\n if sigma == 0:\n return np.inf\n ll = np.sum(norm.logpdf(data, mu, sigma))\n ll -= len(data) * np.log(norm.cdf(high, mu, sigma) - norm.cdf(low, mu,\n sigma))\n return -ll\n",
"role": "user"
},
{
"content": "truncated_normal_log_likelihood",
"role": "assistant"
}
] |
def x(params, low, high, data):
if params[1] == 0:
return np.array([np.inf, np.inf])
return np.array([_TruncatedNormalFitter.partial_derivative_mu(params[0],
params[1], low, high, data), _TruncatedNormalFitter.
partial_derivative_sigma(params[0], params[1], low, high, data)])
|
truncated_normal_ll_gradient
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(params, low, high, data):\n if params[1] == 0:\n return np.array([np.inf, np.inf])\n return np.array([_TruncatedNormalFitter.partial_derivative_mu(params[0],\n params[1], low, high, data), _TruncatedNormalFitter.\n partial_derivative_sigma(params[0], params[1], low, high, data)])\n",
"role": "user"
},
{
"content": "truncated_normal_ll_gradient",
"role": "assistant"
}
] |
def x(mu, sigma, low, high, data):
pd_mu = np.sum(data - mu) / sigma ** 2
pd_mu -= len(data) * ((norm.pdf(low, mu, sigma) - norm.pdf(high, mu,
sigma)) / (norm.cdf(high, mu, sigma) - norm.cdf(low, mu, sigma)))
return -pd_mu
|
partial_derivative_mu
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mu, sigma, low, high, data):\n pd_mu = np.sum(data - mu) / sigma ** 2\n pd_mu -= len(data) * ((norm.pdf(low, mu, sigma) - norm.pdf(high, mu,\n sigma)) / (norm.cdf(high, mu, sigma) - norm.cdf(low, mu, sigma)))\n return -pd_mu\n",
"role": "user"
},
{
"content": "partial_derivative_mu",
"role": "assistant"
}
] |
def x(mu, sigma, low, high, data):
pd_sigma = np.sum(-(1 / sigma) + (data - mu) ** 2 / sigma ** 3)
pd_sigma -= len(data) * (((low - mu) * norm.pdf(low, mu, sigma) - (high -
mu) * norm.pdf(high, mu, sigma)) / (sigma * (norm.cdf(high, mu,
sigma) - norm.cdf(low, mu, sigma))))
return -pd_sigma
|
partial_derivative_sigma
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mu, sigma, low, high, data):\n pd_sigma = np.sum(-(1 / sigma) + (data - mu) ** 2 / sigma ** 3)\n pd_sigma -= len(data) * (((low - mu) * norm.pdf(low, mu, sigma) - (high -\n mu) * norm.pdf(high, mu, sigma)) / (sigma * (norm.cdf(high, mu,\n sigma) - norm.cdf(low, mu, sigma))))\n return -pd_sigma\n",
"role": "user"
},
{
"content": "partial_derivative_sigma",
"role": "assistant"
}
] |
def x(self):
return {'nmsimplex_scratch': LocalMemory('mot_float_type', self.
_nmr_parameters * 2 + (self._nmr_parameters + 1) ** 2 + 1),
'initial_simplex_scale': LocalMemory('mot_float_type', self.
_nmr_parameters)}
|
get_kernel_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return {'nmsimplex_scratch': LocalMemory('mot_float_type', self.\n _nmr_parameters * 2 + (self._nmr_parameters + 1) ** 2 + 1),\n 'initial_simplex_scale': LocalMemory('mot_float_type', self.\n _nmr_parameters)}\n",
"role": "user"
},
{
"content": "get_kernel_data",
"role": "assistant"
}
] |
def x(self):
return {'subplex_scratch_float': LocalMemory('mot_float_type', 4 + self
._var_replace_dict['NMR_PARAMS'] * 2 + self._var_replace_dict[
'MAX_SUBSPACE_LENGTH'] * 2 + (self._var_replace_dict[
'MAX_SUBSPACE_LENGTH'] * 2 + self._var_replace_dict[
'MAX_SUBSPACE_LENGTH'] + 1) ** 2 + 1), 'subplex_scratch_int':
LocalMemory('int', 2 + self._var_replace_dict['NMR_PARAMS'] + self.
_var_replace_dict['NMR_PARAMS'] // self._var_replace_dict[
'MIN_SUBSPACE_LENGTH']), 'initial_simplex_scale': LocalMemory(
'mot_float_type', self._var_replace_dict['NMR_PARAMS'])}
|
get_kernel_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return {'subplex_scratch_float': LocalMemory('mot_float_type', 4 + self\n ._var_replace_dict['NMR_PARAMS'] * 2 + self._var_replace_dict[\n 'MAX_SUBSPACE_LENGTH'] * 2 + (self._var_replace_dict[\n 'MAX_SUBSPACE_LENGTH'] * 2 + self._var_replace_dict[\n 'MAX_SUBSPACE_LENGTH'] + 1) ** 2 + 1), 'subplex_scratch_int':\n LocalMemory('int', 2 + self._var_replace_dict['NMR_PARAMS'] + self.\n _var_replace_dict['NMR_PARAMS'] // self._var_replace_dict[\n 'MIN_SUBSPACE_LENGTH']), 'initial_simplex_scale': LocalMemory(\n 'mot_float_type', self._var_replace_dict['NMR_PARAMS'])}\n",
"role": "user"
},
{
"content": "get_kernel_data",
"role": "assistant"
}
] |
def x(self):
return {'scratch_mot_float_type': LocalMemory('mot_float_type', 8 + 2 *
self._var_replace_dict['NMR_OBSERVATIONS'] + 5 * self.
_var_replace_dict['NMR_PARAMS'] + self._var_replace_dict[
'NMR_PARAMS'] * self._var_replace_dict['NMR_OBSERVATIONS']),
'scratch_int': LocalMemory('int', self._var_replace_dict['NMR_PARAMS'])
}
|
get_kernel_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return {'scratch_mot_float_type': LocalMemory('mot_float_type', 8 + 2 *\n self._var_replace_dict['NMR_OBSERVATIONS'] + 5 * self.\n _var_replace_dict['NMR_PARAMS'] + self._var_replace_dict[\n 'NMR_PARAMS'] * self._var_replace_dict['NMR_OBSERVATIONS']),\n 'scratch_int': LocalMemory('int', self._var_replace_dict['NMR_PARAMS'])\n }\n",
"role": "user"
},
{
"content": "get_kernel_data",
"role": "assistant"
}
] |
def x(func, x0, data=None, method=None, lower_bounds=None, upper_bounds=
None, constraints_func=None, nmr_observations=None, cl_runtime_info=
None, options=None):
if not method:
method = 'Powell'
cl_runtime_info = cl_runtime_info or CLRuntimeInfo()
if len(x0.shape) < 2:
x0 = x0[..., None]
lower_bounds = _bounds_to_array(lower_bounds or np.ones(x0.shape[1]) *
-np.inf)
upper_bounds = _bounds_to_array(upper_bounds or np.ones(x0.shape[1]) *
np.inf)
if method == 'Powell':
return _minimize_powell(func, x0, cl_runtime_info, lower_bounds,
upper_bounds, constraints_func=constraints_func, data=data,
options=options)
elif method == 'Nelder-Mead':
return _minimize_nmsimplex(func, x0, cl_runtime_info, lower_bounds,
upper_bounds, constraints_func=constraints_func, data=data,
options=options)
elif method == 'Levenberg-Marquardt':
return _minimize_levenberg_marquardt(func, x0, nmr_observations,
cl_runtime_info, lower_bounds, upper_bounds, constraints_func=
constraints_func, data=data, options=options)
elif method == 'Subplex':
return _minimize_subplex(func, x0, cl_runtime_info, lower_bounds,
upper_bounds, constraints_func=constraints_func, data=data,
options=options)
raise ValueError('Could not find the specified method "{}".'.format(method)
)
|
minimize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, x0, data=None, method=None, lower_bounds=None, upper_bounds=\n None, constraints_func=None, nmr_observations=None, cl_runtime_info=\n None, options=None):\n if not method:\n method = 'Powell'\n cl_runtime_info = cl_runtime_info or CLRuntimeInfo()\n if len(x0.shape) < 2:\n x0 = x0[..., None]\n lower_bounds = _bounds_to_array(lower_bounds or np.ones(x0.shape[1]) * \n -np.inf)\n upper_bounds = _bounds_to_array(upper_bounds or np.ones(x0.shape[1]) *\n np.inf)\n if method == 'Powell':\n return _minimize_powell(func, x0, cl_runtime_info, lower_bounds,\n upper_bounds, constraints_func=constraints_func, data=data,\n options=options)\n elif method == 'Nelder-Mead':\n return _minimize_nmsimplex(func, x0, cl_runtime_info, lower_bounds,\n upper_bounds, constraints_func=constraints_func, data=data,\n options=options)\n elif method == 'Levenberg-Marquardt':\n return _minimize_levenberg_marquardt(func, x0, nmr_observations,\n cl_runtime_info, lower_bounds, upper_bounds, constraints_func=\n constraints_func, data=data, options=options)\n elif method == 'Subplex':\n return _minimize_subplex(func, x0, cl_runtime_info, lower_bounds,\n upper_bounds, constraints_func=constraints_func, data=data,\n options=options)\n raise ValueError('Could not find the specified method \"{}\".'.format(method)\n )\n",
"role": "user"
},
{
"content": "minimize",
"role": "assistant"
}
] |
def x(bounds):
elements = []
for value in bounds:
if all_elements_equal(value):
elements.append(Scalar(get_single_value(value), ctype=
'mot_float_type'))
else:
elements.append(Array(value, ctype='mot_float_type', as_scalar=
True))
return CompositeArray(elements, 'mot_float_type', address_space='local')
|
bounds_to_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bounds):\n elements = []\n for value in bounds:\n if all_elements_equal(value):\n elements.append(Scalar(get_single_value(value), ctype=\n 'mot_float_type'))\n else:\n elements.append(Array(value, ctype='mot_float_type', as_scalar=\n True))\n return CompositeArray(elements, 'mot_float_type', address_space='local')\n",
"role": "user"
},
{
"content": "bounds_to_array",
"role": "assistant"
}
] |
def x(func, x0, nmr_observations, **kwargs):
wrapped_func = SimpleCLFunction.from_string(
"""
double _negate_""" + func.get_cl_function_name() +
"""(
local mot_float_type* x,
void* data,
local mot_float_type* objective_list){
double return_val = """
+ func.get_cl_function_name() +
"""(x, data, objective_list);
if(objective_list){
const uint nmr_observations = """
+ str(nmr_observations) +
""";
uint local_id = get_local_id(0);
uint workgroup_size = get_local_size(0);
uint observation_ind;
for(uint i = 0; i < (nmr_observations + workgroup_size - 1) / workgroup_size; i++){
observation_ind = i * workgroup_size + local_id;
if(observation_ind < nmr_observations){
objective_list[observation_ind] *= -1;
}
}
}
return -return_val;
}
"""
, dependencies=[func])
kwargs['nmr_observations'] = nmr_observations
return minimize(wrapped_func, x0, **kwargs)
|
maximize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, x0, nmr_observations, **kwargs):\n wrapped_func = SimpleCLFunction.from_string(\n \"\"\"\n double _negate_\"\"\" + func.get_cl_function_name() +\n \"\"\"(\n local mot_float_type* x,\n void* data, \n local mot_float_type* objective_list){\n\n double return_val = \"\"\"\n + func.get_cl_function_name() +\n \"\"\"(x, data, objective_list); \n\n if(objective_list){\n const uint nmr_observations = \"\"\"\n + str(nmr_observations) +\n \"\"\";\n uint local_id = get_local_id(0);\n uint workgroup_size = get_local_size(0);\n\n uint observation_ind;\n for(uint i = 0; i < (nmr_observations + workgroup_size - 1) / workgroup_size; i++){\n observation_ind = i * workgroup_size + local_id;\n\n if(observation_ind < nmr_observations){\n objective_list[observation_ind] *= -1; \n }\n }\n }\n return -return_val;\n }\n \"\"\"\n , dependencies=[func])\n kwargs['nmr_observations'] = nmr_observations\n return minimize(wrapped_func, x0, **kwargs)\n",
"role": "user"
},
{
"content": "maximize",
"role": "assistant"
}
] |
def x(method):
if method == 'Powell':
return {'patience': 2, 'patience_line_search': None, 'reset_method':
'EXTRAPOLATED_POINT'}
elif method == 'Nelder-Mead':
return {'patience': 200, 'alpha': 1.0, 'beta': 0.5, 'gamma': 2.0,
'delta': 0.5, 'scale': 0.1, 'adaptive_scales': True}
elif method == 'Levenberg-Marquardt':
return {'patience': 250, 'step_bound': 100.0, 'scale_diag': 1,
'usertol_mult': 30}
elif method == 'Subplex':
return {'patience': 10, 'patience_nmsimplex': 100, 'alpha': 1.0,
'beta': 0.5, 'gamma': 2.0, 'delta': 0.5, 'scale': 1.0, 'psi':
0.0001, 'omega': 0.01, 'adaptive_scales': True,
'min_subspace_length': 'auto', 'max_subspace_length': 'auto'}
raise ValueError('Could not find the specified method "{}".'.format(method)
)
|
get_minimizer_options
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method):\n if method == 'Powell':\n return {'patience': 2, 'patience_line_search': None, 'reset_method':\n 'EXTRAPOLATED_POINT'}\n elif method == 'Nelder-Mead':\n return {'patience': 200, 'alpha': 1.0, 'beta': 0.5, 'gamma': 2.0,\n 'delta': 0.5, 'scale': 0.1, 'adaptive_scales': True}\n elif method == 'Levenberg-Marquardt':\n return {'patience': 250, 'step_bound': 100.0, 'scale_diag': 1,\n 'usertol_mult': 30}\n elif method == 'Subplex':\n return {'patience': 10, 'patience_nmsimplex': 100, 'alpha': 1.0,\n 'beta': 0.5, 'gamma': 2.0, 'delta': 0.5, 'scale': 1.0, 'psi': \n 0.0001, 'omega': 0.01, 'adaptive_scales': True,\n 'min_subspace_length': 'auto', 'max_subspace_length': 'auto'}\n raise ValueError('Could not find the specified method \"{}\".'.format(method)\n )\n",
"role": "user"
},
{
"content": "get_minimizer_options",
"role": "assistant"
}
] |
def x(method, provided_options):
provided_options = provided_options or {}
default_options = get_minimizer_options(method)
result = {}
for name, default in default_options.items():
if name in provided_options:
result[name] = provided_options[name]
else:
result[name] = default_options[name]
return result
|
clean_options
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method, provided_options):\n provided_options = provided_options or {}\n default_options = get_minimizer_options(method)\n result = {}\n for name, default in default_options.items():\n if name in provided_options:\n result[name] = provided_options[name]\n else:\n result[name] = default_options[name]\n return result\n",
"role": "user"
},
{
"content": "clean_options",
"role": "assistant"
}
] |
def x(func, x0, cl_runtime_info, lower_bounds, upper_bounds,
constraints_func=None, data=None, options=None):
options = options or {}
nmr_problems = x0.shape[0]
nmr_parameters = x0.shape[1]
penalty_data, penalty_func = _get_penalty_function(nmr_parameters,
constraints_func)
eval_func = SimpleCLFunction.from_string(
"""
double evaluate(local mot_float_type* x, void* data){
double penalty = _mle_penalty(
x,
((_powell_eval_func_data*)data)->data,
((_powell_eval_func_data*)data)->lower_bounds,
((_powell_eval_func_data*)data)->upper_bounds,
"""
+ str(options.get('penalty_weight', 1e+30)) +
""",
((_powell_eval_func_data*)data)->penalty_data
);
double func_val = """
+ func.get_cl_function_name() +
"""(x, ((_powell_eval_func_data*)data)->data, 0);
if(isnan(func_val)){
return INFINITY;
}
return func_val + penalty;
}
"""
, dependencies=[func, penalty_func])
optimizer_func = Powell(eval_func, nmr_parameters, **_clean_options(
'Powell', options))
kernel_data = {'model_parameters': Array(x0, ctype='mot_float_type',
mode='rw'), 'data': Struct({'data': data, 'lower_bounds':
lower_bounds, 'upper_bounds': upper_bounds, 'penalty_data':
penalty_data}, '_powell_eval_func_data')}
kernel_data.update(optimizer_func.get_kernel_data())
return_code = optimizer_func.evaluate(kernel_data, nmr_problems,
use_local_reduction=all(env.is_gpu for env in cl_runtime_info.
cl_environments), cl_runtime_info=cl_runtime_info)
return OptimizeResults({'x': kernel_data['model_parameters'].get_data(),
'status': return_code})
|
minimize_powell
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, x0, cl_runtime_info, lower_bounds, upper_bounds,\n constraints_func=None, data=None, options=None):\n options = options or {}\n nmr_problems = x0.shape[0]\n nmr_parameters = x0.shape[1]\n penalty_data, penalty_func = _get_penalty_function(nmr_parameters,\n constraints_func)\n eval_func = SimpleCLFunction.from_string(\n \"\"\"\n double evaluate(local mot_float_type* x, void* data){\n double penalty = _mle_penalty(\n x, \n ((_powell_eval_func_data*)data)->data,\n ((_powell_eval_func_data*)data)->lower_bounds,\n ((_powell_eval_func_data*)data)->upper_bounds,\n \"\"\"\n + str(options.get('penalty_weight', 1e+30)) +\n \"\"\", \n ((_powell_eval_func_data*)data)->penalty_data\n );\n \n double func_val = \"\"\"\n + func.get_cl_function_name() +\n \"\"\"(x, ((_powell_eval_func_data*)data)->data, 0);\n \n if(isnan(func_val)){\n return INFINITY;\n }\n \n return func_val + penalty;\n }\n \"\"\"\n , dependencies=[func, penalty_func])\n optimizer_func = Powell(eval_func, nmr_parameters, **_clean_options(\n 'Powell', options))\n kernel_data = {'model_parameters': Array(x0, ctype='mot_float_type',\n mode='rw'), 'data': Struct({'data': data, 'lower_bounds':\n lower_bounds, 'upper_bounds': upper_bounds, 'penalty_data':\n penalty_data}, '_powell_eval_func_data')}\n kernel_data.update(optimizer_func.get_kernel_data())\n return_code = optimizer_func.evaluate(kernel_data, nmr_problems,\n use_local_reduction=all(env.is_gpu for env in cl_runtime_info.\n cl_environments), cl_runtime_info=cl_runtime_info)\n return OptimizeResults({'x': kernel_data['model_parameters'].get_data(),\n 'status': return_code})\n",
"role": "user"
},
{
"content": "minimize_powell",
"role": "assistant"
}
] |
def x(nmr_parameters, constraints_func=None):
dependencies = []
data_requirements = {'scratch': LocalMemory('double', 1)}
constraints_code = ''
if constraints_func and constraints_func.get_nmr_constraints() > 0:
nmr_constraints = constraints_func.get_nmr_constraints()
dependencies.append(constraints_func)
data_requirements['constraints'] = LocalMemory('mot_float_type',
nmr_constraints)
constraints_code = """
local mot_float_type* constraints = ((_mle_penalty_data*)scratch_data)->constraints;
""" + constraints_func.get_cl_function_name() + """(x, data, constraints);
for(int i = 0; i < """ + str(nmr_constraints) + """; i++){
*penalty_sum += pown(max((mot_float_type)0, constraints[i]), 2);
}
"""
data = Struct(data_requirements, '_mle_penalty_data')
func = SimpleCLFunction.from_string(
"""
double _mle_penalty(
local mot_float_type* x,
void* data,
local mot_float_type* lower_bounds,
local mot_float_type* upper_bounds,
float penalty_weight,
void* scratch_data){
local double* penalty_sum = ((_mle_penalty_data*)scratch_data)->scratch;
if(get_local_id(0) == 0){
*penalty_sum = 0;
// boundary conditions
for(int i = 0; i < """
+ str(nmr_parameters) +
"""; i++){
if(isfinite(upper_bounds[i])){
*penalty_sum += pown(max((mot_float_type)0, x[i] - upper_bounds[i]), 2);
}
if(isfinite(lower_bounds[i])){
*penalty_sum += pown(max((mot_float_type)0, lower_bounds[i] - x[i]), 2);
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
// constraints
"""
+ constraints_code +
"""
return penalty_weight * *penalty_sum;
}
"""
, dependencies=dependencies)
return data, func
|
get_penalty_function
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nmr_parameters, constraints_func=None):\n dependencies = []\n data_requirements = {'scratch': LocalMemory('double', 1)}\n constraints_code = ''\n if constraints_func and constraints_func.get_nmr_constraints() > 0:\n nmr_constraints = constraints_func.get_nmr_constraints()\n dependencies.append(constraints_func)\n data_requirements['constraints'] = LocalMemory('mot_float_type',\n nmr_constraints)\n constraints_code = \"\"\"\n local mot_float_type* constraints = ((_mle_penalty_data*)scratch_data)->constraints;\n \n \"\"\" + constraints_func.get_cl_function_name() + \"\"\"(x, data, constraints);\n \n for(int i = 0; i < \"\"\" + str(nmr_constraints) + \"\"\"; i++){\n *penalty_sum += pown(max((mot_float_type)0, constraints[i]), 2); \n }\n \"\"\"\n data = Struct(data_requirements, '_mle_penalty_data')\n func = SimpleCLFunction.from_string(\n \"\"\"\n double _mle_penalty(\n local mot_float_type* x,\n void* data, \n local mot_float_type* lower_bounds, \n local mot_float_type* upper_bounds,\n float penalty_weight,\n void* scratch_data){\n \n local double* penalty_sum = ((_mle_penalty_data*)scratch_data)->scratch;\n \n if(get_local_id(0) == 0){\n *penalty_sum = 0;\n \n // boundary conditions\n for(int i = 0; i < \"\"\"\n + str(nmr_parameters) +\n \"\"\"; i++){\n if(isfinite(upper_bounds[i])){\n *penalty_sum += pown(max((mot_float_type)0, x[i] - upper_bounds[i]), 2); \n }\n if(isfinite(lower_bounds[i])){\n *penalty_sum += pown(max((mot_float_type)0, lower_bounds[i] - x[i]), 2);\n }\n }\n }\n barrier(CLK_LOCAL_MEM_FENCE);\n \n // constraints\n \"\"\"\n + constraints_code +\n \"\"\"\n \n return penalty_weight * *penalty_sum;\n }\n \"\"\"\n , dependencies=dependencies)\n return data, func\n",
"role": "user"
},
{
"content": "get_penalty_function",
"role": "assistant"
}
] |
def x(cls, cl_function, dependencies=(), nmr_constraints=None):
return_type, function_name, parameter_list, body = split_cl_function(
cl_function)
return SimpleConstraintFunction(return_type, function_name,
parameter_list, body, dependencies=dependencies, nmr_constraints=
nmr_constraints)
|
from_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, cl_function, dependencies=(), nmr_constraints=None):\n return_type, function_name, parameter_list, body = split_cl_function(\n cl_function)\n return SimpleConstraintFunction(return_type, function_name,\n parameter_list, body, dependencies=dependencies, nmr_constraints=\n nmr_constraints)\n",
"role": "user"
},
{
"content": "from_string",
"role": "assistant"
}
] |
def x(yaml_def, branch=False):
schema = Schema({('lane' if not branch else 'branch'): {Optional('name'
): str, Optional('run_parallel'): bool, 'tasks': list}})
schema.validate(yaml_def)
from schema import And, Use
task_schema = Schema({'class': str, Optional('kwargs'): Or({str: object
}), Optional('args'): Or([object], And(Use(lambda a: isinstance(a,
dict)), False))})
def x(tasks):
for task in tasks:
try:
Schema({'branch': dict}).validate(task)
validate_schema(task, True)
except SchemaError:
task_schema.validate(task)
return True
return validate_tasks(yaml_def['lane']['tasks'] if not branch else
yaml_def['branch']['tasks'])
|
validate_schema
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(yaml_def, branch=False):\n schema = Schema({('lane' if not branch else 'branch'): {Optional('name'\n ): str, Optional('run_parallel'): bool, 'tasks': list}})\n schema.validate(yaml_def)\n from schema import And, Use\n task_schema = Schema({'class': str, Optional('kwargs'): Or({str: object\n }), Optional('args'): Or([object], And(Use(lambda a: isinstance(a,\n dict)), False))})\n\n def x(tasks):\n for task in tasks:\n try:\n Schema({'branch': dict}).validate(task)\n validate_schema(task, True)\n except SchemaError:\n task_schema.validate(task)\n return True\n return validate_tasks(yaml_def['lane']['tasks'] if not branch else\n yaml_def['branch']['tasks'])\n",
"role": "user"
},
{
"content": "validate_schema",
"role": "assistant"
}
] |
def x(cls, mtd_name, *args, **kwargs):
mtd = getattr(cls, mtd_name)
py3_mtd_condition = not (inspect.isfunction(mtd) or inspect.ismethod(mtd)
) and hasattr(cls, mtd_name)
py2_mtd_condition = not inspect.ismethod(mtd) and not isinstance(cls.
__dict__[mtd_name], staticmethod)
if PY3 and py3_mtd_condition or PY2 and py2_mtd_condition:
raise TypeError(
'Attribute `%s` of class `%s` must be a method. Got type `%s` instead.'
% (mtd_name, cls.__name__, type(mtd)))
req_params, opt_params = arg_spec(cls, mtd_name)
n_params = len(req_params) + len(opt_params)
n_args_kwargs = len(args) + len(kwargs)
for k in kwargs:
if k not in req_params and k not in opt_params:
raise TaskInitializationError(
'kwarg `%s` is not a parameter of callable `%s`.' % (k, mtd
.__name__))
if n_args_kwargs < len(req_params):
raise TaskInitializationError(
'Not enough args/kwargs supplied for callable `%s`. Required args: %s'
% (mtd.__name__, str(req_params)))
if len(args) > n_params or n_args_kwargs > n_params or len(kwargs
) > n_params:
raise TaskInitializationError(
'Too many args/kwargs supplied for callable `%s`. Required args: %s'
% (mtd.__name__, str(req_params)))
redundant_p = [p for p in kwargs if p not in req_params[len(args):] +
opt_params]
if redundant_p:
raise TaskInitializationError(
'Supplied one or more kwargs that in the signature of callable `%s`. Redundant kwargs: %s'
% (mtd.__name__, str(redundant_p)))
needed_kwargs = req_params[len(args):]
if not all([(True if p in kwargs else False) for p in needed_kwargs]):
raise TaskInitializationError(
'Not enough args/kwargs supplied for callable `%s`. Required args: %s'
% (mtd.__name__, str(req_params)))
|
validate_params
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mtd_name, *args, **kwargs):\n mtd = getattr(cls, mtd_name)\n py3_mtd_condition = not (inspect.isfunction(mtd) or inspect.ismethod(mtd)\n ) and hasattr(cls, mtd_name)\n py2_mtd_condition = not inspect.ismethod(mtd) and not isinstance(cls.\n __dict__[mtd_name], staticmethod)\n if PY3 and py3_mtd_condition or PY2 and py2_mtd_condition:\n raise TypeError(\n 'Attribute `%s` of class `%s` must be a method. Got type `%s` instead.'\n % (mtd_name, cls.__name__, type(mtd)))\n req_params, opt_params = arg_spec(cls, mtd_name)\n n_params = len(req_params) + len(opt_params)\n n_args_kwargs = len(args) + len(kwargs)\n for k in kwargs:\n if k not in req_params and k not in opt_params:\n raise TaskInitializationError(\n 'kwarg `%s` is not a parameter of callable `%s`.' % (k, mtd\n .__name__))\n if n_args_kwargs < len(req_params):\n raise TaskInitializationError(\n 'Not enough args/kwargs supplied for callable `%s`. Required args: %s'\n % (mtd.__name__, str(req_params)))\n if len(args) > n_params or n_args_kwargs > n_params or len(kwargs\n ) > n_params:\n raise TaskInitializationError(\n 'Too many args/kwargs supplied for callable `%s`. Required args: %s'\n % (mtd.__name__, str(req_params)))\n redundant_p = [p for p in kwargs if p not in req_params[len(args):] +\n opt_params]\n if redundant_p:\n raise TaskInitializationError(\n 'Supplied one or more kwargs that in the signature of callable `%s`. Redundant kwargs: %s'\n % (mtd.__name__, str(redundant_p)))\n needed_kwargs = req_params[len(args):]\n if not all([(True if p in kwargs else False) for p in needed_kwargs]):\n raise TaskInitializationError(\n 'Not enough args/kwargs supplied for callable `%s`. Required args: %s'\n % (mtd.__name__, str(req_params)))\n",
"role": "user"
},
{
"content": "validate_params",
"role": "assistant"
}
] |
def x(cls, mtd_name):
mtd = getattr(cls, mtd_name)
required_params = []
optional_params = []
if hasattr(inspect, 'signature'):
params = inspect.signature(mtd).parameters
for k in params.keys():
if params[k].default == inspect.Parameter.empty:
if not (params[k].name == 'self' or params[k].name == 'cls'):
required_params.append(k)
else:
optional_params.append(k)
else:
params = inspect.getargspec(mtd)
num = len(params[0]) if params[0] else 0
n_opt = len(params[3]) if params[3] else 0
n_req = num - n_opt if n_opt <= num else 0
for i in range(0, n_req):
required_params.append(params[0][i])
for i in range(n_req, num):
optional_params.append(params[0][i])
if inspect.isroutine(getattr(cls, mtd_name)):
bound_mtd = cls.__dict__[mtd_name]
if not isinstance(bound_mtd, staticmethod):
del required_params[0]
return required_params, optional_params
|
arg_spec
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, mtd_name):\n mtd = getattr(cls, mtd_name)\n required_params = []\n optional_params = []\n if hasattr(inspect, 'signature'):\n params = inspect.signature(mtd).parameters\n for k in params.keys():\n if params[k].default == inspect.Parameter.empty:\n if not (params[k].name == 'self' or params[k].name == 'cls'):\n required_params.append(k)\n else:\n optional_params.append(k)\n else:\n params = inspect.getargspec(mtd)\n num = len(params[0]) if params[0] else 0\n n_opt = len(params[3]) if params[3] else 0\n n_req = num - n_opt if n_opt <= num else 0\n for i in range(0, n_req):\n required_params.append(params[0][i])\n for i in range(n_req, num):\n optional_params.append(params[0][i])\n if inspect.isroutine(getattr(cls, mtd_name)):\n bound_mtd = cls.__dict__[mtd_name]\n if not isinstance(bound_mtd, staticmethod):\n del required_params[0]\n return required_params, optional_params\n",
"role": "user"
},
{
"content": "arg_spec",
"role": "assistant"
}
] |
def x(nmr_distributions, nmr_samples, low=0, high=1, ctype='float', seed=None):
if is_scalar(low):
low = np.ones((nmr_distributions, 1)) * low
if is_scalar(high):
high = np.ones((nmr_distributions, 1)) * high
kernel_data = {'low': Array(low, as_scalar=True), 'high': Array(high,
as_scalar=True)}
kernel = SimpleCLFunction.from_string(
"""
void compute(double low, double high, global uint* rng_state, global """
+ ctype +
"""* samples){
rand123_data rand123_rng_data = rand123_initialize_data((uint[]){
rng_state[0], rng_state[1], rng_state[2], rng_state[3],
rng_state[4], rng_state[5], 0});
void* rng_data = (void*)&rand123_rng_data;
for(uint i = 0; i < """
+ str(nmr_samples) +
"""; i++){
double4 randomnr = rand4(rng_data);
samples[i] = ("""
+ ctype +
""")(low + randomnr.x * (high - low));
}
}
""",
dependencies=[Rand123()])
return _generate_samples(kernel, nmr_distributions, nmr_samples, ctype,
kernel_data, seed=seed)
|
uniform
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nmr_distributions, nmr_samples, low=0, high=1, ctype='float', seed=None):\n if is_scalar(low):\n low = np.ones((nmr_distributions, 1)) * low\n if is_scalar(high):\n high = np.ones((nmr_distributions, 1)) * high\n kernel_data = {'low': Array(low, as_scalar=True), 'high': Array(high,\n as_scalar=True)}\n kernel = SimpleCLFunction.from_string(\n \"\"\"\n void compute(double low, double high, global uint* rng_state, global \"\"\"\n + ctype +\n \"\"\"* samples){\n \n rand123_data rand123_rng_data = rand123_initialize_data((uint[]){\n rng_state[0], rng_state[1], rng_state[2], rng_state[3], \n rng_state[4], rng_state[5], 0});\n void* rng_data = (void*)&rand123_rng_data;\n\n for(uint i = 0; i < \"\"\"\n + str(nmr_samples) +\n \"\"\"; i++){\n double4 randomnr = rand4(rng_data);\n samples[i] = (\"\"\"\n + ctype +\n \"\"\")(low + randomnr.x * (high - low));\n }\n }\n \"\"\",\n dependencies=[Rand123()])\n return _generate_samples(kernel, nmr_distributions, nmr_samples, ctype,\n kernel_data, seed=seed)\n",
"role": "user"
},
{
"content": "uniform",
"role": "assistant"
}
] |
def x(nmr_distributions, nmr_samples, mean=0, std=1, ctype='float', seed=None):
if is_scalar(mean):
mean = np.ones((nmr_distributions, 1)) * mean
if is_scalar(std):
std = np.ones((nmr_distributions, 1)) * std
kernel_data = {'mean': Array(mean, as_scalar=True), 'std': Array(std,
as_scalar=True)}
kernel = SimpleCLFunction.from_string(
"""
void compute(double mean, double std, global uint* rng_state, global """
+ ctype +
"""* samples){
rand123_data rand123_rng_data = rand123_initialize_data((uint[]){
rng_state[0], rng_state[1], rng_state[2], rng_state[3],
rng_state[4], rng_state[5], 0});
void* rng_data = (void*)&rand123_rng_data;
for(uint i = 0; i < """
+ str(nmr_samples) +
"""; i++){
double4 randomnr = randn4(rng_data);
samples[i] = ("""
+ ctype +
""")(mean + randomnr.x * std);
}
}
""",
dependencies=[Rand123()])
return _generate_samples(kernel, nmr_distributions, nmr_samples, ctype,
kernel_data, seed=seed)
|
normal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(nmr_distributions, nmr_samples, mean=0, std=1, ctype='float', seed=None):\n if is_scalar(mean):\n mean = np.ones((nmr_distributions, 1)) * mean\n if is_scalar(std):\n std = np.ones((nmr_distributions, 1)) * std\n kernel_data = {'mean': Array(mean, as_scalar=True), 'std': Array(std,\n as_scalar=True)}\n kernel = SimpleCLFunction.from_string(\n \"\"\"\n void compute(double mean, double std, global uint* rng_state, global \"\"\"\n + ctype +\n \"\"\"* samples){\n rand123_data rand123_rng_data = rand123_initialize_data((uint[]){\n rng_state[0], rng_state[1], rng_state[2], rng_state[3], \n rng_state[4], rng_state[5], 0});\n void* rng_data = (void*)&rand123_rng_data;\n\n for(uint i = 0; i < \"\"\"\n + str(nmr_samples) +\n \"\"\"; i++){\n double4 randomnr = randn4(rng_data);\n samples[i] = (\"\"\"\n + ctype +\n \"\"\")(mean + randomnr.x * std);\n }\n }\n \"\"\",\n dependencies=[Rand123()])\n return _generate_samples(kernel, nmr_distributions, nmr_samples, ctype,\n kernel_data, seed=seed)\n",
"role": "user"
},
{
"content": "normal",
"role": "assistant"
}
] |
def x(self, nmr_samples, burnin=0, thinning=1):
if not thinning or thinning < 1:
thinning = 1
if not burnin or burnin < 0:
burnin = 0
max_samples_per_batch = max(1000 // thinning, 100)
with self._logging(nmr_samples, burnin, thinning):
if burnin > 0:
for batch_start, batch_end in split_in_batches(burnin,
max_samples_per_batch):
self._sample(batch_end - batch_start, return_output=False)
if nmr_samples > 0:
outputs = []
for batch_start, batch_end in split_in_batches(nmr_samples,
max_samples_per_batch):
outputs.append(self._sample(batch_end - batch_start,
thinning=thinning))
return SimpleSampleOutput(*[np.concatenate([o[ind] for o in
outputs], axis=-1) for ind in range(3)])
|
sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nmr_samples, burnin=0, thinning=1):\n if not thinning or thinning < 1:\n thinning = 1\n if not burnin or burnin < 0:\n burnin = 0\n max_samples_per_batch = max(1000 // thinning, 100)\n with self._logging(nmr_samples, burnin, thinning):\n if burnin > 0:\n for batch_start, batch_end in split_in_batches(burnin,\n max_samples_per_batch):\n self._sample(batch_end - batch_start, return_output=False)\n if nmr_samples > 0:\n outputs = []\n for batch_start, batch_end in split_in_batches(nmr_samples,\n max_samples_per_batch):\n outputs.append(self._sample(batch_end - batch_start,\n thinning=thinning))\n return SimpleSampleOutput(*[np.concatenate([o[ind] for o in\n outputs], axis=-1) for ind in range(3)])\n",
"role": "user"
},
{
"content": "sample",
"role": "assistant"
}
] |
def x(self, nmr_samples, thinning=1, return_output=True):
kernel_data = self._get_kernel_data(nmr_samples, thinning, return_output)
sample_func = self._get_compute_func(nmr_samples, thinning, return_output)
sample_func.evaluate(kernel_data, self._nmr_problems,
use_local_reduction=all(env.is_gpu for env in self._cl_runtime_info
.cl_environments), cl_runtime_info=self._cl_runtime_info)
self._sampling_index += nmr_samples * thinning
if return_output:
return kernel_data['samples'].get_data(), kernel_data['log_likelihoods'
].get_data(), kernel_data['log_priors'].get_data()
|
sample
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nmr_samples, thinning=1, return_output=True):\n kernel_data = self._get_kernel_data(nmr_samples, thinning, return_output)\n sample_func = self._get_compute_func(nmr_samples, thinning, return_output)\n sample_func.evaluate(kernel_data, self._nmr_problems,\n use_local_reduction=all(env.is_gpu for env in self._cl_runtime_info\n .cl_environments), cl_runtime_info=self._cl_runtime_info)\n self._sampling_index += nmr_samples * thinning\n if return_output:\n return kernel_data['samples'].get_data(), kernel_data['log_likelihoods'\n ].get_data(), kernel_data['log_priors'].get_data()\n",
"role": "user"
},
{
"content": "sample",
"role": "assistant"
}
] |
def x(self, positions, log_likelihoods, log_priors):
func = SimpleCLFunction.from_string(
"""
void compute(global mot_float_type* chain_position,
global mot_float_type* log_likelihood,
global mot_float_type* log_prior,
local mot_float_type* x_tmp,
void* data){
bool is_first_work_item = get_local_id(0) == 0;
if(is_first_work_item){
for(uint i = 0; i < """
+ str(self._nmr_params) +
"""; i++){
x_tmp[i] = chain_position[i];
}
*log_prior = _computeLogPrior(x_tmp, data);
}
barrier(CLK_LOCAL_MEM_FENCE);
*log_likelihood = _computeLogLikelihood(x_tmp, data);
}
"""
, dependencies=[self._get_log_prior_cl_func(), self.
_get_log_likelihood_cl_func()])
kernel_data = {'chain_position': Array(positions, 'mot_float_type',
mode='rw', ensure_zero_copy=True), 'log_likelihood': Array(
log_likelihoods, 'mot_float_type', mode='rw', ensure_zero_copy=True
), 'log_prior': Array(log_priors, 'mot_float_type', mode='rw',
ensure_zero_copy=True), 'x_tmp': LocalMemory('mot_float_type', self
._nmr_params), 'data': self._data}
func.evaluate(kernel_data, self._nmr_problems, use_local_reduction=all(
env.is_gpu for env in self._cl_runtime_info.cl_environments),
cl_runtime_info=self._cl_runtime_info)
|
initialize_likelihood_prior
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, positions, log_likelihoods, log_priors):\n func = SimpleCLFunction.from_string(\n \"\"\"\n void compute(global mot_float_type* chain_position,\n global mot_float_type* log_likelihood,\n global mot_float_type* log_prior,\n local mot_float_type* x_tmp,\n void* data){\n \n bool is_first_work_item = get_local_id(0) == 0;\n \n if(is_first_work_item){\n for(uint i = 0; i < \"\"\"\n + str(self._nmr_params) +\n \"\"\"; i++){\n x_tmp[i] = chain_position[i];\n }\n *log_prior = _computeLogPrior(x_tmp, data);\n }\n barrier(CLK_LOCAL_MEM_FENCE);\n \n *log_likelihood = _computeLogLikelihood(x_tmp, data);\n }\n \"\"\"\n , dependencies=[self._get_log_prior_cl_func(), self.\n _get_log_likelihood_cl_func()])\n kernel_data = {'chain_position': Array(positions, 'mot_float_type',\n mode='rw', ensure_zero_copy=True), 'log_likelihood': Array(\n log_likelihoods, 'mot_float_type', mode='rw', ensure_zero_copy=True\n ), 'log_prior': Array(log_priors, 'mot_float_type', mode='rw',\n ensure_zero_copy=True), 'x_tmp': LocalMemory('mot_float_type', self\n ._nmr_params), 'data': self._data}\n func.evaluate(kernel_data, self._nmr_problems, use_local_reduction=all(\n env.is_gpu for env in self._cl_runtime_info.cl_environments),\n cl_runtime_info=self._cl_runtime_info)\n",
"role": "user"
},
{
"content": "initialize_likelihood_prior",
"role": "assistant"
}
] |
def x(self, nmr_samples, thinning, return_output):
kernel_data = {'data': self._data, 'method_data': self.
_get_mcmc_method_kernel_data(), 'nmr_iterations': Scalar(
nmr_samples * thinning, ctype='ulong'), 'iteration_offset': Scalar(
self._sampling_index, ctype='ulong'), 'rng_state': Array(self.
_rng_state, 'uint', mode='rw', ensure_zero_copy=True),
'current_chain_position': Array(self._current_chain_position,
'mot_float_type', mode='rw', ensure_zero_copy=True),
'current_log_likelihood': Array(self._current_log_likelihood,
'mot_float_type', mode='rw', ensure_zero_copy=True),
'current_log_prior': Array(self._current_log_prior,
'mot_float_type', mode='rw', ensure_zero_copy=True)}
if return_output:
kernel_data.update({'samples': Zeros((self._nmr_problems, self.
_nmr_params, nmr_samples), ctype='mot_float_type'),
'log_likelihoods': Zeros((self._nmr_problems, nmr_samples),
ctype='mot_float_type'), 'log_priors': Zeros((self.
_nmr_problems, nmr_samples), ctype='mot_float_type')})
return kernel_data
|
get_kernel_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nmr_samples, thinning, return_output):\n kernel_data = {'data': self._data, 'method_data': self.\n _get_mcmc_method_kernel_data(), 'nmr_iterations': Scalar(\n nmr_samples * thinning, ctype='ulong'), 'iteration_offset': Scalar(\n self._sampling_index, ctype='ulong'), 'rng_state': Array(self.\n _rng_state, 'uint', mode='rw', ensure_zero_copy=True),\n 'current_chain_position': Array(self._current_chain_position,\n 'mot_float_type', mode='rw', ensure_zero_copy=True),\n 'current_log_likelihood': Array(self._current_log_likelihood,\n 'mot_float_type', mode='rw', ensure_zero_copy=True),\n 'current_log_prior': Array(self._current_log_prior,\n 'mot_float_type', mode='rw', ensure_zero_copy=True)}\n if return_output:\n kernel_data.update({'samples': Zeros((self._nmr_problems, self.\n _nmr_params, nmr_samples), ctype='mot_float_type'),\n 'log_likelihoods': Zeros((self._nmr_problems, nmr_samples),\n ctype='mot_float_type'), 'log_priors': Zeros((self.\n _nmr_problems, nmr_samples), ctype='mot_float_type')})\n return kernel_data\n",
"role": "user"
},
{
"content": "get_kernel_data",
"role": "assistant"
}
] |
def x(self, nmr_samples, thinning, return_output):
cl_func = """
void compute(global uint* rng_state,
global mot_float_type* current_chain_position,
global mot_float_type* current_log_likelihood,
global mot_float_type* current_log_prior,
ulong iteration_offset,
ulong nmr_iterations,
""" + ("""global mot_float_type* samples,
global mot_float_type* log_likelihoods,
global mot_float_type* log_priors,""" if return_output else '') + """
void* method_data,
void* data){
bool is_first_work_item = get_local_id(0) == 0;
rand123_data rand123_rng_data = rand123_initialize_data((uint[]){
rng_state[0], rng_state[1], rng_state[2], rng_state[3],
rng_state[4], rng_state[5], 0, 0});
void* rng_data = (void*)&rand123_rng_data;
for(ulong i = 0; i < nmr_iterations; i++){
"""
if return_output:
cl_func += """
if(is_first_work_item){
if(i % """ + str(thinning) + """ == 0){
log_likelihoods[i / """ + str(thinning) + """] = *current_log_likelihood;
log_priors[i / """ + str(thinning) + """] = *current_log_prior;
for(uint j = 0; j < """ + str(self._nmr_params) + """; j++){
samples[(ulong)(i / """ + str(thinning) + """) // remove the interval
+ j * """ + str(nmr_samples) + """ // parameter index
] = current_chain_position[j];
}
}
}
"""
cl_func += """
_advanceSampler(method_data, data, i + iteration_offset, rng_data,
current_chain_position, current_log_likelihood, current_log_prior);
}
if(is_first_work_item){
uint state[8];
rand123_data_to_array(rand123_rng_data, state);
for(uint i = 0; i < 6; i++){
rng_state[i] = state[i];
}
}
}
"""
return SimpleCLFunction.from_string(cl_func, dependencies=[Rand123(),
self._get_log_prior_cl_func(), self._get_log_likelihood_cl_func(),
SimpleCLCodeObject(self._get_state_update_cl_func(nmr_samples,
thinning, return_output))])
|
get_compute_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nmr_samples, thinning, return_output):\n cl_func = \"\"\"\n void compute(global uint* rng_state, \n global mot_float_type* current_chain_position,\n global mot_float_type* current_log_likelihood,\n global mot_float_type* current_log_prior,\n ulong iteration_offset, \n ulong nmr_iterations, \n \"\"\" + (\"\"\"global mot_float_type* samples, \n global mot_float_type* log_likelihoods,\n global mot_float_type* log_priors,\"\"\" if return_output else '') + \"\"\"\n void* method_data, \n void* data){\n \n bool is_first_work_item = get_local_id(0) == 0;\n \n rand123_data rand123_rng_data = rand123_initialize_data((uint[]){\n rng_state[0], rng_state[1], rng_state[2], rng_state[3], \n rng_state[4], rng_state[5], 0, 0});\n void* rng_data = (void*)&rand123_rng_data;\n \n for(ulong i = 0; i < nmr_iterations; i++){\n \"\"\"\n if return_output:\n cl_func += \"\"\"\n if(is_first_work_item){\n if(i % \"\"\" + str(thinning) + \"\"\" == 0){\n log_likelihoods[i / \"\"\" + str(thinning) + \"\"\"] = *current_log_likelihood;\n log_priors[i / \"\"\" + str(thinning) + \"\"\"] = *current_log_prior;\n \n for(uint j = 0; j < \"\"\" + str(self._nmr_params) + \"\"\"; j++){\n samples[(ulong)(i / \"\"\" + str(thinning) + \"\"\") // remove the interval\n + j * \"\"\" + str(nmr_samples) + \"\"\" // parameter index\n ] = current_chain_position[j];\n }\n }\n }\n \"\"\"\n cl_func += \"\"\"\n _advanceSampler(method_data, data, i + iteration_offset, rng_data, \n current_chain_position, current_log_likelihood, current_log_prior);\n }\n\n if(is_first_work_item){\n uint state[8];\n rand123_data_to_array(rand123_rng_data, state);\n for(uint i = 0; i < 6; i++){\n rng_state[i] = state[i];\n }\n }\n }\n \"\"\"\n return SimpleCLFunction.from_string(cl_func, dependencies=[Rand123(),\n self._get_log_prior_cl_func(), self._get_log_likelihood_cl_func(),\n SimpleCLCodeObject(self._get_state_update_cl_func(nmr_samples,\n thinning, return_output))])\n",
"role": "user"
},
{
"content": "get_compute_func",
"role": "assistant"
}
] |
def x(self):
return SimpleCLFunction.from_string(
"""
mot_float_type _computeLogPrior(local const mot_float_type* x, void* data){
return """
+ self._log_prior_func.get_cl_function_name() +
"""(x, data);
}
""", dependencies=[self.
_log_prior_func])
|
get_log_prior_cl_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return SimpleCLFunction.from_string(\n \"\"\"\n mot_float_type _computeLogPrior(local const mot_float_type* x, void* data){\n return \"\"\"\n + self._log_prior_func.get_cl_function_name() +\n \"\"\"(x, data);\n }\n \"\"\", dependencies=[self.\n _log_prior_func])\n",
"role": "user"
},
{
"content": "get_log_prior_cl_func",
"role": "assistant"
}
] |
def x(self):
return SimpleCLFunction.from_string(
"""
double _computeLogLikelihood(local const mot_float_type* current_position, void* data){
return """
+ self._ll_func.get_cl_function_name() +
"""(current_position, data);
}
""",
dependencies=[self._ll_func])
|
get_log_likelihood_cl_func
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return SimpleCLFunction.from_string(\n \"\"\"\n double _computeLogLikelihood(local const mot_float_type* current_position, void* data){\n return \"\"\"\n + self._ll_func.get_cl_function_name() +\n \"\"\"(current_position, data);\n }\n \"\"\",\n dependencies=[self._ll_func])\n",
"role": "user"
},
{
"content": "get_log_likelihood_cl_func",
"role": "assistant"
}
] |
def x(self):
return {'proposal_stds': Array(self._proposal_stds, 'mot_float_type',
mode='rw', ensure_zero_copy=True), 'x_tmp': LocalMemory(
'mot_float_type', nmr_items=1 + self._nmr_params)}
|
get_mcmc_method_kernel_data_elements
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return {'proposal_stds': Array(self._proposal_stds, 'mot_float_type',\n mode='rw', ensure_zero_copy=True), 'x_tmp': LocalMemory(\n 'mot_float_type', nmr_items=1 + self._nmr_params)}\n",
"role": "user"
},
{
"content": "get_mcmc_method_kernel_data_elements",
"role": "assistant"
}
] |
def x(ll_func, parameters, data=None, cl_runtime_info=None):
def x():
nmr_params = parameters.shape[1]
if len(parameters.shape) > 2:
return SimpleCLFunction.from_string(
"""
void compute(global mot_float_type* parameters,
global mot_float_type* log_likelihoods,
void* data){
local mot_float_type x["""
+ str(nmr_params) +
"""];
for(uint sample_ind = 0; sample_ind < """
+ str(parameters.shape[2]) +
"""; sample_ind++){
for(uint i = 0; i < """
+ str(nmr_params) +
"""; i++){
x[i] = parameters[i *"""
+ str(parameters.shape[2]) +
""" + sample_ind];
}
double ll = """
+ ll_func.get_cl_function_name() +
"""(x, data);
if(get_local_id(0) == 0){
log_likelihoods[sample_ind] = ll;
}
}
}
"""
, dependencies=[ll_func])
return SimpleCLFunction.from_string(
"""
void compute(local mot_float_type* parameters,
global mot_float_type* log_likelihoods,
void* data){
double ll = """
+ ll_func.get_cl_function_name() +
"""(parameters, data);
if(get_local_id(0) == 0){
*(log_likelihoods) = ll;
}
}
"""
, dependencies=[ll_func])
kernel_data = {'data': data, 'parameters': Array(parameters,
'mot_float_type', mode='r')}
shape = parameters.shape
if len(shape) > 2:
kernel_data.update({'log_likelihoods': Zeros((shape[0], shape[2]),
'mot_float_type')})
else:
kernel_data.update({'log_likelihoods': Zeros((shape[0],),
'mot_float_type')})
get_cl_function().evaluate(kernel_data, parameters.shape[0],
use_local_reduction=True, cl_runtime_info=cl_runtime_info)
return kernel_data['log_likelihoods'].get_data()
|
compute_log_likelihood
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ll_func, parameters, data=None, cl_runtime_info=None):\n\n def x():\n nmr_params = parameters.shape[1]\n if len(parameters.shape) > 2:\n return SimpleCLFunction.from_string(\n \"\"\"\n void compute(global mot_float_type* parameters, \n global mot_float_type* log_likelihoods,\n void* data){\n \n local mot_float_type x[\"\"\"\n + str(nmr_params) +\n \"\"\"];\n\n for(uint sample_ind = 0; sample_ind < \"\"\"\n + str(parameters.shape[2]) +\n \"\"\"; sample_ind++){\n for(uint i = 0; i < \"\"\"\n + str(nmr_params) +\n \"\"\"; i++){\n x[i] = parameters[i *\"\"\"\n + str(parameters.shape[2]) +\n \"\"\" + sample_ind];\n }\n \n double ll = \"\"\"\n + ll_func.get_cl_function_name() +\n \"\"\"(x, data);\n if(get_local_id(0) == 0){\n log_likelihoods[sample_ind] = ll;\n }\n }\n }\n \"\"\"\n , dependencies=[ll_func])\n return SimpleCLFunction.from_string(\n \"\"\"\n void compute(local mot_float_type* parameters, \n global mot_float_type* log_likelihoods,\n void* data){\n \n double ll = \"\"\"\n + ll_func.get_cl_function_name() +\n \"\"\"(parameters, data);\n if(get_local_id(0) == 0){\n *(log_likelihoods) = ll;\n }\n }\n \"\"\"\n , dependencies=[ll_func])\n kernel_data = {'data': data, 'parameters': Array(parameters,\n 'mot_float_type', mode='r')}\n shape = parameters.shape\n if len(shape) > 2:\n kernel_data.update({'log_likelihoods': Zeros((shape[0], shape[2]),\n 'mot_float_type')})\n else:\n kernel_data.update({'log_likelihoods': Zeros((shape[0],),\n 'mot_float_type')})\n get_cl_function().evaluate(kernel_data, parameters.shape[0],\n use_local_reduction=True, cl_runtime_info=cl_runtime_info)\n return kernel_data['log_likelihoods'].get_data()\n",
"role": "user"
},
{
"content": "compute_log_likelihood",
"role": "assistant"
}
] |
def x(objective_func, parameters, data=None, cl_runtime_info=None):
return objective_func.evaluate({'data': data, 'parameters': Array(
parameters, 'mot_float_type', mode='r')}, parameters.shape[0],
use_local_reduction=True, cl_runtime_info=cl_runtime_info)
|
compute_objective_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(objective_func, parameters, data=None, cl_runtime_info=None):\n return objective_func.evaluate({'data': data, 'parameters': Array(\n parameters, 'mot_float_type', mode='r')}, parameters.shape[0],\n use_local_reduction=True, cl_runtime_info=cl_runtime_info)\n",
"role": "user"
},
{
"content": "compute_objective_value",
"role": "assistant"
}
] |
def x(username):
redis = get_redis_client()
log_key = 'log:{}'.format(username)
raw_log = redis.lrange(log_key, 0, -1)
log = []
for raw_item in raw_log:
item = json.loads(raw_item.decode())
item['datetime'] = convert_timestamp(item.pop('time'))
log.append(item)
return log
|
get_log
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(username):\n redis = get_redis_client()\n log_key = 'log:{}'.format(username)\n raw_log = redis.lrange(log_key, 0, -1)\n log = []\n for raw_item in raw_log:\n item = json.loads(raw_item.decode())\n item['datetime'] = convert_timestamp(item.pop('time'))\n log.append(item)\n return log\n",
"role": "user"
},
{
"content": "get_log",
"role": "assistant"
}
] |
def x(username, length=20, timeout=20):
redis = get_redis_client()
token = get_random_string(length)
token_key = 'token:{}'.format(token)
redis.set(token_key, username)
redis.expire(token_key, timeout)
return token
|
get_token
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(username, length=20, timeout=20):\n redis = get_redis_client()\n token = get_random_string(length)\n token_key = 'token:{}'.format(token)\n redis.set(token_key, username)\n redis.expire(token_key, timeout)\n return token\n",
"role": "user"
},
{
"content": "get_token",
"role": "assistant"
}
] |
def x(self, request, response):
return {'method': request.method, 'path': request.get_full_path(),
'code': response.status_code, 'time': time.time()}
|
get_log
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, response):\n return {'method': request.method, 'path': request.get_full_path(),\n 'code': response.status_code, 'time': time.time()}\n",
"role": "user"
},
{
"content": "get_log",
"role": "assistant"
}
] |
def x(self, song):
song_id = song['id']
response = self._call(mm_calls.Export, self.uploader_id, song_id)
audio = response.body
suggested_filename = unquote(response.headers['Content-Disposition'].
split("filename*=UTF-8''")[-1])
return audio, suggested_filename
|
download
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, song):\n song_id = song['id']\n response = self._call(mm_calls.Export, self.uploader_id, song_id)\n audio = response.body\n suggested_filename = unquote(response.headers['Content-Disposition'].\n split(\"filename*=UTF-8''\")[-1])\n return audio, suggested_filename\n",
"role": "user"
},
{
"content": "download",
"role": "assistant"
}
] |
def x(self):
response = self._call(mm_calls.ClientState, self.uploader_id)
client_state = response.body.clientstate_response
return client_state.total_track_count, client_state.locker_track_limit
|
quota
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n response = self._call(mm_calls.ClientState, self.uploader_id)\n client_state = response.body.clientstate_response\n return client_state.total_track_count, client_state.locker_track_limit\n",
"role": "user"
},
{
"content": "quota",
"role": "assistant"
}
] |
def x(self, *, uploaded=True, purchased=True):
if not uploaded and not purchased:
raise ValueError("'uploaded' and 'purchased' cannot both be False.")
if purchased and uploaded:
song_list = []
for chunk in self.songs_iter(export_type=1):
song_list.extend(chunk)
elif purchased:
song_list = []
for chunk in self.songs_iter(export_type=2):
song_list.extend(chunk)
elif uploaded:
purchased_songs = []
for chunk in self.songs_iter(export_type=2):
purchased_songs.extend(chunk)
song_list = [song for chunk in self.songs_iter(export_type=1) for
song in chunk if song not in purchased_songs]
return song_list
|
songs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, uploaded=True, purchased=True):\n if not uploaded and not purchased:\n raise ValueError(\"'uploaded' and 'purchased' cannot both be False.\")\n if purchased and uploaded:\n song_list = []\n for chunk in self.songs_iter(export_type=1):\n song_list.extend(chunk)\n elif purchased:\n song_list = []\n for chunk in self.songs_iter(export_type=2):\n song_list.extend(chunk)\n elif uploaded:\n purchased_songs = []\n for chunk in self.songs_iter(export_type=2):\n purchased_songs.extend(chunk)\n song_list = [song for chunk in self.songs_iter(export_type=1) for\n song in chunk if song not in purchased_songs]\n return song_list\n",
"role": "user"
},
{
"content": "songs",
"role": "assistant"
}
] |
def x(self, *, continuation_token=None, export_type=1):
def x(track_info):
return dict((field.name, value) for field, value in track_info.
ListFields())
while True:
response = self._call(mm_calls.ExportIDs, self.uploader_id,
continuation_token=continuation_token, export_type=export_type)
items = [track_info_to_dict(track_info) for track_info in response.
body.download_track_info]
if items:
yield items
continuation_token = response.body.continuation_token
if not continuation_token:
break
|
songs_iter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, continuation_token=None, export_type=1):\n\n def x(track_info):\n return dict((field.name, value) for field, value in track_info.\n ListFields())\n while True:\n response = self._call(mm_calls.ExportIDs, self.uploader_id,\n continuation_token=continuation_token, export_type=export_type)\n items = [track_info_to_dict(track_info) for track_info in response.\n body.download_track_info]\n if items:\n yield items\n continuation_token = response.body.continuation_token\n if not continuation_token:\n break\n",
"role": "user"
},
{
"content": "songs_iter",
"role": "assistant"
}
] |
def x(self, song, *, album_art_path=None, no_sample=False):
if not isinstance(song, audio_metadata.Format):
try:
song = audio_metadata.load(song)
except audio_metadata.UnsupportedFormat:
raise ValueError("'song' must be FLAC, MP3, or WAV.")
if album_art_path:
album_art_path = Path(album_art_path).resolve()
if album_art_path.is_file():
with album_art_path.open('rb') as image_file:
external_art = image_file.read()
else:
external_art = None
else:
external_art = None
result = {'filepath': Path(song.filepath)}
track_info = mm_calls.Metadata.get_track_info(song)
response = self._call(mm_calls.Metadata, self.uploader_id, [track_info])
metadata_response = response.body.metadata_response
if metadata_response.signed_challenge_info:
sample_request = metadata_response.signed_challenge_info[0]
try:
track_sample = mm_calls.Sample.generate_sample(song, track_info,
sample_request, external_art=external_art, no_sample=no_sample)
response = self._call(mm_calls.Sample, self.uploader_id, [
track_sample])
track_sample_response = (response.body.sample_response.
track_sample_response[0])
except (OSError, ValueError, subprocess.CalledProcessError):
raise
else:
track_sample_response = metadata_response.track_sample_response[0]
response_code = track_sample_response.response_code
if response_code == upload_pb2.TrackSampleResponse.MATCHED:
result.update({'success': True, 'reason': 'Matched', 'song_id':
track_sample_response.server_track_id})
elif response_code == upload_pb2.TrackSampleResponse.UPLOAD_REQUESTED:
server_track_id = track_sample_response.server_track_id
self._call(mm_calls.UploadState, self.uploader_id, 'START')
attempts = 0
should_retry = True
while should_retry and attempts <= 10:
response = self._call.retry_with(stop=stop_after_attempt(1))(self,
mm_calls.ScottyAgentPost, self.uploader_id, server_track_id,
track_info, song, external_art=external_art,
total_song_count=1, total_uploaded_count=0)
session_response = response.body
if 'sessionStatus' in session_response:
break
try:
status_code = session_response['errorMessage']['additionalInfo'
]['uploader_service.GoogleRupioAdditionalInfo'][
'completionInfo']['customerSpecificInfo']['ResponseCode']
except KeyError:
status_code = None
if status_code == 503:
should_retry = True
reason = 'Server syncing'
elif status_code == 200:
should_retry = False
reason = 'Already uploaded'
elif status_code == 404:
should_retry = False
reason = 'Rejected'
else:
should_retry = True
reason = 'Unkown error'
attempts += 1
time.sleep(2)
else:
result.update({'success': False, 'reason':
f'Could not get upload session: {reason}'})
if 'success' not in result:
transfer = session_response['sessionStatus'][
'externalFieldTransfers'][0]
upload_url = transfer['putInfo']['url']
content_type = transfer.get('content_type', 'audio/mpeg')
original_content_type = track_info.original_content_type
transcode = isinstance(song, audio_metadata.WAV
) or original_content_type != locker_pb2.Track.MP3
if transcode or original_content_type == locker_pb2.Track.MP3:
if transcode:
audio_file = transcode_to_mp3(song, quality='320k')
else:
with open(song.filepath, 'rb') as f:
audio_file = f.read()
if len(audio_file) >= 300 * 1024 * 1024:
result.update({'success': False, 'reason':
'Maximum allowed file size is 300 MiB.'})
else:
upload_response = self._call(mm_calls.ScottyAgentPut,
upload_url, audio_file, content_type=content_type).body
if upload_response.get('sessionStatus', {}).get('state'):
result.update({'success': True, 'reason':
'Uploaded', 'song_id': track_sample_response.
server_track_id})
else:
result.update({'success': False, 'reason':
upload_response})
else:
result.update({'success': False, 'reason':
'Transcoding disabled for file type.'})
self._call(mm_calls.UploadState, self.uploader_id, 'STOPPED')
else:
response_codes = upload_pb2._TRACKSAMPLERESPONSE.enum_types[0]
response_type = response_codes.values_by_number[track_sample_response
.response_code].name
reason = response_type
result.update({'success': False, 'reason': f'{reason}'})
if response_type == 'ALREADY_EXISTS':
result['song_id'] = track_sample_response.server_track_id
return result
|
upload
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, song, *, album_art_path=None, no_sample=False):\n if not isinstance(song, audio_metadata.Format):\n try:\n song = audio_metadata.load(song)\n except audio_metadata.UnsupportedFormat:\n raise ValueError(\"'song' must be FLAC, MP3, or WAV.\")\n if album_art_path:\n album_art_path = Path(album_art_path).resolve()\n if album_art_path.is_file():\n with album_art_path.open('rb') as image_file:\n external_art = image_file.read()\n else:\n external_art = None\n else:\n external_art = None\n result = {'filepath': Path(song.filepath)}\n track_info = mm_calls.Metadata.get_track_info(song)\n response = self._call(mm_calls.Metadata, self.uploader_id, [track_info])\n metadata_response = response.body.metadata_response\n if metadata_response.signed_challenge_info:\n sample_request = metadata_response.signed_challenge_info[0]\n try:\n track_sample = mm_calls.Sample.generate_sample(song, track_info,\n sample_request, external_art=external_art, no_sample=no_sample)\n response = self._call(mm_calls.Sample, self.uploader_id, [\n track_sample])\n track_sample_response = (response.body.sample_response.\n track_sample_response[0])\n except (OSError, ValueError, subprocess.CalledProcessError):\n raise\n else:\n track_sample_response = metadata_response.track_sample_response[0]\n response_code = track_sample_response.response_code\n if response_code == upload_pb2.TrackSampleResponse.MATCHED:\n result.update({'success': True, 'reason': 'Matched', 'song_id':\n track_sample_response.server_track_id})\n elif response_code == upload_pb2.TrackSampleResponse.UPLOAD_REQUESTED:\n server_track_id = track_sample_response.server_track_id\n self._call(mm_calls.UploadState, self.uploader_id, 'START')\n attempts = 0\n should_retry = True\n while should_retry and attempts <= 10:\n response = self._call.retry_with(stop=stop_after_attempt(1))(self,\n mm_calls.ScottyAgentPost, self.uploader_id, server_track_id,\n track_info, song, external_art=external_art,\n total_song_count=1, total_uploaded_count=0)\n session_response = response.body\n if 'sessionStatus' in session_response:\n break\n try:\n status_code = session_response['errorMessage']['additionalInfo'\n ]['uploader_service.GoogleRupioAdditionalInfo'][\n 'completionInfo']['customerSpecificInfo']['ResponseCode']\n except KeyError:\n status_code = None\n if status_code == 503:\n should_retry = True\n reason = 'Server syncing'\n elif status_code == 200:\n should_retry = False\n reason = 'Already uploaded'\n elif status_code == 404:\n should_retry = False\n reason = 'Rejected'\n else:\n should_retry = True\n reason = 'Unkown error'\n attempts += 1\n time.sleep(2)\n else:\n result.update({'success': False, 'reason':\n f'Could not get upload session: {reason}'})\n if 'success' not in result:\n transfer = session_response['sessionStatus'][\n 'externalFieldTransfers'][0]\n upload_url = transfer['putInfo']['url']\n content_type = transfer.get('content_type', 'audio/mpeg')\n original_content_type = track_info.original_content_type\n transcode = isinstance(song, audio_metadata.WAV\n ) or original_content_type != locker_pb2.Track.MP3\n if transcode or original_content_type == locker_pb2.Track.MP3:\n if transcode:\n audio_file = transcode_to_mp3(song, quality='320k')\n else:\n with open(song.filepath, 'rb') as f:\n audio_file = f.read()\n if len(audio_file) >= 300 * 1024 * 1024:\n result.update({'success': False, 'reason':\n 'Maximum allowed file size is 300 MiB.'})\n else:\n upload_response = self._call(mm_calls.ScottyAgentPut,\n upload_url, audio_file, content_type=content_type).body\n if upload_response.get('sessionStatus', {}).get('state'):\n result.update({'success': True, 'reason':\n 'Uploaded', 'song_id': track_sample_response.\n server_track_id})\n else:\n result.update({'success': False, 'reason':\n upload_response})\n else:\n result.update({'success': False, 'reason':\n 'Transcoding disabled for file type.'})\n self._call(mm_calls.UploadState, self.uploader_id, 'STOPPED')\n else:\n response_codes = upload_pb2._TRACKSAMPLERESPONSE.enum_types[0]\n response_type = response_codes.values_by_number[track_sample_response\n .response_code].name\n reason = response_type\n result.update({'success': False, 'reason': f'{reason}'})\n if response_type == 'ALREADY_EXISTS':\n result['song_id'] = track_sample_response.server_track_id\n return result\n",
"role": "user"
},
{
"content": "upload",
"role": "assistant"
}
] |
def x(self, username, *, token=None):
self._username = username
self._oauth(username, token=token)
return self.is_authenticated
|
login
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, username, *, token=None):\n self._username = username\n self._oauth(username, token=token)\n return self.is_authenticated\n",
"role": "user"
},
{
"content": "login",
"role": "assistant"
}
] |
def x(self, username='', *, token=None):
if self.logout():
return self.login(username, token=token)
return False
|
switch_user
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, username='', *, token=None):\n if self.logout():\n return self.login(username, token=token)\n return False\n",
"role": "user"
},
{
"content": "switch_user",
"role": "assistant"
}
] |
def x(S, K, delta):
pivot = floor(K / S)
return [(S / K * 1 / d) for d in range(1, pivot)] + [S / K * log(S / delta)
] + [(0) for d in range(pivot, K)]
|
gen_tau
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(S, K, delta):\n pivot = floor(K / S)\n return [(S / K * 1 / d) for d in range(1, pivot)] + [S / K * log(S / delta)\n ] + [(0) for d in range(pivot, K)]\n",
"role": "user"
},
{
"content": "gen_tau",
"role": "assistant"
}
] |
def x(K, delta, c):
S = c * log(K / delta) * sqrt(K)
tau = gen_tau(S, K, delta)
rho = gen_rho(K)
normalizer = sum(rho) + sum(tau)
return [((rho[d] + tau[d]) / normalizer) for d in range(K)]
|
gen_mu
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(K, delta, c):\n S = c * log(K / delta) * sqrt(K)\n tau = gen_tau(S, K, delta)\n rho = gen_rho(K)\n normalizer = sum(rho) + sum(tau)\n return [((rho[d] + tau[d]) / normalizer) for d in range(K)]\n",
"role": "user"
},
{
"content": "gen_mu",
"role": "assistant"
}
] |
def x(K, delta, c):
mu = gen_mu(K, delta, c)
return [sum(mu[:d + 1]) for d in range(K)]
|
gen_rsd_cdf
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(K, delta, c):\n mu = gen_mu(K, delta, c)\n return [sum(mu[:d + 1]) for d in range(K)]\n",
"role": "user"
},
{
"content": "gen_rsd_cdf",
"role": "assistant"
}
] |
def x(self):
self.state = PRNG_A * self.state % PRNG_M
return self.state
|
get_next
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.state = PRNG_A * self.state % PRNG_M\n return self.state\n",
"role": "user"
},
{
"content": "get_next",
"role": "assistant"
}
] |
def x(self):
p = self._get_next() / PRNG_MAX_RAND
for ix, v in enumerate(self.cdf):
if v > p:
return ix + 1
return ix + 1
|
sample_d
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n p = self._get_next() / PRNG_MAX_RAND\n for ix, v in enumerate(self.cdf):\n if v > p:\n return ix + 1\n return ix + 1\n",
"role": "user"
},
{
"content": "sample_d",
"role": "assistant"
}
] |
def x(self, seed=None):
if seed:
self.state = seed
blockseed = self.state
d = self._sample_d()
have = 0
nums = set()
while have < d:
num = self._get_next() % self.K
if num not in nums:
nums.add(num)
have += 1
return blockseed, d, nums
|
get_src_blocks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, seed=None):\n if seed:\n self.state = seed\n blockseed = self.state\n d = self._sample_d()\n have = 0\n nums = set()\n while have < d:\n num = self._get_next() % self.K\n if num not in nums:\n nums.add(num)\n have += 1\n return blockseed, d, nums\n",
"role": "user"
},
{
"content": "get_src_blocks",
"role": "assistant"
}
] |
def x(fn, blocksize, seed, c, delta):
with open(fn, 'rb') as f:
for block in encode.encoder(f, blocksize, seed, c, delta):
sys.stdout.buffer.write(block)
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fn, blocksize, seed, c, delta):\n with open(fn, 'rb') as f:\n for block in encode.encoder(f, blocksize, seed, c, delta):\n sys.stdout.buffer.write(block)\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(self):
subscribed = next((config_item['value'] == 'true' for config_item in
self.config() if config_item['key'] == 'isNautilusUser'), None)
if subscribed:
self.tier = 'aa'
else:
self.tier = 'fr'
return subscribed
|
is_subscribed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n subscribed = next((config_item['value'] == 'true' for config_item in\n self.config() if config_item['key'] == 'isNautilusUser'), None)\n if subscribed:\n self.tier = 'aa'\n else:\n self.tier = 'fr'\n return subscribed\n",
"role": "user"
},
{
"content": "is_subscribed",
"role": "assistant"
}
] |
def x(self, album_id, *, include_description=True, include_songs=True):
response = self._call(mc_calls.FetchAlbum, album_id,
include_description=include_description, include_tracks=include_songs)
album_info = response.body
return album_info
|
album
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, album_id, *, include_description=True, include_songs=True):\n response = self._call(mc_calls.FetchAlbum, album_id,\n include_description=include_description, include_tracks=include_songs)\n album_info = response.body\n return album_info\n",
"role": "user"
},
{
"content": "album",
"role": "assistant"
}
] |
def x(self, artist_id, *, include_albums=True, num_related_artists=5,
num_top_tracks=5):
response = self._call(mc_calls.FetchArtist, artist_id, include_albums=
include_albums, num_related_artists=num_related_artists,
num_top_tracks=num_top_tracks)
artist_info = response.body
return artist_info
|
artist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, artist_id, *, include_albums=True, num_related_artists=5,\n num_top_tracks=5):\n response = self._call(mc_calls.FetchArtist, artist_id, include_albums=\n include_albums, num_related_artists=num_related_artists,\n num_top_tracks=num_top_tracks)\n artist_info = response.body\n return artist_info\n",
"role": "user"
},
{
"content": "artist",
"role": "assistant"
}
] |
def x(self, podcast_genre_id='JZCpodcasttopchartall'):
response = self._call(mc_calls.PodcastBrowse, podcast_genre_id=
podcast_genre_id)
podcast_series_list = response.body.get('series', [])
return podcast_series_list
|
browse_podcasts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, podcast_genre_id='JZCpodcasttopchartall'):\n response = self._call(mc_calls.PodcastBrowse, podcast_genre_id=\n podcast_genre_id)\n podcast_series_list = response.body.get('series', [])\n return podcast_series_list\n",
"role": "user"
},
{
"content": "browse_podcasts",
"role": "assistant"
}
] |
def x(self):
response = self._call(mc_calls.PodcastBrowseHierarchy)
genres = response.body.get('groups', [])
return genres
|
browse_podcasts_genres
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n response = self._call(mc_calls.PodcastBrowseHierarchy)\n genres = response.body.get('groups', [])\n return genres\n",
"role": "user"
},
{
"content": "browse_podcasts_genres",
"role": "assistant"
}
] |
def x(self, station_category_id):
response = self._call(mc_calls.BrowseStations, station_category_id)
stations = response.body.get('stations', [])
return stations
|
browse_stations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, station_category_id):\n response = self._call(mc_calls.BrowseStations, station_category_id)\n stations = response.body.get('stations', [])\n return stations\n",
"role": "user"
},
{
"content": "browse_stations",
"role": "assistant"
}
] |
def x(self):
response = self._call(mc_calls.BrowseStationCategories)
station_categories = response.body.get('root', {}).get('subcategories', [])
return station_categories
|
browse_stations_categories
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n response = self._call(mc_calls.BrowseStationCategories)\n station_categories = response.body.get('root', {}).get('subcategories', [])\n return station_categories\n",
"role": "user"
},
{
"content": "browse_stations_categories",
"role": "assistant"
}
] |
def x(self):
response = self._call(mc_calls.Config)
config_list = response.body.get('data', {}).get('entries', [])
return config_list
|
config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n response = self._call(mc_calls.Config)\n config_list = response.body.get('data', {}).get('entries', [])\n return config_list\n",
"role": "user"
},
{
"content": "config",
"role": "assistant"
}
] |
def x(self, device):
if device['id'].startswith('0x'):
self.device_id = device['id'][2:]
elif device['id'].startswith('ios:'):
self.device_id = device['id'].replace(':', '')
else:
self.device_id = device['id']
|
device_set
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, device):\n if device['id'].startswith('0x'):\n self.device_id = device['id'][2:]\n elif device['id'].startswith('ios:'):\n self.device_id = device['id'].replace(':', '')\n else:\n self.device_id = device['id']\n",
"role": "user"
},
{
"content": "device_set",
"role": "assistant"
}
] |
def x(self):
response = self._call(mc_calls.DeviceManagementInfo)
registered_devices = response.body.get('data', {}).get('items', [])
return registered_devices
|
devices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n response = self._call(mc_calls.DeviceManagementInfo)\n registered_devices = response.body.get('data', {}).get('items', [])\n return registered_devices\n",
"role": "user"
},
{
"content": "devices",
"role": "assistant"
}
] |
def x(self, parent_genre_id=None):
response = self._call(mc_calls.ExploreGenres, parent_genre_id)
genre_list = response.body.get('genres', [])
return genre_list
|
explore_genres
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parent_genre_id=None):\n response = self._call(mc_calls.ExploreGenres, parent_genre_id)\n genre_list = response.body.get('genres', [])\n return genre_list\n",
"role": "user"
},
{
"content": "explore_genres",
"role": "assistant"
}
] |
def x(self, *, num_items=100, genre_id=None):
response = self._call(mc_calls.ExploreTabs, num_items=num_items,
genre_id=genre_id)
tab_list = response.body.get('tabs', [])
explore_tabs = {}
for tab in tab_list:
explore_tabs[tab['tab_type'].lower()] = tab
return explore_tabs
|
explore_tabs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, num_items=100, genre_id=None):\n response = self._call(mc_calls.ExploreTabs, num_items=num_items,\n genre_id=genre_id)\n tab_list = response.body.get('tabs', [])\n explore_tabs = {}\n for tab in tab_list:\n explore_tabs[tab['tab_type'].lower()] = tab\n return explore_tabs\n",
"role": "user"
},
{
"content": "explore_tabs",
"role": "assistant"
}
] |
def x(self):
response = self._call(mc_calls.ListenNowGetDismissedItems)
dismissed_items = response.body.get('items', [])
return dismissed_items
|
listen_now_dismissed_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n response = self._call(mc_calls.ListenNowGetDismissedItems)\n dismissed_items = response.body.get('items', [])\n return dismissed_items\n",
"role": "user"
},
{
"content": "listen_now_dismissed_items",
"role": "assistant"
}
] |
def x(self):
response = self._call(mc_calls.ListenNowGetListenNowItems)
listen_now_item_list = response.body.get('listennow_items', [])
listen_now_items = defaultdict(list)
for item in listen_now_item_list:
type_ = f"{ListenNowItemType(item['type']).name}s"
listen_now_items[type_].append(item)
return dict(listen_now_items)
|
listen_now_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n response = self._call(mc_calls.ListenNowGetListenNowItems)\n listen_now_item_list = response.body.get('listennow_items', [])\n listen_now_items = defaultdict(list)\n for item in listen_now_item_list:\n type_ = f\"{ListenNowItemType(item['type']).name}s\"\n listen_now_items[type_].append(item)\n return dict(listen_now_items)\n",
"role": "user"
},
{
"content": "listen_now_items",
"role": "assistant"
}
] |
def x(self, playlist_song_id):
playlist_song_info = next((playlist_song for playlist in self.playlists
(include_songs=True) for playlist_song in playlist['tracks'] if
playlist_song['id'] == playlist_song_id), None)
return playlist_song_info
|
playlist_song
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, playlist_song_id):\n playlist_song_info = next((playlist_song for playlist in self.playlists\n (include_songs=True) for playlist_song in playlist['tracks'] if \n playlist_song['id'] == playlist_song_id), None)\n return playlist_song_info\n",
"role": "user"
},
{
"content": "playlist_song",
"role": "assistant"
}
] |
def x(self, song, playlist, *, after=None, before=None, index=None,
position=None):
prev, next_ = get_ple_prev_next(self.playlist_songs(playlist), after=
after, before=before, index=index, position=position)
if 'storeId' in song:
song_id = song['storeId']
elif 'trackId' in song:
song_id = song['trackId']
else:
song_id = song['id']
mutation = mc_calls.PlaylistEntriesBatch.create(song_id, playlist['id'],
preceding_entry_id=prev.get('id'), following_entry_id=next_.get('id'))
self._call(mc_calls.PlaylistEntriesBatch, mutation)
return self.playlist(playlist['id'], include_songs=True)
|
playlist_song_add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, song, playlist, *, after=None, before=None, index=None,\n position=None):\n prev, next_ = get_ple_prev_next(self.playlist_songs(playlist), after=\n after, before=before, index=index, position=position)\n if 'storeId' in song:\n song_id = song['storeId']\n elif 'trackId' in song:\n song_id = song['trackId']\n else:\n song_id = song['id']\n mutation = mc_calls.PlaylistEntriesBatch.create(song_id, playlist['id'],\n preceding_entry_id=prev.get('id'), following_entry_id=next_.get('id'))\n self._call(mc_calls.PlaylistEntriesBatch, mutation)\n return self.playlist(playlist['id'], include_songs=True)\n",
"role": "user"
},
{
"content": "playlist_song_add",
"role": "assistant"
}
] |
def x(self, songs, playlist, *, after=None, before=None, index=None,
position=None):
playlist_songs = self.playlist_songs(playlist)
prev, next_ = get_ple_prev_next(playlist_songs, after=after, before=
before, index=index, position=position)
songs_len = len(songs)
for i, song in enumerate(songs):
if 'storeId' in song:
song_id = song['storeId']
elif 'trackId' in song:
song_id = song['trackId']
else:
song_id = song['id']
mutation = mc_calls.PlaylistEntriesBatch.create(song_id, playlist[
'id'], preceding_entry_id=prev.get('id'), following_entry_id=
next_.get('id'))
response = self._call(mc_calls.PlaylistEntriesBatch, mutation)
result = response.body['mutate_response'][0]
if result['response_code'] != 'OK':
break
if i < songs_len - 1:
while True:
prev = self.playlist_song(result['id'])
if prev:
break
return self.playlist(playlist['id'], include_songs=True)
|
playlist_songs_add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, songs, playlist, *, after=None, before=None, index=None,\n position=None):\n playlist_songs = self.playlist_songs(playlist)\n prev, next_ = get_ple_prev_next(playlist_songs, after=after, before=\n before, index=index, position=position)\n songs_len = len(songs)\n for i, song in enumerate(songs):\n if 'storeId' in song:\n song_id = song['storeId']\n elif 'trackId' in song:\n song_id = song['trackId']\n else:\n song_id = song['id']\n mutation = mc_calls.PlaylistEntriesBatch.create(song_id, playlist[\n 'id'], preceding_entry_id=prev.get('id'), following_entry_id=\n next_.get('id'))\n response = self._call(mc_calls.PlaylistEntriesBatch, mutation)\n result = response.body['mutate_response'][0]\n if result['response_code'] != 'OK':\n break\n if i < songs_len - 1:\n while True:\n prev = self.playlist_song(result['id'])\n if prev:\n break\n return self.playlist(playlist['id'], include_songs=True)\n",
"role": "user"
},
{
"content": "playlist_songs_add",
"role": "assistant"
}
] |
def x(self, playlist_song):
self.playlist_songs_delete([playlist_song])
return self.playlist(playlist_song['playlistId'], include_songs=True)
|
playlist_song_delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, playlist_song):\n self.playlist_songs_delete([playlist_song])\n return self.playlist(playlist_song['playlistId'], include_songs=True)\n",
"role": "user"
},
{
"content": "playlist_song_delete",
"role": "assistant"
}
] |
def x(self, playlist_songs):
if not more_itertools.all_equal(playlist_song['playlistId'] for
playlist_song in playlist_songs):
raise ValueError("All 'playlist_songs' must be from the same playlist."
)
mutations = [mc_calls.PlaylistEntriesBatch.delete(playlist_song['id']) for
playlist_song in playlist_songs]
self._call(mc_calls.PlaylistEntriesBatch, mutations)
return self.playlist(playlist_songs[0]['playlistId'], include_songs=True)
|
playlist_songs_delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, playlist_songs):\n if not more_itertools.all_equal(playlist_song['playlistId'] for\n playlist_song in playlist_songs):\n raise ValueError(\"All 'playlist_songs' must be from the same playlist.\"\n )\n mutations = [mc_calls.PlaylistEntriesBatch.delete(playlist_song['id']) for\n playlist_song in playlist_songs]\n self._call(mc_calls.PlaylistEntriesBatch, mutations)\n return self.playlist(playlist_songs[0]['playlistId'], include_songs=True)\n",
"role": "user"
},
{
"content": "playlist_songs_delete",
"role": "assistant"
}
] |
def x(self, playlist_song, *, after=None, before=None, index=None, position
=None):
playlist_songs = self.playlist(playlist_song['playlistId'],
include_songs=True)['tracks']
prev, next_ = get_ple_prev_next(playlist_songs, after=after, before=
before, index=index, position=position)
mutation = mc_calls.PlaylistEntriesBatch.update(playlist_song,
preceding_entry_id=prev.get('id'), following_entry_id=next_.get('id'))
self._call(mc_calls.PlaylistEntriesBatch, mutation)
return self.playlist(playlist_song['playlistId'], include_songs=True)
|
playlist_song_move
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, playlist_song, *, after=None, before=None, index=None, position\n =None):\n playlist_songs = self.playlist(playlist_song['playlistId'],\n include_songs=True)['tracks']\n prev, next_ = get_ple_prev_next(playlist_songs, after=after, before=\n before, index=index, position=position)\n mutation = mc_calls.PlaylistEntriesBatch.update(playlist_song,\n preceding_entry_id=prev.get('id'), following_entry_id=next_.get('id'))\n self._call(mc_calls.PlaylistEntriesBatch, mutation)\n return self.playlist(playlist_song['playlistId'], include_songs=True)\n",
"role": "user"
},
{
"content": "playlist_song_move",
"role": "assistant"
}
] |
def x(self, playlist_songs, *, after=None, before=None, index=None,
position=None):
if not more_itertools.all_equal(playlist_song['playlistId'] for
playlist_song in playlist_songs):
raise ValueError("All 'playlist_songs' must be from the same playlist."
)
playlist = self.playlist(playlist_songs[0]['playlistId'], include_songs
=True)
prev, next_ = get_ple_prev_next(playlist['tracks'], after=after, before
=before, index=index, position=position)
playlist_songs_len = len(playlist_songs)
for i, playlist_song in enumerate(playlist_songs):
mutation = mc_calls.PlaylistEntriesBatch.update(playlist_song,
preceding_entry_id=prev.get('id'), following_entry_id=next_.get
('id'))
response = self._call(mc_calls.PlaylistEntriesBatch, mutation)
result = response.body['mutate_response'][0]
if result['response_code'] != 'OK':
break
if i < playlist_songs_len - 1:
while True:
prev = self.playlist_song(result['id'])
if prev:
break
return self.playlist(playlist_songs[0]['playlistId'], include_songs=True)
|
playlist_songs_move
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, playlist_songs, *, after=None, before=None, index=None,\n position=None):\n if not more_itertools.all_equal(playlist_song['playlistId'] for\n playlist_song in playlist_songs):\n raise ValueError(\"All 'playlist_songs' must be from the same playlist.\"\n )\n playlist = self.playlist(playlist_songs[0]['playlistId'], include_songs\n =True)\n prev, next_ = get_ple_prev_next(playlist['tracks'], after=after, before\n =before, index=index, position=position)\n playlist_songs_len = len(playlist_songs)\n for i, playlist_song in enumerate(playlist_songs):\n mutation = mc_calls.PlaylistEntriesBatch.update(playlist_song,\n preceding_entry_id=prev.get('id'), following_entry_id=next_.get\n ('id'))\n response = self._call(mc_calls.PlaylistEntriesBatch, mutation)\n result = response.body['mutate_response'][0]\n if result['response_code'] != 'OK':\n break\n if i < playlist_songs_len - 1:\n while True:\n prev = self.playlist_song(result['id'])\n if prev:\n break\n return self.playlist(playlist_songs[0]['playlistId'], include_songs=True)\n",
"role": "user"
},
{
"content": "playlist_songs_move",
"role": "assistant"
}
] |
def x(self, playlist):
playlist_type = playlist.get('type')
playlist_song_list = []
if playlist_type in ('USER_GENERATED', None):
start_token = None
playlist_song_list = []
while True:
response = self._call(mc_calls.PlaylistEntryFeed, max_results=
49995, start_token=start_token)
items = response.body.get('data', {}).get('items', [])
if items:
playlist_song_list.extend(items)
start_token = response.body.get('nextPageToken')
if start_token is None:
break
elif playlist_type == 'SHARED':
playlist_share_token = playlist['shareToken']
start_token = None
playlist_song_list = []
while True:
response = self._call(mc_calls.PlaylistEntriesShared,
playlist_share_token, max_results=49995, start_token=
start_token)
entry = response.body['entries'][0]
items = entry.get('playlistEntry', [])
if items:
playlist_song_list.extend(items)
start_token = entry.get('nextPageToken')
if start_token is None:
break
playlist_song_list.sort(key=itemgetter('absolutePosition'))
return playlist_song_list
|
playlist_songs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, playlist):\n playlist_type = playlist.get('type')\n playlist_song_list = []\n if playlist_type in ('USER_GENERATED', None):\n start_token = None\n playlist_song_list = []\n while True:\n response = self._call(mc_calls.PlaylistEntryFeed, max_results=\n 49995, start_token=start_token)\n items = response.body.get('data', {}).get('items', [])\n if items:\n playlist_song_list.extend(items)\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n elif playlist_type == 'SHARED':\n playlist_share_token = playlist['shareToken']\n start_token = None\n playlist_song_list = []\n while True:\n response = self._call(mc_calls.PlaylistEntriesShared,\n playlist_share_token, max_results=49995, start_token=\n start_token)\n entry = response.body['entries'][0]\n items = entry.get('playlistEntry', [])\n if items:\n playlist_song_list.extend(items)\n start_token = entry.get('nextPageToken')\n if start_token is None:\n break\n playlist_song_list.sort(key=itemgetter('absolutePosition'))\n return playlist_song_list\n",
"role": "user"
},
{
"content": "playlist_songs",
"role": "assistant"
}
] |
def x(self, playlist_id, *, include_songs=False):
playlist_info = next((playlist for playlist in self.playlists(
include_songs=include_songs) if playlist['id'] == playlist_id), None)
return playlist_info
|
playlist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, playlist_id, *, include_songs=False):\n playlist_info = next((playlist for playlist in self.playlists(\n include_songs=include_songs) if playlist['id'] == playlist_id), None)\n return playlist_info\n",
"role": "user"
},
{
"content": "playlist",
"role": "assistant"
}
] |
def x(self, name, description='', *, make_public=False, songs=None):
share_state = 'PUBLIC' if make_public else 'PRIVATE'
playlist = self._call(mc_calls.PlaylistsCreate, name, description,
share_state).body
if songs:
playlist = self.playlist_songs_add(songs, playlist)
return playlist
|
playlist_create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, description='', *, make_public=False, songs=None):\n share_state = 'PUBLIC' if make_public else 'PRIVATE'\n playlist = self._call(mc_calls.PlaylistsCreate, name, description,\n share_state).body\n if songs:\n playlist = self.playlist_songs_add(songs, playlist)\n return playlist\n",
"role": "user"
},
{
"content": "playlist_create",
"role": "assistant"
}
] |
def x(self, playlist, *, name=None, description=None, public=None):
if all(value is None for value in (name, description, public)):
raise ValueError(
'At least one of name, description, or public must be provided')
playlist_id = playlist['id']
playlist = self.playlist(playlist_id)
name = name if name is not None else playlist['name']
description = description if description is not None else playlist[
'description']
share_state = 'PUBLIC' if public else playlist['accessControlled']
playlist = self._call(mc_calls.PlaylistsUpdate, playlist_id, name,
description, share_state).body
return playlist
|
playlist_edit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, playlist, *, name=None, description=None, public=None):\n if all(value is None for value in (name, description, public)):\n raise ValueError(\n 'At least one of name, description, or public must be provided')\n playlist_id = playlist['id']\n playlist = self.playlist(playlist_id)\n name = name if name is not None else playlist['name']\n description = description if description is not None else playlist[\n 'description']\n share_state = 'PUBLIC' if public else playlist['accessControlled']\n playlist = self._call(mc_calls.PlaylistsUpdate, playlist_id, name,\n description, share_state).body\n return playlist\n",
"role": "user"
},
{
"content": "playlist_edit",
"role": "assistant"
}
] |
def x(self, playlist):
mutation = mc_calls.PlaylistBatch.create(playlist['name'], playlist[
'description'], 'SHARED', owner_name=playlist.get('ownerName', ''),
share_token=playlist['shareToken'])
response_body = self._call(mc_calls.PlaylistBatch, mutation).body
playlist_id = response_body['mutate_response'][0]['id']
return self.playlist(playlist_id)
|
playlist_subscribe
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, playlist):\n mutation = mc_calls.PlaylistBatch.create(playlist['name'], playlist[\n 'description'], 'SHARED', owner_name=playlist.get('ownerName', ''),\n share_token=playlist['shareToken'])\n response_body = self._call(mc_calls.PlaylistBatch, mutation).body\n playlist_id = response_body['mutate_response'][0]['id']\n return self.playlist(playlist_id)\n",
"role": "user"
},
{
"content": "playlist_subscribe",
"role": "assistant"
}
] |
def x(self, *, include_songs=False):
playlist_list = []
for chunk in self.playlists_iter(page_size=49995):
for playlist in chunk:
if include_songs:
playlist['tracks'] = self.playlist_songs(playlist)
playlist_list.append(playlist)
return playlist_list
|
playlists
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *, include_songs=False):\n playlist_list = []\n for chunk in self.playlists_iter(page_size=49995):\n for playlist in chunk:\n if include_songs:\n playlist['tracks'] = self.playlist_songs(playlist)\n playlist_list.append(playlist)\n return playlist_list\n",
"role": "user"
},
{
"content": "playlists",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.