source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(covariance): diagonal_ind = np.arange(covariance.shape[1]) diagonal_els = covariance[:, diagonal_ind, diagonal_ind] result = covariance / np.sqrt(diagonal_els[:, :, None] * diagonal_els[:, None, :]) result[np.isinf(result)] = 0 return np.clip(np.nan_to_num(result), -1, 1)
covariance_to_correlations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(covariance):\n diagonal_ind = np.arange(covariance.shape[1])\n diagonal_els = covariance[:, diagonal_ind, diagonal_ind]\n result = covariance / np.sqrt(diagonal_els[:, :, None] * diagonal_els[:,\n None, :])\n result[np.isinf(result)] = 0\n return np.clip(np.nan_to_num(result), -1, 1)\n", "role": "user" }, { "content": "covariance_to_correlations", "role": "assistant" } ]
def x(func, iterable): if os.name == 'nt': return list(map(func, iterable)) try: p = multiprocessing.Pool() return_data = list(p.imap(func, iterable)) p.close() p.join() return return_data except OSError: return list(map(func, iterable))
multiprocess_mapping
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func, iterable):\n if os.name == 'nt':\n return list(map(func, iterable))\n try:\n p = multiprocessing.Pool()\n return_data = list(p.imap(func, iterable))\n p.close()\n p.join()\n return return_data\n except OSError:\n return list(map(func, iterable))\n", "role": "user" }, { "content": "multiprocess_mapping", "role": "assistant" } ]
def x(cl_code, dependencies=()): from mot.lib.cl_function import SimpleCLFunction def x(input_str): class Semantics: def x(self): self._functions = [] def x(self, ast): return self._functions def x(self, ast): return '({})'.format(', '.join(ast)) def x(self, ast): def x(items): result = '' for item in items: if isinstance(item, str): result += item else: result += join(item) return result self._functions.append(join(ast).strip()) return ast return _extract_cl_functions_parser.parse(input_str, semantics= Semantics()) functions = separate_cl_functions(cl_code) return SimpleCLFunction.from_string(functions[-1], dependencies=list( dependencies or []) + [SimpleCLFunction.from_string(s) for s in functions[:-1]])
parse_cl_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cl_code, dependencies=()):\n from mot.lib.cl_function import SimpleCLFunction\n\n def x(input_str):\n\n\n class Semantics:\n\n def x(self):\n self._functions = []\n\n def x(self, ast):\n return self._functions\n\n def x(self, ast):\n return '({})'.format(', '.join(ast))\n\n def x(self, ast):\n\n def x(items):\n result = ''\n for item in items:\n if isinstance(item, str):\n result += item\n else:\n result += join(item)\n return result\n self._functions.append(join(ast).strip())\n return ast\n return _extract_cl_functions_parser.parse(input_str, semantics=\n Semantics())\n functions = separate_cl_functions(cl_code)\n return SimpleCLFunction.from_string(functions[-1], dependencies=list(\n dependencies or []) + [SimpleCLFunction.from_string(s) for s in\n functions[:-1]])\n", "role": "user" }, { "content": "parse_cl_function", "role": "assistant" } ]
def x(cl_str): class Semantics: def x(self): self._return_type = '' self._function_name = '' self._parameter_list = [] self._cl_body = '' def x(self, ast): return (self._return_type, self._function_name, self. _parameter_list, self._cl_body) def x(self, ast): self._return_type = ast.strip() + ' ' return ast def x(self, ast): self._return_type += ''.join(ast).strip() return ast def x(self, ast): self._function_name = ast.strip() return ast def x(self, ast): if ast != '()': self._parameter_list = ast return ast def x(self, ast): def x(items): result = '' for item in items: if isinstance(item, str): result += item else: result += join(item) return result self._cl_body = join(ast).strip()[1:-1] return ast return _split_cl_function_parser.parse(cl_str, semantics=Semantics())
split_cl_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cl_str):\n\n\n class Semantics:\n\n def x(self):\n self._return_type = ''\n self._function_name = ''\n self._parameter_list = []\n self._cl_body = ''\n\n def x(self, ast):\n return (self._return_type, self._function_name, self.\n _parameter_list, self._cl_body)\n\n def x(self, ast):\n self._return_type = ast.strip() + ' '\n return ast\n\n def x(self, ast):\n self._return_type += ''.join(ast).strip()\n return ast\n\n def x(self, ast):\n self._function_name = ast.strip()\n return ast\n\n def x(self, ast):\n if ast != '()':\n self._parameter_list = ast\n return ast\n\n def x(self, ast):\n\n def x(items):\n result = ''\n for item in items:\n if isinstance(item, str):\n result += item\n else:\n result += join(item)\n return result\n self._cl_body = join(ast).strip()[1:-1]\n return ast\n return _split_cl_function_parser.parse(cl_str, semantics=Semantics())\n", "role": "user" }, { "content": "split_cl_function", "role": "assistant" } ]
def x(name=INTERNAL_LOGGER_NAME, level=logging.INFO, fmt= '%(asctime)s - %(name)s - %(levelname)s - %(message)s'): logger = logging.getLogger(name) logger.setLevel(level) if not logger.handlers: handler = logging.StreamHandler(sys.stderr) handler.setLevel(level) formatter = logging.Formatter(fmt) handler.setFormatter(formatter) logger.addHandler(handler) return logger
make_default_logger
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name=INTERNAL_LOGGER_NAME, level=logging.INFO, fmt=\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s'):\n logger = logging.getLogger(name)\n logger.setLevel(level)\n if not logger.handlers:\n handler = logging.StreamHandler(sys.stderr)\n handler.setLevel(level)\n formatter = logging.Formatter(fmt)\n handler.setFormatter(formatter)\n logger.addHandler(handler)\n return logger\n", "role": "user" }, { "content": "make_default_logger", "role": "assistant" } ]
def x(self): return self._device.get_info(cl.device_info.TYPE) == cl.device_type.GPU
is_gpu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self._device.get_info(cl.device_info.TYPE) == cl.device_type.GPU\n", "role": "user" }, { "content": "is_gpu", "role": "assistant" } ]
def x(self): return self._device.get_info(cl.device_info.TYPE) == cl.device_type.CPU
is_cpu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return self._device.get_info(cl.device_info.TYPE) == cl.device_type.CPU\n", "role": "user" }, { "content": "is_cpu", "role": "assistant" } ]
def x(cl_device_type='GPU', platform=None, fallback_to_any_device_type=False): if isinstance(cl_device_type, str): cl_device_type = device_type_from_string(cl_device_type) device = None if platform is None: platforms = cl.get_platforms() else: platforms = [platform] for platform in platforms: devices = platform.get_devices(device_type=cl_device_type) for dev in devices: if device_supports_double(dev): try: env = CLEnvironment(platform, dev) return [env] except cl.RuntimeError: pass if not device: if fallback_to_any_device_type: return cl.get_platforms()[0].get_devices() else: raise ValueError('No devices of the specified type ({}) found.' .format(cl.device_type.to_string(cl_device_type))) raise ValueError('No suitable OpenCL device found.')
single_device
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cl_device_type='GPU', platform=None, fallback_to_any_device_type=False):\n if isinstance(cl_device_type, str):\n cl_device_type = device_type_from_string(cl_device_type)\n device = None\n if platform is None:\n platforms = cl.get_platforms()\n else:\n platforms = [platform]\n for platform in platforms:\n devices = platform.get_devices(device_type=cl_device_type)\n for dev in devices:\n if device_supports_double(dev):\n try:\n env = CLEnvironment(platform, dev)\n return [env]\n except cl.RuntimeError:\n pass\n if not device:\n if fallback_to_any_device_type:\n return cl.get_platforms()[0].get_devices()\n else:\n raise ValueError('No devices of the specified type ({}) found.'\n .format(cl.device_type.to_string(cl_device_type)))\n raise ValueError('No suitable OpenCL device found.')\n", "role": "user" }, { "content": "single_device", "role": "assistant" } ]
def x(cl_device_type=None, platform=None): if isinstance(cl_device_type, str): cl_device_type = device_type_from_string(cl_device_type) runtime_list = [] if platform is None: platforms = cl.get_platforms() else: platforms = [platform] for platform in platforms: if cl_device_type: devices = platform.get_devices(device_type=cl_device_type) else: devices = platform.get_devices() for device in devices: if device_supports_double(device): env = CLEnvironment(platform, device) runtime_list.append(env) return runtime_list
all_devices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cl_device_type=None, platform=None):\n if isinstance(cl_device_type, str):\n cl_device_type = device_type_from_string(cl_device_type)\n runtime_list = []\n if platform is None:\n platforms = cl.get_platforms()\n else:\n platforms = [platform]\n for platform in platforms:\n if cl_device_type:\n devices = platform.get_devices(device_type=cl_device_type)\n else:\n devices = platform.get_devices()\n for device in devices:\n if device_supports_double(device):\n env = CLEnvironment(platform, device)\n runtime_list.append(env)\n return runtime_list\n", "role": "user" }, { "content": "all_devices", "role": "assistant" } ]
def x(preferred_device_type=None): cl_environments = CLEnvironmentFactory.all_devices(cl_device_type= preferred_device_type) platform_names = [env.platform.name for env in cl_environments] has_amd_pro_platform = any('AMD Accelerated Parallel Processing' in name for name in platform_names) if has_amd_pro_platform: return list(filter(lambda env: 'Clover' not in env.platform.name, cl_environments)) if preferred_device_type is not None and not len(cl_environments): return CLEnvironmentFactory.all_devices() return cl_environments
smart_device_selection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(preferred_device_type=None):\n cl_environments = CLEnvironmentFactory.all_devices(cl_device_type=\n preferred_device_type)\n platform_names = [env.platform.name for env in cl_environments]\n has_amd_pro_platform = any('AMD Accelerated Parallel Processing' in\n name for name in platform_names)\n if has_amd_pro_platform:\n return list(filter(lambda env: 'Clover' not in env.platform.name,\n cl_environments))\n if preferred_device_type is not None and not len(cl_environments):\n return CLEnvironmentFactory.all_devices()\n return cl_environments\n", "role": "user" }, { "content": "smart_device_selection", "role": "assistant" } ]
def x(samples, batch_size_generator=None): samples_generator = _get_sample_generator(samples) return np.array(multiprocess_mapping(_MultivariateESSMultiProcessing( batch_size_generator), samples_generator()))
multivariate_ess
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, batch_size_generator=None):\n samples_generator = _get_sample_generator(samples)\n return np.array(multiprocess_mapping(_MultivariateESSMultiProcessing(\n batch_size_generator), samples_generator()))\n", "role": "user" }, { "content": "multivariate_ess", "role": "assistant" } ]
def x(samples, method='standard_error', **kwargs): samples_generator = _get_sample_generator(samples) return np.array(multiprocess_mapping(_UnivariateESSMultiProcessing( method, **kwargs), samples_generator()))
univariate_ess
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, method='standard_error', **kwargs):\n samples_generator = _get_sample_generator(samples)\n return np.array(multiprocess_mapping(_UnivariateESSMultiProcessing(\n method, **kwargs), samples_generator()))\n", "role": "user" }, { "content": "univariate_ess", "role": "assistant" } ]
def x(samples): if isinstance(samples, Mapping): def x(): for ind in range(samples[list(samples.keys())[0]].shape[0]): yield np.array([samples[s][ind, :] for s in sorted(samples)]) elif isinstance(samples, np.ndarray): def x(): for ind in range(samples.shape[0]): yield samples[ind] else: samples_generator = samples return samples_generator
get_sample_generator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples):\n if isinstance(samples, Mapping):\n\n def x():\n for ind in range(samples[list(samples.keys())[0]].shape[0]):\n yield np.array([samples[s][ind, :] for s in sorted(samples)])\n elif isinstance(samples, np.ndarray):\n\n def x():\n for ind in range(samples.shape[0]):\n yield samples[ind]\n else:\n samples_generator = samples\n return samples_generator\n", "role": "user" }, { "content": "get_sample_generator", "role": "assistant" } ]
def x(chain, lag): normalized_chain = chain - np.mean(chain, dtype=np.float64) lagged_mean = np.mean(normalized_chain[:len(chain) - lag] * normalized_chain[lag:], dtype=np.float64) return lagged_mean / np.var(chain, dtype=np.float64)
get_auto_correlation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chain, lag):\n normalized_chain = chain - np.mean(chain, dtype=np.float64)\n lagged_mean = np.mean(normalized_chain[:len(chain) - lag] *\n normalized_chain[lag:], dtype=np.float64)\n return lagged_mean / np.var(chain, dtype=np.float64)\n", "role": "user" }, { "content": "get_auto_correlation", "role": "assistant" } ]
def x(chain, max_lag=None): max_lag = max_lag or min(len(chain) // 3, 1000) normalized_chain = chain - np.mean(chain, dtype=np.float64) previous_accoeff = 0 auto_corr_sum = 0 for lag in range(1, max_lag): auto_correlation_coeff = np.mean(normalized_chain[:len(chain) - lag ] * normalized_chain[lag:], dtype=np.float64) if lag % 2 == 0: if previous_accoeff + auto_correlation_coeff <= 0: break auto_corr_sum += auto_correlation_coeff previous_accoeff = auto_correlation_coeff return auto_corr_sum / np.var(chain, dtype=np.float64)
get_auto_correlation_time
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chain, max_lag=None):\n max_lag = max_lag or min(len(chain) // 3, 1000)\n normalized_chain = chain - np.mean(chain, dtype=np.float64)\n previous_accoeff = 0\n auto_corr_sum = 0\n for lag in range(1, max_lag):\n auto_correlation_coeff = np.mean(normalized_chain[:len(chain) - lag\n ] * normalized_chain[lag:], dtype=np.float64)\n if lag % 2 == 0:\n if previous_accoeff + auto_correlation_coeff <= 0:\n break\n auto_corr_sum += auto_correlation_coeff\n previous_accoeff = auto_correlation_coeff\n return auto_corr_sum / np.var(chain, dtype=np.float64)\n", "role": "user" }, { "content": "get_auto_correlation_time", "role": "assistant" } ]
def x(chain, batch_size_generator=None, compute_method=None): sigma = monte_carlo_standard_error(chain, batch_size_generator= batch_size_generator, compute_method=compute_method) ** 2 * len(chain) lambda_ = np.var(chain, dtype=np.float64) return len(chain) * (lambda_ / sigma)
estimate_univariate_ess_standard_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chain, batch_size_generator=None, compute_method=None):\n sigma = monte_carlo_standard_error(chain, batch_size_generator=\n batch_size_generator, compute_method=compute_method) ** 2 * len(chain)\n lambda_ = np.var(chain, dtype=np.float64)\n return len(chain) * (lambda_ / sigma)\n", "role": "user" }, { "content": "estimate_univariate_ess_standard_error", "role": "assistant" } ]
def x(nmr_params, alpha=0.05, epsilon=0.05): tmp = 2.0 / nmr_params log_min_ess = tmp * np.log(2) + np.log(np.pi) - tmp * (np.log( nmr_params) + gammaln(nmr_params / 2)) + np.log(chi2.ppf(1 - alpha, nmr_params)) - 2 * np.log(epsilon) return int(round(np.exp(log_min_ess)))
minimum_multivariate_ess
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nmr_params, alpha=0.05, epsilon=0.05):\n tmp = 2.0 / nmr_params\n log_min_ess = tmp * np.log(2) + np.log(np.pi) - tmp * (np.log(\n nmr_params) + gammaln(nmr_params / 2)) + np.log(chi2.ppf(1 - alpha,\n nmr_params)) - 2 * np.log(epsilon)\n return int(round(np.exp(log_min_ess)))\n", "role": "user" }, { "content": "minimum_multivariate_ess", "role": "assistant" } ]
def x(nmr_params, multi_variate_ess, alpha=0.05): tmp = 2.0 / nmr_params log_min_ess = tmp * np.log(2) + np.log(np.pi) - tmp * (np.log( nmr_params) + gammaln(nmr_params / 2)) + np.log(chi2.ppf(1 - alpha, nmr_params)) - np.log(multi_variate_ess) return np.sqrt(np.exp(log_min_ess))
multivariate_ess_precision
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nmr_params, multi_variate_ess, alpha=0.05):\n tmp = 2.0 / nmr_params\n log_min_ess = tmp * np.log(2) + np.log(np.pi) - tmp * (np.log(\n nmr_params) + gammaln(nmr_params / 2)) + np.log(chi2.ppf(1 - alpha,\n nmr_params)) - np.log(multi_variate_ess)\n return np.sqrt(np.exp(log_min_ess))\n", "role": "user" }, { "content": "multivariate_ess_precision", "role": "assistant" } ]
def x(samples, batch_size): sample_means = np.mean(samples, axis=1, dtype=np.float64) nmr_params, chain_length = samples.shape nmr_batches = int(np.floor(chain_length / batch_size)) sigma = np.zeros((nmr_params, nmr_params)) nmr_offsets = chain_length - nmr_batches * batch_size + 1 for offset in range(nmr_offsets): batches = np.reshape(samples[:, np.array(offset + np.arange(0, nmr_batches * batch_size), dtype=np.int)].T, [batch_size, nmr_batches, nmr_params], order='F') batch_means = np.squeeze(np.mean(batches, axis=0, dtype=np.float64)) Z = batch_means - sample_means for x, y in itertools.product(range(nmr_params), range(nmr_params)): sigma[x, y] += np.sum(Z[:, x] * Z[:, y]) return sigma * batch_size / (nmr_batches - 1) / nmr_offsets
estimate_multivariate_ess_sigma
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, batch_size):\n sample_means = np.mean(samples, axis=1, dtype=np.float64)\n nmr_params, chain_length = samples.shape\n nmr_batches = int(np.floor(chain_length / batch_size))\n sigma = np.zeros((nmr_params, nmr_params))\n nmr_offsets = chain_length - nmr_batches * batch_size + 1\n for offset in range(nmr_offsets):\n batches = np.reshape(samples[:, np.array(offset + np.arange(0, \n nmr_batches * batch_size), dtype=np.int)].T, [batch_size,\n nmr_batches, nmr_params], order='F')\n batch_means = np.squeeze(np.mean(batches, axis=0, dtype=np.float64))\n Z = batch_means - sample_means\n for x, y in itertools.product(range(nmr_params), range(nmr_params)):\n sigma[x, y] += np.sum(Z[:, x] * Z[:, y])\n return sigma * batch_size / (nmr_batches - 1) / nmr_offsets\n", "role": "user" }, { "content": "estimate_multivariate_ess_sigma", "role": "assistant" } ]
def x(samples, batch_size_generator=None, full_output=False): batch_size_generator = batch_size_generator or SquareRootSingleBatch() batch_sizes = batch_size_generator.get_multivariate_ess_batch_sizes(* samples.shape) nmr_params, chain_length = samples.shape nmr_batches = len(batch_sizes) det_lambda = det(np.cov(samples)) ess_estimates = np.zeros(nmr_batches) sigma_estimates = np.zeros((nmr_params, nmr_params, nmr_batches)) for i in range(0, nmr_batches): sigma = estimate_multivariate_ess_sigma(samples, int(batch_sizes[i])) ess = chain_length * (det_lambda ** (1.0 / nmr_params) / det(sigma) ** (1.0 / nmr_params)) ess_estimates[i] = ess sigma_estimates[..., i] = sigma ess_estimates = np.nan_to_num(ess_estimates) if nmr_batches > 1: idx = np.argmin(ess_estimates) else: idx = 0 if full_output: return ess_estimates[idx], sigma_estimates[..., idx], batch_sizes[idx] return ess_estimates[idx]
estimate_multivariate_ess
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, batch_size_generator=None, full_output=False):\n batch_size_generator = batch_size_generator or SquareRootSingleBatch()\n batch_sizes = batch_size_generator.get_multivariate_ess_batch_sizes(*\n samples.shape)\n nmr_params, chain_length = samples.shape\n nmr_batches = len(batch_sizes)\n det_lambda = det(np.cov(samples))\n ess_estimates = np.zeros(nmr_batches)\n sigma_estimates = np.zeros((nmr_params, nmr_params, nmr_batches))\n for i in range(0, nmr_batches):\n sigma = estimate_multivariate_ess_sigma(samples, int(batch_sizes[i]))\n ess = chain_length * (det_lambda ** (1.0 / nmr_params) / det(sigma) **\n (1.0 / nmr_params))\n ess_estimates[i] = ess\n sigma_estimates[..., i] = sigma\n ess_estimates = np.nan_to_num(ess_estimates)\n if nmr_batches > 1:\n idx = np.argmin(ess_estimates)\n else:\n idx = 0\n if full_output:\n return ess_estimates[idx], sigma_estimates[..., idx], batch_sizes[idx]\n return ess_estimates[idx]\n", "role": "user" }, { "content": "estimate_multivariate_ess", "role": "assistant" } ]
def x(chain, batch_size_generator=None, compute_method=None): batch_size_generator = batch_size_generator or SquareRootSingleBatch() compute_method = compute_method or BatchMeansMCSE() batch_sizes = batch_size_generator.get_univariate_ess_batch_sizes(len( chain)) return np.min(list(compute_method.compute_standard_error(chain, b) for b in batch_sizes))
monte_carlo_standard_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chain, batch_size_generator=None, compute_method=None):\n batch_size_generator = batch_size_generator or SquareRootSingleBatch()\n compute_method = compute_method or BatchMeansMCSE()\n batch_sizes = batch_size_generator.get_univariate_ess_batch_sizes(len(\n chain))\n return np.min(list(compute_method.compute_standard_error(chain, b) for\n b in batch_sizes))\n", "role": "user" }, { "content": "monte_carlo_standard_error", "role": "assistant" } ]
def x(samples, ddof=0): if len(samples.shape) == 1: return np.mean(samples), np.std(samples, ddof=ddof) return np.mean(samples, axis=1), np.std(samples, axis=1, ddof=ddof)
fit_gaussian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, ddof=0):\n if len(samples.shape) == 1:\n return np.mean(samples), np.std(samples, ddof=ddof)\n return np.mean(samples, axis=1), np.std(samples, axis=1, ddof=ddof)\n", "role": "user" }, { "content": "fit_gaussian", "role": "assistant" } ]
def x(samples, high=np.pi, low=0): cl_func = SimpleCLFunction.from_string( """ void compute(global mot_float_type* samples, global mot_float_type* means, global mot_float_type* stds, int nmr_samples, int low, int high){ double cos_mean = 0; double sin_mean = 0; double ang; for(uint i = 0; i < nmr_samples; i++){ ang = (samples[i] - low)*2*M_PI / (high - low); cos_mean += (cos(ang) - cos_mean) / (i + 1); sin_mean += (sin(ang) - sin_mean) / (i + 1); } double R = hypot(cos_mean, sin_mean); if(R > 1){ R = 1; } double stds = 1/2. * sqrt(-2 * log(R)); double res = atan2(sin_mean, cos_mean); if(res < 0){ res += 2 * M_PI; } *(means) = res*(high - low)/2.0/M_PI + low; *(stds) = ((high - low)/2.0/M_PI) * sqrt(-2*log(R)); } """ ) def x(samples): data = {'samples': Array(samples, 'mot_float_type'), 'means': Zeros (samples.shape[0], 'mot_float_type'), 'stds': Zeros(samples. shape[0], 'mot_float_type'), 'nmr_samples': Scalar(samples. shape[1]), 'low': Scalar(low), 'high': Scalar(high)} cl_func.evaluate(data, samples.shape[0]) return data['means'].get_data(), data['stds'].get_data() if len(samples.shape) == 1: mean, std = run_cl(samples[None, :]) return mean[0], std[0] return run_cl(samples)
fit_circular_gaussian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, high=np.pi, low=0):\n cl_func = SimpleCLFunction.from_string(\n \"\"\"\n void compute(global mot_float_type* samples,\n global mot_float_type* means,\n global mot_float_type* stds,\n int nmr_samples,\n int low,\n int high){ \n \n double cos_mean = 0;\n double sin_mean = 0;\n double ang;\n\n for(uint i = 0; i < nmr_samples; i++){\n ang = (samples[i] - low)*2*M_PI / (high - low);\n\n cos_mean += (cos(ang) - cos_mean) / (i + 1);\n sin_mean += (sin(ang) - sin_mean) / (i + 1);\n }\n\n double R = hypot(cos_mean, sin_mean);\n if(R > 1){\n R = 1;\n }\n\n double stds = 1/2. * sqrt(-2 * log(R));\n\n double res = atan2(sin_mean, cos_mean);\n if(res < 0){\n res += 2 * M_PI;\n }\n\n *(means) = res*(high - low)/2.0/M_PI + low;\n *(stds) = ((high - low)/2.0/M_PI) * sqrt(-2*log(R));\n }\n \"\"\"\n )\n\n def x(samples):\n data = {'samples': Array(samples, 'mot_float_type'), 'means': Zeros\n (samples.shape[0], 'mot_float_type'), 'stds': Zeros(samples.\n shape[0], 'mot_float_type'), 'nmr_samples': Scalar(samples.\n shape[1]), 'low': Scalar(low), 'high': Scalar(high)}\n cl_func.evaluate(data, samples.shape[0])\n return data['means'].get_data(), data['stds'].get_data()\n if len(samples.shape) == 1:\n mean, std = run_cl(samples[None, :])\n return mean[0], std[0]\n return run_cl(samples)\n", "role": "user" }, { "content": "fit_circular_gaussian", "role": "assistant" } ]
def x(samples, lower_bounds, upper_bounds): if len(samples.shape) == 1: return _TruncatedNormalFitter()((samples, lower_bounds, upper_bounds)) def x(): for ind in range(samples.shape[0]): if is_scalar(lower_bounds): lower_bound = lower_bounds else: lower_bound = lower_bounds[ind] if is_scalar(upper_bounds): upper_bound = upper_bounds else: upper_bound = upper_bounds[ind] yield samples[ind], lower_bound, upper_bound results = np.array(multiprocess_mapping(_TruncatedNormalFitter(), item_generator())) return results[:, 0], results[:, 1]
fit_truncated_gaussian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(samples, lower_bounds, upper_bounds):\n if len(samples.shape) == 1:\n return _TruncatedNormalFitter()((samples, lower_bounds, upper_bounds))\n\n def x():\n for ind in range(samples.shape[0]):\n if is_scalar(lower_bounds):\n lower_bound = lower_bounds\n else:\n lower_bound = lower_bounds[ind]\n if is_scalar(upper_bounds):\n upper_bound = upper_bounds\n else:\n upper_bound = upper_bounds[ind]\n yield samples[ind], lower_bound, upper_bound\n results = np.array(multiprocess_mapping(_TruncatedNormalFitter(),\n item_generator()))\n return results[:, 0], results[:, 1]\n", "role": "user" }, { "content": "fit_truncated_gaussian", "role": "assistant" } ]
def x(means_0, stds_0, means_1, stds_1, lower=None, upper=None): if lower is None: lower = -np.inf if upper is None: upper = np.inf def x(): for ind in range(means_0.shape[0]): yield np.squeeze(means_0[ind]), np.squeeze(stds_0[ind] ), np.squeeze(means_1[ind]), np.squeeze(stds_1[ind]) return np.array(list(multiprocess_mapping(_ComputeGaussianOverlap(lower, upper), point_iterator())))
gaussian_overlapping_coefficient
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(means_0, stds_0, means_1, stds_1, lower=None, upper=None):\n if lower is None:\n lower = -np.inf\n if upper is None:\n upper = np.inf\n\n def x():\n for ind in range(means_0.shape[0]):\n yield np.squeeze(means_0[ind]), np.squeeze(stds_0[ind]\n ), np.squeeze(means_1[ind]), np.squeeze(stds_1[ind])\n return np.array(list(multiprocess_mapping(_ComputeGaussianOverlap(lower,\n upper), point_iterator())))\n", "role": "user" }, { "content": "gaussian_overlapping_coefficient", "role": "assistant" } ]
def x(mean_posterior_lls, ll_per_sample): mean_deviance = -2 * np.mean(ll_per_sample, axis=1) deviance_at_mean = -2 * mean_posterior_lls pd_2002 = mean_deviance - deviance_at_mean pd_2004 = np.var(ll_per_sample, axis=1) / 2.0 return {'DIC_2002': np.nan_to_num(mean_deviance + pd_2002), 'DIC_2004': np.nan_to_num(mean_deviance + pd_2004), 'DIC_Ando_2011': np. nan_to_num(mean_deviance + 2 * pd_2002)}
deviance_information_criterions
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mean_posterior_lls, ll_per_sample):\n mean_deviance = -2 * np.mean(ll_per_sample, axis=1)\n deviance_at_mean = -2 * mean_posterior_lls\n pd_2002 = mean_deviance - deviance_at_mean\n pd_2004 = np.var(ll_per_sample, axis=1) / 2.0\n return {'DIC_2002': np.nan_to_num(mean_deviance + pd_2002), 'DIC_2004':\n np.nan_to_num(mean_deviance + pd_2004), 'DIC_Ando_2011': np.\n nan_to_num(mean_deviance + 2 * pd_2002)}\n", "role": "user" }, { "content": "deviance_information_criterions", "role": "assistant" } ]
def x(params, low, high, data): mu = params[0] sigma = params[1] if sigma == 0: return np.inf ll = np.sum(norm.logpdf(data, mu, sigma)) ll -= len(data) * np.log(norm.cdf(high, mu, sigma) - norm.cdf(low, mu, sigma)) return -ll
truncated_normal_log_likelihood
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params, low, high, data):\n mu = params[0]\n sigma = params[1]\n if sigma == 0:\n return np.inf\n ll = np.sum(norm.logpdf(data, mu, sigma))\n ll -= len(data) * np.log(norm.cdf(high, mu, sigma) - norm.cdf(low, mu,\n sigma))\n return -ll\n", "role": "user" }, { "content": "truncated_normal_log_likelihood", "role": "assistant" } ]
def x(params, low, high, data): if params[1] == 0: return np.array([np.inf, np.inf]) return np.array([_TruncatedNormalFitter.partial_derivative_mu(params[0], params[1], low, high, data), _TruncatedNormalFitter. partial_derivative_sigma(params[0], params[1], low, high, data)])
truncated_normal_ll_gradient
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(params, low, high, data):\n if params[1] == 0:\n return np.array([np.inf, np.inf])\n return np.array([_TruncatedNormalFitter.partial_derivative_mu(params[0],\n params[1], low, high, data), _TruncatedNormalFitter.\n partial_derivative_sigma(params[0], params[1], low, high, data)])\n", "role": "user" }, { "content": "truncated_normal_ll_gradient", "role": "assistant" } ]
def x(mu, sigma, low, high, data): pd_mu = np.sum(data - mu) / sigma ** 2 pd_mu -= len(data) * ((norm.pdf(low, mu, sigma) - norm.pdf(high, mu, sigma)) / (norm.cdf(high, mu, sigma) - norm.cdf(low, mu, sigma))) return -pd_mu
partial_derivative_mu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mu, sigma, low, high, data):\n pd_mu = np.sum(data - mu) / sigma ** 2\n pd_mu -= len(data) * ((norm.pdf(low, mu, sigma) - norm.pdf(high, mu,\n sigma)) / (norm.cdf(high, mu, sigma) - norm.cdf(low, mu, sigma)))\n return -pd_mu\n", "role": "user" }, { "content": "partial_derivative_mu", "role": "assistant" } ]
def x(mu, sigma, low, high, data): pd_sigma = np.sum(-(1 / sigma) + (data - mu) ** 2 / sigma ** 3) pd_sigma -= len(data) * (((low - mu) * norm.pdf(low, mu, sigma) - (high - mu) * norm.pdf(high, mu, sigma)) / (sigma * (norm.cdf(high, mu, sigma) - norm.cdf(low, mu, sigma)))) return -pd_sigma
partial_derivative_sigma
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(mu, sigma, low, high, data):\n pd_sigma = np.sum(-(1 / sigma) + (data - mu) ** 2 / sigma ** 3)\n pd_sigma -= len(data) * (((low - mu) * norm.pdf(low, mu, sigma) - (high -\n mu) * norm.pdf(high, mu, sigma)) / (sigma * (norm.cdf(high, mu,\n sigma) - norm.cdf(low, mu, sigma))))\n return -pd_sigma\n", "role": "user" }, { "content": "partial_derivative_sigma", "role": "assistant" } ]
def x(self): return {'nmsimplex_scratch': LocalMemory('mot_float_type', self. _nmr_parameters * 2 + (self._nmr_parameters + 1) ** 2 + 1), 'initial_simplex_scale': LocalMemory('mot_float_type', self. _nmr_parameters)}
get_kernel_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return {'nmsimplex_scratch': LocalMemory('mot_float_type', self.\n _nmr_parameters * 2 + (self._nmr_parameters + 1) ** 2 + 1),\n 'initial_simplex_scale': LocalMemory('mot_float_type', self.\n _nmr_parameters)}\n", "role": "user" }, { "content": "get_kernel_data", "role": "assistant" } ]
def x(self): return {'subplex_scratch_float': LocalMemory('mot_float_type', 4 + self ._var_replace_dict['NMR_PARAMS'] * 2 + self._var_replace_dict[ 'MAX_SUBSPACE_LENGTH'] * 2 + (self._var_replace_dict[ 'MAX_SUBSPACE_LENGTH'] * 2 + self._var_replace_dict[ 'MAX_SUBSPACE_LENGTH'] + 1) ** 2 + 1), 'subplex_scratch_int': LocalMemory('int', 2 + self._var_replace_dict['NMR_PARAMS'] + self. _var_replace_dict['NMR_PARAMS'] // self._var_replace_dict[ 'MIN_SUBSPACE_LENGTH']), 'initial_simplex_scale': LocalMemory( 'mot_float_type', self._var_replace_dict['NMR_PARAMS'])}
get_kernel_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return {'subplex_scratch_float': LocalMemory('mot_float_type', 4 + self\n ._var_replace_dict['NMR_PARAMS'] * 2 + self._var_replace_dict[\n 'MAX_SUBSPACE_LENGTH'] * 2 + (self._var_replace_dict[\n 'MAX_SUBSPACE_LENGTH'] * 2 + self._var_replace_dict[\n 'MAX_SUBSPACE_LENGTH'] + 1) ** 2 + 1), 'subplex_scratch_int':\n LocalMemory('int', 2 + self._var_replace_dict['NMR_PARAMS'] + self.\n _var_replace_dict['NMR_PARAMS'] // self._var_replace_dict[\n 'MIN_SUBSPACE_LENGTH']), 'initial_simplex_scale': LocalMemory(\n 'mot_float_type', self._var_replace_dict['NMR_PARAMS'])}\n", "role": "user" }, { "content": "get_kernel_data", "role": "assistant" } ]
def x(self): return {'scratch_mot_float_type': LocalMemory('mot_float_type', 8 + 2 * self._var_replace_dict['NMR_OBSERVATIONS'] + 5 * self. _var_replace_dict['NMR_PARAMS'] + self._var_replace_dict[ 'NMR_PARAMS'] * self._var_replace_dict['NMR_OBSERVATIONS']), 'scratch_int': LocalMemory('int', self._var_replace_dict['NMR_PARAMS']) }
get_kernel_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return {'scratch_mot_float_type': LocalMemory('mot_float_type', 8 + 2 *\n self._var_replace_dict['NMR_OBSERVATIONS'] + 5 * self.\n _var_replace_dict['NMR_PARAMS'] + self._var_replace_dict[\n 'NMR_PARAMS'] * self._var_replace_dict['NMR_OBSERVATIONS']),\n 'scratch_int': LocalMemory('int', self._var_replace_dict['NMR_PARAMS'])\n }\n", "role": "user" }, { "content": "get_kernel_data", "role": "assistant" } ]
def x(func, x0, data=None, method=None, lower_bounds=None, upper_bounds= None, constraints_func=None, nmr_observations=None, cl_runtime_info= None, options=None): if not method: method = 'Powell' cl_runtime_info = cl_runtime_info or CLRuntimeInfo() if len(x0.shape) < 2: x0 = x0[..., None] lower_bounds = _bounds_to_array(lower_bounds or np.ones(x0.shape[1]) * -np.inf) upper_bounds = _bounds_to_array(upper_bounds or np.ones(x0.shape[1]) * np.inf) if method == 'Powell': return _minimize_powell(func, x0, cl_runtime_info, lower_bounds, upper_bounds, constraints_func=constraints_func, data=data, options=options) elif method == 'Nelder-Mead': return _minimize_nmsimplex(func, x0, cl_runtime_info, lower_bounds, upper_bounds, constraints_func=constraints_func, data=data, options=options) elif method == 'Levenberg-Marquardt': return _minimize_levenberg_marquardt(func, x0, nmr_observations, cl_runtime_info, lower_bounds, upper_bounds, constraints_func= constraints_func, data=data, options=options) elif method == 'Subplex': return _minimize_subplex(func, x0, cl_runtime_info, lower_bounds, upper_bounds, constraints_func=constraints_func, data=data, options=options) raise ValueError('Could not find the specified method "{}".'.format(method) )
minimize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func, x0, data=None, method=None, lower_bounds=None, upper_bounds=\n None, constraints_func=None, nmr_observations=None, cl_runtime_info=\n None, options=None):\n if not method:\n method = 'Powell'\n cl_runtime_info = cl_runtime_info or CLRuntimeInfo()\n if len(x0.shape) < 2:\n x0 = x0[..., None]\n lower_bounds = _bounds_to_array(lower_bounds or np.ones(x0.shape[1]) * \n -np.inf)\n upper_bounds = _bounds_to_array(upper_bounds or np.ones(x0.shape[1]) *\n np.inf)\n if method == 'Powell':\n return _minimize_powell(func, x0, cl_runtime_info, lower_bounds,\n upper_bounds, constraints_func=constraints_func, data=data,\n options=options)\n elif method == 'Nelder-Mead':\n return _minimize_nmsimplex(func, x0, cl_runtime_info, lower_bounds,\n upper_bounds, constraints_func=constraints_func, data=data,\n options=options)\n elif method == 'Levenberg-Marquardt':\n return _minimize_levenberg_marquardt(func, x0, nmr_observations,\n cl_runtime_info, lower_bounds, upper_bounds, constraints_func=\n constraints_func, data=data, options=options)\n elif method == 'Subplex':\n return _minimize_subplex(func, x0, cl_runtime_info, lower_bounds,\n upper_bounds, constraints_func=constraints_func, data=data,\n options=options)\n raise ValueError('Could not find the specified method \"{}\".'.format(method)\n )\n", "role": "user" }, { "content": "minimize", "role": "assistant" } ]
def x(bounds): elements = [] for value in bounds: if all_elements_equal(value): elements.append(Scalar(get_single_value(value), ctype= 'mot_float_type')) else: elements.append(Array(value, ctype='mot_float_type', as_scalar= True)) return CompositeArray(elements, 'mot_float_type', address_space='local')
bounds_to_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bounds):\n elements = []\n for value in bounds:\n if all_elements_equal(value):\n elements.append(Scalar(get_single_value(value), ctype=\n 'mot_float_type'))\n else:\n elements.append(Array(value, ctype='mot_float_type', as_scalar=\n True))\n return CompositeArray(elements, 'mot_float_type', address_space='local')\n", "role": "user" }, { "content": "bounds_to_array", "role": "assistant" } ]
def x(func, x0, nmr_observations, **kwargs): wrapped_func = SimpleCLFunction.from_string( """ double _negate_""" + func.get_cl_function_name() + """( local mot_float_type* x, void* data, local mot_float_type* objective_list){ double return_val = """ + func.get_cl_function_name() + """(x, data, objective_list); if(objective_list){ const uint nmr_observations = """ + str(nmr_observations) + """; uint local_id = get_local_id(0); uint workgroup_size = get_local_size(0); uint observation_ind; for(uint i = 0; i < (nmr_observations + workgroup_size - 1) / workgroup_size; i++){ observation_ind = i * workgroup_size + local_id; if(observation_ind < nmr_observations){ objective_list[observation_ind] *= -1; } } } return -return_val; } """ , dependencies=[func]) kwargs['nmr_observations'] = nmr_observations return minimize(wrapped_func, x0, **kwargs)
maximize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func, x0, nmr_observations, **kwargs):\n wrapped_func = SimpleCLFunction.from_string(\n \"\"\"\n double _negate_\"\"\" + func.get_cl_function_name() +\n \"\"\"(\n local mot_float_type* x,\n void* data, \n local mot_float_type* objective_list){\n\n double return_val = \"\"\"\n + func.get_cl_function_name() +\n \"\"\"(x, data, objective_list); \n\n if(objective_list){\n const uint nmr_observations = \"\"\"\n + str(nmr_observations) +\n \"\"\";\n uint local_id = get_local_id(0);\n uint workgroup_size = get_local_size(0);\n\n uint observation_ind;\n for(uint i = 0; i < (nmr_observations + workgroup_size - 1) / workgroup_size; i++){\n observation_ind = i * workgroup_size + local_id;\n\n if(observation_ind < nmr_observations){\n objective_list[observation_ind] *= -1; \n }\n }\n }\n return -return_val;\n }\n \"\"\"\n , dependencies=[func])\n kwargs['nmr_observations'] = nmr_observations\n return minimize(wrapped_func, x0, **kwargs)\n", "role": "user" }, { "content": "maximize", "role": "assistant" } ]
def x(method): if method == 'Powell': return {'patience': 2, 'patience_line_search': None, 'reset_method': 'EXTRAPOLATED_POINT'} elif method == 'Nelder-Mead': return {'patience': 200, 'alpha': 1.0, 'beta': 0.5, 'gamma': 2.0, 'delta': 0.5, 'scale': 0.1, 'adaptive_scales': True} elif method == 'Levenberg-Marquardt': return {'patience': 250, 'step_bound': 100.0, 'scale_diag': 1, 'usertol_mult': 30} elif method == 'Subplex': return {'patience': 10, 'patience_nmsimplex': 100, 'alpha': 1.0, 'beta': 0.5, 'gamma': 2.0, 'delta': 0.5, 'scale': 1.0, 'psi': 0.0001, 'omega': 0.01, 'adaptive_scales': True, 'min_subspace_length': 'auto', 'max_subspace_length': 'auto'} raise ValueError('Could not find the specified method "{}".'.format(method) )
get_minimizer_options
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method):\n if method == 'Powell':\n return {'patience': 2, 'patience_line_search': None, 'reset_method':\n 'EXTRAPOLATED_POINT'}\n elif method == 'Nelder-Mead':\n return {'patience': 200, 'alpha': 1.0, 'beta': 0.5, 'gamma': 2.0,\n 'delta': 0.5, 'scale': 0.1, 'adaptive_scales': True}\n elif method == 'Levenberg-Marquardt':\n return {'patience': 250, 'step_bound': 100.0, 'scale_diag': 1,\n 'usertol_mult': 30}\n elif method == 'Subplex':\n return {'patience': 10, 'patience_nmsimplex': 100, 'alpha': 1.0,\n 'beta': 0.5, 'gamma': 2.0, 'delta': 0.5, 'scale': 1.0, 'psi': \n 0.0001, 'omega': 0.01, 'adaptive_scales': True,\n 'min_subspace_length': 'auto', 'max_subspace_length': 'auto'}\n raise ValueError('Could not find the specified method \"{}\".'.format(method)\n )\n", "role": "user" }, { "content": "get_minimizer_options", "role": "assistant" } ]
def x(method, provided_options): provided_options = provided_options or {} default_options = get_minimizer_options(method) result = {} for name, default in default_options.items(): if name in provided_options: result[name] = provided_options[name] else: result[name] = default_options[name] return result
clean_options
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(method, provided_options):\n provided_options = provided_options or {}\n default_options = get_minimizer_options(method)\n result = {}\n for name, default in default_options.items():\n if name in provided_options:\n result[name] = provided_options[name]\n else:\n result[name] = default_options[name]\n return result\n", "role": "user" }, { "content": "clean_options", "role": "assistant" } ]
def x(func, x0, cl_runtime_info, lower_bounds, upper_bounds, constraints_func=None, data=None, options=None): options = options or {} nmr_problems = x0.shape[0] nmr_parameters = x0.shape[1] penalty_data, penalty_func = _get_penalty_function(nmr_parameters, constraints_func) eval_func = SimpleCLFunction.from_string( """ double evaluate(local mot_float_type* x, void* data){ double penalty = _mle_penalty( x, ((_powell_eval_func_data*)data)->data, ((_powell_eval_func_data*)data)->lower_bounds, ((_powell_eval_func_data*)data)->upper_bounds, """ + str(options.get('penalty_weight', 1e+30)) + """, ((_powell_eval_func_data*)data)->penalty_data ); double func_val = """ + func.get_cl_function_name() + """(x, ((_powell_eval_func_data*)data)->data, 0); if(isnan(func_val)){ return INFINITY; } return func_val + penalty; } """ , dependencies=[func, penalty_func]) optimizer_func = Powell(eval_func, nmr_parameters, **_clean_options( 'Powell', options)) kernel_data = {'model_parameters': Array(x0, ctype='mot_float_type', mode='rw'), 'data': Struct({'data': data, 'lower_bounds': lower_bounds, 'upper_bounds': upper_bounds, 'penalty_data': penalty_data}, '_powell_eval_func_data')} kernel_data.update(optimizer_func.get_kernel_data()) return_code = optimizer_func.evaluate(kernel_data, nmr_problems, use_local_reduction=all(env.is_gpu for env in cl_runtime_info. cl_environments), cl_runtime_info=cl_runtime_info) return OptimizeResults({'x': kernel_data['model_parameters'].get_data(), 'status': return_code})
minimize_powell
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func, x0, cl_runtime_info, lower_bounds, upper_bounds,\n constraints_func=None, data=None, options=None):\n options = options or {}\n nmr_problems = x0.shape[0]\n nmr_parameters = x0.shape[1]\n penalty_data, penalty_func = _get_penalty_function(nmr_parameters,\n constraints_func)\n eval_func = SimpleCLFunction.from_string(\n \"\"\"\n double evaluate(local mot_float_type* x, void* data){\n double penalty = _mle_penalty(\n x, \n ((_powell_eval_func_data*)data)->data,\n ((_powell_eval_func_data*)data)->lower_bounds,\n ((_powell_eval_func_data*)data)->upper_bounds,\n \"\"\"\n + str(options.get('penalty_weight', 1e+30)) +\n \"\"\", \n ((_powell_eval_func_data*)data)->penalty_data\n );\n \n double func_val = \"\"\"\n + func.get_cl_function_name() +\n \"\"\"(x, ((_powell_eval_func_data*)data)->data, 0);\n \n if(isnan(func_val)){\n return INFINITY;\n }\n \n return func_val + penalty;\n }\n \"\"\"\n , dependencies=[func, penalty_func])\n optimizer_func = Powell(eval_func, nmr_parameters, **_clean_options(\n 'Powell', options))\n kernel_data = {'model_parameters': Array(x0, ctype='mot_float_type',\n mode='rw'), 'data': Struct({'data': data, 'lower_bounds':\n lower_bounds, 'upper_bounds': upper_bounds, 'penalty_data':\n penalty_data}, '_powell_eval_func_data')}\n kernel_data.update(optimizer_func.get_kernel_data())\n return_code = optimizer_func.evaluate(kernel_data, nmr_problems,\n use_local_reduction=all(env.is_gpu for env in cl_runtime_info.\n cl_environments), cl_runtime_info=cl_runtime_info)\n return OptimizeResults({'x': kernel_data['model_parameters'].get_data(),\n 'status': return_code})\n", "role": "user" }, { "content": "minimize_powell", "role": "assistant" } ]
def x(nmr_parameters, constraints_func=None): dependencies = [] data_requirements = {'scratch': LocalMemory('double', 1)} constraints_code = '' if constraints_func and constraints_func.get_nmr_constraints() > 0: nmr_constraints = constraints_func.get_nmr_constraints() dependencies.append(constraints_func) data_requirements['constraints'] = LocalMemory('mot_float_type', nmr_constraints) constraints_code = """ local mot_float_type* constraints = ((_mle_penalty_data*)scratch_data)->constraints; """ + constraints_func.get_cl_function_name() + """(x, data, constraints); for(int i = 0; i < """ + str(nmr_constraints) + """; i++){ *penalty_sum += pown(max((mot_float_type)0, constraints[i]), 2); } """ data = Struct(data_requirements, '_mle_penalty_data') func = SimpleCLFunction.from_string( """ double _mle_penalty( local mot_float_type* x, void* data, local mot_float_type* lower_bounds, local mot_float_type* upper_bounds, float penalty_weight, void* scratch_data){ local double* penalty_sum = ((_mle_penalty_data*)scratch_data)->scratch; if(get_local_id(0) == 0){ *penalty_sum = 0; // boundary conditions for(int i = 0; i < """ + str(nmr_parameters) + """; i++){ if(isfinite(upper_bounds[i])){ *penalty_sum += pown(max((mot_float_type)0, x[i] - upper_bounds[i]), 2); } if(isfinite(lower_bounds[i])){ *penalty_sum += pown(max((mot_float_type)0, lower_bounds[i] - x[i]), 2); } } } barrier(CLK_LOCAL_MEM_FENCE); // constraints """ + constraints_code + """ return penalty_weight * *penalty_sum; } """ , dependencies=dependencies) return data, func
get_penalty_function
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nmr_parameters, constraints_func=None):\n dependencies = []\n data_requirements = {'scratch': LocalMemory('double', 1)}\n constraints_code = ''\n if constraints_func and constraints_func.get_nmr_constraints() > 0:\n nmr_constraints = constraints_func.get_nmr_constraints()\n dependencies.append(constraints_func)\n data_requirements['constraints'] = LocalMemory('mot_float_type',\n nmr_constraints)\n constraints_code = \"\"\"\n local mot_float_type* constraints = ((_mle_penalty_data*)scratch_data)->constraints;\n \n \"\"\" + constraints_func.get_cl_function_name() + \"\"\"(x, data, constraints);\n \n for(int i = 0; i < \"\"\" + str(nmr_constraints) + \"\"\"; i++){\n *penalty_sum += pown(max((mot_float_type)0, constraints[i]), 2); \n }\n \"\"\"\n data = Struct(data_requirements, '_mle_penalty_data')\n func = SimpleCLFunction.from_string(\n \"\"\"\n double _mle_penalty(\n local mot_float_type* x,\n void* data, \n local mot_float_type* lower_bounds, \n local mot_float_type* upper_bounds,\n float penalty_weight,\n void* scratch_data){\n \n local double* penalty_sum = ((_mle_penalty_data*)scratch_data)->scratch;\n \n if(get_local_id(0) == 0){\n *penalty_sum = 0;\n \n // boundary conditions\n for(int i = 0; i < \"\"\"\n + str(nmr_parameters) +\n \"\"\"; i++){\n if(isfinite(upper_bounds[i])){\n *penalty_sum += pown(max((mot_float_type)0, x[i] - upper_bounds[i]), 2); \n }\n if(isfinite(lower_bounds[i])){\n *penalty_sum += pown(max((mot_float_type)0, lower_bounds[i] - x[i]), 2);\n }\n }\n }\n barrier(CLK_LOCAL_MEM_FENCE);\n \n // constraints\n \"\"\"\n + constraints_code +\n \"\"\"\n \n return penalty_weight * *penalty_sum;\n }\n \"\"\"\n , dependencies=dependencies)\n return data, func\n", "role": "user" }, { "content": "get_penalty_function", "role": "assistant" } ]
def x(cls, cl_function, dependencies=(), nmr_constraints=None): return_type, function_name, parameter_list, body = split_cl_function( cl_function) return SimpleConstraintFunction(return_type, function_name, parameter_list, body, dependencies=dependencies, nmr_constraints= nmr_constraints)
from_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, cl_function, dependencies=(), nmr_constraints=None):\n return_type, function_name, parameter_list, body = split_cl_function(\n cl_function)\n return SimpleConstraintFunction(return_type, function_name,\n parameter_list, body, dependencies=dependencies, nmr_constraints=\n nmr_constraints)\n", "role": "user" }, { "content": "from_string", "role": "assistant" } ]
def x(yaml_def, branch=False): schema = Schema({('lane' if not branch else 'branch'): {Optional('name' ): str, Optional('run_parallel'): bool, 'tasks': list}}) schema.validate(yaml_def) from schema import And, Use task_schema = Schema({'class': str, Optional('kwargs'): Or({str: object }), Optional('args'): Or([object], And(Use(lambda a: isinstance(a, dict)), False))}) def x(tasks): for task in tasks: try: Schema({'branch': dict}).validate(task) validate_schema(task, True) except SchemaError: task_schema.validate(task) return True return validate_tasks(yaml_def['lane']['tasks'] if not branch else yaml_def['branch']['tasks'])
validate_schema
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(yaml_def, branch=False):\n schema = Schema({('lane' if not branch else 'branch'): {Optional('name'\n ): str, Optional('run_parallel'): bool, 'tasks': list}})\n schema.validate(yaml_def)\n from schema import And, Use\n task_schema = Schema({'class': str, Optional('kwargs'): Or({str: object\n }), Optional('args'): Or([object], And(Use(lambda a: isinstance(a,\n dict)), False))})\n\n def x(tasks):\n for task in tasks:\n try:\n Schema({'branch': dict}).validate(task)\n validate_schema(task, True)\n except SchemaError:\n task_schema.validate(task)\n return True\n return validate_tasks(yaml_def['lane']['tasks'] if not branch else\n yaml_def['branch']['tasks'])\n", "role": "user" }, { "content": "validate_schema", "role": "assistant" } ]
def x(cls, mtd_name, *args, **kwargs): mtd = getattr(cls, mtd_name) py3_mtd_condition = not (inspect.isfunction(mtd) or inspect.ismethod(mtd) ) and hasattr(cls, mtd_name) py2_mtd_condition = not inspect.ismethod(mtd) and not isinstance(cls. __dict__[mtd_name], staticmethod) if PY3 and py3_mtd_condition or PY2 and py2_mtd_condition: raise TypeError( 'Attribute `%s` of class `%s` must be a method. Got type `%s` instead.' % (mtd_name, cls.__name__, type(mtd))) req_params, opt_params = arg_spec(cls, mtd_name) n_params = len(req_params) + len(opt_params) n_args_kwargs = len(args) + len(kwargs) for k in kwargs: if k not in req_params and k not in opt_params: raise TaskInitializationError( 'kwarg `%s` is not a parameter of callable `%s`.' % (k, mtd .__name__)) if n_args_kwargs < len(req_params): raise TaskInitializationError( 'Not enough args/kwargs supplied for callable `%s`. Required args: %s' % (mtd.__name__, str(req_params))) if len(args) > n_params or n_args_kwargs > n_params or len(kwargs ) > n_params: raise TaskInitializationError( 'Too many args/kwargs supplied for callable `%s`. Required args: %s' % (mtd.__name__, str(req_params))) redundant_p = [p for p in kwargs if p not in req_params[len(args):] + opt_params] if redundant_p: raise TaskInitializationError( 'Supplied one or more kwargs that in the signature of callable `%s`. Redundant kwargs: %s' % (mtd.__name__, str(redundant_p))) needed_kwargs = req_params[len(args):] if not all([(True if p in kwargs else False) for p in needed_kwargs]): raise TaskInitializationError( 'Not enough args/kwargs supplied for callable `%s`. Required args: %s' % (mtd.__name__, str(req_params)))
validate_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, mtd_name, *args, **kwargs):\n mtd = getattr(cls, mtd_name)\n py3_mtd_condition = not (inspect.isfunction(mtd) or inspect.ismethod(mtd)\n ) and hasattr(cls, mtd_name)\n py2_mtd_condition = not inspect.ismethod(mtd) and not isinstance(cls.\n __dict__[mtd_name], staticmethod)\n if PY3 and py3_mtd_condition or PY2 and py2_mtd_condition:\n raise TypeError(\n 'Attribute `%s` of class `%s` must be a method. Got type `%s` instead.'\n % (mtd_name, cls.__name__, type(mtd)))\n req_params, opt_params = arg_spec(cls, mtd_name)\n n_params = len(req_params) + len(opt_params)\n n_args_kwargs = len(args) + len(kwargs)\n for k in kwargs:\n if k not in req_params and k not in opt_params:\n raise TaskInitializationError(\n 'kwarg `%s` is not a parameter of callable `%s`.' % (k, mtd\n .__name__))\n if n_args_kwargs < len(req_params):\n raise TaskInitializationError(\n 'Not enough args/kwargs supplied for callable `%s`. Required args: %s'\n % (mtd.__name__, str(req_params)))\n if len(args) > n_params or n_args_kwargs > n_params or len(kwargs\n ) > n_params:\n raise TaskInitializationError(\n 'Too many args/kwargs supplied for callable `%s`. Required args: %s'\n % (mtd.__name__, str(req_params)))\n redundant_p = [p for p in kwargs if p not in req_params[len(args):] +\n opt_params]\n if redundant_p:\n raise TaskInitializationError(\n 'Supplied one or more kwargs that in the signature of callable `%s`. Redundant kwargs: %s'\n % (mtd.__name__, str(redundant_p)))\n needed_kwargs = req_params[len(args):]\n if not all([(True if p in kwargs else False) for p in needed_kwargs]):\n raise TaskInitializationError(\n 'Not enough args/kwargs supplied for callable `%s`. Required args: %s'\n % (mtd.__name__, str(req_params)))\n", "role": "user" }, { "content": "validate_params", "role": "assistant" } ]
def x(cls, mtd_name): mtd = getattr(cls, mtd_name) required_params = [] optional_params = [] if hasattr(inspect, 'signature'): params = inspect.signature(mtd).parameters for k in params.keys(): if params[k].default == inspect.Parameter.empty: if not (params[k].name == 'self' or params[k].name == 'cls'): required_params.append(k) else: optional_params.append(k) else: params = inspect.getargspec(mtd) num = len(params[0]) if params[0] else 0 n_opt = len(params[3]) if params[3] else 0 n_req = num - n_opt if n_opt <= num else 0 for i in range(0, n_req): required_params.append(params[0][i]) for i in range(n_req, num): optional_params.append(params[0][i]) if inspect.isroutine(getattr(cls, mtd_name)): bound_mtd = cls.__dict__[mtd_name] if not isinstance(bound_mtd, staticmethod): del required_params[0] return required_params, optional_params
arg_spec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, mtd_name):\n mtd = getattr(cls, mtd_name)\n required_params = []\n optional_params = []\n if hasattr(inspect, 'signature'):\n params = inspect.signature(mtd).parameters\n for k in params.keys():\n if params[k].default == inspect.Parameter.empty:\n if not (params[k].name == 'self' or params[k].name == 'cls'):\n required_params.append(k)\n else:\n optional_params.append(k)\n else:\n params = inspect.getargspec(mtd)\n num = len(params[0]) if params[0] else 0\n n_opt = len(params[3]) if params[3] else 0\n n_req = num - n_opt if n_opt <= num else 0\n for i in range(0, n_req):\n required_params.append(params[0][i])\n for i in range(n_req, num):\n optional_params.append(params[0][i])\n if inspect.isroutine(getattr(cls, mtd_name)):\n bound_mtd = cls.__dict__[mtd_name]\n if not isinstance(bound_mtd, staticmethod):\n del required_params[0]\n return required_params, optional_params\n", "role": "user" }, { "content": "arg_spec", "role": "assistant" } ]
def x(nmr_distributions, nmr_samples, low=0, high=1, ctype='float', seed=None): if is_scalar(low): low = np.ones((nmr_distributions, 1)) * low if is_scalar(high): high = np.ones((nmr_distributions, 1)) * high kernel_data = {'low': Array(low, as_scalar=True), 'high': Array(high, as_scalar=True)} kernel = SimpleCLFunction.from_string( """ void compute(double low, double high, global uint* rng_state, global """ + ctype + """* samples){ rand123_data rand123_rng_data = rand123_initialize_data((uint[]){ rng_state[0], rng_state[1], rng_state[2], rng_state[3], rng_state[4], rng_state[5], 0}); void* rng_data = (void*)&rand123_rng_data; for(uint i = 0; i < """ + str(nmr_samples) + """; i++){ double4 randomnr = rand4(rng_data); samples[i] = (""" + ctype + """)(low + randomnr.x * (high - low)); } } """, dependencies=[Rand123()]) return _generate_samples(kernel, nmr_distributions, nmr_samples, ctype, kernel_data, seed=seed)
uniform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nmr_distributions, nmr_samples, low=0, high=1, ctype='float', seed=None):\n if is_scalar(low):\n low = np.ones((nmr_distributions, 1)) * low\n if is_scalar(high):\n high = np.ones((nmr_distributions, 1)) * high\n kernel_data = {'low': Array(low, as_scalar=True), 'high': Array(high,\n as_scalar=True)}\n kernel = SimpleCLFunction.from_string(\n \"\"\"\n void compute(double low, double high, global uint* rng_state, global \"\"\"\n + ctype +\n \"\"\"* samples){\n \n rand123_data rand123_rng_data = rand123_initialize_data((uint[]){\n rng_state[0], rng_state[1], rng_state[2], rng_state[3], \n rng_state[4], rng_state[5], 0});\n void* rng_data = (void*)&rand123_rng_data;\n\n for(uint i = 0; i < \"\"\"\n + str(nmr_samples) +\n \"\"\"; i++){\n double4 randomnr = rand4(rng_data);\n samples[i] = (\"\"\"\n + ctype +\n \"\"\")(low + randomnr.x * (high - low));\n }\n }\n \"\"\",\n dependencies=[Rand123()])\n return _generate_samples(kernel, nmr_distributions, nmr_samples, ctype,\n kernel_data, seed=seed)\n", "role": "user" }, { "content": "uniform", "role": "assistant" } ]
def x(nmr_distributions, nmr_samples, mean=0, std=1, ctype='float', seed=None): if is_scalar(mean): mean = np.ones((nmr_distributions, 1)) * mean if is_scalar(std): std = np.ones((nmr_distributions, 1)) * std kernel_data = {'mean': Array(mean, as_scalar=True), 'std': Array(std, as_scalar=True)} kernel = SimpleCLFunction.from_string( """ void compute(double mean, double std, global uint* rng_state, global """ + ctype + """* samples){ rand123_data rand123_rng_data = rand123_initialize_data((uint[]){ rng_state[0], rng_state[1], rng_state[2], rng_state[3], rng_state[4], rng_state[5], 0}); void* rng_data = (void*)&rand123_rng_data; for(uint i = 0; i < """ + str(nmr_samples) + """; i++){ double4 randomnr = randn4(rng_data); samples[i] = (""" + ctype + """)(mean + randomnr.x * std); } } """, dependencies=[Rand123()]) return _generate_samples(kernel, nmr_distributions, nmr_samples, ctype, kernel_data, seed=seed)
normal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(nmr_distributions, nmr_samples, mean=0, std=1, ctype='float', seed=None):\n if is_scalar(mean):\n mean = np.ones((nmr_distributions, 1)) * mean\n if is_scalar(std):\n std = np.ones((nmr_distributions, 1)) * std\n kernel_data = {'mean': Array(mean, as_scalar=True), 'std': Array(std,\n as_scalar=True)}\n kernel = SimpleCLFunction.from_string(\n \"\"\"\n void compute(double mean, double std, global uint* rng_state, global \"\"\"\n + ctype +\n \"\"\"* samples){\n rand123_data rand123_rng_data = rand123_initialize_data((uint[]){\n rng_state[0], rng_state[1], rng_state[2], rng_state[3], \n rng_state[4], rng_state[5], 0});\n void* rng_data = (void*)&rand123_rng_data;\n\n for(uint i = 0; i < \"\"\"\n + str(nmr_samples) +\n \"\"\"; i++){\n double4 randomnr = randn4(rng_data);\n samples[i] = (\"\"\"\n + ctype +\n \"\"\")(mean + randomnr.x * std);\n }\n }\n \"\"\",\n dependencies=[Rand123()])\n return _generate_samples(kernel, nmr_distributions, nmr_samples, ctype,\n kernel_data, seed=seed)\n", "role": "user" }, { "content": "normal", "role": "assistant" } ]
def x(self, nmr_samples, burnin=0, thinning=1): if not thinning or thinning < 1: thinning = 1 if not burnin or burnin < 0: burnin = 0 max_samples_per_batch = max(1000 // thinning, 100) with self._logging(nmr_samples, burnin, thinning): if burnin > 0: for batch_start, batch_end in split_in_batches(burnin, max_samples_per_batch): self._sample(batch_end - batch_start, return_output=False) if nmr_samples > 0: outputs = [] for batch_start, batch_end in split_in_batches(nmr_samples, max_samples_per_batch): outputs.append(self._sample(batch_end - batch_start, thinning=thinning)) return SimpleSampleOutput(*[np.concatenate([o[ind] for o in outputs], axis=-1) for ind in range(3)])
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nmr_samples, burnin=0, thinning=1):\n if not thinning or thinning < 1:\n thinning = 1\n if not burnin or burnin < 0:\n burnin = 0\n max_samples_per_batch = max(1000 // thinning, 100)\n with self._logging(nmr_samples, burnin, thinning):\n if burnin > 0:\n for batch_start, batch_end in split_in_batches(burnin,\n max_samples_per_batch):\n self._sample(batch_end - batch_start, return_output=False)\n if nmr_samples > 0:\n outputs = []\n for batch_start, batch_end in split_in_batches(nmr_samples,\n max_samples_per_batch):\n outputs.append(self._sample(batch_end - batch_start,\n thinning=thinning))\n return SimpleSampleOutput(*[np.concatenate([o[ind] for o in\n outputs], axis=-1) for ind in range(3)])\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(self, nmr_samples, thinning=1, return_output=True): kernel_data = self._get_kernel_data(nmr_samples, thinning, return_output) sample_func = self._get_compute_func(nmr_samples, thinning, return_output) sample_func.evaluate(kernel_data, self._nmr_problems, use_local_reduction=all(env.is_gpu for env in self._cl_runtime_info .cl_environments), cl_runtime_info=self._cl_runtime_info) self._sampling_index += nmr_samples * thinning if return_output: return kernel_data['samples'].get_data(), kernel_data['log_likelihoods' ].get_data(), kernel_data['log_priors'].get_data()
sample
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nmr_samples, thinning=1, return_output=True):\n kernel_data = self._get_kernel_data(nmr_samples, thinning, return_output)\n sample_func = self._get_compute_func(nmr_samples, thinning, return_output)\n sample_func.evaluate(kernel_data, self._nmr_problems,\n use_local_reduction=all(env.is_gpu for env in self._cl_runtime_info\n .cl_environments), cl_runtime_info=self._cl_runtime_info)\n self._sampling_index += nmr_samples * thinning\n if return_output:\n return kernel_data['samples'].get_data(), kernel_data['log_likelihoods'\n ].get_data(), kernel_data['log_priors'].get_data()\n", "role": "user" }, { "content": "sample", "role": "assistant" } ]
def x(self, positions, log_likelihoods, log_priors): func = SimpleCLFunction.from_string( """ void compute(global mot_float_type* chain_position, global mot_float_type* log_likelihood, global mot_float_type* log_prior, local mot_float_type* x_tmp, void* data){ bool is_first_work_item = get_local_id(0) == 0; if(is_first_work_item){ for(uint i = 0; i < """ + str(self._nmr_params) + """; i++){ x_tmp[i] = chain_position[i]; } *log_prior = _computeLogPrior(x_tmp, data); } barrier(CLK_LOCAL_MEM_FENCE); *log_likelihood = _computeLogLikelihood(x_tmp, data); } """ , dependencies=[self._get_log_prior_cl_func(), self. _get_log_likelihood_cl_func()]) kernel_data = {'chain_position': Array(positions, 'mot_float_type', mode='rw', ensure_zero_copy=True), 'log_likelihood': Array( log_likelihoods, 'mot_float_type', mode='rw', ensure_zero_copy=True ), 'log_prior': Array(log_priors, 'mot_float_type', mode='rw', ensure_zero_copy=True), 'x_tmp': LocalMemory('mot_float_type', self ._nmr_params), 'data': self._data} func.evaluate(kernel_data, self._nmr_problems, use_local_reduction=all( env.is_gpu for env in self._cl_runtime_info.cl_environments), cl_runtime_info=self._cl_runtime_info)
initialize_likelihood_prior
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, positions, log_likelihoods, log_priors):\n func = SimpleCLFunction.from_string(\n \"\"\"\n void compute(global mot_float_type* chain_position,\n global mot_float_type* log_likelihood,\n global mot_float_type* log_prior,\n local mot_float_type* x_tmp,\n void* data){\n \n bool is_first_work_item = get_local_id(0) == 0;\n \n if(is_first_work_item){\n for(uint i = 0; i < \"\"\"\n + str(self._nmr_params) +\n \"\"\"; i++){\n x_tmp[i] = chain_position[i];\n }\n *log_prior = _computeLogPrior(x_tmp, data);\n }\n barrier(CLK_LOCAL_MEM_FENCE);\n \n *log_likelihood = _computeLogLikelihood(x_tmp, data);\n }\n \"\"\"\n , dependencies=[self._get_log_prior_cl_func(), self.\n _get_log_likelihood_cl_func()])\n kernel_data = {'chain_position': Array(positions, 'mot_float_type',\n mode='rw', ensure_zero_copy=True), 'log_likelihood': Array(\n log_likelihoods, 'mot_float_type', mode='rw', ensure_zero_copy=True\n ), 'log_prior': Array(log_priors, 'mot_float_type', mode='rw',\n ensure_zero_copy=True), 'x_tmp': LocalMemory('mot_float_type', self\n ._nmr_params), 'data': self._data}\n func.evaluate(kernel_data, self._nmr_problems, use_local_reduction=all(\n env.is_gpu for env in self._cl_runtime_info.cl_environments),\n cl_runtime_info=self._cl_runtime_info)\n", "role": "user" }, { "content": "initialize_likelihood_prior", "role": "assistant" } ]
def x(self, nmr_samples, thinning, return_output): kernel_data = {'data': self._data, 'method_data': self. _get_mcmc_method_kernel_data(), 'nmr_iterations': Scalar( nmr_samples * thinning, ctype='ulong'), 'iteration_offset': Scalar( self._sampling_index, ctype='ulong'), 'rng_state': Array(self. _rng_state, 'uint', mode='rw', ensure_zero_copy=True), 'current_chain_position': Array(self._current_chain_position, 'mot_float_type', mode='rw', ensure_zero_copy=True), 'current_log_likelihood': Array(self._current_log_likelihood, 'mot_float_type', mode='rw', ensure_zero_copy=True), 'current_log_prior': Array(self._current_log_prior, 'mot_float_type', mode='rw', ensure_zero_copy=True)} if return_output: kernel_data.update({'samples': Zeros((self._nmr_problems, self. _nmr_params, nmr_samples), ctype='mot_float_type'), 'log_likelihoods': Zeros((self._nmr_problems, nmr_samples), ctype='mot_float_type'), 'log_priors': Zeros((self. _nmr_problems, nmr_samples), ctype='mot_float_type')}) return kernel_data
get_kernel_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nmr_samples, thinning, return_output):\n kernel_data = {'data': self._data, 'method_data': self.\n _get_mcmc_method_kernel_data(), 'nmr_iterations': Scalar(\n nmr_samples * thinning, ctype='ulong'), 'iteration_offset': Scalar(\n self._sampling_index, ctype='ulong'), 'rng_state': Array(self.\n _rng_state, 'uint', mode='rw', ensure_zero_copy=True),\n 'current_chain_position': Array(self._current_chain_position,\n 'mot_float_type', mode='rw', ensure_zero_copy=True),\n 'current_log_likelihood': Array(self._current_log_likelihood,\n 'mot_float_type', mode='rw', ensure_zero_copy=True),\n 'current_log_prior': Array(self._current_log_prior,\n 'mot_float_type', mode='rw', ensure_zero_copy=True)}\n if return_output:\n kernel_data.update({'samples': Zeros((self._nmr_problems, self.\n _nmr_params, nmr_samples), ctype='mot_float_type'),\n 'log_likelihoods': Zeros((self._nmr_problems, nmr_samples),\n ctype='mot_float_type'), 'log_priors': Zeros((self.\n _nmr_problems, nmr_samples), ctype='mot_float_type')})\n return kernel_data\n", "role": "user" }, { "content": "get_kernel_data", "role": "assistant" } ]
def x(self, nmr_samples, thinning, return_output): cl_func = """ void compute(global uint* rng_state, global mot_float_type* current_chain_position, global mot_float_type* current_log_likelihood, global mot_float_type* current_log_prior, ulong iteration_offset, ulong nmr_iterations, """ + ("""global mot_float_type* samples, global mot_float_type* log_likelihoods, global mot_float_type* log_priors,""" if return_output else '') + """ void* method_data, void* data){ bool is_first_work_item = get_local_id(0) == 0; rand123_data rand123_rng_data = rand123_initialize_data((uint[]){ rng_state[0], rng_state[1], rng_state[2], rng_state[3], rng_state[4], rng_state[5], 0, 0}); void* rng_data = (void*)&rand123_rng_data; for(ulong i = 0; i < nmr_iterations; i++){ """ if return_output: cl_func += """ if(is_first_work_item){ if(i % """ + str(thinning) + """ == 0){ log_likelihoods[i / """ + str(thinning) + """] = *current_log_likelihood; log_priors[i / """ + str(thinning) + """] = *current_log_prior; for(uint j = 0; j < """ + str(self._nmr_params) + """; j++){ samples[(ulong)(i / """ + str(thinning) + """) // remove the interval + j * """ + str(nmr_samples) + """ // parameter index ] = current_chain_position[j]; } } } """ cl_func += """ _advanceSampler(method_data, data, i + iteration_offset, rng_data, current_chain_position, current_log_likelihood, current_log_prior); } if(is_first_work_item){ uint state[8]; rand123_data_to_array(rand123_rng_data, state); for(uint i = 0; i < 6; i++){ rng_state[i] = state[i]; } } } """ return SimpleCLFunction.from_string(cl_func, dependencies=[Rand123(), self._get_log_prior_cl_func(), self._get_log_likelihood_cl_func(), SimpleCLCodeObject(self._get_state_update_cl_func(nmr_samples, thinning, return_output))])
get_compute_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nmr_samples, thinning, return_output):\n cl_func = \"\"\"\n void compute(global uint* rng_state, \n global mot_float_type* current_chain_position,\n global mot_float_type* current_log_likelihood,\n global mot_float_type* current_log_prior,\n ulong iteration_offset, \n ulong nmr_iterations, \n \"\"\" + (\"\"\"global mot_float_type* samples, \n global mot_float_type* log_likelihoods,\n global mot_float_type* log_priors,\"\"\" if return_output else '') + \"\"\"\n void* method_data, \n void* data){\n \n bool is_first_work_item = get_local_id(0) == 0;\n \n rand123_data rand123_rng_data = rand123_initialize_data((uint[]){\n rng_state[0], rng_state[1], rng_state[2], rng_state[3], \n rng_state[4], rng_state[5], 0, 0});\n void* rng_data = (void*)&rand123_rng_data;\n \n for(ulong i = 0; i < nmr_iterations; i++){\n \"\"\"\n if return_output:\n cl_func += \"\"\"\n if(is_first_work_item){\n if(i % \"\"\" + str(thinning) + \"\"\" == 0){\n log_likelihoods[i / \"\"\" + str(thinning) + \"\"\"] = *current_log_likelihood;\n log_priors[i / \"\"\" + str(thinning) + \"\"\"] = *current_log_prior;\n \n for(uint j = 0; j < \"\"\" + str(self._nmr_params) + \"\"\"; j++){\n samples[(ulong)(i / \"\"\" + str(thinning) + \"\"\") // remove the interval\n + j * \"\"\" + str(nmr_samples) + \"\"\" // parameter index\n ] = current_chain_position[j];\n }\n }\n }\n \"\"\"\n cl_func += \"\"\"\n _advanceSampler(method_data, data, i + iteration_offset, rng_data, \n current_chain_position, current_log_likelihood, current_log_prior);\n }\n\n if(is_first_work_item){\n uint state[8];\n rand123_data_to_array(rand123_rng_data, state);\n for(uint i = 0; i < 6; i++){\n rng_state[i] = state[i];\n }\n }\n }\n \"\"\"\n return SimpleCLFunction.from_string(cl_func, dependencies=[Rand123(),\n self._get_log_prior_cl_func(), self._get_log_likelihood_cl_func(),\n SimpleCLCodeObject(self._get_state_update_cl_func(nmr_samples,\n thinning, return_output))])\n", "role": "user" }, { "content": "get_compute_func", "role": "assistant" } ]
def x(self): return SimpleCLFunction.from_string( """ mot_float_type _computeLogPrior(local const mot_float_type* x, void* data){ return """ + self._log_prior_func.get_cl_function_name() + """(x, data); } """, dependencies=[self. _log_prior_func])
get_log_prior_cl_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return SimpleCLFunction.from_string(\n \"\"\"\n mot_float_type _computeLogPrior(local const mot_float_type* x, void* data){\n return \"\"\"\n + self._log_prior_func.get_cl_function_name() +\n \"\"\"(x, data);\n }\n \"\"\", dependencies=[self.\n _log_prior_func])\n", "role": "user" }, { "content": "get_log_prior_cl_func", "role": "assistant" } ]
def x(self): return SimpleCLFunction.from_string( """ double _computeLogLikelihood(local const mot_float_type* current_position, void* data){ return """ + self._ll_func.get_cl_function_name() + """(current_position, data); } """, dependencies=[self._ll_func])
get_log_likelihood_cl_func
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return SimpleCLFunction.from_string(\n \"\"\"\n double _computeLogLikelihood(local const mot_float_type* current_position, void* data){\n return \"\"\"\n + self._ll_func.get_cl_function_name() +\n \"\"\"(current_position, data);\n }\n \"\"\",\n dependencies=[self._ll_func])\n", "role": "user" }, { "content": "get_log_likelihood_cl_func", "role": "assistant" } ]
def x(self): return {'proposal_stds': Array(self._proposal_stds, 'mot_float_type', mode='rw', ensure_zero_copy=True), 'x_tmp': LocalMemory( 'mot_float_type', nmr_items=1 + self._nmr_params)}
get_mcmc_method_kernel_data_elements
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n return {'proposal_stds': Array(self._proposal_stds, 'mot_float_type',\n mode='rw', ensure_zero_copy=True), 'x_tmp': LocalMemory(\n 'mot_float_type', nmr_items=1 + self._nmr_params)}\n", "role": "user" }, { "content": "get_mcmc_method_kernel_data_elements", "role": "assistant" } ]
def x(ll_func, parameters, data=None, cl_runtime_info=None): def x(): nmr_params = parameters.shape[1] if len(parameters.shape) > 2: return SimpleCLFunction.from_string( """ void compute(global mot_float_type* parameters, global mot_float_type* log_likelihoods, void* data){ local mot_float_type x[""" + str(nmr_params) + """]; for(uint sample_ind = 0; sample_ind < """ + str(parameters.shape[2]) + """; sample_ind++){ for(uint i = 0; i < """ + str(nmr_params) + """; i++){ x[i] = parameters[i *""" + str(parameters.shape[2]) + """ + sample_ind]; } double ll = """ + ll_func.get_cl_function_name() + """(x, data); if(get_local_id(0) == 0){ log_likelihoods[sample_ind] = ll; } } } """ , dependencies=[ll_func]) return SimpleCLFunction.from_string( """ void compute(local mot_float_type* parameters, global mot_float_type* log_likelihoods, void* data){ double ll = """ + ll_func.get_cl_function_name() + """(parameters, data); if(get_local_id(0) == 0){ *(log_likelihoods) = ll; } } """ , dependencies=[ll_func]) kernel_data = {'data': data, 'parameters': Array(parameters, 'mot_float_type', mode='r')} shape = parameters.shape if len(shape) > 2: kernel_data.update({'log_likelihoods': Zeros((shape[0], shape[2]), 'mot_float_type')}) else: kernel_data.update({'log_likelihoods': Zeros((shape[0],), 'mot_float_type')}) get_cl_function().evaluate(kernel_data, parameters.shape[0], use_local_reduction=True, cl_runtime_info=cl_runtime_info) return kernel_data['log_likelihoods'].get_data()
compute_log_likelihood
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ll_func, parameters, data=None, cl_runtime_info=None):\n\n def x():\n nmr_params = parameters.shape[1]\n if len(parameters.shape) > 2:\n return SimpleCLFunction.from_string(\n \"\"\"\n void compute(global mot_float_type* parameters, \n global mot_float_type* log_likelihoods,\n void* data){\n \n local mot_float_type x[\"\"\"\n + str(nmr_params) +\n \"\"\"];\n\n for(uint sample_ind = 0; sample_ind < \"\"\"\n + str(parameters.shape[2]) +\n \"\"\"; sample_ind++){\n for(uint i = 0; i < \"\"\"\n + str(nmr_params) +\n \"\"\"; i++){\n x[i] = parameters[i *\"\"\"\n + str(parameters.shape[2]) +\n \"\"\" + sample_ind];\n }\n \n double ll = \"\"\"\n + ll_func.get_cl_function_name() +\n \"\"\"(x, data);\n if(get_local_id(0) == 0){\n log_likelihoods[sample_ind] = ll;\n }\n }\n }\n \"\"\"\n , dependencies=[ll_func])\n return SimpleCLFunction.from_string(\n \"\"\"\n void compute(local mot_float_type* parameters, \n global mot_float_type* log_likelihoods,\n void* data){\n \n double ll = \"\"\"\n + ll_func.get_cl_function_name() +\n \"\"\"(parameters, data);\n if(get_local_id(0) == 0){\n *(log_likelihoods) = ll;\n }\n }\n \"\"\"\n , dependencies=[ll_func])\n kernel_data = {'data': data, 'parameters': Array(parameters,\n 'mot_float_type', mode='r')}\n shape = parameters.shape\n if len(shape) > 2:\n kernel_data.update({'log_likelihoods': Zeros((shape[0], shape[2]),\n 'mot_float_type')})\n else:\n kernel_data.update({'log_likelihoods': Zeros((shape[0],),\n 'mot_float_type')})\n get_cl_function().evaluate(kernel_data, parameters.shape[0],\n use_local_reduction=True, cl_runtime_info=cl_runtime_info)\n return kernel_data['log_likelihoods'].get_data()\n", "role": "user" }, { "content": "compute_log_likelihood", "role": "assistant" } ]
def x(objective_func, parameters, data=None, cl_runtime_info=None): return objective_func.evaluate({'data': data, 'parameters': Array( parameters, 'mot_float_type', mode='r')}, parameters.shape[0], use_local_reduction=True, cl_runtime_info=cl_runtime_info)
compute_objective_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(objective_func, parameters, data=None, cl_runtime_info=None):\n return objective_func.evaluate({'data': data, 'parameters': Array(\n parameters, 'mot_float_type', mode='r')}, parameters.shape[0],\n use_local_reduction=True, cl_runtime_info=cl_runtime_info)\n", "role": "user" }, { "content": "compute_objective_value", "role": "assistant" } ]
def x(username): redis = get_redis_client() log_key = 'log:{}'.format(username) raw_log = redis.lrange(log_key, 0, -1) log = [] for raw_item in raw_log: item = json.loads(raw_item.decode()) item['datetime'] = convert_timestamp(item.pop('time')) log.append(item) return log
get_log
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(username):\n redis = get_redis_client()\n log_key = 'log:{}'.format(username)\n raw_log = redis.lrange(log_key, 0, -1)\n log = []\n for raw_item in raw_log:\n item = json.loads(raw_item.decode())\n item['datetime'] = convert_timestamp(item.pop('time'))\n log.append(item)\n return log\n", "role": "user" }, { "content": "get_log", "role": "assistant" } ]
def x(username, length=20, timeout=20): redis = get_redis_client() token = get_random_string(length) token_key = 'token:{}'.format(token) redis.set(token_key, username) redis.expire(token_key, timeout) return token
get_token
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(username, length=20, timeout=20):\n redis = get_redis_client()\n token = get_random_string(length)\n token_key = 'token:{}'.format(token)\n redis.set(token_key, username)\n redis.expire(token_key, timeout)\n return token\n", "role": "user" }, { "content": "get_token", "role": "assistant" } ]
def x(self, request, response): return {'method': request.method, 'path': request.get_full_path(), 'code': response.status_code, 'time': time.time()}
get_log
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, response):\n return {'method': request.method, 'path': request.get_full_path(),\n 'code': response.status_code, 'time': time.time()}\n", "role": "user" }, { "content": "get_log", "role": "assistant" } ]
def x(self, song): song_id = song['id'] response = self._call(mm_calls.Export, self.uploader_id, song_id) audio = response.body suggested_filename = unquote(response.headers['Content-Disposition']. split("filename*=UTF-8''")[-1]) return audio, suggested_filename
download
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, song):\n song_id = song['id']\n response = self._call(mm_calls.Export, self.uploader_id, song_id)\n audio = response.body\n suggested_filename = unquote(response.headers['Content-Disposition'].\n split(\"filename*=UTF-8''\")[-1])\n return audio, suggested_filename\n", "role": "user" }, { "content": "download", "role": "assistant" } ]
def x(self): response = self._call(mm_calls.ClientState, self.uploader_id) client_state = response.body.clientstate_response return client_state.total_track_count, client_state.locker_track_limit
quota
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n response = self._call(mm_calls.ClientState, self.uploader_id)\n client_state = response.body.clientstate_response\n return client_state.total_track_count, client_state.locker_track_limit\n", "role": "user" }, { "content": "quota", "role": "assistant" } ]
def x(self, *, uploaded=True, purchased=True): if not uploaded and not purchased: raise ValueError("'uploaded' and 'purchased' cannot both be False.") if purchased and uploaded: song_list = [] for chunk in self.songs_iter(export_type=1): song_list.extend(chunk) elif purchased: song_list = [] for chunk in self.songs_iter(export_type=2): song_list.extend(chunk) elif uploaded: purchased_songs = [] for chunk in self.songs_iter(export_type=2): purchased_songs.extend(chunk) song_list = [song for chunk in self.songs_iter(export_type=1) for song in chunk if song not in purchased_songs] return song_list
songs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, uploaded=True, purchased=True):\n if not uploaded and not purchased:\n raise ValueError(\"'uploaded' and 'purchased' cannot both be False.\")\n if purchased and uploaded:\n song_list = []\n for chunk in self.songs_iter(export_type=1):\n song_list.extend(chunk)\n elif purchased:\n song_list = []\n for chunk in self.songs_iter(export_type=2):\n song_list.extend(chunk)\n elif uploaded:\n purchased_songs = []\n for chunk in self.songs_iter(export_type=2):\n purchased_songs.extend(chunk)\n song_list = [song for chunk in self.songs_iter(export_type=1) for\n song in chunk if song not in purchased_songs]\n return song_list\n", "role": "user" }, { "content": "songs", "role": "assistant" } ]
def x(self, *, continuation_token=None, export_type=1): def x(track_info): return dict((field.name, value) for field, value in track_info. ListFields()) while True: response = self._call(mm_calls.ExportIDs, self.uploader_id, continuation_token=continuation_token, export_type=export_type) items = [track_info_to_dict(track_info) for track_info in response. body.download_track_info] if items: yield items continuation_token = response.body.continuation_token if not continuation_token: break
songs_iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, continuation_token=None, export_type=1):\n\n def x(track_info):\n return dict((field.name, value) for field, value in track_info.\n ListFields())\n while True:\n response = self._call(mm_calls.ExportIDs, self.uploader_id,\n continuation_token=continuation_token, export_type=export_type)\n items = [track_info_to_dict(track_info) for track_info in response.\n body.download_track_info]\n if items:\n yield items\n continuation_token = response.body.continuation_token\n if not continuation_token:\n break\n", "role": "user" }, { "content": "songs_iter", "role": "assistant" } ]
def x(self, song, *, album_art_path=None, no_sample=False): if not isinstance(song, audio_metadata.Format): try: song = audio_metadata.load(song) except audio_metadata.UnsupportedFormat: raise ValueError("'song' must be FLAC, MP3, or WAV.") if album_art_path: album_art_path = Path(album_art_path).resolve() if album_art_path.is_file(): with album_art_path.open('rb') as image_file: external_art = image_file.read() else: external_art = None else: external_art = None result = {'filepath': Path(song.filepath)} track_info = mm_calls.Metadata.get_track_info(song) response = self._call(mm_calls.Metadata, self.uploader_id, [track_info]) metadata_response = response.body.metadata_response if metadata_response.signed_challenge_info: sample_request = metadata_response.signed_challenge_info[0] try: track_sample = mm_calls.Sample.generate_sample(song, track_info, sample_request, external_art=external_art, no_sample=no_sample) response = self._call(mm_calls.Sample, self.uploader_id, [ track_sample]) track_sample_response = (response.body.sample_response. track_sample_response[0]) except (OSError, ValueError, subprocess.CalledProcessError): raise else: track_sample_response = metadata_response.track_sample_response[0] response_code = track_sample_response.response_code if response_code == upload_pb2.TrackSampleResponse.MATCHED: result.update({'success': True, 'reason': 'Matched', 'song_id': track_sample_response.server_track_id}) elif response_code == upload_pb2.TrackSampleResponse.UPLOAD_REQUESTED: server_track_id = track_sample_response.server_track_id self._call(mm_calls.UploadState, self.uploader_id, 'START') attempts = 0 should_retry = True while should_retry and attempts <= 10: response = self._call.retry_with(stop=stop_after_attempt(1))(self, mm_calls.ScottyAgentPost, self.uploader_id, server_track_id, track_info, song, external_art=external_art, total_song_count=1, total_uploaded_count=0) session_response = response.body if 'sessionStatus' in session_response: break try: status_code = session_response['errorMessage']['additionalInfo' ]['uploader_service.GoogleRupioAdditionalInfo'][ 'completionInfo']['customerSpecificInfo']['ResponseCode'] except KeyError: status_code = None if status_code == 503: should_retry = True reason = 'Server syncing' elif status_code == 200: should_retry = False reason = 'Already uploaded' elif status_code == 404: should_retry = False reason = 'Rejected' else: should_retry = True reason = 'Unkown error' attempts += 1 time.sleep(2) else: result.update({'success': False, 'reason': f'Could not get upload session: {reason}'}) if 'success' not in result: transfer = session_response['sessionStatus'][ 'externalFieldTransfers'][0] upload_url = transfer['putInfo']['url'] content_type = transfer.get('content_type', 'audio/mpeg') original_content_type = track_info.original_content_type transcode = isinstance(song, audio_metadata.WAV ) or original_content_type != locker_pb2.Track.MP3 if transcode or original_content_type == locker_pb2.Track.MP3: if transcode: audio_file = transcode_to_mp3(song, quality='320k') else: with open(song.filepath, 'rb') as f: audio_file = f.read() if len(audio_file) >= 300 * 1024 * 1024: result.update({'success': False, 'reason': 'Maximum allowed file size is 300 MiB.'}) else: upload_response = self._call(mm_calls.ScottyAgentPut, upload_url, audio_file, content_type=content_type).body if upload_response.get('sessionStatus', {}).get('state'): result.update({'success': True, 'reason': 'Uploaded', 'song_id': track_sample_response. server_track_id}) else: result.update({'success': False, 'reason': upload_response}) else: result.update({'success': False, 'reason': 'Transcoding disabled for file type.'}) self._call(mm_calls.UploadState, self.uploader_id, 'STOPPED') else: response_codes = upload_pb2._TRACKSAMPLERESPONSE.enum_types[0] response_type = response_codes.values_by_number[track_sample_response .response_code].name reason = response_type result.update({'success': False, 'reason': f'{reason}'}) if response_type == 'ALREADY_EXISTS': result['song_id'] = track_sample_response.server_track_id return result
upload
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, song, *, album_art_path=None, no_sample=False):\n if not isinstance(song, audio_metadata.Format):\n try:\n song = audio_metadata.load(song)\n except audio_metadata.UnsupportedFormat:\n raise ValueError(\"'song' must be FLAC, MP3, or WAV.\")\n if album_art_path:\n album_art_path = Path(album_art_path).resolve()\n if album_art_path.is_file():\n with album_art_path.open('rb') as image_file:\n external_art = image_file.read()\n else:\n external_art = None\n else:\n external_art = None\n result = {'filepath': Path(song.filepath)}\n track_info = mm_calls.Metadata.get_track_info(song)\n response = self._call(mm_calls.Metadata, self.uploader_id, [track_info])\n metadata_response = response.body.metadata_response\n if metadata_response.signed_challenge_info:\n sample_request = metadata_response.signed_challenge_info[0]\n try:\n track_sample = mm_calls.Sample.generate_sample(song, track_info,\n sample_request, external_art=external_art, no_sample=no_sample)\n response = self._call(mm_calls.Sample, self.uploader_id, [\n track_sample])\n track_sample_response = (response.body.sample_response.\n track_sample_response[0])\n except (OSError, ValueError, subprocess.CalledProcessError):\n raise\n else:\n track_sample_response = metadata_response.track_sample_response[0]\n response_code = track_sample_response.response_code\n if response_code == upload_pb2.TrackSampleResponse.MATCHED:\n result.update({'success': True, 'reason': 'Matched', 'song_id':\n track_sample_response.server_track_id})\n elif response_code == upload_pb2.TrackSampleResponse.UPLOAD_REQUESTED:\n server_track_id = track_sample_response.server_track_id\n self._call(mm_calls.UploadState, self.uploader_id, 'START')\n attempts = 0\n should_retry = True\n while should_retry and attempts <= 10:\n response = self._call.retry_with(stop=stop_after_attempt(1))(self,\n mm_calls.ScottyAgentPost, self.uploader_id, server_track_id,\n track_info, song, external_art=external_art,\n total_song_count=1, total_uploaded_count=0)\n session_response = response.body\n if 'sessionStatus' in session_response:\n break\n try:\n status_code = session_response['errorMessage']['additionalInfo'\n ]['uploader_service.GoogleRupioAdditionalInfo'][\n 'completionInfo']['customerSpecificInfo']['ResponseCode']\n except KeyError:\n status_code = None\n if status_code == 503:\n should_retry = True\n reason = 'Server syncing'\n elif status_code == 200:\n should_retry = False\n reason = 'Already uploaded'\n elif status_code == 404:\n should_retry = False\n reason = 'Rejected'\n else:\n should_retry = True\n reason = 'Unkown error'\n attempts += 1\n time.sleep(2)\n else:\n result.update({'success': False, 'reason':\n f'Could not get upload session: {reason}'})\n if 'success' not in result:\n transfer = session_response['sessionStatus'][\n 'externalFieldTransfers'][0]\n upload_url = transfer['putInfo']['url']\n content_type = transfer.get('content_type', 'audio/mpeg')\n original_content_type = track_info.original_content_type\n transcode = isinstance(song, audio_metadata.WAV\n ) or original_content_type != locker_pb2.Track.MP3\n if transcode or original_content_type == locker_pb2.Track.MP3:\n if transcode:\n audio_file = transcode_to_mp3(song, quality='320k')\n else:\n with open(song.filepath, 'rb') as f:\n audio_file = f.read()\n if len(audio_file) >= 300 * 1024 * 1024:\n result.update({'success': False, 'reason':\n 'Maximum allowed file size is 300 MiB.'})\n else:\n upload_response = self._call(mm_calls.ScottyAgentPut,\n upload_url, audio_file, content_type=content_type).body\n if upload_response.get('sessionStatus', {}).get('state'):\n result.update({'success': True, 'reason':\n 'Uploaded', 'song_id': track_sample_response.\n server_track_id})\n else:\n result.update({'success': False, 'reason':\n upload_response})\n else:\n result.update({'success': False, 'reason':\n 'Transcoding disabled for file type.'})\n self._call(mm_calls.UploadState, self.uploader_id, 'STOPPED')\n else:\n response_codes = upload_pb2._TRACKSAMPLERESPONSE.enum_types[0]\n response_type = response_codes.values_by_number[track_sample_response\n .response_code].name\n reason = response_type\n result.update({'success': False, 'reason': f'{reason}'})\n if response_type == 'ALREADY_EXISTS':\n result['song_id'] = track_sample_response.server_track_id\n return result\n", "role": "user" }, { "content": "upload", "role": "assistant" } ]
def x(self, username, *, token=None): self._username = username self._oauth(username, token=token) return self.is_authenticated
login
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, username, *, token=None):\n self._username = username\n self._oauth(username, token=token)\n return self.is_authenticated\n", "role": "user" }, { "content": "login", "role": "assistant" } ]
def x(self, username='', *, token=None): if self.logout(): return self.login(username, token=token) return False
switch_user
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, username='', *, token=None):\n if self.logout():\n return self.login(username, token=token)\n return False\n", "role": "user" }, { "content": "switch_user", "role": "assistant" } ]
def x(S, K, delta): pivot = floor(K / S) return [(S / K * 1 / d) for d in range(1, pivot)] + [S / K * log(S / delta) ] + [(0) for d in range(pivot, K)]
gen_tau
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(S, K, delta):\n pivot = floor(K / S)\n return [(S / K * 1 / d) for d in range(1, pivot)] + [S / K * log(S / delta)\n ] + [(0) for d in range(pivot, K)]\n", "role": "user" }, { "content": "gen_tau", "role": "assistant" } ]
def x(K, delta, c): S = c * log(K / delta) * sqrt(K) tau = gen_tau(S, K, delta) rho = gen_rho(K) normalizer = sum(rho) + sum(tau) return [((rho[d] + tau[d]) / normalizer) for d in range(K)]
gen_mu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(K, delta, c):\n S = c * log(K / delta) * sqrt(K)\n tau = gen_tau(S, K, delta)\n rho = gen_rho(K)\n normalizer = sum(rho) + sum(tau)\n return [((rho[d] + tau[d]) / normalizer) for d in range(K)]\n", "role": "user" }, { "content": "gen_mu", "role": "assistant" } ]
def x(K, delta, c): mu = gen_mu(K, delta, c) return [sum(mu[:d + 1]) for d in range(K)]
gen_rsd_cdf
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(K, delta, c):\n mu = gen_mu(K, delta, c)\n return [sum(mu[:d + 1]) for d in range(K)]\n", "role": "user" }, { "content": "gen_rsd_cdf", "role": "assistant" } ]
def x(self): self.state = PRNG_A * self.state % PRNG_M return self.state
get_next
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.state = PRNG_A * self.state % PRNG_M\n return self.state\n", "role": "user" }, { "content": "get_next", "role": "assistant" } ]
def x(self): p = self._get_next() / PRNG_MAX_RAND for ix, v in enumerate(self.cdf): if v > p: return ix + 1 return ix + 1
sample_d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n p = self._get_next() / PRNG_MAX_RAND\n for ix, v in enumerate(self.cdf):\n if v > p:\n return ix + 1\n return ix + 1\n", "role": "user" }, { "content": "sample_d", "role": "assistant" } ]
def x(self, seed=None): if seed: self.state = seed blockseed = self.state d = self._sample_d() have = 0 nums = set() while have < d: num = self._get_next() % self.K if num not in nums: nums.add(num) have += 1 return blockseed, d, nums
get_src_blocks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, seed=None):\n if seed:\n self.state = seed\n blockseed = self.state\n d = self._sample_d()\n have = 0\n nums = set()\n while have < d:\n num = self._get_next() % self.K\n if num not in nums:\n nums.add(num)\n have += 1\n return blockseed, d, nums\n", "role": "user" }, { "content": "get_src_blocks", "role": "assistant" } ]
def x(fn, blocksize, seed, c, delta): with open(fn, 'rb') as f: for block in encode.encoder(f, blocksize, seed, c, delta): sys.stdout.buffer.write(block)
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fn, blocksize, seed, c, delta):\n with open(fn, 'rb') as f:\n for block in encode.encoder(f, blocksize, seed, c, delta):\n sys.stdout.buffer.write(block)\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(self): subscribed = next((config_item['value'] == 'true' for config_item in self.config() if config_item['key'] == 'isNautilusUser'), None) if subscribed: self.tier = 'aa' else: self.tier = 'fr' return subscribed
is_subscribed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n subscribed = next((config_item['value'] == 'true' for config_item in\n self.config() if config_item['key'] == 'isNautilusUser'), None)\n if subscribed:\n self.tier = 'aa'\n else:\n self.tier = 'fr'\n return subscribed\n", "role": "user" }, { "content": "is_subscribed", "role": "assistant" } ]
def x(self, album_id, *, include_description=True, include_songs=True): response = self._call(mc_calls.FetchAlbum, album_id, include_description=include_description, include_tracks=include_songs) album_info = response.body return album_info
album
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, album_id, *, include_description=True, include_songs=True):\n response = self._call(mc_calls.FetchAlbum, album_id,\n include_description=include_description, include_tracks=include_songs)\n album_info = response.body\n return album_info\n", "role": "user" }, { "content": "album", "role": "assistant" } ]
def x(self, artist_id, *, include_albums=True, num_related_artists=5, num_top_tracks=5): response = self._call(mc_calls.FetchArtist, artist_id, include_albums= include_albums, num_related_artists=num_related_artists, num_top_tracks=num_top_tracks) artist_info = response.body return artist_info
artist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, artist_id, *, include_albums=True, num_related_artists=5,\n num_top_tracks=5):\n response = self._call(mc_calls.FetchArtist, artist_id, include_albums=\n include_albums, num_related_artists=num_related_artists,\n num_top_tracks=num_top_tracks)\n artist_info = response.body\n return artist_info\n", "role": "user" }, { "content": "artist", "role": "assistant" } ]
def x(self, podcast_genre_id='JZCpodcasttopchartall'): response = self._call(mc_calls.PodcastBrowse, podcast_genre_id= podcast_genre_id) podcast_series_list = response.body.get('series', []) return podcast_series_list
browse_podcasts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, podcast_genre_id='JZCpodcasttopchartall'):\n response = self._call(mc_calls.PodcastBrowse, podcast_genre_id=\n podcast_genre_id)\n podcast_series_list = response.body.get('series', [])\n return podcast_series_list\n", "role": "user" }, { "content": "browse_podcasts", "role": "assistant" } ]
def x(self): response = self._call(mc_calls.PodcastBrowseHierarchy) genres = response.body.get('groups', []) return genres
browse_podcasts_genres
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n response = self._call(mc_calls.PodcastBrowseHierarchy)\n genres = response.body.get('groups', [])\n return genres\n", "role": "user" }, { "content": "browse_podcasts_genres", "role": "assistant" } ]
def x(self, station_category_id): response = self._call(mc_calls.BrowseStations, station_category_id) stations = response.body.get('stations', []) return stations
browse_stations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, station_category_id):\n response = self._call(mc_calls.BrowseStations, station_category_id)\n stations = response.body.get('stations', [])\n return stations\n", "role": "user" }, { "content": "browse_stations", "role": "assistant" } ]
def x(self): response = self._call(mc_calls.BrowseStationCategories) station_categories = response.body.get('root', {}).get('subcategories', []) return station_categories
browse_stations_categories
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n response = self._call(mc_calls.BrowseStationCategories)\n station_categories = response.body.get('root', {}).get('subcategories', [])\n return station_categories\n", "role": "user" }, { "content": "browse_stations_categories", "role": "assistant" } ]
def x(self): response = self._call(mc_calls.Config) config_list = response.body.get('data', {}).get('entries', []) return config_list
config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n response = self._call(mc_calls.Config)\n config_list = response.body.get('data', {}).get('entries', [])\n return config_list\n", "role": "user" }, { "content": "config", "role": "assistant" } ]
def x(self, device): if device['id'].startswith('0x'): self.device_id = device['id'][2:] elif device['id'].startswith('ios:'): self.device_id = device['id'].replace(':', '') else: self.device_id = device['id']
device_set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, device):\n if device['id'].startswith('0x'):\n self.device_id = device['id'][2:]\n elif device['id'].startswith('ios:'):\n self.device_id = device['id'].replace(':', '')\n else:\n self.device_id = device['id']\n", "role": "user" }, { "content": "device_set", "role": "assistant" } ]
def x(self): response = self._call(mc_calls.DeviceManagementInfo) registered_devices = response.body.get('data', {}).get('items', []) return registered_devices
devices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n response = self._call(mc_calls.DeviceManagementInfo)\n registered_devices = response.body.get('data', {}).get('items', [])\n return registered_devices\n", "role": "user" }, { "content": "devices", "role": "assistant" } ]
def x(self, parent_genre_id=None): response = self._call(mc_calls.ExploreGenres, parent_genre_id) genre_list = response.body.get('genres', []) return genre_list
explore_genres
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parent_genre_id=None):\n response = self._call(mc_calls.ExploreGenres, parent_genre_id)\n genre_list = response.body.get('genres', [])\n return genre_list\n", "role": "user" }, { "content": "explore_genres", "role": "assistant" } ]
def x(self, *, num_items=100, genre_id=None): response = self._call(mc_calls.ExploreTabs, num_items=num_items, genre_id=genre_id) tab_list = response.body.get('tabs', []) explore_tabs = {} for tab in tab_list: explore_tabs[tab['tab_type'].lower()] = tab return explore_tabs
explore_tabs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, num_items=100, genre_id=None):\n response = self._call(mc_calls.ExploreTabs, num_items=num_items,\n genre_id=genre_id)\n tab_list = response.body.get('tabs', [])\n explore_tabs = {}\n for tab in tab_list:\n explore_tabs[tab['tab_type'].lower()] = tab\n return explore_tabs\n", "role": "user" }, { "content": "explore_tabs", "role": "assistant" } ]
def x(self): response = self._call(mc_calls.ListenNowGetDismissedItems) dismissed_items = response.body.get('items', []) return dismissed_items
listen_now_dismissed_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n response = self._call(mc_calls.ListenNowGetDismissedItems)\n dismissed_items = response.body.get('items', [])\n return dismissed_items\n", "role": "user" }, { "content": "listen_now_dismissed_items", "role": "assistant" } ]
def x(self): response = self._call(mc_calls.ListenNowGetListenNowItems) listen_now_item_list = response.body.get('listennow_items', []) listen_now_items = defaultdict(list) for item in listen_now_item_list: type_ = f"{ListenNowItemType(item['type']).name}s" listen_now_items[type_].append(item) return dict(listen_now_items)
listen_now_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n response = self._call(mc_calls.ListenNowGetListenNowItems)\n listen_now_item_list = response.body.get('listennow_items', [])\n listen_now_items = defaultdict(list)\n for item in listen_now_item_list:\n type_ = f\"{ListenNowItemType(item['type']).name}s\"\n listen_now_items[type_].append(item)\n return dict(listen_now_items)\n", "role": "user" }, { "content": "listen_now_items", "role": "assistant" } ]
def x(self, playlist_song_id): playlist_song_info = next((playlist_song for playlist in self.playlists (include_songs=True) for playlist_song in playlist['tracks'] if playlist_song['id'] == playlist_song_id), None) return playlist_song_info
playlist_song
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, playlist_song_id):\n playlist_song_info = next((playlist_song for playlist in self.playlists\n (include_songs=True) for playlist_song in playlist['tracks'] if \n playlist_song['id'] == playlist_song_id), None)\n return playlist_song_info\n", "role": "user" }, { "content": "playlist_song", "role": "assistant" } ]
def x(self, song, playlist, *, after=None, before=None, index=None, position=None): prev, next_ = get_ple_prev_next(self.playlist_songs(playlist), after= after, before=before, index=index, position=position) if 'storeId' in song: song_id = song['storeId'] elif 'trackId' in song: song_id = song['trackId'] else: song_id = song['id'] mutation = mc_calls.PlaylistEntriesBatch.create(song_id, playlist['id'], preceding_entry_id=prev.get('id'), following_entry_id=next_.get('id')) self._call(mc_calls.PlaylistEntriesBatch, mutation) return self.playlist(playlist['id'], include_songs=True)
playlist_song_add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, song, playlist, *, after=None, before=None, index=None,\n position=None):\n prev, next_ = get_ple_prev_next(self.playlist_songs(playlist), after=\n after, before=before, index=index, position=position)\n if 'storeId' in song:\n song_id = song['storeId']\n elif 'trackId' in song:\n song_id = song['trackId']\n else:\n song_id = song['id']\n mutation = mc_calls.PlaylistEntriesBatch.create(song_id, playlist['id'],\n preceding_entry_id=prev.get('id'), following_entry_id=next_.get('id'))\n self._call(mc_calls.PlaylistEntriesBatch, mutation)\n return self.playlist(playlist['id'], include_songs=True)\n", "role": "user" }, { "content": "playlist_song_add", "role": "assistant" } ]
def x(self, songs, playlist, *, after=None, before=None, index=None, position=None): playlist_songs = self.playlist_songs(playlist) prev, next_ = get_ple_prev_next(playlist_songs, after=after, before= before, index=index, position=position) songs_len = len(songs) for i, song in enumerate(songs): if 'storeId' in song: song_id = song['storeId'] elif 'trackId' in song: song_id = song['trackId'] else: song_id = song['id'] mutation = mc_calls.PlaylistEntriesBatch.create(song_id, playlist[ 'id'], preceding_entry_id=prev.get('id'), following_entry_id= next_.get('id')) response = self._call(mc_calls.PlaylistEntriesBatch, mutation) result = response.body['mutate_response'][0] if result['response_code'] != 'OK': break if i < songs_len - 1: while True: prev = self.playlist_song(result['id']) if prev: break return self.playlist(playlist['id'], include_songs=True)
playlist_songs_add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, songs, playlist, *, after=None, before=None, index=None,\n position=None):\n playlist_songs = self.playlist_songs(playlist)\n prev, next_ = get_ple_prev_next(playlist_songs, after=after, before=\n before, index=index, position=position)\n songs_len = len(songs)\n for i, song in enumerate(songs):\n if 'storeId' in song:\n song_id = song['storeId']\n elif 'trackId' in song:\n song_id = song['trackId']\n else:\n song_id = song['id']\n mutation = mc_calls.PlaylistEntriesBatch.create(song_id, playlist[\n 'id'], preceding_entry_id=prev.get('id'), following_entry_id=\n next_.get('id'))\n response = self._call(mc_calls.PlaylistEntriesBatch, mutation)\n result = response.body['mutate_response'][0]\n if result['response_code'] != 'OK':\n break\n if i < songs_len - 1:\n while True:\n prev = self.playlist_song(result['id'])\n if prev:\n break\n return self.playlist(playlist['id'], include_songs=True)\n", "role": "user" }, { "content": "playlist_songs_add", "role": "assistant" } ]
def x(self, playlist_song): self.playlist_songs_delete([playlist_song]) return self.playlist(playlist_song['playlistId'], include_songs=True)
playlist_song_delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, playlist_song):\n self.playlist_songs_delete([playlist_song])\n return self.playlist(playlist_song['playlistId'], include_songs=True)\n", "role": "user" }, { "content": "playlist_song_delete", "role": "assistant" } ]
def x(self, playlist_songs): if not more_itertools.all_equal(playlist_song['playlistId'] for playlist_song in playlist_songs): raise ValueError("All 'playlist_songs' must be from the same playlist." ) mutations = [mc_calls.PlaylistEntriesBatch.delete(playlist_song['id']) for playlist_song in playlist_songs] self._call(mc_calls.PlaylistEntriesBatch, mutations) return self.playlist(playlist_songs[0]['playlistId'], include_songs=True)
playlist_songs_delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, playlist_songs):\n if not more_itertools.all_equal(playlist_song['playlistId'] for\n playlist_song in playlist_songs):\n raise ValueError(\"All 'playlist_songs' must be from the same playlist.\"\n )\n mutations = [mc_calls.PlaylistEntriesBatch.delete(playlist_song['id']) for\n playlist_song in playlist_songs]\n self._call(mc_calls.PlaylistEntriesBatch, mutations)\n return self.playlist(playlist_songs[0]['playlistId'], include_songs=True)\n", "role": "user" }, { "content": "playlist_songs_delete", "role": "assistant" } ]
def x(self, playlist_song, *, after=None, before=None, index=None, position =None): playlist_songs = self.playlist(playlist_song['playlistId'], include_songs=True)['tracks'] prev, next_ = get_ple_prev_next(playlist_songs, after=after, before= before, index=index, position=position) mutation = mc_calls.PlaylistEntriesBatch.update(playlist_song, preceding_entry_id=prev.get('id'), following_entry_id=next_.get('id')) self._call(mc_calls.PlaylistEntriesBatch, mutation) return self.playlist(playlist_song['playlistId'], include_songs=True)
playlist_song_move
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, playlist_song, *, after=None, before=None, index=None, position\n =None):\n playlist_songs = self.playlist(playlist_song['playlistId'],\n include_songs=True)['tracks']\n prev, next_ = get_ple_prev_next(playlist_songs, after=after, before=\n before, index=index, position=position)\n mutation = mc_calls.PlaylistEntriesBatch.update(playlist_song,\n preceding_entry_id=prev.get('id'), following_entry_id=next_.get('id'))\n self._call(mc_calls.PlaylistEntriesBatch, mutation)\n return self.playlist(playlist_song['playlistId'], include_songs=True)\n", "role": "user" }, { "content": "playlist_song_move", "role": "assistant" } ]
def x(self, playlist_songs, *, after=None, before=None, index=None, position=None): if not more_itertools.all_equal(playlist_song['playlistId'] for playlist_song in playlist_songs): raise ValueError("All 'playlist_songs' must be from the same playlist." ) playlist = self.playlist(playlist_songs[0]['playlistId'], include_songs =True) prev, next_ = get_ple_prev_next(playlist['tracks'], after=after, before =before, index=index, position=position) playlist_songs_len = len(playlist_songs) for i, playlist_song in enumerate(playlist_songs): mutation = mc_calls.PlaylistEntriesBatch.update(playlist_song, preceding_entry_id=prev.get('id'), following_entry_id=next_.get ('id')) response = self._call(mc_calls.PlaylistEntriesBatch, mutation) result = response.body['mutate_response'][0] if result['response_code'] != 'OK': break if i < playlist_songs_len - 1: while True: prev = self.playlist_song(result['id']) if prev: break return self.playlist(playlist_songs[0]['playlistId'], include_songs=True)
playlist_songs_move
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, playlist_songs, *, after=None, before=None, index=None,\n position=None):\n if not more_itertools.all_equal(playlist_song['playlistId'] for\n playlist_song in playlist_songs):\n raise ValueError(\"All 'playlist_songs' must be from the same playlist.\"\n )\n playlist = self.playlist(playlist_songs[0]['playlistId'], include_songs\n =True)\n prev, next_ = get_ple_prev_next(playlist['tracks'], after=after, before\n =before, index=index, position=position)\n playlist_songs_len = len(playlist_songs)\n for i, playlist_song in enumerate(playlist_songs):\n mutation = mc_calls.PlaylistEntriesBatch.update(playlist_song,\n preceding_entry_id=prev.get('id'), following_entry_id=next_.get\n ('id'))\n response = self._call(mc_calls.PlaylistEntriesBatch, mutation)\n result = response.body['mutate_response'][0]\n if result['response_code'] != 'OK':\n break\n if i < playlist_songs_len - 1:\n while True:\n prev = self.playlist_song(result['id'])\n if prev:\n break\n return self.playlist(playlist_songs[0]['playlistId'], include_songs=True)\n", "role": "user" }, { "content": "playlist_songs_move", "role": "assistant" } ]
def x(self, playlist): playlist_type = playlist.get('type') playlist_song_list = [] if playlist_type in ('USER_GENERATED', None): start_token = None playlist_song_list = [] while True: response = self._call(mc_calls.PlaylistEntryFeed, max_results= 49995, start_token=start_token) items = response.body.get('data', {}).get('items', []) if items: playlist_song_list.extend(items) start_token = response.body.get('nextPageToken') if start_token is None: break elif playlist_type == 'SHARED': playlist_share_token = playlist['shareToken'] start_token = None playlist_song_list = [] while True: response = self._call(mc_calls.PlaylistEntriesShared, playlist_share_token, max_results=49995, start_token= start_token) entry = response.body['entries'][0] items = entry.get('playlistEntry', []) if items: playlist_song_list.extend(items) start_token = entry.get('nextPageToken') if start_token is None: break playlist_song_list.sort(key=itemgetter('absolutePosition')) return playlist_song_list
playlist_songs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, playlist):\n playlist_type = playlist.get('type')\n playlist_song_list = []\n if playlist_type in ('USER_GENERATED', None):\n start_token = None\n playlist_song_list = []\n while True:\n response = self._call(mc_calls.PlaylistEntryFeed, max_results=\n 49995, start_token=start_token)\n items = response.body.get('data', {}).get('items', [])\n if items:\n playlist_song_list.extend(items)\n start_token = response.body.get('nextPageToken')\n if start_token is None:\n break\n elif playlist_type == 'SHARED':\n playlist_share_token = playlist['shareToken']\n start_token = None\n playlist_song_list = []\n while True:\n response = self._call(mc_calls.PlaylistEntriesShared,\n playlist_share_token, max_results=49995, start_token=\n start_token)\n entry = response.body['entries'][0]\n items = entry.get('playlistEntry', [])\n if items:\n playlist_song_list.extend(items)\n start_token = entry.get('nextPageToken')\n if start_token is None:\n break\n playlist_song_list.sort(key=itemgetter('absolutePosition'))\n return playlist_song_list\n", "role": "user" }, { "content": "playlist_songs", "role": "assistant" } ]
def x(self, playlist_id, *, include_songs=False): playlist_info = next((playlist for playlist in self.playlists( include_songs=include_songs) if playlist['id'] == playlist_id), None) return playlist_info
playlist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, playlist_id, *, include_songs=False):\n playlist_info = next((playlist for playlist in self.playlists(\n include_songs=include_songs) if playlist['id'] == playlist_id), None)\n return playlist_info\n", "role": "user" }, { "content": "playlist", "role": "assistant" } ]
def x(self, name, description='', *, make_public=False, songs=None): share_state = 'PUBLIC' if make_public else 'PRIVATE' playlist = self._call(mc_calls.PlaylistsCreate, name, description, share_state).body if songs: playlist = self.playlist_songs_add(songs, playlist) return playlist
playlist_create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, description='', *, make_public=False, songs=None):\n share_state = 'PUBLIC' if make_public else 'PRIVATE'\n playlist = self._call(mc_calls.PlaylistsCreate, name, description,\n share_state).body\n if songs:\n playlist = self.playlist_songs_add(songs, playlist)\n return playlist\n", "role": "user" }, { "content": "playlist_create", "role": "assistant" } ]
def x(self, playlist, *, name=None, description=None, public=None): if all(value is None for value in (name, description, public)): raise ValueError( 'At least one of name, description, or public must be provided') playlist_id = playlist['id'] playlist = self.playlist(playlist_id) name = name if name is not None else playlist['name'] description = description if description is not None else playlist[ 'description'] share_state = 'PUBLIC' if public else playlist['accessControlled'] playlist = self._call(mc_calls.PlaylistsUpdate, playlist_id, name, description, share_state).body return playlist
playlist_edit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, playlist, *, name=None, description=None, public=None):\n if all(value is None for value in (name, description, public)):\n raise ValueError(\n 'At least one of name, description, or public must be provided')\n playlist_id = playlist['id']\n playlist = self.playlist(playlist_id)\n name = name if name is not None else playlist['name']\n description = description if description is not None else playlist[\n 'description']\n share_state = 'PUBLIC' if public else playlist['accessControlled']\n playlist = self._call(mc_calls.PlaylistsUpdate, playlist_id, name,\n description, share_state).body\n return playlist\n", "role": "user" }, { "content": "playlist_edit", "role": "assistant" } ]
def x(self, playlist): mutation = mc_calls.PlaylistBatch.create(playlist['name'], playlist[ 'description'], 'SHARED', owner_name=playlist.get('ownerName', ''), share_token=playlist['shareToken']) response_body = self._call(mc_calls.PlaylistBatch, mutation).body playlist_id = response_body['mutate_response'][0]['id'] return self.playlist(playlist_id)
playlist_subscribe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, playlist):\n mutation = mc_calls.PlaylistBatch.create(playlist['name'], playlist[\n 'description'], 'SHARED', owner_name=playlist.get('ownerName', ''),\n share_token=playlist['shareToken'])\n response_body = self._call(mc_calls.PlaylistBatch, mutation).body\n playlist_id = response_body['mutate_response'][0]['id']\n return self.playlist(playlist_id)\n", "role": "user" }, { "content": "playlist_subscribe", "role": "assistant" } ]
def x(self, *, include_songs=False): playlist_list = [] for chunk in self.playlists_iter(page_size=49995): for playlist in chunk: if include_songs: playlist['tracks'] = self.playlist_songs(playlist) playlist_list.append(playlist) return playlist_list
playlists
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *, include_songs=False):\n playlist_list = []\n for chunk in self.playlists_iter(page_size=49995):\n for playlist in chunk:\n if include_songs:\n playlist['tracks'] = self.playlist_songs(playlist)\n playlist_list.append(playlist)\n return playlist_list\n", "role": "user" }, { "content": "playlists", "role": "assistant" } ]