source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, filename, mode='pickle', counter=None):
self.saveWeights(filename, mode, counter)
|
saveWeightsToFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, mode='pickle', counter=None):\n self.saveWeights(filename, mode, counter)\n",
"role": "user"
},
{
"content": "saveWeightsToFile",
"role": "assistant"
}
] |
def x(self, filename, mode='pickle', counter=None):
if '?' in filename:
import re
char = '?'
match = re.search(re.escape(char) + '+', filename)
if match:
num = self.epoch
if counter != None:
num = counter
elif self.totalEpoch != 0:
num = self.totalEpoch
fstring = '%%0%dd' % len(match.group())
filename = filename[:match.start()
] + fstring % self.epoch + filename[match.end():]
self.lastAutoSaveWeightsFilename = filename
if mode == 'pickle':
mylist = self.arrayify()
import pickle
fp = open(filename, 'w')
pickle.dump(mylist, fp)
fp.close()
elif mode in ['plain', 'conx']:
fp = open(filename, 'w')
fp.write('# Biases\n')
for layer in self.layers:
if layer.type != 'Input':
fp.write('# Layer: ' + layer.name + '\n')
for i in range(layer.size):
fp.write('%f ' % layer.weight[i])
fp.write('\n')
fp.write('# Weights\n')
for connection in self.connections:
fp.write('# from ' + connection.fromLayer.name + ' to ' +
connection.toLayer.name + '\n')
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
fp.write('%f ' % connection.weight[i][j])
fp.write('\n')
fp.close()
elif mode == 'tlearn':
fp = open(filename, 'w')
fp.write('NETWORK CONFIGURED BY TLEARN\n')
fp.write('# weights after %d sweeps\n' % self.epoch)
fp.write('# WEIGHTS\n')
cnt = 1
for lto in self.layers:
if lto.type != 'Input':
for j in range(lto.size):
fp.write('# TO NODE %d\n' % cnt)
fp.write('%f\n' % lto.weight[j])
for lfrom in self.layers:
try:
connection = self.getConnection(lfrom.name, lto
.name)
for i in range(connection.fromLayer.size):
fp.write('%f\n' % connection.weight[i][j])
except NetworkError:
for i in range(lfrom.size):
fp.write('%f\n' % 0.0)
cnt += 1
fp.close()
else:
raise ValueError('Unknown mode in saveWeights().', mode)
|
saveWeights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, mode='pickle', counter=None):\n if '?' in filename:\n import re\n char = '?'\n match = re.search(re.escape(char) + '+', filename)\n if match:\n num = self.epoch\n if counter != None:\n num = counter\n elif self.totalEpoch != 0:\n num = self.totalEpoch\n fstring = '%%0%dd' % len(match.group())\n filename = filename[:match.start()\n ] + fstring % self.epoch + filename[match.end():]\n self.lastAutoSaveWeightsFilename = filename\n if mode == 'pickle':\n mylist = self.arrayify()\n import pickle\n fp = open(filename, 'w')\n pickle.dump(mylist, fp)\n fp.close()\n elif mode in ['plain', 'conx']:\n fp = open(filename, 'w')\n fp.write('# Biases\\n')\n for layer in self.layers:\n if layer.type != 'Input':\n fp.write('# Layer: ' + layer.name + '\\n')\n for i in range(layer.size):\n fp.write('%f ' % layer.weight[i])\n fp.write('\\n')\n fp.write('# Weights\\n')\n for connection in self.connections:\n fp.write('# from ' + connection.fromLayer.name + ' to ' +\n connection.toLayer.name + '\\n')\n for i in range(connection.fromLayer.size):\n for j in range(connection.toLayer.size):\n fp.write('%f ' % connection.weight[i][j])\n fp.write('\\n')\n fp.close()\n elif mode == 'tlearn':\n fp = open(filename, 'w')\n fp.write('NETWORK CONFIGURED BY TLEARN\\n')\n fp.write('# weights after %d sweeps\\n' % self.epoch)\n fp.write('# WEIGHTS\\n')\n cnt = 1\n for lto in self.layers:\n if lto.type != 'Input':\n for j in range(lto.size):\n fp.write('# TO NODE %d\\n' % cnt)\n fp.write('%f\\n' % lto.weight[j])\n for lfrom in self.layers:\n try:\n connection = self.getConnection(lfrom.name, lto\n .name)\n for i in range(connection.fromLayer.size):\n fp.write('%f\\n' % connection.weight[i][j])\n except NetworkError:\n for i in range(lfrom.size):\n fp.write('%f\\n' % 0.0)\n cnt += 1\n fp.close()\n else:\n raise ValueError('Unknown mode in saveWeights().', mode)\n",
"role": "user"
},
{
"content": "saveWeights",
"role": "assistant"
}
] |
def x(self, filename, mode='pickle'):
if mode == 'pickle':
import pickle
fp = open(filename, 'r')
mylist = pickle.load(fp)
fp.close()
self.unArrayify(mylist)
elif mode in ['plain', 'conx']:
arr = []
fp = open(filename, 'r')
lines = fp.readlines()
for line in lines:
line = line.strip()
if line == '' or line[0] == '#':
pass
else:
data = list(map(float, line.split()))
arr.extend(data)
self.unArrayify(arr)
fp.close()
elif mode == 'tlearn':
fp = open(filename, 'r')
fp.readline()
fp.readline()
fp.readline()
cnt = 1
for lto in self.layers:
if lto.type != 'Input':
for j in range(lto.size):
fp.readline()
lto.weight[j] = float(fp.readline())
for lfrom in self.layers:
try:
connection = self.getConnection(lfrom.name, lto
.name)
for i in range(connection.fromLayer.size):
connection.weight[i][j] = float(fp.readline())
except NetworkError:
for i in range(lfrom.size):
fp.readline()
cnt += 1
fp.close()
elif mode == 'nbench':
fp = open(filename, 'r')
line = fp.readline()
while line[:8] != 'Ninputs:':
line = fp.readline()
itxt, inputs, ttxt, total, otxt, outputs = line.split()
inputs, total, outputs = int(inputs), int(total), int(outputs)
hiddens = total - inputs - 1
self.addLayer('input', inputs)
for i in range(hiddens):
self.addLayer('hidden%d' % i, 1)
self.addLayer('output', outputs)
for i in range(hiddens):
self.connect('input', 'hidden%d' % i)
self.connect('input', 'output')
for i in range(hiddens - 1):
for j in range(i + 1, hiddens):
if j != i:
self.connect('hidden%d' % i, 'hidden%d' % j)
for i in range(hiddens):
self.connect('hidden%d' % i, 'output')
for outcount in range(outputs):
while line[:9] != '# Output:':
line = fp.readline()
line = fp.readline()
line = fp.readline()
data = ''
while line and line[0] != '#':
data += ' ' + line.strip()
line = fp.readline()
weights = list(map(float, data.split()))
self['output'].weight[outcount] = weights[0]
next = 1
for i in range(self['input'].size):
self['input', 'output'].weight[i][outcount] = weights[next]
next += 1
for h in range(hiddens):
for i in range(self['hidden%d' % h].size):
self['hidden%d' % h, 'output'].weight[i][outcount
] = weights[next]
next += 1
while line and line[0] != '$':
line = fp.readline()
line = fp.readline()
for hidcount in range(hiddens):
weights = []
while line and line[0] != '$' and line[0] != '#':
weights.extend(list(map(float, line.split())))
line = fp.readline()
self['hidden%d' % hidcount].weight[0] = weights[0]
next = 1
for i in range(self['input'].size):
for j in range(self['hidden%d' % hidcount].size):
self['input', 'hidden%d' % hidcount].weight[i][j
] = weights[next]
next += 1
for h in range(hidcount):
for i in range(self['hidden%d' % h].size):
for j in range(self['hidden%d' % hidcount].size):
self['hidden%d' % h, 'hidden%d' % hidcount].weight[i][j
] = weights[next]
next += 1
line = fp.readline()
line = fp.readline()
else:
raise ValueError('Unknown mode in loadWeights()', mode)
|
loadWeights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, mode='pickle'):\n if mode == 'pickle':\n import pickle\n fp = open(filename, 'r')\n mylist = pickle.load(fp)\n fp.close()\n self.unArrayify(mylist)\n elif mode in ['plain', 'conx']:\n arr = []\n fp = open(filename, 'r')\n lines = fp.readlines()\n for line in lines:\n line = line.strip()\n if line == '' or line[0] == '#':\n pass\n else:\n data = list(map(float, line.split()))\n arr.extend(data)\n self.unArrayify(arr)\n fp.close()\n elif mode == 'tlearn':\n fp = open(filename, 'r')\n fp.readline()\n fp.readline()\n fp.readline()\n cnt = 1\n for lto in self.layers:\n if lto.type != 'Input':\n for j in range(lto.size):\n fp.readline()\n lto.weight[j] = float(fp.readline())\n for lfrom in self.layers:\n try:\n connection = self.getConnection(lfrom.name, lto\n .name)\n for i in range(connection.fromLayer.size):\n connection.weight[i][j] = float(fp.readline())\n except NetworkError:\n for i in range(lfrom.size):\n fp.readline()\n cnt += 1\n fp.close()\n elif mode == 'nbench':\n fp = open(filename, 'r')\n line = fp.readline()\n while line[:8] != 'Ninputs:':\n line = fp.readline()\n itxt, inputs, ttxt, total, otxt, outputs = line.split()\n inputs, total, outputs = int(inputs), int(total), int(outputs)\n hiddens = total - inputs - 1\n self.addLayer('input', inputs)\n for i in range(hiddens):\n self.addLayer('hidden%d' % i, 1)\n self.addLayer('output', outputs)\n for i in range(hiddens):\n self.connect('input', 'hidden%d' % i)\n self.connect('input', 'output')\n for i in range(hiddens - 1):\n for j in range(i + 1, hiddens):\n if j != i:\n self.connect('hidden%d' % i, 'hidden%d' % j)\n for i in range(hiddens):\n self.connect('hidden%d' % i, 'output')\n for outcount in range(outputs):\n while line[:9] != '# Output:':\n line = fp.readline()\n line = fp.readline()\n line = fp.readline()\n data = ''\n while line and line[0] != '#':\n data += ' ' + line.strip()\n line = fp.readline()\n weights = list(map(float, data.split()))\n self['output'].weight[outcount] = weights[0]\n next = 1\n for i in range(self['input'].size):\n self['input', 'output'].weight[i][outcount] = weights[next]\n next += 1\n for h in range(hiddens):\n for i in range(self['hidden%d' % h].size):\n self['hidden%d' % h, 'output'].weight[i][outcount\n ] = weights[next]\n next += 1\n while line and line[0] != '$':\n line = fp.readline()\n line = fp.readline()\n for hidcount in range(hiddens):\n weights = []\n while line and line[0] != '$' and line[0] != '#':\n weights.extend(list(map(float, line.split())))\n line = fp.readline()\n self['hidden%d' % hidcount].weight[0] = weights[0]\n next = 1\n for i in range(self['input'].size):\n for j in range(self['hidden%d' % hidcount].size):\n self['input', 'hidden%d' % hidcount].weight[i][j\n ] = weights[next]\n next += 1\n for h in range(hidcount):\n for i in range(self['hidden%d' % h].size):\n for j in range(self['hidden%d' % hidcount].size):\n self['hidden%d' % h, 'hidden%d' % hidcount].weight[i][j\n ] = weights[next]\n next += 1\n line = fp.readline()\n line = fp.readline()\n else:\n raise ValueError('Unknown mode in loadWeights()', mode)\n",
"role": "user"
},
{
"content": "loadWeights",
"role": "assistant"
}
] |
def x(self, filename, makeWrapper=1, mode='pickle', counter=None):
self.saveNetworkToFile(filename, makeWrapper, mode, counter)
|
saveNetwork
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, makeWrapper=1, mode='pickle', counter=None):\n self.saveNetworkToFile(filename, makeWrapper, mode, counter)\n",
"role": "user"
},
{
"content": "saveNetwork",
"role": "assistant"
}
] |
def x(self, filename, makeWrapper=1, mode='pickle', counter=None):
if '?' in filename:
import re
char = '?'
match = re.search(re.escape(char) + '+', filename)
if match:
num = self.epoch
if counter != None:
num = counter
elif self.totalEpoch != 0:
num = self.totalEpoch
fstring = '%%0%dd' % len(match.group())
filename = filename[:match.start()] + fstring % num + filename[
match.end():]
self.lastAutoSaveNetworkFilename = filename
if mode == 'pickle':
import pickle
basename = filename.split('.')[0]
filename += '.pickle'
fp = open(filename, 'w')
pickle.dump(self, fp)
fp.close()
if makeWrapper:
fp = open(basename + '.py', 'w')
fp.write('from pyrobot.brain.conx import *\n')
fp.write('import pickle\n')
fp.write("fp = open('%s', 'r')\n" % filename)
fp.write('network = pickle.load(fp)')
fp.close()
print('To load network:')
print(' %% python -i %s ' % (basename + '.py'))
print(' >>> network.train() # for example')
print('--- OR ---')
print(' % python')
print(' >>> from pyrobot.brain.conx import *')
print(' >>> network = loadNetwork(%s)' % filename)
print(' >>> network.train() # for example')
elif mode in ['plain', 'conx']:
fp = open(filename, 'w')
fp.write('network, %s\n' % self.__class__.__name__)
for layer in self.layers:
fp.write('layer, %s, %s\n' % (layer.name, layer.size))
for i in range(layer.size):
fp.write('%f ' % layer.weight[i])
fp.write('\n')
for connection in self.connections:
fp.write('connection, %s, %s\n' % (connection.fromLayer.name,
connection.toLayer.name))
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
fp.write('%f ' % connection.weight[i][j])
fp.write('\n')
fp.close()
|
saveNetworkToFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, makeWrapper=1, mode='pickle', counter=None):\n if '?' in filename:\n import re\n char = '?'\n match = re.search(re.escape(char) + '+', filename)\n if match:\n num = self.epoch\n if counter != None:\n num = counter\n elif self.totalEpoch != 0:\n num = self.totalEpoch\n fstring = '%%0%dd' % len(match.group())\n filename = filename[:match.start()] + fstring % num + filename[\n match.end():]\n self.lastAutoSaveNetworkFilename = filename\n if mode == 'pickle':\n import pickle\n basename = filename.split('.')[0]\n filename += '.pickle'\n fp = open(filename, 'w')\n pickle.dump(self, fp)\n fp.close()\n if makeWrapper:\n fp = open(basename + '.py', 'w')\n fp.write('from pyrobot.brain.conx import *\\n')\n fp.write('import pickle\\n')\n fp.write(\"fp = open('%s', 'r')\\n\" % filename)\n fp.write('network = pickle.load(fp)')\n fp.close()\n print('To load network:')\n print(' %% python -i %s ' % (basename + '.py'))\n print(' >>> network.train() # for example')\n print('--- OR ---')\n print(' % python')\n print(' >>> from pyrobot.brain.conx import *')\n print(' >>> network = loadNetwork(%s)' % filename)\n print(' >>> network.train() # for example')\n elif mode in ['plain', 'conx']:\n fp = open(filename, 'w')\n fp.write('network, %s\\n' % self.__class__.__name__)\n for layer in self.layers:\n fp.write('layer, %s, %s\\n' % (layer.name, layer.size))\n for i in range(layer.size):\n fp.write('%f ' % layer.weight[i])\n fp.write('\\n')\n for connection in self.connections:\n fp.write('connection, %s, %s\\n' % (connection.fromLayer.name,\n connection.toLayer.name))\n for i in range(connection.fromLayer.size):\n for j in range(connection.toLayer.size):\n fp.write('%f ' % connection.weight[i][j])\n fp.write('\\n')\n fp.close()\n",
"role": "user"
},
{
"content": "saveNetworkToFile",
"role": "assistant"
}
] |
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1,
patterned=0):
return self.loadVectorsFromFile(filename, cols, everyNrows, delim,
checkEven, patterned)
|
loadVectors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1,\n patterned=0):\n return self.loadVectorsFromFile(filename, cols, everyNrows, delim,\n checkEven, patterned)\n",
"role": "user"
},
{
"content": "loadVectors",
"role": "assistant"
}
] |
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1,
patterned=0):
fp = open(filename, 'r')
line = fp.readline()
lineno = 0
lastLength = None
data = []
while line:
if lineno % everyNrows == 0:
if patterned:
linedata1 = [x for x in line.strip().split(delim)]
else:
linedata1 = [float(x) for x in line.strip().split(delim)]
else:
lineno += 1
line = fp.readline()
continue
if cols == None:
newdata = linedata1
else:
newdata = []
for i in cols:
newdata.append(linedata1[i])
if lastLength == None or not checkEven or checkEven and len(newdata
) == lastLength:
data.append(newdata)
else:
raise ValueError('Data Format Error: line = %d, data = %s' % (
lineno, newdata))
lastLength = len(newdata)
lineno += 1
line = fp.readline()
fp.close()
return data
|
loadVectorsFromFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1,\n patterned=0):\n fp = open(filename, 'r')\n line = fp.readline()\n lineno = 0\n lastLength = None\n data = []\n while line:\n if lineno % everyNrows == 0:\n if patterned:\n linedata1 = [x for x in line.strip().split(delim)]\n else:\n linedata1 = [float(x) for x in line.strip().split(delim)]\n else:\n lineno += 1\n line = fp.readline()\n continue\n if cols == None:\n newdata = linedata1\n else:\n newdata = []\n for i in cols:\n newdata.append(linedata1[i])\n if lastLength == None or not checkEven or checkEven and len(newdata\n ) == lastLength:\n data.append(newdata)\n else:\n raise ValueError('Data Format Error: line = %d, data = %s' % (\n lineno, newdata))\n lastLength = len(newdata)\n lineno += 1\n line = fp.readline()\n fp.close()\n return data\n",
"role": "user"
},
{
"content": "loadVectorsFromFile",
"role": "assistant"
}
] |
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):
self.loadInputPatternsFromFile(filename, cols, everyNrows, delim, checkEven
)
|
loadInputPatterns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.loadInputPatternsFromFile(filename, cols, everyNrows, delim, checkEven\n )\n",
"role": "user"
},
{
"content": "loadInputPatterns",
"role": "assistant"
}
] |
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):
self.inputs = self.loadVectors(filename, cols, everyNrows, delim,
checkEven, patterned=1)
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i
|
loadInputPatternsFromFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.inputs = self.loadVectors(filename, cols, everyNrows, delim,\n checkEven, patterned=1)\n self.loadOrder = [0] * len(self.inputs)\n for i in range(len(self.inputs)):\n self.loadOrder[i] = i\n",
"role": "user"
},
{
"content": "loadInputPatternsFromFile",
"role": "assistant"
}
] |
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):
self.loadInputsFromFile(filename, cols, everyNrows, delim, checkEven)
|
loadInputs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.loadInputsFromFile(filename, cols, everyNrows, delim, checkEven)\n",
"role": "user"
},
{
"content": "loadInputs",
"role": "assistant"
}
] |
def x(self, filename):
fp = open(filename, 'w')
for input in self.inputs:
vec = self.replacePatterns(input)
for item in vec:
fp.write('%f ' % item)
fp.write('\n')
|
saveInputsToFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n fp = open(filename, 'w')\n for input in self.inputs:\n vec = self.replacePatterns(input)\n for item in vec:\n fp.write('%f ' % item)\n fp.write('\\n')\n",
"role": "user"
},
{
"content": "saveInputsToFile",
"role": "assistant"
}
] |
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):
self.loadTargetsFromFile(filename, cols, everyNrows, delim, checkEven)
|
loadTargets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.loadTargetsFromFile(filename, cols, everyNrows, delim, checkEven)\n",
"role": "user"
},
{
"content": "loadTargets",
"role": "assistant"
}
] |
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):
self.targets = self.loadVectors(filename, cols, everyNrows, delim,
checkEven)
|
loadTargetsFromFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.targets = self.loadVectors(filename, cols, everyNrows, delim,\n checkEven)\n",
"role": "user"
},
{
"content": "loadTargetsFromFile",
"role": "assistant"
}
] |
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):
self.loadTargetPatternssFromFile(filename, cols, everyNrows, delim,
checkEven)
|
loadTargetPatterns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.loadTargetPatternssFromFile(filename, cols, everyNrows, delim,\n checkEven)\n",
"role": "user"
},
{
"content": "loadTargetPatterns",
"role": "assistant"
}
] |
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):
self.targets = self.loadVectors(filename, cols, everyNrows, delim,
checkEven, patterned=1)
|
loadTargetPatternsFromFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.targets = self.loadVectors(filename, cols, everyNrows, delim,\n checkEven, patterned=1)\n",
"role": "user"
},
{
"content": "loadTargetPatternsFromFile",
"role": "assistant"
}
] |
def x(self, filename):
fp = open(filename, 'w')
for target in self.targets:
vec = self.replacePatterns(target)
for item in vec:
fp.write('%f ' % item)
fp.write('\n')
|
saveTargetsToFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n fp = open(filename, 'w')\n for target in self.targets:\n vec = self.replacePatterns(target)\n for item in vec:\n fp.write('%f ' % item)\n fp.write('\\n')\n",
"role": "user"
},
{
"content": "saveTargetsToFile",
"role": "assistant"
}
] |
def x(self, filename):
fp = open(filename, 'w')
for i in range(len(self.inputs)):
try:
vec = self.replacePatterns(self.inputs[i])
for item in vec:
fp.write('%f ' % item)
except:
pass
try:
vec = self.replacePatterns(self.targets[i])
for item in vec:
fp.write('%f ' % item)
except:
pass
fp.write('\n')
|
saveDataToFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename):\n fp = open(filename, 'w')\n for i in range(len(self.inputs)):\n try:\n vec = self.replacePatterns(self.inputs[i])\n for item in vec:\n fp.write('%f ' % item)\n except:\n pass\n try:\n vec = self.replacePatterns(self.targets[i])\n for item in vec:\n fp.write('%f ' % item)\n except:\n pass\n fp.write('\\n')\n",
"role": "user"
},
{
"content": "saveDataToFile",
"role": "assistant"
}
] |
def x(self, filename, ocnt=-1):
if ocnt == -1:
ocnt = int(self.layers[len(self.layers) - 1].size)
fp = open(filename, 'r')
line = fp.readline()
self.targets = []
self.inputs = []
while line:
data = list(map(float, line.split()))
cnt = len(data)
icnt = cnt - ocnt
self.inputs.append(self.patternVector(data[0:icnt]))
self.targets.append(self.patternVector(data[icnt:]))
line = fp.readline()
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i
|
loadDataFromFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, ocnt=-1):\n if ocnt == -1:\n ocnt = int(self.layers[len(self.layers) - 1].size)\n fp = open(filename, 'r')\n line = fp.readline()\n self.targets = []\n self.inputs = []\n while line:\n data = list(map(float, line.split()))\n cnt = len(data)\n icnt = cnt - ocnt\n self.inputs.append(self.patternVector(data[0:icnt]))\n self.targets.append(self.patternVector(data[icnt:]))\n line = fp.readline()\n self.loadOrder = [0] * len(self.inputs)\n for i in range(len(self.inputs)):\n self.loadOrder[i] = i\n",
"role": "user"
},
{
"content": "loadDataFromFile",
"role": "assistant"
}
] |
def x(self, name, layer):
if (name, layer) in self.patterns:
return self.patterns[name, layer]
else:
return self.patterns[name]
|
lookupPattern
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, layer):\n if (name, layer) in self.patterns:\n return self.patterns[name, layer]\n else:\n return self.patterns[name]\n",
"role": "user"
},
{
"content": "lookupPattern",
"role": "assistant"
}
] |
def x(self, vector, layer=None):
if not self.patterned:
return vector
if type(vector) == str:
return self.replacePatterns(self.lookupPattern(vector, layer), layer)
elif type(vector) != list:
return vector
vec = []
for v in vector:
if type(v) == str:
retval = self.replacePatterns(self.lookupPattern(v, layer), layer)
if type(retval) == list:
vec.extend(retval)
else:
vec.append(retval)
else:
vec.append(v)
return vec
|
replacePatterns
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vector, layer=None):\n if not self.patterned:\n return vector\n if type(vector) == str:\n return self.replacePatterns(self.lookupPattern(vector, layer), layer)\n elif type(vector) != list:\n return vector\n vec = []\n for v in vector:\n if type(v) == str:\n retval = self.replacePatterns(self.lookupPattern(v, layer), layer)\n if type(retval) == list:\n vec.extend(retval)\n else:\n vec.append(retval)\n else:\n vec.append(v)\n return vec\n",
"role": "user"
},
{
"content": "replacePatterns",
"role": "assistant"
}
] |
def x(self, vector):
if not self.patterned:
return vector
if type(vector) == int:
if self.getWord(vector) != '':
return self.getWord(vector)
else:
return vector
elif type(vector) == float:
if self.getWord(vector) != '':
return self.getWord(vector)
else:
return vector
elif type(vector) == str:
return vector
elif type(vector) == list:
if self.getWord(vector) != '':
return self.getWord(vector)
vec = []
for v in vector:
if self.getWord(v) != '':
retval = self.getWord(v)
vec.append(retval)
else:
retval = self.patternVector(v)
vec.append(retval)
return vec
|
patternVector
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vector):\n if not self.patterned:\n return vector\n if type(vector) == int:\n if self.getWord(vector) != '':\n return self.getWord(vector)\n else:\n return vector\n elif type(vector) == float:\n if self.getWord(vector) != '':\n return self.getWord(vector)\n else:\n return vector\n elif type(vector) == str:\n return vector\n elif type(vector) == list:\n if self.getWord(vector) != '':\n return self.getWord(vector)\n vec = []\n for v in vector:\n if self.getWord(v) != '':\n retval = self.getWord(v)\n vec.append(retval)\n else:\n retval = self.patternVector(v)\n vec.append(retval)\n return vec\n",
"role": "user"
},
{
"content": "patternVector",
"role": "assistant"
}
] |
def x(self, word):
if word in self.patterns:
return self.patterns[word]
else:
raise ValueError('Unknown pattern in getPattern().', word)
|
getPattern
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, word):\n if word in self.patterns:\n return self.patterns[word]\n else:\n raise ValueError('Unknown pattern in getPattern().', word)\n",
"role": "user"
},
{
"content": "getPattern",
"role": "assistant"
}
] |
def x(self, pattern, returnDiff=0):
minDist = 10000
closest = None
for w in self.patterns:
if type(self.patterns[w]) in [int, float, int]:
continue
if len(self.patterns[w]) == len(pattern):
dist = reduce(operator.add, [((a - b) ** 2) for a, b in zip(
self.patterns[w], pattern)])
if dist == 0.0:
if returnDiff:
return w, dist
else:
return w
if dist < minDist:
minDist = dist
closest = w
if returnDiff:
return closest, minDist
else:
return closest
|
getWord
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pattern, returnDiff=0):\n minDist = 10000\n closest = None\n for w in self.patterns:\n if type(self.patterns[w]) in [int, float, int]:\n continue\n if len(self.patterns[w]) == len(pattern):\n dist = reduce(operator.add, [((a - b) ** 2) for a, b in zip(\n self.patterns[w], pattern)])\n if dist == 0.0:\n if returnDiff:\n return w, dist\n else:\n return w\n if dist < minDist:\n minDist = dist\n closest = w\n if returnDiff:\n return closest, minDist\n else:\n return closest\n",
"role": "user"
},
{
"content": "getWord",
"role": "assistant"
}
] |
def x(self, word, vector):
if word in self.patterns:
raise NetworkError(
'Pattern key already in use. Call delPattern to free key.', word)
else:
self.patterns[word] = vector
|
addPattern
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, word, vector):\n if word in self.patterns:\n raise NetworkError(\n 'Pattern key already in use. Call delPattern to free key.', word)\n else:\n self.patterns[word] = vector\n",
"role": "user"
},
{
"content": "addPattern",
"role": "assistant"
}
] |
def x(self, v1, v2):
try:
if len(v1) != len(v2):
return 0
for x, y in zip(v1, v2):
if abs(x - y) > self.tolerance:
return 0
return 1
except:
try:
if abs(v1 - v2) > self.tolerance:
return 0
else:
return 1
except:
return 0
|
compare
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v1, v2):\n try:\n if len(v1) != len(v2):\n return 0\n for x, y in zip(v1, v2):\n if abs(x - y) > self.tolerance:\n return 0\n return 1\n except:\n try:\n if abs(v1 - v2) > self.tolerance:\n return 0\n else:\n return 1\n except:\n return 0\n",
"role": "user"
},
{
"content": "compare",
"role": "assistant"
}
] |
def x(self, network, listOfLayerNamePairs=None):
if listOfLayerNamePairs == None:
listOfLayerNamePairs = []
for c in self.connections:
listOfLayerNamePairs.append([c.fromLayer.name, c.toLayer.name])
if self.verbosity > 1:
print('sharing weights:', self.name, listOfLayerNamePairs)
count = 0
for fromLayerName, toLayerName in listOfLayerNamePairs:
for c1 in range(len(self.connections)):
if self.connections[c1
].fromLayer.name == fromLayerName and self.connections[c1
].toLayer.name == toLayerName:
for c2 in range(len(network.connections)):
if network.connections[c2
].fromLayer.name == fromLayerName and network.connections[
c2].toLayer.name == toLayerName:
if self.connections[c1
].fromLayer.size != network.connections[c2
].fromLayer.size or self.connections[c1
].toLayer.size != network.connections[c2
].toLayer.size:
raise AttributeError(
'shareSomeWeights: layer sizes did not match')
count += 1
if count != len(listOfLayerNamePairs):
raise AttributeError('shareSomeWeights: layer names did not match')
self.sharedWeights = 1
network.sharedWeights = 1
for fromLayerName, toLayerName in listOfLayerNamePairs:
for c1 in range(len(self.connections)):
if self.connections[c1
].fromLayer.name == fromLayerName and self.connections[c1
].toLayer.name == toLayerName:
for c2 in range(len(network.connections)):
if network.connections[c2
].fromLayer.name == fromLayerName and network.connections[
c2].toLayer.name == toLayerName:
self.connections[c1].weight = network.connections[c2
].weight
for fromLayerName, toLayerName in listOfLayerNamePairs:
for l1 in range(len(self.layers)):
if self.layers[l1].name == toLayerName:
for l2 in range(len(network.layers)):
if network.layers[l2].name == toLayerName:
self.layers[l1].weight = network.layers[l2].weight
|
shareWeights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, network, listOfLayerNamePairs=None):\n if listOfLayerNamePairs == None:\n listOfLayerNamePairs = []\n for c in self.connections:\n listOfLayerNamePairs.append([c.fromLayer.name, c.toLayer.name])\n if self.verbosity > 1:\n print('sharing weights:', self.name, listOfLayerNamePairs)\n count = 0\n for fromLayerName, toLayerName in listOfLayerNamePairs:\n for c1 in range(len(self.connections)):\n if self.connections[c1\n ].fromLayer.name == fromLayerName and self.connections[c1\n ].toLayer.name == toLayerName:\n for c2 in range(len(network.connections)):\n if network.connections[c2\n ].fromLayer.name == fromLayerName and network.connections[\n c2].toLayer.name == toLayerName:\n if self.connections[c1\n ].fromLayer.size != network.connections[c2\n ].fromLayer.size or self.connections[c1\n ].toLayer.size != network.connections[c2\n ].toLayer.size:\n raise AttributeError(\n 'shareSomeWeights: layer sizes did not match')\n count += 1\n if count != len(listOfLayerNamePairs):\n raise AttributeError('shareSomeWeights: layer names did not match')\n self.sharedWeights = 1\n network.sharedWeights = 1\n for fromLayerName, toLayerName in listOfLayerNamePairs:\n for c1 in range(len(self.connections)):\n if self.connections[c1\n ].fromLayer.name == fromLayerName and self.connections[c1\n ].toLayer.name == toLayerName:\n for c2 in range(len(network.connections)):\n if network.connections[c2\n ].fromLayer.name == fromLayerName and network.connections[\n c2].toLayer.name == toLayerName:\n self.connections[c1].weight = network.connections[c2\n ].weight\n for fromLayerName, toLayerName in listOfLayerNamePairs:\n for l1 in range(len(self.layers)):\n if self.layers[l1].name == toLayerName:\n for l2 in range(len(network.layers)):\n if network.layers[l2].name == toLayerName:\n self.layers[l1].weight = network.layers[l2].weight\n",
"role": "user"
},
{
"content": "shareWeights",
"role": "assistant"
}
] |
def x(self, *arg, **kw):
output = Network.propagate(self, *arg, **kw)
if self.interactive:
self.updateGraphics()
if type(output) == dict:
for layerName in output:
output[layerName] = [float(x) for x in output[layerName]]
return output
else:
return [float(x) for x in output]
|
propagate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *arg, **kw):\n output = Network.propagate(self, *arg, **kw)\n if self.interactive:\n self.updateGraphics()\n if type(output) == dict:\n for layerName in output:\n output[layerName] = [float(x) for x in output[layerName]]\n return output\n else:\n return [float(x) for x in output]\n",
"role": "user"
},
{
"content": "propagate",
"role": "assistant"
}
] |
def x(self, filename, mode='pickle'):
Network.loadWeights(self, filename, mode)
self.updateGraphics()
|
loadWeightsFromFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, mode='pickle'):\n Network.loadWeights(self, filename, mode)\n self.updateGraphics()\n",
"role": "user"
},
{
"content": "loadWeightsFromFile",
"role": "assistant"
}
] |
def x(self):
size = list(range(len(self.layers)))
size.reverse()
for i in size:
layer = self.layers[i]
if layer.active:
print('%s layer (size %d)' % (layer.name, layer.size))
tlabel, olabel = '', ''
if layer.type == 'Output':
if self.countWrong:
tlabel = ' (%s)' % self.classify(layer.target.tolist())
olabel = ' (%s)' % self.classify(layer.activation.tolist())
if olabel == tlabel:
self.numRight += 1
else:
olabel += ' *** WRONG ***'
self.numWrong += 1
if self.actDisplay is not None:
self.actDisplay.showWrong()
print('Target : %s%s' % (pretty(layer.target, max=15),
tlabel))
print('Activation: %s%s' % (pretty(layer.activation, max=15),
olabel))
if self.patterned and layer.type != 'Hidden':
targetWord, diff = self.getWord(layer.target, returnDiff=1)
if layer.kind == 'Output':
if targetWord == None:
print('Target Pattern = %s' % 'No match')
elif diff == 0.0:
print("Target Pattern = '%s'" % targetWord)
else:
print("Target Pattern = '%s'; difference = %f)" %
(targetWord, diff))
actWord, diff = self.getWord(layer.activation, returnDiff=1)
if layer.kind == 'Input' or layer.kind == 'Output':
if actWord == None:
print('Matching Pattern = %s' % 'No match')
elif diff == 0.0:
print("Matching Pattern = '%s'" % actWord)
else:
print("Matching Pattern = '%s'; difference = %f" %
(actWord, diff))
print('------------------------------------')
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n size = list(range(len(self.layers)))\n size.reverse()\n for i in size:\n layer = self.layers[i]\n if layer.active:\n print('%s layer (size %d)' % (layer.name, layer.size))\n tlabel, olabel = '', ''\n if layer.type == 'Output':\n if self.countWrong:\n tlabel = ' (%s)' % self.classify(layer.target.tolist())\n olabel = ' (%s)' % self.classify(layer.activation.tolist())\n if olabel == tlabel:\n self.numRight += 1\n else:\n olabel += ' *** WRONG ***'\n self.numWrong += 1\n if self.actDisplay is not None:\n self.actDisplay.showWrong()\n print('Target : %s%s' % (pretty(layer.target, max=15),\n tlabel))\n print('Activation: %s%s' % (pretty(layer.activation, max=15),\n olabel))\n if self.patterned and layer.type != 'Hidden':\n targetWord, diff = self.getWord(layer.target, returnDiff=1)\n if layer.kind == 'Output':\n if targetWord == None:\n print('Target Pattern = %s' % 'No match')\n elif diff == 0.0:\n print(\"Target Pattern = '%s'\" % targetWord)\n else:\n print(\"Target Pattern = '%s'; difference = %f)\" %\n (targetWord, diff))\n actWord, diff = self.getWord(layer.activation, returnDiff=1)\n if layer.kind == 'Input' or layer.kind == 'Output':\n if actWord == None:\n print('Matching Pattern = %s' % 'No match')\n elif diff == 0.0:\n print(\"Matching Pattern = '%s'\" % actWord)\n else:\n print(\"Matching Pattern = '%s'; difference = %f\" %\n (actWord, diff))\n print('------------------------------------')\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(self, value):
if value == 'ordered-continuous':
self.orderedInputs = 1
self.initContext = 0
elif value == 'random-segmented':
self.orderedInputs = 0
self.initContext = 1
elif value == 'random-continuous':
self.orderedInputs = 0
self.initContext = 0
elif value == 'ordered-segmented':
self.orderedInputs = 1
self.initContext = 1
else:
raise AttributeError("invalid sequence type: '%s'" % value)
self.sequenceType = value
|
setSequenceType
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if value == 'ordered-continuous':\n self.orderedInputs = 1\n self.initContext = 0\n elif value == 'random-segmented':\n self.orderedInputs = 0\n self.initContext = 1\n elif value == 'random-continuous':\n self.orderedInputs = 0\n self.initContext = 0\n elif value == 'ordered-segmented':\n self.orderedInputs = 1\n self.initContext = 1\n else:\n raise AttributeError(\"invalid sequence type: '%s'\" % value)\n self.sequenceType = value\n",
"role": "user"
},
{
"content": "setSequenceType",
"role": "assistant"
}
] |
def x(self, *arg, **kw):
netType = 'serial'
if 'type' in kw:
netType = kw['type']
self.addLayer('input', arg[0])
hiddens = []
contexts = []
if len(arg) > 3:
hcount = 0
for hidc in arg[1:-1]:
name = 'hidden%d' % hcount
cname = 'context%d' % hcount
self.addLayer(name, hidc)
hiddens.append(name)
self.addContextLayer(cname, hidc, name)
hiddens.append((cname, name))
hcount += 1
elif len(arg) == 3:
name = 'hidden'
self.addContextLayer('context', arg[1], name)
self.addLayer(name, arg[1])
hiddens.append(name)
contexts.append(('context', name))
elif len(arg) == 2:
pass
else:
raise AttributeError('not enough layers! need >= 2')
self.addLayer('output', arg[-1])
for fromName, toName in contexts:
self.connect(fromName, toName)
lastName = 'input'
for name in hiddens:
if netType == 'parallel':
self.connect('input', name)
self.connect(name, 'output')
else:
self.connect(lastName, name)
lastName = name
if netType == 'serial' or lastName == 'input':
self.connect(lastName, 'output')
|
addLayers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *arg, **kw):\n netType = 'serial'\n if 'type' in kw:\n netType = kw['type']\n self.addLayer('input', arg[0])\n hiddens = []\n contexts = []\n if len(arg) > 3:\n hcount = 0\n for hidc in arg[1:-1]:\n name = 'hidden%d' % hcount\n cname = 'context%d' % hcount\n self.addLayer(name, hidc)\n hiddens.append(name)\n self.addContextLayer(cname, hidc, name)\n hiddens.append((cname, name))\n hcount += 1\n elif len(arg) == 3:\n name = 'hidden'\n self.addContextLayer('context', arg[1], name)\n self.addLayer(name, arg[1])\n hiddens.append(name)\n contexts.append(('context', name))\n elif len(arg) == 2:\n pass\n else:\n raise AttributeError('not enough layers! need >= 2')\n self.addLayer('output', arg[-1])\n for fromName, toName in contexts:\n self.connect(fromName, toName)\n lastName = 'input'\n for name in hiddens:\n if netType == 'parallel':\n self.connect('input', name)\n self.connect(name, 'output')\n else:\n self.connect(lastName, name)\n lastName = name\n if netType == 'serial' or lastName == 'input':\n self.connect(lastName, 'output')\n",
"role": "user"
},
{
"content": "addLayers",
"role": "assistant"
}
] |
def x(self, inc, hidc, outc):
self.addLayer('input', inc)
self.addContextLayer('context', hidc, 'hidden')
self.addLayer('hidden', hidc)
self.addLayer('output', outc)
self.connect('input', 'hidden')
self.connect('context', 'hidden')
self.connect('hidden', 'output')
|
addThreeLayers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inc, hidc, outc):\n self.addLayer('input', inc)\n self.addContextLayer('context', hidc, 'hidden')\n self.addLayer('hidden', hidc)\n self.addLayer('output', outc)\n self.connect('input', 'hidden')\n self.connect('context', 'hidden')\n self.connect('hidden', 'output')\n",
"role": "user"
},
{
"content": "addThreeLayers",
"role": "assistant"
}
] |
def x(self, inc, hidc, outc):
self.addThreeLayers(inc, hidc, outc)
|
addSRNLayers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inc, hidc, outc):\n self.addThreeLayers(inc, hidc, outc)\n",
"role": "user"
},
{
"content": "addSRNLayers",
"role": "assistant"
}
] |
def x(self, layer, hiddenLayerName='hidden', verbosity=0):
SRN.add(self, layer, verbosity)
if hiddenLayerName in self.contextLayers:
raise KeyError(
'There is already a context layer associated with this hidden layer.'
, hiddenLayerName)
else:
self.contextLayers[hiddenLayerName] = layer
layer.kind = 'Context'
|
addContext
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, layer, hiddenLayerName='hidden', verbosity=0):\n SRN.add(self, layer, verbosity)\n if hiddenLayerName in self.contextLayers:\n raise KeyError(\n 'There is already a context layer associated with this hidden layer.'\n , hiddenLayerName)\n else:\n self.contextLayers[hiddenLayerName] = layer\n layer.kind = 'Context'\n",
"role": "user"
},
{
"content": "addContext",
"role": "assistant"
}
] |
def x(self):
for item in list(self.contextLayers.items()):
if self.verbosity > 2:
print('Hidden layer: ', self.getLayer(item[0]).activation)
if self.verbosity > 2:
print('Context layer before copy: ', item[1].activation)
item[1].copyActivations(self.getLayer(item[0]).activation)
if self.verbosity > 2:
print('Context layer after copy: ', item[1].activation)
|
copyHiddenToContext
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for item in list(self.contextLayers.items()):\n if self.verbosity > 2:\n print('Hidden layer: ', self.getLayer(item[0]).activation)\n if self.verbosity > 2:\n print('Context layer before copy: ', item[1].activation)\n item[1].copyActivations(self.getLayer(item[0]).activation)\n if self.verbosity > 2:\n print('Context layer after copy: ', item[1].activation)\n",
"role": "user"
},
{
"content": "copyHiddenToContext",
"role": "assistant"
}
] |
def x(self, value=0.5):
for context in list(self.contextLayers.values()):
context.resetFlags()
context.setActivations(value)
|
setContext
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value=0.5):\n for context in list(self.contextLayers.values()):\n context.resetFlags()\n context.setActivations(value)\n",
"role": "user"
},
{
"content": "setContext",
"role": "assistant"
}
] |
def x(self, **args):
if self.sequenceType == None:
raise AttributeError('sequenceType not set! Use SRN.setSequenceType() '
)
if 'initContext' in args:
if args['initContext']:
self.setContext()
del args['initContext']
elif self.initContext:
self.setContext()
if self.initContext == 0:
for context in list(self.contextLayers.values()):
context.activationSet = 1
for key in args:
args[key] = self.replacePatterns(args[key], key)
inputBankNames = [layer.name for layer in self.layers if layer.kind ==
'Input']
outputBankNames = [layer.name for layer in self.layers if layer.kind ==
'Output']
inputBankSizes = [layer.size for layer in self.layers if layer.kind ==
'Input']
inputBankTotalSize = sum(inputBankSizes)
inputArgSizes = [len(args[name]) for name in inputBankNames if name in args
]
inputArgTotalSize = sum(inputArgSizes)
sequenceLength = inputArgTotalSize // inputBankTotalSize
learning = self.learning
totalRetvals = 0.0, 0, 0
totalPCorrect = {}
for step in range(sequenceLength):
if self.verbosity >= 1 or self.interactive:
print('-----------------------------------Step #', step + 1)
dict = {}
dict.update(args)
for name in inputBankNames:
if name in args:
patternLength = self[name].size
offset = step * patternLength
if offset + patternLength >= len(args[name]):
dict[name] = args[name][-patternLength:]
else:
dict[name] = args[name][offset:offset + patternLength]
for name in outputBankNames:
if name in args:
patternLength = self[name].size
offset = step * patternLength
if offset + patternLength >= len(args[name]):
dict[name] = args[name][-patternLength:]
else:
dict[name] = args[name][offset:offset + patternLength]
for p in self.prediction:
inName, outName = p
inLayer = self.getLayer(inName)
if not inLayer.type == 'Input':
raise LayerError("Prediction input layer not type 'Input'.",
inLayer.type)
outLayer = self.getLayer(outName)
if not outLayer.type == 'Output':
raise LayerError("Prediction output layer not type 'Output'.",
outLayer.type)
if step == sequenceLength - 1:
start = 0
if not self._sweeping:
raise LayerError(
'Attempting to predict last item in sequence, but using step(). Use sweep() instead.'
)
elif self.currentSweepCount == None:
pattern = self.getData(self.loadOrder[0])
for key in pattern:
pattern[key] = self.replacePatterns(pattern[key], key)
if inName in inputBankNames:
if inName in pattern:
dict[outName] = pattern[inName][start:start +
patternLength]
else:
pattern = self.getData(self.loadOrder[self.
currentSweepCount + 1])
for key in pattern:
pattern[key] = self.replacePatterns(pattern[key], key)
if inName in inputBankNames:
if inName in pattern:
dict[outName] = pattern[inName][start:start +
patternLength]
else:
start = (step + 1) * inLayer.size
dict[outName] = args[inName][start:start + patternLength]
if step < sequenceLength - 1:
if not self.learnDuringSequence:
self.learning = 0
retvals = self.networkStep(**dict)
self.learning = learning
totalRetvals = list(map(lambda x, y: x + y, totalRetvals[:3],
retvals[:3]))
sumMerge(totalPCorrect, retvals[3])
totalRetvals.append(totalPCorrect)
return totalRetvals
|
step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **args):\n if self.sequenceType == None:\n raise AttributeError('sequenceType not set! Use SRN.setSequenceType() '\n )\n if 'initContext' in args:\n if args['initContext']:\n self.setContext()\n del args['initContext']\n elif self.initContext:\n self.setContext()\n if self.initContext == 0:\n for context in list(self.contextLayers.values()):\n context.activationSet = 1\n for key in args:\n args[key] = self.replacePatterns(args[key], key)\n inputBankNames = [layer.name for layer in self.layers if layer.kind ==\n 'Input']\n outputBankNames = [layer.name for layer in self.layers if layer.kind ==\n 'Output']\n inputBankSizes = [layer.size for layer in self.layers if layer.kind ==\n 'Input']\n inputBankTotalSize = sum(inputBankSizes)\n inputArgSizes = [len(args[name]) for name in inputBankNames if name in args\n ]\n inputArgTotalSize = sum(inputArgSizes)\n sequenceLength = inputArgTotalSize // inputBankTotalSize\n learning = self.learning\n totalRetvals = 0.0, 0, 0\n totalPCorrect = {}\n for step in range(sequenceLength):\n if self.verbosity >= 1 or self.interactive:\n print('-----------------------------------Step #', step + 1)\n dict = {}\n dict.update(args)\n for name in inputBankNames:\n if name in args:\n patternLength = self[name].size\n offset = step * patternLength\n if offset + patternLength >= len(args[name]):\n dict[name] = args[name][-patternLength:]\n else:\n dict[name] = args[name][offset:offset + patternLength]\n for name in outputBankNames:\n if name in args:\n patternLength = self[name].size\n offset = step * patternLength\n if offset + patternLength >= len(args[name]):\n dict[name] = args[name][-patternLength:]\n else:\n dict[name] = args[name][offset:offset + patternLength]\n for p in self.prediction:\n inName, outName = p\n inLayer = self.getLayer(inName)\n if not inLayer.type == 'Input':\n raise LayerError(\"Prediction input layer not type 'Input'.\",\n inLayer.type)\n outLayer = self.getLayer(outName)\n if not outLayer.type == 'Output':\n raise LayerError(\"Prediction output layer not type 'Output'.\",\n outLayer.type)\n if step == sequenceLength - 1:\n start = 0\n if not self._sweeping:\n raise LayerError(\n 'Attempting to predict last item in sequence, but using step(). Use sweep() instead.'\n )\n elif self.currentSweepCount == None:\n pattern = self.getData(self.loadOrder[0])\n for key in pattern:\n pattern[key] = self.replacePatterns(pattern[key], key)\n if inName in inputBankNames:\n if inName in pattern:\n dict[outName] = pattern[inName][start:start +\n patternLength]\n else:\n pattern = self.getData(self.loadOrder[self.\n currentSweepCount + 1])\n for key in pattern:\n pattern[key] = self.replacePatterns(pattern[key], key)\n if inName in inputBankNames:\n if inName in pattern:\n dict[outName] = pattern[inName][start:start +\n patternLength]\n else:\n start = (step + 1) * inLayer.size\n dict[outName] = args[inName][start:start + patternLength]\n if step < sequenceLength - 1:\n if not self.learnDuringSequence:\n self.learning = 0\n retvals = self.networkStep(**dict)\n self.learning = learning\n totalRetvals = list(map(lambda x, y: x + y, totalRetvals[:3],\n retvals[:3]))\n sumMerge(totalPCorrect, retvals[3])\n totalRetvals.append(totalPCorrect)\n return totalRetvals\n",
"role": "user"
},
{
"content": "step",
"role": "assistant"
}
] |
def x(self):
if len(self.inputs) == 0:
print('no patterns to test')
return
self.setContext()
while True:
BackpropNetwork.showPerformance(self)
if self.quitFromSweep:
return
|
showPerformance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if len(self.inputs) == 0:\n print('no patterns to test')\n return\n self.setContext()\n while True:\n BackpropNetwork.showPerformance(self)\n if self.quitFromSweep:\n return\n",
"role": "user"
},
{
"content": "showPerformance",
"role": "assistant"
}
] |
def x(self, line):
tokens = []
self.idx = -1
self.characters = iter(line)
self.update_chars()
while self.char != '\n':
if self.char in ('&', '$'):
self.group_token = self.char
if self.group_token and (self.group_token, self.char) in (('&', '/'
), ('$', '$')):
self.group_token = False
word = ''
if self.char in self.whitespace:
while self.char in self.whitespace:
word += self.char
self.update_chars()
elif self.char in ('!', '#') or self.group_token is None:
word = line[self.idx:-1]
self.char = '\n'
elif self.char in '"\'' or self.prior_delim:
word = self.parse_string()
elif self.char.isalpha():
word = self.parse_name(line)
elif self.char in ('+', '-'):
self.characters, lookahead = itertools.tee(self.characters)
ieee_val = ''.join(itertools.takewhile(str.isalpha, lookahead))
if ieee_val.lower() in ('inf', 'infinity', 'nan'):
word = self.char + ieee_val
self.characters = lookahead
self.prior_char = ieee_val[-1]
self.char = next(lookahead, '\n')
else:
word = self.parse_numeric()
elif self.char.isdigit():
word = self.parse_numeric()
elif self.char == '.':
self.update_chars()
if self.char.isdigit():
frac = self.parse_numeric()
word = '.' + frac
else:
word = '.'
while self.char.isalpha():
word += self.char
self.update_chars()
if self.char == '.':
word += self.char
self.update_chars()
elif self.char in Tokenizer.punctuation:
word = self.char
self.update_chars()
else:
raise ValueError
tokens.append(word)
return tokens
|
parse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line):\n tokens = []\n self.idx = -1\n self.characters = iter(line)\n self.update_chars()\n while self.char != '\\n':\n if self.char in ('&', '$'):\n self.group_token = self.char\n if self.group_token and (self.group_token, self.char) in (('&', '/'\n ), ('$', '$')):\n self.group_token = False\n word = ''\n if self.char in self.whitespace:\n while self.char in self.whitespace:\n word += self.char\n self.update_chars()\n elif self.char in ('!', '#') or self.group_token is None:\n word = line[self.idx:-1]\n self.char = '\\n'\n elif self.char in '\"\\'' or self.prior_delim:\n word = self.parse_string()\n elif self.char.isalpha():\n word = self.parse_name(line)\n elif self.char in ('+', '-'):\n self.characters, lookahead = itertools.tee(self.characters)\n ieee_val = ''.join(itertools.takewhile(str.isalpha, lookahead))\n if ieee_val.lower() in ('inf', 'infinity', 'nan'):\n word = self.char + ieee_val\n self.characters = lookahead\n self.prior_char = ieee_val[-1]\n self.char = next(lookahead, '\\n')\n else:\n word = self.parse_numeric()\n elif self.char.isdigit():\n word = self.parse_numeric()\n elif self.char == '.':\n self.update_chars()\n if self.char.isdigit():\n frac = self.parse_numeric()\n word = '.' + frac\n else:\n word = '.'\n while self.char.isalpha():\n word += self.char\n self.update_chars()\n if self.char == '.':\n word += self.char\n self.update_chars()\n elif self.char in Tokenizer.punctuation:\n word = self.char\n self.update_chars()\n else:\n raise ValueError\n tokens.append(word)\n return tokens\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(self, line):
end = self.idx
for char in line[self.idx:]:
if not char.isalnum() and char not in '\'"_':
break
end += 1
word = line[self.idx:end]
self.idx = end - 1
self.characters = itertools.islice(self.characters, len(word) - 1, None)
self.update_chars()
return word
|
parse_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, line):\n end = self.idx\n for char in line[self.idx:]:\n if not char.isalnum() and char not in '\\'\"_':\n break\n end += 1\n word = line[self.idx:end]\n self.idx = end - 1\n self.characters = itertools.islice(self.characters, len(word) - 1, None)\n self.update_chars()\n return word\n",
"role": "user"
},
{
"content": "parse_name",
"role": "assistant"
}
] |
def x(self):
word = ''
if self.prior_delim:
delim = self.prior_delim
self.prior_delim = None
else:
delim = self.char
word += self.char
self.update_chars()
while True:
if self.char == delim:
self.update_chars()
if self.char == delim:
word += 2 * delim
self.update_chars()
else:
word += delim
break
elif self.char == '\n':
self.prior_delim = delim
break
else:
word += self.char
self.update_chars()
return word
|
parse_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n word = ''\n if self.prior_delim:\n delim = self.prior_delim\n self.prior_delim = None\n else:\n delim = self.char\n word += self.char\n self.update_chars()\n while True:\n if self.char == delim:\n self.update_chars()\n if self.char == delim:\n word += 2 * delim\n self.update_chars()\n else:\n word += delim\n break\n elif self.char == '\\n':\n self.prior_delim = delim\n break\n else:\n word += self.char\n self.update_chars()\n return word\n",
"role": "user"
},
{
"content": "parse_string",
"role": "assistant"
}
] |
def x(self):
word = ''
frac = False
if self.char == '-':
word += self.char
self.update_chars()
while self.char.isdigit() or self.char == '.' and not frac:
if self.char == '.':
frac = True
word += self.char
self.update_chars()
if self.char in 'eEdD':
word += self.char
self.update_chars()
if self.char in '+-':
word += self.char
self.update_chars()
while self.char.isdigit():
word += self.char
self.update_chars()
return word
|
parse_numeric
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n word = ''\n frac = False\n if self.char == '-':\n word += self.char\n self.update_chars()\n while self.char.isdigit() or self.char == '.' and not frac:\n if self.char == '.':\n frac = True\n word += self.char\n self.update_chars()\n if self.char in 'eEdD':\n word += self.char\n self.update_chars()\n if self.char in '+-':\n word += self.char\n self.update_chars()\n while self.char.isdigit():\n word += self.char\n self.update_chars()\n return word\n",
"role": "user"
},
{
"content": "parse_numeric",
"role": "assistant"
}
] |
def x(self):
self.prior_char, self.char = self.char, next(self.characters, '\n')
self.idx += 1
|
update_chars
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.prior_char, self.char = self.char, next(self.characters, '\\n')\n self.idx += 1\n",
"role": "user"
},
{
"content": "update_chars",
"role": "assistant"
}
] |
def x(a, b):
result = zeros((len(a), len(b)))
for i in range(len(a)):
for j in range(len(b)):
result[i][j] = a[i] * b[j]
return result
|
outerproduct
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, b):\n result = zeros((len(a), len(b)))\n for i in range(len(a)):\n for j in range(len(b)):\n result[i][j] = a[i] * b[j]\n return result\n",
"role": "user"
},
{
"content": "outerproduct",
"role": "assistant"
}
] |
def x(vector):
if type(vector) is list:
return array(list(map(add.reduce, vector)))
else:
return sum(vector)
|
reduce
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vector):\n if type(vector) is list:\n return array(list(map(add.reduce, vector)))\n else:\n return sum(vector)\n",
"role": "user"
},
{
"content": "reduce",
"role": "assistant"
}
] |
def x(vector):
if type(vector) is list:
return array(list(map(multiply.reduce, vector)))
else:
return reduce(operator.mul, vector)
|
reduce
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vector):\n if type(vector) is list:\n return array(list(map(multiply.reduce, vector)))\n else:\n return reduce(operator.mul, vector)\n",
"role": "user"
},
{
"content": "reduce",
"role": "assistant"
}
] |
def x(v_str):
assert isinstance(v_str, str)
if v_str[0] == '(' and v_str[-1] == ')' and len(v_str.split(',')) == 2:
v_re, v_im = v_str[1:-1].split(',', 1)
return complex(pyfloat(v_re), pyfloat(v_im))
else:
raise ValueError('{0} must be in complex number form (x, y).'.
format(v_str))
|
pycomplex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(v_str):\n assert isinstance(v_str, str)\n if v_str[0] == '(' and v_str[-1] == ')' and len(v_str.split(',')) == 2:\n v_re, v_im = v_str[1:-1].split(',', 1)\n return complex(pyfloat(v_re), pyfloat(v_im))\n else:\n raise ValueError('{0} must be in complex number form (x, y).'.\n format(v_str))\n",
"role": "user"
},
{
"content": "pycomplex",
"role": "assistant"
}
] |
def x(v_str, strict_logical=True):
assert isinstance(v_str, str)
assert isinstance(strict_logical, bool)
if strict_logical:
v_bool = v_str.lower()
else:
try:
if v_str.startswith('.'):
v_bool = v_str[1].lower()
else:
v_bool = v_str[0].lower()
except IndexError:
raise ValueError('{0} is not a valid logical constant.'.format(
v_str))
if v_bool in ('.true.', '.t.', 'true', 't'):
return True
elif v_bool in ('.false.', '.f.', 'false', 'f'):
return False
else:
raise ValueError('{0} is not a valid logical constant.'.format(v_str))
|
pybool
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(v_str, strict_logical=True):\n assert isinstance(v_str, str)\n assert isinstance(strict_logical, bool)\n if strict_logical:\n v_bool = v_str.lower()\n else:\n try:\n if v_str.startswith('.'):\n v_bool = v_str[1].lower()\n else:\n v_bool = v_str[0].lower()\n except IndexError:\n raise ValueError('{0} is not a valid logical constant.'.format(\n v_str))\n if v_bool in ('.true.', '.t.', 'true', 't'):\n return True\n elif v_bool in ('.false.', '.f.', 'false', 'f'):\n return False\n else:\n raise ValueError('{0} is not a valid logical constant.'.format(v_str))\n",
"role": "user"
},
{
"content": "pybool",
"role": "assistant"
}
] |
def x(v_str):
assert isinstance(v_str, str)
if v_str[0] in ("'", '"') and v_str[0] == v_str[-1]:
quote = v_str[0]
out = v_str[1:-1]
else:
quote = None
out = v_str
if quote:
out = out.replace(2 * quote, quote)
return out
|
pystr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(v_str):\n assert isinstance(v_str, str)\n if v_str[0] in (\"'\", '\"') and v_str[0] == v_str[-1]:\n quote = v_str[0]\n out = v_str[1:-1]\n else:\n quote = None\n out = v_str\n if quote:\n out = out.replace(2 * quote, quote)\n return out\n",
"role": "user"
},
{
"content": "pystr",
"role": "assistant"
}
] |
def x(v, idx):
i_v, i_s = idx[0]
if len(idx) > 1:
v.extend([[] for _ in range(len(v), i_v - i_s + 1)])
for e in v:
pad_array(e, idx[1:])
else:
v.extend([None for _ in range(len(v), i_v - i_s + 1)])
|
pad_array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(v, idx):\n i_v, i_s = idx[0]\n if len(idx) > 1:\n v.extend([[] for _ in range(len(v), i_v - i_s + 1)])\n for e in v:\n pad_array(e, idx[1:])\n else:\n v.extend([None for _ in range(len(v), i_v - i_s + 1)])\n",
"role": "user"
},
{
"content": "pad_array",
"role": "assistant"
}
] |
def x(src, new):
if isinstance(src, dict) and isinstance(new, dict):
return merge_dicts(src, new)
else:
if not isinstance(src, list):
src = [src]
if not isinstance(new, list):
new = [new]
return merge_lists(src, new)
|
merge_values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src, new):\n if isinstance(src, dict) and isinstance(new, dict):\n return merge_dicts(src, new)\n else:\n if not isinstance(src, list):\n src = [src]\n if not isinstance(new, list):\n new = [new]\n return merge_lists(src, new)\n",
"role": "user"
},
{
"content": "merge_values",
"role": "assistant"
}
] |
def x(src, new):
l_min, l_max = (src, new) if len(src) < len(new) else (new, src)
l_min.extend(None for i in range(len(l_min), len(l_max)))
for i, val in enumerate(new):
if isinstance(val, dict) and isinstance(src[i], dict):
new[i] = merge_dicts(src[i], val)
elif isinstance(val, list) and isinstance(src[i], list):
new[i] = merge_lists(src[i], val)
elif val is not None:
new[i] = val
else:
new[i] = src[i]
return new
|
merge_lists
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src, new):\n l_min, l_max = (src, new) if len(src) < len(new) else (new, src)\n l_min.extend(None for i in range(len(l_min), len(l_max)))\n for i, val in enumerate(new):\n if isinstance(val, dict) and isinstance(src[i], dict):\n new[i] = merge_dicts(src[i], val)\n elif isinstance(val, list) and isinstance(src[i], list):\n new[i] = merge_lists(src[i], val)\n elif val is not None:\n new[i] = val\n else:\n new[i] = src[i]\n return new\n",
"role": "user"
},
{
"content": "merge_lists",
"role": "assistant"
}
] |
def x(src, patch):
for key in patch:
if key in src:
if isinstance(src[key], dict) and isinstance(patch[key], dict):
merge_dicts(src[key], patch[key])
else:
src[key] = merge_values(src[key], patch[key])
else:
src[key] = patch[key]
return src
|
merge_dicts
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(src, patch):\n for key in patch:\n if key in src:\n if isinstance(src[key], dict) and isinstance(patch[key], dict):\n merge_dicts(src[key], patch[key])\n else:\n src[key] = merge_values(src[key], patch[key])\n else:\n src[key] = patch[key]\n return src\n",
"role": "user"
},
{
"content": "merge_dicts",
"role": "assistant"
}
] |
def x(values):
assert isinstance(values, list)
if not values:
return None
elif len(values) == 1:
return values[0]
return values
|
delist
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(values):\n assert isinstance(values, list)\n if not values:\n return None\n elif len(values) == 1:\n return values[0]\n return values\n",
"role": "user"
},
{
"content": "delist",
"role": "assistant"
}
] |
def x(tokens):
ntoks = 0
for tok in tokens:
if tok in ('=', '/', '$', '&'):
if ntoks > 0 and tok == '=':
ntoks -= 1
break
elif tok in whitespace + ',':
continue
else:
ntoks += 1
return ntoks
|
count_values
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(tokens):\n ntoks = 0\n for tok in tokens:\n if tok in ('=', '/', '$', '&'):\n if ntoks > 0 and tok == '=':\n ntoks -= 1\n break\n elif tok in whitespace + ',':\n continue\n else:\n ntoks += 1\n return ntoks\n",
"role": "user"
},
{
"content": "count_values",
"role": "assistant"
}
] |
def x(self, value):
if not isinstance(value, str):
raise TypeError('comment_tokens attribute must be a string.')
self._comment_tokens = value
|
comment_tokens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if not isinstance(value, str):\n raise TypeError('comment_tokens attribute must be a string.')\n self._comment_tokens = value\n",
"role": "user"
},
{
"content": "comment_tokens",
"role": "assistant"
}
] |
def x(self, value):
if not isinstance(value, int):
raise TypeError('default_start_index attribute must be of int type.')
self._default_start_index = value
|
default_start_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if not isinstance(value, int):\n raise TypeError('default_start_index attribute must be of int type.')\n self._default_start_index = value\n",
"role": "user"
},
{
"content": "default_start_index",
"role": "assistant"
}
] |
def x(self, value):
if not isinstance(value, bool):
raise TypeError('sparse_arrays attribute must be a logical type.')
self._sparse_arrays = value
|
sparse_arrays
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if not isinstance(value, bool):\n raise TypeError('sparse_arrays attribute must be a logical type.')\n self._sparse_arrays = value\n",
"role": "user"
},
{
"content": "sparse_arrays",
"role": "assistant"
}
] |
def x(self, value):
if not isinstance(value, int) and value is not None:
raise TypeError('global_start_index attribute must be of int type.')
self._global_start_index = value
|
global_start_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if not isinstance(value, int) and value is not None:\n raise TypeError('global_start_index attribute must be of int type.')\n self._global_start_index = value\n",
"role": "user"
},
{
"content": "global_start_index",
"role": "assistant"
}
] |
def x(self, value):
if value is not None:
if not isinstance(value, bool):
raise TypeError('f90nml: error: row_major must be a logical value.'
)
else:
self._row_major = value
|
row_major
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if value is not None:\n if not isinstance(value, bool):\n raise TypeError('f90nml: error: row_major must be a logical value.'\n )\n else:\n self._row_major = value\n",
"role": "user"
},
{
"content": "row_major",
"role": "assistant"
}
] |
def x(self, value):
if value is not None:
if not isinstance(value, bool):
raise TypeError(
'f90nml: error: strict_logical must be a logical value.')
else:
self._strict_logical = value
|
strict_logical
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if value is not None:\n if not isinstance(value, bool):\n raise TypeError(\n 'f90nml: error: strict_logical must be a logical value.')\n else:\n self._strict_logical = value\n",
"role": "user"
},
{
"content": "strict_logical",
"role": "assistant"
}
] |
def x(self, nml_fname, nml_patch_in=None, patch_fname=None):
nml_is_path = not hasattr(nml_fname, 'read')
patch_is_path = not hasattr(patch_fname, 'read')
if nml_patch_in is not None:
if not isinstance(nml_patch_in, dict):
raise TypeError('Input patch must be a dict or a Namelist.')
nml_patch = copy.deepcopy(Namelist(nml_patch_in))
if not patch_fname and nml_is_path:
patch_fname = nml_fname + '~'
elif not patch_fname:
raise ValueError('f90nml: error: No output file for patch.')
elif nml_fname == patch_fname:
raise ValueError(
'f90nml: error: Patch filepath cannot be the same as the original filepath.'
)
if patch_is_path:
self.pfile = open(patch_fname, 'w')
else:
self.pfile = patch_fname
else:
nml_patch = Namelist()
try:
nml_file = open(nml_fname, 'r') if nml_is_path else nml_fname
try:
return self._readstream(nml_file, nml_patch)
finally:
if nml_is_path:
nml_file.close()
finally:
if self.pfile and patch_is_path:
self.pfile.close()
|
read
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nml_fname, nml_patch_in=None, patch_fname=None):\n nml_is_path = not hasattr(nml_fname, 'read')\n patch_is_path = not hasattr(patch_fname, 'read')\n if nml_patch_in is not None:\n if not isinstance(nml_patch_in, dict):\n raise TypeError('Input patch must be a dict or a Namelist.')\n nml_patch = copy.deepcopy(Namelist(nml_patch_in))\n if not patch_fname and nml_is_path:\n patch_fname = nml_fname + '~'\n elif not patch_fname:\n raise ValueError('f90nml: error: No output file for patch.')\n elif nml_fname == patch_fname:\n raise ValueError(\n 'f90nml: error: Patch filepath cannot be the same as the original filepath.'\n )\n if patch_is_path:\n self.pfile = open(patch_fname, 'w')\n else:\n self.pfile = patch_fname\n else:\n nml_patch = Namelist()\n try:\n nml_file = open(nml_fname, 'r') if nml_is_path else nml_fname\n try:\n return self._readstream(nml_file, nml_patch)\n finally:\n if nml_is_path:\n nml_file.close()\n finally:\n if self.pfile and patch_is_path:\n self.pfile.close()\n",
"role": "user"
},
{
"content": "read",
"role": "assistant"
}
] |
def x(self, nml_file, nml_patch_in=None):
nml_patch = nml_patch_in if nml_patch_in is not None else Namelist()
tokenizer = Tokenizer()
f90lex = []
for line in nml_file:
toks = tokenizer.parse(line)
while tokenizer.prior_delim:
new_toks = tokenizer.parse(next(nml_file))
if not new_toks:
continue
if new_toks[0].isspace():
toks[-1] += new_toks.pop(0)
if new_toks:
toks[-1] += new_toks[0]
toks.extend(new_toks[1:])
toks.append('\n')
f90lex.extend(toks)
self.tokens = iter(f90lex)
nmls = Namelist()
try:
self._update_tokens(write_token=False)
except StopIteration:
return nmls
while True:
try:
if self.token == 'end':
self._update_tokens()
while self.token not in ('&', '$'):
self._update_tokens()
except StopIteration:
break
self._update_tokens()
g_name = self.token
g_vars = Namelist()
v_name = None
grp_patch = nml_patch.get(g_name.lower(), Namelist())
while g_name:
if self.token not in ('=', '%', '('):
self._update_tokens()
if self.token in ('=', '(', '%'):
v_name, v_values = self._parse_variable(g_vars, patch_nml=
grp_patch)
if v_name in g_vars:
v_prior_values = g_vars[v_name]
v_values = merge_values(v_prior_values, v_values)
g_vars[v_name] = v_values
v_name = None
v_values = []
if self.token in ('/', '&', '$'):
for v_name, v_val in grp_patch.items():
g_vars[v_name] = v_val
v_strs = nmls._var_strings(v_name, v_val)
for v_str in v_strs:
self.pfile.write('{0}{1}\n'.format(nml_patch.indent,
v_str))
if g_name in nmls:
g_update = nmls[g_name]
if not isinstance(g_update, list):
g_update = [g_update]
g_update.append(g_vars)
else:
g_update = g_vars
nmls[g_name] = g_update
g_name, g_vars = None, None
try:
self._update_tokens()
except StopIteration:
break
return nmls
|
readstream
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nml_file, nml_patch_in=None):\n nml_patch = nml_patch_in if nml_patch_in is not None else Namelist()\n tokenizer = Tokenizer()\n f90lex = []\n for line in nml_file:\n toks = tokenizer.parse(line)\n while tokenizer.prior_delim:\n new_toks = tokenizer.parse(next(nml_file))\n if not new_toks:\n continue\n if new_toks[0].isspace():\n toks[-1] += new_toks.pop(0)\n if new_toks:\n toks[-1] += new_toks[0]\n toks.extend(new_toks[1:])\n toks.append('\\n')\n f90lex.extend(toks)\n self.tokens = iter(f90lex)\n nmls = Namelist()\n try:\n self._update_tokens(write_token=False)\n except StopIteration:\n return nmls\n while True:\n try:\n if self.token == 'end':\n self._update_tokens()\n while self.token not in ('&', '$'):\n self._update_tokens()\n except StopIteration:\n break\n self._update_tokens()\n g_name = self.token\n g_vars = Namelist()\n v_name = None\n grp_patch = nml_patch.get(g_name.lower(), Namelist())\n while g_name:\n if self.token not in ('=', '%', '('):\n self._update_tokens()\n if self.token in ('=', '(', '%'):\n v_name, v_values = self._parse_variable(g_vars, patch_nml=\n grp_patch)\n if v_name in g_vars:\n v_prior_values = g_vars[v_name]\n v_values = merge_values(v_prior_values, v_values)\n g_vars[v_name] = v_values\n v_name = None\n v_values = []\n if self.token in ('/', '&', '$'):\n for v_name, v_val in grp_patch.items():\n g_vars[v_name] = v_val\n v_strs = nmls._var_strings(v_name, v_val)\n for v_str in v_strs:\n self.pfile.write('{0}{1}\\n'.format(nml_patch.indent,\n v_str))\n if g_name in nmls:\n g_update = nmls[g_name]\n if not isinstance(g_update, list):\n g_update = [g_update]\n g_update.append(g_vars)\n else:\n g_update = g_vars\n nmls[g_name] = g_update\n g_name, g_vars = None, None\n try:\n self._update_tokens()\n except StopIteration:\n break\n return nmls\n",
"role": "user"
},
{
"content": "readstream",
"role": "assistant"
}
] |
def x(self, parent, patch_nml=None):
if not patch_nml:
patch_nml = Namelist()
v_name = self.prior_token
v_values = []
patch_values = None
dt_idx = None
if self.token == '(':
v_idx_bounds = self._parse_indices()
v_idx = FIndex(v_idx_bounds, self.global_start_index)
if v_name.lower() in parent.start_index:
p_idx = parent.start_index[v_name.lower()]
for idx, pv in enumerate(zip(p_idx, v_idx.first)):
if all(i is None for i in pv):
i_first = None
else:
i_first = min(i for i in pv if i is not None)
v_idx.first[idx] = i_first
for i_p, i_v in zip(p_idx, v_idx.first):
if i_p is not None and i_v is not None and i_v < i_p:
pad = [None for _ in range(i_p - i_v)]
parent[v_name] = pad + parent[v_name]
elif v_name in parent:
v_idx.first = [self.default_start_index for _ in v_idx.first]
parent.start_index[v_name.lower()] = v_idx.first
self._update_tokens()
if self.token == '%':
assert v_idx_bounds[0][1] - v_idx_bounds[0][0] == 1
dt_idx = v_idx_bounds[0][0] - v_idx.first[0]
else:
v_idx = None
if v_name in parent.start_index:
p_start = parent.start_index[v_name.lower()]
v_start = [self.default_start_index for _ in p_start]
for i_p, i_v in zip(p_start, v_start):
if i_v < i_p:
pad = [None for _ in range(i_p - i_v)]
parent[v_name] = pad + parent[v_name]
parent.start_index[v_name.lower()] = v_start
if self.token == '%':
v_patch_nml = None
if v_name in patch_nml:
v_patch_nml = patch_nml.pop(v_name.lower())
if parent:
vpar = parent.get(v_name.lower())
if vpar and isinstance(vpar, list):
if dt_idx is None:
dt_idx = self.default_start_index
try:
v_parent = vpar[dt_idx]
except IndexError:
v_parent = Namelist()
elif vpar:
v_parent = vpar
else:
v_parent = Namelist()
else:
v_parent = Namelist()
parent[v_name] = v_parent
self._update_tokens()
self._update_tokens()
v_att, v_att_vals = self._parse_variable(v_parent, patch_nml=
v_patch_nml)
next_value = Namelist()
next_value[v_att] = v_att_vals
self._append_value(v_values, next_value, v_idx)
else:
assert self.token == '='
n_vals = None
self._update_tokens()
if v_name in patch_nml:
patch_values = patch_nml.pop(v_name.lower())
if not isinstance(patch_values, list):
patch_values = [patch_values]
p_idx = 0
while self.token not in ('=', '(', '%') or (self.prior_token, self.
token) in (('=', '('), (',', '(')):
if self.token == '*':
n_vals = self._parse_value()
assert isinstance(n_vals, int)
self._update_tokens()
elif not n_vals:
n_vals = 1
if self.prior_token in ('=', '%', ','):
if self.token in (',', '/', '&', '$') and not (self.
prior_token == ',' and self.token in ('/', '&', '$')):
self._append_value(v_values, None, v_idx, n_vals)
elif self.prior_token == '*':
if self.token not in ('/', '&', '$'):
self._update_tokens()
if self.token == '=' or self.token in ('/', '&', '$'
) and self.prior_token == '*':
next_value = None
else:
next_value = self._parse_value()
self._append_value(v_values, next_value, v_idx, n_vals)
else:
next_value = self._parse_value()
self._append_value(v_values, next_value, v_idx, n_vals)
n_vals = 1
if self.token in ('/', '&', '$', '='):
break
else:
self.tokens, lookahead = itertools.tee(self.tokens)
n_vals_remain = count_values(lookahead)
if patch_values:
if p_idx < len(patch_values
) and p_idx - 1 <= n_vals_remain and len(patch_values
) > 0 and self.token != ',':
p_val = patch_values[p_idx]
p_repr = patch_nml._f90repr(patch_values[p_idx])
p_idx += 1
self._update_tokens(override=p_repr)
if isinstance(p_val, complex):
self._update_tokens(write_token=False)
self._update_tokens(write_token=False)
self._update_tokens(write_token=False)
self._update_tokens(write_token=False)
else:
skip = p_idx >= len(patch_values)
self._update_tokens(patch_skip=skip)
else:
self._update_tokens()
if patch_values:
v_values = patch_values
if not v_idx:
v_values = delist(v_values)
return v_name, v_values
|
parse_variable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parent, patch_nml=None):\n if not patch_nml:\n patch_nml = Namelist()\n v_name = self.prior_token\n v_values = []\n patch_values = None\n dt_idx = None\n if self.token == '(':\n v_idx_bounds = self._parse_indices()\n v_idx = FIndex(v_idx_bounds, self.global_start_index)\n if v_name.lower() in parent.start_index:\n p_idx = parent.start_index[v_name.lower()]\n for idx, pv in enumerate(zip(p_idx, v_idx.first)):\n if all(i is None for i in pv):\n i_first = None\n else:\n i_first = min(i for i in pv if i is not None)\n v_idx.first[idx] = i_first\n for i_p, i_v in zip(p_idx, v_idx.first):\n if i_p is not None and i_v is not None and i_v < i_p:\n pad = [None for _ in range(i_p - i_v)]\n parent[v_name] = pad + parent[v_name]\n elif v_name in parent:\n v_idx.first = [self.default_start_index for _ in v_idx.first]\n parent.start_index[v_name.lower()] = v_idx.first\n self._update_tokens()\n if self.token == '%':\n assert v_idx_bounds[0][1] - v_idx_bounds[0][0] == 1\n dt_idx = v_idx_bounds[0][0] - v_idx.first[0]\n else:\n v_idx = None\n if v_name in parent.start_index:\n p_start = parent.start_index[v_name.lower()]\n v_start = [self.default_start_index for _ in p_start]\n for i_p, i_v in zip(p_start, v_start):\n if i_v < i_p:\n pad = [None for _ in range(i_p - i_v)]\n parent[v_name] = pad + parent[v_name]\n parent.start_index[v_name.lower()] = v_start\n if self.token == '%':\n v_patch_nml = None\n if v_name in patch_nml:\n v_patch_nml = patch_nml.pop(v_name.lower())\n if parent:\n vpar = parent.get(v_name.lower())\n if vpar and isinstance(vpar, list):\n if dt_idx is None:\n dt_idx = self.default_start_index\n try:\n v_parent = vpar[dt_idx]\n except IndexError:\n v_parent = Namelist()\n elif vpar:\n v_parent = vpar\n else:\n v_parent = Namelist()\n else:\n v_parent = Namelist()\n parent[v_name] = v_parent\n self._update_tokens()\n self._update_tokens()\n v_att, v_att_vals = self._parse_variable(v_parent, patch_nml=\n v_patch_nml)\n next_value = Namelist()\n next_value[v_att] = v_att_vals\n self._append_value(v_values, next_value, v_idx)\n else:\n assert self.token == '='\n n_vals = None\n self._update_tokens()\n if v_name in patch_nml:\n patch_values = patch_nml.pop(v_name.lower())\n if not isinstance(patch_values, list):\n patch_values = [patch_values]\n p_idx = 0\n while self.token not in ('=', '(', '%') or (self.prior_token, self.\n token) in (('=', '('), (',', '(')):\n if self.token == '*':\n n_vals = self._parse_value()\n assert isinstance(n_vals, int)\n self._update_tokens()\n elif not n_vals:\n n_vals = 1\n if self.prior_token in ('=', '%', ','):\n if self.token in (',', '/', '&', '$') and not (self.\n prior_token == ',' and self.token in ('/', '&', '$')):\n self._append_value(v_values, None, v_idx, n_vals)\n elif self.prior_token == '*':\n if self.token not in ('/', '&', '$'):\n self._update_tokens()\n if self.token == '=' or self.token in ('/', '&', '$'\n ) and self.prior_token == '*':\n next_value = None\n else:\n next_value = self._parse_value()\n self._append_value(v_values, next_value, v_idx, n_vals)\n else:\n next_value = self._parse_value()\n self._append_value(v_values, next_value, v_idx, n_vals)\n n_vals = 1\n if self.token in ('/', '&', '$', '='):\n break\n else:\n self.tokens, lookahead = itertools.tee(self.tokens)\n n_vals_remain = count_values(lookahead)\n if patch_values:\n if p_idx < len(patch_values\n ) and p_idx - 1 <= n_vals_remain and len(patch_values\n ) > 0 and self.token != ',':\n p_val = patch_values[p_idx]\n p_repr = patch_nml._f90repr(patch_values[p_idx])\n p_idx += 1\n self._update_tokens(override=p_repr)\n if isinstance(p_val, complex):\n self._update_tokens(write_token=False)\n self._update_tokens(write_token=False)\n self._update_tokens(write_token=False)\n self._update_tokens(write_token=False)\n else:\n skip = p_idx >= len(patch_values)\n self._update_tokens(patch_skip=skip)\n else:\n self._update_tokens()\n if patch_values:\n v_values = patch_values\n if not v_idx:\n v_values = delist(v_values)\n return v_name, v_values\n",
"role": "user"
},
{
"content": "parse_variable",
"role": "assistant"
}
] |
def x(self):
v_name = self.prior_token
v_indices = []
while self.token in (',', '('):
v_indices.append(self._parse_index(v_name))
return v_indices
|
parse_indices
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n v_name = self.prior_token\n v_indices = []\n while self.token in (',', '('):\n v_indices.append(self._parse_index(v_name))\n return v_indices\n",
"role": "user"
},
{
"content": "parse_indices",
"role": "assistant"
}
] |
def x(self, v_name):
i_start = i_end = i_stride = None
self._update_tokens()
try:
i_start = int(self.token)
self._update_tokens()
except ValueError:
if self.token in (',', ')'):
raise ValueError('{0} index cannot be empty.'.format(v_name))
elif not self.token == ':':
raise
if self.token == ':':
self._update_tokens()
try:
i_end = 1 + int(self.token)
self._update_tokens()
except ValueError:
if self.token == ':':
raise ValueError(
'{0} end index cannot be implicit when using stride.'.
format(v_name))
elif self.token not in (',', ')'):
raise
elif self.token in (',', ')'):
if i_start:
i_end = 1 + i_start
if self.token == ':':
self._update_tokens()
try:
i_stride = int(self.token)
except ValueError:
if self.token == ')':
raise ValueError('{0} stride index cannot be implicit.'.
format(v_name))
else:
raise
if i_stride == 0:
raise ValueError('{0} stride index cannot be zero.'.format(v_name))
self._update_tokens()
if self.token not in (',', ')'):
raise ValueError('{0} index did not terminate correctly.'.format(
v_name))
idx_triplet = i_start, i_end, i_stride
return idx_triplet
|
parse_index
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v_name):\n i_start = i_end = i_stride = None\n self._update_tokens()\n try:\n i_start = int(self.token)\n self._update_tokens()\n except ValueError:\n if self.token in (',', ')'):\n raise ValueError('{0} index cannot be empty.'.format(v_name))\n elif not self.token == ':':\n raise\n if self.token == ':':\n self._update_tokens()\n try:\n i_end = 1 + int(self.token)\n self._update_tokens()\n except ValueError:\n if self.token == ':':\n raise ValueError(\n '{0} end index cannot be implicit when using stride.'.\n format(v_name))\n elif self.token not in (',', ')'):\n raise\n elif self.token in (',', ')'):\n if i_start:\n i_end = 1 + i_start\n if self.token == ':':\n self._update_tokens()\n try:\n i_stride = int(self.token)\n except ValueError:\n if self.token == ')':\n raise ValueError('{0} stride index cannot be implicit.'.\n format(v_name))\n else:\n raise\n if i_stride == 0:\n raise ValueError('{0} stride index cannot be zero.'.format(v_name))\n self._update_tokens()\n if self.token not in (',', ')'):\n raise ValueError('{0} index did not terminate correctly.'.format(\n v_name))\n idx_triplet = i_start, i_end, i_stride\n return idx_triplet\n",
"role": "user"
},
{
"content": "parse_index",
"role": "assistant"
}
] |
def x(self, write_token=True, override=None):
v_str = self.prior_token
if v_str == '(':
v_re = self.token
self._update_tokens(write_token)
assert self.token == ','
self._update_tokens(write_token)
v_im = self.token
self._update_tokens(write_token)
assert self.token == ')'
self._update_tokens(write_token, override)
v_str = '({0}, {1})'.format(v_re, v_im)
recast_funcs = [int, pyfloat, pycomplex, pybool, pystr]
for f90type in recast_funcs:
try:
if f90type == pybool:
value = pybool(v_str, self.strict_logical)
else:
value = f90type(v_str)
return value
except ValueError:
continue
|
parse_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, write_token=True, override=None):\n v_str = self.prior_token\n if v_str == '(':\n v_re = self.token\n self._update_tokens(write_token)\n assert self.token == ','\n self._update_tokens(write_token)\n v_im = self.token\n self._update_tokens(write_token)\n assert self.token == ')'\n self._update_tokens(write_token, override)\n v_str = '({0}, {1})'.format(v_re, v_im)\n recast_funcs = [int, pyfloat, pycomplex, pybool, pystr]\n for f90type in recast_funcs:\n try:\n if f90type == pybool:\n value = pybool(v_str, self.strict_logical)\n else:\n value = f90type(v_str)\n return value\n except ValueError:\n continue\n",
"role": "user"
},
{
"content": "parse_value",
"role": "assistant"
}
] |
def x(self, write_token=True, override=None, patch_skip=False):
next_token = next(self.tokens)
patch_value = ''
patch_tokens = ''
if self.pfile and write_token:
token = override if override else self.token
patch_value += token
while next_token[0] in self.comment_tokens + whitespace:
if self.pfile:
if next_token[0] in self.comment_tokens:
while not next_token == '\n':
patch_tokens += next_token
next_token = next(self.tokens)
patch_tokens += next_token
try:
next_token = next(self.tokens)
except StopIteration:
if not patch_skip or next_token in ('=', '(', '%'):
patch_tokens = patch_value + patch_tokens
if self.pfile:
self.pfile.write(patch_tokens)
raise
if not patch_skip or next_token in ('=', '(', '%'):
patch_tokens = patch_value + patch_tokens
if self.pfile:
self.pfile.write(patch_tokens)
self.token, self.prior_token = next_token, self.token
|
update_tokens
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, write_token=True, override=None, patch_skip=False):\n next_token = next(self.tokens)\n patch_value = ''\n patch_tokens = ''\n if self.pfile and write_token:\n token = override if override else self.token\n patch_value += token\n while next_token[0] in self.comment_tokens + whitespace:\n if self.pfile:\n if next_token[0] in self.comment_tokens:\n while not next_token == '\\n':\n patch_tokens += next_token\n next_token = next(self.tokens)\n patch_tokens += next_token\n try:\n next_token = next(self.tokens)\n except StopIteration:\n if not patch_skip or next_token in ('=', '(', '%'):\n patch_tokens = patch_value + patch_tokens\n if self.pfile:\n self.pfile.write(patch_tokens)\n raise\n if not patch_skip or next_token in ('=', '(', '%'):\n patch_tokens = patch_value + patch_tokens\n if self.pfile:\n self.pfile.write(patch_tokens)\n self.token, self.prior_token = next_token, self.token\n",
"role": "user"
},
{
"content": "update_tokens",
"role": "assistant"
}
] |
def x(self, v_values, next_value, v_idx=None, n_vals=1):
for _ in range(n_vals):
if v_idx:
try:
v_i = next(v_idx)
except StopIteration:
if next_value is not None:
warnings.warn(
'f90nml: warning: Value {0} is not assigned to any variable and has been removed.'
.format(next_value))
break
v_s = [(self.default_start_index if idx is None else idx) for
idx in v_idx.first]
if not self.row_major:
v_i = v_i[::-1]
v_s = v_s[::-1]
if not self.sparse_arrays:
pad_array(v_values, list(zip(v_i, v_s)))
v_subval = v_values
for i_v, i_s in zip(v_i[:-1], v_s[:-1]):
try:
v_subval = v_subval[i_v - i_s]
except IndexError:
size = len(v_subval)
v_subval.extend([] for _ in range(size, i_v - i_s + 1))
v_subval = v_subval[i_v - i_s]
i_v, i_s = v_i[-1], v_s[-1]
try:
v_subval[i_v - i_s] = next_value
except IndexError:
size = len(v_subval)
v_subval.extend(None for _ in range(size, i_v - i_s + 1))
v_subval[i_v - i_s] = next_value
else:
v_values.append(next_value)
|
append_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v_values, next_value, v_idx=None, n_vals=1):\n for _ in range(n_vals):\n if v_idx:\n try:\n v_i = next(v_idx)\n except StopIteration:\n if next_value is not None:\n warnings.warn(\n 'f90nml: warning: Value {0} is not assigned to any variable and has been removed.'\n .format(next_value))\n break\n v_s = [(self.default_start_index if idx is None else idx) for\n idx in v_idx.first]\n if not self.row_major:\n v_i = v_i[::-1]\n v_s = v_s[::-1]\n if not self.sparse_arrays:\n pad_array(v_values, list(zip(v_i, v_s)))\n v_subval = v_values\n for i_v, i_s in zip(v_i[:-1], v_s[:-1]):\n try:\n v_subval = v_subval[i_v - i_s]\n except IndexError:\n size = len(v_subval)\n v_subval.extend([] for _ in range(size, i_v - i_s + 1))\n v_subval = v_subval[i_v - i_s]\n i_v, i_s = v_i[-1], v_s[-1]\n try:\n v_subval[i_v - i_s] = next_value\n except IndexError:\n size = len(v_subval)\n v_subval.extend(None for _ in range(size, i_v - i_s + 1))\n v_subval[i_v - i_s] = next_value\n else:\n v_values.append(next_value)\n",
"role": "user"
},
{
"content": "append_value",
"role": "assistant"
}
] |
def x(im):
from IPython.core import display
b = BytesIO()
im.save(b, format='png')
data = b.getvalue()
ip_img = display.Image(data=data, format='png', embed=True)
return ip_img._repr_png_()
|
display_pil_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(im):\n from IPython.core import display\n b = BytesIO()\n im.save(b, format='png')\n data = b.getvalue()\n ip_img = display.Image(data=data, format='png', embed=True)\n return ip_img._repr_png_()\n",
"role": "user"
},
{
"content": "display_pil_image",
"role": "assistant"
}
] |
def x(self, service_name, **parameters):
query_parameters = []
for key, value in parameters.items():
if isinstance(value, (list, tuple)):
value = ','.join([str(member) for member in value])
if isinstance(value, bool):
value = 'true' if value else 'false'
query_parameters.append('{}={}'.format(key, value))
if query_parameters:
uri = '{}{}?{}'.format(self.base_url, service_name, '&'.join(
query_parameters))
else:
uri = '{}{}'.format(self.base_url, service_name)
return uri
|
prepare_uri
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, service_name, **parameters):\n query_parameters = []\n for key, value in parameters.items():\n if isinstance(value, (list, tuple)):\n value = ','.join([str(member) for member in value])\n if isinstance(value, bool):\n value = 'true' if value else 'false'\n query_parameters.append('{}={}'.format(key, value))\n if query_parameters:\n uri = '{}{}?{}'.format(self.base_url, service_name, '&'.join(\n query_parameters))\n else:\n uri = '{}{}'.format(self.base_url, service_name)\n return uri\n",
"role": "user"
},
{
"content": "prepare_uri",
"role": "assistant"
}
] |
def x(self, response):
waiting_time = int(response.headers.get('Retry-After', 10))
time.sleep(waiting_time)
|
handle_rate_exceeded
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, response):\n waiting_time = int(response.headers.get('Retry-After', 10))\n time.sleep(waiting_time)\n",
"role": "user"
},
{
"content": "handle_rate_exceeded",
"role": "assistant"
}
] |
def x(self, send_method, service_name, data=None, **kwargs):
valid_response = False
raw = kwargs.pop('raw', False)
while not valid_response:
headers = dict(Authorization=self.token)
uri = self._prepare_uri(service_name, **kwargs)
logger.debug(' '.join(map(str, (headers, uri, data))))
response = send_method(uri, headers=headers, json=data)
content_type = response.headers['Content-Type'].split(';')[0]
if response.content and content_type == 'application/json':
response_data = response.json()
if 'response' in response_data:
response_data = response_data['response']
elif response.content:
return response.content
else:
return None
try:
self.check_errors(response, response_data)
except RateExceeded:
self._handle_rate_exceeded(response)
except NoAuth:
self.update_token()
else:
valid_response = True
if raw:
return response.json()
return response_data
|
send
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, send_method, service_name, data=None, **kwargs):\n valid_response = False\n raw = kwargs.pop('raw', False)\n while not valid_response:\n headers = dict(Authorization=self.token)\n uri = self._prepare_uri(service_name, **kwargs)\n logger.debug(' '.join(map(str, (headers, uri, data))))\n response = send_method(uri, headers=headers, json=data)\n content_type = response.headers['Content-Type'].split(';')[0]\n if response.content and content_type == 'application/json':\n response_data = response.json()\n if 'response' in response_data:\n response_data = response_data['response']\n elif response.content:\n return response.content\n else:\n return None\n try:\n self.check_errors(response, response_data)\n except RateExceeded:\n self._handle_rate_exceeded(response)\n except NoAuth:\n self.update_token()\n else:\n valid_response = True\n if raw:\n return response.json()\n return response_data\n",
"role": "user"
},
{
"content": "send",
"role": "assistant"
}
] |
def x(self):
logger.info('updating token')
if None in self.credentials.values():
raise RuntimeError('You must provide an username and a password')
credentials = dict(auth=self.credentials)
url = self.test_url if self.test else self.url
response = requests.post(url + 'auth', json=credentials)
data = response.json()['response']
if 'error_id' in data and data['error_id'] == 'NOAUTH':
raise BadCredentials()
if 'error_code' in data and data['error_code'] == 'RATE_EXCEEDED':
time.sleep(150)
return
if 'error_code' in data or 'error_id' in data:
raise AppNexusException(response)
self.token = data['token']
self.save_token()
return self.token
|
update_token
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n logger.info('updating token')\n if None in self.credentials.values():\n raise RuntimeError('You must provide an username and a password')\n credentials = dict(auth=self.credentials)\n url = self.test_url if self.test else self.url\n response = requests.post(url + 'auth', json=credentials)\n data = response.json()['response']\n if 'error_id' in data and data['error_id'] == 'NOAUTH':\n raise BadCredentials()\n if 'error_code' in data and data['error_code'] == 'RATE_EXCEEDED':\n time.sleep(150)\n return\n if 'error_code' in data or 'error_id' in data:\n raise AppNexusException(response)\n self.token = data['token']\n self.save_token()\n return self.token\n",
"role": "user"
},
{
"content": "update_token",
"role": "assistant"
}
] |
def x(self, response, data):
if 'error_id' in data:
error_id = data['error_id']
if error_id in self.error_ids:
raise self.error_ids[error_id](response)
if 'error_code' in data:
error_code = data['error_code']
if error_code in self.error_codes:
raise self.error_codes[error_code](response)
if 'error_code' in data or 'error_id' in data:
raise AppNexusException(response)
|
check_errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, response, data):\n if 'error_id' in data:\n error_id = data['error_id']\n if error_id in self.error_ids:\n raise self.error_ids[error_id](response)\n if 'error_code' in data:\n error_code = data['error_code']\n if error_code in self.error_codes:\n raise self.error_codes[error_code](response)\n if 'error_code' in data or 'error_id' in data:\n raise AppNexusException(response)\n",
"role": "user"
},
{
"content": "check_errors",
"role": "assistant"
}
] |
def x(self, service_name, **kwargs):
return self._send(requests.get, service_name, **kwargs)
|
get
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, service_name, **kwargs):\n return self._send(requests.get, service_name, **kwargs)\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, service_name, json, **kwargs):
return self._send(requests.put, service_name, json, **kwargs)
|
modify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, service_name, json, **kwargs):\n return self._send(requests.put, service_name, json, **kwargs)\n",
"role": "user"
},
{
"content": "modify",
"role": "assistant"
}
] |
def x(self, service_name, json, **kwargs):
return self._send(requests.post, service_name, json, **kwargs)
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, service_name, json, **kwargs):\n return self._send(requests.post, service_name, json, **kwargs)\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(self, service_name, *ids, **kwargs):
return self._send(requests.delete, service_name, id=ids, **kwargs)
|
delete
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, service_name, *ids, **kwargs):\n return self._send(requests.delete, service_name, id=ids, **kwargs)\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
def x(self, x, y, color='black'):
p = Point(x, y)
p.fill(color)
p.draw(self)
|
plot
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, color='black'):\n p = Point(x, y)\n p.fill(color)\n p.draw(self)\n",
"role": "user"
},
{
"content": "plot",
"role": "assistant"
}
] |
def x(self, x, y, color='black'):
p = Point(x, y)
p.fill(color)
p.draw(self)
p.t = lambda v: v
p.tx = lambda v: v
p.ty = lambda v: v
|
plotPixel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x, y, color='black'):\n p = Point(x, y)\n p.fill(color)\n p.draw(self)\n p.t = lambda v: v\n p.tx = lambda v: v\n p.ty = lambda v: v\n",
"role": "user"
},
{
"content": "plotPixel",
"role": "assistant"
}
] |
def x(self):
self.mouse_x.value = -1
self.mouse_y.value = -1
while self.mouse_x.value == -1 and self.mouse_y.value == -1:
time.sleep(0.1)
return self.mouse_x.value, self.mouse_y.value
|
getMouse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.mouse_x.value = -1\n self.mouse_y.value = -1\n while self.mouse_x.value == -1 and self.mouse_y.value == -1:\n time.sleep(0.1)\n return self.mouse_x.value, self.mouse_y.value\n",
"role": "user"
},
{
"content": "getMouse",
"role": "assistant"
}
] |
def x(app, pagename, templatename, context, doctree):
assert app or pagename or templatename
if 'script_files' in context and doctree and any(hasattr(n,
'disqus_shortname') for n in doctree.traverse()):
context['script_files'] = context['script_files'][:] + [
'_static/disqus.js']
|
event_html_page_context
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(app, pagename, templatename, context, doctree):\n assert app or pagename or templatename\n if 'script_files' in context and doctree and any(hasattr(n,\n 'disqus_shortname') for n in doctree.traverse()):\n context['script_files'] = context['script_files'][:] + [\n '_static/disqus.js']\n",
"role": "user"
},
{
"content": "event_html_page_context",
"role": "assistant"
}
] |
def x(app):
app.add_config_value('disqus_shortname', None, True)
app.add_directive('disqus', DisqusDirective)
app.add_node(DisqusNode, html=(DisqusNode.visit, DisqusNode.depart))
app.config.html_static_path.append(os.path.relpath(STATIC_DIR, app.confdir)
)
app.connect('html-page-context', event_html_page_context)
return dict(version=__version__)
|
setup
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(app):\n app.add_config_value('disqus_shortname', None, True)\n app.add_directive('disqus', DisqusDirective)\n app.add_node(DisqusNode, html=(DisqusNode.visit, DisqusNode.depart))\n app.config.html_static_path.append(os.path.relpath(STATIC_DIR, app.confdir)\n )\n app.connect('html-page-context', event_html_page_context)\n return dict(version=__version__)\n",
"role": "user"
},
{
"content": "setup",
"role": "assistant"
}
] |
def x(spht, node):
html_attrs = {'ids': ['disqus_thread'], 'data-disqus-shortname': node.
disqus_shortname, 'data-disqus-identifier': node.disqus_identifier}
spht.body.append(spht.starttag(node, 'div', '', **html_attrs))
|
visit
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spht, node):\n html_attrs = {'ids': ['disqus_thread'], 'data-disqus-shortname': node.\n disqus_shortname, 'data-disqus-identifier': node.disqus_identifier}\n spht.body.append(spht.starttag(node, 'div', '', **html_attrs))\n",
"role": "user"
},
{
"content": "visit",
"role": "assistant"
}
] |
def x(self):
disqus_shortname = self.state.document.settings.env.config.disqus_shortname
if not disqus_shortname:
raise ExtensionError(
'disqus_shortname config value must be set for the disqus extension to work.'
)
if not RE_SHORTNAME.match(disqus_shortname):
raise ExtensionError(
'disqus_shortname config value must be 3-50 letters, numbers, and hyphens only.'
)
return disqus_shortname
|
get_shortname
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n disqus_shortname = self.state.document.settings.env.config.disqus_shortname\n if not disqus_shortname:\n raise ExtensionError(\n 'disqus_shortname config value must be set for the disqus extension to work.'\n )\n if not RE_SHORTNAME.match(disqus_shortname):\n raise ExtensionError(\n 'disqus_shortname config value must be 3-50 letters, numbers, and hyphens only.'\n )\n return disqus_shortname\n",
"role": "user"
},
{
"content": "get_shortname",
"role": "assistant"
}
] |
def x(self):
if 'disqus_identifier' in self.options:
return self.options['disqus_identifier']
title_nodes = self.state.document.traverse(nodes.title)
if not title_nodes:
raise DisqusError(
'No title nodes found in document, cannot derive disqus_identifier config value.'
)
return title_nodes[0].astext()
|
get_identifier
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if 'disqus_identifier' in self.options:\n return self.options['disqus_identifier']\n title_nodes = self.state.document.traverse(nodes.title)\n if not title_nodes:\n raise DisqusError(\n 'No title nodes found in document, cannot derive disqus_identifier config value.'\n )\n return title_nodes[0].astext()\n",
"role": "user"
},
{
"content": "get_identifier",
"role": "assistant"
}
] |
def x(self):
disqus_shortname = self.get_shortname()
disqus_identifier = self.get_identifier()
return [DisqusNode(disqus_shortname, disqus_identifier)]
|
run
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n disqus_shortname = self.get_shortname()\n disqus_identifier = self.get_identifier()\n return [DisqusNode(disqus_shortname, disqus_identifier)]\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(func, params):
sig = inspect.signature(func)
params = Projection(sig.parameters.keys(), params)
return functools.partial(func, **params)
|
attach
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, params):\n sig = inspect.signature(func)\n params = Projection(sig.parameters.keys(), params)\n return functools.partial(func, **params)\n",
"role": "user"
},
{
"content": "attach",
"role": "assistant"
}
] |
def x(overrides):
pmxbot.config = config = ConfigDict()
config.setdefault('bot_nickname', 'pmxbot')
config.update(overrides)
return config
|
init_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(overrides):\n pmxbot.config = config = ConfigDict()\n config.setdefault('bot_nickname', 'pmxbot')\n config.update(overrides)\n return config\n",
"role": "user"
},
{
"content": "init_config",
"role": "assistant"
}
] |
def x(config):
config = init_config(config)
_setup_logging()
_load_library_extensions()
if not Handler._registry:
raise RuntimeError('No handlers registered')
class_ = _load_bot_class()
config.setdefault('log_channels', [])
config.setdefault('other_channels', [])
channels = config.log_channels + config.other_channels
log.info('Running with config')
log.info(pprint.pformat(config))
host = config.get('server_host', 'localhost')
port = config.get('server_port', 6667)
return class_(host, port, config.bot_nickname, channels=channels,
password=config.get('password'))
|
initialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(config):\n config = init_config(config)\n _setup_logging()\n _load_library_extensions()\n if not Handler._registry:\n raise RuntimeError('No handlers registered')\n class_ = _load_bot_class()\n config.setdefault('log_channels', [])\n config.setdefault('other_channels', [])\n channels = config.log_channels + config.other_channels\n log.info('Running with config')\n log.info(pprint.pformat(config))\n host = config.get('server_host', 'localhost')\n port = config.get('server_port', 6667)\n return class_(host, port, config.bot_nickname, channels=channels,\n password=config.get('password'))\n",
"role": "user"
},
{
"content": "initialize",
"role": "assistant"
}
] |
def x():
group = 'pmxbot_filters'
eps = entrypoints.get_group_all(group=group)
return [ep.load() for ep in eps]
|
load_filters
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n group = 'pmxbot_filters'\n eps = entrypoints.get_group_all(group=group)\n return [ep.load() for ep in eps]\n",
"role": "user"
},
{
"content": "load_filters",
"role": "assistant"
}
] |
def x(cls, items, **defaults):
properties = defaults
for item in items:
if isinstance(item, type) and issubclass(item, Sentinel):
item = item()
if isinstance(item, Sentinel):
properties.update(item.properties)
continue
yield AugmentableMessage(item, **properties)
|
augment_items
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, items, **defaults):\n properties = defaults\n for item in items:\n if isinstance(item, type) and issubclass(item, Sentinel):\n item = item()\n if isinstance(item, Sentinel):\n properties.update(item.properties)\n continue\n yield AugmentableMessage(item, **properties)\n",
"role": "user"
},
{
"content": "augment_items",
"role": "assistant"
}
] |
def x(cls, message, channel):
return (handler for handler in cls._registry if isinstance(handler, cls
) and handler.match(message, channel))
|
find_matching
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, message, channel):\n return (handler for handler in cls._registry if isinstance(handler, cls\n ) and handler.match(message, channel))\n",
"role": "user"
},
{
"content": "find_matching",
"role": "assistant"
}
] |
def x(self, func):
self.func = func
self._set_implied_name()
self.register()
return func
|
decorate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func):\n self.func = func\n self._set_implied_name()\n self.register()\n return func\n",
"role": "user"
},
{
"content": "decorate",
"role": "assistant"
}
] |
def x(self):
if getattr(self, 'name', None) is None:
self.name = self.func.__name__
self.name = self.name.lower()
|
set_implied_name
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if getattr(self, 'name', None) is None:\n self.name = self.func.__name__\n self.name = self.name.lower()\n",
"role": "user"
},
{
"content": "set_implied_name",
"role": "assistant"
}
] |
def x(self, func):
if not self.doc and func.__doc__:
self.doc = func.__doc__.strip().replace('\n', ' ')
|
set_doc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, func):\n if not self.doc and func.__doc__:\n self.doc = func.__doc__.strip().replace('\\n', ' ')\n",
"role": "user"
},
{
"content": "set_doc",
"role": "assistant"
}
] |
def x(self, channel, message):
return all(filter(channel, message) for filter in _load_filters())
|
allow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, channel, message):\n return all(filter(channel, message) for filter in _load_filters())\n",
"role": "user"
},
{
"content": "allow",
"role": "assistant"
}
] |
def x(self, channel, output):
augmented = Sentinel.augment_items(output, channel=channel, secret=False)
for message in augmented:
self.out(message.channel, message, not message.secret)
|
handle_output
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, channel, output):\n augmented = Sentinel.augment_items(output, channel=channel, secret=False)\n for message in augmented:\n self.out(message.channel, message, not message.secret)\n",
"role": "user"
},
{
"content": "handle_output",
"role": "assistant"
}
] |
def x(self, channel, nick, msg):
messages = ()
for handler in Handler.find_matching(msg, channel):
exception_handler = functools.partial(self._handle_exception,
handler=handler)
rest = handler.process(msg)
client = connection = event = None
match = rest
f = handler.attach(locals())
results = pmxbot.itertools.generate_results(f)
clean_results = pmxbot.itertools.trap_exceptions(results,
exception_handler)
messages = itertools.chain(messages, clean_results)
if not handler.allow_chain:
break
self._handle_output(channel, messages)
|
handle_action
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, channel, nick, msg):\n messages = ()\n for handler in Handler.find_matching(msg, channel):\n exception_handler = functools.partial(self._handle_exception,\n handler=handler)\n rest = handler.process(msg)\n client = connection = event = None\n match = rest\n f = handler.attach(locals())\n results = pmxbot.itertools.generate_results(f)\n clean_results = pmxbot.itertools.trap_exceptions(results,\n exception_handler)\n messages = itertools.chain(messages, clean_results)\n if not handler.allow_chain:\n break\n self._handle_output(channel, messages)\n",
"role": "user"
},
{
"content": "handle_action",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.