source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, filename, mode='pickle', counter=None): self.saveWeights(filename, mode, counter)
saveWeightsToFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, mode='pickle', counter=None):\n self.saveWeights(filename, mode, counter)\n", "role": "user" }, { "content": "saveWeightsToFile", "role": "assistant" } ]
def x(self, filename, mode='pickle', counter=None): if '?' in filename: import re char = '?' match = re.search(re.escape(char) + '+', filename) if match: num = self.epoch if counter != None: num = counter elif self.totalEpoch != 0: num = self.totalEpoch fstring = '%%0%dd' % len(match.group()) filename = filename[:match.start() ] + fstring % self.epoch + filename[match.end():] self.lastAutoSaveWeightsFilename = filename if mode == 'pickle': mylist = self.arrayify() import pickle fp = open(filename, 'w') pickle.dump(mylist, fp) fp.close() elif mode in ['plain', 'conx']: fp = open(filename, 'w') fp.write('# Biases\n') for layer in self.layers: if layer.type != 'Input': fp.write('# Layer: ' + layer.name + '\n') for i in range(layer.size): fp.write('%f ' % layer.weight[i]) fp.write('\n') fp.write('# Weights\n') for connection in self.connections: fp.write('# from ' + connection.fromLayer.name + ' to ' + connection.toLayer.name + '\n') for i in range(connection.fromLayer.size): for j in range(connection.toLayer.size): fp.write('%f ' % connection.weight[i][j]) fp.write('\n') fp.close() elif mode == 'tlearn': fp = open(filename, 'w') fp.write('NETWORK CONFIGURED BY TLEARN\n') fp.write('# weights after %d sweeps\n' % self.epoch) fp.write('# WEIGHTS\n') cnt = 1 for lto in self.layers: if lto.type != 'Input': for j in range(lto.size): fp.write('# TO NODE %d\n' % cnt) fp.write('%f\n' % lto.weight[j]) for lfrom in self.layers: try: connection = self.getConnection(lfrom.name, lto .name) for i in range(connection.fromLayer.size): fp.write('%f\n' % connection.weight[i][j]) except NetworkError: for i in range(lfrom.size): fp.write('%f\n' % 0.0) cnt += 1 fp.close() else: raise ValueError('Unknown mode in saveWeights().', mode)
saveWeights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, mode='pickle', counter=None):\n if '?' in filename:\n import re\n char = '?'\n match = re.search(re.escape(char) + '+', filename)\n if match:\n num = self.epoch\n if counter != None:\n num = counter\n elif self.totalEpoch != 0:\n num = self.totalEpoch\n fstring = '%%0%dd' % len(match.group())\n filename = filename[:match.start()\n ] + fstring % self.epoch + filename[match.end():]\n self.lastAutoSaveWeightsFilename = filename\n if mode == 'pickle':\n mylist = self.arrayify()\n import pickle\n fp = open(filename, 'w')\n pickle.dump(mylist, fp)\n fp.close()\n elif mode in ['plain', 'conx']:\n fp = open(filename, 'w')\n fp.write('# Biases\\n')\n for layer in self.layers:\n if layer.type != 'Input':\n fp.write('# Layer: ' + layer.name + '\\n')\n for i in range(layer.size):\n fp.write('%f ' % layer.weight[i])\n fp.write('\\n')\n fp.write('# Weights\\n')\n for connection in self.connections:\n fp.write('# from ' + connection.fromLayer.name + ' to ' +\n connection.toLayer.name + '\\n')\n for i in range(connection.fromLayer.size):\n for j in range(connection.toLayer.size):\n fp.write('%f ' % connection.weight[i][j])\n fp.write('\\n')\n fp.close()\n elif mode == 'tlearn':\n fp = open(filename, 'w')\n fp.write('NETWORK CONFIGURED BY TLEARN\\n')\n fp.write('# weights after %d sweeps\\n' % self.epoch)\n fp.write('# WEIGHTS\\n')\n cnt = 1\n for lto in self.layers:\n if lto.type != 'Input':\n for j in range(lto.size):\n fp.write('# TO NODE %d\\n' % cnt)\n fp.write('%f\\n' % lto.weight[j])\n for lfrom in self.layers:\n try:\n connection = self.getConnection(lfrom.name, lto\n .name)\n for i in range(connection.fromLayer.size):\n fp.write('%f\\n' % connection.weight[i][j])\n except NetworkError:\n for i in range(lfrom.size):\n fp.write('%f\\n' % 0.0)\n cnt += 1\n fp.close()\n else:\n raise ValueError('Unknown mode in saveWeights().', mode)\n", "role": "user" }, { "content": "saveWeights", "role": "assistant" } ]
def x(self, filename, mode='pickle'): if mode == 'pickle': import pickle fp = open(filename, 'r') mylist = pickle.load(fp) fp.close() self.unArrayify(mylist) elif mode in ['plain', 'conx']: arr = [] fp = open(filename, 'r') lines = fp.readlines() for line in lines: line = line.strip() if line == '' or line[0] == '#': pass else: data = list(map(float, line.split())) arr.extend(data) self.unArrayify(arr) fp.close() elif mode == 'tlearn': fp = open(filename, 'r') fp.readline() fp.readline() fp.readline() cnt = 1 for lto in self.layers: if lto.type != 'Input': for j in range(lto.size): fp.readline() lto.weight[j] = float(fp.readline()) for lfrom in self.layers: try: connection = self.getConnection(lfrom.name, lto .name) for i in range(connection.fromLayer.size): connection.weight[i][j] = float(fp.readline()) except NetworkError: for i in range(lfrom.size): fp.readline() cnt += 1 fp.close() elif mode == 'nbench': fp = open(filename, 'r') line = fp.readline() while line[:8] != 'Ninputs:': line = fp.readline() itxt, inputs, ttxt, total, otxt, outputs = line.split() inputs, total, outputs = int(inputs), int(total), int(outputs) hiddens = total - inputs - 1 self.addLayer('input', inputs) for i in range(hiddens): self.addLayer('hidden%d' % i, 1) self.addLayer('output', outputs) for i in range(hiddens): self.connect('input', 'hidden%d' % i) self.connect('input', 'output') for i in range(hiddens - 1): for j in range(i + 1, hiddens): if j != i: self.connect('hidden%d' % i, 'hidden%d' % j) for i in range(hiddens): self.connect('hidden%d' % i, 'output') for outcount in range(outputs): while line[:9] != '# Output:': line = fp.readline() line = fp.readline() line = fp.readline() data = '' while line and line[0] != '#': data += ' ' + line.strip() line = fp.readline() weights = list(map(float, data.split())) self['output'].weight[outcount] = weights[0] next = 1 for i in range(self['input'].size): self['input', 'output'].weight[i][outcount] = weights[next] next += 1 for h in range(hiddens): for i in range(self['hidden%d' % h].size): self['hidden%d' % h, 'output'].weight[i][outcount ] = weights[next] next += 1 while line and line[0] != '$': line = fp.readline() line = fp.readline() for hidcount in range(hiddens): weights = [] while line and line[0] != '$' and line[0] != '#': weights.extend(list(map(float, line.split()))) line = fp.readline() self['hidden%d' % hidcount].weight[0] = weights[0] next = 1 for i in range(self['input'].size): for j in range(self['hidden%d' % hidcount].size): self['input', 'hidden%d' % hidcount].weight[i][j ] = weights[next] next += 1 for h in range(hidcount): for i in range(self['hidden%d' % h].size): for j in range(self['hidden%d' % hidcount].size): self['hidden%d' % h, 'hidden%d' % hidcount].weight[i][j ] = weights[next] next += 1 line = fp.readline() line = fp.readline() else: raise ValueError('Unknown mode in loadWeights()', mode)
loadWeights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, mode='pickle'):\n if mode == 'pickle':\n import pickle\n fp = open(filename, 'r')\n mylist = pickle.load(fp)\n fp.close()\n self.unArrayify(mylist)\n elif mode in ['plain', 'conx']:\n arr = []\n fp = open(filename, 'r')\n lines = fp.readlines()\n for line in lines:\n line = line.strip()\n if line == '' or line[0] == '#':\n pass\n else:\n data = list(map(float, line.split()))\n arr.extend(data)\n self.unArrayify(arr)\n fp.close()\n elif mode == 'tlearn':\n fp = open(filename, 'r')\n fp.readline()\n fp.readline()\n fp.readline()\n cnt = 1\n for lto in self.layers:\n if lto.type != 'Input':\n for j in range(lto.size):\n fp.readline()\n lto.weight[j] = float(fp.readline())\n for lfrom in self.layers:\n try:\n connection = self.getConnection(lfrom.name, lto\n .name)\n for i in range(connection.fromLayer.size):\n connection.weight[i][j] = float(fp.readline())\n except NetworkError:\n for i in range(lfrom.size):\n fp.readline()\n cnt += 1\n fp.close()\n elif mode == 'nbench':\n fp = open(filename, 'r')\n line = fp.readline()\n while line[:8] != 'Ninputs:':\n line = fp.readline()\n itxt, inputs, ttxt, total, otxt, outputs = line.split()\n inputs, total, outputs = int(inputs), int(total), int(outputs)\n hiddens = total - inputs - 1\n self.addLayer('input', inputs)\n for i in range(hiddens):\n self.addLayer('hidden%d' % i, 1)\n self.addLayer('output', outputs)\n for i in range(hiddens):\n self.connect('input', 'hidden%d' % i)\n self.connect('input', 'output')\n for i in range(hiddens - 1):\n for j in range(i + 1, hiddens):\n if j != i:\n self.connect('hidden%d' % i, 'hidden%d' % j)\n for i in range(hiddens):\n self.connect('hidden%d' % i, 'output')\n for outcount in range(outputs):\n while line[:9] != '# Output:':\n line = fp.readline()\n line = fp.readline()\n line = fp.readline()\n data = ''\n while line and line[0] != '#':\n data += ' ' + line.strip()\n line = fp.readline()\n weights = list(map(float, data.split()))\n self['output'].weight[outcount] = weights[0]\n next = 1\n for i in range(self['input'].size):\n self['input', 'output'].weight[i][outcount] = weights[next]\n next += 1\n for h in range(hiddens):\n for i in range(self['hidden%d' % h].size):\n self['hidden%d' % h, 'output'].weight[i][outcount\n ] = weights[next]\n next += 1\n while line and line[0] != '$':\n line = fp.readline()\n line = fp.readline()\n for hidcount in range(hiddens):\n weights = []\n while line and line[0] != '$' and line[0] != '#':\n weights.extend(list(map(float, line.split())))\n line = fp.readline()\n self['hidden%d' % hidcount].weight[0] = weights[0]\n next = 1\n for i in range(self['input'].size):\n for j in range(self['hidden%d' % hidcount].size):\n self['input', 'hidden%d' % hidcount].weight[i][j\n ] = weights[next]\n next += 1\n for h in range(hidcount):\n for i in range(self['hidden%d' % h].size):\n for j in range(self['hidden%d' % hidcount].size):\n self['hidden%d' % h, 'hidden%d' % hidcount].weight[i][j\n ] = weights[next]\n next += 1\n line = fp.readline()\n line = fp.readline()\n else:\n raise ValueError('Unknown mode in loadWeights()', mode)\n", "role": "user" }, { "content": "loadWeights", "role": "assistant" } ]
def x(self, filename, makeWrapper=1, mode='pickle', counter=None): self.saveNetworkToFile(filename, makeWrapper, mode, counter)
saveNetwork
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, makeWrapper=1, mode='pickle', counter=None):\n self.saveNetworkToFile(filename, makeWrapper, mode, counter)\n", "role": "user" }, { "content": "saveNetwork", "role": "assistant" } ]
def x(self, filename, makeWrapper=1, mode='pickle', counter=None): if '?' in filename: import re char = '?' match = re.search(re.escape(char) + '+', filename) if match: num = self.epoch if counter != None: num = counter elif self.totalEpoch != 0: num = self.totalEpoch fstring = '%%0%dd' % len(match.group()) filename = filename[:match.start()] + fstring % num + filename[ match.end():] self.lastAutoSaveNetworkFilename = filename if mode == 'pickle': import pickle basename = filename.split('.')[0] filename += '.pickle' fp = open(filename, 'w') pickle.dump(self, fp) fp.close() if makeWrapper: fp = open(basename + '.py', 'w') fp.write('from pyrobot.brain.conx import *\n') fp.write('import pickle\n') fp.write("fp = open('%s', 'r')\n" % filename) fp.write('network = pickle.load(fp)') fp.close() print('To load network:') print(' %% python -i %s ' % (basename + '.py')) print(' >>> network.train() # for example') print('--- OR ---') print(' % python') print(' >>> from pyrobot.brain.conx import *') print(' >>> network = loadNetwork(%s)' % filename) print(' >>> network.train() # for example') elif mode in ['plain', 'conx']: fp = open(filename, 'w') fp.write('network, %s\n' % self.__class__.__name__) for layer in self.layers: fp.write('layer, %s, %s\n' % (layer.name, layer.size)) for i in range(layer.size): fp.write('%f ' % layer.weight[i]) fp.write('\n') for connection in self.connections: fp.write('connection, %s, %s\n' % (connection.fromLayer.name, connection.toLayer.name)) for i in range(connection.fromLayer.size): for j in range(connection.toLayer.size): fp.write('%f ' % connection.weight[i][j]) fp.write('\n') fp.close()
saveNetworkToFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, makeWrapper=1, mode='pickle', counter=None):\n if '?' in filename:\n import re\n char = '?'\n match = re.search(re.escape(char) + '+', filename)\n if match:\n num = self.epoch\n if counter != None:\n num = counter\n elif self.totalEpoch != 0:\n num = self.totalEpoch\n fstring = '%%0%dd' % len(match.group())\n filename = filename[:match.start()] + fstring % num + filename[\n match.end():]\n self.lastAutoSaveNetworkFilename = filename\n if mode == 'pickle':\n import pickle\n basename = filename.split('.')[0]\n filename += '.pickle'\n fp = open(filename, 'w')\n pickle.dump(self, fp)\n fp.close()\n if makeWrapper:\n fp = open(basename + '.py', 'w')\n fp.write('from pyrobot.brain.conx import *\\n')\n fp.write('import pickle\\n')\n fp.write(\"fp = open('%s', 'r')\\n\" % filename)\n fp.write('network = pickle.load(fp)')\n fp.close()\n print('To load network:')\n print(' %% python -i %s ' % (basename + '.py'))\n print(' >>> network.train() # for example')\n print('--- OR ---')\n print(' % python')\n print(' >>> from pyrobot.brain.conx import *')\n print(' >>> network = loadNetwork(%s)' % filename)\n print(' >>> network.train() # for example')\n elif mode in ['plain', 'conx']:\n fp = open(filename, 'w')\n fp.write('network, %s\\n' % self.__class__.__name__)\n for layer in self.layers:\n fp.write('layer, %s, %s\\n' % (layer.name, layer.size))\n for i in range(layer.size):\n fp.write('%f ' % layer.weight[i])\n fp.write('\\n')\n for connection in self.connections:\n fp.write('connection, %s, %s\\n' % (connection.fromLayer.name,\n connection.toLayer.name))\n for i in range(connection.fromLayer.size):\n for j in range(connection.toLayer.size):\n fp.write('%f ' % connection.weight[i][j])\n fp.write('\\n')\n fp.close()\n", "role": "user" }, { "content": "saveNetworkToFile", "role": "assistant" } ]
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1, patterned=0): return self.loadVectorsFromFile(filename, cols, everyNrows, delim, checkEven, patterned)
loadVectors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1,\n patterned=0):\n return self.loadVectorsFromFile(filename, cols, everyNrows, delim,\n checkEven, patterned)\n", "role": "user" }, { "content": "loadVectors", "role": "assistant" } ]
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1, patterned=0): fp = open(filename, 'r') line = fp.readline() lineno = 0 lastLength = None data = [] while line: if lineno % everyNrows == 0: if patterned: linedata1 = [x for x in line.strip().split(delim)] else: linedata1 = [float(x) for x in line.strip().split(delim)] else: lineno += 1 line = fp.readline() continue if cols == None: newdata = linedata1 else: newdata = [] for i in cols: newdata.append(linedata1[i]) if lastLength == None or not checkEven or checkEven and len(newdata ) == lastLength: data.append(newdata) else: raise ValueError('Data Format Error: line = %d, data = %s' % ( lineno, newdata)) lastLength = len(newdata) lineno += 1 line = fp.readline() fp.close() return data
loadVectorsFromFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1,\n patterned=0):\n fp = open(filename, 'r')\n line = fp.readline()\n lineno = 0\n lastLength = None\n data = []\n while line:\n if lineno % everyNrows == 0:\n if patterned:\n linedata1 = [x for x in line.strip().split(delim)]\n else:\n linedata1 = [float(x) for x in line.strip().split(delim)]\n else:\n lineno += 1\n line = fp.readline()\n continue\n if cols == None:\n newdata = linedata1\n else:\n newdata = []\n for i in cols:\n newdata.append(linedata1[i])\n if lastLength == None or not checkEven or checkEven and len(newdata\n ) == lastLength:\n data.append(newdata)\n else:\n raise ValueError('Data Format Error: line = %d, data = %s' % (\n lineno, newdata))\n lastLength = len(newdata)\n lineno += 1\n line = fp.readline()\n fp.close()\n return data\n", "role": "user" }, { "content": "loadVectorsFromFile", "role": "assistant" } ]
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1): self.loadInputPatternsFromFile(filename, cols, everyNrows, delim, checkEven )
loadInputPatterns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.loadInputPatternsFromFile(filename, cols, everyNrows, delim, checkEven\n )\n", "role": "user" }, { "content": "loadInputPatterns", "role": "assistant" } ]
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1): self.inputs = self.loadVectors(filename, cols, everyNrows, delim, checkEven, patterned=1) self.loadOrder = [0] * len(self.inputs) for i in range(len(self.inputs)): self.loadOrder[i] = i
loadInputPatternsFromFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.inputs = self.loadVectors(filename, cols, everyNrows, delim,\n checkEven, patterned=1)\n self.loadOrder = [0] * len(self.inputs)\n for i in range(len(self.inputs)):\n self.loadOrder[i] = i\n", "role": "user" }, { "content": "loadInputPatternsFromFile", "role": "assistant" } ]
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1): self.loadInputsFromFile(filename, cols, everyNrows, delim, checkEven)
loadInputs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.loadInputsFromFile(filename, cols, everyNrows, delim, checkEven)\n", "role": "user" }, { "content": "loadInputs", "role": "assistant" } ]
def x(self, filename): fp = open(filename, 'w') for input in self.inputs: vec = self.replacePatterns(input) for item in vec: fp.write('%f ' % item) fp.write('\n')
saveInputsToFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n fp = open(filename, 'w')\n for input in self.inputs:\n vec = self.replacePatterns(input)\n for item in vec:\n fp.write('%f ' % item)\n fp.write('\\n')\n", "role": "user" }, { "content": "saveInputsToFile", "role": "assistant" } ]
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1): self.loadTargetsFromFile(filename, cols, everyNrows, delim, checkEven)
loadTargets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.loadTargetsFromFile(filename, cols, everyNrows, delim, checkEven)\n", "role": "user" }, { "content": "loadTargets", "role": "assistant" } ]
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1): self.targets = self.loadVectors(filename, cols, everyNrows, delim, checkEven)
loadTargetsFromFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.targets = self.loadVectors(filename, cols, everyNrows, delim,\n checkEven)\n", "role": "user" }, { "content": "loadTargetsFromFile", "role": "assistant" } ]
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1): self.loadTargetPatternssFromFile(filename, cols, everyNrows, delim, checkEven)
loadTargetPatterns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.loadTargetPatternssFromFile(filename, cols, everyNrows, delim,\n checkEven)\n", "role": "user" }, { "content": "loadTargetPatterns", "role": "assistant" } ]
def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1): self.targets = self.loadVectors(filename, cols, everyNrows, delim, checkEven, patterned=1)
loadTargetPatternsFromFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, cols=None, everyNrows=1, delim=' ', checkEven=1):\n self.targets = self.loadVectors(filename, cols, everyNrows, delim,\n checkEven, patterned=1)\n", "role": "user" }, { "content": "loadTargetPatternsFromFile", "role": "assistant" } ]
def x(self, filename): fp = open(filename, 'w') for target in self.targets: vec = self.replacePatterns(target) for item in vec: fp.write('%f ' % item) fp.write('\n')
saveTargetsToFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n fp = open(filename, 'w')\n for target in self.targets:\n vec = self.replacePatterns(target)\n for item in vec:\n fp.write('%f ' % item)\n fp.write('\\n')\n", "role": "user" }, { "content": "saveTargetsToFile", "role": "assistant" } ]
def x(self, filename): fp = open(filename, 'w') for i in range(len(self.inputs)): try: vec = self.replacePatterns(self.inputs[i]) for item in vec: fp.write('%f ' % item) except: pass try: vec = self.replacePatterns(self.targets[i]) for item in vec: fp.write('%f ' % item) except: pass fp.write('\n')
saveDataToFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename):\n fp = open(filename, 'w')\n for i in range(len(self.inputs)):\n try:\n vec = self.replacePatterns(self.inputs[i])\n for item in vec:\n fp.write('%f ' % item)\n except:\n pass\n try:\n vec = self.replacePatterns(self.targets[i])\n for item in vec:\n fp.write('%f ' % item)\n except:\n pass\n fp.write('\\n')\n", "role": "user" }, { "content": "saveDataToFile", "role": "assistant" } ]
def x(self, filename, ocnt=-1): if ocnt == -1: ocnt = int(self.layers[len(self.layers) - 1].size) fp = open(filename, 'r') line = fp.readline() self.targets = [] self.inputs = [] while line: data = list(map(float, line.split())) cnt = len(data) icnt = cnt - ocnt self.inputs.append(self.patternVector(data[0:icnt])) self.targets.append(self.patternVector(data[icnt:])) line = fp.readline() self.loadOrder = [0] * len(self.inputs) for i in range(len(self.inputs)): self.loadOrder[i] = i
loadDataFromFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, ocnt=-1):\n if ocnt == -1:\n ocnt = int(self.layers[len(self.layers) - 1].size)\n fp = open(filename, 'r')\n line = fp.readline()\n self.targets = []\n self.inputs = []\n while line:\n data = list(map(float, line.split()))\n cnt = len(data)\n icnt = cnt - ocnt\n self.inputs.append(self.patternVector(data[0:icnt]))\n self.targets.append(self.patternVector(data[icnt:]))\n line = fp.readline()\n self.loadOrder = [0] * len(self.inputs)\n for i in range(len(self.inputs)):\n self.loadOrder[i] = i\n", "role": "user" }, { "content": "loadDataFromFile", "role": "assistant" } ]
def x(self, name, layer): if (name, layer) in self.patterns: return self.patterns[name, layer] else: return self.patterns[name]
lookupPattern
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, layer):\n if (name, layer) in self.patterns:\n return self.patterns[name, layer]\n else:\n return self.patterns[name]\n", "role": "user" }, { "content": "lookupPattern", "role": "assistant" } ]
def x(self, vector, layer=None): if not self.patterned: return vector if type(vector) == str: return self.replacePatterns(self.lookupPattern(vector, layer), layer) elif type(vector) != list: return vector vec = [] for v in vector: if type(v) == str: retval = self.replacePatterns(self.lookupPattern(v, layer), layer) if type(retval) == list: vec.extend(retval) else: vec.append(retval) else: vec.append(v) return vec
replacePatterns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vector, layer=None):\n if not self.patterned:\n return vector\n if type(vector) == str:\n return self.replacePatterns(self.lookupPattern(vector, layer), layer)\n elif type(vector) != list:\n return vector\n vec = []\n for v in vector:\n if type(v) == str:\n retval = self.replacePatterns(self.lookupPattern(v, layer), layer)\n if type(retval) == list:\n vec.extend(retval)\n else:\n vec.append(retval)\n else:\n vec.append(v)\n return vec\n", "role": "user" }, { "content": "replacePatterns", "role": "assistant" } ]
def x(self, vector): if not self.patterned: return vector if type(vector) == int: if self.getWord(vector) != '': return self.getWord(vector) else: return vector elif type(vector) == float: if self.getWord(vector) != '': return self.getWord(vector) else: return vector elif type(vector) == str: return vector elif type(vector) == list: if self.getWord(vector) != '': return self.getWord(vector) vec = [] for v in vector: if self.getWord(v) != '': retval = self.getWord(v) vec.append(retval) else: retval = self.patternVector(v) vec.append(retval) return vec
patternVector
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vector):\n if not self.patterned:\n return vector\n if type(vector) == int:\n if self.getWord(vector) != '':\n return self.getWord(vector)\n else:\n return vector\n elif type(vector) == float:\n if self.getWord(vector) != '':\n return self.getWord(vector)\n else:\n return vector\n elif type(vector) == str:\n return vector\n elif type(vector) == list:\n if self.getWord(vector) != '':\n return self.getWord(vector)\n vec = []\n for v in vector:\n if self.getWord(v) != '':\n retval = self.getWord(v)\n vec.append(retval)\n else:\n retval = self.patternVector(v)\n vec.append(retval)\n return vec\n", "role": "user" }, { "content": "patternVector", "role": "assistant" } ]
def x(self, word): if word in self.patterns: return self.patterns[word] else: raise ValueError('Unknown pattern in getPattern().', word)
getPattern
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, word):\n if word in self.patterns:\n return self.patterns[word]\n else:\n raise ValueError('Unknown pattern in getPattern().', word)\n", "role": "user" }, { "content": "getPattern", "role": "assistant" } ]
def x(self, pattern, returnDiff=0): minDist = 10000 closest = None for w in self.patterns: if type(self.patterns[w]) in [int, float, int]: continue if len(self.patterns[w]) == len(pattern): dist = reduce(operator.add, [((a - b) ** 2) for a, b in zip( self.patterns[w], pattern)]) if dist == 0.0: if returnDiff: return w, dist else: return w if dist < minDist: minDist = dist closest = w if returnDiff: return closest, minDist else: return closest
getWord
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pattern, returnDiff=0):\n minDist = 10000\n closest = None\n for w in self.patterns:\n if type(self.patterns[w]) in [int, float, int]:\n continue\n if len(self.patterns[w]) == len(pattern):\n dist = reduce(operator.add, [((a - b) ** 2) for a, b in zip(\n self.patterns[w], pattern)])\n if dist == 0.0:\n if returnDiff:\n return w, dist\n else:\n return w\n if dist < minDist:\n minDist = dist\n closest = w\n if returnDiff:\n return closest, minDist\n else:\n return closest\n", "role": "user" }, { "content": "getWord", "role": "assistant" } ]
def x(self, word, vector): if word in self.patterns: raise NetworkError( 'Pattern key already in use. Call delPattern to free key.', word) else: self.patterns[word] = vector
addPattern
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, word, vector):\n if word in self.patterns:\n raise NetworkError(\n 'Pattern key already in use. Call delPattern to free key.', word)\n else:\n self.patterns[word] = vector\n", "role": "user" }, { "content": "addPattern", "role": "assistant" } ]
def x(self, v1, v2): try: if len(v1) != len(v2): return 0 for x, y in zip(v1, v2): if abs(x - y) > self.tolerance: return 0 return 1 except: try: if abs(v1 - v2) > self.tolerance: return 0 else: return 1 except: return 0
compare
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v1, v2):\n try:\n if len(v1) != len(v2):\n return 0\n for x, y in zip(v1, v2):\n if abs(x - y) > self.tolerance:\n return 0\n return 1\n except:\n try:\n if abs(v1 - v2) > self.tolerance:\n return 0\n else:\n return 1\n except:\n return 0\n", "role": "user" }, { "content": "compare", "role": "assistant" } ]
def x(self, network, listOfLayerNamePairs=None): if listOfLayerNamePairs == None: listOfLayerNamePairs = [] for c in self.connections: listOfLayerNamePairs.append([c.fromLayer.name, c.toLayer.name]) if self.verbosity > 1: print('sharing weights:', self.name, listOfLayerNamePairs) count = 0 for fromLayerName, toLayerName in listOfLayerNamePairs: for c1 in range(len(self.connections)): if self.connections[c1 ].fromLayer.name == fromLayerName and self.connections[c1 ].toLayer.name == toLayerName: for c2 in range(len(network.connections)): if network.connections[c2 ].fromLayer.name == fromLayerName and network.connections[ c2].toLayer.name == toLayerName: if self.connections[c1 ].fromLayer.size != network.connections[c2 ].fromLayer.size or self.connections[c1 ].toLayer.size != network.connections[c2 ].toLayer.size: raise AttributeError( 'shareSomeWeights: layer sizes did not match') count += 1 if count != len(listOfLayerNamePairs): raise AttributeError('shareSomeWeights: layer names did not match') self.sharedWeights = 1 network.sharedWeights = 1 for fromLayerName, toLayerName in listOfLayerNamePairs: for c1 in range(len(self.connections)): if self.connections[c1 ].fromLayer.name == fromLayerName and self.connections[c1 ].toLayer.name == toLayerName: for c2 in range(len(network.connections)): if network.connections[c2 ].fromLayer.name == fromLayerName and network.connections[ c2].toLayer.name == toLayerName: self.connections[c1].weight = network.connections[c2 ].weight for fromLayerName, toLayerName in listOfLayerNamePairs: for l1 in range(len(self.layers)): if self.layers[l1].name == toLayerName: for l2 in range(len(network.layers)): if network.layers[l2].name == toLayerName: self.layers[l1].weight = network.layers[l2].weight
shareWeights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, network, listOfLayerNamePairs=None):\n if listOfLayerNamePairs == None:\n listOfLayerNamePairs = []\n for c in self.connections:\n listOfLayerNamePairs.append([c.fromLayer.name, c.toLayer.name])\n if self.verbosity > 1:\n print('sharing weights:', self.name, listOfLayerNamePairs)\n count = 0\n for fromLayerName, toLayerName in listOfLayerNamePairs:\n for c1 in range(len(self.connections)):\n if self.connections[c1\n ].fromLayer.name == fromLayerName and self.connections[c1\n ].toLayer.name == toLayerName:\n for c2 in range(len(network.connections)):\n if network.connections[c2\n ].fromLayer.name == fromLayerName and network.connections[\n c2].toLayer.name == toLayerName:\n if self.connections[c1\n ].fromLayer.size != network.connections[c2\n ].fromLayer.size or self.connections[c1\n ].toLayer.size != network.connections[c2\n ].toLayer.size:\n raise AttributeError(\n 'shareSomeWeights: layer sizes did not match')\n count += 1\n if count != len(listOfLayerNamePairs):\n raise AttributeError('shareSomeWeights: layer names did not match')\n self.sharedWeights = 1\n network.sharedWeights = 1\n for fromLayerName, toLayerName in listOfLayerNamePairs:\n for c1 in range(len(self.connections)):\n if self.connections[c1\n ].fromLayer.name == fromLayerName and self.connections[c1\n ].toLayer.name == toLayerName:\n for c2 in range(len(network.connections)):\n if network.connections[c2\n ].fromLayer.name == fromLayerName and network.connections[\n c2].toLayer.name == toLayerName:\n self.connections[c1].weight = network.connections[c2\n ].weight\n for fromLayerName, toLayerName in listOfLayerNamePairs:\n for l1 in range(len(self.layers)):\n if self.layers[l1].name == toLayerName:\n for l2 in range(len(network.layers)):\n if network.layers[l2].name == toLayerName:\n self.layers[l1].weight = network.layers[l2].weight\n", "role": "user" }, { "content": "shareWeights", "role": "assistant" } ]
def x(self, *arg, **kw): output = Network.propagate(self, *arg, **kw) if self.interactive: self.updateGraphics() if type(output) == dict: for layerName in output: output[layerName] = [float(x) for x in output[layerName]] return output else: return [float(x) for x in output]
propagate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *arg, **kw):\n output = Network.propagate(self, *arg, **kw)\n if self.interactive:\n self.updateGraphics()\n if type(output) == dict:\n for layerName in output:\n output[layerName] = [float(x) for x in output[layerName]]\n return output\n else:\n return [float(x) for x in output]\n", "role": "user" }, { "content": "propagate", "role": "assistant" } ]
def x(self, filename, mode='pickle'): Network.loadWeights(self, filename, mode) self.updateGraphics()
loadWeightsFromFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, mode='pickle'):\n Network.loadWeights(self, filename, mode)\n self.updateGraphics()\n", "role": "user" }, { "content": "loadWeightsFromFile", "role": "assistant" } ]
def x(self): size = list(range(len(self.layers))) size.reverse() for i in size: layer = self.layers[i] if layer.active: print('%s layer (size %d)' % (layer.name, layer.size)) tlabel, olabel = '', '' if layer.type == 'Output': if self.countWrong: tlabel = ' (%s)' % self.classify(layer.target.tolist()) olabel = ' (%s)' % self.classify(layer.activation.tolist()) if olabel == tlabel: self.numRight += 1 else: olabel += ' *** WRONG ***' self.numWrong += 1 if self.actDisplay is not None: self.actDisplay.showWrong() print('Target : %s%s' % (pretty(layer.target, max=15), tlabel)) print('Activation: %s%s' % (pretty(layer.activation, max=15), olabel)) if self.patterned and layer.type != 'Hidden': targetWord, diff = self.getWord(layer.target, returnDiff=1) if layer.kind == 'Output': if targetWord == None: print('Target Pattern = %s' % 'No match') elif diff == 0.0: print("Target Pattern = '%s'" % targetWord) else: print("Target Pattern = '%s'; difference = %f)" % (targetWord, diff)) actWord, diff = self.getWord(layer.activation, returnDiff=1) if layer.kind == 'Input' or layer.kind == 'Output': if actWord == None: print('Matching Pattern = %s' % 'No match') elif diff == 0.0: print("Matching Pattern = '%s'" % actWord) else: print("Matching Pattern = '%s'; difference = %f" % (actWord, diff)) print('------------------------------------')
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n size = list(range(len(self.layers)))\n size.reverse()\n for i in size:\n layer = self.layers[i]\n if layer.active:\n print('%s layer (size %d)' % (layer.name, layer.size))\n tlabel, olabel = '', ''\n if layer.type == 'Output':\n if self.countWrong:\n tlabel = ' (%s)' % self.classify(layer.target.tolist())\n olabel = ' (%s)' % self.classify(layer.activation.tolist())\n if olabel == tlabel:\n self.numRight += 1\n else:\n olabel += ' *** WRONG ***'\n self.numWrong += 1\n if self.actDisplay is not None:\n self.actDisplay.showWrong()\n print('Target : %s%s' % (pretty(layer.target, max=15),\n tlabel))\n print('Activation: %s%s' % (pretty(layer.activation, max=15),\n olabel))\n if self.patterned and layer.type != 'Hidden':\n targetWord, diff = self.getWord(layer.target, returnDiff=1)\n if layer.kind == 'Output':\n if targetWord == None:\n print('Target Pattern = %s' % 'No match')\n elif diff == 0.0:\n print(\"Target Pattern = '%s'\" % targetWord)\n else:\n print(\"Target Pattern = '%s'; difference = %f)\" %\n (targetWord, diff))\n actWord, diff = self.getWord(layer.activation, returnDiff=1)\n if layer.kind == 'Input' or layer.kind == 'Output':\n if actWord == None:\n print('Matching Pattern = %s' % 'No match')\n elif diff == 0.0:\n print(\"Matching Pattern = '%s'\" % actWord)\n else:\n print(\"Matching Pattern = '%s'; difference = %f\" %\n (actWord, diff))\n print('------------------------------------')\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(self, value): if value == 'ordered-continuous': self.orderedInputs = 1 self.initContext = 0 elif value == 'random-segmented': self.orderedInputs = 0 self.initContext = 1 elif value == 'random-continuous': self.orderedInputs = 0 self.initContext = 0 elif value == 'ordered-segmented': self.orderedInputs = 1 self.initContext = 1 else: raise AttributeError("invalid sequence type: '%s'" % value) self.sequenceType = value
setSequenceType
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if value == 'ordered-continuous':\n self.orderedInputs = 1\n self.initContext = 0\n elif value == 'random-segmented':\n self.orderedInputs = 0\n self.initContext = 1\n elif value == 'random-continuous':\n self.orderedInputs = 0\n self.initContext = 0\n elif value == 'ordered-segmented':\n self.orderedInputs = 1\n self.initContext = 1\n else:\n raise AttributeError(\"invalid sequence type: '%s'\" % value)\n self.sequenceType = value\n", "role": "user" }, { "content": "setSequenceType", "role": "assistant" } ]
def x(self, *arg, **kw): netType = 'serial' if 'type' in kw: netType = kw['type'] self.addLayer('input', arg[0]) hiddens = [] contexts = [] if len(arg) > 3: hcount = 0 for hidc in arg[1:-1]: name = 'hidden%d' % hcount cname = 'context%d' % hcount self.addLayer(name, hidc) hiddens.append(name) self.addContextLayer(cname, hidc, name) hiddens.append((cname, name)) hcount += 1 elif len(arg) == 3: name = 'hidden' self.addContextLayer('context', arg[1], name) self.addLayer(name, arg[1]) hiddens.append(name) contexts.append(('context', name)) elif len(arg) == 2: pass else: raise AttributeError('not enough layers! need >= 2') self.addLayer('output', arg[-1]) for fromName, toName in contexts: self.connect(fromName, toName) lastName = 'input' for name in hiddens: if netType == 'parallel': self.connect('input', name) self.connect(name, 'output') else: self.connect(lastName, name) lastName = name if netType == 'serial' or lastName == 'input': self.connect(lastName, 'output')
addLayers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *arg, **kw):\n netType = 'serial'\n if 'type' in kw:\n netType = kw['type']\n self.addLayer('input', arg[0])\n hiddens = []\n contexts = []\n if len(arg) > 3:\n hcount = 0\n for hidc in arg[1:-1]:\n name = 'hidden%d' % hcount\n cname = 'context%d' % hcount\n self.addLayer(name, hidc)\n hiddens.append(name)\n self.addContextLayer(cname, hidc, name)\n hiddens.append((cname, name))\n hcount += 1\n elif len(arg) == 3:\n name = 'hidden'\n self.addContextLayer('context', arg[1], name)\n self.addLayer(name, arg[1])\n hiddens.append(name)\n contexts.append(('context', name))\n elif len(arg) == 2:\n pass\n else:\n raise AttributeError('not enough layers! need >= 2')\n self.addLayer('output', arg[-1])\n for fromName, toName in contexts:\n self.connect(fromName, toName)\n lastName = 'input'\n for name in hiddens:\n if netType == 'parallel':\n self.connect('input', name)\n self.connect(name, 'output')\n else:\n self.connect(lastName, name)\n lastName = name\n if netType == 'serial' or lastName == 'input':\n self.connect(lastName, 'output')\n", "role": "user" }, { "content": "addLayers", "role": "assistant" } ]
def x(self, inc, hidc, outc): self.addLayer('input', inc) self.addContextLayer('context', hidc, 'hidden') self.addLayer('hidden', hidc) self.addLayer('output', outc) self.connect('input', 'hidden') self.connect('context', 'hidden') self.connect('hidden', 'output')
addThreeLayers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inc, hidc, outc):\n self.addLayer('input', inc)\n self.addContextLayer('context', hidc, 'hidden')\n self.addLayer('hidden', hidc)\n self.addLayer('output', outc)\n self.connect('input', 'hidden')\n self.connect('context', 'hidden')\n self.connect('hidden', 'output')\n", "role": "user" }, { "content": "addThreeLayers", "role": "assistant" } ]
def x(self, inc, hidc, outc): self.addThreeLayers(inc, hidc, outc)
addSRNLayers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inc, hidc, outc):\n self.addThreeLayers(inc, hidc, outc)\n", "role": "user" }, { "content": "addSRNLayers", "role": "assistant" } ]
def x(self, layer, hiddenLayerName='hidden', verbosity=0): SRN.add(self, layer, verbosity) if hiddenLayerName in self.contextLayers: raise KeyError( 'There is already a context layer associated with this hidden layer.' , hiddenLayerName) else: self.contextLayers[hiddenLayerName] = layer layer.kind = 'Context'
addContext
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layer, hiddenLayerName='hidden', verbosity=0):\n SRN.add(self, layer, verbosity)\n if hiddenLayerName in self.contextLayers:\n raise KeyError(\n 'There is already a context layer associated with this hidden layer.'\n , hiddenLayerName)\n else:\n self.contextLayers[hiddenLayerName] = layer\n layer.kind = 'Context'\n", "role": "user" }, { "content": "addContext", "role": "assistant" } ]
def x(self): for item in list(self.contextLayers.items()): if self.verbosity > 2: print('Hidden layer: ', self.getLayer(item[0]).activation) if self.verbosity > 2: print('Context layer before copy: ', item[1].activation) item[1].copyActivations(self.getLayer(item[0]).activation) if self.verbosity > 2: print('Context layer after copy: ', item[1].activation)
copyHiddenToContext
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for item in list(self.contextLayers.items()):\n if self.verbosity > 2:\n print('Hidden layer: ', self.getLayer(item[0]).activation)\n if self.verbosity > 2:\n print('Context layer before copy: ', item[1].activation)\n item[1].copyActivations(self.getLayer(item[0]).activation)\n if self.verbosity > 2:\n print('Context layer after copy: ', item[1].activation)\n", "role": "user" }, { "content": "copyHiddenToContext", "role": "assistant" } ]
def x(self, value=0.5): for context in list(self.contextLayers.values()): context.resetFlags() context.setActivations(value)
setContext
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value=0.5):\n for context in list(self.contextLayers.values()):\n context.resetFlags()\n context.setActivations(value)\n", "role": "user" }, { "content": "setContext", "role": "assistant" } ]
def x(self, **args): if self.sequenceType == None: raise AttributeError('sequenceType not set! Use SRN.setSequenceType() ' ) if 'initContext' in args: if args['initContext']: self.setContext() del args['initContext'] elif self.initContext: self.setContext() if self.initContext == 0: for context in list(self.contextLayers.values()): context.activationSet = 1 for key in args: args[key] = self.replacePatterns(args[key], key) inputBankNames = [layer.name for layer in self.layers if layer.kind == 'Input'] outputBankNames = [layer.name for layer in self.layers if layer.kind == 'Output'] inputBankSizes = [layer.size for layer in self.layers if layer.kind == 'Input'] inputBankTotalSize = sum(inputBankSizes) inputArgSizes = [len(args[name]) for name in inputBankNames if name in args ] inputArgTotalSize = sum(inputArgSizes) sequenceLength = inputArgTotalSize // inputBankTotalSize learning = self.learning totalRetvals = 0.0, 0, 0 totalPCorrect = {} for step in range(sequenceLength): if self.verbosity >= 1 or self.interactive: print('-----------------------------------Step #', step + 1) dict = {} dict.update(args) for name in inputBankNames: if name in args: patternLength = self[name].size offset = step * patternLength if offset + patternLength >= len(args[name]): dict[name] = args[name][-patternLength:] else: dict[name] = args[name][offset:offset + patternLength] for name in outputBankNames: if name in args: patternLength = self[name].size offset = step * patternLength if offset + patternLength >= len(args[name]): dict[name] = args[name][-patternLength:] else: dict[name] = args[name][offset:offset + patternLength] for p in self.prediction: inName, outName = p inLayer = self.getLayer(inName) if not inLayer.type == 'Input': raise LayerError("Prediction input layer not type 'Input'.", inLayer.type) outLayer = self.getLayer(outName) if not outLayer.type == 'Output': raise LayerError("Prediction output layer not type 'Output'.", outLayer.type) if step == sequenceLength - 1: start = 0 if not self._sweeping: raise LayerError( 'Attempting to predict last item in sequence, but using step(). Use sweep() instead.' ) elif self.currentSweepCount == None: pattern = self.getData(self.loadOrder[0]) for key in pattern: pattern[key] = self.replacePatterns(pattern[key], key) if inName in inputBankNames: if inName in pattern: dict[outName] = pattern[inName][start:start + patternLength] else: pattern = self.getData(self.loadOrder[self. currentSweepCount + 1]) for key in pattern: pattern[key] = self.replacePatterns(pattern[key], key) if inName in inputBankNames: if inName in pattern: dict[outName] = pattern[inName][start:start + patternLength] else: start = (step + 1) * inLayer.size dict[outName] = args[inName][start:start + patternLength] if step < sequenceLength - 1: if not self.learnDuringSequence: self.learning = 0 retvals = self.networkStep(**dict) self.learning = learning totalRetvals = list(map(lambda x, y: x + y, totalRetvals[:3], retvals[:3])) sumMerge(totalPCorrect, retvals[3]) totalRetvals.append(totalPCorrect) return totalRetvals
step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **args):\n if self.sequenceType == None:\n raise AttributeError('sequenceType not set! Use SRN.setSequenceType() '\n )\n if 'initContext' in args:\n if args['initContext']:\n self.setContext()\n del args['initContext']\n elif self.initContext:\n self.setContext()\n if self.initContext == 0:\n for context in list(self.contextLayers.values()):\n context.activationSet = 1\n for key in args:\n args[key] = self.replacePatterns(args[key], key)\n inputBankNames = [layer.name for layer in self.layers if layer.kind ==\n 'Input']\n outputBankNames = [layer.name for layer in self.layers if layer.kind ==\n 'Output']\n inputBankSizes = [layer.size for layer in self.layers if layer.kind ==\n 'Input']\n inputBankTotalSize = sum(inputBankSizes)\n inputArgSizes = [len(args[name]) for name in inputBankNames if name in args\n ]\n inputArgTotalSize = sum(inputArgSizes)\n sequenceLength = inputArgTotalSize // inputBankTotalSize\n learning = self.learning\n totalRetvals = 0.0, 0, 0\n totalPCorrect = {}\n for step in range(sequenceLength):\n if self.verbosity >= 1 or self.interactive:\n print('-----------------------------------Step #', step + 1)\n dict = {}\n dict.update(args)\n for name in inputBankNames:\n if name in args:\n patternLength = self[name].size\n offset = step * patternLength\n if offset + patternLength >= len(args[name]):\n dict[name] = args[name][-patternLength:]\n else:\n dict[name] = args[name][offset:offset + patternLength]\n for name in outputBankNames:\n if name in args:\n patternLength = self[name].size\n offset = step * patternLength\n if offset + patternLength >= len(args[name]):\n dict[name] = args[name][-patternLength:]\n else:\n dict[name] = args[name][offset:offset + patternLength]\n for p in self.prediction:\n inName, outName = p\n inLayer = self.getLayer(inName)\n if not inLayer.type == 'Input':\n raise LayerError(\"Prediction input layer not type 'Input'.\",\n inLayer.type)\n outLayer = self.getLayer(outName)\n if not outLayer.type == 'Output':\n raise LayerError(\"Prediction output layer not type 'Output'.\",\n outLayer.type)\n if step == sequenceLength - 1:\n start = 0\n if not self._sweeping:\n raise LayerError(\n 'Attempting to predict last item in sequence, but using step(). Use sweep() instead.'\n )\n elif self.currentSweepCount == None:\n pattern = self.getData(self.loadOrder[0])\n for key in pattern:\n pattern[key] = self.replacePatterns(pattern[key], key)\n if inName in inputBankNames:\n if inName in pattern:\n dict[outName] = pattern[inName][start:start +\n patternLength]\n else:\n pattern = self.getData(self.loadOrder[self.\n currentSweepCount + 1])\n for key in pattern:\n pattern[key] = self.replacePatterns(pattern[key], key)\n if inName in inputBankNames:\n if inName in pattern:\n dict[outName] = pattern[inName][start:start +\n patternLength]\n else:\n start = (step + 1) * inLayer.size\n dict[outName] = args[inName][start:start + patternLength]\n if step < sequenceLength - 1:\n if not self.learnDuringSequence:\n self.learning = 0\n retvals = self.networkStep(**dict)\n self.learning = learning\n totalRetvals = list(map(lambda x, y: x + y, totalRetvals[:3],\n retvals[:3]))\n sumMerge(totalPCorrect, retvals[3])\n totalRetvals.append(totalPCorrect)\n return totalRetvals\n", "role": "user" }, { "content": "step", "role": "assistant" } ]
def x(self): if len(self.inputs) == 0: print('no patterns to test') return self.setContext() while True: BackpropNetwork.showPerformance(self) if self.quitFromSweep: return
showPerformance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if len(self.inputs) == 0:\n print('no patterns to test')\n return\n self.setContext()\n while True:\n BackpropNetwork.showPerformance(self)\n if self.quitFromSweep:\n return\n", "role": "user" }, { "content": "showPerformance", "role": "assistant" } ]
def x(self, line): tokens = [] self.idx = -1 self.characters = iter(line) self.update_chars() while self.char != '\n': if self.char in ('&', '$'): self.group_token = self.char if self.group_token and (self.group_token, self.char) in (('&', '/' ), ('$', '$')): self.group_token = False word = '' if self.char in self.whitespace: while self.char in self.whitespace: word += self.char self.update_chars() elif self.char in ('!', '#') or self.group_token is None: word = line[self.idx:-1] self.char = '\n' elif self.char in '"\'' or self.prior_delim: word = self.parse_string() elif self.char.isalpha(): word = self.parse_name(line) elif self.char in ('+', '-'): self.characters, lookahead = itertools.tee(self.characters) ieee_val = ''.join(itertools.takewhile(str.isalpha, lookahead)) if ieee_val.lower() in ('inf', 'infinity', 'nan'): word = self.char + ieee_val self.characters = lookahead self.prior_char = ieee_val[-1] self.char = next(lookahead, '\n') else: word = self.parse_numeric() elif self.char.isdigit(): word = self.parse_numeric() elif self.char == '.': self.update_chars() if self.char.isdigit(): frac = self.parse_numeric() word = '.' + frac else: word = '.' while self.char.isalpha(): word += self.char self.update_chars() if self.char == '.': word += self.char self.update_chars() elif self.char in Tokenizer.punctuation: word = self.char self.update_chars() else: raise ValueError tokens.append(word) return tokens
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line):\n tokens = []\n self.idx = -1\n self.characters = iter(line)\n self.update_chars()\n while self.char != '\\n':\n if self.char in ('&', '$'):\n self.group_token = self.char\n if self.group_token and (self.group_token, self.char) in (('&', '/'\n ), ('$', '$')):\n self.group_token = False\n word = ''\n if self.char in self.whitespace:\n while self.char in self.whitespace:\n word += self.char\n self.update_chars()\n elif self.char in ('!', '#') or self.group_token is None:\n word = line[self.idx:-1]\n self.char = '\\n'\n elif self.char in '\"\\'' or self.prior_delim:\n word = self.parse_string()\n elif self.char.isalpha():\n word = self.parse_name(line)\n elif self.char in ('+', '-'):\n self.characters, lookahead = itertools.tee(self.characters)\n ieee_val = ''.join(itertools.takewhile(str.isalpha, lookahead))\n if ieee_val.lower() in ('inf', 'infinity', 'nan'):\n word = self.char + ieee_val\n self.characters = lookahead\n self.prior_char = ieee_val[-1]\n self.char = next(lookahead, '\\n')\n else:\n word = self.parse_numeric()\n elif self.char.isdigit():\n word = self.parse_numeric()\n elif self.char == '.':\n self.update_chars()\n if self.char.isdigit():\n frac = self.parse_numeric()\n word = '.' + frac\n else:\n word = '.'\n while self.char.isalpha():\n word += self.char\n self.update_chars()\n if self.char == '.':\n word += self.char\n self.update_chars()\n elif self.char in Tokenizer.punctuation:\n word = self.char\n self.update_chars()\n else:\n raise ValueError\n tokens.append(word)\n return tokens\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(self, line): end = self.idx for char in line[self.idx:]: if not char.isalnum() and char not in '\'"_': break end += 1 word = line[self.idx:end] self.idx = end - 1 self.characters = itertools.islice(self.characters, len(word) - 1, None) self.update_chars() return word
parse_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, line):\n end = self.idx\n for char in line[self.idx:]:\n if not char.isalnum() and char not in '\\'\"_':\n break\n end += 1\n word = line[self.idx:end]\n self.idx = end - 1\n self.characters = itertools.islice(self.characters, len(word) - 1, None)\n self.update_chars()\n return word\n", "role": "user" }, { "content": "parse_name", "role": "assistant" } ]
def x(self): word = '' if self.prior_delim: delim = self.prior_delim self.prior_delim = None else: delim = self.char word += self.char self.update_chars() while True: if self.char == delim: self.update_chars() if self.char == delim: word += 2 * delim self.update_chars() else: word += delim break elif self.char == '\n': self.prior_delim = delim break else: word += self.char self.update_chars() return word
parse_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n word = ''\n if self.prior_delim:\n delim = self.prior_delim\n self.prior_delim = None\n else:\n delim = self.char\n word += self.char\n self.update_chars()\n while True:\n if self.char == delim:\n self.update_chars()\n if self.char == delim:\n word += 2 * delim\n self.update_chars()\n else:\n word += delim\n break\n elif self.char == '\\n':\n self.prior_delim = delim\n break\n else:\n word += self.char\n self.update_chars()\n return word\n", "role": "user" }, { "content": "parse_string", "role": "assistant" } ]
def x(self): word = '' frac = False if self.char == '-': word += self.char self.update_chars() while self.char.isdigit() or self.char == '.' and not frac: if self.char == '.': frac = True word += self.char self.update_chars() if self.char in 'eEdD': word += self.char self.update_chars() if self.char in '+-': word += self.char self.update_chars() while self.char.isdigit(): word += self.char self.update_chars() return word
parse_numeric
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n word = ''\n frac = False\n if self.char == '-':\n word += self.char\n self.update_chars()\n while self.char.isdigit() or self.char == '.' and not frac:\n if self.char == '.':\n frac = True\n word += self.char\n self.update_chars()\n if self.char in 'eEdD':\n word += self.char\n self.update_chars()\n if self.char in '+-':\n word += self.char\n self.update_chars()\n while self.char.isdigit():\n word += self.char\n self.update_chars()\n return word\n", "role": "user" }, { "content": "parse_numeric", "role": "assistant" } ]
def x(self): self.prior_char, self.char = self.char, next(self.characters, '\n') self.idx += 1
update_chars
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.prior_char, self.char = self.char, next(self.characters, '\\n')\n self.idx += 1\n", "role": "user" }, { "content": "update_chars", "role": "assistant" } ]
def x(a, b): result = zeros((len(a), len(b))) for i in range(len(a)): for j in range(len(b)): result[i][j] = a[i] * b[j] return result
outerproduct
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, b):\n result = zeros((len(a), len(b)))\n for i in range(len(a)):\n for j in range(len(b)):\n result[i][j] = a[i] * b[j]\n return result\n", "role": "user" }, { "content": "outerproduct", "role": "assistant" } ]
def x(vector): if type(vector) is list: return array(list(map(add.reduce, vector))) else: return sum(vector)
reduce
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vector):\n if type(vector) is list:\n return array(list(map(add.reduce, vector)))\n else:\n return sum(vector)\n", "role": "user" }, { "content": "reduce", "role": "assistant" } ]
def x(vector): if type(vector) is list: return array(list(map(multiply.reduce, vector))) else: return reduce(operator.mul, vector)
reduce
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vector):\n if type(vector) is list:\n return array(list(map(multiply.reduce, vector)))\n else:\n return reduce(operator.mul, vector)\n", "role": "user" }, { "content": "reduce", "role": "assistant" } ]
def x(v_str): assert isinstance(v_str, str) if v_str[0] == '(' and v_str[-1] == ')' and len(v_str.split(',')) == 2: v_re, v_im = v_str[1:-1].split(',', 1) return complex(pyfloat(v_re), pyfloat(v_im)) else: raise ValueError('{0} must be in complex number form (x, y).'. format(v_str))
pycomplex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(v_str):\n assert isinstance(v_str, str)\n if v_str[0] == '(' and v_str[-1] == ')' and len(v_str.split(',')) == 2:\n v_re, v_im = v_str[1:-1].split(',', 1)\n return complex(pyfloat(v_re), pyfloat(v_im))\n else:\n raise ValueError('{0} must be in complex number form (x, y).'.\n format(v_str))\n", "role": "user" }, { "content": "pycomplex", "role": "assistant" } ]
def x(v_str, strict_logical=True): assert isinstance(v_str, str) assert isinstance(strict_logical, bool) if strict_logical: v_bool = v_str.lower() else: try: if v_str.startswith('.'): v_bool = v_str[1].lower() else: v_bool = v_str[0].lower() except IndexError: raise ValueError('{0} is not a valid logical constant.'.format( v_str)) if v_bool in ('.true.', '.t.', 'true', 't'): return True elif v_bool in ('.false.', '.f.', 'false', 'f'): return False else: raise ValueError('{0} is not a valid logical constant.'.format(v_str))
pybool
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(v_str, strict_logical=True):\n assert isinstance(v_str, str)\n assert isinstance(strict_logical, bool)\n if strict_logical:\n v_bool = v_str.lower()\n else:\n try:\n if v_str.startswith('.'):\n v_bool = v_str[1].lower()\n else:\n v_bool = v_str[0].lower()\n except IndexError:\n raise ValueError('{0} is not a valid logical constant.'.format(\n v_str))\n if v_bool in ('.true.', '.t.', 'true', 't'):\n return True\n elif v_bool in ('.false.', '.f.', 'false', 'f'):\n return False\n else:\n raise ValueError('{0} is not a valid logical constant.'.format(v_str))\n", "role": "user" }, { "content": "pybool", "role": "assistant" } ]
def x(v_str): assert isinstance(v_str, str) if v_str[0] in ("'", '"') and v_str[0] == v_str[-1]: quote = v_str[0] out = v_str[1:-1] else: quote = None out = v_str if quote: out = out.replace(2 * quote, quote) return out
pystr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(v_str):\n assert isinstance(v_str, str)\n if v_str[0] in (\"'\", '\"') and v_str[0] == v_str[-1]:\n quote = v_str[0]\n out = v_str[1:-1]\n else:\n quote = None\n out = v_str\n if quote:\n out = out.replace(2 * quote, quote)\n return out\n", "role": "user" }, { "content": "pystr", "role": "assistant" } ]
def x(v, idx): i_v, i_s = idx[0] if len(idx) > 1: v.extend([[] for _ in range(len(v), i_v - i_s + 1)]) for e in v: pad_array(e, idx[1:]) else: v.extend([None for _ in range(len(v), i_v - i_s + 1)])
pad_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(v, idx):\n i_v, i_s = idx[0]\n if len(idx) > 1:\n v.extend([[] for _ in range(len(v), i_v - i_s + 1)])\n for e in v:\n pad_array(e, idx[1:])\n else:\n v.extend([None for _ in range(len(v), i_v - i_s + 1)])\n", "role": "user" }, { "content": "pad_array", "role": "assistant" } ]
def x(src, new): if isinstance(src, dict) and isinstance(new, dict): return merge_dicts(src, new) else: if not isinstance(src, list): src = [src] if not isinstance(new, list): new = [new] return merge_lists(src, new)
merge_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src, new):\n if isinstance(src, dict) and isinstance(new, dict):\n return merge_dicts(src, new)\n else:\n if not isinstance(src, list):\n src = [src]\n if not isinstance(new, list):\n new = [new]\n return merge_lists(src, new)\n", "role": "user" }, { "content": "merge_values", "role": "assistant" } ]
def x(src, new): l_min, l_max = (src, new) if len(src) < len(new) else (new, src) l_min.extend(None for i in range(len(l_min), len(l_max))) for i, val in enumerate(new): if isinstance(val, dict) and isinstance(src[i], dict): new[i] = merge_dicts(src[i], val) elif isinstance(val, list) and isinstance(src[i], list): new[i] = merge_lists(src[i], val) elif val is not None: new[i] = val else: new[i] = src[i] return new
merge_lists
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src, new):\n l_min, l_max = (src, new) if len(src) < len(new) else (new, src)\n l_min.extend(None for i in range(len(l_min), len(l_max)))\n for i, val in enumerate(new):\n if isinstance(val, dict) and isinstance(src[i], dict):\n new[i] = merge_dicts(src[i], val)\n elif isinstance(val, list) and isinstance(src[i], list):\n new[i] = merge_lists(src[i], val)\n elif val is not None:\n new[i] = val\n else:\n new[i] = src[i]\n return new\n", "role": "user" }, { "content": "merge_lists", "role": "assistant" } ]
def x(src, patch): for key in patch: if key in src: if isinstance(src[key], dict) and isinstance(patch[key], dict): merge_dicts(src[key], patch[key]) else: src[key] = merge_values(src[key], patch[key]) else: src[key] = patch[key] return src
merge_dicts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(src, patch):\n for key in patch:\n if key in src:\n if isinstance(src[key], dict) and isinstance(patch[key], dict):\n merge_dicts(src[key], patch[key])\n else:\n src[key] = merge_values(src[key], patch[key])\n else:\n src[key] = patch[key]\n return src\n", "role": "user" }, { "content": "merge_dicts", "role": "assistant" } ]
def x(values): assert isinstance(values, list) if not values: return None elif len(values) == 1: return values[0] return values
delist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(values):\n assert isinstance(values, list)\n if not values:\n return None\n elif len(values) == 1:\n return values[0]\n return values\n", "role": "user" }, { "content": "delist", "role": "assistant" } ]
def x(tokens): ntoks = 0 for tok in tokens: if tok in ('=', '/', '$', '&'): if ntoks > 0 and tok == '=': ntoks -= 1 break elif tok in whitespace + ',': continue else: ntoks += 1 return ntoks
count_values
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(tokens):\n ntoks = 0\n for tok in tokens:\n if tok in ('=', '/', '$', '&'):\n if ntoks > 0 and tok == '=':\n ntoks -= 1\n break\n elif tok in whitespace + ',':\n continue\n else:\n ntoks += 1\n return ntoks\n", "role": "user" }, { "content": "count_values", "role": "assistant" } ]
def x(self, value): if not isinstance(value, str): raise TypeError('comment_tokens attribute must be a string.') self._comment_tokens = value
comment_tokens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if not isinstance(value, str):\n raise TypeError('comment_tokens attribute must be a string.')\n self._comment_tokens = value\n", "role": "user" }, { "content": "comment_tokens", "role": "assistant" } ]
def x(self, value): if not isinstance(value, int): raise TypeError('default_start_index attribute must be of int type.') self._default_start_index = value
default_start_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if not isinstance(value, int):\n raise TypeError('default_start_index attribute must be of int type.')\n self._default_start_index = value\n", "role": "user" }, { "content": "default_start_index", "role": "assistant" } ]
def x(self, value): if not isinstance(value, bool): raise TypeError('sparse_arrays attribute must be a logical type.') self._sparse_arrays = value
sparse_arrays
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if not isinstance(value, bool):\n raise TypeError('sparse_arrays attribute must be a logical type.')\n self._sparse_arrays = value\n", "role": "user" }, { "content": "sparse_arrays", "role": "assistant" } ]
def x(self, value): if not isinstance(value, int) and value is not None: raise TypeError('global_start_index attribute must be of int type.') self._global_start_index = value
global_start_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if not isinstance(value, int) and value is not None:\n raise TypeError('global_start_index attribute must be of int type.')\n self._global_start_index = value\n", "role": "user" }, { "content": "global_start_index", "role": "assistant" } ]
def x(self, value): if value is not None: if not isinstance(value, bool): raise TypeError('f90nml: error: row_major must be a logical value.' ) else: self._row_major = value
row_major
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if value is not None:\n if not isinstance(value, bool):\n raise TypeError('f90nml: error: row_major must be a logical value.'\n )\n else:\n self._row_major = value\n", "role": "user" }, { "content": "row_major", "role": "assistant" } ]
def x(self, value): if value is not None: if not isinstance(value, bool): raise TypeError( 'f90nml: error: strict_logical must be a logical value.') else: self._strict_logical = value
strict_logical
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if value is not None:\n if not isinstance(value, bool):\n raise TypeError(\n 'f90nml: error: strict_logical must be a logical value.')\n else:\n self._strict_logical = value\n", "role": "user" }, { "content": "strict_logical", "role": "assistant" } ]
def x(self, nml_fname, nml_patch_in=None, patch_fname=None): nml_is_path = not hasattr(nml_fname, 'read') patch_is_path = not hasattr(patch_fname, 'read') if nml_patch_in is not None: if not isinstance(nml_patch_in, dict): raise TypeError('Input patch must be a dict or a Namelist.') nml_patch = copy.deepcopy(Namelist(nml_patch_in)) if not patch_fname and nml_is_path: patch_fname = nml_fname + '~' elif not patch_fname: raise ValueError('f90nml: error: No output file for patch.') elif nml_fname == patch_fname: raise ValueError( 'f90nml: error: Patch filepath cannot be the same as the original filepath.' ) if patch_is_path: self.pfile = open(patch_fname, 'w') else: self.pfile = patch_fname else: nml_patch = Namelist() try: nml_file = open(nml_fname, 'r') if nml_is_path else nml_fname try: return self._readstream(nml_file, nml_patch) finally: if nml_is_path: nml_file.close() finally: if self.pfile and patch_is_path: self.pfile.close()
read
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nml_fname, nml_patch_in=None, patch_fname=None):\n nml_is_path = not hasattr(nml_fname, 'read')\n patch_is_path = not hasattr(patch_fname, 'read')\n if nml_patch_in is not None:\n if not isinstance(nml_patch_in, dict):\n raise TypeError('Input patch must be a dict or a Namelist.')\n nml_patch = copy.deepcopy(Namelist(nml_patch_in))\n if not patch_fname and nml_is_path:\n patch_fname = nml_fname + '~'\n elif not patch_fname:\n raise ValueError('f90nml: error: No output file for patch.')\n elif nml_fname == patch_fname:\n raise ValueError(\n 'f90nml: error: Patch filepath cannot be the same as the original filepath.'\n )\n if patch_is_path:\n self.pfile = open(patch_fname, 'w')\n else:\n self.pfile = patch_fname\n else:\n nml_patch = Namelist()\n try:\n nml_file = open(nml_fname, 'r') if nml_is_path else nml_fname\n try:\n return self._readstream(nml_file, nml_patch)\n finally:\n if nml_is_path:\n nml_file.close()\n finally:\n if self.pfile and patch_is_path:\n self.pfile.close()\n", "role": "user" }, { "content": "read", "role": "assistant" } ]
def x(self, nml_file, nml_patch_in=None): nml_patch = nml_patch_in if nml_patch_in is not None else Namelist() tokenizer = Tokenizer() f90lex = [] for line in nml_file: toks = tokenizer.parse(line) while tokenizer.prior_delim: new_toks = tokenizer.parse(next(nml_file)) if not new_toks: continue if new_toks[0].isspace(): toks[-1] += new_toks.pop(0) if new_toks: toks[-1] += new_toks[0] toks.extend(new_toks[1:]) toks.append('\n') f90lex.extend(toks) self.tokens = iter(f90lex) nmls = Namelist() try: self._update_tokens(write_token=False) except StopIteration: return nmls while True: try: if self.token == 'end': self._update_tokens() while self.token not in ('&', '$'): self._update_tokens() except StopIteration: break self._update_tokens() g_name = self.token g_vars = Namelist() v_name = None grp_patch = nml_patch.get(g_name.lower(), Namelist()) while g_name: if self.token not in ('=', '%', '('): self._update_tokens() if self.token in ('=', '(', '%'): v_name, v_values = self._parse_variable(g_vars, patch_nml= grp_patch) if v_name in g_vars: v_prior_values = g_vars[v_name] v_values = merge_values(v_prior_values, v_values) g_vars[v_name] = v_values v_name = None v_values = [] if self.token in ('/', '&', '$'): for v_name, v_val in grp_patch.items(): g_vars[v_name] = v_val v_strs = nmls._var_strings(v_name, v_val) for v_str in v_strs: self.pfile.write('{0}{1}\n'.format(nml_patch.indent, v_str)) if g_name in nmls: g_update = nmls[g_name] if not isinstance(g_update, list): g_update = [g_update] g_update.append(g_vars) else: g_update = g_vars nmls[g_name] = g_update g_name, g_vars = None, None try: self._update_tokens() except StopIteration: break return nmls
readstream
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nml_file, nml_patch_in=None):\n nml_patch = nml_patch_in if nml_patch_in is not None else Namelist()\n tokenizer = Tokenizer()\n f90lex = []\n for line in nml_file:\n toks = tokenizer.parse(line)\n while tokenizer.prior_delim:\n new_toks = tokenizer.parse(next(nml_file))\n if not new_toks:\n continue\n if new_toks[0].isspace():\n toks[-1] += new_toks.pop(0)\n if new_toks:\n toks[-1] += new_toks[0]\n toks.extend(new_toks[1:])\n toks.append('\\n')\n f90lex.extend(toks)\n self.tokens = iter(f90lex)\n nmls = Namelist()\n try:\n self._update_tokens(write_token=False)\n except StopIteration:\n return nmls\n while True:\n try:\n if self.token == 'end':\n self._update_tokens()\n while self.token not in ('&', '$'):\n self._update_tokens()\n except StopIteration:\n break\n self._update_tokens()\n g_name = self.token\n g_vars = Namelist()\n v_name = None\n grp_patch = nml_patch.get(g_name.lower(), Namelist())\n while g_name:\n if self.token not in ('=', '%', '('):\n self._update_tokens()\n if self.token in ('=', '(', '%'):\n v_name, v_values = self._parse_variable(g_vars, patch_nml=\n grp_patch)\n if v_name in g_vars:\n v_prior_values = g_vars[v_name]\n v_values = merge_values(v_prior_values, v_values)\n g_vars[v_name] = v_values\n v_name = None\n v_values = []\n if self.token in ('/', '&', '$'):\n for v_name, v_val in grp_patch.items():\n g_vars[v_name] = v_val\n v_strs = nmls._var_strings(v_name, v_val)\n for v_str in v_strs:\n self.pfile.write('{0}{1}\\n'.format(nml_patch.indent,\n v_str))\n if g_name in nmls:\n g_update = nmls[g_name]\n if not isinstance(g_update, list):\n g_update = [g_update]\n g_update.append(g_vars)\n else:\n g_update = g_vars\n nmls[g_name] = g_update\n g_name, g_vars = None, None\n try:\n self._update_tokens()\n except StopIteration:\n break\n return nmls\n", "role": "user" }, { "content": "readstream", "role": "assistant" } ]
def x(self, parent, patch_nml=None): if not patch_nml: patch_nml = Namelist() v_name = self.prior_token v_values = [] patch_values = None dt_idx = None if self.token == '(': v_idx_bounds = self._parse_indices() v_idx = FIndex(v_idx_bounds, self.global_start_index) if v_name.lower() in parent.start_index: p_idx = parent.start_index[v_name.lower()] for idx, pv in enumerate(zip(p_idx, v_idx.first)): if all(i is None for i in pv): i_first = None else: i_first = min(i for i in pv if i is not None) v_idx.first[idx] = i_first for i_p, i_v in zip(p_idx, v_idx.first): if i_p is not None and i_v is not None and i_v < i_p: pad = [None for _ in range(i_p - i_v)] parent[v_name] = pad + parent[v_name] elif v_name in parent: v_idx.first = [self.default_start_index for _ in v_idx.first] parent.start_index[v_name.lower()] = v_idx.first self._update_tokens() if self.token == '%': assert v_idx_bounds[0][1] - v_idx_bounds[0][0] == 1 dt_idx = v_idx_bounds[0][0] - v_idx.first[0] else: v_idx = None if v_name in parent.start_index: p_start = parent.start_index[v_name.lower()] v_start = [self.default_start_index for _ in p_start] for i_p, i_v in zip(p_start, v_start): if i_v < i_p: pad = [None for _ in range(i_p - i_v)] parent[v_name] = pad + parent[v_name] parent.start_index[v_name.lower()] = v_start if self.token == '%': v_patch_nml = None if v_name in patch_nml: v_patch_nml = patch_nml.pop(v_name.lower()) if parent: vpar = parent.get(v_name.lower()) if vpar and isinstance(vpar, list): if dt_idx is None: dt_idx = self.default_start_index try: v_parent = vpar[dt_idx] except IndexError: v_parent = Namelist() elif vpar: v_parent = vpar else: v_parent = Namelist() else: v_parent = Namelist() parent[v_name] = v_parent self._update_tokens() self._update_tokens() v_att, v_att_vals = self._parse_variable(v_parent, patch_nml= v_patch_nml) next_value = Namelist() next_value[v_att] = v_att_vals self._append_value(v_values, next_value, v_idx) else: assert self.token == '=' n_vals = None self._update_tokens() if v_name in patch_nml: patch_values = patch_nml.pop(v_name.lower()) if not isinstance(patch_values, list): patch_values = [patch_values] p_idx = 0 while self.token not in ('=', '(', '%') or (self.prior_token, self. token) in (('=', '('), (',', '(')): if self.token == '*': n_vals = self._parse_value() assert isinstance(n_vals, int) self._update_tokens() elif not n_vals: n_vals = 1 if self.prior_token in ('=', '%', ','): if self.token in (',', '/', '&', '$') and not (self. prior_token == ',' and self.token in ('/', '&', '$')): self._append_value(v_values, None, v_idx, n_vals) elif self.prior_token == '*': if self.token not in ('/', '&', '$'): self._update_tokens() if self.token == '=' or self.token in ('/', '&', '$' ) and self.prior_token == '*': next_value = None else: next_value = self._parse_value() self._append_value(v_values, next_value, v_idx, n_vals) else: next_value = self._parse_value() self._append_value(v_values, next_value, v_idx, n_vals) n_vals = 1 if self.token in ('/', '&', '$', '='): break else: self.tokens, lookahead = itertools.tee(self.tokens) n_vals_remain = count_values(lookahead) if patch_values: if p_idx < len(patch_values ) and p_idx - 1 <= n_vals_remain and len(patch_values ) > 0 and self.token != ',': p_val = patch_values[p_idx] p_repr = patch_nml._f90repr(patch_values[p_idx]) p_idx += 1 self._update_tokens(override=p_repr) if isinstance(p_val, complex): self._update_tokens(write_token=False) self._update_tokens(write_token=False) self._update_tokens(write_token=False) self._update_tokens(write_token=False) else: skip = p_idx >= len(patch_values) self._update_tokens(patch_skip=skip) else: self._update_tokens() if patch_values: v_values = patch_values if not v_idx: v_values = delist(v_values) return v_name, v_values
parse_variable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parent, patch_nml=None):\n if not patch_nml:\n patch_nml = Namelist()\n v_name = self.prior_token\n v_values = []\n patch_values = None\n dt_idx = None\n if self.token == '(':\n v_idx_bounds = self._parse_indices()\n v_idx = FIndex(v_idx_bounds, self.global_start_index)\n if v_name.lower() in parent.start_index:\n p_idx = parent.start_index[v_name.lower()]\n for idx, pv in enumerate(zip(p_idx, v_idx.first)):\n if all(i is None for i in pv):\n i_first = None\n else:\n i_first = min(i for i in pv if i is not None)\n v_idx.first[idx] = i_first\n for i_p, i_v in zip(p_idx, v_idx.first):\n if i_p is not None and i_v is not None and i_v < i_p:\n pad = [None for _ in range(i_p - i_v)]\n parent[v_name] = pad + parent[v_name]\n elif v_name in parent:\n v_idx.first = [self.default_start_index for _ in v_idx.first]\n parent.start_index[v_name.lower()] = v_idx.first\n self._update_tokens()\n if self.token == '%':\n assert v_idx_bounds[0][1] - v_idx_bounds[0][0] == 1\n dt_idx = v_idx_bounds[0][0] - v_idx.first[0]\n else:\n v_idx = None\n if v_name in parent.start_index:\n p_start = parent.start_index[v_name.lower()]\n v_start = [self.default_start_index for _ in p_start]\n for i_p, i_v in zip(p_start, v_start):\n if i_v < i_p:\n pad = [None for _ in range(i_p - i_v)]\n parent[v_name] = pad + parent[v_name]\n parent.start_index[v_name.lower()] = v_start\n if self.token == '%':\n v_patch_nml = None\n if v_name in patch_nml:\n v_patch_nml = patch_nml.pop(v_name.lower())\n if parent:\n vpar = parent.get(v_name.lower())\n if vpar and isinstance(vpar, list):\n if dt_idx is None:\n dt_idx = self.default_start_index\n try:\n v_parent = vpar[dt_idx]\n except IndexError:\n v_parent = Namelist()\n elif vpar:\n v_parent = vpar\n else:\n v_parent = Namelist()\n else:\n v_parent = Namelist()\n parent[v_name] = v_parent\n self._update_tokens()\n self._update_tokens()\n v_att, v_att_vals = self._parse_variable(v_parent, patch_nml=\n v_patch_nml)\n next_value = Namelist()\n next_value[v_att] = v_att_vals\n self._append_value(v_values, next_value, v_idx)\n else:\n assert self.token == '='\n n_vals = None\n self._update_tokens()\n if v_name in patch_nml:\n patch_values = patch_nml.pop(v_name.lower())\n if not isinstance(patch_values, list):\n patch_values = [patch_values]\n p_idx = 0\n while self.token not in ('=', '(', '%') or (self.prior_token, self.\n token) in (('=', '('), (',', '(')):\n if self.token == '*':\n n_vals = self._parse_value()\n assert isinstance(n_vals, int)\n self._update_tokens()\n elif not n_vals:\n n_vals = 1\n if self.prior_token in ('=', '%', ','):\n if self.token in (',', '/', '&', '$') and not (self.\n prior_token == ',' and self.token in ('/', '&', '$')):\n self._append_value(v_values, None, v_idx, n_vals)\n elif self.prior_token == '*':\n if self.token not in ('/', '&', '$'):\n self._update_tokens()\n if self.token == '=' or self.token in ('/', '&', '$'\n ) and self.prior_token == '*':\n next_value = None\n else:\n next_value = self._parse_value()\n self._append_value(v_values, next_value, v_idx, n_vals)\n else:\n next_value = self._parse_value()\n self._append_value(v_values, next_value, v_idx, n_vals)\n n_vals = 1\n if self.token in ('/', '&', '$', '='):\n break\n else:\n self.tokens, lookahead = itertools.tee(self.tokens)\n n_vals_remain = count_values(lookahead)\n if patch_values:\n if p_idx < len(patch_values\n ) and p_idx - 1 <= n_vals_remain and len(patch_values\n ) > 0 and self.token != ',':\n p_val = patch_values[p_idx]\n p_repr = patch_nml._f90repr(patch_values[p_idx])\n p_idx += 1\n self._update_tokens(override=p_repr)\n if isinstance(p_val, complex):\n self._update_tokens(write_token=False)\n self._update_tokens(write_token=False)\n self._update_tokens(write_token=False)\n self._update_tokens(write_token=False)\n else:\n skip = p_idx >= len(patch_values)\n self._update_tokens(patch_skip=skip)\n else:\n self._update_tokens()\n if patch_values:\n v_values = patch_values\n if not v_idx:\n v_values = delist(v_values)\n return v_name, v_values\n", "role": "user" }, { "content": "parse_variable", "role": "assistant" } ]
def x(self): v_name = self.prior_token v_indices = [] while self.token in (',', '('): v_indices.append(self._parse_index(v_name)) return v_indices
parse_indices
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n v_name = self.prior_token\n v_indices = []\n while self.token in (',', '('):\n v_indices.append(self._parse_index(v_name))\n return v_indices\n", "role": "user" }, { "content": "parse_indices", "role": "assistant" } ]
def x(self, v_name): i_start = i_end = i_stride = None self._update_tokens() try: i_start = int(self.token) self._update_tokens() except ValueError: if self.token in (',', ')'): raise ValueError('{0} index cannot be empty.'.format(v_name)) elif not self.token == ':': raise if self.token == ':': self._update_tokens() try: i_end = 1 + int(self.token) self._update_tokens() except ValueError: if self.token == ':': raise ValueError( '{0} end index cannot be implicit when using stride.'. format(v_name)) elif self.token not in (',', ')'): raise elif self.token in (',', ')'): if i_start: i_end = 1 + i_start if self.token == ':': self._update_tokens() try: i_stride = int(self.token) except ValueError: if self.token == ')': raise ValueError('{0} stride index cannot be implicit.'. format(v_name)) else: raise if i_stride == 0: raise ValueError('{0} stride index cannot be zero.'.format(v_name)) self._update_tokens() if self.token not in (',', ')'): raise ValueError('{0} index did not terminate correctly.'.format( v_name)) idx_triplet = i_start, i_end, i_stride return idx_triplet
parse_index
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v_name):\n i_start = i_end = i_stride = None\n self._update_tokens()\n try:\n i_start = int(self.token)\n self._update_tokens()\n except ValueError:\n if self.token in (',', ')'):\n raise ValueError('{0} index cannot be empty.'.format(v_name))\n elif not self.token == ':':\n raise\n if self.token == ':':\n self._update_tokens()\n try:\n i_end = 1 + int(self.token)\n self._update_tokens()\n except ValueError:\n if self.token == ':':\n raise ValueError(\n '{0} end index cannot be implicit when using stride.'.\n format(v_name))\n elif self.token not in (',', ')'):\n raise\n elif self.token in (',', ')'):\n if i_start:\n i_end = 1 + i_start\n if self.token == ':':\n self._update_tokens()\n try:\n i_stride = int(self.token)\n except ValueError:\n if self.token == ')':\n raise ValueError('{0} stride index cannot be implicit.'.\n format(v_name))\n else:\n raise\n if i_stride == 0:\n raise ValueError('{0} stride index cannot be zero.'.format(v_name))\n self._update_tokens()\n if self.token not in (',', ')'):\n raise ValueError('{0} index did not terminate correctly.'.format(\n v_name))\n idx_triplet = i_start, i_end, i_stride\n return idx_triplet\n", "role": "user" }, { "content": "parse_index", "role": "assistant" } ]
def x(self, write_token=True, override=None): v_str = self.prior_token if v_str == '(': v_re = self.token self._update_tokens(write_token) assert self.token == ',' self._update_tokens(write_token) v_im = self.token self._update_tokens(write_token) assert self.token == ')' self._update_tokens(write_token, override) v_str = '({0}, {1})'.format(v_re, v_im) recast_funcs = [int, pyfloat, pycomplex, pybool, pystr] for f90type in recast_funcs: try: if f90type == pybool: value = pybool(v_str, self.strict_logical) else: value = f90type(v_str) return value except ValueError: continue
parse_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, write_token=True, override=None):\n v_str = self.prior_token\n if v_str == '(':\n v_re = self.token\n self._update_tokens(write_token)\n assert self.token == ','\n self._update_tokens(write_token)\n v_im = self.token\n self._update_tokens(write_token)\n assert self.token == ')'\n self._update_tokens(write_token, override)\n v_str = '({0}, {1})'.format(v_re, v_im)\n recast_funcs = [int, pyfloat, pycomplex, pybool, pystr]\n for f90type in recast_funcs:\n try:\n if f90type == pybool:\n value = pybool(v_str, self.strict_logical)\n else:\n value = f90type(v_str)\n return value\n except ValueError:\n continue\n", "role": "user" }, { "content": "parse_value", "role": "assistant" } ]
def x(self, write_token=True, override=None, patch_skip=False): next_token = next(self.tokens) patch_value = '' patch_tokens = '' if self.pfile and write_token: token = override if override else self.token patch_value += token while next_token[0] in self.comment_tokens + whitespace: if self.pfile: if next_token[0] in self.comment_tokens: while not next_token == '\n': patch_tokens += next_token next_token = next(self.tokens) patch_tokens += next_token try: next_token = next(self.tokens) except StopIteration: if not patch_skip or next_token in ('=', '(', '%'): patch_tokens = patch_value + patch_tokens if self.pfile: self.pfile.write(patch_tokens) raise if not patch_skip or next_token in ('=', '(', '%'): patch_tokens = patch_value + patch_tokens if self.pfile: self.pfile.write(patch_tokens) self.token, self.prior_token = next_token, self.token
update_tokens
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, write_token=True, override=None, patch_skip=False):\n next_token = next(self.tokens)\n patch_value = ''\n patch_tokens = ''\n if self.pfile and write_token:\n token = override if override else self.token\n patch_value += token\n while next_token[0] in self.comment_tokens + whitespace:\n if self.pfile:\n if next_token[0] in self.comment_tokens:\n while not next_token == '\\n':\n patch_tokens += next_token\n next_token = next(self.tokens)\n patch_tokens += next_token\n try:\n next_token = next(self.tokens)\n except StopIteration:\n if not patch_skip or next_token in ('=', '(', '%'):\n patch_tokens = patch_value + patch_tokens\n if self.pfile:\n self.pfile.write(patch_tokens)\n raise\n if not patch_skip or next_token in ('=', '(', '%'):\n patch_tokens = patch_value + patch_tokens\n if self.pfile:\n self.pfile.write(patch_tokens)\n self.token, self.prior_token = next_token, self.token\n", "role": "user" }, { "content": "update_tokens", "role": "assistant" } ]
def x(self, v_values, next_value, v_idx=None, n_vals=1): for _ in range(n_vals): if v_idx: try: v_i = next(v_idx) except StopIteration: if next_value is not None: warnings.warn( 'f90nml: warning: Value {0} is not assigned to any variable and has been removed.' .format(next_value)) break v_s = [(self.default_start_index if idx is None else idx) for idx in v_idx.first] if not self.row_major: v_i = v_i[::-1] v_s = v_s[::-1] if not self.sparse_arrays: pad_array(v_values, list(zip(v_i, v_s))) v_subval = v_values for i_v, i_s in zip(v_i[:-1], v_s[:-1]): try: v_subval = v_subval[i_v - i_s] except IndexError: size = len(v_subval) v_subval.extend([] for _ in range(size, i_v - i_s + 1)) v_subval = v_subval[i_v - i_s] i_v, i_s = v_i[-1], v_s[-1] try: v_subval[i_v - i_s] = next_value except IndexError: size = len(v_subval) v_subval.extend(None for _ in range(size, i_v - i_s + 1)) v_subval[i_v - i_s] = next_value else: v_values.append(next_value)
append_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v_values, next_value, v_idx=None, n_vals=1):\n for _ in range(n_vals):\n if v_idx:\n try:\n v_i = next(v_idx)\n except StopIteration:\n if next_value is not None:\n warnings.warn(\n 'f90nml: warning: Value {0} is not assigned to any variable and has been removed.'\n .format(next_value))\n break\n v_s = [(self.default_start_index if idx is None else idx) for\n idx in v_idx.first]\n if not self.row_major:\n v_i = v_i[::-1]\n v_s = v_s[::-1]\n if not self.sparse_arrays:\n pad_array(v_values, list(zip(v_i, v_s)))\n v_subval = v_values\n for i_v, i_s in zip(v_i[:-1], v_s[:-1]):\n try:\n v_subval = v_subval[i_v - i_s]\n except IndexError:\n size = len(v_subval)\n v_subval.extend([] for _ in range(size, i_v - i_s + 1))\n v_subval = v_subval[i_v - i_s]\n i_v, i_s = v_i[-1], v_s[-1]\n try:\n v_subval[i_v - i_s] = next_value\n except IndexError:\n size = len(v_subval)\n v_subval.extend(None for _ in range(size, i_v - i_s + 1))\n v_subval[i_v - i_s] = next_value\n else:\n v_values.append(next_value)\n", "role": "user" }, { "content": "append_value", "role": "assistant" } ]
def x(im): from IPython.core import display b = BytesIO() im.save(b, format='png') data = b.getvalue() ip_img = display.Image(data=data, format='png', embed=True) return ip_img._repr_png_()
display_pil_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(im):\n from IPython.core import display\n b = BytesIO()\n im.save(b, format='png')\n data = b.getvalue()\n ip_img = display.Image(data=data, format='png', embed=True)\n return ip_img._repr_png_()\n", "role": "user" }, { "content": "display_pil_image", "role": "assistant" } ]
def x(self, service_name, **parameters): query_parameters = [] for key, value in parameters.items(): if isinstance(value, (list, tuple)): value = ','.join([str(member) for member in value]) if isinstance(value, bool): value = 'true' if value else 'false' query_parameters.append('{}={}'.format(key, value)) if query_parameters: uri = '{}{}?{}'.format(self.base_url, service_name, '&'.join( query_parameters)) else: uri = '{}{}'.format(self.base_url, service_name) return uri
prepare_uri
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, service_name, **parameters):\n query_parameters = []\n for key, value in parameters.items():\n if isinstance(value, (list, tuple)):\n value = ','.join([str(member) for member in value])\n if isinstance(value, bool):\n value = 'true' if value else 'false'\n query_parameters.append('{}={}'.format(key, value))\n if query_parameters:\n uri = '{}{}?{}'.format(self.base_url, service_name, '&'.join(\n query_parameters))\n else:\n uri = '{}{}'.format(self.base_url, service_name)\n return uri\n", "role": "user" }, { "content": "prepare_uri", "role": "assistant" } ]
def x(self, response): waiting_time = int(response.headers.get('Retry-After', 10)) time.sleep(waiting_time)
handle_rate_exceeded
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, response):\n waiting_time = int(response.headers.get('Retry-After', 10))\n time.sleep(waiting_time)\n", "role": "user" }, { "content": "handle_rate_exceeded", "role": "assistant" } ]
def x(self, send_method, service_name, data=None, **kwargs): valid_response = False raw = kwargs.pop('raw', False) while not valid_response: headers = dict(Authorization=self.token) uri = self._prepare_uri(service_name, **kwargs) logger.debug(' '.join(map(str, (headers, uri, data)))) response = send_method(uri, headers=headers, json=data) content_type = response.headers['Content-Type'].split(';')[0] if response.content and content_type == 'application/json': response_data = response.json() if 'response' in response_data: response_data = response_data['response'] elif response.content: return response.content else: return None try: self.check_errors(response, response_data) except RateExceeded: self._handle_rate_exceeded(response) except NoAuth: self.update_token() else: valid_response = True if raw: return response.json() return response_data
send
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, send_method, service_name, data=None, **kwargs):\n valid_response = False\n raw = kwargs.pop('raw', False)\n while not valid_response:\n headers = dict(Authorization=self.token)\n uri = self._prepare_uri(service_name, **kwargs)\n logger.debug(' '.join(map(str, (headers, uri, data))))\n response = send_method(uri, headers=headers, json=data)\n content_type = response.headers['Content-Type'].split(';')[0]\n if response.content and content_type == 'application/json':\n response_data = response.json()\n if 'response' in response_data:\n response_data = response_data['response']\n elif response.content:\n return response.content\n else:\n return None\n try:\n self.check_errors(response, response_data)\n except RateExceeded:\n self._handle_rate_exceeded(response)\n except NoAuth:\n self.update_token()\n else:\n valid_response = True\n if raw:\n return response.json()\n return response_data\n", "role": "user" }, { "content": "send", "role": "assistant" } ]
def x(self): logger.info('updating token') if None in self.credentials.values(): raise RuntimeError('You must provide an username and a password') credentials = dict(auth=self.credentials) url = self.test_url if self.test else self.url response = requests.post(url + 'auth', json=credentials) data = response.json()['response'] if 'error_id' in data and data['error_id'] == 'NOAUTH': raise BadCredentials() if 'error_code' in data and data['error_code'] == 'RATE_EXCEEDED': time.sleep(150) return if 'error_code' in data or 'error_id' in data: raise AppNexusException(response) self.token = data['token'] self.save_token() return self.token
update_token
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n logger.info('updating token')\n if None in self.credentials.values():\n raise RuntimeError('You must provide an username and a password')\n credentials = dict(auth=self.credentials)\n url = self.test_url if self.test else self.url\n response = requests.post(url + 'auth', json=credentials)\n data = response.json()['response']\n if 'error_id' in data and data['error_id'] == 'NOAUTH':\n raise BadCredentials()\n if 'error_code' in data and data['error_code'] == 'RATE_EXCEEDED':\n time.sleep(150)\n return\n if 'error_code' in data or 'error_id' in data:\n raise AppNexusException(response)\n self.token = data['token']\n self.save_token()\n return self.token\n", "role": "user" }, { "content": "update_token", "role": "assistant" } ]
def x(self, response, data): if 'error_id' in data: error_id = data['error_id'] if error_id in self.error_ids: raise self.error_ids[error_id](response) if 'error_code' in data: error_code = data['error_code'] if error_code in self.error_codes: raise self.error_codes[error_code](response) if 'error_code' in data or 'error_id' in data: raise AppNexusException(response)
check_errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, response, data):\n if 'error_id' in data:\n error_id = data['error_id']\n if error_id in self.error_ids:\n raise self.error_ids[error_id](response)\n if 'error_code' in data:\n error_code = data['error_code']\n if error_code in self.error_codes:\n raise self.error_codes[error_code](response)\n if 'error_code' in data or 'error_id' in data:\n raise AppNexusException(response)\n", "role": "user" }, { "content": "check_errors", "role": "assistant" } ]
def x(self, service_name, **kwargs): return self._send(requests.get, service_name, **kwargs)
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, service_name, **kwargs):\n return self._send(requests.get, service_name, **kwargs)\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, service_name, json, **kwargs): return self._send(requests.put, service_name, json, **kwargs)
modify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, service_name, json, **kwargs):\n return self._send(requests.put, service_name, json, **kwargs)\n", "role": "user" }, { "content": "modify", "role": "assistant" } ]
def x(self, service_name, json, **kwargs): return self._send(requests.post, service_name, json, **kwargs)
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, service_name, json, **kwargs):\n return self._send(requests.post, service_name, json, **kwargs)\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(self, service_name, *ids, **kwargs): return self._send(requests.delete, service_name, id=ids, **kwargs)
delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, service_name, *ids, **kwargs):\n return self._send(requests.delete, service_name, id=ids, **kwargs)\n", "role": "user" }, { "content": "delete", "role": "assistant" } ]
def x(self, x, y, color='black'): p = Point(x, y) p.fill(color) p.draw(self)
plot
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, color='black'):\n p = Point(x, y)\n p.fill(color)\n p.draw(self)\n", "role": "user" }, { "content": "plot", "role": "assistant" } ]
def x(self, x, y, color='black'): p = Point(x, y) p.fill(color) p.draw(self) p.t = lambda v: v p.tx = lambda v: v p.ty = lambda v: v
plotPixel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x, y, color='black'):\n p = Point(x, y)\n p.fill(color)\n p.draw(self)\n p.t = lambda v: v\n p.tx = lambda v: v\n p.ty = lambda v: v\n", "role": "user" }, { "content": "plotPixel", "role": "assistant" } ]
def x(self): self.mouse_x.value = -1 self.mouse_y.value = -1 while self.mouse_x.value == -1 and self.mouse_y.value == -1: time.sleep(0.1) return self.mouse_x.value, self.mouse_y.value
getMouse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.mouse_x.value = -1\n self.mouse_y.value = -1\n while self.mouse_x.value == -1 and self.mouse_y.value == -1:\n time.sleep(0.1)\n return self.mouse_x.value, self.mouse_y.value\n", "role": "user" }, { "content": "getMouse", "role": "assistant" } ]
def x(app, pagename, templatename, context, doctree): assert app or pagename or templatename if 'script_files' in context and doctree and any(hasattr(n, 'disqus_shortname') for n in doctree.traverse()): context['script_files'] = context['script_files'][:] + [ '_static/disqus.js']
event_html_page_context
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(app, pagename, templatename, context, doctree):\n assert app or pagename or templatename\n if 'script_files' in context and doctree and any(hasattr(n,\n 'disqus_shortname') for n in doctree.traverse()):\n context['script_files'] = context['script_files'][:] + [\n '_static/disqus.js']\n", "role": "user" }, { "content": "event_html_page_context", "role": "assistant" } ]
def x(app): app.add_config_value('disqus_shortname', None, True) app.add_directive('disqus', DisqusDirective) app.add_node(DisqusNode, html=(DisqusNode.visit, DisqusNode.depart)) app.config.html_static_path.append(os.path.relpath(STATIC_DIR, app.confdir) ) app.connect('html-page-context', event_html_page_context) return dict(version=__version__)
setup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(app):\n app.add_config_value('disqus_shortname', None, True)\n app.add_directive('disqus', DisqusDirective)\n app.add_node(DisqusNode, html=(DisqusNode.visit, DisqusNode.depart))\n app.config.html_static_path.append(os.path.relpath(STATIC_DIR, app.confdir)\n )\n app.connect('html-page-context', event_html_page_context)\n return dict(version=__version__)\n", "role": "user" }, { "content": "setup", "role": "assistant" } ]
def x(spht, node): html_attrs = {'ids': ['disqus_thread'], 'data-disqus-shortname': node. disqus_shortname, 'data-disqus-identifier': node.disqus_identifier} spht.body.append(spht.starttag(node, 'div', '', **html_attrs))
visit
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(spht, node):\n html_attrs = {'ids': ['disqus_thread'], 'data-disqus-shortname': node.\n disqus_shortname, 'data-disqus-identifier': node.disqus_identifier}\n spht.body.append(spht.starttag(node, 'div', '', **html_attrs))\n", "role": "user" }, { "content": "visit", "role": "assistant" } ]
def x(self): disqus_shortname = self.state.document.settings.env.config.disqus_shortname if not disqus_shortname: raise ExtensionError( 'disqus_shortname config value must be set for the disqus extension to work.' ) if not RE_SHORTNAME.match(disqus_shortname): raise ExtensionError( 'disqus_shortname config value must be 3-50 letters, numbers, and hyphens only.' ) return disqus_shortname
get_shortname
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n disqus_shortname = self.state.document.settings.env.config.disqus_shortname\n if not disqus_shortname:\n raise ExtensionError(\n 'disqus_shortname config value must be set for the disqus extension to work.'\n )\n if not RE_SHORTNAME.match(disqus_shortname):\n raise ExtensionError(\n 'disqus_shortname config value must be 3-50 letters, numbers, and hyphens only.'\n )\n return disqus_shortname\n", "role": "user" }, { "content": "get_shortname", "role": "assistant" } ]
def x(self): if 'disqus_identifier' in self.options: return self.options['disqus_identifier'] title_nodes = self.state.document.traverse(nodes.title) if not title_nodes: raise DisqusError( 'No title nodes found in document, cannot derive disqus_identifier config value.' ) return title_nodes[0].astext()
get_identifier
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if 'disqus_identifier' in self.options:\n return self.options['disqus_identifier']\n title_nodes = self.state.document.traverse(nodes.title)\n if not title_nodes:\n raise DisqusError(\n 'No title nodes found in document, cannot derive disqus_identifier config value.'\n )\n return title_nodes[0].astext()\n", "role": "user" }, { "content": "get_identifier", "role": "assistant" } ]
def x(self): disqus_shortname = self.get_shortname() disqus_identifier = self.get_identifier() return [DisqusNode(disqus_shortname, disqus_identifier)]
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n disqus_shortname = self.get_shortname()\n disqus_identifier = self.get_identifier()\n return [DisqusNode(disqus_shortname, disqus_identifier)]\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(func, params): sig = inspect.signature(func) params = Projection(sig.parameters.keys(), params) return functools.partial(func, **params)
attach
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func, params):\n sig = inspect.signature(func)\n params = Projection(sig.parameters.keys(), params)\n return functools.partial(func, **params)\n", "role": "user" }, { "content": "attach", "role": "assistant" } ]
def x(overrides): pmxbot.config = config = ConfigDict() config.setdefault('bot_nickname', 'pmxbot') config.update(overrides) return config
init_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(overrides):\n pmxbot.config = config = ConfigDict()\n config.setdefault('bot_nickname', 'pmxbot')\n config.update(overrides)\n return config\n", "role": "user" }, { "content": "init_config", "role": "assistant" } ]
def x(config): config = init_config(config) _setup_logging() _load_library_extensions() if not Handler._registry: raise RuntimeError('No handlers registered') class_ = _load_bot_class() config.setdefault('log_channels', []) config.setdefault('other_channels', []) channels = config.log_channels + config.other_channels log.info('Running with config') log.info(pprint.pformat(config)) host = config.get('server_host', 'localhost') port = config.get('server_port', 6667) return class_(host, port, config.bot_nickname, channels=channels, password=config.get('password'))
initialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(config):\n config = init_config(config)\n _setup_logging()\n _load_library_extensions()\n if not Handler._registry:\n raise RuntimeError('No handlers registered')\n class_ = _load_bot_class()\n config.setdefault('log_channels', [])\n config.setdefault('other_channels', [])\n channels = config.log_channels + config.other_channels\n log.info('Running with config')\n log.info(pprint.pformat(config))\n host = config.get('server_host', 'localhost')\n port = config.get('server_port', 6667)\n return class_(host, port, config.bot_nickname, channels=channels,\n password=config.get('password'))\n", "role": "user" }, { "content": "initialize", "role": "assistant" } ]
def x(): group = 'pmxbot_filters' eps = entrypoints.get_group_all(group=group) return [ep.load() for ep in eps]
load_filters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n group = 'pmxbot_filters'\n eps = entrypoints.get_group_all(group=group)\n return [ep.load() for ep in eps]\n", "role": "user" }, { "content": "load_filters", "role": "assistant" } ]
def x(cls, items, **defaults): properties = defaults for item in items: if isinstance(item, type) and issubclass(item, Sentinel): item = item() if isinstance(item, Sentinel): properties.update(item.properties) continue yield AugmentableMessage(item, **properties)
augment_items
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, items, **defaults):\n properties = defaults\n for item in items:\n if isinstance(item, type) and issubclass(item, Sentinel):\n item = item()\n if isinstance(item, Sentinel):\n properties.update(item.properties)\n continue\n yield AugmentableMessage(item, **properties)\n", "role": "user" }, { "content": "augment_items", "role": "assistant" } ]
def x(cls, message, channel): return (handler for handler in cls._registry if isinstance(handler, cls ) and handler.match(message, channel))
find_matching
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, message, channel):\n return (handler for handler in cls._registry if isinstance(handler, cls\n ) and handler.match(message, channel))\n", "role": "user" }, { "content": "find_matching", "role": "assistant" } ]
def x(self, func): self.func = func self._set_implied_name() self.register() return func
decorate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func):\n self.func = func\n self._set_implied_name()\n self.register()\n return func\n", "role": "user" }, { "content": "decorate", "role": "assistant" } ]
def x(self): if getattr(self, 'name', None) is None: self.name = self.func.__name__ self.name = self.name.lower()
set_implied_name
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if getattr(self, 'name', None) is None:\n self.name = self.func.__name__\n self.name = self.name.lower()\n", "role": "user" }, { "content": "set_implied_name", "role": "assistant" } ]
def x(self, func): if not self.doc and func.__doc__: self.doc = func.__doc__.strip().replace('\n', ' ')
set_doc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, func):\n if not self.doc and func.__doc__:\n self.doc = func.__doc__.strip().replace('\\n', ' ')\n", "role": "user" }, { "content": "set_doc", "role": "assistant" } ]
def x(self, channel, message): return all(filter(channel, message) for filter in _load_filters())
allow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, channel, message):\n return all(filter(channel, message) for filter in _load_filters())\n", "role": "user" }, { "content": "allow", "role": "assistant" } ]
def x(self, channel, output): augmented = Sentinel.augment_items(output, channel=channel, secret=False) for message in augmented: self.out(message.channel, message, not message.secret)
handle_output
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, channel, output):\n augmented = Sentinel.augment_items(output, channel=channel, secret=False)\n for message in augmented:\n self.out(message.channel, message, not message.secret)\n", "role": "user" }, { "content": "handle_output", "role": "assistant" } ]
def x(self, channel, nick, msg): messages = () for handler in Handler.find_matching(msg, channel): exception_handler = functools.partial(self._handle_exception, handler=handler) rest = handler.process(msg) client = connection = event = None match = rest f = handler.attach(locals()) results = pmxbot.itertools.generate_results(f) clean_results = pmxbot.itertools.trap_exceptions(results, exception_handler) messages = itertools.chain(messages, clean_results) if not handler.allow_chain: break self._handle_output(channel, messages)
handle_action
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, channel, nick, msg):\n messages = ()\n for handler in Handler.find_matching(msg, channel):\n exception_handler = functools.partial(self._handle_exception,\n handler=handler)\n rest = handler.process(msg)\n client = connection = event = None\n match = rest\n f = handler.attach(locals())\n results = pmxbot.itertools.generate_results(f)\n clean_results = pmxbot.itertools.trap_exceptions(results,\n exception_handler)\n messages = itertools.chain(messages, clean_results)\n if not handler.allow_chain:\n break\n self._handle_output(channel, messages)\n", "role": "user" }, { "content": "handle_action", "role": "assistant" } ]