source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, nml_path, force=False, sort=False): nml_is_file = hasattr(nml_path, 'read') if not force and not nml_is_file and os.path.isfile(nml_path): raise IOError('File {0} already exists.'.format(nml_path)) nml_file = nml_path if nml_is_file else open(nml_path, 'w') try: self._writestream(nml_file, sort) finally: if not nml_is_file: nml_file.close()
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nml_path, force=False, sort=False):\n nml_is_file = hasattr(nml_path, 'read')\n if not force and not nml_is_file and os.path.isfile(nml_path):\n raise IOError('File {0} already exists.'.format(nml_path))\n nml_file = nml_path if nml_is_file else open(nml_path, 'w')\n try:\n self._writestream(nml_file, sort)\n finally:\n if not nml_is_file:\n nml_file.close()\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self, nml_patch): for sec in nml_patch: if sec not in self: self[sec] = Namelist() self[sec].update(nml_patch[sec])
patch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nml_patch):\n for sec in nml_patch:\n if sec not in self:\n self[sec] = Namelist()\n self[sec].update(nml_patch[sec])\n", "role": "user" }, { "content": "patch", "role": "assistant" } ]
def x(self): for key, value in self.items(): for inner_key, inner_value in value.items(): yield (key, inner_key), inner_value
groups
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for key, value in self.items():\n for inner_key, inner_value in value.items():\n yield (key, inner_key), inner_value\n", "role": "user" }, { "content": "groups", "role": "assistant" } ]
def x(self, grp_name, grp_vars, nml_file, sort=False): if self._newline: print(file=nml_file) self._newline = True if self.uppercase: grp_name = grp_name.upper() if sort: grp_vars = Namelist(sorted(grp_vars.items(), key=lambda t: t[0])) print('&{0}'.format(grp_name), file=nml_file) for v_name, v_val in grp_vars.items(): v_start = grp_vars.start_index.get(v_name, None) for v_str in self._var_strings(v_name, v_val, v_start=v_start): nml_line = self.indent + '{0}'.format(v_str) print(nml_line, file=nml_file) print('/', file=nml_file)
write_nmlgrp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, grp_name, grp_vars, nml_file, sort=False):\n if self._newline:\n print(file=nml_file)\n self._newline = True\n if self.uppercase:\n grp_name = grp_name.upper()\n if sort:\n grp_vars = Namelist(sorted(grp_vars.items(), key=lambda t: t[0]))\n print('&{0}'.format(grp_name), file=nml_file)\n for v_name, v_val in grp_vars.items():\n v_start = grp_vars.start_index.get(v_name, None)\n for v_str in self._var_strings(v_name, v_val, v_start=v_start):\n nml_line = self.indent + '{0}'.format(v_str)\n print(nml_line, file=nml_file)\n print('/', file=nml_file)\n", "role": "user" }, { "content": "write_nmlgrp", "role": "assistant" } ]
def x(self, v_name, v_values, v_idx=None, v_start=None): if self.uppercase: v_name = v_name.upper() var_strs = [] if is_nullable_list(v_values, list): if not v_idx: v_idx = [] i_s = v_start[::-1][len(v_idx)] if v_start else None if i_s is None: i_s = 1 for idx, val in enumerate(v_values, start=i_s): v_idx_new = v_idx + [idx] v_strs = self._var_strings(v_name, val, v_idx=v_idx_new, v_start=v_start) var_strs.extend(v_strs) elif isinstance(v_values, Namelist): for f_name, f_vals in v_values.items(): v_title = '%'.join([v_name, f_name]) v_start_new = v_values.start_index.get(f_name, None) v_strs = self._var_strings(v_title, f_vals, v_start=v_start_new) var_strs.extend(v_strs) elif is_nullable_list(v_values, Namelist): if not v_idx: v_idx = [] i_s = v_start[::-1][len(v_idx)] if v_start else 1 for idx, val in enumerate(v_values, start=i_s): if val is None: continue v_title = v_name + '({0})'.format(idx) v_strs = self._var_strings(v_title, val) var_strs.extend(v_strs) else: use_default_start_index = False if not isinstance(v_values, list): v_values = [v_values] use_default_start_index = False else: use_default_start_index = self.default_start_index is not None if v_idx or v_start or use_default_start_index: v_idx_repr = '(' if v_start or use_default_start_index: if v_start: i_s = v_start[0] else: i_s = self.default_start_index if i_s is None: v_idx_repr += ':' else: i_e = i_s + len(v_values) - 1 if i_s == i_e: v_idx_repr += '{0}'.format(i_s) else: v_idx_repr += '{0}:{1}'.format(i_s, i_e) else: v_idx_repr += ':' if v_idx: idx_delim = ', ' if self._index_spacing else ',' v_idx_repr += idx_delim v_idx_repr += idx_delim.join(str(i) for i in v_idx[::-1]) v_idx_repr += ')' else: v_idx_repr = '' val_strs = [] val_line = '' for v_val in v_values: v_header = v_name + v_idx_repr + ' = ' if len(self.indent + v_header) >= self.column_width: column_width = len(self.indent + v_header) + 1 else: column_width = self.column_width v_width = column_width - len(self.indent + v_header) if len(val_line) < v_width: val_line += self._f90repr(v_val) + ', ' if len(val_line) >= v_width: val_strs.append(val_line.rstrip()) val_line = '' if val_line: val_strs.append(val_line.rstrip()) if val_strs: if self.end_comma or v_values[-1] is None: pass else: val_strs[-1] = val_strs[-1][:-1] if val_strs: var_strs.append('{0}{1} = {2}'.format(v_name, v_idx_repr, val_strs[0]).strip()) for v_str in val_strs[1:]: var_strs.append(' ' * len(v_header) + v_str) return var_strs
var_strings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, v_name, v_values, v_idx=None, v_start=None):\n if self.uppercase:\n v_name = v_name.upper()\n var_strs = []\n if is_nullable_list(v_values, list):\n if not v_idx:\n v_idx = []\n i_s = v_start[::-1][len(v_idx)] if v_start else None\n if i_s is None:\n i_s = 1\n for idx, val in enumerate(v_values, start=i_s):\n v_idx_new = v_idx + [idx]\n v_strs = self._var_strings(v_name, val, v_idx=v_idx_new,\n v_start=v_start)\n var_strs.extend(v_strs)\n elif isinstance(v_values, Namelist):\n for f_name, f_vals in v_values.items():\n v_title = '%'.join([v_name, f_name])\n v_start_new = v_values.start_index.get(f_name, None)\n v_strs = self._var_strings(v_title, f_vals, v_start=v_start_new)\n var_strs.extend(v_strs)\n elif is_nullable_list(v_values, Namelist):\n if not v_idx:\n v_idx = []\n i_s = v_start[::-1][len(v_idx)] if v_start else 1\n for idx, val in enumerate(v_values, start=i_s):\n if val is None:\n continue\n v_title = v_name + '({0})'.format(idx)\n v_strs = self._var_strings(v_title, val)\n var_strs.extend(v_strs)\n else:\n use_default_start_index = False\n if not isinstance(v_values, list):\n v_values = [v_values]\n use_default_start_index = False\n else:\n use_default_start_index = self.default_start_index is not None\n if v_idx or v_start or use_default_start_index:\n v_idx_repr = '('\n if v_start or use_default_start_index:\n if v_start:\n i_s = v_start[0]\n else:\n i_s = self.default_start_index\n if i_s is None:\n v_idx_repr += ':'\n else:\n i_e = i_s + len(v_values) - 1\n if i_s == i_e:\n v_idx_repr += '{0}'.format(i_s)\n else:\n v_idx_repr += '{0}:{1}'.format(i_s, i_e)\n else:\n v_idx_repr += ':'\n if v_idx:\n idx_delim = ', ' if self._index_spacing else ','\n v_idx_repr += idx_delim\n v_idx_repr += idx_delim.join(str(i) for i in v_idx[::-1])\n v_idx_repr += ')'\n else:\n v_idx_repr = ''\n val_strs = []\n val_line = ''\n for v_val in v_values:\n v_header = v_name + v_idx_repr + ' = '\n if len(self.indent + v_header) >= self.column_width:\n column_width = len(self.indent + v_header) + 1\n else:\n column_width = self.column_width\n v_width = column_width - len(self.indent + v_header)\n if len(val_line) < v_width:\n val_line += self._f90repr(v_val) + ', '\n if len(val_line) >= v_width:\n val_strs.append(val_line.rstrip())\n val_line = ''\n if val_line:\n val_strs.append(val_line.rstrip())\n if val_strs:\n if self.end_comma or v_values[-1] is None:\n pass\n else:\n val_strs[-1] = val_strs[-1][:-1]\n if val_strs:\n var_strs.append('{0}{1} = {2}'.format(v_name, v_idx_repr,\n val_strs[0]).strip())\n for v_str in val_strs[1:]:\n var_strs.append(' ' * len(v_header) + v_str)\n return var_strs\n", "role": "user" }, { "content": "var_strings", "role": "assistant" } ]
def x(self, complex_tuple=False): nmldict = OrderedDict(self) for key, value in self.items(): if isinstance(value, Namelist): nmldict[key] = value.todict(complex_tuple) elif isinstance(value, complex) and complex_tuple: nmldict[key] = [value.real, value.imag] try: nmldict['_complex'].append(key) except KeyError: nmldict['_complex'] = [key] elif isinstance(value, list): complex_list = False for idx, entry in enumerate(value): if isinstance(entry, Namelist): nmldict[key][idx] = entry.todict(complex_tuple) elif isinstance(entry, complex) and complex_tuple: nmldict[key][idx] = [entry.real, entry.imag] complex_list = True if complex_list: try: nmldict['_complex'].append(key) except KeyError: nmldict['_complex'] = [key] if self.start_index: nmldict['_start_index'] = self.start_index return nmldict
todict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, complex_tuple=False):\n nmldict = OrderedDict(self)\n for key, value in self.items():\n if isinstance(value, Namelist):\n nmldict[key] = value.todict(complex_tuple)\n elif isinstance(value, complex) and complex_tuple:\n nmldict[key] = [value.real, value.imag]\n try:\n nmldict['_complex'].append(key)\n except KeyError:\n nmldict['_complex'] = [key]\n elif isinstance(value, list):\n complex_list = False\n for idx, entry in enumerate(value):\n if isinstance(entry, Namelist):\n nmldict[key][idx] = entry.todict(complex_tuple)\n elif isinstance(entry, complex) and complex_tuple:\n nmldict[key][idx] = [entry.real, entry.imag]\n complex_list = True\n if complex_list:\n try:\n nmldict['_complex'].append(key)\n except KeyError:\n nmldict['_complex'] = [key]\n if self.start_index:\n nmldict['_start_index'] = self.start_index\n return nmldict\n", "role": "user" }, { "content": "todict", "role": "assistant" } ]
def x(self, value): if isinstance(value, bool): return self._f90bool(value) elif isinstance(value, numbers.Integral): return self._f90int(value) elif isinstance(value, numbers.Real): return self._f90float(value) elif isinstance(value, numbers.Complex): return self._f90complex(value) elif isinstance(value, basestring): return self._f90str(value) elif value is None: return '' else: raise ValueError( 'Type {0} of {1} cannot be converted to a Fortran type.'.format (type(value), value))
f90repr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if isinstance(value, bool):\n return self._f90bool(value)\n elif isinstance(value, numbers.Integral):\n return self._f90int(value)\n elif isinstance(value, numbers.Real):\n return self._f90float(value)\n elif isinstance(value, numbers.Complex):\n return self._f90complex(value)\n elif isinstance(value, basestring):\n return self._f90str(value)\n elif value is None:\n return ''\n else:\n raise ValueError(\n 'Type {0} of {1} cannot be converted to a Fortran type.'.format\n (type(value), value))\n", "role": "user" }, { "content": "f90repr", "role": "assistant" } ]
def x(self, value): return '({0:{fmt}}, {1:{fmt}})'.format(value.real, value.imag, fmt=self .float_format)
f90complex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n return '({0:{fmt}}, {1:{fmt}})'.format(value.real, value.imag, fmt=self\n .float_format)\n", "role": "user" }, { "content": "f90complex", "role": "assistant" } ]
def x(self, value): result = repr(str(value)).replace("\\'", "''").replace('\\"', '""') result = result.replace('\\\\', '\\') return result
f90str
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n result = repr(str(value)).replace(\"\\\\'\", \"''\").replace('\\\\\"', '\"\"')\n result = result.replace('\\\\\\\\', '\\\\')\n return result\n", "role": "user" }, { "content": "f90str", "role": "assistant" } ]
def x(self, page): response_keys = set(page.keys()) uncommon_keys = response_keys - self.common_keys for possible_data_key in uncommon_keys: element = page[possible_data_key] if isinstance(element, dict): return [self.representation(self.client, self.service_name, element)] if isinstance(element, list): return [self.representation(self.client, self.service_name, x) for x in element]
extract_data
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, page):\n response_keys = set(page.keys())\n uncommon_keys = response_keys - self.common_keys\n for possible_data_key in uncommon_keys:\n element = page[possible_data_key]\n if isinstance(element, dict):\n return [self.representation(self.client, self.service_name,\n element)]\n if isinstance(element, list):\n return [self.representation(self.client, self.service_name, x) for\n x in element]\n", "role": "user" }, { "content": "extract_data", "role": "assistant" } ]
def x(self): page = self.get_page(num_elements=1) data = self.extract_data(page) if data: return data[0]
first
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n page = self.get_page(num_elements=1)\n data = self.extract_data(page)\n if data:\n return data[0]\n", "role": "user" }, { "content": "first", "role": "assistant" } ]
def x(self, start_element=0, num_elements=None): if num_elements is None: num_elements = self.batch_size specs = self.specs.copy() specs.update(start_element=start_element, num_elements=num_elements) return self.client.get(self.service_name, **specs)
get_page
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, start_element=0, num_elements=None):\n if num_elements is None:\n num_elements = self.batch_size\n specs = self.specs.copy()\n specs.update(start_element=start_element, num_elements=num_elements)\n return self.client.get(self.service_name, **specs)\n", "role": "user" }, { "content": "get_page", "role": "assistant" } ]
def x(self): initial_count = self.count() count_with_skip = max(0, initial_count - self._skip) size = min(count_with_skip, self._limit) return size
size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n initial_count = self.count()\n count_with_skip = max(0, initial_count - self._skip)\n size = min(count_with_skip, self._limit)\n return size\n", "role": "user" }, { "content": "size", "role": "assistant" } ]
def x(s, n, p=' ', sep='|', align='left'): if align == 'left': return (s + p * n)[:n] + sep elif align == 'center': pos = n + len(s) / 2 - n / 2 return (p * n + s + p * n)[pos:pos + n] + sep elif align == 'right': return (p * n + s)[-n:] + sep
pad
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s, n, p=' ', sep='|', align='left'):\n if align == 'left':\n return (s + p * n)[:n] + sep\n elif align == 'center':\n pos = n + len(s) / 2 - n / 2\n return (p * n + s + p * n)[pos:pos + n] + sep\n elif align == 'right':\n return (p * n + s)[-n:] + sep\n", "role": "user" }, { "content": "pad", "role": "assistant" } ]
def x(dict1, dict2): for key in dict2: dict1[key] = list(map(lambda a, b: a + b, dict1.get(key, [0, 0, 0, 0]), dict2[key])) return dict1
sumMerge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dict1, dict2):\n for key in dict2:\n dict1[key] = list(map(lambda a, b: a + b, dict1.get(key, [0, 0, 0, \n 0]), dict2[key]))\n return dict1\n", "role": "user" }, { "content": "sumMerge", "role": "assistant" } ]
def x(filename, mode='pickle'): if mode == 'pickle': import pickle fp = open(filename) network = pickle.load(fp) fp.close() return network elif mode in ['plain', 'conx']: fp = open(filename, 'r') line = fp.readline() network = None while line: if line.startswith('layer,'): temp, name, sizeStr = line.split(',') name = name.strip() size = int(sizeStr) network.addLayer(name, size) line = fp.readline() weights = [float(f) for f in line.split()] for i in range(network[name].size): network[name].weight[i] = weights[i] elif line.startswith('connection,'): temp, nameFrom, nameTo = line.split(',') nameFrom, nameTo = nameFrom.strip(), nameTo.strip() network.connect(nameFrom, nameTo) for i in range(network[nameFrom].size): line = fp.readline() weights = [float(f) for f in line.split()] for j in range(network[nameTo].size): network[nameFrom, nameTo].weight[i][j] = weights[j] elif line.startswith('parameter,'): temp, exp = line.split(',') exec(exp) elif line.startswith('network,'): temp, netType = line.split(',') netType = netType.strip().lower() if netType == 'cascornetwork': from pyrobot.brain.cascor import CascorNetwork network = CascorNetwork() elif netType == 'network': network = Network() elif netType == 'srn': network = SRN() else: raise AttributeError("unknown network type: '%s'" % netType ) line = fp.readline() return network
loadNetworkFromFile
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, mode='pickle'):\n if mode == 'pickle':\n import pickle\n fp = open(filename)\n network = pickle.load(fp)\n fp.close()\n return network\n elif mode in ['plain', 'conx']:\n fp = open(filename, 'r')\n line = fp.readline()\n network = None\n while line:\n if line.startswith('layer,'):\n temp, name, sizeStr = line.split(',')\n name = name.strip()\n size = int(sizeStr)\n network.addLayer(name, size)\n line = fp.readline()\n weights = [float(f) for f in line.split()]\n for i in range(network[name].size):\n network[name].weight[i] = weights[i]\n elif line.startswith('connection,'):\n temp, nameFrom, nameTo = line.split(',')\n nameFrom, nameTo = nameFrom.strip(), nameTo.strip()\n network.connect(nameFrom, nameTo)\n for i in range(network[nameFrom].size):\n line = fp.readline()\n weights = [float(f) for f in line.split()]\n for j in range(network[nameTo].size):\n network[nameFrom, nameTo].weight[i][j] = weights[j]\n elif line.startswith('parameter,'):\n temp, exp = line.split(',')\n exec(exp)\n elif line.startswith('network,'):\n temp, netType = line.split(',')\n netType = netType.strip().lower()\n if netType == 'cascornetwork':\n from pyrobot.brain.cascor import CascorNetwork\n network = CascorNetwork()\n elif netType == 'network':\n network = Network()\n elif netType == 'srn':\n network = SRN()\n else:\n raise AttributeError(\"unknown network type: '%s'\" % netType\n )\n line = fp.readline()\n return network\n", "role": "user" }, { "content": "loadNetworkFromFile", "role": "assistant" } ]
def x(n, *args, **kwargs): thunk = kwargs.get('thunk', lambda : random.random()) if not args: return [thunk() for i in range(n)] A = [] for i in range(n): A.append(ndim(*args, thunk=thunk)) return A
ndim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n, *args, **kwargs):\n thunk = kwargs.get('thunk', lambda : random.random())\n if not args:\n return [thunk() for i in range(n)]\n A = []\n for i in range(n):\n A.append(ndim(*args, thunk=thunk))\n return A\n", "role": "user" }, { "content": "ndim", "role": "assistant" } ]
def x(size, bound): if type(size) == type(1): size = size, temp = Numeric.array(ndim(*size), thunk=lambda : random.gauss(0, 1)) * ( 2.0 * bound) return temp - bound
randomArray2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(size, bound):\n if type(size) == type(1):\n size = size,\n temp = Numeric.array(ndim(*size), thunk=lambda : random.gauss(0, 1)) * (\n 2.0 * bound)\n return temp - bound\n", "role": "user" }, { "content": "randomArray2", "role": "assistant" } ]
def x(size, bound): if type(size) == type(1): size = size, temp = Numeric.array(ndim(*size)) * (2.0 * bound) return temp - bound
randomArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(size, bound):\n if type(size) == type(1):\n size = size,\n temp = Numeric.array(ndim(*size)) * (2.0 * bound)\n return temp - bound\n", "role": "user" }, { "content": "randomArray", "role": "assistant" } ]
def x(name, a, width=0): print(name + ': ', end=' ') cnt = 0 for i in a: print('%4.2f' % i, end=' ') if width > 0 and (cnt + 1) % width == 0: print('') cnt += 1
displayArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, a, width=0):\n print(name + ': ', end=' ')\n cnt = 0\n for i in a:\n print('%4.2f' % i, end=' ')\n if width > 0 and (cnt + 1) % width == 0:\n print('')\n cnt += 1\n", "role": "user" }, { "content": "displayArray", "role": "assistant" } ]
def x(name, a, width=0): string = name + ': ' cnt = 0 for i in a: string += '%4.2f ' % i if width > 0 and (cnt + 1) % width == 0: string += '\n' cnt += 1 return string
toStringArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, a, width=0):\n string = name + ': '\n cnt = 0\n for i in a:\n string += '%4.2f ' % i\n if width > 0 and (cnt + 1) % width == 0:\n string += '\\n'\n cnt += 1\n return string\n", "role": "user" }, { "content": "toStringArray", "role": "assistant" } ]
def x(fp, a, delim=' ', nl=1): for i in a: fp.write('%f%s' % (i, delim)) if nl: fp.write('\n')
writeArray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fp, a, delim=' ', nl=1):\n for i in a:\n fp.write('%f%s' % (i, delim))\n if nl:\n fp.write('\\n')\n", "role": "user" }, { "content": "writeArray", "role": "assistant" } ]
def x(self): self.randomize() self.dweight = Numeric.zeros(self.size, 'f') self.delta = Numeric.zeros(self.size, 'f') self.wed = Numeric.zeros(self.size, 'f') self.wedLast = Numeric.zeros(self.size, 'f') self.target = Numeric.zeros(self.size, 'f') self.error = Numeric.zeros(self.size, 'f') self.activation = Numeric.zeros(self.size, 'f') self.netinput = Numeric.zeros(self.size, 'f') self.targetSet = 0 self.activationSet = 0 self.verify = 1 self.pcorrect = 0 self.ptotal = 0 self.correct = 0 self.minTarget = 0.0 self.maxTarget = 1.0 self.minActivation = 0.0 self.maxActivation = 1.0
initialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.randomize()\n self.dweight = Numeric.zeros(self.size, 'f')\n self.delta = Numeric.zeros(self.size, 'f')\n self.wed = Numeric.zeros(self.size, 'f')\n self.wedLast = Numeric.zeros(self.size, 'f')\n self.target = Numeric.zeros(self.size, 'f')\n self.error = Numeric.zeros(self.size, 'f')\n self.activation = Numeric.zeros(self.size, 'f')\n self.netinput = Numeric.zeros(self.size, 'f')\n self.targetSet = 0\n self.activationSet = 0\n self.verify = 1\n self.pcorrect = 0\n self.ptotal = 0\n self.correct = 0\n self.minTarget = 0.0\n self.maxTarget = 1.0\n self.minActivation = 0.0\n self.maxActivation = 1.0\n", "role": "user" }, { "content": "initialize", "role": "assistant" } ]
def x(self, force=0): if force or not self.frozen: self.weight = randomArray(self.size, self._maxRandom)
randomize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, force=0):\n if force or not self.frozen:\n self.weight = randomArray(self.size, self._maxRandom)\n", "role": "user" }, { "content": "randomize", "role": "assistant" } ]
def x(self, newsize): if newsize <= 0: raise LayerError('Layer size changed to zero.', newsize) minSize = min(self.size, newsize) bias = randomArray(newsize, self._maxRandom) Numeric.put(bias, Numeric.arange(minSize), self.weight) self.weight = bias self.size = newsize self.displayWidth = newsize self.targetSet = 0 self.activationSet = 0 self.target = Numeric.zeros(self.size, 'f') self.error = Numeric.zeros(self.size, 'f') self.activation = Numeric.zeros(self.size, 'f') self.dweight = Numeric.zeros(self.size, 'f') self.delta = Numeric.zeros(self.size, 'f') self.netinput = Numeric.zeros(self.size, 'f') self.wed = Numeric.zeros(self.size, 'f') self.wedLast = Numeric.zeros(self.size, 'f')
changeSize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, newsize):\n if newsize <= 0:\n raise LayerError('Layer size changed to zero.', newsize)\n minSize = min(self.size, newsize)\n bias = randomArray(newsize, self._maxRandom)\n Numeric.put(bias, Numeric.arange(minSize), self.weight)\n self.weight = bias\n self.size = newsize\n self.displayWidth = newsize\n self.targetSet = 0\n self.activationSet = 0\n self.target = Numeric.zeros(self.size, 'f')\n self.error = Numeric.zeros(self.size, 'f')\n self.activation = Numeric.zeros(self.size, 'f')\n self.dweight = Numeric.zeros(self.size, 'f')\n self.delta = Numeric.zeros(self.size, 'f')\n self.netinput = Numeric.zeros(self.size, 'f')\n self.wed = Numeric.zeros(self.size, 'f')\n self.wedLast = Numeric.zeros(self.size, 'f')\n", "role": "user" }, { "content": "changeSize", "role": "assistant" } ]
def x(self): tss = self.TSSError() return math.sqrt(tss / self.size)
RMSError
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n tss = self.TSSError()\n return math.sqrt(tss / self.size)\n", "role": "user" }, { "content": "RMSError", "role": "assistant" } ]
def x(self, tolerance): return Numeric.add.reduce(Numeric.fabs(self.target - self.activation) < tolerance)
getCorrect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tolerance):\n return Numeric.add.reduce(Numeric.fabs(self.target - self.activation) <\n tolerance)\n", "role": "user" }, { "content": "getCorrect", "role": "assistant" } ]
def x(self, type='activation'): maxvalue = -10000 maxpos = -1 ttlvalue = 0 if type == 'activation': ttlvalue = Numeric.add.reduce(self.activation) maxpos = Numeric.argmax(self.activation) maxvalue = self.activation[maxpos] elif type == 'target': if self.verify and self.targetSet == 0: raise LayerError( "getWinner() called with 'target' but target has not been set." , self.targetSet) ttlvalue = Numeric.add.reduce(self.target) maxpos = Numeric.argmax(self.target) maxvalue = self.target[maxpos] else: raise LayerError('getWinner() called with unknown layer attribute.', type) if self.size > 0: avgvalue = ttlvalue / float(self.size) else: raise LayerError('getWinner() called for layer of size zero.', self .size) return maxpos, maxvalue, avgvalue
getWinner
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, type='activation'):\n maxvalue = -10000\n maxpos = -1\n ttlvalue = 0\n if type == 'activation':\n ttlvalue = Numeric.add.reduce(self.activation)\n maxpos = Numeric.argmax(self.activation)\n maxvalue = self.activation[maxpos]\n elif type == 'target':\n if self.verify and self.targetSet == 0:\n raise LayerError(\n \"getWinner() called with 'target' but target has not been set.\"\n , self.targetSet)\n ttlvalue = Numeric.add.reduce(self.target)\n maxpos = Numeric.argmax(self.target)\n maxvalue = self.target[maxpos]\n else:\n raise LayerError('getWinner() called with unknown layer attribute.',\n type)\n if self.size > 0:\n avgvalue = ttlvalue / float(self.size)\n else:\n raise LayerError('getWinner() called for layer of size zero.', self\n .size)\n return maxpos, maxvalue, avgvalue\n", "role": "user" }, { "content": "getWinner", "role": "assistant" } ]
def x(self, fileName, writeName=False): self.log = 1 self.logFile = fileName self._logPtr = open(fileName, 'w') if writeName: self._namePtr = open(fileName + '.name', 'w')
setLog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fileName, writeName=False):\n self.log = 1\n self.logFile = fileName\n self._logPtr = open(fileName, 'w')\n if writeName:\n self._namePtr = open(fileName + '.name', 'w')\n", "role": "user" }, { "content": "setLog", "role": "assistant" } ]
def x(self): self._logPtr.close() if self._namePtr: self._namePtr.close() self.log = 0
closeLog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._logPtr.close()\n if self._namePtr:\n self._namePtr.close()\n self.log = 0\n", "role": "user" }, { "content": "closeLog", "role": "assistant" } ]
def x(self, network): if self.log: writeArray(self._logPtr, self.activation) if self._namePtr: self._namePtr.write(network.getWord(self.activation)) self._namePtr.write('\n')
writeLog
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, network):\n if self.log:\n writeArray(self._logPtr, self.activation)\n if self._namePtr:\n self._namePtr.write(network.getWord(self.activation))\n self._namePtr.write('\\n')\n", "role": "user" }, { "content": "writeLog", "role": "assistant" } ]
def x(self): string = "Layer '%s': (Kind: %s, Size: %d, Active: %d, Frozen: %d)\n" % ( self.name, self.kind, self.size, self.active, self.frozen) if self.type == 'Output': string += toStringArray('Target ', self.target, self.displayWidth) string += toStringArray('Activation', self.activation, self.displayWidth) if self.type != 'Input' and self._verbosity > 1: string += toStringArray('Error ', self.error, self.displayWidth) if self._verbosity > 4 and self.type != 'Input': string += toStringArray('weight ', self.weight, self.displayWidth) string += toStringArray('dweight ', self.dweight, self.displayWidth) string += toStringArray('delta ', self.delta, self.displayWidth) string += toStringArray('netinput ', self.netinput, self.displayWidth) string += toStringArray('wed ', self.wed, self.displayWidth) return string
toString
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n string = \"Layer '%s': (Kind: %s, Size: %d, Active: %d, Frozen: %d)\\n\" % (\n self.name, self.kind, self.size, self.active, self.frozen)\n if self.type == 'Output':\n string += toStringArray('Target ', self.target, self.displayWidth)\n string += toStringArray('Activation', self.activation, self.displayWidth)\n if self.type != 'Input' and self._verbosity > 1:\n string += toStringArray('Error ', self.error, self.displayWidth)\n if self._verbosity > 4 and self.type != 'Input':\n string += toStringArray('weight ', self.weight, self.displayWidth)\n string += toStringArray('dweight ', self.dweight, self.displayWidth)\n string += toStringArray('delta ', self.delta, self.displayWidth)\n string += toStringArray('netinput ', self.netinput, self.displayWidth)\n string += toStringArray('wed ', self.wed, self.displayWidth)\n return string\n", "role": "user" }, { "content": "toString", "role": "assistant" } ]
def x(self): if self.displayWidth == 0: return print('=============================') print("Layer '%s': (Kind: %s, Size: %d, Active: %d, Frozen: %d)" % ( self.name, self.kind, self.size, self.active, self.frozen)) if self.type == 'Output': displayArray('Target ', self.target, self.displayWidth) displayArray('Activation', self.activation, self.displayWidth) if self.type != 'Input' and self._verbosity > 1: displayArray('Error ', self.error, self.displayWidth) if self._verbosity > 4 and self.type != 'Input': print(' ', end=' ') displayArray('weight', self.weight) print(' ', end=' ') displayArray('dweight', self.dweight) print(' ', end=' ') displayArray('delta', self.delta) print(' ', end=' ') displayArray('netinput', self.netinput) print(' ', end=' ') displayArray('wed', self.wed)
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.displayWidth == 0:\n return\n print('=============================')\n print(\"Layer '%s': (Kind: %s, Size: %d, Active: %d, Frozen: %d)\" % (\n self.name, self.kind, self.size, self.active, self.frozen))\n if self.type == 'Output':\n displayArray('Target ', self.target, self.displayWidth)\n displayArray('Activation', self.activation, self.displayWidth)\n if self.type != 'Input' and self._verbosity > 1:\n displayArray('Error ', self.error, self.displayWidth)\n if self._verbosity > 4 and self.type != 'Input':\n print(' ', end=' ')\n displayArray('weight', self.weight)\n print(' ', end=' ')\n displayArray('dweight', self.dweight)\n print(' ', end=' ')\n displayArray('delta', self.delta)\n print(' ', end=' ')\n displayArray('netinput', self.netinput)\n print(' ', end=' ')\n displayArray('wed', self.wed)\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(self, value): Numeric.put(self.activation, Numeric.arange(len(self.activation)), value) self.activationSet = 1
setActivations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n Numeric.put(self.activation, Numeric.arange(len(self.activation)), value)\n self.activationSet = 1\n", "role": "user" }, { "content": "setActivations", "role": "assistant" } ]
def x(self, arr, reckless=0): array = Numeric.array(arr) if not len(array) == self.size: raise LayerError( 'Mismatched activation size and layer size in call to copyActivations()' , (len(array), self.size)) if self.verify and not self.activationSet == 0: if not reckless: raise LayerError( 'Activation flag not reset before call to copyActivations()', self.activationSet) self.activation = array self.activationSet = 1
copyActivations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, arr, reckless=0):\n array = Numeric.array(arr)\n if not len(array) == self.size:\n raise LayerError(\n 'Mismatched activation size and layer size in call to copyActivations()'\n , (len(array), self.size))\n if self.verify and not self.activationSet == 0:\n if not reckless:\n raise LayerError(\n 'Activation flag not reset before call to copyActivations()',\n self.activationSet)\n self.activation = array\n self.activationSet = 1\n", "role": "user" }, { "content": "copyActivations", "role": "assistant" } ]
def x(self, value): if value > self.maxActivation or value < self.minActivation: raise LayerError( 'Targets for this layer are out of the proper interval.', (self .name, value)) Numeric.put(self.target, Numeric.arange(len(self.target)), value) self.targetSet = 1
setTargets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if value > self.maxActivation or value < self.minActivation:\n raise LayerError(\n 'Targets for this layer are out of the proper interval.', (self\n .name, value))\n Numeric.put(self.target, Numeric.arange(len(self.target)), value)\n self.targetSet = 1\n", "role": "user" }, { "content": "setTargets", "role": "assistant" } ]
def x(self, arr): array = Numeric.array(arr) if not len(array) == self.size: raise LayerError( 'Mismatched target size and layer size in call to copyTargets()', (len(array), self.size)) if Numeric.add.reduce(array < self.minTarget) or Numeric.add.reduce( array > self.maxTarget): print(self.name, self.minTarget, self.maxTarget) raise LayerError('Targets for this layer are out of range.', (self. name, array)) self.target = array self.targetSet = 1
copyTargets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, arr):\n array = Numeric.array(arr)\n if not len(array) == self.size:\n raise LayerError(\n 'Mismatched target size and layer size in call to copyTargets()',\n (len(array), self.size))\n if Numeric.add.reduce(array < self.minTarget) or Numeric.add.reduce(\n array > self.maxTarget):\n print(self.name, self.minTarget, self.maxTarget)\n raise LayerError('Targets for this layer are out of range.', (self.\n name, array))\n self.target = array\n self.targetSet = 1\n", "role": "user" }, { "content": "copyTargets", "role": "assistant" } ]
def x(self): self.randomize() self.dweight = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f') self.wed = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f') self.wedLast = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f')
initialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.randomize()\n self.dweight = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f')\n self.wed = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f')\n self.wedLast = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f')\n", "role": "user" }, { "content": "initialize", "role": "assistant" } ]
def x(self, fromLayerSize, toLayerSize): if toLayerSize <= 0 or fromLayerSize <= 0: raise LayerError('changeSize() called with invalid layer size.', ( fromLayerSize, toLayerSize)) dweight = Numeric.zeros((fromLayerSize, toLayerSize), 'f') wed = Numeric.zeros((fromLayerSize, toLayerSize), 'f') wedLast = Numeric.zeros((fromLayerSize, toLayerSize), 'f') weight = randomArray((fromLayerSize, toLayerSize), self.toLayer._maxRandom) minFromLayerSize = min(fromLayerSize, self.fromLayer.size) minToLayerSize = min(toLayerSize, self.toLayer.size) for i in range(minFromLayerSize): for j in range(minToLayerSize): wed[i][j] = self.wed[i][j] wedLast[i][j] = self.wedLast[i][j] dweight[i][j] = self.dweight[i][j] weight[i][j] = self.weight[i][j] self.dweight = dweight self.wed = wed self.wedLast = wedLast self.weight = weight
changeSize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fromLayerSize, toLayerSize):\n if toLayerSize <= 0 or fromLayerSize <= 0:\n raise LayerError('changeSize() called with invalid layer size.', (\n fromLayerSize, toLayerSize))\n dweight = Numeric.zeros((fromLayerSize, toLayerSize), 'f')\n wed = Numeric.zeros((fromLayerSize, toLayerSize), 'f')\n wedLast = Numeric.zeros((fromLayerSize, toLayerSize), 'f')\n weight = randomArray((fromLayerSize, toLayerSize), self.toLayer._maxRandom)\n minFromLayerSize = min(fromLayerSize, self.fromLayer.size)\n minToLayerSize = min(toLayerSize, self.toLayer.size)\n for i in range(minFromLayerSize):\n for j in range(minToLayerSize):\n wed[i][j] = self.wed[i][j]\n wedLast[i][j] = self.wedLast[i][j]\n dweight[i][j] = self.dweight[i][j]\n weight[i][j] = self.weight[i][j]\n self.dweight = dweight\n self.wed = wed\n self.wedLast = wedLast\n self.weight = weight\n", "role": "user" }, { "content": "changeSize", "role": "assistant" } ]
def x(self): if self.toLayer._verbosity > 4: print("wed: from '" + self.fromLayer.name + "' to '" + self.toLayer .name + "'") for j in range(self.toLayer.size): print(self.toLayer.name, '[', j, ']', end=' ') print('') for i in range(self.fromLayer.size): print(self.fromLayer.name, '[', i, ']', ': ', end=' ') for j in range(self.toLayer.size): print(self.wed[i][j], end=' ') print('') print('') print("dweight: from '" + self.fromLayer.name + "' to '" + self. toLayer.name + "'") for j in range(self.toLayer.size): print(self.toLayer.name, '[', j, ']', end=' ') print('') for i in range(self.fromLayer.size): print(self.fromLayer.name, '[', i, ']', ': ', end=' ') for j in range(self.toLayer.size): print(self.dweight[i][j], end=' ') print('') print('') if self.toLayer._verbosity > 2: print("Weights: from '" + self.fromLayer.name + "' to '" + self. toLayer.name + "'") print(' ', end=' ') for j in range(self.toLayer.size): print(self.toLayer.name, '[', j, ']', end=' ') print('') for i in range(self.fromLayer.size): print(self.fromLayer.name, '[', i, ']', ': ', end=' ') for j in range(self.toLayer.size): print(self.weight[i][j], end=' ') print('') print('')
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.toLayer._verbosity > 4:\n print(\"wed: from '\" + self.fromLayer.name + \"' to '\" + self.toLayer\n .name + \"'\")\n for j in range(self.toLayer.size):\n print(self.toLayer.name, '[', j, ']', end=' ')\n print('')\n for i in range(self.fromLayer.size):\n print(self.fromLayer.name, '[', i, ']', ': ', end=' ')\n for j in range(self.toLayer.size):\n print(self.wed[i][j], end=' ')\n print('')\n print('')\n print(\"dweight: from '\" + self.fromLayer.name + \"' to '\" + self.\n toLayer.name + \"'\")\n for j in range(self.toLayer.size):\n print(self.toLayer.name, '[', j, ']', end=' ')\n print('')\n for i in range(self.fromLayer.size):\n print(self.fromLayer.name, '[', i, ']', ': ', end=' ')\n for j in range(self.toLayer.size):\n print(self.dweight[i][j], end=' ')\n print('')\n print('')\n if self.toLayer._verbosity > 2:\n print(\"Weights: from '\" + self.fromLayer.name + \"' to '\" + self.\n toLayer.name + \"'\")\n print(' ', end=' ')\n for j in range(self.toLayer.size):\n print(self.toLayer.name, '[', j, ']', end=' ')\n print('')\n for i in range(self.fromLayer.size):\n print(self.fromLayer.name, '[', i, ']', ': ', end=' ')\n for j in range(self.toLayer.size):\n print(self.weight[i][j], end=' ')\n print('')\n print('')\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(self): string = '' if self.toLayer._verbosity > 4: string += ("wed: from '" + self.fromLayer.name + "' to '" + self. toLayer.name + "'\n") string += ' ' for j in range(self.toLayer.size): string += ' ' + self.toLayer.name + '[' + str(j) + ']' string += '\n' for i in range(self.fromLayer.size): string += self.fromLayer.name + '[' + str(i) + ']' + ': ' for j in range(self.toLayer.size): string += ' ' + str(self.wed[i][j]) string += '\n' string += '\n' string += ("dweight: from '" + self.fromLayer.name + "' to '" + self.toLayer.name + "'\n") string += ' ' for j in range(self.toLayer.size): string += ' ' + self.toLayer.name + '[' + str(j) + ']' string += '\n' for i in range(self.fromLayer.size): string += self.fromLayer.name + '[' + str(i) + ']' + ': ' for j in range(self.toLayer.size): string += ' ' + str(self.dweight[i][j]) string += '\n' string += '\n' if self.toLayer._verbosity > 2: string += ("Weights: from '" + self.fromLayer.name + "' to '" + self.toLayer.name + "'\n") string += ' ' for j in range(self.toLayer.size): string += ' ' + self.toLayer.name + '[' + str(j) + ']' string += '\n' for i in range(self.fromLayer.size): string += self.fromLayer.name + '[' + str(i) + ']' + ': ' for j in range(self.toLayer.size): string += ' ' + str(self.weight[i][j]) string += '\n' string += '\n' return string
toString
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n string = ''\n if self.toLayer._verbosity > 4:\n string += (\"wed: from '\" + self.fromLayer.name + \"' to '\" + self.\n toLayer.name + \"'\\n\")\n string += ' '\n for j in range(self.toLayer.size):\n string += ' ' + self.toLayer.name + '[' + str(j) + ']'\n string += '\\n'\n for i in range(self.fromLayer.size):\n string += self.fromLayer.name + '[' + str(i) + ']' + ': '\n for j in range(self.toLayer.size):\n string += ' ' + str(self.wed[i][j])\n string += '\\n'\n string += '\\n'\n string += (\"dweight: from '\" + self.fromLayer.name + \"' to '\" +\n self.toLayer.name + \"'\\n\")\n string += ' '\n for j in range(self.toLayer.size):\n string += ' ' + self.toLayer.name + '[' + str(j) + ']'\n string += '\\n'\n for i in range(self.fromLayer.size):\n string += self.fromLayer.name + '[' + str(i) + ']' + ': '\n for j in range(self.toLayer.size):\n string += ' ' + str(self.dweight[i][j])\n string += '\\n'\n string += '\\n'\n if self.toLayer._verbosity > 2:\n string += (\"Weights: from '\" + self.fromLayer.name + \"' to '\" +\n self.toLayer.name + \"'\\n\")\n string += ' '\n for j in range(self.toLayer.size):\n string += ' ' + self.toLayer.name + '[' + str(j) + ']'\n string += '\\n'\n for i in range(self.fromLayer.size):\n string += self.fromLayer.name + '[' + str(i) + ']' + ': '\n for j in range(self.toLayer.size):\n string += ' ' + str(self.weight[i][j])\n string += '\\n'\n string += '\\n'\n return string\n", "role": "user" }, { "content": "toString", "role": "assistant" } ]
def x(self, val=1): self.cacheConnections = [] self.cacheLayers = [] if val: for layer in self.layers: if layer.active and not layer.frozen: self.cacheLayers.append(layer) for connection in self.connections: if connection.active and not connection.frozen: self.cacheConnections.append(connection)
setCache
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, val=1):\n self.cacheConnections = []\n self.cacheLayers = []\n if val:\n for layer in self.layers:\n if layer.active and not layer.frozen:\n self.cacheLayers.append(layer)\n for connection in self.connections:\n if connection.active and not connection.frozen:\n self.cacheConnections.append(connection)\n", "role": "user" }, { "content": "setCache", "role": "assistant" } ]
def x(self, startLayer, endLayer): next = {startLayer.name: startLayer} visited = {} while next != {}: for item in list(next.items()): visited[item[0]] = item[1] del next[item[0]] for connection in self.connections: if connection.fromLayer.name == item[0]: if connection.toLayer.name == endLayer.name: return 1 elif connection.toLayer.name in next: pass elif connection.toLayer.name in visited: pass else: next[connection.toLayer.name] = connection.toLayer return 0
path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, startLayer, endLayer):\n next = {startLayer.name: startLayer}\n visited = {}\n while next != {}:\n for item in list(next.items()):\n visited[item[0]] = item[1]\n del next[item[0]]\n for connection in self.connections:\n if connection.fromLayer.name == item[0]:\n if connection.toLayer.name == endLayer.name:\n return 1\n elif connection.toLayer.name in next:\n pass\n elif connection.toLayer.name in visited:\n pass\n else:\n next[connection.toLayer.name] = connection.toLayer\n return 0\n", "role": "user" }, { "content": "path", "role": "assistant" } ]
def x(self, layer): for i in range(len(self.layers)): if layer == self.layers[i]: return i return -1
getLayerIndex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layer):\n for i in range(len(self.layers)):\n if layer == self.layers[i]:\n return i\n return -1\n", "role": "user" }, { "content": "getLayerIndex", "role": "assistant" } ]
def x(self, layer, verbosity=0, position=None): layer._verbosity = verbosity layer._maxRandom = self._maxRandom layer.minTarget = 0.0 layer.maxTarget = 1.0 layer.minActivation = 0.0 layer.maxActivation = 1.0 if position == None: self.layers.append(layer) else: self.layers.insert(position, layer) self.layersByName[layer.name] = layer
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layer, verbosity=0, position=None):\n layer._verbosity = verbosity\n layer._maxRandom = self._maxRandom\n layer.minTarget = 0.0\n layer.maxTarget = 1.0\n layer.minActivation = 0.0\n layer.maxActivation = 1.0\n if position == None:\n self.layers.append(layer)\n else:\n self.layers.insert(position, layer)\n self.layersByName[layer.name] = layer\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, fromName, toName): for c in self.connections: if c.fromLayer.name == fromName and c.toLayer.name == toName: return 1 return 0
isConnected
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fromName, toName):\n for c in self.connections:\n if c.fromLayer.name == fromName and c.toLayer.name == toName:\n return 1\n return 0\n", "role": "user" }, { "content": "isConnected", "role": "assistant" } ]
def x(self, *names): fromName, toName, rest = names[0], names[1], names[2:] self.connectAt(fromName, toName) if len(rest) != 0: self.connect(toName, *rest)
connect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *names):\n fromName, toName, rest = names[0], names[1], names[2:]\n self.connectAt(fromName, toName)\n if len(rest) != 0:\n self.connect(toName, *rest)\n", "role": "user" }, { "content": "connect", "role": "assistant" } ]
def x(self, fromName, toName, position=None): fromLayer = self.getLayer(fromName) toLayer = self.getLayer(toName) if self.getLayerIndex(fromLayer) >= self.getLayerIndex(toLayer): raise NetworkError('Layers out of order.', (fromLayer.name, toLayer .name)) if fromLayer.type == 'Output': fromLayer.type = 'Hidden' fromLayer.patternReport = 0 if fromLayer.kind == 'Output': fromLayer.kind = 'Hidden' elif fromLayer.type == 'Undefined': fromLayer.type = 'Input' fromLayer.patternReport = 0 if fromLayer.kind == 'Undefined': fromLayer.kind = 'Input' if toLayer.type == 'Input': raise NetworkError('Connections out of order', (fromLayer.name, toLayer.name)) elif toLayer.type == 'Undefined': toLayer.type = 'Output' toLayer.patternReport = 1 if toLayer.kind == 'Undefined': toLayer.kind = 'Output' if position == None: self.connections.append(Connection(fromLayer, toLayer)) else: self.connections.insert(position, Connection(fromLayer, toLayer))
connectAt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fromName, toName, position=None):\n fromLayer = self.getLayer(fromName)\n toLayer = self.getLayer(toName)\n if self.getLayerIndex(fromLayer) >= self.getLayerIndex(toLayer):\n raise NetworkError('Layers out of order.', (fromLayer.name, toLayer\n .name))\n if fromLayer.type == 'Output':\n fromLayer.type = 'Hidden'\n fromLayer.patternReport = 0\n if fromLayer.kind == 'Output':\n fromLayer.kind = 'Hidden'\n elif fromLayer.type == 'Undefined':\n fromLayer.type = 'Input'\n fromLayer.patternReport = 0\n if fromLayer.kind == 'Undefined':\n fromLayer.kind = 'Input'\n if toLayer.type == 'Input':\n raise NetworkError('Connections out of order', (fromLayer.name,\n toLayer.name))\n elif toLayer.type == 'Undefined':\n toLayer.type = 'Output'\n toLayer.patternReport = 1\n if toLayer.kind == 'Undefined':\n toLayer.kind = 'Output'\n if position == None:\n self.connections.append(Connection(fromLayer, toLayer))\n else:\n self.connections.insert(position, Connection(fromLayer, toLayer))\n", "role": "user" }, { "content": "connectAt", "role": "assistant" } ]
def x(self, *arg, **kw): netType = 'serial' if 'type' in kw: netType = kw['type'] self.addLayer('input', arg[0]) hiddens = [] if len(arg) > 3: hcount = 0 for hidc in arg[1:-1]: name = 'hidden%d' % hcount self.addLayer(name, hidc) hiddens.append(name) hcount += 1 elif len(arg) == 3: name = 'hidden' self.addLayer(name, arg[1]) hiddens.append(name) elif len(arg) == 2: pass else: raise AttributeError('not enough layers! need >= 2') self.addLayer('output', arg[-1]) lastName = 'input' for name in hiddens: if netType == 'parallel': self.connect('input', name) self.connect(name, 'output') else: self.connect(lastName, name) lastName = name if netType == 'serial' or lastName == 'input': self.connect(lastName, 'output')
addLayers
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *arg, **kw):\n netType = 'serial'\n if 'type' in kw:\n netType = kw['type']\n self.addLayer('input', arg[0])\n hiddens = []\n if len(arg) > 3:\n hcount = 0\n for hidc in arg[1:-1]:\n name = 'hidden%d' % hcount\n self.addLayer(name, hidc)\n hiddens.append(name)\n hcount += 1\n elif len(arg) == 3:\n name = 'hidden'\n self.addLayer(name, arg[1])\n hiddens.append(name)\n elif len(arg) == 2:\n pass\n else:\n raise AttributeError('not enough layers! need >= 2')\n self.addLayer('output', arg[-1])\n lastName = 'input'\n for name in hiddens:\n if netType == 'parallel':\n self.connect('input', name)\n self.connect(name, 'output')\n else:\n self.connect(lastName, name)\n lastName = name\n if netType == 'serial' or lastName == 'input':\n self.connect(lastName, 'output')\n", "role": "user" }, { "content": "addLayers", "role": "assistant" } ]
def x(self, layername, nodeNum): gene = [] for layer in self.layers: if layer.type != 'Input': for i in range(layer.size): if layer.name == layername and i == nodeNum: pass else: gene.append(layer.weight[i]) for connection in self.connections: for i in range(connection.fromLayer.size): for j in range(connection.toLayer.size): if (connection.fromLayer.name == layername and i == nodeNum or connection.toLayer.name == layername and j == nodeNum): pass else: gene.append(connection.weight[i][j]) self.changeLayerSize(layername, self[layername].size - 1) self.unArrayify(gene)
deleteLayerNode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layername, nodeNum):\n gene = []\n for layer in self.layers:\n if layer.type != 'Input':\n for i in range(layer.size):\n if layer.name == layername and i == nodeNum:\n pass\n else:\n gene.append(layer.weight[i])\n for connection in self.connections:\n for i in range(connection.fromLayer.size):\n for j in range(connection.toLayer.size):\n if (connection.fromLayer.name == layername and i == nodeNum or\n connection.toLayer.name == layername and j == nodeNum):\n pass\n else:\n gene.append(connection.weight[i][j])\n self.changeLayerSize(layername, self[layername].size - 1)\n self.unArrayify(gene)\n", "role": "user" }, { "content": "deleteLayerNode", "role": "assistant" } ]
def x(self, layerName, bias=None, weights={}): self.changeLayerSize(layerName, self[layerName].size + 1) if bias != None: self[layerName].weight[-1] = bias for name in list(weights.keys()): for c in self.connections: if c.fromLayer.name == name and c.toLayer.name == layerName: for i in range(self[name].size): self[name, layerName].weight[i][-1] = weights[name][i] elif c.toLayer.name == name and c.fromLayer.name == layerName: for j in range(self[name].size): self[layerName, name].weight[-1][j] = weights[name][j]
addLayerNode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layerName, bias=None, weights={}):\n self.changeLayerSize(layerName, self[layerName].size + 1)\n if bias != None:\n self[layerName].weight[-1] = bias\n for name in list(weights.keys()):\n for c in self.connections:\n if c.fromLayer.name == name and c.toLayer.name == layerName:\n for i in range(self[name].size):\n self[name, layerName].weight[i][-1] = weights[name][i]\n elif c.toLayer.name == name and c.fromLayer.name == layerName:\n for j in range(self[name].size):\n self[layerName, name].weight[-1][j] = weights[name][j]\n", "role": "user" }, { "content": "addLayerNode", "role": "assistant" } ]
def x(self, layername, newsize): if self.sharedWeights: raise AttributeError('shared weights broken') for connection in self.connections: if connection.fromLayer.name == layername: connection.changeSize(newsize, connection.toLayer.size) if connection.toLayer.name == layername: connection.changeSize(connection.fromLayer.size, newsize) self.getLayer(layername).changeSize(newsize)
changeLayerSize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layername, newsize):\n if self.sharedWeights:\n raise AttributeError('shared weights broken')\n for connection in self.connections:\n if connection.fromLayer.name == layername:\n connection.changeSize(newsize, connection.toLayer.size)\n if connection.toLayer.name == layername:\n connection.changeSize(connection.fromLayer.size, newsize)\n self.getLayer(layername).changeSize(newsize)\n", "role": "user" }, { "content": "changeLayerSize", "role": "assistant" } ]
def x(self): print("Initializing '%s' weights..." % self.name, end=' ', file=sys.stderr) if self.sharedWeights: raise AttributeError('shared weights broken') self.count = 0 for connection in self.connections: connection.initialize() for layer in self.layers: layer.initialize()
initialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n print(\"Initializing '%s' weights...\" % self.name, end=' ', file=sys.stderr)\n if self.sharedWeights:\n raise AttributeError('shared weights broken')\n self.count = 0\n for connection in self.connections:\n connection.initialize()\n for layer in self.layers:\n layer.initialize()\n", "role": "user" }, { "content": "initialize", "role": "assistant" } ]
def x(self, dict): for name in dict: self.layersByName[name].copyActivations(dict[name])
putActivations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dict):\n for name in dict:\n self.layersByName[name].copyActivations(dict[name])\n", "role": "user" }, { "content": "putActivations", "role": "assistant" } ]
def x(self, nameList): retval = {} for name in nameList: retval[name] = self.layersByName[name].getActivationsList() return retval
getActivationsDict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, nameList):\n retval = {}\n for name in nameList:\n retval[name] = self.layersByName[name].getActivationsList()\n return retval\n", "role": "user" }, { "content": "getActivationsDict", "role": "assistant" } ]
def x(self, value): self.seed = value random.seed(self.seed) if self.verbosity >= 0: print('Conx using seed:', self.seed)
setSeed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n self.seed = value\n random.seed(self.seed)\n if self.verbosity >= 0:\n print('Conx using seed:', self.seed)\n", "role": "user" }, { "content": "setSeed", "role": "assistant" } ]
def x(self, lfrom, lto): for connection in self.connections: if (connection.fromLayer.name == lfrom and connection.toLayer.name == lto): return connection raise NetworkError('Connection was not found.', (lfrom, lto))
getConnection
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lfrom, lto):\n for connection in self.connections:\n if (connection.fromLayer.name == lfrom and connection.toLayer.name ==\n lto):\n return connection\n raise NetworkError('Connection was not found.', (lfrom, lto))\n", "role": "user" }, { "content": "getConnection", "role": "assistant" } ]
def x(self, value): self._verbosity = value for layer in self.layers: layer._verbosity = value
setVerbosity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n self._verbosity = value\n for layer in self.layers:\n layer._verbosity = value\n", "role": "user" }, { "content": "setVerbosity", "role": "assistant" } ]
def x(self, value): self._maxRandom = value for layer in self.layers: layer._maxRandom = value
setMaxRandom
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n self._maxRandom = value\n for layer in self.layers:\n layer._maxRandom = value\n", "role": "user" }, { "content": "setMaxRandom", "role": "assistant" } ]
def x(self, fromName, toName): for connection in self.connections: if (connection.fromLayer.name == fromName and connection.toLayer. name == toName): return connection.weight raise NetworkError('Connection was not found.', (fromName, toName))
getWeights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fromName, toName):\n for connection in self.connections:\n if (connection.fromLayer.name == fromName and connection.toLayer.\n name == toName):\n return connection.weight\n raise NetworkError('Connection was not found.', (fromName, toName))\n", "role": "user" }, { "content": "getWeights", "role": "assistant" } ]
def x(self, fromName, fromPos, toName, toPos, value): for connection in self.connections: if (connection.fromLayer.name == fromName and connection.toLayer. name == toName): connection.weight[fromPos][toPos] = value return value raise NetworkError('Connection was not found.', (fromName, toName))
setWeight
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, fromName, fromPos, toName, toPos, value):\n for connection in self.connections:\n if (connection.fromLayer.name == fromName and connection.toLayer.\n name == toName):\n connection.weight[fromPos][toPos] = value\n return value\n raise NetworkError('Connection was not found.', (fromName, toName))\n", "role": "user" }, { "content": "setWeight", "role": "assistant" } ]
def x(self, value): self.orderedInputs = value if self.orderedInputs: self.loadOrder = [0] * len(self.inputs) for i in range(len(self.inputs)): self.loadOrder[i] = i
setOrderedInputs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n self.orderedInputs = value\n if self.orderedInputs:\n self.loadOrder = [0] * len(self.inputs)\n for i in range(len(self.inputs)):\n self.loadOrder[i] = i\n", "role": "user" }, { "content": "setOrderedInputs", "role": "assistant" } ]
def x(self, arg): for l in arg: if not type(l) == list and not type(l) == type(Numeric.array([0.0]) ) and not type(l) == tuple and not type(l) == dict: return 0 if type(l) == dict: for i in l: if not type(i) == str and i not in list(self.layers.keys()): return 0 else: for i in l: if not type(i) == float and not type(i) == int: return 0 return 1
verifyArguments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, arg):\n for l in arg:\n if not type(l) == list and not type(l) == type(Numeric.array([0.0])\n ) and not type(l) == tuple and not type(l) == dict:\n return 0\n if type(l) == dict:\n for i in l:\n if not type(i) == str and i not in list(self.layers.keys()):\n return 0\n else:\n for i in l:\n if not type(i) == float and not type(i) == int:\n return 0\n return 1\n", "role": "user" }, { "content": "verifyArguments", "role": "assistant" } ]
def x(self, inputs): if not self.verifyArguments(inputs) and not self.patterned: raise NetworkError( 'setInputs() requires [[...],[...],...] or [{"layerName": [...]}, ...].' , inputs) self.inputs = inputs self.loadOrder = [0] * len(self.inputs) for i in range(len(self.inputs)): self.loadOrder[i] = i
setInputs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inputs):\n if not self.verifyArguments(inputs) and not self.patterned:\n raise NetworkError(\n 'setInputs() requires [[...],[...],...] or [{\"layerName\": [...]}, ...].'\n , inputs)\n self.inputs = inputs\n self.loadOrder = [0] * len(self.inputs)\n for i in range(len(self.inputs)):\n self.loadOrder[i] = i\n", "role": "user" }, { "content": "setInputs", "role": "assistant" } ]
def x(self, targets): if not self.verifyArguments(targets) and not self.patterned: raise NetworkError( 'setTargets() requires [[...],[...],...] or [{"layerName": [...]}, ...].' , targets) self.targets = targets
setTargets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, targets):\n if not self.verifyArguments(targets) and not self.patterned:\n raise NetworkError(\n 'setTargets() requires [[...],[...],...] or [{\"layerName\": [...]}, ...].'\n , targets)\n self.targets = targets\n", "role": "user" }, { "content": "setTargets", "role": "assistant" } ]
def x(self, data1, data2=None): if data2 == None: inputs = [x[0] for x in data1] targets = [x[1] for x in data1] else: inputs = data1 targets = data2 self.setInputs(inputs) self.setTargets(targets)
setInputsAndTargets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data1, data2=None):\n if data2 == None:\n inputs = [x[0] for x in data1]\n targets = [x[1] for x in data1]\n else:\n inputs = data1\n targets = data2\n self.setInputs(inputs)\n self.setTargets(targets)\n", "role": "user" }, { "content": "setInputsAndTargets", "role": "assistant" } ]
def x(self): flag = [0] * len(self.inputs) self.loadOrder = [0] * len(self.inputs) for i in range(len(self.inputs)): pos = int(random.random() * len(self.inputs)) while flag[pos] == 1: pos = int(random.random() * len(self.inputs)) flag[pos] = 1 self.loadOrder[pos] = i
randomizeOrder
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n flag = [0] * len(self.inputs)\n self.loadOrder = [0] * len(self.inputs)\n for i in range(len(self.inputs)):\n pos = int(random.random() * len(self.inputs))\n while flag[pos] == 1:\n pos = int(random.random() * len(self.inputs))\n flag[pos] = 1\n self.loadOrder[pos] = i\n", "role": "user" }, { "content": "randomizeOrder", "role": "assistant" } ]
def x(self, vector1, vec2, start): vector2 = self.replacePatterns(vec2) length = min(len(vector1), len(vector2)) if self.verbosity > 4: print('Copying Vector: ', vector2[start:start + length]) p = 0 for i in range(start, start + length): vector1[p] = vector2[i] p += 1
copyVector
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, vector1, vec2, start):\n vector2 = self.replacePatterns(vec2)\n length = min(len(vector1), len(vector2))\n if self.verbosity > 4:\n print('Copying Vector: ', vector2[start:start + length])\n p = 0\n for i in range(start, start + length):\n vector1[p] = vector2[i]\n p += 1\n", "role": "user" }, { "content": "copyVector", "role": "assistant" } ]
def x(self, layer, vec, start=0): vector = self.replacePatterns(vec, layer.name) if self.verbosity > 4: print('Copying Activations: ', vector[start:start + layer.size]) layer.copyActivations(vector[start:start + layer.size])
copyActivations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layer, vec, start=0):\n vector = self.replacePatterns(vec, layer.name)\n if self.verbosity > 4:\n print('Copying Activations: ', vector[start:start + layer.size])\n layer.copyActivations(vector[start:start + layer.size])\n", "role": "user" }, { "content": "copyActivations", "role": "assistant" } ]
def x(self, pos): set = {} if type(self.inputs[pos]) == dict: set.update(self.inputs[pos]) else: set['input'] = self.inputs[pos] if self.targets: if type(self.targets[pos]) == dict: set.update(self.targets[pos]) else: set['output'] = self.targets[pos] return set
getDataCrossValidation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pos):\n set = {}\n if type(self.inputs[pos]) == dict:\n set.update(self.inputs[pos])\n else:\n set['input'] = self.inputs[pos]\n if self.targets:\n if type(self.targets[pos]) == dict:\n set.update(self.targets[pos])\n else:\n set['output'] = self.targets[pos]\n return set\n", "role": "user" }, { "content": "getDataCrossValidation", "role": "assistant" } ]
def x(self, intype, pos, name, offset=0): if intype == 'input': vector = self.inputs elif intype == 'target': vector = self.targets else: raise AttributeError("invalid map type '%s'" % intype) return vector[pos][offset:offset + self[name].size]
getDataMap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, intype, pos, name, offset=0):\n if intype == 'input':\n vector = self.inputs\n elif intype == 'target':\n vector = self.targets\n else:\n raise AttributeError(\"invalid map type '%s'\" % intype)\n return vector[pos][offset:offset + self[name].size]\n", "role": "user" }, { "content": "getDataMap", "role": "assistant" } ]
def x(self, pos): retval = {} if pos >= len(self.inputs): raise IndexError('getData() pattern beyond range.', pos) if self.verbosity >= 1: print('Getting input', pos, '...') if len(self.inputMap) == 0: if type(self.inputs[pos]) == dict: retval.update(self.inputs[pos]) else: retval[self.layers[0].name] = self.inputs[pos] else: for vals in self.inputMap: name, offset = vals retval[name] = self.getDataMap('input', pos, name, offset) if self.verbosity > 1: print('Loading target', pos, '...') if len(self.targets) == 0: pass elif len(self.targetMap) == 0: if type(self.targets[pos]) == dict: retval.update(self.targets[pos]) else: retval[self.layers[len(self.layers) - 1].name] = self.targets[pos] else: for vals in self.targetMap: name, offset = vals retval[name] = self.getDataMap('target', pos, name, offset) return retval
getData
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, pos):\n retval = {}\n if pos >= len(self.inputs):\n raise IndexError('getData() pattern beyond range.', pos)\n if self.verbosity >= 1:\n print('Getting input', pos, '...')\n if len(self.inputMap) == 0:\n if type(self.inputs[pos]) == dict:\n retval.update(self.inputs[pos])\n else:\n retval[self.layers[0].name] = self.inputs[pos]\n else:\n for vals in self.inputMap:\n name, offset = vals\n retval[name] = self.getDataMap('input', pos, name, offset)\n if self.verbosity > 1:\n print('Loading target', pos, '...')\n if len(self.targets) == 0:\n pass\n elif len(self.targetMap) == 0:\n if type(self.targets[pos]) == dict:\n retval.update(self.targets[pos])\n else:\n retval[self.layers[len(self.layers) - 1].name] = self.targets[pos]\n else:\n for vals in self.targetMap:\n name, offset = vals\n retval[name] = self.getDataMap('target', pos, name, offset)\n return retval\n", "role": "user" }, { "content": "getData", "role": "assistant" } ]
def x(self): if len(self.cacheLayers) != 0 or len(self.cacheConnections) != 0: return hiddenInput = 1 hiddenOutput = 1 outputLayerFlag = 1 inputLayerFlag = 1 if len(self.layers) == 0: raise NetworkError('No network layers.', self.layers) if len(self.connections) == 0: raise NetworkError('No network connections.', self.connections) for x, y in [(x, y) for x in range(len(self.layers)) for y in range(len (self.layers))]: if x == y: pass elif self.layers[x].name == self.layers[y].name: raise NetworkError('Two layers have the same name.', (x, y)) for x, y in [(x, y) for x in range(len(self.connections)) for y in range(len(self.connections))]: if x == y: pass elif self.connections[x].fromLayer.name == self.connections[y ].fromLayer.name and self.connections[x ].toLayer.name == self.connections[y].toLayer.name: raise NetworkError('Multiple connections between two layers.', (self.connections[x].fromLayer.name, self.connections[x]. toLayer.name)) for layer in self.layers: if layer.type == 'Undefined': raise NetworkError('There is an unconnected layer.', layer.name) elif layer.type == 'Input': for connection in self.connections: if connection.fromLayer.name == layer.name: inputLayerFlag = 0 if connection.toLayer.name == layer.name: raise NetworkError( "Layer has type 'Input' and an incoming connection.", layer.name) if inputLayerFlag: raise NetworkError( "Layer has type 'Input' but no outgoing connections", layer.name) elif layer.type == 'Output': for connection in self.connections: if connection.fromLayer.name == layer.name: raise NetworkError( "Layer has type 'Output' and an outgoing connections.", layer.name) if connection.toLayer.name == layer.name: outputLayerFlag = 0 if outputLayerFlag: raise NetworkError( "Layer has type 'Output' and no incoming connections.", layer.name) elif layer.type == 'Hidden': for connection in self.connections: if connection.toLayer.name == layer.name: hiddenInput = 0 if connection.fromLayer.name == layer.name: hiddenOutput = 0 if hiddenInput or hiddenOutput: raise NetworkError( "Layer has type 'Hidden' but does not have both input and output connections." , layer.name) else: raise LayerError( 'Unknown layer encountered in verifyArchitecture().', layer .name) for inLayer in self.layers: if inLayer.type == 'Input': for outLayer in self.layers: if outLayer.type == 'Output': if not self.path(inLayer, outLayer): raise NetworkError( 'Network contains disconnected sub networks.', (inLayer.name, outLayer.name)) for layer in self.layers: if self.path(layer, layer): raise NetworkError('Network contains a cycle.', layer.name)
verifyArchitecture
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if len(self.cacheLayers) != 0 or len(self.cacheConnections) != 0:\n return\n hiddenInput = 1\n hiddenOutput = 1\n outputLayerFlag = 1\n inputLayerFlag = 1\n if len(self.layers) == 0:\n raise NetworkError('No network layers.', self.layers)\n if len(self.connections) == 0:\n raise NetworkError('No network connections.', self.connections)\n for x, y in [(x, y) for x in range(len(self.layers)) for y in range(len\n (self.layers))]:\n if x == y:\n pass\n elif self.layers[x].name == self.layers[y].name:\n raise NetworkError('Two layers have the same name.', (x, y))\n for x, y in [(x, y) for x in range(len(self.connections)) for y in\n range(len(self.connections))]:\n if x == y:\n pass\n elif self.connections[x].fromLayer.name == self.connections[y\n ].fromLayer.name and self.connections[x\n ].toLayer.name == self.connections[y].toLayer.name:\n raise NetworkError('Multiple connections between two layers.',\n (self.connections[x].fromLayer.name, self.connections[x].\n toLayer.name))\n for layer in self.layers:\n if layer.type == 'Undefined':\n raise NetworkError('There is an unconnected layer.', layer.name)\n elif layer.type == 'Input':\n for connection in self.connections:\n if connection.fromLayer.name == layer.name:\n inputLayerFlag = 0\n if connection.toLayer.name == layer.name:\n raise NetworkError(\n \"Layer has type 'Input' and an incoming connection.\",\n layer.name)\n if inputLayerFlag:\n raise NetworkError(\n \"Layer has type 'Input' but no outgoing connections\",\n layer.name)\n elif layer.type == 'Output':\n for connection in self.connections:\n if connection.fromLayer.name == layer.name:\n raise NetworkError(\n \"Layer has type 'Output' and an outgoing connections.\",\n layer.name)\n if connection.toLayer.name == layer.name:\n outputLayerFlag = 0\n if outputLayerFlag:\n raise NetworkError(\n \"Layer has type 'Output' and no incoming connections.\",\n layer.name)\n elif layer.type == 'Hidden':\n for connection in self.connections:\n if connection.toLayer.name == layer.name:\n hiddenInput = 0\n if connection.fromLayer.name == layer.name:\n hiddenOutput = 0\n if hiddenInput or hiddenOutput:\n raise NetworkError(\n \"Layer has type 'Hidden' but does not have both input and output connections.\"\n , layer.name)\n else:\n raise LayerError(\n 'Unknown layer encountered in verifyArchitecture().', layer\n .name)\n for inLayer in self.layers:\n if inLayer.type == 'Input':\n for outLayer in self.layers:\n if outLayer.type == 'Output':\n if not self.path(inLayer, outLayer):\n raise NetworkError(\n 'Network contains disconnected sub networks.',\n (inLayer.name, outLayer.name))\n for layer in self.layers:\n if self.path(layer, layer):\n raise NetworkError('Network contains a cycle.', layer.name)\n", "role": "user" }, { "content": "verifyArchitecture", "role": "assistant" } ]
def x(self): for layer in self.layers: if (layer.verify and layer.type == 'Input' and layer.kind != 'Context' and layer.active and not layer.activationSet): raise LayerError( "Inputs are not set and verifyInputs() was called on layer '%s'." % layer.name) else: layer.resetActivationFlag()
verifyInputs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for layer in self.layers:\n if (layer.verify and layer.type == 'Input' and layer.kind !=\n 'Context' and layer.active and not layer.activationSet):\n raise LayerError(\n \"Inputs are not set and verifyInputs() was called on layer '%s'.\"\n % layer.name)\n else:\n layer.resetActivationFlag()\n", "role": "user" }, { "content": "verifyInputs", "role": "assistant" } ]
def x(self): for layer in self.layers: if (layer.verify and layer.type == 'Output' and layer.active and not layer.targetSet): raise LayerError( 'Targets are not set and verifyTargets() was called.', ( layer.name, layer.type)) else: layer.resetTargetFlag()
verifyTargets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for layer in self.layers:\n if (layer.verify and layer.type == 'Output' and layer.active and \n not layer.targetSet):\n raise LayerError(\n 'Targets are not set and verifyTargets() was called.', (\n layer.name, layer.type))\n else:\n layer.resetTargetFlag()\n", "role": "user" }, { "content": "verifyTargets", "role": "assistant" } ]
def x(self): tss = 0.0 size = 0 for layer in self.layers: if layer.type == 'Output': tss += layer.TSSError() size += layer.size return math.sqrt(tss / size)
RMSError
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n tss = 0.0\n size = 0\n for layer in self.layers:\n if layer.type == 'Output':\n tss += layer.TSSError()\n size += layer.size\n return math.sqrt(tss / size)\n", "role": "user" }, { "content": "RMSError", "role": "assistant" } ]
def x(self, sweeps=None, cont=0): self.complete = 0 self.verifyArchitecture() tssErr = 0.0 rmsErr = 0.0 totalCorrect = 0 totalCount = 1 totalPCorrect = {} if not cont: self.resetFlags() self.epoch = 0 self.reportStart() self.resetCount = 1 self.epoch = 1 self.lastLowestTSSError = sys.maxsize if sweeps != None: self.resetEpoch = sweeps elif sweeps != None: self.resetEpoch = self.epoch + sweeps - 1 while self.doWhile(totalCount, totalCorrect): tssErr, totalCorrect, totalCount, totalPCorrect = self.sweep() self.complete = 1 if totalCount != 0: rmsErr = math.sqrt(tssErr / totalCount) else: self.Print("Warning: sweep didn't do anything!") if self.epoch % self.reportRate == 0: self.reportEpoch(self.epoch, tssErr, totalCorrect, totalCount, rmsErr, totalPCorrect) if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation: tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect = (self .sweepCrossValidation()) rmsCVErr = math.sqrt(tssCVErr / totalCVCount) self.Print( 'CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f' % (self.epoch, tssCVErr, totalCVCorrect * 1.0 / totalCVCount, rmsCVErr)) if (self.autoSaveWeightsFile != None and tssCVErr < self. lastLowestTSSError): self.lastLowestTSSError = tssCVErr self.saveWeights(self.autoSaveWeightsFile, mode=self. autoSaveWeightsFileFormat) self.Print("auto saving weights to '%s'..." % self. lastAutoSaveWeightsFilename) if self.autoSaveNetworkFile != None: self.saveNetwork(self.autoSaveNetworkFile, mode=self. autoSaveNetworkFileFormat) self.Print("auto saving network to '%s'..." % self. lastAutoSaveNetworkFilename) if (totalCVCorrect * 1.0 / totalCVCount >= self.stopPercent and self.useCrossValidationToStop): self.epoch += 1 break if self.resetEpoch == self.epoch: if self.resetCount == self.resetLimit: self.Print('Reset limit reached; ending without reaching goal') self.epoch += 1 self.complete = 0 break self.resetCount += 1 self.Print('RESET! resetEpoch reached; starting over...') self.initialize() tssErr = 0.0 rmsErr = 0.0 self.epoch = 1 totalCorrect = 0 totalPCorrect = {} continue self.epoch += 1 if totalCount > 0: self.reportFinal(self.epoch, tssErr, totalCorrect, totalCount, rmsErr, totalPCorrect) if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation: tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect = (self .sweepCrossValidation()) rmsCVErr = math.sqrt(tssCVErr / totalCVCount) self.Print( 'CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f' % (self.epoch - 1, tssCVErr, totalCVCorrect * 1.0 / totalCVCount, rmsCVErr)) if (self.autoSaveWeightsFile != None and tssCVErr < self. lastLowestTSSError): self.lastLowestTSSError = tssCVErr self.saveWeights(self.autoSaveWeightsFile, mode=self. autoSaveWeightsFileFormat) self.Print("auto saving weights to '%s'..." % self. lastAutoSaveWeightsFilename) if self.autoSaveNetworkFile != None: self.saveNetwork(self.autoSaveNetworkFile, mode=self. autoSaveNetworkFileFormat) self.Print("auto saving network to '%s'..." % self. lastAutoSaveNetworkFilename) else: print('Final: nothing done')
train
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, sweeps=None, cont=0):\n self.complete = 0\n self.verifyArchitecture()\n tssErr = 0.0\n rmsErr = 0.0\n totalCorrect = 0\n totalCount = 1\n totalPCorrect = {}\n if not cont:\n self.resetFlags()\n self.epoch = 0\n self.reportStart()\n self.resetCount = 1\n self.epoch = 1\n self.lastLowestTSSError = sys.maxsize\n if sweeps != None:\n self.resetEpoch = sweeps\n elif sweeps != None:\n self.resetEpoch = self.epoch + sweeps - 1\n while self.doWhile(totalCount, totalCorrect):\n tssErr, totalCorrect, totalCount, totalPCorrect = self.sweep()\n self.complete = 1\n if totalCount != 0:\n rmsErr = math.sqrt(tssErr / totalCount)\n else:\n self.Print(\"Warning: sweep didn't do anything!\")\n if self.epoch % self.reportRate == 0:\n self.reportEpoch(self.epoch, tssErr, totalCorrect, totalCount,\n rmsErr, totalPCorrect)\n if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation:\n tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect = (self\n .sweepCrossValidation())\n rmsCVErr = math.sqrt(tssCVErr / totalCVCount)\n self.Print(\n 'CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f'\n % (self.epoch, tssCVErr, totalCVCorrect * 1.0 /\n totalCVCount, rmsCVErr))\n if (self.autoSaveWeightsFile != None and tssCVErr < self.\n lastLowestTSSError):\n self.lastLowestTSSError = tssCVErr\n self.saveWeights(self.autoSaveWeightsFile, mode=self.\n autoSaveWeightsFileFormat)\n self.Print(\"auto saving weights to '%s'...\" % self.\n lastAutoSaveWeightsFilename)\n if self.autoSaveNetworkFile != None:\n self.saveNetwork(self.autoSaveNetworkFile, mode=self.\n autoSaveNetworkFileFormat)\n self.Print(\"auto saving network to '%s'...\" % self.\n lastAutoSaveNetworkFilename)\n if (totalCVCorrect * 1.0 / totalCVCount >= self.stopPercent and\n self.useCrossValidationToStop):\n self.epoch += 1\n break\n if self.resetEpoch == self.epoch:\n if self.resetCount == self.resetLimit:\n self.Print('Reset limit reached; ending without reaching goal')\n self.epoch += 1\n self.complete = 0\n break\n self.resetCount += 1\n self.Print('RESET! resetEpoch reached; starting over...')\n self.initialize()\n tssErr = 0.0\n rmsErr = 0.0\n self.epoch = 1\n totalCorrect = 0\n totalPCorrect = {}\n continue\n self.epoch += 1\n if totalCount > 0:\n self.reportFinal(self.epoch, tssErr, totalCorrect, totalCount,\n rmsErr, totalPCorrect)\n if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation:\n tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect = (self\n .sweepCrossValidation())\n rmsCVErr = math.sqrt(tssCVErr / totalCVCount)\n self.Print(\n 'CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f'\n % (self.epoch - 1, tssCVErr, totalCVCorrect * 1.0 /\n totalCVCount, rmsCVErr))\n if (self.autoSaveWeightsFile != None and tssCVErr < self.\n lastLowestTSSError):\n self.lastLowestTSSError = tssCVErr\n self.saveWeights(self.autoSaveWeightsFile, mode=self.\n autoSaveWeightsFileFormat)\n self.Print(\"auto saving weights to '%s'...\" % self.\n lastAutoSaveWeightsFilename)\n if self.autoSaveNetworkFile != None:\n self.saveNetwork(self.autoSaveNetworkFile, mode=self.\n autoSaveNetworkFileFormat)\n self.Print(\"auto saving network to '%s'...\" % self.\n lastAutoSaveNetworkFilename)\n else:\n print('Final: nothing done')\n", "role": "user" }, { "content": "train", "role": "assistant" } ]
def x(self, **args): if self.verbosity > 0: print('Network.step() called with:', args) retargs = self.preStep(**args) if retargs: args = retargs self.propagate(**args) retargs = self.postPropagate(**args) if retargs: args = retargs for aa in self.association: inName, outName = aa inLayer = self.getLayer(inName) if inLayer.type not in ['Input', 'Hidden']: raise LayerError( "Associated input layer not type 'Input' or 'Hidden'.", inLayer.type) outLayer = self.getLayer(outName) if not outLayer.type == 'Output': raise LayerError("Associated output layer not type 'Output'.", outLayer.type) outLayer.copyTargets(inLayer.activation) retargs = self.preBackprop(**args) if retargs: args = retargs error, correct, total, pcorrect = self.backprop(**args) if self.verbosity > 2 or self.interactive: self.display() if self.interactive: self.prompt() retargs = self.postBackprop(**args) if retargs: args = retargs if self.learning and not self.batch: self.change_weights() retargs = self.postStep(**args) if retargs: args = retargs self.reportPattern() return error, correct, total, pcorrect
step
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **args):\n if self.verbosity > 0:\n print('Network.step() called with:', args)\n retargs = self.preStep(**args)\n if retargs:\n args = retargs\n self.propagate(**args)\n retargs = self.postPropagate(**args)\n if retargs:\n args = retargs\n for aa in self.association:\n inName, outName = aa\n inLayer = self.getLayer(inName)\n if inLayer.type not in ['Input', 'Hidden']:\n raise LayerError(\n \"Associated input layer not type 'Input' or 'Hidden'.\",\n inLayer.type)\n outLayer = self.getLayer(outName)\n if not outLayer.type == 'Output':\n raise LayerError(\"Associated output layer not type 'Output'.\",\n outLayer.type)\n outLayer.copyTargets(inLayer.activation)\n retargs = self.preBackprop(**args)\n if retargs:\n args = retargs\n error, correct, total, pcorrect = self.backprop(**args)\n if self.verbosity > 2 or self.interactive:\n self.display()\n if self.interactive:\n self.prompt()\n retargs = self.postBackprop(**args)\n if retargs:\n args = retargs\n if self.learning and not self.batch:\n self.change_weights()\n retargs = self.postStep(**args)\n if retargs:\n args = retargs\n self.reportPattern()\n return error, correct, total, pcorrect\n", "role": "user" }, { "content": "step", "role": "assistant" } ]
def x(self): self.preSweep() if self.loadOrder == []: raise NetworkError( 'No loadOrder for the inputs. Make sure inputs are properly set.', self.loadOrder) if len(self.targets) != 0 and len(self.targets) != len(self.inputs): raise NetworkError( 'Number of inputs does not equal number of targets (inputs=%d, targets=%d)' % (len(self.targets), len(self.inputs))) if self.verbosity >= 1: print('Epoch #', self.epoch, 'Cycle...') if not self.orderedInputs: self.randomizeOrder() tssError = 0.0 totalCorrect = 0 totalCount = 0 totalPCorrect = {} cnt = 0 if self.saveResults: self.results = [(0, 0, 0) for x in self.loadOrder] for i in self.loadOrder: if self.verbosity >= 1 or self.interactive: print('-----------------------------------Pattern #', self. loadOrder[i] + 1) datum = self.getData(i) if cnt < len(self.loadOrder) - 1: self.currentSweepCount = cnt else: self.currentSweepCount = None self._sweeping = 1 error, correct, total, pcorrect = self.step(**datum) self._sweeping = 0 if self.saveResults: self.results[i] = error, correct, total, pcorrect tssError += error totalCorrect += correct totalCount += total sumMerge(totalPCorrect, pcorrect) if self.sweepReportRate and (cnt + 1) % self.sweepReportRate == 0: print(' Step # %6d | TSS Error: %.4f | Correct: %.4f' % (cnt + 1, tssError, totalCorrect * 1.0 / totalCount)) if (self.crossValidationSampleRate and self.epoch % self. crossValidationSampleRate == 0): self.saveNetworkForCrossValidation(self.crossValidationSampleFile) cnt += 1 if self.learning and self.batch: self.change_weights() self.postSweep() return tssError, totalCorrect, totalCount, totalPCorrect
sweep
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.preSweep()\n if self.loadOrder == []:\n raise NetworkError(\n 'No loadOrder for the inputs. Make sure inputs are properly set.',\n self.loadOrder)\n if len(self.targets) != 0 and len(self.targets) != len(self.inputs):\n raise NetworkError(\n 'Number of inputs does not equal number of targets (inputs=%d, targets=%d)'\n % (len(self.targets), len(self.inputs)))\n if self.verbosity >= 1:\n print('Epoch #', self.epoch, 'Cycle...')\n if not self.orderedInputs:\n self.randomizeOrder()\n tssError = 0.0\n totalCorrect = 0\n totalCount = 0\n totalPCorrect = {}\n cnt = 0\n if self.saveResults:\n self.results = [(0, 0, 0) for x in self.loadOrder]\n for i in self.loadOrder:\n if self.verbosity >= 1 or self.interactive:\n print('-----------------------------------Pattern #', self.\n loadOrder[i] + 1)\n datum = self.getData(i)\n if cnt < len(self.loadOrder) - 1:\n self.currentSweepCount = cnt\n else:\n self.currentSweepCount = None\n self._sweeping = 1\n error, correct, total, pcorrect = self.step(**datum)\n self._sweeping = 0\n if self.saveResults:\n self.results[i] = error, correct, total, pcorrect\n tssError += error\n totalCorrect += correct\n totalCount += total\n sumMerge(totalPCorrect, pcorrect)\n if self.sweepReportRate and (cnt + 1) % self.sweepReportRate == 0:\n print(' Step # %6d | TSS Error: %.4f | Correct: %.4f' % (cnt +\n 1, tssError, totalCorrect * 1.0 / totalCount))\n if (self.crossValidationSampleRate and self.epoch % self.\n crossValidationSampleRate == 0):\n self.saveNetworkForCrossValidation(self.crossValidationSampleFile)\n cnt += 1\n if self.learning and self.batch:\n self.change_weights()\n self.postSweep()\n return tssError, totalCorrect, totalCount, totalPCorrect\n", "role": "user" }, { "content": "sweep", "role": "assistant" } ]
def x(self): oldLearning = self.learning self.learning = 0 tssError = 0.0 totalCorrect = 0 totalCount = 0 totalPCorrect = {} self._cv = True if self.autoCrossValidation: for i in range(len(self.inputs)): set = self.getDataCrossValidation(i) self._sweeping = 1 error, correct, total, pcorrect = self.step(**set) self._sweeping = 0 if self.crossValidationReportLayers != []: error, correct, total, pcorrect = self.getError(*self. crossValidationReportLayers) tssError += error totalCorrect += correct totalCount += total sumMerge(totalPCorrect, pcorrect) else: for set in self.crossValidationCorpus: self._sweeping = 1 error, correct, total, pcorrect = self.step(**set) self._sweeping = 0 if self.crossValidationReportLayers != []: error, correct, total, pcorrect = self.getError(*self. crossValidationReportLayers) tssError += error totalCorrect += correct totalCount += total sumMerge(totalPCorrect, pcorrect) self.learning = oldLearning self._cv = False return tssError, totalCorrect, totalCount, totalPCorrect
sweepCrossValidation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n oldLearning = self.learning\n self.learning = 0\n tssError = 0.0\n totalCorrect = 0\n totalCount = 0\n totalPCorrect = {}\n self._cv = True\n if self.autoCrossValidation:\n for i in range(len(self.inputs)):\n set = self.getDataCrossValidation(i)\n self._sweeping = 1\n error, correct, total, pcorrect = self.step(**set)\n self._sweeping = 0\n if self.crossValidationReportLayers != []:\n error, correct, total, pcorrect = self.getError(*self.\n crossValidationReportLayers)\n tssError += error\n totalCorrect += correct\n totalCount += total\n sumMerge(totalPCorrect, pcorrect)\n else:\n for set in self.crossValidationCorpus:\n self._sweeping = 1\n error, correct, total, pcorrect = self.step(**set)\n self._sweeping = 0\n if self.crossValidationReportLayers != []:\n error, correct, total, pcorrect = self.getError(*self.\n crossValidationReportLayers)\n tssError += error\n totalCorrect += correct\n totalCount += total\n sumMerge(totalPCorrect, pcorrect)\n self.learning = oldLearning\n self._cv = False\n return tssError, totalCorrect, totalCount, totalPCorrect\n", "role": "user" }, { "content": "sweepCrossValidation", "role": "assistant" } ]
def x(self, layerName): count = 0 if self[layerName].active: count += 1 for connection in self.connections: if (connection.active and connection.fromLayer.active and connection.toLayer.name == layerName): count += connection.fromLayer.size return count
numConnects
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layerName):\n count = 0\n if self[layerName].active:\n count += 1\n for connection in self.connections:\n if (connection.active and connection.fromLayer.active and \n connection.toLayer.name == layerName):\n count += connection.fromLayer.size\n return count\n", "role": "user" }, { "content": "numConnects", "role": "assistant" } ]
def x(self, startLayers): if self.verbosity > 2: print('Partially propagating network:') propagateLayers = [] for startLayer in startLayers: for layer in self.layers: if self.path(startLayer, layer): propagateLayers.append(layer) for layer in propagateLayers: if layer.active: layer.netinput = layer.weight.copy() for layer in propagateLayers: if layer.active: for connection in self.connections: if connection.active and connection.toLayer.name == layer.name: connection.toLayer.netinput = (connection.toLayer. netinput + Numeric.matrixmultiply(connection. fromLayer.activation, connection.weight)) if layer.type != 'Input': layer.activation = self.activationFunction(layer.netinput) for layer in propagateLayers: if layer.log and layer.active: layer.writeLog(self)
prop_from
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, startLayers):\n if self.verbosity > 2:\n print('Partially propagating network:')\n propagateLayers = []\n for startLayer in startLayers:\n for layer in self.layers:\n if self.path(startLayer, layer):\n propagateLayers.append(layer)\n for layer in propagateLayers:\n if layer.active:\n layer.netinput = layer.weight.copy()\n for layer in propagateLayers:\n if layer.active:\n for connection in self.connections:\n if connection.active and connection.toLayer.name == layer.name:\n connection.toLayer.netinput = (connection.toLayer.\n netinput + Numeric.matrixmultiply(connection.\n fromLayer.activation, connection.weight))\n if layer.type != 'Input':\n layer.activation = self.activationFunction(layer.netinput)\n for layer in propagateLayers:\n if layer.log and layer.active:\n layer.writeLog(self)\n", "role": "user" }, { "content": "prop_from", "role": "assistant" } ]
def x(self, **args): self.prePropagate(**args) for key in args: layer = self.getLayer(key) if layer.kind == 'Input': if self[key].verify and not self[key].activationSet == 0: raise AttributeError( "attempt to set activations on input layer '%s' without reset" % key) self.copyActivations(layer, args[key]) elif layer.kind == 'Context': self.copyActivations(layer, args[key]) elif layer.kind == 'Output' and len(args[key]) == layer.size: self.copyTargets(layer, args[key]) self.verifyInputs() if self.verbosity > 2: print("Propagate Network '" + self.name + "':") for layer in self.layers: if layer.type != 'Input' and layer.active: layer.netinput = layer.weight.copy() for layer in self.layers: if layer.active: for connection in self.connections: if (connection.toLayer.name == layer.name and connection. fromLayer.active and connection.active): a = connection.fromLayer.activation w = connection.weight m = Numeric.matrixmultiply(a, w) ni = m + connection.toLayer.netinput connection.toLayer.netinput = ni if layer.type != 'Input': layer.activation = self.activationFunction(layer.netinput) for layer in self.layers: if layer.log and layer.active: layer.writeLog(self) self.count += 1 if len(args) != 0: dict = {} for layer in self.layers: if layer.type == 'Output': dict[layer.name] = layer.activation.copy() if len(dict) == 1: return dict[list(dict.keys())[0]] else: return dict
propagate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **args):\n self.prePropagate(**args)\n for key in args:\n layer = self.getLayer(key)\n if layer.kind == 'Input':\n if self[key].verify and not self[key].activationSet == 0:\n raise AttributeError(\n \"attempt to set activations on input layer '%s' without reset\"\n % key)\n self.copyActivations(layer, args[key])\n elif layer.kind == 'Context':\n self.copyActivations(layer, args[key])\n elif layer.kind == 'Output' and len(args[key]) == layer.size:\n self.copyTargets(layer, args[key])\n self.verifyInputs()\n if self.verbosity > 2:\n print(\"Propagate Network '\" + self.name + \"':\")\n for layer in self.layers:\n if layer.type != 'Input' and layer.active:\n layer.netinput = layer.weight.copy()\n for layer in self.layers:\n if layer.active:\n for connection in self.connections:\n if (connection.toLayer.name == layer.name and connection.\n fromLayer.active and connection.active):\n a = connection.fromLayer.activation\n w = connection.weight\n m = Numeric.matrixmultiply(a, w)\n ni = m + connection.toLayer.netinput\n connection.toLayer.netinput = ni\n if layer.type != 'Input':\n layer.activation = self.activationFunction(layer.netinput)\n for layer in self.layers:\n if layer.log and layer.active:\n layer.writeLog(self)\n self.count += 1\n if len(args) != 0:\n dict = {}\n for layer in self.layers:\n if layer.type == 'Output':\n dict[layer.name] = layer.activation.copy()\n if len(dict) == 1:\n return dict[list(dict.keys())[0]]\n else:\n return dict\n", "role": "user" }, { "content": "propagate", "role": "assistant" } ]
def x(self, toLayer, **args): for layerName in args: self[layerName].activationSet = 0 self[layerName].copyActivations(args[layerName]) self[toLayer].netinput = self[toLayer].weight.copy() for connection in self.connections: if (connection.active and connection.toLayer.name == toLayer and connection.fromLayer.active): connection.toLayer.netinput = (connection.toLayer.netinput + Numeric.matrixmultiply(connection.fromLayer.activation, connection.weight)) if self[toLayer].type != 'Input': self[toLayer].activation = self.activationFunction(self[ toLayer].netinput) return self[toLayer].activation.copy()
propagateTo
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, toLayer, **args):\n for layerName in args:\n self[layerName].activationSet = 0\n self[layerName].copyActivations(args[layerName])\n self[toLayer].netinput = self[toLayer].weight.copy()\n for connection in self.connections:\n if (connection.active and connection.toLayer.name == toLayer and\n connection.fromLayer.active):\n connection.toLayer.netinput = (connection.toLayer.netinput +\n Numeric.matrixmultiply(connection.fromLayer.activation,\n connection.weight))\n if self[toLayer].type != 'Input':\n self[toLayer].activation = self.activationFunction(self[\n toLayer].netinput)\n return self[toLayer].activation.copy()\n", "role": "user" }, { "content": "propagateTo", "role": "assistant" } ]
def x(self, startLayer, **args): for layerName in args: self[layerName].copyActivations(args[layerName]) started = 0 for layer in self.layers: if layer.name == startLayer: started = 1 continue if not started: continue if layer.type != 'Input' and layer.active: layer.netinput = layer.weight.copy() started = 0 for layer in self.layers: if layer.name == startLayer: started = 1 continue if not started: continue if layer.active: for connection in self.connections: if (connection.active and connection.toLayer.name == layer. name and connection.fromLayer.active): connection.toLayer.netinput = (connection.toLayer. netinput + Numeric.matrixmultiply(connection. fromLayer.activation, connection.weight)) if layer.type != 'Input': layer.activation = self.activationFunction(layer.netinput) for layer in self.layers: if layer.log and layer.active: layer.writeLog(self) self.count += 1 if len(args) != 0: dict = {} for layer in self.layers: if layer.type == 'Output': dict[layer.name] = layer.activation.copy() if len(dict) == 1: return dict[list(dict.keys())[0]] else: return dict
propagateFrom
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, startLayer, **args):\n for layerName in args:\n self[layerName].copyActivations(args[layerName])\n started = 0\n for layer in self.layers:\n if layer.name == startLayer:\n started = 1\n continue\n if not started:\n continue\n if layer.type != 'Input' and layer.active:\n layer.netinput = layer.weight.copy()\n started = 0\n for layer in self.layers:\n if layer.name == startLayer:\n started = 1\n continue\n if not started:\n continue\n if layer.active:\n for connection in self.connections:\n if (connection.active and connection.toLayer.name == layer.\n name and connection.fromLayer.active):\n connection.toLayer.netinput = (connection.toLayer.\n netinput + Numeric.matrixmultiply(connection.\n fromLayer.activation, connection.weight))\n if layer.type != 'Input':\n layer.activation = self.activationFunction(layer.netinput)\n for layer in self.layers:\n if layer.log and layer.active:\n layer.writeLog(self)\n self.count += 1\n if len(args) != 0:\n dict = {}\n for layer in self.layers:\n if layer.type == 'Output':\n dict[layer.name] = layer.activation.copy()\n if len(dict) == 1:\n return dict[list(dict.keys())[0]]\n else:\n return dict\n", "role": "user" }, { "content": "propagateFrom", "role": "assistant" } ]
def x(self, x): def x(v): if v < -15.0: return 0.0 elif v > 15.0: return 1.0 else: return 1.0 / (1.0 + Numeric.exp(-v)) return Numeric.array(list(map(act, x)), 'f')
activationFunctionASIG
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n\n def x(v):\n if v < -15.0:\n return 0.0\n elif v > 15.0:\n return 1.0\n else:\n return 1.0 / (1.0 + Numeric.exp(-v))\n return Numeric.array(list(map(act, x)), 'f')\n", "role": "user" }, { "content": "activationFunctionASIG", "role": "assistant" } ]
def x(self, x): def x(v): if v < -15.0: return 0.0 elif v > 15.0: return 1.0 else: return 1.0 / (1.0 + Numeric.exp(-v)) return act(x) * (1.0 - act(x)) + self.sigmoid_prime_offset
actDerivASIG
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x):\n\n def x(v):\n if v < -15.0:\n return 0.0\n elif v > 15.0:\n return 1.0\n else:\n return 1.0 / (1.0 + Numeric.exp(-v))\n return act(x) * (1.0 - act(x)) + self.sigmoid_prime_offset\n", "role": "user" }, { "content": "actDerivASIG", "role": "assistant" } ]
def x(self): self.activationFunction = self.activationFunctionTANH self.ACTPRIME = self.ACTPRIMETANH self.actDeriv = self.actDerivTANH for layer in self: layer.minTarget, layer.minActivation = -1.7159, -1.7159 layer.maxTarget, layer.maxActivation = 1.7159, 1.7159
useTanhActivationFunction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.activationFunction = self.activationFunctionTANH\n self.ACTPRIME = self.ACTPRIMETANH\n self.actDeriv = self.actDerivTANH\n for layer in self:\n layer.minTarget, layer.minActivation = -1.7159, -1.7159\n layer.maxTarget, layer.maxActivation = 1.7159, 1.7159\n", "role": "user" }, { "content": "useTanhActivationFunction", "role": "assistant" } ]
def x(self): self.activationFunction = self.activationFunctionFahlman self.ACTPRIME = self.ACTPRIME_Fahlman self.actDeriv = self.actDerivFahlman for layer in self: layer.minTarget, layer.minActivation = -0.5, -0.5 layer.maxTarget, layer.maxActivation = 0.5, 0.5
useFahlmanActivationFunction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.activationFunction = self.activationFunctionFahlman\n self.ACTPRIME = self.ACTPRIME_Fahlman\n self.actDeriv = self.actDerivFahlman\n for layer in self:\n layer.minTarget, layer.minActivation = -0.5, -0.5\n layer.maxTarget, layer.maxActivation = 0.5, 0.5\n", "role": "user" }, { "content": "useFahlmanActivationFunction", "role": "assistant" } ]
def x(self, **args): retval = self.compute_error(**args) if self.learning: self.compute_wed() return retval
backprop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **args):\n retval = self.compute_error(**args)\n if self.learning:\n self.compute_wed()\n return retval\n", "role": "user" }, { "content": "backprop", "role": "assistant" } ]
def x(self, e, wed, m, dweightLast, wedLast, w, n): shrinkFactor = self.mu / (1.0 + self.mu) if self.splitEpsilon: e /= float(n) if self._quickprop: nextStep = Numeric.zeros(len(dweightLast), 'f') for i in range(len(dweightLast)): s = wed[i] d = dweightLast[i] p = wedLast[i] if d > 0.0: if s > 0.0: nextStep[i] = nextStep[i] + e * s if s >= shrinkFactor * p: nextStep[i] = nextStep[i] + self.mu * d else: nextStep[i] = nextStep[i] + d * s / (p - s) elif d < 0.0: if s < 0.0: nextStep[i] = nextStep[i] + e * s if s <= shrinkFactor * p: nextStep[i] = nextStep[i] + self.mu * d else: nextStep[i] = nextStep[i] + d * s / (p - s) else: nextStep[i] = nextStep[i] + (e * s + m * d) newDweight = nextStep else: newDweight = e * wed + m * dweightLast return newDweight
deltaWeight
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, e, wed, m, dweightLast, wedLast, w, n):\n shrinkFactor = self.mu / (1.0 + self.mu)\n if self.splitEpsilon:\n e /= float(n)\n if self._quickprop:\n nextStep = Numeric.zeros(len(dweightLast), 'f')\n for i in range(len(dweightLast)):\n s = wed[i]\n d = dweightLast[i]\n p = wedLast[i]\n if d > 0.0:\n if s > 0.0:\n nextStep[i] = nextStep[i] + e * s\n if s >= shrinkFactor * p:\n nextStep[i] = nextStep[i] + self.mu * d\n else:\n nextStep[i] = nextStep[i] + d * s / (p - s)\n elif d < 0.0:\n if s < 0.0:\n nextStep[i] = nextStep[i] + e * s\n if s <= shrinkFactor * p:\n nextStep[i] = nextStep[i] + self.mu * d\n else:\n nextStep[i] = nextStep[i] + d * s / (p - s)\n else:\n nextStep[i] = nextStep[i] + (e * s + m * d)\n newDweight = nextStep\n else:\n newDweight = e * wed + m * dweightLast\n return newDweight\n", "role": "user" }, { "content": "deltaWeight", "role": "assistant" } ]
def x(self): dw_count, dw_sum = 0, 0.0 if len(self.cacheLayers) != 0: changeLayers = self.cacheLayers else: changeLayers = self.layers for layer in changeLayers: if layer.active and layer.type != 'Input': if not layer.frozen: if self._quickprop or self.splitEpsilon: layer.dweight = self.deltaWeight(self.epsilon, layer. wed, self.momentum, layer.dweight, layer.wedLast, layer.weight, self.numConnects(layer.name)) else: layer.dweight = (self.epsilon * layer.wed + self. momentum * layer.dweight) layer.weight += layer.dweight layer.wedLast = Numeric.array(layer.wed) if self._quickprop: layer.wed = layer.weight * self.decay else: layer.wed = layer.wed * 0.0 dw_count += len(layer.dweight) dw_sum += Numeric.add.reduce(abs(layer.dweight)) if len(self.cacheConnections) != 0: changeConnections = self.cacheConnections else: changeConnections = self.connections for connection in changeConnections: if (connection.active and connection.fromLayer.active and connection.toLayer.active and not connection.frozen): toLayer = connection.toLayer if self._quickprop or self.splitEpsilon: for i in range(len(connection.dweight)): Numeric.put(connection.dweight[i], Numeric.arange(len( connection.dweight[i])), self.deltaWeight(self. epsilon, connection.wed[i], self.momentum, connection.dweight[i], connection.wedLast[i], connection.weight[i], self.numConnects(connection. toLayer.name))) else: connection.dweight = (self.epsilon * connection.wed + self. momentum * connection.dweight) connection.weight += connection.dweight connection.wedLast = Numeric.array(connection.wed) if self._quickprop: connection.wed = connection.weight * self.decay else: connection.wed = connection.wed * 0.0 dw_count += Numeric.multiply.reduce(connection.dweight.shape) dw_sum += Numeric.add.reduce(Numeric.add.reduce(abs(connection. dweight))) if self.verbosity >= 1: print('WEIGHTS CHANGED') if self.verbosity > 2: self.display() return dw_count, dw_sum
change_weights
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n dw_count, dw_sum = 0, 0.0\n if len(self.cacheLayers) != 0:\n changeLayers = self.cacheLayers\n else:\n changeLayers = self.layers\n for layer in changeLayers:\n if layer.active and layer.type != 'Input':\n if not layer.frozen:\n if self._quickprop or self.splitEpsilon:\n layer.dweight = self.deltaWeight(self.epsilon, layer.\n wed, self.momentum, layer.dweight, layer.wedLast,\n layer.weight, self.numConnects(layer.name))\n else:\n layer.dweight = (self.epsilon * layer.wed + self.\n momentum * layer.dweight)\n layer.weight += layer.dweight\n layer.wedLast = Numeric.array(layer.wed)\n if self._quickprop:\n layer.wed = layer.weight * self.decay\n else:\n layer.wed = layer.wed * 0.0\n dw_count += len(layer.dweight)\n dw_sum += Numeric.add.reduce(abs(layer.dweight))\n if len(self.cacheConnections) != 0:\n changeConnections = self.cacheConnections\n else:\n changeConnections = self.connections\n for connection in changeConnections:\n if (connection.active and connection.fromLayer.active and\n connection.toLayer.active and not connection.frozen):\n toLayer = connection.toLayer\n if self._quickprop or self.splitEpsilon:\n for i in range(len(connection.dweight)):\n Numeric.put(connection.dweight[i], Numeric.arange(len(\n connection.dweight[i])), self.deltaWeight(self.\n epsilon, connection.wed[i], self.momentum,\n connection.dweight[i], connection.wedLast[i],\n connection.weight[i], self.numConnects(connection.\n toLayer.name)))\n else:\n connection.dweight = (self.epsilon * connection.wed + self.\n momentum * connection.dweight)\n connection.weight += connection.dweight\n connection.wedLast = Numeric.array(connection.wed)\n if self._quickprop:\n connection.wed = connection.weight * self.decay\n else:\n connection.wed = connection.wed * 0.0\n dw_count += Numeric.multiply.reduce(connection.dweight.shape)\n dw_sum += Numeric.add.reduce(Numeric.add.reduce(abs(connection.\n dweight)))\n if self.verbosity >= 1:\n print('WEIGHTS CHANGED')\n if self.verbosity > 2:\n self.display()\n return dw_count, dw_sum\n", "role": "user" }, { "content": "change_weights", "role": "assistant" } ]
def x(self, t, a): def x(v): if not self.hyperbolicError: return v elif v < -0.9999999: return -17.0 elif v > 0.9999999: return 17.0 else: return math.log((1.0 + v) / (1.0 - v)) return list(map(difference, t - a))
errorFunction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t, a):\n\n def x(v):\n if not self.hyperbolicError:\n return v\n elif v < -0.9999999:\n return -17.0\n elif v > 0.9999999:\n return 17.0\n else:\n return math.log((1.0 + v) / (1.0 - v))\n return list(map(difference, t - a))\n", "role": "user" }, { "content": "errorFunction", "role": "assistant" } ]
def x(self): retval = 0.0 correct = 0 totalCount = 0 for layer in self.layers: if layer.active: if layer.type == 'Output': layer.error = self.errorFunction(layer.target, layer.activation ) totalCount += layer.size retval += Numeric.add.reduce((layer.target - layer. activation) ** 2) correct += Numeric.add.reduce(Numeric.fabs(layer.target - layer.activation) < self.tolerance) elif layer.type == 'Hidden': for i in range(layer.size): layer.error[i] = 0.0 return retval, correct, totalCount
ce_init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n retval = 0.0\n correct = 0\n totalCount = 0\n for layer in self.layers:\n if layer.active:\n if layer.type == 'Output':\n layer.error = self.errorFunction(layer.target, layer.activation\n )\n totalCount += layer.size\n retval += Numeric.add.reduce((layer.target - layer.\n activation) ** 2)\n correct += Numeric.add.reduce(Numeric.fabs(layer.target -\n layer.activation) < self.tolerance)\n elif layer.type == 'Hidden':\n for i in range(layer.size):\n layer.error[i] = 0.0\n return retval, correct, totalCount\n", "role": "user" }, { "content": "ce_init", "role": "assistant" } ]
def x(self, **args): for key in args: layer = self.getLayer(key) if layer.kind == 'Output': self.copyTargets(layer, args[key]) self.verifyTargets() error, correct, total = self.ce_init() pcorrect = {} if len(self.cacheConnections) != 0: changeConnections = self.cacheConnections else: changeConnections = self.connections for connect in reverse(changeConnections): if (connect.active and connect.toLayer.active and connect.fromLayer .active): connect.toLayer.delta = connect.toLayer.error * self.ACTPRIME( connect.toLayer.activation) connect.fromLayer.error = (connect.fromLayer.error + Numeric. matrixmultiply(connect.weight, connect.toLayer.delta)) pcorrect = self.getLayerErrors() return error, correct, total, pcorrect
compute_error
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, **args):\n for key in args:\n layer = self.getLayer(key)\n if layer.kind == 'Output':\n self.copyTargets(layer, args[key])\n self.verifyTargets()\n error, correct, total = self.ce_init()\n pcorrect = {}\n if len(self.cacheConnections) != 0:\n changeConnections = self.cacheConnections\n else:\n changeConnections = self.connections\n for connect in reverse(changeConnections):\n if (connect.active and connect.toLayer.active and connect.fromLayer\n .active):\n connect.toLayer.delta = connect.toLayer.error * self.ACTPRIME(\n connect.toLayer.activation)\n connect.fromLayer.error = (connect.fromLayer.error + Numeric.\n matrixmultiply(connect.weight, connect.toLayer.delta))\n pcorrect = self.getLayerErrors()\n return error, correct, total, pcorrect\n", "role": "user" }, { "content": "compute_error", "role": "assistant" } ]
def x(self): if len(self.cacheConnections) != 0: changeConnections = self.cacheConnections else: changeConnections = self.connections for connect in reverse(changeConnections): if (connect.active and connect.fromLayer.active and connect.toLayer .active): connect.wed = connect.wed + Numeric.outerproduct(connect. fromLayer.activation, connect.toLayer.delta) if len(self.cacheLayers) != 0: changeLayers = self.cacheLayers else: changeLayers = self.layers for layer in changeLayers: if layer.active: layer.wed = layer.wed + layer.delta
compute_wed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if len(self.cacheConnections) != 0:\n changeConnections = self.cacheConnections\n else:\n changeConnections = self.connections\n for connect in reverse(changeConnections):\n if (connect.active and connect.fromLayer.active and connect.toLayer\n .active):\n connect.wed = connect.wed + Numeric.outerproduct(connect.\n fromLayer.activation, connect.toLayer.delta)\n if len(self.cacheLayers) != 0:\n changeLayers = self.cacheLayers\n else:\n changeLayers = self.layers\n for layer in changeLayers:\n if layer.active:\n layer.wed = layer.wed + layer.delta\n", "role": "user" }, { "content": "compute_wed", "role": "assistant" } ]
def x(self): output = '' for layer in reverse(self.layers): output += layer.toString() return output
toString
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n output = ''\n for layer in reverse(self.layers):\n output += layer.toString()\n return output\n", "role": "user" }, { "content": "toString", "role": "assistant" } ]
def x(self): print("Display network '" + self.name + "':") size = list(range(len(self.layers))) size.reverse() for i in size: if self.layers[i].active: self.layers[i].display() if self.patterned and self.layers[i].type != 'Hidden': targetWord, diff = self.getWord(self.layers[i].target, returnDiff=1) if self.layers[i].kind == 'Output': if targetWord == None: print('Target Pattern = %s' % 'No match') elif diff == 0.0: print("Target Pattern = '%s'; (exact)" % targetWord) else: print( "Target Pattern = '%s'; Match difference = %f)" % (targetWord, diff)) actWord, diff = self.getWord(self.layers[i].activation, returnDiff=1) if self.layers[i].kind == 'Input' or self.layers[i ].kind == 'Output': if actWord == None: print('Matching Pattern = %s' % 'No match') elif diff == 0.0: print("Matching Pattern = '%s'; (exact)" % actWord) else: print( "Matching Pattern = '%s'; Match difference = %f" % (actWord, diff)) if self.verbosity >= 1: weights = list(range(len(self.connections))) weights.reverse() for j in weights: if self.connections[j].toLayer.name == self.layers[i].name: self.connections[j].display()
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n print(\"Display network '\" + self.name + \"':\")\n size = list(range(len(self.layers)))\n size.reverse()\n for i in size:\n if self.layers[i].active:\n self.layers[i].display()\n if self.patterned and self.layers[i].type != 'Hidden':\n targetWord, diff = self.getWord(self.layers[i].target,\n returnDiff=1)\n if self.layers[i].kind == 'Output':\n if targetWord == None:\n print('Target Pattern = %s' % 'No match')\n elif diff == 0.0:\n print(\"Target Pattern = '%s'; (exact)\" % targetWord)\n else:\n print(\n \"Target Pattern = '%s'; Match difference = %f)\" %\n (targetWord, diff))\n actWord, diff = self.getWord(self.layers[i].activation,\n returnDiff=1)\n if self.layers[i].kind == 'Input' or self.layers[i\n ].kind == 'Output':\n if actWord == None:\n print('Matching Pattern = %s' % 'No match')\n elif diff == 0.0:\n print(\"Matching Pattern = '%s'; (exact)\" % actWord)\n else:\n print(\n \"Matching Pattern = '%s'; Match difference = %f\" %\n (actWord, diff))\n if self.verbosity >= 1:\n weights = list(range(len(self.connections)))\n weights.reverse()\n for j in weights:\n if self.connections[j].toLayer.name == self.layers[i].name:\n self.connections[j].display()\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(self): gene = [] for layer in self.layers: if layer.type != 'Input': for i in range(layer.size): gene.append(layer.weight[i]) for connection in self.connections: for i in range(connection.fromLayer.size): for j in range(connection.toLayer.size): gene.append(connection.weight[i][j]) return gene
arrayify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n gene = []\n for layer in self.layers:\n if layer.type != 'Input':\n for i in range(layer.size):\n gene.append(layer.weight[i])\n for connection in self.connections:\n for i in range(connection.fromLayer.size):\n for j in range(connection.toLayer.size):\n gene.append(connection.weight[i][j])\n return gene\n", "role": "user" }, { "content": "arrayify", "role": "assistant" } ]
def x(self, gene): g = 0 for layer in self.layers: if layer.type != 'Input': for i in range(layer.size): layer.weight[i] = float(gene[g]) g += 1 for connection in self.connections: for i in range(connection.fromLayer.size): for j in range(connection.toLayer.size): connection.weight[i][j] = gene[g] g += 1 if len(gene) > g: raise IndexError('Argument to unArrayify is too long.', len(gene))
unArrayify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, gene):\n g = 0\n for layer in self.layers:\n if layer.type != 'Input':\n for i in range(layer.size):\n layer.weight[i] = float(gene[g])\n g += 1\n for connection in self.connections:\n for i in range(connection.fromLayer.size):\n for j in range(connection.toLayer.size):\n connection.weight[i][j] = gene[g]\n g += 1\n if len(gene) > g:\n raise IndexError('Argument to unArrayify is too long.', len(gene))\n", "role": "user" }, { "content": "unArrayify", "role": "assistant" } ]