source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
|---|---|---|
def x(self, nml_path, force=False, sort=False):
nml_is_file = hasattr(nml_path, 'read')
if not force and not nml_is_file and os.path.isfile(nml_path):
raise IOError('File {0} already exists.'.format(nml_path))
nml_file = nml_path if nml_is_file else open(nml_path, 'w')
try:
self._writestream(nml_file, sort)
finally:
if not nml_is_file:
nml_file.close()
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nml_path, force=False, sort=False):\n nml_is_file = hasattr(nml_path, 'read')\n if not force and not nml_is_file and os.path.isfile(nml_path):\n raise IOError('File {0} already exists.'.format(nml_path))\n nml_file = nml_path if nml_is_file else open(nml_path, 'w')\n try:\n self._writestream(nml_file, sort)\n finally:\n if not nml_is_file:\n nml_file.close()\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self, nml_patch):
for sec in nml_patch:
if sec not in self:
self[sec] = Namelist()
self[sec].update(nml_patch[sec])
|
patch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nml_patch):\n for sec in nml_patch:\n if sec not in self:\n self[sec] = Namelist()\n self[sec].update(nml_patch[sec])\n",
"role": "user"
},
{
"content": "patch",
"role": "assistant"
}
] |
def x(self):
for key, value in self.items():
for inner_key, inner_value in value.items():
yield (key, inner_key), inner_value
|
groups
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for key, value in self.items():\n for inner_key, inner_value in value.items():\n yield (key, inner_key), inner_value\n",
"role": "user"
},
{
"content": "groups",
"role": "assistant"
}
] |
def x(self, grp_name, grp_vars, nml_file, sort=False):
if self._newline:
print(file=nml_file)
self._newline = True
if self.uppercase:
grp_name = grp_name.upper()
if sort:
grp_vars = Namelist(sorted(grp_vars.items(), key=lambda t: t[0]))
print('&{0}'.format(grp_name), file=nml_file)
for v_name, v_val in grp_vars.items():
v_start = grp_vars.start_index.get(v_name, None)
for v_str in self._var_strings(v_name, v_val, v_start=v_start):
nml_line = self.indent + '{0}'.format(v_str)
print(nml_line, file=nml_file)
print('/', file=nml_file)
|
write_nmlgrp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, grp_name, grp_vars, nml_file, sort=False):\n if self._newline:\n print(file=nml_file)\n self._newline = True\n if self.uppercase:\n grp_name = grp_name.upper()\n if sort:\n grp_vars = Namelist(sorted(grp_vars.items(), key=lambda t: t[0]))\n print('&{0}'.format(grp_name), file=nml_file)\n for v_name, v_val in grp_vars.items():\n v_start = grp_vars.start_index.get(v_name, None)\n for v_str in self._var_strings(v_name, v_val, v_start=v_start):\n nml_line = self.indent + '{0}'.format(v_str)\n print(nml_line, file=nml_file)\n print('/', file=nml_file)\n",
"role": "user"
},
{
"content": "write_nmlgrp",
"role": "assistant"
}
] |
def x(self, v_name, v_values, v_idx=None, v_start=None):
if self.uppercase:
v_name = v_name.upper()
var_strs = []
if is_nullable_list(v_values, list):
if not v_idx:
v_idx = []
i_s = v_start[::-1][len(v_idx)] if v_start else None
if i_s is None:
i_s = 1
for idx, val in enumerate(v_values, start=i_s):
v_idx_new = v_idx + [idx]
v_strs = self._var_strings(v_name, val, v_idx=v_idx_new,
v_start=v_start)
var_strs.extend(v_strs)
elif isinstance(v_values, Namelist):
for f_name, f_vals in v_values.items():
v_title = '%'.join([v_name, f_name])
v_start_new = v_values.start_index.get(f_name, None)
v_strs = self._var_strings(v_title, f_vals, v_start=v_start_new)
var_strs.extend(v_strs)
elif is_nullable_list(v_values, Namelist):
if not v_idx:
v_idx = []
i_s = v_start[::-1][len(v_idx)] if v_start else 1
for idx, val in enumerate(v_values, start=i_s):
if val is None:
continue
v_title = v_name + '({0})'.format(idx)
v_strs = self._var_strings(v_title, val)
var_strs.extend(v_strs)
else:
use_default_start_index = False
if not isinstance(v_values, list):
v_values = [v_values]
use_default_start_index = False
else:
use_default_start_index = self.default_start_index is not None
if v_idx or v_start or use_default_start_index:
v_idx_repr = '('
if v_start or use_default_start_index:
if v_start:
i_s = v_start[0]
else:
i_s = self.default_start_index
if i_s is None:
v_idx_repr += ':'
else:
i_e = i_s + len(v_values) - 1
if i_s == i_e:
v_idx_repr += '{0}'.format(i_s)
else:
v_idx_repr += '{0}:{1}'.format(i_s, i_e)
else:
v_idx_repr += ':'
if v_idx:
idx_delim = ', ' if self._index_spacing else ','
v_idx_repr += idx_delim
v_idx_repr += idx_delim.join(str(i) for i in v_idx[::-1])
v_idx_repr += ')'
else:
v_idx_repr = ''
val_strs = []
val_line = ''
for v_val in v_values:
v_header = v_name + v_idx_repr + ' = '
if len(self.indent + v_header) >= self.column_width:
column_width = len(self.indent + v_header) + 1
else:
column_width = self.column_width
v_width = column_width - len(self.indent + v_header)
if len(val_line) < v_width:
val_line += self._f90repr(v_val) + ', '
if len(val_line) >= v_width:
val_strs.append(val_line.rstrip())
val_line = ''
if val_line:
val_strs.append(val_line.rstrip())
if val_strs:
if self.end_comma or v_values[-1] is None:
pass
else:
val_strs[-1] = val_strs[-1][:-1]
if val_strs:
var_strs.append('{0}{1} = {2}'.format(v_name, v_idx_repr,
val_strs[0]).strip())
for v_str in val_strs[1:]:
var_strs.append(' ' * len(v_header) + v_str)
return var_strs
|
var_strings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, v_name, v_values, v_idx=None, v_start=None):\n if self.uppercase:\n v_name = v_name.upper()\n var_strs = []\n if is_nullable_list(v_values, list):\n if not v_idx:\n v_idx = []\n i_s = v_start[::-1][len(v_idx)] if v_start else None\n if i_s is None:\n i_s = 1\n for idx, val in enumerate(v_values, start=i_s):\n v_idx_new = v_idx + [idx]\n v_strs = self._var_strings(v_name, val, v_idx=v_idx_new,\n v_start=v_start)\n var_strs.extend(v_strs)\n elif isinstance(v_values, Namelist):\n for f_name, f_vals in v_values.items():\n v_title = '%'.join([v_name, f_name])\n v_start_new = v_values.start_index.get(f_name, None)\n v_strs = self._var_strings(v_title, f_vals, v_start=v_start_new)\n var_strs.extend(v_strs)\n elif is_nullable_list(v_values, Namelist):\n if not v_idx:\n v_idx = []\n i_s = v_start[::-1][len(v_idx)] if v_start else 1\n for idx, val in enumerate(v_values, start=i_s):\n if val is None:\n continue\n v_title = v_name + '({0})'.format(idx)\n v_strs = self._var_strings(v_title, val)\n var_strs.extend(v_strs)\n else:\n use_default_start_index = False\n if not isinstance(v_values, list):\n v_values = [v_values]\n use_default_start_index = False\n else:\n use_default_start_index = self.default_start_index is not None\n if v_idx or v_start or use_default_start_index:\n v_idx_repr = '('\n if v_start or use_default_start_index:\n if v_start:\n i_s = v_start[0]\n else:\n i_s = self.default_start_index\n if i_s is None:\n v_idx_repr += ':'\n else:\n i_e = i_s + len(v_values) - 1\n if i_s == i_e:\n v_idx_repr += '{0}'.format(i_s)\n else:\n v_idx_repr += '{0}:{1}'.format(i_s, i_e)\n else:\n v_idx_repr += ':'\n if v_idx:\n idx_delim = ', ' if self._index_spacing else ','\n v_idx_repr += idx_delim\n v_idx_repr += idx_delim.join(str(i) for i in v_idx[::-1])\n v_idx_repr += ')'\n else:\n v_idx_repr = ''\n val_strs = []\n val_line = ''\n for v_val in v_values:\n v_header = v_name + v_idx_repr + ' = '\n if len(self.indent + v_header) >= self.column_width:\n column_width = len(self.indent + v_header) + 1\n else:\n column_width = self.column_width\n v_width = column_width - len(self.indent + v_header)\n if len(val_line) < v_width:\n val_line += self._f90repr(v_val) + ', '\n if len(val_line) >= v_width:\n val_strs.append(val_line.rstrip())\n val_line = ''\n if val_line:\n val_strs.append(val_line.rstrip())\n if val_strs:\n if self.end_comma or v_values[-1] is None:\n pass\n else:\n val_strs[-1] = val_strs[-1][:-1]\n if val_strs:\n var_strs.append('{0}{1} = {2}'.format(v_name, v_idx_repr,\n val_strs[0]).strip())\n for v_str in val_strs[1:]:\n var_strs.append(' ' * len(v_header) + v_str)\n return var_strs\n",
"role": "user"
},
{
"content": "var_strings",
"role": "assistant"
}
] |
def x(self, complex_tuple=False):
nmldict = OrderedDict(self)
for key, value in self.items():
if isinstance(value, Namelist):
nmldict[key] = value.todict(complex_tuple)
elif isinstance(value, complex) and complex_tuple:
nmldict[key] = [value.real, value.imag]
try:
nmldict['_complex'].append(key)
except KeyError:
nmldict['_complex'] = [key]
elif isinstance(value, list):
complex_list = False
for idx, entry in enumerate(value):
if isinstance(entry, Namelist):
nmldict[key][idx] = entry.todict(complex_tuple)
elif isinstance(entry, complex) and complex_tuple:
nmldict[key][idx] = [entry.real, entry.imag]
complex_list = True
if complex_list:
try:
nmldict['_complex'].append(key)
except KeyError:
nmldict['_complex'] = [key]
if self.start_index:
nmldict['_start_index'] = self.start_index
return nmldict
|
todict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, complex_tuple=False):\n nmldict = OrderedDict(self)\n for key, value in self.items():\n if isinstance(value, Namelist):\n nmldict[key] = value.todict(complex_tuple)\n elif isinstance(value, complex) and complex_tuple:\n nmldict[key] = [value.real, value.imag]\n try:\n nmldict['_complex'].append(key)\n except KeyError:\n nmldict['_complex'] = [key]\n elif isinstance(value, list):\n complex_list = False\n for idx, entry in enumerate(value):\n if isinstance(entry, Namelist):\n nmldict[key][idx] = entry.todict(complex_tuple)\n elif isinstance(entry, complex) and complex_tuple:\n nmldict[key][idx] = [entry.real, entry.imag]\n complex_list = True\n if complex_list:\n try:\n nmldict['_complex'].append(key)\n except KeyError:\n nmldict['_complex'] = [key]\n if self.start_index:\n nmldict['_start_index'] = self.start_index\n return nmldict\n",
"role": "user"
},
{
"content": "todict",
"role": "assistant"
}
] |
def x(self, value):
if isinstance(value, bool):
return self._f90bool(value)
elif isinstance(value, numbers.Integral):
return self._f90int(value)
elif isinstance(value, numbers.Real):
return self._f90float(value)
elif isinstance(value, numbers.Complex):
return self._f90complex(value)
elif isinstance(value, basestring):
return self._f90str(value)
elif value is None:
return ''
else:
raise ValueError(
'Type {0} of {1} cannot be converted to a Fortran type.'.format
(type(value), value))
|
f90repr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if isinstance(value, bool):\n return self._f90bool(value)\n elif isinstance(value, numbers.Integral):\n return self._f90int(value)\n elif isinstance(value, numbers.Real):\n return self._f90float(value)\n elif isinstance(value, numbers.Complex):\n return self._f90complex(value)\n elif isinstance(value, basestring):\n return self._f90str(value)\n elif value is None:\n return ''\n else:\n raise ValueError(\n 'Type {0} of {1} cannot be converted to a Fortran type.'.format\n (type(value), value))\n",
"role": "user"
},
{
"content": "f90repr",
"role": "assistant"
}
] |
def x(self, value):
return '({0:{fmt}}, {1:{fmt}})'.format(value.real, value.imag, fmt=self
.float_format)
|
f90complex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n return '({0:{fmt}}, {1:{fmt}})'.format(value.real, value.imag, fmt=self\n .float_format)\n",
"role": "user"
},
{
"content": "f90complex",
"role": "assistant"
}
] |
def x(self, value):
result = repr(str(value)).replace("\\'", "''").replace('\\"', '""')
result = result.replace('\\\\', '\\')
return result
|
f90str
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n result = repr(str(value)).replace(\"\\\\'\", \"''\").replace('\\\\\"', '\"\"')\n result = result.replace('\\\\\\\\', '\\\\')\n return result\n",
"role": "user"
},
{
"content": "f90str",
"role": "assistant"
}
] |
def x(self, page):
response_keys = set(page.keys())
uncommon_keys = response_keys - self.common_keys
for possible_data_key in uncommon_keys:
element = page[possible_data_key]
if isinstance(element, dict):
return [self.representation(self.client, self.service_name,
element)]
if isinstance(element, list):
return [self.representation(self.client, self.service_name, x) for
x in element]
|
extract_data
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, page):\n response_keys = set(page.keys())\n uncommon_keys = response_keys - self.common_keys\n for possible_data_key in uncommon_keys:\n element = page[possible_data_key]\n if isinstance(element, dict):\n return [self.representation(self.client, self.service_name,\n element)]\n if isinstance(element, list):\n return [self.representation(self.client, self.service_name, x) for\n x in element]\n",
"role": "user"
},
{
"content": "extract_data",
"role": "assistant"
}
] |
def x(self):
page = self.get_page(num_elements=1)
data = self.extract_data(page)
if data:
return data[0]
|
first
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n page = self.get_page(num_elements=1)\n data = self.extract_data(page)\n if data:\n return data[0]\n",
"role": "user"
},
{
"content": "first",
"role": "assistant"
}
] |
def x(self, start_element=0, num_elements=None):
if num_elements is None:
num_elements = self.batch_size
specs = self.specs.copy()
specs.update(start_element=start_element, num_elements=num_elements)
return self.client.get(self.service_name, **specs)
|
get_page
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, start_element=0, num_elements=None):\n if num_elements is None:\n num_elements = self.batch_size\n specs = self.specs.copy()\n specs.update(start_element=start_element, num_elements=num_elements)\n return self.client.get(self.service_name, **specs)\n",
"role": "user"
},
{
"content": "get_page",
"role": "assistant"
}
] |
def x(self):
initial_count = self.count()
count_with_skip = max(0, initial_count - self._skip)
size = min(count_with_skip, self._limit)
return size
|
size
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n initial_count = self.count()\n count_with_skip = max(0, initial_count - self._skip)\n size = min(count_with_skip, self._limit)\n return size\n",
"role": "user"
},
{
"content": "size",
"role": "assistant"
}
] |
def x(s, n, p=' ', sep='|', align='left'):
if align == 'left':
return (s + p * n)[:n] + sep
elif align == 'center':
pos = n + len(s) / 2 - n / 2
return (p * n + s + p * n)[pos:pos + n] + sep
elif align == 'right':
return (p * n + s)[-n:] + sep
|
pad
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, n, p=' ', sep='|', align='left'):\n if align == 'left':\n return (s + p * n)[:n] + sep\n elif align == 'center':\n pos = n + len(s) / 2 - n / 2\n return (p * n + s + p * n)[pos:pos + n] + sep\n elif align == 'right':\n return (p * n + s)[-n:] + sep\n",
"role": "user"
},
{
"content": "pad",
"role": "assistant"
}
] |
def x(dict1, dict2):
for key in dict2:
dict1[key] = list(map(lambda a, b: a + b, dict1.get(key, [0, 0, 0,
0]), dict2[key]))
return dict1
|
sumMerge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dict1, dict2):\n for key in dict2:\n dict1[key] = list(map(lambda a, b: a + b, dict1.get(key, [0, 0, 0, \n 0]), dict2[key]))\n return dict1\n",
"role": "user"
},
{
"content": "sumMerge",
"role": "assistant"
}
] |
def x(filename, mode='pickle'):
if mode == 'pickle':
import pickle
fp = open(filename)
network = pickle.load(fp)
fp.close()
return network
elif mode in ['plain', 'conx']:
fp = open(filename, 'r')
line = fp.readline()
network = None
while line:
if line.startswith('layer,'):
temp, name, sizeStr = line.split(',')
name = name.strip()
size = int(sizeStr)
network.addLayer(name, size)
line = fp.readline()
weights = [float(f) for f in line.split()]
for i in range(network[name].size):
network[name].weight[i] = weights[i]
elif line.startswith('connection,'):
temp, nameFrom, nameTo = line.split(',')
nameFrom, nameTo = nameFrom.strip(), nameTo.strip()
network.connect(nameFrom, nameTo)
for i in range(network[nameFrom].size):
line = fp.readline()
weights = [float(f) for f in line.split()]
for j in range(network[nameTo].size):
network[nameFrom, nameTo].weight[i][j] = weights[j]
elif line.startswith('parameter,'):
temp, exp = line.split(',')
exec(exp)
elif line.startswith('network,'):
temp, netType = line.split(',')
netType = netType.strip().lower()
if netType == 'cascornetwork':
from pyrobot.brain.cascor import CascorNetwork
network = CascorNetwork()
elif netType == 'network':
network = Network()
elif netType == 'srn':
network = SRN()
else:
raise AttributeError("unknown network type: '%s'" % netType
)
line = fp.readline()
return network
|
loadNetworkFromFile
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, mode='pickle'):\n if mode == 'pickle':\n import pickle\n fp = open(filename)\n network = pickle.load(fp)\n fp.close()\n return network\n elif mode in ['plain', 'conx']:\n fp = open(filename, 'r')\n line = fp.readline()\n network = None\n while line:\n if line.startswith('layer,'):\n temp, name, sizeStr = line.split(',')\n name = name.strip()\n size = int(sizeStr)\n network.addLayer(name, size)\n line = fp.readline()\n weights = [float(f) for f in line.split()]\n for i in range(network[name].size):\n network[name].weight[i] = weights[i]\n elif line.startswith('connection,'):\n temp, nameFrom, nameTo = line.split(',')\n nameFrom, nameTo = nameFrom.strip(), nameTo.strip()\n network.connect(nameFrom, nameTo)\n for i in range(network[nameFrom].size):\n line = fp.readline()\n weights = [float(f) for f in line.split()]\n for j in range(network[nameTo].size):\n network[nameFrom, nameTo].weight[i][j] = weights[j]\n elif line.startswith('parameter,'):\n temp, exp = line.split(',')\n exec(exp)\n elif line.startswith('network,'):\n temp, netType = line.split(',')\n netType = netType.strip().lower()\n if netType == 'cascornetwork':\n from pyrobot.brain.cascor import CascorNetwork\n network = CascorNetwork()\n elif netType == 'network':\n network = Network()\n elif netType == 'srn':\n network = SRN()\n else:\n raise AttributeError(\"unknown network type: '%s'\" % netType\n )\n line = fp.readline()\n return network\n",
"role": "user"
},
{
"content": "loadNetworkFromFile",
"role": "assistant"
}
] |
def x(n, *args, **kwargs):
thunk = kwargs.get('thunk', lambda : random.random())
if not args:
return [thunk() for i in range(n)]
A = []
for i in range(n):
A.append(ndim(*args, thunk=thunk))
return A
|
ndim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, *args, **kwargs):\n thunk = kwargs.get('thunk', lambda : random.random())\n if not args:\n return [thunk() for i in range(n)]\n A = []\n for i in range(n):\n A.append(ndim(*args, thunk=thunk))\n return A\n",
"role": "user"
},
{
"content": "ndim",
"role": "assistant"
}
] |
def x(size, bound):
if type(size) == type(1):
size = size,
temp = Numeric.array(ndim(*size), thunk=lambda : random.gauss(0, 1)) * (
2.0 * bound)
return temp - bound
|
randomArray2
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(size, bound):\n if type(size) == type(1):\n size = size,\n temp = Numeric.array(ndim(*size), thunk=lambda : random.gauss(0, 1)) * (\n 2.0 * bound)\n return temp - bound\n",
"role": "user"
},
{
"content": "randomArray2",
"role": "assistant"
}
] |
def x(size, bound):
if type(size) == type(1):
size = size,
temp = Numeric.array(ndim(*size)) * (2.0 * bound)
return temp - bound
|
randomArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(size, bound):\n if type(size) == type(1):\n size = size,\n temp = Numeric.array(ndim(*size)) * (2.0 * bound)\n return temp - bound\n",
"role": "user"
},
{
"content": "randomArray",
"role": "assistant"
}
] |
def x(name, a, width=0):
print(name + ': ', end=' ')
cnt = 0
for i in a:
print('%4.2f' % i, end=' ')
if width > 0 and (cnt + 1) % width == 0:
print('')
cnt += 1
|
displayArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, a, width=0):\n print(name + ': ', end=' ')\n cnt = 0\n for i in a:\n print('%4.2f' % i, end=' ')\n if width > 0 and (cnt + 1) % width == 0:\n print('')\n cnt += 1\n",
"role": "user"
},
{
"content": "displayArray",
"role": "assistant"
}
] |
def x(name, a, width=0):
string = name + ': '
cnt = 0
for i in a:
string += '%4.2f ' % i
if width > 0 and (cnt + 1) % width == 0:
string += '\n'
cnt += 1
return string
|
toStringArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, a, width=0):\n string = name + ': '\n cnt = 0\n for i in a:\n string += '%4.2f ' % i\n if width > 0 and (cnt + 1) % width == 0:\n string += '\\n'\n cnt += 1\n return string\n",
"role": "user"
},
{
"content": "toStringArray",
"role": "assistant"
}
] |
def x(fp, a, delim=' ', nl=1):
for i in a:
fp.write('%f%s' % (i, delim))
if nl:
fp.write('\n')
|
writeArray
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fp, a, delim=' ', nl=1):\n for i in a:\n fp.write('%f%s' % (i, delim))\n if nl:\n fp.write('\\n')\n",
"role": "user"
},
{
"content": "writeArray",
"role": "assistant"
}
] |
def x(self):
self.randomize()
self.dweight = Numeric.zeros(self.size, 'f')
self.delta = Numeric.zeros(self.size, 'f')
self.wed = Numeric.zeros(self.size, 'f')
self.wedLast = Numeric.zeros(self.size, 'f')
self.target = Numeric.zeros(self.size, 'f')
self.error = Numeric.zeros(self.size, 'f')
self.activation = Numeric.zeros(self.size, 'f')
self.netinput = Numeric.zeros(self.size, 'f')
self.targetSet = 0
self.activationSet = 0
self.verify = 1
self.pcorrect = 0
self.ptotal = 0
self.correct = 0
self.minTarget = 0.0
self.maxTarget = 1.0
self.minActivation = 0.0
self.maxActivation = 1.0
|
initialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.randomize()\n self.dweight = Numeric.zeros(self.size, 'f')\n self.delta = Numeric.zeros(self.size, 'f')\n self.wed = Numeric.zeros(self.size, 'f')\n self.wedLast = Numeric.zeros(self.size, 'f')\n self.target = Numeric.zeros(self.size, 'f')\n self.error = Numeric.zeros(self.size, 'f')\n self.activation = Numeric.zeros(self.size, 'f')\n self.netinput = Numeric.zeros(self.size, 'f')\n self.targetSet = 0\n self.activationSet = 0\n self.verify = 1\n self.pcorrect = 0\n self.ptotal = 0\n self.correct = 0\n self.minTarget = 0.0\n self.maxTarget = 1.0\n self.minActivation = 0.0\n self.maxActivation = 1.0\n",
"role": "user"
},
{
"content": "initialize",
"role": "assistant"
}
] |
def x(self, force=0):
if force or not self.frozen:
self.weight = randomArray(self.size, self._maxRandom)
|
randomize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, force=0):\n if force or not self.frozen:\n self.weight = randomArray(self.size, self._maxRandom)\n",
"role": "user"
},
{
"content": "randomize",
"role": "assistant"
}
] |
def x(self, newsize):
if newsize <= 0:
raise LayerError('Layer size changed to zero.', newsize)
minSize = min(self.size, newsize)
bias = randomArray(newsize, self._maxRandom)
Numeric.put(bias, Numeric.arange(minSize), self.weight)
self.weight = bias
self.size = newsize
self.displayWidth = newsize
self.targetSet = 0
self.activationSet = 0
self.target = Numeric.zeros(self.size, 'f')
self.error = Numeric.zeros(self.size, 'f')
self.activation = Numeric.zeros(self.size, 'f')
self.dweight = Numeric.zeros(self.size, 'f')
self.delta = Numeric.zeros(self.size, 'f')
self.netinput = Numeric.zeros(self.size, 'f')
self.wed = Numeric.zeros(self.size, 'f')
self.wedLast = Numeric.zeros(self.size, 'f')
|
changeSize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, newsize):\n if newsize <= 0:\n raise LayerError('Layer size changed to zero.', newsize)\n minSize = min(self.size, newsize)\n bias = randomArray(newsize, self._maxRandom)\n Numeric.put(bias, Numeric.arange(minSize), self.weight)\n self.weight = bias\n self.size = newsize\n self.displayWidth = newsize\n self.targetSet = 0\n self.activationSet = 0\n self.target = Numeric.zeros(self.size, 'f')\n self.error = Numeric.zeros(self.size, 'f')\n self.activation = Numeric.zeros(self.size, 'f')\n self.dweight = Numeric.zeros(self.size, 'f')\n self.delta = Numeric.zeros(self.size, 'f')\n self.netinput = Numeric.zeros(self.size, 'f')\n self.wed = Numeric.zeros(self.size, 'f')\n self.wedLast = Numeric.zeros(self.size, 'f')\n",
"role": "user"
},
{
"content": "changeSize",
"role": "assistant"
}
] |
def x(self):
tss = self.TSSError()
return math.sqrt(tss / self.size)
|
RMSError
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n tss = self.TSSError()\n return math.sqrt(tss / self.size)\n",
"role": "user"
},
{
"content": "RMSError",
"role": "assistant"
}
] |
def x(self, tolerance):
return Numeric.add.reduce(Numeric.fabs(self.target - self.activation) <
tolerance)
|
getCorrect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tolerance):\n return Numeric.add.reduce(Numeric.fabs(self.target - self.activation) <\n tolerance)\n",
"role": "user"
},
{
"content": "getCorrect",
"role": "assistant"
}
] |
def x(self, type='activation'):
maxvalue = -10000
maxpos = -1
ttlvalue = 0
if type == 'activation':
ttlvalue = Numeric.add.reduce(self.activation)
maxpos = Numeric.argmax(self.activation)
maxvalue = self.activation[maxpos]
elif type == 'target':
if self.verify and self.targetSet == 0:
raise LayerError(
"getWinner() called with 'target' but target has not been set."
, self.targetSet)
ttlvalue = Numeric.add.reduce(self.target)
maxpos = Numeric.argmax(self.target)
maxvalue = self.target[maxpos]
else:
raise LayerError('getWinner() called with unknown layer attribute.',
type)
if self.size > 0:
avgvalue = ttlvalue / float(self.size)
else:
raise LayerError('getWinner() called for layer of size zero.', self
.size)
return maxpos, maxvalue, avgvalue
|
getWinner
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, type='activation'):\n maxvalue = -10000\n maxpos = -1\n ttlvalue = 0\n if type == 'activation':\n ttlvalue = Numeric.add.reduce(self.activation)\n maxpos = Numeric.argmax(self.activation)\n maxvalue = self.activation[maxpos]\n elif type == 'target':\n if self.verify and self.targetSet == 0:\n raise LayerError(\n \"getWinner() called with 'target' but target has not been set.\"\n , self.targetSet)\n ttlvalue = Numeric.add.reduce(self.target)\n maxpos = Numeric.argmax(self.target)\n maxvalue = self.target[maxpos]\n else:\n raise LayerError('getWinner() called with unknown layer attribute.',\n type)\n if self.size > 0:\n avgvalue = ttlvalue / float(self.size)\n else:\n raise LayerError('getWinner() called for layer of size zero.', self\n .size)\n return maxpos, maxvalue, avgvalue\n",
"role": "user"
},
{
"content": "getWinner",
"role": "assistant"
}
] |
def x(self, fileName, writeName=False):
self.log = 1
self.logFile = fileName
self._logPtr = open(fileName, 'w')
if writeName:
self._namePtr = open(fileName + '.name', 'w')
|
setLog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fileName, writeName=False):\n self.log = 1\n self.logFile = fileName\n self._logPtr = open(fileName, 'w')\n if writeName:\n self._namePtr = open(fileName + '.name', 'w')\n",
"role": "user"
},
{
"content": "setLog",
"role": "assistant"
}
] |
def x(self):
self._logPtr.close()
if self._namePtr:
self._namePtr.close()
self.log = 0
|
closeLog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._logPtr.close()\n if self._namePtr:\n self._namePtr.close()\n self.log = 0\n",
"role": "user"
},
{
"content": "closeLog",
"role": "assistant"
}
] |
def x(self, network):
if self.log:
writeArray(self._logPtr, self.activation)
if self._namePtr:
self._namePtr.write(network.getWord(self.activation))
self._namePtr.write('\n')
|
writeLog
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, network):\n if self.log:\n writeArray(self._logPtr, self.activation)\n if self._namePtr:\n self._namePtr.write(network.getWord(self.activation))\n self._namePtr.write('\\n')\n",
"role": "user"
},
{
"content": "writeLog",
"role": "assistant"
}
] |
def x(self):
string = "Layer '%s': (Kind: %s, Size: %d, Active: %d, Frozen: %d)\n" % (
self.name, self.kind, self.size, self.active, self.frozen)
if self.type == 'Output':
string += toStringArray('Target ', self.target, self.displayWidth)
string += toStringArray('Activation', self.activation, self.displayWidth)
if self.type != 'Input' and self._verbosity > 1:
string += toStringArray('Error ', self.error, self.displayWidth)
if self._verbosity > 4 and self.type != 'Input':
string += toStringArray('weight ', self.weight, self.displayWidth)
string += toStringArray('dweight ', self.dweight, self.displayWidth)
string += toStringArray('delta ', self.delta, self.displayWidth)
string += toStringArray('netinput ', self.netinput, self.displayWidth)
string += toStringArray('wed ', self.wed, self.displayWidth)
return string
|
toString
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n string = \"Layer '%s': (Kind: %s, Size: %d, Active: %d, Frozen: %d)\\n\" % (\n self.name, self.kind, self.size, self.active, self.frozen)\n if self.type == 'Output':\n string += toStringArray('Target ', self.target, self.displayWidth)\n string += toStringArray('Activation', self.activation, self.displayWidth)\n if self.type != 'Input' and self._verbosity > 1:\n string += toStringArray('Error ', self.error, self.displayWidth)\n if self._verbosity > 4 and self.type != 'Input':\n string += toStringArray('weight ', self.weight, self.displayWidth)\n string += toStringArray('dweight ', self.dweight, self.displayWidth)\n string += toStringArray('delta ', self.delta, self.displayWidth)\n string += toStringArray('netinput ', self.netinput, self.displayWidth)\n string += toStringArray('wed ', self.wed, self.displayWidth)\n return string\n",
"role": "user"
},
{
"content": "toString",
"role": "assistant"
}
] |
def x(self):
if self.displayWidth == 0:
return
print('=============================')
print("Layer '%s': (Kind: %s, Size: %d, Active: %d, Frozen: %d)" % (
self.name, self.kind, self.size, self.active, self.frozen))
if self.type == 'Output':
displayArray('Target ', self.target, self.displayWidth)
displayArray('Activation', self.activation, self.displayWidth)
if self.type != 'Input' and self._verbosity > 1:
displayArray('Error ', self.error, self.displayWidth)
if self._verbosity > 4 and self.type != 'Input':
print(' ', end=' ')
displayArray('weight', self.weight)
print(' ', end=' ')
displayArray('dweight', self.dweight)
print(' ', end=' ')
displayArray('delta', self.delta)
print(' ', end=' ')
displayArray('netinput', self.netinput)
print(' ', end=' ')
displayArray('wed', self.wed)
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.displayWidth == 0:\n return\n print('=============================')\n print(\"Layer '%s': (Kind: %s, Size: %d, Active: %d, Frozen: %d)\" % (\n self.name, self.kind, self.size, self.active, self.frozen))\n if self.type == 'Output':\n displayArray('Target ', self.target, self.displayWidth)\n displayArray('Activation', self.activation, self.displayWidth)\n if self.type != 'Input' and self._verbosity > 1:\n displayArray('Error ', self.error, self.displayWidth)\n if self._verbosity > 4 and self.type != 'Input':\n print(' ', end=' ')\n displayArray('weight', self.weight)\n print(' ', end=' ')\n displayArray('dweight', self.dweight)\n print(' ', end=' ')\n displayArray('delta', self.delta)\n print(' ', end=' ')\n displayArray('netinput', self.netinput)\n print(' ', end=' ')\n displayArray('wed', self.wed)\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(self, value):
Numeric.put(self.activation, Numeric.arange(len(self.activation)), value)
self.activationSet = 1
|
setActivations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n Numeric.put(self.activation, Numeric.arange(len(self.activation)), value)\n self.activationSet = 1\n",
"role": "user"
},
{
"content": "setActivations",
"role": "assistant"
}
] |
def x(self, arr, reckless=0):
array = Numeric.array(arr)
if not len(array) == self.size:
raise LayerError(
'Mismatched activation size and layer size in call to copyActivations()'
, (len(array), self.size))
if self.verify and not self.activationSet == 0:
if not reckless:
raise LayerError(
'Activation flag not reset before call to copyActivations()',
self.activationSet)
self.activation = array
self.activationSet = 1
|
copyActivations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, arr, reckless=0):\n array = Numeric.array(arr)\n if not len(array) == self.size:\n raise LayerError(\n 'Mismatched activation size and layer size in call to copyActivations()'\n , (len(array), self.size))\n if self.verify and not self.activationSet == 0:\n if not reckless:\n raise LayerError(\n 'Activation flag not reset before call to copyActivations()',\n self.activationSet)\n self.activation = array\n self.activationSet = 1\n",
"role": "user"
},
{
"content": "copyActivations",
"role": "assistant"
}
] |
def x(self, value):
if value > self.maxActivation or value < self.minActivation:
raise LayerError(
'Targets for this layer are out of the proper interval.', (self
.name, value))
Numeric.put(self.target, Numeric.arange(len(self.target)), value)
self.targetSet = 1
|
setTargets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if value > self.maxActivation or value < self.minActivation:\n raise LayerError(\n 'Targets for this layer are out of the proper interval.', (self\n .name, value))\n Numeric.put(self.target, Numeric.arange(len(self.target)), value)\n self.targetSet = 1\n",
"role": "user"
},
{
"content": "setTargets",
"role": "assistant"
}
] |
def x(self, arr):
array = Numeric.array(arr)
if not len(array) == self.size:
raise LayerError(
'Mismatched target size and layer size in call to copyTargets()',
(len(array), self.size))
if Numeric.add.reduce(array < self.minTarget) or Numeric.add.reduce(
array > self.maxTarget):
print(self.name, self.minTarget, self.maxTarget)
raise LayerError('Targets for this layer are out of range.', (self.
name, array))
self.target = array
self.targetSet = 1
|
copyTargets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, arr):\n array = Numeric.array(arr)\n if not len(array) == self.size:\n raise LayerError(\n 'Mismatched target size and layer size in call to copyTargets()',\n (len(array), self.size))\n if Numeric.add.reduce(array < self.minTarget) or Numeric.add.reduce(\n array > self.maxTarget):\n print(self.name, self.minTarget, self.maxTarget)\n raise LayerError('Targets for this layer are out of range.', (self.\n name, array))\n self.target = array\n self.targetSet = 1\n",
"role": "user"
},
{
"content": "copyTargets",
"role": "assistant"
}
] |
def x(self):
self.randomize()
self.dweight = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f')
self.wed = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f')
self.wedLast = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f')
|
initialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.randomize()\n self.dweight = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f')\n self.wed = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f')\n self.wedLast = Numeric.zeros((self.fromLayer.size, self.toLayer.size), 'f')\n",
"role": "user"
},
{
"content": "initialize",
"role": "assistant"
}
] |
def x(self, fromLayerSize, toLayerSize):
if toLayerSize <= 0 or fromLayerSize <= 0:
raise LayerError('changeSize() called with invalid layer size.', (
fromLayerSize, toLayerSize))
dweight = Numeric.zeros((fromLayerSize, toLayerSize), 'f')
wed = Numeric.zeros((fromLayerSize, toLayerSize), 'f')
wedLast = Numeric.zeros((fromLayerSize, toLayerSize), 'f')
weight = randomArray((fromLayerSize, toLayerSize), self.toLayer._maxRandom)
minFromLayerSize = min(fromLayerSize, self.fromLayer.size)
minToLayerSize = min(toLayerSize, self.toLayer.size)
for i in range(minFromLayerSize):
for j in range(minToLayerSize):
wed[i][j] = self.wed[i][j]
wedLast[i][j] = self.wedLast[i][j]
dweight[i][j] = self.dweight[i][j]
weight[i][j] = self.weight[i][j]
self.dweight = dweight
self.wed = wed
self.wedLast = wedLast
self.weight = weight
|
changeSize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fromLayerSize, toLayerSize):\n if toLayerSize <= 0 or fromLayerSize <= 0:\n raise LayerError('changeSize() called with invalid layer size.', (\n fromLayerSize, toLayerSize))\n dweight = Numeric.zeros((fromLayerSize, toLayerSize), 'f')\n wed = Numeric.zeros((fromLayerSize, toLayerSize), 'f')\n wedLast = Numeric.zeros((fromLayerSize, toLayerSize), 'f')\n weight = randomArray((fromLayerSize, toLayerSize), self.toLayer._maxRandom)\n minFromLayerSize = min(fromLayerSize, self.fromLayer.size)\n minToLayerSize = min(toLayerSize, self.toLayer.size)\n for i in range(minFromLayerSize):\n for j in range(minToLayerSize):\n wed[i][j] = self.wed[i][j]\n wedLast[i][j] = self.wedLast[i][j]\n dweight[i][j] = self.dweight[i][j]\n weight[i][j] = self.weight[i][j]\n self.dweight = dweight\n self.wed = wed\n self.wedLast = wedLast\n self.weight = weight\n",
"role": "user"
},
{
"content": "changeSize",
"role": "assistant"
}
] |
def x(self):
if self.toLayer._verbosity > 4:
print("wed: from '" + self.fromLayer.name + "' to '" + self.toLayer
.name + "'")
for j in range(self.toLayer.size):
print(self.toLayer.name, '[', j, ']', end=' ')
print('')
for i in range(self.fromLayer.size):
print(self.fromLayer.name, '[', i, ']', ': ', end=' ')
for j in range(self.toLayer.size):
print(self.wed[i][j], end=' ')
print('')
print('')
print("dweight: from '" + self.fromLayer.name + "' to '" + self.
toLayer.name + "'")
for j in range(self.toLayer.size):
print(self.toLayer.name, '[', j, ']', end=' ')
print('')
for i in range(self.fromLayer.size):
print(self.fromLayer.name, '[', i, ']', ': ', end=' ')
for j in range(self.toLayer.size):
print(self.dweight[i][j], end=' ')
print('')
print('')
if self.toLayer._verbosity > 2:
print("Weights: from '" + self.fromLayer.name + "' to '" + self.
toLayer.name + "'")
print(' ', end=' ')
for j in range(self.toLayer.size):
print(self.toLayer.name, '[', j, ']', end=' ')
print('')
for i in range(self.fromLayer.size):
print(self.fromLayer.name, '[', i, ']', ': ', end=' ')
for j in range(self.toLayer.size):
print(self.weight[i][j], end=' ')
print('')
print('')
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.toLayer._verbosity > 4:\n print(\"wed: from '\" + self.fromLayer.name + \"' to '\" + self.toLayer\n .name + \"'\")\n for j in range(self.toLayer.size):\n print(self.toLayer.name, '[', j, ']', end=' ')\n print('')\n for i in range(self.fromLayer.size):\n print(self.fromLayer.name, '[', i, ']', ': ', end=' ')\n for j in range(self.toLayer.size):\n print(self.wed[i][j], end=' ')\n print('')\n print('')\n print(\"dweight: from '\" + self.fromLayer.name + \"' to '\" + self.\n toLayer.name + \"'\")\n for j in range(self.toLayer.size):\n print(self.toLayer.name, '[', j, ']', end=' ')\n print('')\n for i in range(self.fromLayer.size):\n print(self.fromLayer.name, '[', i, ']', ': ', end=' ')\n for j in range(self.toLayer.size):\n print(self.dweight[i][j], end=' ')\n print('')\n print('')\n if self.toLayer._verbosity > 2:\n print(\"Weights: from '\" + self.fromLayer.name + \"' to '\" + self.\n toLayer.name + \"'\")\n print(' ', end=' ')\n for j in range(self.toLayer.size):\n print(self.toLayer.name, '[', j, ']', end=' ')\n print('')\n for i in range(self.fromLayer.size):\n print(self.fromLayer.name, '[', i, ']', ': ', end=' ')\n for j in range(self.toLayer.size):\n print(self.weight[i][j], end=' ')\n print('')\n print('')\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(self):
string = ''
if self.toLayer._verbosity > 4:
string += ("wed: from '" + self.fromLayer.name + "' to '" + self.
toLayer.name + "'\n")
string += ' '
for j in range(self.toLayer.size):
string += ' ' + self.toLayer.name + '[' + str(j) + ']'
string += '\n'
for i in range(self.fromLayer.size):
string += self.fromLayer.name + '[' + str(i) + ']' + ': '
for j in range(self.toLayer.size):
string += ' ' + str(self.wed[i][j])
string += '\n'
string += '\n'
string += ("dweight: from '" + self.fromLayer.name + "' to '" +
self.toLayer.name + "'\n")
string += ' '
for j in range(self.toLayer.size):
string += ' ' + self.toLayer.name + '[' + str(j) + ']'
string += '\n'
for i in range(self.fromLayer.size):
string += self.fromLayer.name + '[' + str(i) + ']' + ': '
for j in range(self.toLayer.size):
string += ' ' + str(self.dweight[i][j])
string += '\n'
string += '\n'
if self.toLayer._verbosity > 2:
string += ("Weights: from '" + self.fromLayer.name + "' to '" +
self.toLayer.name + "'\n")
string += ' '
for j in range(self.toLayer.size):
string += ' ' + self.toLayer.name + '[' + str(j) + ']'
string += '\n'
for i in range(self.fromLayer.size):
string += self.fromLayer.name + '[' + str(i) + ']' + ': '
for j in range(self.toLayer.size):
string += ' ' + str(self.weight[i][j])
string += '\n'
string += '\n'
return string
|
toString
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n string = ''\n if self.toLayer._verbosity > 4:\n string += (\"wed: from '\" + self.fromLayer.name + \"' to '\" + self.\n toLayer.name + \"'\\n\")\n string += ' '\n for j in range(self.toLayer.size):\n string += ' ' + self.toLayer.name + '[' + str(j) + ']'\n string += '\\n'\n for i in range(self.fromLayer.size):\n string += self.fromLayer.name + '[' + str(i) + ']' + ': '\n for j in range(self.toLayer.size):\n string += ' ' + str(self.wed[i][j])\n string += '\\n'\n string += '\\n'\n string += (\"dweight: from '\" + self.fromLayer.name + \"' to '\" +\n self.toLayer.name + \"'\\n\")\n string += ' '\n for j in range(self.toLayer.size):\n string += ' ' + self.toLayer.name + '[' + str(j) + ']'\n string += '\\n'\n for i in range(self.fromLayer.size):\n string += self.fromLayer.name + '[' + str(i) + ']' + ': '\n for j in range(self.toLayer.size):\n string += ' ' + str(self.dweight[i][j])\n string += '\\n'\n string += '\\n'\n if self.toLayer._verbosity > 2:\n string += (\"Weights: from '\" + self.fromLayer.name + \"' to '\" +\n self.toLayer.name + \"'\\n\")\n string += ' '\n for j in range(self.toLayer.size):\n string += ' ' + self.toLayer.name + '[' + str(j) + ']'\n string += '\\n'\n for i in range(self.fromLayer.size):\n string += self.fromLayer.name + '[' + str(i) + ']' + ': '\n for j in range(self.toLayer.size):\n string += ' ' + str(self.weight[i][j])\n string += '\\n'\n string += '\\n'\n return string\n",
"role": "user"
},
{
"content": "toString",
"role": "assistant"
}
] |
def x(self, val=1):
self.cacheConnections = []
self.cacheLayers = []
if val:
for layer in self.layers:
if layer.active and not layer.frozen:
self.cacheLayers.append(layer)
for connection in self.connections:
if connection.active and not connection.frozen:
self.cacheConnections.append(connection)
|
setCache
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, val=1):\n self.cacheConnections = []\n self.cacheLayers = []\n if val:\n for layer in self.layers:\n if layer.active and not layer.frozen:\n self.cacheLayers.append(layer)\n for connection in self.connections:\n if connection.active and not connection.frozen:\n self.cacheConnections.append(connection)\n",
"role": "user"
},
{
"content": "setCache",
"role": "assistant"
}
] |
def x(self, startLayer, endLayer):
next = {startLayer.name: startLayer}
visited = {}
while next != {}:
for item in list(next.items()):
visited[item[0]] = item[1]
del next[item[0]]
for connection in self.connections:
if connection.fromLayer.name == item[0]:
if connection.toLayer.name == endLayer.name:
return 1
elif connection.toLayer.name in next:
pass
elif connection.toLayer.name in visited:
pass
else:
next[connection.toLayer.name] = connection.toLayer
return 0
|
path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, startLayer, endLayer):\n next = {startLayer.name: startLayer}\n visited = {}\n while next != {}:\n for item in list(next.items()):\n visited[item[0]] = item[1]\n del next[item[0]]\n for connection in self.connections:\n if connection.fromLayer.name == item[0]:\n if connection.toLayer.name == endLayer.name:\n return 1\n elif connection.toLayer.name in next:\n pass\n elif connection.toLayer.name in visited:\n pass\n else:\n next[connection.toLayer.name] = connection.toLayer\n return 0\n",
"role": "user"
},
{
"content": "path",
"role": "assistant"
}
] |
def x(self, layer):
for i in range(len(self.layers)):
if layer == self.layers[i]:
return i
return -1
|
getLayerIndex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, layer):\n for i in range(len(self.layers)):\n if layer == self.layers[i]:\n return i\n return -1\n",
"role": "user"
},
{
"content": "getLayerIndex",
"role": "assistant"
}
] |
def x(self, layer, verbosity=0, position=None):
layer._verbosity = verbosity
layer._maxRandom = self._maxRandom
layer.minTarget = 0.0
layer.maxTarget = 1.0
layer.minActivation = 0.0
layer.maxActivation = 1.0
if position == None:
self.layers.append(layer)
else:
self.layers.insert(position, layer)
self.layersByName[layer.name] = layer
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, layer, verbosity=0, position=None):\n layer._verbosity = verbosity\n layer._maxRandom = self._maxRandom\n layer.minTarget = 0.0\n layer.maxTarget = 1.0\n layer.minActivation = 0.0\n layer.maxActivation = 1.0\n if position == None:\n self.layers.append(layer)\n else:\n self.layers.insert(position, layer)\n self.layersByName[layer.name] = layer\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self, fromName, toName):
for c in self.connections:
if c.fromLayer.name == fromName and c.toLayer.name == toName:
return 1
return 0
|
isConnected
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fromName, toName):\n for c in self.connections:\n if c.fromLayer.name == fromName and c.toLayer.name == toName:\n return 1\n return 0\n",
"role": "user"
},
{
"content": "isConnected",
"role": "assistant"
}
] |
def x(self, *names):
fromName, toName, rest = names[0], names[1], names[2:]
self.connectAt(fromName, toName)
if len(rest) != 0:
self.connect(toName, *rest)
|
connect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *names):\n fromName, toName, rest = names[0], names[1], names[2:]\n self.connectAt(fromName, toName)\n if len(rest) != 0:\n self.connect(toName, *rest)\n",
"role": "user"
},
{
"content": "connect",
"role": "assistant"
}
] |
def x(self, fromName, toName, position=None):
fromLayer = self.getLayer(fromName)
toLayer = self.getLayer(toName)
if self.getLayerIndex(fromLayer) >= self.getLayerIndex(toLayer):
raise NetworkError('Layers out of order.', (fromLayer.name, toLayer
.name))
if fromLayer.type == 'Output':
fromLayer.type = 'Hidden'
fromLayer.patternReport = 0
if fromLayer.kind == 'Output':
fromLayer.kind = 'Hidden'
elif fromLayer.type == 'Undefined':
fromLayer.type = 'Input'
fromLayer.patternReport = 0
if fromLayer.kind == 'Undefined':
fromLayer.kind = 'Input'
if toLayer.type == 'Input':
raise NetworkError('Connections out of order', (fromLayer.name,
toLayer.name))
elif toLayer.type == 'Undefined':
toLayer.type = 'Output'
toLayer.patternReport = 1
if toLayer.kind == 'Undefined':
toLayer.kind = 'Output'
if position == None:
self.connections.append(Connection(fromLayer, toLayer))
else:
self.connections.insert(position, Connection(fromLayer, toLayer))
|
connectAt
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fromName, toName, position=None):\n fromLayer = self.getLayer(fromName)\n toLayer = self.getLayer(toName)\n if self.getLayerIndex(fromLayer) >= self.getLayerIndex(toLayer):\n raise NetworkError('Layers out of order.', (fromLayer.name, toLayer\n .name))\n if fromLayer.type == 'Output':\n fromLayer.type = 'Hidden'\n fromLayer.patternReport = 0\n if fromLayer.kind == 'Output':\n fromLayer.kind = 'Hidden'\n elif fromLayer.type == 'Undefined':\n fromLayer.type = 'Input'\n fromLayer.patternReport = 0\n if fromLayer.kind == 'Undefined':\n fromLayer.kind = 'Input'\n if toLayer.type == 'Input':\n raise NetworkError('Connections out of order', (fromLayer.name,\n toLayer.name))\n elif toLayer.type == 'Undefined':\n toLayer.type = 'Output'\n toLayer.patternReport = 1\n if toLayer.kind == 'Undefined':\n toLayer.kind = 'Output'\n if position == None:\n self.connections.append(Connection(fromLayer, toLayer))\n else:\n self.connections.insert(position, Connection(fromLayer, toLayer))\n",
"role": "user"
},
{
"content": "connectAt",
"role": "assistant"
}
] |
def x(self, *arg, **kw):
netType = 'serial'
if 'type' in kw:
netType = kw['type']
self.addLayer('input', arg[0])
hiddens = []
if len(arg) > 3:
hcount = 0
for hidc in arg[1:-1]:
name = 'hidden%d' % hcount
self.addLayer(name, hidc)
hiddens.append(name)
hcount += 1
elif len(arg) == 3:
name = 'hidden'
self.addLayer(name, arg[1])
hiddens.append(name)
elif len(arg) == 2:
pass
else:
raise AttributeError('not enough layers! need >= 2')
self.addLayer('output', arg[-1])
lastName = 'input'
for name in hiddens:
if netType == 'parallel':
self.connect('input', name)
self.connect(name, 'output')
else:
self.connect(lastName, name)
lastName = name
if netType == 'serial' or lastName == 'input':
self.connect(lastName, 'output')
|
addLayers
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *arg, **kw):\n netType = 'serial'\n if 'type' in kw:\n netType = kw['type']\n self.addLayer('input', arg[0])\n hiddens = []\n if len(arg) > 3:\n hcount = 0\n for hidc in arg[1:-1]:\n name = 'hidden%d' % hcount\n self.addLayer(name, hidc)\n hiddens.append(name)\n hcount += 1\n elif len(arg) == 3:\n name = 'hidden'\n self.addLayer(name, arg[1])\n hiddens.append(name)\n elif len(arg) == 2:\n pass\n else:\n raise AttributeError('not enough layers! need >= 2')\n self.addLayer('output', arg[-1])\n lastName = 'input'\n for name in hiddens:\n if netType == 'parallel':\n self.connect('input', name)\n self.connect(name, 'output')\n else:\n self.connect(lastName, name)\n lastName = name\n if netType == 'serial' or lastName == 'input':\n self.connect(lastName, 'output')\n",
"role": "user"
},
{
"content": "addLayers",
"role": "assistant"
}
] |
def x(self, layername, nodeNum):
gene = []
for layer in self.layers:
if layer.type != 'Input':
for i in range(layer.size):
if layer.name == layername and i == nodeNum:
pass
else:
gene.append(layer.weight[i])
for connection in self.connections:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
if (connection.fromLayer.name == layername and i == nodeNum or
connection.toLayer.name == layername and j == nodeNum):
pass
else:
gene.append(connection.weight[i][j])
self.changeLayerSize(layername, self[layername].size - 1)
self.unArrayify(gene)
|
deleteLayerNode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, layername, nodeNum):\n gene = []\n for layer in self.layers:\n if layer.type != 'Input':\n for i in range(layer.size):\n if layer.name == layername and i == nodeNum:\n pass\n else:\n gene.append(layer.weight[i])\n for connection in self.connections:\n for i in range(connection.fromLayer.size):\n for j in range(connection.toLayer.size):\n if (connection.fromLayer.name == layername and i == nodeNum or\n connection.toLayer.name == layername and j == nodeNum):\n pass\n else:\n gene.append(connection.weight[i][j])\n self.changeLayerSize(layername, self[layername].size - 1)\n self.unArrayify(gene)\n",
"role": "user"
},
{
"content": "deleteLayerNode",
"role": "assistant"
}
] |
def x(self, layerName, bias=None, weights={}):
self.changeLayerSize(layerName, self[layerName].size + 1)
if bias != None:
self[layerName].weight[-1] = bias
for name in list(weights.keys()):
for c in self.connections:
if c.fromLayer.name == name and c.toLayer.name == layerName:
for i in range(self[name].size):
self[name, layerName].weight[i][-1] = weights[name][i]
elif c.toLayer.name == name and c.fromLayer.name == layerName:
for j in range(self[name].size):
self[layerName, name].weight[-1][j] = weights[name][j]
|
addLayerNode
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, layerName, bias=None, weights={}):\n self.changeLayerSize(layerName, self[layerName].size + 1)\n if bias != None:\n self[layerName].weight[-1] = bias\n for name in list(weights.keys()):\n for c in self.connections:\n if c.fromLayer.name == name and c.toLayer.name == layerName:\n for i in range(self[name].size):\n self[name, layerName].weight[i][-1] = weights[name][i]\n elif c.toLayer.name == name and c.fromLayer.name == layerName:\n for j in range(self[name].size):\n self[layerName, name].weight[-1][j] = weights[name][j]\n",
"role": "user"
},
{
"content": "addLayerNode",
"role": "assistant"
}
] |
def x(self, layername, newsize):
if self.sharedWeights:
raise AttributeError('shared weights broken')
for connection in self.connections:
if connection.fromLayer.name == layername:
connection.changeSize(newsize, connection.toLayer.size)
if connection.toLayer.name == layername:
connection.changeSize(connection.fromLayer.size, newsize)
self.getLayer(layername).changeSize(newsize)
|
changeLayerSize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, layername, newsize):\n if self.sharedWeights:\n raise AttributeError('shared weights broken')\n for connection in self.connections:\n if connection.fromLayer.name == layername:\n connection.changeSize(newsize, connection.toLayer.size)\n if connection.toLayer.name == layername:\n connection.changeSize(connection.fromLayer.size, newsize)\n self.getLayer(layername).changeSize(newsize)\n",
"role": "user"
},
{
"content": "changeLayerSize",
"role": "assistant"
}
] |
def x(self):
print("Initializing '%s' weights..." % self.name, end=' ', file=sys.stderr)
if self.sharedWeights:
raise AttributeError('shared weights broken')
self.count = 0
for connection in self.connections:
connection.initialize()
for layer in self.layers:
layer.initialize()
|
initialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n print(\"Initializing '%s' weights...\" % self.name, end=' ', file=sys.stderr)\n if self.sharedWeights:\n raise AttributeError('shared weights broken')\n self.count = 0\n for connection in self.connections:\n connection.initialize()\n for layer in self.layers:\n layer.initialize()\n",
"role": "user"
},
{
"content": "initialize",
"role": "assistant"
}
] |
def x(self, dict):
for name in dict:
self.layersByName[name].copyActivations(dict[name])
|
putActivations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dict):\n for name in dict:\n self.layersByName[name].copyActivations(dict[name])\n",
"role": "user"
},
{
"content": "putActivations",
"role": "assistant"
}
] |
def x(self, nameList):
retval = {}
for name in nameList:
retval[name] = self.layersByName[name].getActivationsList()
return retval
|
getActivationsDict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, nameList):\n retval = {}\n for name in nameList:\n retval[name] = self.layersByName[name].getActivationsList()\n return retval\n",
"role": "user"
},
{
"content": "getActivationsDict",
"role": "assistant"
}
] |
def x(self, value):
self.seed = value
random.seed(self.seed)
if self.verbosity >= 0:
print('Conx using seed:', self.seed)
|
setSeed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n self.seed = value\n random.seed(self.seed)\n if self.verbosity >= 0:\n print('Conx using seed:', self.seed)\n",
"role": "user"
},
{
"content": "setSeed",
"role": "assistant"
}
] |
def x(self, lfrom, lto):
for connection in self.connections:
if (connection.fromLayer.name == lfrom and connection.toLayer.name ==
lto):
return connection
raise NetworkError('Connection was not found.', (lfrom, lto))
|
getConnection
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lfrom, lto):\n for connection in self.connections:\n if (connection.fromLayer.name == lfrom and connection.toLayer.name ==\n lto):\n return connection\n raise NetworkError('Connection was not found.', (lfrom, lto))\n",
"role": "user"
},
{
"content": "getConnection",
"role": "assistant"
}
] |
def x(self, value):
self._verbosity = value
for layer in self.layers:
layer._verbosity = value
|
setVerbosity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n self._verbosity = value\n for layer in self.layers:\n layer._verbosity = value\n",
"role": "user"
},
{
"content": "setVerbosity",
"role": "assistant"
}
] |
def x(self, value):
self._maxRandom = value
for layer in self.layers:
layer._maxRandom = value
|
setMaxRandom
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n self._maxRandom = value\n for layer in self.layers:\n layer._maxRandom = value\n",
"role": "user"
},
{
"content": "setMaxRandom",
"role": "assistant"
}
] |
def x(self, fromName, toName):
for connection in self.connections:
if (connection.fromLayer.name == fromName and connection.toLayer.
name == toName):
return connection.weight
raise NetworkError('Connection was not found.', (fromName, toName))
|
getWeights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fromName, toName):\n for connection in self.connections:\n if (connection.fromLayer.name == fromName and connection.toLayer.\n name == toName):\n return connection.weight\n raise NetworkError('Connection was not found.', (fromName, toName))\n",
"role": "user"
},
{
"content": "getWeights",
"role": "assistant"
}
] |
def x(self, fromName, fromPos, toName, toPos, value):
for connection in self.connections:
if (connection.fromLayer.name == fromName and connection.toLayer.
name == toName):
connection.weight[fromPos][toPos] = value
return value
raise NetworkError('Connection was not found.', (fromName, toName))
|
setWeight
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, fromName, fromPos, toName, toPos, value):\n for connection in self.connections:\n if (connection.fromLayer.name == fromName and connection.toLayer.\n name == toName):\n connection.weight[fromPos][toPos] = value\n return value\n raise NetworkError('Connection was not found.', (fromName, toName))\n",
"role": "user"
},
{
"content": "setWeight",
"role": "assistant"
}
] |
def x(self, value):
self.orderedInputs = value
if self.orderedInputs:
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i
|
setOrderedInputs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n self.orderedInputs = value\n if self.orderedInputs:\n self.loadOrder = [0] * len(self.inputs)\n for i in range(len(self.inputs)):\n self.loadOrder[i] = i\n",
"role": "user"
},
{
"content": "setOrderedInputs",
"role": "assistant"
}
] |
def x(self, arg):
for l in arg:
if not type(l) == list and not type(l) == type(Numeric.array([0.0])
) and not type(l) == tuple and not type(l) == dict:
return 0
if type(l) == dict:
for i in l:
if not type(i) == str and i not in list(self.layers.keys()):
return 0
else:
for i in l:
if not type(i) == float and not type(i) == int:
return 0
return 1
|
verifyArguments
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, arg):\n for l in arg:\n if not type(l) == list and not type(l) == type(Numeric.array([0.0])\n ) and not type(l) == tuple and not type(l) == dict:\n return 0\n if type(l) == dict:\n for i in l:\n if not type(i) == str and i not in list(self.layers.keys()):\n return 0\n else:\n for i in l:\n if not type(i) == float and not type(i) == int:\n return 0\n return 1\n",
"role": "user"
},
{
"content": "verifyArguments",
"role": "assistant"
}
] |
def x(self, inputs):
if not self.verifyArguments(inputs) and not self.patterned:
raise NetworkError(
'setInputs() requires [[...],[...],...] or [{"layerName": [...]}, ...].'
, inputs)
self.inputs = inputs
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
self.loadOrder[i] = i
|
setInputs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inputs):\n if not self.verifyArguments(inputs) and not self.patterned:\n raise NetworkError(\n 'setInputs() requires [[...],[...],...] or [{\"layerName\": [...]}, ...].'\n , inputs)\n self.inputs = inputs\n self.loadOrder = [0] * len(self.inputs)\n for i in range(len(self.inputs)):\n self.loadOrder[i] = i\n",
"role": "user"
},
{
"content": "setInputs",
"role": "assistant"
}
] |
def x(self, targets):
if not self.verifyArguments(targets) and not self.patterned:
raise NetworkError(
'setTargets() requires [[...],[...],...] or [{"layerName": [...]}, ...].'
, targets)
self.targets = targets
|
setTargets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, targets):\n if not self.verifyArguments(targets) and not self.patterned:\n raise NetworkError(\n 'setTargets() requires [[...],[...],...] or [{\"layerName\": [...]}, ...].'\n , targets)\n self.targets = targets\n",
"role": "user"
},
{
"content": "setTargets",
"role": "assistant"
}
] |
def x(self, data1, data2=None):
if data2 == None:
inputs = [x[0] for x in data1]
targets = [x[1] for x in data1]
else:
inputs = data1
targets = data2
self.setInputs(inputs)
self.setTargets(targets)
|
setInputsAndTargets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data1, data2=None):\n if data2 == None:\n inputs = [x[0] for x in data1]\n targets = [x[1] for x in data1]\n else:\n inputs = data1\n targets = data2\n self.setInputs(inputs)\n self.setTargets(targets)\n",
"role": "user"
},
{
"content": "setInputsAndTargets",
"role": "assistant"
}
] |
def x(self):
flag = [0] * len(self.inputs)
self.loadOrder = [0] * len(self.inputs)
for i in range(len(self.inputs)):
pos = int(random.random() * len(self.inputs))
while flag[pos] == 1:
pos = int(random.random() * len(self.inputs))
flag[pos] = 1
self.loadOrder[pos] = i
|
randomizeOrder
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n flag = [0] * len(self.inputs)\n self.loadOrder = [0] * len(self.inputs)\n for i in range(len(self.inputs)):\n pos = int(random.random() * len(self.inputs))\n while flag[pos] == 1:\n pos = int(random.random() * len(self.inputs))\n flag[pos] = 1\n self.loadOrder[pos] = i\n",
"role": "user"
},
{
"content": "randomizeOrder",
"role": "assistant"
}
] |
def x(self, vector1, vec2, start):
vector2 = self.replacePatterns(vec2)
length = min(len(vector1), len(vector2))
if self.verbosity > 4:
print('Copying Vector: ', vector2[start:start + length])
p = 0
for i in range(start, start + length):
vector1[p] = vector2[i]
p += 1
|
copyVector
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, vector1, vec2, start):\n vector2 = self.replacePatterns(vec2)\n length = min(len(vector1), len(vector2))\n if self.verbosity > 4:\n print('Copying Vector: ', vector2[start:start + length])\n p = 0\n for i in range(start, start + length):\n vector1[p] = vector2[i]\n p += 1\n",
"role": "user"
},
{
"content": "copyVector",
"role": "assistant"
}
] |
def x(self, layer, vec, start=0):
vector = self.replacePatterns(vec, layer.name)
if self.verbosity > 4:
print('Copying Activations: ', vector[start:start + layer.size])
layer.copyActivations(vector[start:start + layer.size])
|
copyActivations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, layer, vec, start=0):\n vector = self.replacePatterns(vec, layer.name)\n if self.verbosity > 4:\n print('Copying Activations: ', vector[start:start + layer.size])\n layer.copyActivations(vector[start:start + layer.size])\n",
"role": "user"
},
{
"content": "copyActivations",
"role": "assistant"
}
] |
def x(self, pos):
set = {}
if type(self.inputs[pos]) == dict:
set.update(self.inputs[pos])
else:
set['input'] = self.inputs[pos]
if self.targets:
if type(self.targets[pos]) == dict:
set.update(self.targets[pos])
else:
set['output'] = self.targets[pos]
return set
|
getDataCrossValidation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pos):\n set = {}\n if type(self.inputs[pos]) == dict:\n set.update(self.inputs[pos])\n else:\n set['input'] = self.inputs[pos]\n if self.targets:\n if type(self.targets[pos]) == dict:\n set.update(self.targets[pos])\n else:\n set['output'] = self.targets[pos]\n return set\n",
"role": "user"
},
{
"content": "getDataCrossValidation",
"role": "assistant"
}
] |
def x(self, intype, pos, name, offset=0):
if intype == 'input':
vector = self.inputs
elif intype == 'target':
vector = self.targets
else:
raise AttributeError("invalid map type '%s'" % intype)
return vector[pos][offset:offset + self[name].size]
|
getDataMap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, intype, pos, name, offset=0):\n if intype == 'input':\n vector = self.inputs\n elif intype == 'target':\n vector = self.targets\n else:\n raise AttributeError(\"invalid map type '%s'\" % intype)\n return vector[pos][offset:offset + self[name].size]\n",
"role": "user"
},
{
"content": "getDataMap",
"role": "assistant"
}
] |
def x(self, pos):
retval = {}
if pos >= len(self.inputs):
raise IndexError('getData() pattern beyond range.', pos)
if self.verbosity >= 1:
print('Getting input', pos, '...')
if len(self.inputMap) == 0:
if type(self.inputs[pos]) == dict:
retval.update(self.inputs[pos])
else:
retval[self.layers[0].name] = self.inputs[pos]
else:
for vals in self.inputMap:
name, offset = vals
retval[name] = self.getDataMap('input', pos, name, offset)
if self.verbosity > 1:
print('Loading target', pos, '...')
if len(self.targets) == 0:
pass
elif len(self.targetMap) == 0:
if type(self.targets[pos]) == dict:
retval.update(self.targets[pos])
else:
retval[self.layers[len(self.layers) - 1].name] = self.targets[pos]
else:
for vals in self.targetMap:
name, offset = vals
retval[name] = self.getDataMap('target', pos, name, offset)
return retval
|
getData
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, pos):\n retval = {}\n if pos >= len(self.inputs):\n raise IndexError('getData() pattern beyond range.', pos)\n if self.verbosity >= 1:\n print('Getting input', pos, '...')\n if len(self.inputMap) == 0:\n if type(self.inputs[pos]) == dict:\n retval.update(self.inputs[pos])\n else:\n retval[self.layers[0].name] = self.inputs[pos]\n else:\n for vals in self.inputMap:\n name, offset = vals\n retval[name] = self.getDataMap('input', pos, name, offset)\n if self.verbosity > 1:\n print('Loading target', pos, '...')\n if len(self.targets) == 0:\n pass\n elif len(self.targetMap) == 0:\n if type(self.targets[pos]) == dict:\n retval.update(self.targets[pos])\n else:\n retval[self.layers[len(self.layers) - 1].name] = self.targets[pos]\n else:\n for vals in self.targetMap:\n name, offset = vals\n retval[name] = self.getDataMap('target', pos, name, offset)\n return retval\n",
"role": "user"
},
{
"content": "getData",
"role": "assistant"
}
] |
def x(self):
if len(self.cacheLayers) != 0 or len(self.cacheConnections) != 0:
return
hiddenInput = 1
hiddenOutput = 1
outputLayerFlag = 1
inputLayerFlag = 1
if len(self.layers) == 0:
raise NetworkError('No network layers.', self.layers)
if len(self.connections) == 0:
raise NetworkError('No network connections.', self.connections)
for x, y in [(x, y) for x in range(len(self.layers)) for y in range(len
(self.layers))]:
if x == y:
pass
elif self.layers[x].name == self.layers[y].name:
raise NetworkError('Two layers have the same name.', (x, y))
for x, y in [(x, y) for x in range(len(self.connections)) for y in
range(len(self.connections))]:
if x == y:
pass
elif self.connections[x].fromLayer.name == self.connections[y
].fromLayer.name and self.connections[x
].toLayer.name == self.connections[y].toLayer.name:
raise NetworkError('Multiple connections between two layers.',
(self.connections[x].fromLayer.name, self.connections[x].
toLayer.name))
for layer in self.layers:
if layer.type == 'Undefined':
raise NetworkError('There is an unconnected layer.', layer.name)
elif layer.type == 'Input':
for connection in self.connections:
if connection.fromLayer.name == layer.name:
inputLayerFlag = 0
if connection.toLayer.name == layer.name:
raise NetworkError(
"Layer has type 'Input' and an incoming connection.",
layer.name)
if inputLayerFlag:
raise NetworkError(
"Layer has type 'Input' but no outgoing connections",
layer.name)
elif layer.type == 'Output':
for connection in self.connections:
if connection.fromLayer.name == layer.name:
raise NetworkError(
"Layer has type 'Output' and an outgoing connections.",
layer.name)
if connection.toLayer.name == layer.name:
outputLayerFlag = 0
if outputLayerFlag:
raise NetworkError(
"Layer has type 'Output' and no incoming connections.",
layer.name)
elif layer.type == 'Hidden':
for connection in self.connections:
if connection.toLayer.name == layer.name:
hiddenInput = 0
if connection.fromLayer.name == layer.name:
hiddenOutput = 0
if hiddenInput or hiddenOutput:
raise NetworkError(
"Layer has type 'Hidden' but does not have both input and output connections."
, layer.name)
else:
raise LayerError(
'Unknown layer encountered in verifyArchitecture().', layer
.name)
for inLayer in self.layers:
if inLayer.type == 'Input':
for outLayer in self.layers:
if outLayer.type == 'Output':
if not self.path(inLayer, outLayer):
raise NetworkError(
'Network contains disconnected sub networks.',
(inLayer.name, outLayer.name))
for layer in self.layers:
if self.path(layer, layer):
raise NetworkError('Network contains a cycle.', layer.name)
|
verifyArchitecture
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if len(self.cacheLayers) != 0 or len(self.cacheConnections) != 0:\n return\n hiddenInput = 1\n hiddenOutput = 1\n outputLayerFlag = 1\n inputLayerFlag = 1\n if len(self.layers) == 0:\n raise NetworkError('No network layers.', self.layers)\n if len(self.connections) == 0:\n raise NetworkError('No network connections.', self.connections)\n for x, y in [(x, y) for x in range(len(self.layers)) for y in range(len\n (self.layers))]:\n if x == y:\n pass\n elif self.layers[x].name == self.layers[y].name:\n raise NetworkError('Two layers have the same name.', (x, y))\n for x, y in [(x, y) for x in range(len(self.connections)) for y in\n range(len(self.connections))]:\n if x == y:\n pass\n elif self.connections[x].fromLayer.name == self.connections[y\n ].fromLayer.name and self.connections[x\n ].toLayer.name == self.connections[y].toLayer.name:\n raise NetworkError('Multiple connections between two layers.',\n (self.connections[x].fromLayer.name, self.connections[x].\n toLayer.name))\n for layer in self.layers:\n if layer.type == 'Undefined':\n raise NetworkError('There is an unconnected layer.', layer.name)\n elif layer.type == 'Input':\n for connection in self.connections:\n if connection.fromLayer.name == layer.name:\n inputLayerFlag = 0\n if connection.toLayer.name == layer.name:\n raise NetworkError(\n \"Layer has type 'Input' and an incoming connection.\",\n layer.name)\n if inputLayerFlag:\n raise NetworkError(\n \"Layer has type 'Input' but no outgoing connections\",\n layer.name)\n elif layer.type == 'Output':\n for connection in self.connections:\n if connection.fromLayer.name == layer.name:\n raise NetworkError(\n \"Layer has type 'Output' and an outgoing connections.\",\n layer.name)\n if connection.toLayer.name == layer.name:\n outputLayerFlag = 0\n if outputLayerFlag:\n raise NetworkError(\n \"Layer has type 'Output' and no incoming connections.\",\n layer.name)\n elif layer.type == 'Hidden':\n for connection in self.connections:\n if connection.toLayer.name == layer.name:\n hiddenInput = 0\n if connection.fromLayer.name == layer.name:\n hiddenOutput = 0\n if hiddenInput or hiddenOutput:\n raise NetworkError(\n \"Layer has type 'Hidden' but does not have both input and output connections.\"\n , layer.name)\n else:\n raise LayerError(\n 'Unknown layer encountered in verifyArchitecture().', layer\n .name)\n for inLayer in self.layers:\n if inLayer.type == 'Input':\n for outLayer in self.layers:\n if outLayer.type == 'Output':\n if not self.path(inLayer, outLayer):\n raise NetworkError(\n 'Network contains disconnected sub networks.',\n (inLayer.name, outLayer.name))\n for layer in self.layers:\n if self.path(layer, layer):\n raise NetworkError('Network contains a cycle.', layer.name)\n",
"role": "user"
},
{
"content": "verifyArchitecture",
"role": "assistant"
}
] |
def x(self):
for layer in self.layers:
if (layer.verify and layer.type == 'Input' and layer.kind !=
'Context' and layer.active and not layer.activationSet):
raise LayerError(
"Inputs are not set and verifyInputs() was called on layer '%s'."
% layer.name)
else:
layer.resetActivationFlag()
|
verifyInputs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for layer in self.layers:\n if (layer.verify and layer.type == 'Input' and layer.kind !=\n 'Context' and layer.active and not layer.activationSet):\n raise LayerError(\n \"Inputs are not set and verifyInputs() was called on layer '%s'.\"\n % layer.name)\n else:\n layer.resetActivationFlag()\n",
"role": "user"
},
{
"content": "verifyInputs",
"role": "assistant"
}
] |
def x(self):
for layer in self.layers:
if (layer.verify and layer.type == 'Output' and layer.active and
not layer.targetSet):
raise LayerError(
'Targets are not set and verifyTargets() was called.', (
layer.name, layer.type))
else:
layer.resetTargetFlag()
|
verifyTargets
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for layer in self.layers:\n if (layer.verify and layer.type == 'Output' and layer.active and \n not layer.targetSet):\n raise LayerError(\n 'Targets are not set and verifyTargets() was called.', (\n layer.name, layer.type))\n else:\n layer.resetTargetFlag()\n",
"role": "user"
},
{
"content": "verifyTargets",
"role": "assistant"
}
] |
def x(self):
tss = 0.0
size = 0
for layer in self.layers:
if layer.type == 'Output':
tss += layer.TSSError()
size += layer.size
return math.sqrt(tss / size)
|
RMSError
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n tss = 0.0\n size = 0\n for layer in self.layers:\n if layer.type == 'Output':\n tss += layer.TSSError()\n size += layer.size\n return math.sqrt(tss / size)\n",
"role": "user"
},
{
"content": "RMSError",
"role": "assistant"
}
] |
def x(self, sweeps=None, cont=0):
self.complete = 0
self.verifyArchitecture()
tssErr = 0.0
rmsErr = 0.0
totalCorrect = 0
totalCount = 1
totalPCorrect = {}
if not cont:
self.resetFlags()
self.epoch = 0
self.reportStart()
self.resetCount = 1
self.epoch = 1
self.lastLowestTSSError = sys.maxsize
if sweeps != None:
self.resetEpoch = sweeps
elif sweeps != None:
self.resetEpoch = self.epoch + sweeps - 1
while self.doWhile(totalCount, totalCorrect):
tssErr, totalCorrect, totalCount, totalPCorrect = self.sweep()
self.complete = 1
if totalCount != 0:
rmsErr = math.sqrt(tssErr / totalCount)
else:
self.Print("Warning: sweep didn't do anything!")
if self.epoch % self.reportRate == 0:
self.reportEpoch(self.epoch, tssErr, totalCorrect, totalCount,
rmsErr, totalPCorrect)
if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation:
tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect = (self
.sweepCrossValidation())
rmsCVErr = math.sqrt(tssCVErr / totalCVCount)
self.Print(
'CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f'
% (self.epoch, tssCVErr, totalCVCorrect * 1.0 /
totalCVCount, rmsCVErr))
if (self.autoSaveWeightsFile != None and tssCVErr < self.
lastLowestTSSError):
self.lastLowestTSSError = tssCVErr
self.saveWeights(self.autoSaveWeightsFile, mode=self.
autoSaveWeightsFileFormat)
self.Print("auto saving weights to '%s'..." % self.
lastAutoSaveWeightsFilename)
if self.autoSaveNetworkFile != None:
self.saveNetwork(self.autoSaveNetworkFile, mode=self.
autoSaveNetworkFileFormat)
self.Print("auto saving network to '%s'..." % self.
lastAutoSaveNetworkFilename)
if (totalCVCorrect * 1.0 / totalCVCount >= self.stopPercent and
self.useCrossValidationToStop):
self.epoch += 1
break
if self.resetEpoch == self.epoch:
if self.resetCount == self.resetLimit:
self.Print('Reset limit reached; ending without reaching goal')
self.epoch += 1
self.complete = 0
break
self.resetCount += 1
self.Print('RESET! resetEpoch reached; starting over...')
self.initialize()
tssErr = 0.0
rmsErr = 0.0
self.epoch = 1
totalCorrect = 0
totalPCorrect = {}
continue
self.epoch += 1
if totalCount > 0:
self.reportFinal(self.epoch, tssErr, totalCorrect, totalCount,
rmsErr, totalPCorrect)
if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation:
tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect = (self
.sweepCrossValidation())
rmsCVErr = math.sqrt(tssCVErr / totalCVCount)
self.Print(
'CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f'
% (self.epoch - 1, tssCVErr, totalCVCorrect * 1.0 /
totalCVCount, rmsCVErr))
if (self.autoSaveWeightsFile != None and tssCVErr < self.
lastLowestTSSError):
self.lastLowestTSSError = tssCVErr
self.saveWeights(self.autoSaveWeightsFile, mode=self.
autoSaveWeightsFileFormat)
self.Print("auto saving weights to '%s'..." % self.
lastAutoSaveWeightsFilename)
if self.autoSaveNetworkFile != None:
self.saveNetwork(self.autoSaveNetworkFile, mode=self.
autoSaveNetworkFileFormat)
self.Print("auto saving network to '%s'..." % self.
lastAutoSaveNetworkFilename)
else:
print('Final: nothing done')
|
train
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sweeps=None, cont=0):\n self.complete = 0\n self.verifyArchitecture()\n tssErr = 0.0\n rmsErr = 0.0\n totalCorrect = 0\n totalCount = 1\n totalPCorrect = {}\n if not cont:\n self.resetFlags()\n self.epoch = 0\n self.reportStart()\n self.resetCount = 1\n self.epoch = 1\n self.lastLowestTSSError = sys.maxsize\n if sweeps != None:\n self.resetEpoch = sweeps\n elif sweeps != None:\n self.resetEpoch = self.epoch + sweeps - 1\n while self.doWhile(totalCount, totalCorrect):\n tssErr, totalCorrect, totalCount, totalPCorrect = self.sweep()\n self.complete = 1\n if totalCount != 0:\n rmsErr = math.sqrt(tssErr / totalCount)\n else:\n self.Print(\"Warning: sweep didn't do anything!\")\n if self.epoch % self.reportRate == 0:\n self.reportEpoch(self.epoch, tssErr, totalCorrect, totalCount,\n rmsErr, totalPCorrect)\n if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation:\n tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect = (self\n .sweepCrossValidation())\n rmsCVErr = math.sqrt(tssCVErr / totalCVCount)\n self.Print(\n 'CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f'\n % (self.epoch, tssCVErr, totalCVCorrect * 1.0 /\n totalCVCount, rmsCVErr))\n if (self.autoSaveWeightsFile != None and tssCVErr < self.\n lastLowestTSSError):\n self.lastLowestTSSError = tssCVErr\n self.saveWeights(self.autoSaveWeightsFile, mode=self.\n autoSaveWeightsFileFormat)\n self.Print(\"auto saving weights to '%s'...\" % self.\n lastAutoSaveWeightsFilename)\n if self.autoSaveNetworkFile != None:\n self.saveNetwork(self.autoSaveNetworkFile, mode=self.\n autoSaveNetworkFileFormat)\n self.Print(\"auto saving network to '%s'...\" % self.\n lastAutoSaveNetworkFilename)\n if (totalCVCorrect * 1.0 / totalCVCount >= self.stopPercent and\n self.useCrossValidationToStop):\n self.epoch += 1\n break\n if self.resetEpoch == self.epoch:\n if self.resetCount == self.resetLimit:\n self.Print('Reset limit reached; ending without reaching goal')\n self.epoch += 1\n self.complete = 0\n break\n self.resetCount += 1\n self.Print('RESET! resetEpoch reached; starting over...')\n self.initialize()\n tssErr = 0.0\n rmsErr = 0.0\n self.epoch = 1\n totalCorrect = 0\n totalPCorrect = {}\n continue\n self.epoch += 1\n if totalCount > 0:\n self.reportFinal(self.epoch, tssErr, totalCorrect, totalCount,\n rmsErr, totalPCorrect)\n if len(self.crossValidationCorpus) > 0 or self.autoCrossValidation:\n tssCVErr, totalCVCorrect, totalCVCount, totalCVPCorrect = (self\n .sweepCrossValidation())\n rmsCVErr = math.sqrt(tssCVErr / totalCVCount)\n self.Print(\n 'CV #%6d | TSS Error: %.4f | Correct: %.4f | RMS Error: %.4f'\n % (self.epoch - 1, tssCVErr, totalCVCorrect * 1.0 /\n totalCVCount, rmsCVErr))\n if (self.autoSaveWeightsFile != None and tssCVErr < self.\n lastLowestTSSError):\n self.lastLowestTSSError = tssCVErr\n self.saveWeights(self.autoSaveWeightsFile, mode=self.\n autoSaveWeightsFileFormat)\n self.Print(\"auto saving weights to '%s'...\" % self.\n lastAutoSaveWeightsFilename)\n if self.autoSaveNetworkFile != None:\n self.saveNetwork(self.autoSaveNetworkFile, mode=self.\n autoSaveNetworkFileFormat)\n self.Print(\"auto saving network to '%s'...\" % self.\n lastAutoSaveNetworkFilename)\n else:\n print('Final: nothing done')\n",
"role": "user"
},
{
"content": "train",
"role": "assistant"
}
] |
def x(self, **args):
if self.verbosity > 0:
print('Network.step() called with:', args)
retargs = self.preStep(**args)
if retargs:
args = retargs
self.propagate(**args)
retargs = self.postPropagate(**args)
if retargs:
args = retargs
for aa in self.association:
inName, outName = aa
inLayer = self.getLayer(inName)
if inLayer.type not in ['Input', 'Hidden']:
raise LayerError(
"Associated input layer not type 'Input' or 'Hidden'.",
inLayer.type)
outLayer = self.getLayer(outName)
if not outLayer.type == 'Output':
raise LayerError("Associated output layer not type 'Output'.",
outLayer.type)
outLayer.copyTargets(inLayer.activation)
retargs = self.preBackprop(**args)
if retargs:
args = retargs
error, correct, total, pcorrect = self.backprop(**args)
if self.verbosity > 2 or self.interactive:
self.display()
if self.interactive:
self.prompt()
retargs = self.postBackprop(**args)
if retargs:
args = retargs
if self.learning and not self.batch:
self.change_weights()
retargs = self.postStep(**args)
if retargs:
args = retargs
self.reportPattern()
return error, correct, total, pcorrect
|
step
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **args):\n if self.verbosity > 0:\n print('Network.step() called with:', args)\n retargs = self.preStep(**args)\n if retargs:\n args = retargs\n self.propagate(**args)\n retargs = self.postPropagate(**args)\n if retargs:\n args = retargs\n for aa in self.association:\n inName, outName = aa\n inLayer = self.getLayer(inName)\n if inLayer.type not in ['Input', 'Hidden']:\n raise LayerError(\n \"Associated input layer not type 'Input' or 'Hidden'.\",\n inLayer.type)\n outLayer = self.getLayer(outName)\n if not outLayer.type == 'Output':\n raise LayerError(\"Associated output layer not type 'Output'.\",\n outLayer.type)\n outLayer.copyTargets(inLayer.activation)\n retargs = self.preBackprop(**args)\n if retargs:\n args = retargs\n error, correct, total, pcorrect = self.backprop(**args)\n if self.verbosity > 2 or self.interactive:\n self.display()\n if self.interactive:\n self.prompt()\n retargs = self.postBackprop(**args)\n if retargs:\n args = retargs\n if self.learning and not self.batch:\n self.change_weights()\n retargs = self.postStep(**args)\n if retargs:\n args = retargs\n self.reportPattern()\n return error, correct, total, pcorrect\n",
"role": "user"
},
{
"content": "step",
"role": "assistant"
}
] |
def x(self):
self.preSweep()
if self.loadOrder == []:
raise NetworkError(
'No loadOrder for the inputs. Make sure inputs are properly set.',
self.loadOrder)
if len(self.targets) != 0 and len(self.targets) != len(self.inputs):
raise NetworkError(
'Number of inputs does not equal number of targets (inputs=%d, targets=%d)'
% (len(self.targets), len(self.inputs)))
if self.verbosity >= 1:
print('Epoch #', self.epoch, 'Cycle...')
if not self.orderedInputs:
self.randomizeOrder()
tssError = 0.0
totalCorrect = 0
totalCount = 0
totalPCorrect = {}
cnt = 0
if self.saveResults:
self.results = [(0, 0, 0) for x in self.loadOrder]
for i in self.loadOrder:
if self.verbosity >= 1 or self.interactive:
print('-----------------------------------Pattern #', self.
loadOrder[i] + 1)
datum = self.getData(i)
if cnt < len(self.loadOrder) - 1:
self.currentSweepCount = cnt
else:
self.currentSweepCount = None
self._sweeping = 1
error, correct, total, pcorrect = self.step(**datum)
self._sweeping = 0
if self.saveResults:
self.results[i] = error, correct, total, pcorrect
tssError += error
totalCorrect += correct
totalCount += total
sumMerge(totalPCorrect, pcorrect)
if self.sweepReportRate and (cnt + 1) % self.sweepReportRate == 0:
print(' Step # %6d | TSS Error: %.4f | Correct: %.4f' % (cnt +
1, tssError, totalCorrect * 1.0 / totalCount))
if (self.crossValidationSampleRate and self.epoch % self.
crossValidationSampleRate == 0):
self.saveNetworkForCrossValidation(self.crossValidationSampleFile)
cnt += 1
if self.learning and self.batch:
self.change_weights()
self.postSweep()
return tssError, totalCorrect, totalCount, totalPCorrect
|
sweep
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.preSweep()\n if self.loadOrder == []:\n raise NetworkError(\n 'No loadOrder for the inputs. Make sure inputs are properly set.',\n self.loadOrder)\n if len(self.targets) != 0 and len(self.targets) != len(self.inputs):\n raise NetworkError(\n 'Number of inputs does not equal number of targets (inputs=%d, targets=%d)'\n % (len(self.targets), len(self.inputs)))\n if self.verbosity >= 1:\n print('Epoch #', self.epoch, 'Cycle...')\n if not self.orderedInputs:\n self.randomizeOrder()\n tssError = 0.0\n totalCorrect = 0\n totalCount = 0\n totalPCorrect = {}\n cnt = 0\n if self.saveResults:\n self.results = [(0, 0, 0) for x in self.loadOrder]\n for i in self.loadOrder:\n if self.verbosity >= 1 or self.interactive:\n print('-----------------------------------Pattern #', self.\n loadOrder[i] + 1)\n datum = self.getData(i)\n if cnt < len(self.loadOrder) - 1:\n self.currentSweepCount = cnt\n else:\n self.currentSweepCount = None\n self._sweeping = 1\n error, correct, total, pcorrect = self.step(**datum)\n self._sweeping = 0\n if self.saveResults:\n self.results[i] = error, correct, total, pcorrect\n tssError += error\n totalCorrect += correct\n totalCount += total\n sumMerge(totalPCorrect, pcorrect)\n if self.sweepReportRate and (cnt + 1) % self.sweepReportRate == 0:\n print(' Step # %6d | TSS Error: %.4f | Correct: %.4f' % (cnt +\n 1, tssError, totalCorrect * 1.0 / totalCount))\n if (self.crossValidationSampleRate and self.epoch % self.\n crossValidationSampleRate == 0):\n self.saveNetworkForCrossValidation(self.crossValidationSampleFile)\n cnt += 1\n if self.learning and self.batch:\n self.change_weights()\n self.postSweep()\n return tssError, totalCorrect, totalCount, totalPCorrect\n",
"role": "user"
},
{
"content": "sweep",
"role": "assistant"
}
] |
def x(self):
oldLearning = self.learning
self.learning = 0
tssError = 0.0
totalCorrect = 0
totalCount = 0
totalPCorrect = {}
self._cv = True
if self.autoCrossValidation:
for i in range(len(self.inputs)):
set = self.getDataCrossValidation(i)
self._sweeping = 1
error, correct, total, pcorrect = self.step(**set)
self._sweeping = 0
if self.crossValidationReportLayers != []:
error, correct, total, pcorrect = self.getError(*self.
crossValidationReportLayers)
tssError += error
totalCorrect += correct
totalCount += total
sumMerge(totalPCorrect, pcorrect)
else:
for set in self.crossValidationCorpus:
self._sweeping = 1
error, correct, total, pcorrect = self.step(**set)
self._sweeping = 0
if self.crossValidationReportLayers != []:
error, correct, total, pcorrect = self.getError(*self.
crossValidationReportLayers)
tssError += error
totalCorrect += correct
totalCount += total
sumMerge(totalPCorrect, pcorrect)
self.learning = oldLearning
self._cv = False
return tssError, totalCorrect, totalCount, totalPCorrect
|
sweepCrossValidation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n oldLearning = self.learning\n self.learning = 0\n tssError = 0.0\n totalCorrect = 0\n totalCount = 0\n totalPCorrect = {}\n self._cv = True\n if self.autoCrossValidation:\n for i in range(len(self.inputs)):\n set = self.getDataCrossValidation(i)\n self._sweeping = 1\n error, correct, total, pcorrect = self.step(**set)\n self._sweeping = 0\n if self.crossValidationReportLayers != []:\n error, correct, total, pcorrect = self.getError(*self.\n crossValidationReportLayers)\n tssError += error\n totalCorrect += correct\n totalCount += total\n sumMerge(totalPCorrect, pcorrect)\n else:\n for set in self.crossValidationCorpus:\n self._sweeping = 1\n error, correct, total, pcorrect = self.step(**set)\n self._sweeping = 0\n if self.crossValidationReportLayers != []:\n error, correct, total, pcorrect = self.getError(*self.\n crossValidationReportLayers)\n tssError += error\n totalCorrect += correct\n totalCount += total\n sumMerge(totalPCorrect, pcorrect)\n self.learning = oldLearning\n self._cv = False\n return tssError, totalCorrect, totalCount, totalPCorrect\n",
"role": "user"
},
{
"content": "sweepCrossValidation",
"role": "assistant"
}
] |
def x(self, layerName):
count = 0
if self[layerName].active:
count += 1
for connection in self.connections:
if (connection.active and connection.fromLayer.active and
connection.toLayer.name == layerName):
count += connection.fromLayer.size
return count
|
numConnects
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, layerName):\n count = 0\n if self[layerName].active:\n count += 1\n for connection in self.connections:\n if (connection.active and connection.fromLayer.active and \n connection.toLayer.name == layerName):\n count += connection.fromLayer.size\n return count\n",
"role": "user"
},
{
"content": "numConnects",
"role": "assistant"
}
] |
def x(self, startLayers):
if self.verbosity > 2:
print('Partially propagating network:')
propagateLayers = []
for startLayer in startLayers:
for layer in self.layers:
if self.path(startLayer, layer):
propagateLayers.append(layer)
for layer in propagateLayers:
if layer.active:
layer.netinput = layer.weight.copy()
for layer in propagateLayers:
if layer.active:
for connection in self.connections:
if connection.active and connection.toLayer.name == layer.name:
connection.toLayer.netinput = (connection.toLayer.
netinput + Numeric.matrixmultiply(connection.
fromLayer.activation, connection.weight))
if layer.type != 'Input':
layer.activation = self.activationFunction(layer.netinput)
for layer in propagateLayers:
if layer.log and layer.active:
layer.writeLog(self)
|
prop_from
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, startLayers):\n if self.verbosity > 2:\n print('Partially propagating network:')\n propagateLayers = []\n for startLayer in startLayers:\n for layer in self.layers:\n if self.path(startLayer, layer):\n propagateLayers.append(layer)\n for layer in propagateLayers:\n if layer.active:\n layer.netinput = layer.weight.copy()\n for layer in propagateLayers:\n if layer.active:\n for connection in self.connections:\n if connection.active and connection.toLayer.name == layer.name:\n connection.toLayer.netinput = (connection.toLayer.\n netinput + Numeric.matrixmultiply(connection.\n fromLayer.activation, connection.weight))\n if layer.type != 'Input':\n layer.activation = self.activationFunction(layer.netinput)\n for layer in propagateLayers:\n if layer.log and layer.active:\n layer.writeLog(self)\n",
"role": "user"
},
{
"content": "prop_from",
"role": "assistant"
}
] |
def x(self, **args):
self.prePropagate(**args)
for key in args:
layer = self.getLayer(key)
if layer.kind == 'Input':
if self[key].verify and not self[key].activationSet == 0:
raise AttributeError(
"attempt to set activations on input layer '%s' without reset"
% key)
self.copyActivations(layer, args[key])
elif layer.kind == 'Context':
self.copyActivations(layer, args[key])
elif layer.kind == 'Output' and len(args[key]) == layer.size:
self.copyTargets(layer, args[key])
self.verifyInputs()
if self.verbosity > 2:
print("Propagate Network '" + self.name + "':")
for layer in self.layers:
if layer.type != 'Input' and layer.active:
layer.netinput = layer.weight.copy()
for layer in self.layers:
if layer.active:
for connection in self.connections:
if (connection.toLayer.name == layer.name and connection.
fromLayer.active and connection.active):
a = connection.fromLayer.activation
w = connection.weight
m = Numeric.matrixmultiply(a, w)
ni = m + connection.toLayer.netinput
connection.toLayer.netinput = ni
if layer.type != 'Input':
layer.activation = self.activationFunction(layer.netinput)
for layer in self.layers:
if layer.log and layer.active:
layer.writeLog(self)
self.count += 1
if len(args) != 0:
dict = {}
for layer in self.layers:
if layer.type == 'Output':
dict[layer.name] = layer.activation.copy()
if len(dict) == 1:
return dict[list(dict.keys())[0]]
else:
return dict
|
propagate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **args):\n self.prePropagate(**args)\n for key in args:\n layer = self.getLayer(key)\n if layer.kind == 'Input':\n if self[key].verify and not self[key].activationSet == 0:\n raise AttributeError(\n \"attempt to set activations on input layer '%s' without reset\"\n % key)\n self.copyActivations(layer, args[key])\n elif layer.kind == 'Context':\n self.copyActivations(layer, args[key])\n elif layer.kind == 'Output' and len(args[key]) == layer.size:\n self.copyTargets(layer, args[key])\n self.verifyInputs()\n if self.verbosity > 2:\n print(\"Propagate Network '\" + self.name + \"':\")\n for layer in self.layers:\n if layer.type != 'Input' and layer.active:\n layer.netinput = layer.weight.copy()\n for layer in self.layers:\n if layer.active:\n for connection in self.connections:\n if (connection.toLayer.name == layer.name and connection.\n fromLayer.active and connection.active):\n a = connection.fromLayer.activation\n w = connection.weight\n m = Numeric.matrixmultiply(a, w)\n ni = m + connection.toLayer.netinput\n connection.toLayer.netinput = ni\n if layer.type != 'Input':\n layer.activation = self.activationFunction(layer.netinput)\n for layer in self.layers:\n if layer.log and layer.active:\n layer.writeLog(self)\n self.count += 1\n if len(args) != 0:\n dict = {}\n for layer in self.layers:\n if layer.type == 'Output':\n dict[layer.name] = layer.activation.copy()\n if len(dict) == 1:\n return dict[list(dict.keys())[0]]\n else:\n return dict\n",
"role": "user"
},
{
"content": "propagate",
"role": "assistant"
}
] |
def x(self, toLayer, **args):
for layerName in args:
self[layerName].activationSet = 0
self[layerName].copyActivations(args[layerName])
self[toLayer].netinput = self[toLayer].weight.copy()
for connection in self.connections:
if (connection.active and connection.toLayer.name == toLayer and
connection.fromLayer.active):
connection.toLayer.netinput = (connection.toLayer.netinput +
Numeric.matrixmultiply(connection.fromLayer.activation,
connection.weight))
if self[toLayer].type != 'Input':
self[toLayer].activation = self.activationFunction(self[
toLayer].netinput)
return self[toLayer].activation.copy()
|
propagateTo
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, toLayer, **args):\n for layerName in args:\n self[layerName].activationSet = 0\n self[layerName].copyActivations(args[layerName])\n self[toLayer].netinput = self[toLayer].weight.copy()\n for connection in self.connections:\n if (connection.active and connection.toLayer.name == toLayer and\n connection.fromLayer.active):\n connection.toLayer.netinput = (connection.toLayer.netinput +\n Numeric.matrixmultiply(connection.fromLayer.activation,\n connection.weight))\n if self[toLayer].type != 'Input':\n self[toLayer].activation = self.activationFunction(self[\n toLayer].netinput)\n return self[toLayer].activation.copy()\n",
"role": "user"
},
{
"content": "propagateTo",
"role": "assistant"
}
] |
def x(self, startLayer, **args):
for layerName in args:
self[layerName].copyActivations(args[layerName])
started = 0
for layer in self.layers:
if layer.name == startLayer:
started = 1
continue
if not started:
continue
if layer.type != 'Input' and layer.active:
layer.netinput = layer.weight.copy()
started = 0
for layer in self.layers:
if layer.name == startLayer:
started = 1
continue
if not started:
continue
if layer.active:
for connection in self.connections:
if (connection.active and connection.toLayer.name == layer.
name and connection.fromLayer.active):
connection.toLayer.netinput = (connection.toLayer.
netinput + Numeric.matrixmultiply(connection.
fromLayer.activation, connection.weight))
if layer.type != 'Input':
layer.activation = self.activationFunction(layer.netinput)
for layer in self.layers:
if layer.log and layer.active:
layer.writeLog(self)
self.count += 1
if len(args) != 0:
dict = {}
for layer in self.layers:
if layer.type == 'Output':
dict[layer.name] = layer.activation.copy()
if len(dict) == 1:
return dict[list(dict.keys())[0]]
else:
return dict
|
propagateFrom
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, startLayer, **args):\n for layerName in args:\n self[layerName].copyActivations(args[layerName])\n started = 0\n for layer in self.layers:\n if layer.name == startLayer:\n started = 1\n continue\n if not started:\n continue\n if layer.type != 'Input' and layer.active:\n layer.netinput = layer.weight.copy()\n started = 0\n for layer in self.layers:\n if layer.name == startLayer:\n started = 1\n continue\n if not started:\n continue\n if layer.active:\n for connection in self.connections:\n if (connection.active and connection.toLayer.name == layer.\n name and connection.fromLayer.active):\n connection.toLayer.netinput = (connection.toLayer.\n netinput + Numeric.matrixmultiply(connection.\n fromLayer.activation, connection.weight))\n if layer.type != 'Input':\n layer.activation = self.activationFunction(layer.netinput)\n for layer in self.layers:\n if layer.log and layer.active:\n layer.writeLog(self)\n self.count += 1\n if len(args) != 0:\n dict = {}\n for layer in self.layers:\n if layer.type == 'Output':\n dict[layer.name] = layer.activation.copy()\n if len(dict) == 1:\n return dict[list(dict.keys())[0]]\n else:\n return dict\n",
"role": "user"
},
{
"content": "propagateFrom",
"role": "assistant"
}
] |
def x(self, x):
def x(v):
if v < -15.0:
return 0.0
elif v > 15.0:
return 1.0
else:
return 1.0 / (1.0 + Numeric.exp(-v))
return Numeric.array(list(map(act, x)), 'f')
|
activationFunctionASIG
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n\n def x(v):\n if v < -15.0:\n return 0.0\n elif v > 15.0:\n return 1.0\n else:\n return 1.0 / (1.0 + Numeric.exp(-v))\n return Numeric.array(list(map(act, x)), 'f')\n",
"role": "user"
},
{
"content": "activationFunctionASIG",
"role": "assistant"
}
] |
def x(self, x):
def x(v):
if v < -15.0:
return 0.0
elif v > 15.0:
return 1.0
else:
return 1.0 / (1.0 + Numeric.exp(-v))
return act(x) * (1.0 - act(x)) + self.sigmoid_prime_offset
|
actDerivASIG
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x):\n\n def x(v):\n if v < -15.0:\n return 0.0\n elif v > 15.0:\n return 1.0\n else:\n return 1.0 / (1.0 + Numeric.exp(-v))\n return act(x) * (1.0 - act(x)) + self.sigmoid_prime_offset\n",
"role": "user"
},
{
"content": "actDerivASIG",
"role": "assistant"
}
] |
def x(self):
self.activationFunction = self.activationFunctionTANH
self.ACTPRIME = self.ACTPRIMETANH
self.actDeriv = self.actDerivTANH
for layer in self:
layer.minTarget, layer.minActivation = -1.7159, -1.7159
layer.maxTarget, layer.maxActivation = 1.7159, 1.7159
|
useTanhActivationFunction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.activationFunction = self.activationFunctionTANH\n self.ACTPRIME = self.ACTPRIMETANH\n self.actDeriv = self.actDerivTANH\n for layer in self:\n layer.minTarget, layer.minActivation = -1.7159, -1.7159\n layer.maxTarget, layer.maxActivation = 1.7159, 1.7159\n",
"role": "user"
},
{
"content": "useTanhActivationFunction",
"role": "assistant"
}
] |
def x(self):
self.activationFunction = self.activationFunctionFahlman
self.ACTPRIME = self.ACTPRIME_Fahlman
self.actDeriv = self.actDerivFahlman
for layer in self:
layer.minTarget, layer.minActivation = -0.5, -0.5
layer.maxTarget, layer.maxActivation = 0.5, 0.5
|
useFahlmanActivationFunction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.activationFunction = self.activationFunctionFahlman\n self.ACTPRIME = self.ACTPRIME_Fahlman\n self.actDeriv = self.actDerivFahlman\n for layer in self:\n layer.minTarget, layer.minActivation = -0.5, -0.5\n layer.maxTarget, layer.maxActivation = 0.5, 0.5\n",
"role": "user"
},
{
"content": "useFahlmanActivationFunction",
"role": "assistant"
}
] |
def x(self, **args):
retval = self.compute_error(**args)
if self.learning:
self.compute_wed()
return retval
|
backprop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **args):\n retval = self.compute_error(**args)\n if self.learning:\n self.compute_wed()\n return retval\n",
"role": "user"
},
{
"content": "backprop",
"role": "assistant"
}
] |
def x(self, e, wed, m, dweightLast, wedLast, w, n):
shrinkFactor = self.mu / (1.0 + self.mu)
if self.splitEpsilon:
e /= float(n)
if self._quickprop:
nextStep = Numeric.zeros(len(dweightLast), 'f')
for i in range(len(dweightLast)):
s = wed[i]
d = dweightLast[i]
p = wedLast[i]
if d > 0.0:
if s > 0.0:
nextStep[i] = nextStep[i] + e * s
if s >= shrinkFactor * p:
nextStep[i] = nextStep[i] + self.mu * d
else:
nextStep[i] = nextStep[i] + d * s / (p - s)
elif d < 0.0:
if s < 0.0:
nextStep[i] = nextStep[i] + e * s
if s <= shrinkFactor * p:
nextStep[i] = nextStep[i] + self.mu * d
else:
nextStep[i] = nextStep[i] + d * s / (p - s)
else:
nextStep[i] = nextStep[i] + (e * s + m * d)
newDweight = nextStep
else:
newDweight = e * wed + m * dweightLast
return newDweight
|
deltaWeight
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, e, wed, m, dweightLast, wedLast, w, n):\n shrinkFactor = self.mu / (1.0 + self.mu)\n if self.splitEpsilon:\n e /= float(n)\n if self._quickprop:\n nextStep = Numeric.zeros(len(dweightLast), 'f')\n for i in range(len(dweightLast)):\n s = wed[i]\n d = dweightLast[i]\n p = wedLast[i]\n if d > 0.0:\n if s > 0.0:\n nextStep[i] = nextStep[i] + e * s\n if s >= shrinkFactor * p:\n nextStep[i] = nextStep[i] + self.mu * d\n else:\n nextStep[i] = nextStep[i] + d * s / (p - s)\n elif d < 0.0:\n if s < 0.0:\n nextStep[i] = nextStep[i] + e * s\n if s <= shrinkFactor * p:\n nextStep[i] = nextStep[i] + self.mu * d\n else:\n nextStep[i] = nextStep[i] + d * s / (p - s)\n else:\n nextStep[i] = nextStep[i] + (e * s + m * d)\n newDweight = nextStep\n else:\n newDweight = e * wed + m * dweightLast\n return newDweight\n",
"role": "user"
},
{
"content": "deltaWeight",
"role": "assistant"
}
] |
def x(self):
dw_count, dw_sum = 0, 0.0
if len(self.cacheLayers) != 0:
changeLayers = self.cacheLayers
else:
changeLayers = self.layers
for layer in changeLayers:
if layer.active and layer.type != 'Input':
if not layer.frozen:
if self._quickprop or self.splitEpsilon:
layer.dweight = self.deltaWeight(self.epsilon, layer.
wed, self.momentum, layer.dweight, layer.wedLast,
layer.weight, self.numConnects(layer.name))
else:
layer.dweight = (self.epsilon * layer.wed + self.
momentum * layer.dweight)
layer.weight += layer.dweight
layer.wedLast = Numeric.array(layer.wed)
if self._quickprop:
layer.wed = layer.weight * self.decay
else:
layer.wed = layer.wed * 0.0
dw_count += len(layer.dweight)
dw_sum += Numeric.add.reduce(abs(layer.dweight))
if len(self.cacheConnections) != 0:
changeConnections = self.cacheConnections
else:
changeConnections = self.connections
for connection in changeConnections:
if (connection.active and connection.fromLayer.active and
connection.toLayer.active and not connection.frozen):
toLayer = connection.toLayer
if self._quickprop or self.splitEpsilon:
for i in range(len(connection.dweight)):
Numeric.put(connection.dweight[i], Numeric.arange(len(
connection.dweight[i])), self.deltaWeight(self.
epsilon, connection.wed[i], self.momentum,
connection.dweight[i], connection.wedLast[i],
connection.weight[i], self.numConnects(connection.
toLayer.name)))
else:
connection.dweight = (self.epsilon * connection.wed + self.
momentum * connection.dweight)
connection.weight += connection.dweight
connection.wedLast = Numeric.array(connection.wed)
if self._quickprop:
connection.wed = connection.weight * self.decay
else:
connection.wed = connection.wed * 0.0
dw_count += Numeric.multiply.reduce(connection.dweight.shape)
dw_sum += Numeric.add.reduce(Numeric.add.reduce(abs(connection.
dweight)))
if self.verbosity >= 1:
print('WEIGHTS CHANGED')
if self.verbosity > 2:
self.display()
return dw_count, dw_sum
|
change_weights
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n dw_count, dw_sum = 0, 0.0\n if len(self.cacheLayers) != 0:\n changeLayers = self.cacheLayers\n else:\n changeLayers = self.layers\n for layer in changeLayers:\n if layer.active and layer.type != 'Input':\n if not layer.frozen:\n if self._quickprop or self.splitEpsilon:\n layer.dweight = self.deltaWeight(self.epsilon, layer.\n wed, self.momentum, layer.dweight, layer.wedLast,\n layer.weight, self.numConnects(layer.name))\n else:\n layer.dweight = (self.epsilon * layer.wed + self.\n momentum * layer.dweight)\n layer.weight += layer.dweight\n layer.wedLast = Numeric.array(layer.wed)\n if self._quickprop:\n layer.wed = layer.weight * self.decay\n else:\n layer.wed = layer.wed * 0.0\n dw_count += len(layer.dweight)\n dw_sum += Numeric.add.reduce(abs(layer.dweight))\n if len(self.cacheConnections) != 0:\n changeConnections = self.cacheConnections\n else:\n changeConnections = self.connections\n for connection in changeConnections:\n if (connection.active and connection.fromLayer.active and\n connection.toLayer.active and not connection.frozen):\n toLayer = connection.toLayer\n if self._quickprop or self.splitEpsilon:\n for i in range(len(connection.dweight)):\n Numeric.put(connection.dweight[i], Numeric.arange(len(\n connection.dweight[i])), self.deltaWeight(self.\n epsilon, connection.wed[i], self.momentum,\n connection.dweight[i], connection.wedLast[i],\n connection.weight[i], self.numConnects(connection.\n toLayer.name)))\n else:\n connection.dweight = (self.epsilon * connection.wed + self.\n momentum * connection.dweight)\n connection.weight += connection.dweight\n connection.wedLast = Numeric.array(connection.wed)\n if self._quickprop:\n connection.wed = connection.weight * self.decay\n else:\n connection.wed = connection.wed * 0.0\n dw_count += Numeric.multiply.reduce(connection.dweight.shape)\n dw_sum += Numeric.add.reduce(Numeric.add.reduce(abs(connection.\n dweight)))\n if self.verbosity >= 1:\n print('WEIGHTS CHANGED')\n if self.verbosity > 2:\n self.display()\n return dw_count, dw_sum\n",
"role": "user"
},
{
"content": "change_weights",
"role": "assistant"
}
] |
def x(self, t, a):
def x(v):
if not self.hyperbolicError:
return v
elif v < -0.9999999:
return -17.0
elif v > 0.9999999:
return 17.0
else:
return math.log((1.0 + v) / (1.0 - v))
return list(map(difference, t - a))
|
errorFunction
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t, a):\n\n def x(v):\n if not self.hyperbolicError:\n return v\n elif v < -0.9999999:\n return -17.0\n elif v > 0.9999999:\n return 17.0\n else:\n return math.log((1.0 + v) / (1.0 - v))\n return list(map(difference, t - a))\n",
"role": "user"
},
{
"content": "errorFunction",
"role": "assistant"
}
] |
def x(self):
retval = 0.0
correct = 0
totalCount = 0
for layer in self.layers:
if layer.active:
if layer.type == 'Output':
layer.error = self.errorFunction(layer.target, layer.activation
)
totalCount += layer.size
retval += Numeric.add.reduce((layer.target - layer.
activation) ** 2)
correct += Numeric.add.reduce(Numeric.fabs(layer.target -
layer.activation) < self.tolerance)
elif layer.type == 'Hidden':
for i in range(layer.size):
layer.error[i] = 0.0
return retval, correct, totalCount
|
ce_init
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n retval = 0.0\n correct = 0\n totalCount = 0\n for layer in self.layers:\n if layer.active:\n if layer.type == 'Output':\n layer.error = self.errorFunction(layer.target, layer.activation\n )\n totalCount += layer.size\n retval += Numeric.add.reduce((layer.target - layer.\n activation) ** 2)\n correct += Numeric.add.reduce(Numeric.fabs(layer.target -\n layer.activation) < self.tolerance)\n elif layer.type == 'Hidden':\n for i in range(layer.size):\n layer.error[i] = 0.0\n return retval, correct, totalCount\n",
"role": "user"
},
{
"content": "ce_init",
"role": "assistant"
}
] |
def x(self, **args):
for key in args:
layer = self.getLayer(key)
if layer.kind == 'Output':
self.copyTargets(layer, args[key])
self.verifyTargets()
error, correct, total = self.ce_init()
pcorrect = {}
if len(self.cacheConnections) != 0:
changeConnections = self.cacheConnections
else:
changeConnections = self.connections
for connect in reverse(changeConnections):
if (connect.active and connect.toLayer.active and connect.fromLayer
.active):
connect.toLayer.delta = connect.toLayer.error * self.ACTPRIME(
connect.toLayer.activation)
connect.fromLayer.error = (connect.fromLayer.error + Numeric.
matrixmultiply(connect.weight, connect.toLayer.delta))
pcorrect = self.getLayerErrors()
return error, correct, total, pcorrect
|
compute_error
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, **args):\n for key in args:\n layer = self.getLayer(key)\n if layer.kind == 'Output':\n self.copyTargets(layer, args[key])\n self.verifyTargets()\n error, correct, total = self.ce_init()\n pcorrect = {}\n if len(self.cacheConnections) != 0:\n changeConnections = self.cacheConnections\n else:\n changeConnections = self.connections\n for connect in reverse(changeConnections):\n if (connect.active and connect.toLayer.active and connect.fromLayer\n .active):\n connect.toLayer.delta = connect.toLayer.error * self.ACTPRIME(\n connect.toLayer.activation)\n connect.fromLayer.error = (connect.fromLayer.error + Numeric.\n matrixmultiply(connect.weight, connect.toLayer.delta))\n pcorrect = self.getLayerErrors()\n return error, correct, total, pcorrect\n",
"role": "user"
},
{
"content": "compute_error",
"role": "assistant"
}
] |
def x(self):
if len(self.cacheConnections) != 0:
changeConnections = self.cacheConnections
else:
changeConnections = self.connections
for connect in reverse(changeConnections):
if (connect.active and connect.fromLayer.active and connect.toLayer
.active):
connect.wed = connect.wed + Numeric.outerproduct(connect.
fromLayer.activation, connect.toLayer.delta)
if len(self.cacheLayers) != 0:
changeLayers = self.cacheLayers
else:
changeLayers = self.layers
for layer in changeLayers:
if layer.active:
layer.wed = layer.wed + layer.delta
|
compute_wed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if len(self.cacheConnections) != 0:\n changeConnections = self.cacheConnections\n else:\n changeConnections = self.connections\n for connect in reverse(changeConnections):\n if (connect.active and connect.fromLayer.active and connect.toLayer\n .active):\n connect.wed = connect.wed + Numeric.outerproduct(connect.\n fromLayer.activation, connect.toLayer.delta)\n if len(self.cacheLayers) != 0:\n changeLayers = self.cacheLayers\n else:\n changeLayers = self.layers\n for layer in changeLayers:\n if layer.active:\n layer.wed = layer.wed + layer.delta\n",
"role": "user"
},
{
"content": "compute_wed",
"role": "assistant"
}
] |
def x(self):
output = ''
for layer in reverse(self.layers):
output += layer.toString()
return output
|
toString
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n output = ''\n for layer in reverse(self.layers):\n output += layer.toString()\n return output\n",
"role": "user"
},
{
"content": "toString",
"role": "assistant"
}
] |
def x(self):
print("Display network '" + self.name + "':")
size = list(range(len(self.layers)))
size.reverse()
for i in size:
if self.layers[i].active:
self.layers[i].display()
if self.patterned and self.layers[i].type != 'Hidden':
targetWord, diff = self.getWord(self.layers[i].target,
returnDiff=1)
if self.layers[i].kind == 'Output':
if targetWord == None:
print('Target Pattern = %s' % 'No match')
elif diff == 0.0:
print("Target Pattern = '%s'; (exact)" % targetWord)
else:
print(
"Target Pattern = '%s'; Match difference = %f)" %
(targetWord, diff))
actWord, diff = self.getWord(self.layers[i].activation,
returnDiff=1)
if self.layers[i].kind == 'Input' or self.layers[i
].kind == 'Output':
if actWord == None:
print('Matching Pattern = %s' % 'No match')
elif diff == 0.0:
print("Matching Pattern = '%s'; (exact)" % actWord)
else:
print(
"Matching Pattern = '%s'; Match difference = %f" %
(actWord, diff))
if self.verbosity >= 1:
weights = list(range(len(self.connections)))
weights.reverse()
for j in weights:
if self.connections[j].toLayer.name == self.layers[i].name:
self.connections[j].display()
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n print(\"Display network '\" + self.name + \"':\")\n size = list(range(len(self.layers)))\n size.reverse()\n for i in size:\n if self.layers[i].active:\n self.layers[i].display()\n if self.patterned and self.layers[i].type != 'Hidden':\n targetWord, diff = self.getWord(self.layers[i].target,\n returnDiff=1)\n if self.layers[i].kind == 'Output':\n if targetWord == None:\n print('Target Pattern = %s' % 'No match')\n elif diff == 0.0:\n print(\"Target Pattern = '%s'; (exact)\" % targetWord)\n else:\n print(\n \"Target Pattern = '%s'; Match difference = %f)\" %\n (targetWord, diff))\n actWord, diff = self.getWord(self.layers[i].activation,\n returnDiff=1)\n if self.layers[i].kind == 'Input' or self.layers[i\n ].kind == 'Output':\n if actWord == None:\n print('Matching Pattern = %s' % 'No match')\n elif diff == 0.0:\n print(\"Matching Pattern = '%s'; (exact)\" % actWord)\n else:\n print(\n \"Matching Pattern = '%s'; Match difference = %f\" %\n (actWord, diff))\n if self.verbosity >= 1:\n weights = list(range(len(self.connections)))\n weights.reverse()\n for j in weights:\n if self.connections[j].toLayer.name == self.layers[i].name:\n self.connections[j].display()\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(self):
gene = []
for layer in self.layers:
if layer.type != 'Input':
for i in range(layer.size):
gene.append(layer.weight[i])
for connection in self.connections:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
gene.append(connection.weight[i][j])
return gene
|
arrayify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n gene = []\n for layer in self.layers:\n if layer.type != 'Input':\n for i in range(layer.size):\n gene.append(layer.weight[i])\n for connection in self.connections:\n for i in range(connection.fromLayer.size):\n for j in range(connection.toLayer.size):\n gene.append(connection.weight[i][j])\n return gene\n",
"role": "user"
},
{
"content": "arrayify",
"role": "assistant"
}
] |
def x(self, gene):
g = 0
for layer in self.layers:
if layer.type != 'Input':
for i in range(layer.size):
layer.weight[i] = float(gene[g])
g += 1
for connection in self.connections:
for i in range(connection.fromLayer.size):
for j in range(connection.toLayer.size):
connection.weight[i][j] = gene[g]
g += 1
if len(gene) > g:
raise IndexError('Argument to unArrayify is too long.', len(gene))
|
unArrayify
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, gene):\n g = 0\n for layer in self.layers:\n if layer.type != 'Input':\n for i in range(layer.size):\n layer.weight[i] = float(gene[g])\n g += 1\n for connection in self.connections:\n for i in range(connection.fromLayer.size):\n for j in range(connection.toLayer.size):\n connection.weight[i][j] = gene[g]\n g += 1\n if len(gene) > g:\n raise IndexError('Argument to unArrayify is too long.', len(gene))\n",
"role": "user"
},
{
"content": "unArrayify",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.